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Structural reliability analysis of
multiple limit state functions using
multi-input multi-output support
vector machine
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Abstract
Selecting and using an appropriate structural reliability method is critical for the success of structural reliability analysis
and reliability-based design optimization. However, most of existing structural reliability methods are developed and
designed for a single limit state function and few methods can be used to simultaneously handle multiple limit state func-
tions in a structural system when the failure probability of each limit state function is of interest, for example, in a
reliability-based design optimization loop. This article presents a new method for structural reliability analysis with multi-
ple limit state functions using support vector machine technique. A sole support vector machine surrogate model for all
limit state functions is constructed by a multi-input multi-output support vector machine algorithm. Furthermore, this
multi-input multi-output support vector machine surrogate model for all limit state functions is only trained from one
data set with one calculation process, instead of constructing a series of standard support vector machine models which
has one output only. Combining the multi-input multi-output support vector machine surrogate model with direct
Monte Carlo simulation, the failure probability of the structural system as well as the failure probability of each limit state
function corresponding to a failure mode in the structural system can be estimated. Two examples are used to demon-
strate the accuracy and efficiency of the presented method.
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Introduction

During the past few decades, structural reliability meth-
ods have been gained increasing interest for rational
treatment of the uncertainties in engineering structures.
Despite the structural reliability community has
achieved many advanced development on the theoreti-
cal research, serious computational obstacles arise
when involving practical problems. For example, it
usually involves the reliability assessment of multiple
limit state functions (LSFs) in reliability-based design
optimization (RBDO) of a structure, and many

structures may have multiple failure modes which result
in multiple LSFs. A structural reliability method capa-
ble of dealing multiple LSFs from the same system with
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a single run is more preferable for RBDO problems
and multiple-LSF problems. When one examines the
existing structural reliability methods, an importance
fact is found that most of them are developed for a sin-
gle LSF, for example, the most commonly used first-
order reliability method (FORM) and second-order
reliability method (SORM).1–5 Although one may
repeat to apply the existing structural reliability meth-
ods on each LSF, the computational and development
effort cannot meet the demands in many practical
cases. Therefore, the study of structural reliability
methods which can deal with multiple LSFs simultane-
ously has progressively attracted attention recently,
especially on computer-based simulation methods. Due
to its excellent universality, direct Monte Carlo simula-
tion (MCS) is suitable for a problem with multiple
LSFs. However, the huge computational effort for
small reliability level hinders its applications, just like
the situation for a single LSF.6–8 Based on subset simu-
lation (SS),6 Hsu and Ching9 developed a simulation
algorithm for the failure probabilities of multiple LSFs.
In their algorithm, a principle variable is proposed to
correlate with all LSFs of interest and drive the simula-
tion to gradually approach the multiple failure regions.
However, it is a non-trivial task for the determination
of a proper principle variable. Li et al.10 proposed a
generalized SS to use unified intermediate events to
resolve the sorting difficulty in the original one. In gen-
eral, the generalized SS is much easy to carry out a
reliability analysis of multiple LSFs simultaneously,
compared with Hsu and Ching’s method. Like MCS,
SS is also very time-consuming when structural analy-
ses involve large numerical models, for example, finite
element models.11

In practical problems, LSFs are established based
on certain structural failure mechanism, for example,
stress, displacement, and fatigue, and do not have ana-
lytical expressions. Furthermore, the failure regions
usually possess complicated geometry and boundaries.
In order to reduce the computational effort of struc-
tural reliability analysis, surrogate models, for example,
response surface method (RSM),12–20 artificial neural
networks (ANNs),21–24 and support vector machine
(SVM),25–29are generally suggested to approximate the
actual LSF in a structural reliability problem. RSM
may be the most popular methods among them. It aims
to fit an LSF around the so-called design point as near
as possible. However, its approximate precision is
greatly influenced by an LSF’s complexity, polynomial
form and order, and location of supporting points.11,21

It has been proved that even a response surface with
accuracy as one wish may produce an erroneous esti-
mation for failure probability.30 Moreover, RSM is not
applicable to the situation of multiple LSFs. ANN is
one of the popular alternatives to RSM. Various kinds
of ANNs may estimate the failure probabilities of

multiple LSFs simultaneously with the aid of its high
parallelism. However, in the case of a small number of
training samples, the estimated results are greatly influ-
enced by the initial parameter setting, and the training
process is easy to fall into local optimum because ANN
is mainly based on the principle of empirical risk mini-
mization (ERM).31–33 Recently, Chojaczyk et al.22 pro-
vided a comprehensive review on the application of
ANN in structural reliability analysis.

SVM was first proposed by Cortes and Vapnik31 in
1995, which reveals many unique advantages in pattern
recognition with small samples, nonlinear and high
dimensions. It was further extended for nonlinear
regression by Vapnik.32,33 From the point of view of
statistical learning theory, SVM has several advantages
over RSM and ANN for the approximation of an
LSF.25 SVM adopts the structural risk minimization
(SRM) principle rather than the ERM principle so that
SVM has better generalization ability. In addition,
there is no local optimal issue when searching the algo-
rithm parameters in an SVM. Due to its superior per-
formance, SVMs have been developed to combine with
conventional structural reliability methods to establish
new structural reliability methods. Those advantages
mentioned previously can inhere in the structural relia-
bility methods based on various SVMs. Hurtado and
Alvarez25 proposed an interesting method composed of
SVM and stochastic finite element method to deal with
structural reliability analysis by means of regarding the
problem of structural reliability analysis as a pattern
recognition problem. By combining SVM with FORM
and MCS, the two approaches, SVM-based FORM
and SVM-based MCS, were proposed by Li et al.26 for
structural reliability analysis. Guo and Bai27 suggested
a method that combines the least square SVM with
MCS. It indicates the method based on the least square
SVM is superior to the method based on traditional
SVM. Dai et al.28 developed a SVM-based importance
sampling to perform structural reliability analysis, in
which SVM is used to construct the sampling density
for the optimal important sampling density to reduce
the number of training samples. Jiang et al.29 paid a
special attention to generating uniform support vector
for the SVMs’ application on structural reliability
analysis.

Although SVMs have been widely used in reliability
community, a series of traditional SVM models which
only have one output are needed to be constructed
when dealing with multiple LSFs simultaneously.34

This strategy may have very low computational effi-
ciency, because both actual LSFs and their surrogate
models are required to be called for a large number of
times during surrogate model construction and reliabil-
ity estimation.

As an alternative to the traditional SVMs, multiple-
input multiple-output SVMs (MIMO-SVMs)35–38 are
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good choice since they can model the multiple-input
multiple-output relationship between the input random
variables and the multiple failure modes in a structural
system and have been applied in many engineering and
science fields. The newly developed multiple-task least-
squares SVMs (MTLS-SVMs) which is proposed by
Xu et al.35,36 aims for establishing a surrogate model
between input parameters and multiple outputs for
multiple classification and regression problems. This
article presents a new method for structural reliability
analysis of multiple LSFs, which utilizes the recently
developed MTLS-SVM. To our best knowledge, this is
the first attempt to employ MTLS-SVM for structural
reliability analysis of multiple LSFs. A new random
sampling method, combining the Latin hypercube sam-
pling (LHS) and uniform sampling (US), is also devel-
oped to generate the training data (supporting points)
set with a good coverage of the input random space.
Then, the MTLS-SVM is trained to be a single surro-
gate model for all LSFs in the problem of interest.
Finally, based on the trained MTLS-SVM model, MCS
is employed to estimate the failure probabilities of all
LSFs simultaneously. The computational efficiency and
accuracy of the presented method are also studied in
this article.

SVM technique

In this section, some basic concepts of SVM are briefly
reviewed. More details of SVM can be referred to
Vapnik.32 It is well known that SVM is a statistical
learning algorithm based on SRM, which can be used
for classification and regression problems. Here, we
focus on the regression problems, that is, function fit-
ting problems.

Considering a training data set

S = x1, y1ð Þ, x2, y2ð Þ, . . . , xl, ylð Þf g, xi 2 Rn, yi 2 R

ð1Þ

where l is sample size, xi is the input parameters, and y
is the scalar output, respectively.

The nonlinear relationship between the inputs and
output can be described by a regression function
obtained from SVM theory

f xð Þ=u xð ÞTw+ b=
X
xi2SV

ai � a�i
� �

K xi, xj

� �
+ b ð2Þ

where f (x) is the regression function, u(x) is a mapping
function for a higher dimensional Hilbert space, w is
the control parameter of the hyperplane in the Hilbert
space, ai and a�i are the Lagrange multipliers, and
K(xi, xj) is the kernel function which meets the Mercer
condition,32,33 respectively. Furthermore, a small por-
tion of samples in the whole training data set have non-

zero ai and a�i . These samples, which are used to con-
struct a regression function rather than the whole data
set, are called support vectors (SVs). The values of ai,
a�i , and b can be obtained by minimizing the following
dual objective function with constraints

min
1

2

Xl

i, j= 1

ai � a�i
� �

aj � a�j

� �
K xi, xj

� �

+ e
Xl

i= 1

ai +a�i
� �

�
Xl

i= 1

yi a�i � ai

� �

s:t:
Xl

i= 1

a�i � ai

� �
= 0, 0�ai, a�i � c

i, j= 1, 2, . . . , lð Þ

ð3Þ

where c is a regularization parameter used to measure
the complexity and the loss of compromise, and e is a
linear insensitive loss function. According to the
Karush–Kuhn–Tucker (KKT) complementary condi-
tions, equation (3) has a global optimal solution
because SVM converts a regression problem into a
quadratic optimization problem.

The kernel function K(xi, xj) is one of key compo-
nents of SVM. In SVM, a nonlinear problem in the
input space is converted into a linear problem in a
high-dimensional feature space. The inner product in
the feature space will be replaced by the kernel function
K(xi, xj) which meets the Mercer condition. Therefore,
the expression of nonlinear transformation will not be
needed any more. Several kinds of commonly used ker-
nel functions are given below: (1) liner kernel function
K(xi, xj)= hxi, xji; (2) polynomial kernel function
K(xi, xj)= (hxi, xji+ 1)q; (3) radial basis kernel func-
tion K(xi, xj)= exp (� xi � xj

�� ��2
=s2); and (4) sigmoid

kernel function K(xi, xj)= tanh (vhxi, xji+ a).

The least square MIMO-SVM

The above-mentioned SVM technique is able to be
applied to a system with a single output only. Thus, it
cannot be used for dealing with a complex system with
multiple outputs, for example, the demand of dealing
with multiple LSFs in an RBDO problem as in this
study. To overcome this issue, various MIMO-SVM
techniques have been proposed to meet this demand.35–38

In this article, a MTLS-SVM35,36 is employed to build
up a single surrogate model which can approximate mul-
tiple LSFs.

Considering a system has m outputs, the training
sample size is l. The training data set in equation (1)
becomes as

S = xi, yið Þli= 1

n o
, xi 2 Rn, yi 2 Rm

i= 1, 2, . . . , l
ð4Þ
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where n is the dimension of input parameters.
According to the Hierarchical Bayesian,39,40 the control
parameter wi can be expressed as wi =w0 + vi, which
reflects the relationship and difference among the out-
puts. Here, the mean vector w0 is small when the out-
put quantities are very different to each other,
otherwise the vector is small. Therefore, w0 embodies
the common information among the outputs, and vi

embodies the information of the specialty of the ith
output.

To solve the regression problem of multiple outputs
system, MIMO-SVM determines w0, vi, and bi simulta-
neously by minimizing the following objective function
with constraints

min
1

2
wT

0w0 +
1

2

l

m

Xm

i= 1

vT
i vi + c

Xm

i= 1

jT
i ji

s:t: yi =ZT
i w0 + við Þ+ bi 1l + ji

i= 1, 2, . . . , mð Þ

ð5Þ

where l and c are two positive real regularized para-
meters, 1l =(1, . . . , 1)T 2 Rl, Zi =(f(xi, 1),f(xi, 2), . . . ,
f(xi, l)), ji =(ji, 1, ji, 2, . . . , ji, l)

T.
Pm

i= 1 jTi ji is a quad-
ratic loss function instead of the linear insensitive loss
function e in section ‘‘SVM technique.’’

The Lagrange function is introduced to solve the
optimization problem in equation (6)

L w0, vi, b, ji,aið Þ= 1

2
wT

0w0 +
1

2

l

m

Xm

i= 1

vTi vi + c
Xm

i= 1

jT
i ji

�
Xm

i= 1

aT
i ZT

i w0 + við Þ+ bi 1l + ji � yi

� �

i= 1, 2, . . . , mð Þ ð6Þ

where ai =(ai, 1,ai, 2, . . . ,ai, l)
T are the Lagrange multi-

pliers. The KKT conditions for equation (6) are given
by

∂L

∂w0

= 0,
∂L

∂vi

= 0,
∂L

∂bi

= 0,
∂L

∂ji

= 0,

∂L

∂ai

= 0 i= 1, 2, . . . , mð Þ ð7Þ

The following linear equations are obtained

w0 =Za
vi =

m
l
ZiaiPm

i= 1

ai = 0

ai = 2cji

yi =ZT
i w0 + við Þ+ bi 1l + ji

8>>>>>><
>>>>>>:

i= 1, 2, . . . , m

ð8Þ

where Z=(Z1,Z2, . . . ,Zm), and a=(aT
1 , a

T
2 , . . . ,

aT
m)

T. Then, one has a matrix equation

0m 3 m OT

O H

� �
� b

a

� �
=

0m

y

� �
ð9Þ

where O=(1l1 , 1l2 , . . . , 1lm ) is a block diagonal matrix,
the positive definite matrix H=ZTZ+(1=2c)Il +
(m=l)B, Il is unitary matrix, and B=(K1,K2, . . . ,Km)
is a block diagonal matrix with the element Ki =ZT

i Zi,
respectively. Let the solution to equation (9) be
a�=(a�T1 , a�T2 , . . . , a�Tm )T and b=(b�1, b�2, . . . , b�m)

T.
Then, the regression estimate functions can be
expressed as

fi xð Þ=f xð ÞT w�0 + v�i
� �

+ b�i

=f xð ÞT Za�+
m

l
Zia

�
i

� �
+ b�i

=
Xm

i9 = 1

Xl

j= 1

a�i9, jK xi9, j, x
� �

+
m

l

Xl

j= 1

a�i9, jK xi, j, x
� �

+b�i

i= 1, 2, . . . ,m

ð10Þ

More details about the MIMO-SVM algorithm can
be seen in Xu et al.35,36

Structural reliability analysis based on
MIMO-SVM

It is well known that LSF is the foundation of the struc-
tural reliability analysis. In this article, MIMO-SVM is
used to construct a single surrogate model of all multi-
ple LSFs through a single run. On the basis of this sur-
rogate model, MCS is then employed to calculate the
failure probabilities of all LSFs simultaneously. This
section starts with the development of a new random
sampling method. Then, the implementation procedure
of the presented method is provided.

The generation of training samples

For most of surrogate model methods, the training
sample size and position are critical to construct an
appreciate surrogate model which can meet the require-
ments of efficiency and accuracy. Although SVM tech-
niques possess a good generalization performance
compared with other machine learning algorithms, a
small number of training samples is always preferable
to construct a high accuracy surrogate model. From a
general sense, MCS may be used to generate a training
data set. However, random samples, generated accord-
ing to the underlying probability distribution of ran-
dom variables in MCS, usually cluster in a local
domain and cannot completely represent the input
space well. Moreover, MCS is not easy to obtain failure
samples which represent structural characteristics in the
failure domain, especially for small failure probability
levels. The training data set without failure samples still
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may be used to train a surrogate model. However, its
precision and generalization cannot be guaranteed.
Thus, MCS is not suitable to generate the training data
set for the purpose of training a proper surrogate
model.

An LHS technique41,42 is employed to generate the
training samples in this article. In essence, LHS is a
kind of multi-dimensional stratified sampling method
in order to obtain a good coverage of input space and
reduce the statistical uncertainty associated with MCS.
Suppose that N training samples are required, the accu-
mulative probability interval [0,1] of a random variable
is divided into N non-overlapping subintervals

ui =
u

N
+

i� 1

N
i� 1

N
\ui\

i

N

8><
>: i= 1, 2, . . . ,N ð11Þ

where u is a uniform random number in the interval
[0,1] and ui is the random number in the ith subinterval
(i� 1=N)\ui\(i=N ), respectively. Then, the sampling
in each subinterval is isoprobable and independent.
This strategy avoids the large number of random sam-
pling using MCS. The median LHS is adopted in this
article, that is, u= 0:5. Let u=(u1, u2, . . . , uN )

T be a
random set of ui. The sampling point xi can be obtained
according to the inverse cumulative distribution func-
tion of their marginal distributions

xi =F�1
j uið Þ i= 1, 2, . . . , N ð12Þ

where F�1(ui) is the inverse cumulative distribution
function of the jth random variable. Without loss of
generality, the input random variables are assumed to
be independent. Even the input random variables are
dependent, the above procedure still can be used to
generate the training samples since the correlation
among the input random variables is not needed to be
considered at this stage. The above procedure can be
easily extended to a problem of n-dimension. Suppose,
the N sampling points are needed to be generated in an
n-dimensional input space, first, the n-dimensional
input space is split into Nn equal-sized hypercubes.
Then in each hypercube, a random sample is generated.
It should be pointed out that the N hypercubes need to
be satisfied by the following requirement: only one
hypercube can be chosen in any direction parallel with
any of the axes.

If the associated failure probability of an LSF is too
small, the training data set generated by LHS technique
may not include any failure points. In order to address
this issue, an improved sampling method, combining
LHS technique and uniform sampling (US), is proposed
to provide a good coverage of the whole input random

space. This new method is denoted as LHS + US in
this article. After generating ui by LHS technique, xi is
obtained through a uniform mapping, that is, ui is
mapped from the interval [0,1] to a compatible interval
½mj � ksj,mj + ksj�, instead of the complex inverse
manipulation. Here, parameter k is a constant, which is
used to describe the coverage of the training data set.
Therefore, the selection of k should guarantee that there
are enough failure points in the training data set. An
empirical experience is that the value of k falls into an
interval [3, 9] because the maximum allowable failure
probability of a practical structure is less than 1023.
Here, a system with two LSFs is used to show the effect
of parameter k. These two LSFs are given by

g1 xð Þ= 2� x2 + exp �0:1x1ð Þ2 + 0:2x1ð Þ4

g2 xð Þ= 4:5� x1x2

ð13Þ

where x1 and x2 are two standard normal variables.
Figure 1 shows 20 samples generated by LHS and

LHS + US separately. Figure 1(a) presents the samples
obtained by LHS technique. It can be seen that these 20
samples do not contain any failure samples and then
cannot cover the input space well. Figure 1(b)–(d)
shows the training samples obtained by LHS + US. It
can be seen that the higher the value of k, the more the
failure points will be generated and the better the cover-
age of random samples.

To select a proper value for k, a practical way is to
start with k=6 and check the percentage of failure
samples. If this value is larger than 20%, the generation
of training samples can be terminated. Otherwise, a
larger value of k needs to be set.

Procedure of the presented method

Considering a structural system with m LSFs

g1 Xð Þ= g1 x1, x2, . . . , xkð Þ
..
.

gm Xð Þ= g1 x1, x2, . . . , xkð Þ

8><
>: ð14Þ

The general procedure of the presented method is
given below. First, the training samples required to con-
struct a surrogate model are generated by LHS + US.
Then, in order to select an appropriate kernel function,
the corresponding parameters are determined by a grid-
search method43 according to the selected kernel function
and the training samples. After that, the sole surrogate
model of all m LSFs is trained, based on the above infor-
mation and the sampling algorithm presented in section
‘‘The generation of training samples.’’ Finally, MCS is
employed to estimate the failure probabilities of all m
LSFs based on the MIMO-SVM surrogate model. For
the jth LSF, its failure probability is estimated as

Li et al. 5



Pfj =P gj Xð Þ\0
� �

’
nj

N
, j= 1, 2, . . . ,m ð15Þ

where gj(X) is the jth LSF from the trained surrogate
model, N is the total number of samples or simulations
in MCS, and nj is the total number of failure samples
for LSF gj(X), respectively. The above procedure is
summarized in Figure 2.

Numerical examples

Two examples are used to illustrate the accuracy and
efficiency of the presented method in this section,
including one numerical example and one engineering
problem. Example 1 is a two-dimensional structural
system with four LSFs. It gives a visual representation
of the effect of MIMO-SVM and the impact of training
sample size and kernel function. Example 2 has 11
seven-dimensional LSFs, which is used to demonstrate
the capacity of dealing with multiple LSFs by MIMO-
SVM.

Example 1

Considering a reliability analysis problem of a struc-
tural system with 4 two-dimensional LSFs, it was taken
and modified from Waarts.11 System failure is defined
as gs(x)= minfg1(x), g2(x), g3(x), g4(x)g, and all four
LSFs are given by

g1 xð Þ= 0:1 x1 � x2ð Þ2 � x1 + x2ffiffiffi
2
p + 3

g2 xð Þ= x1 � x2 + 3:5
ffiffiffi
2
p

g3 xð Þ= 0:1 x1 � x2ð Þ2 + x1 + x2ffiffiffi
2
p + 3

g4 xð Þ= � x1 + x2 + 3:5
ffiffiffi
2
p

ð16Þ

where x1 and x2 are independent standard normal ran-
dom variables. Both the failure probability of system
and the failure probability of each LSF are required
to be estimated simultaneously. In this problem,
LHS + US is employed to generate random samples

Figure 1. Random sampling by LHS and LHS + US: (a) LHS, (b)LHS + US with k = 3, (c) LHS + US with k = 6, and (d)
LHS + US with k = 9.
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with k=8, and sample size is chosen as 10 and 20 for
illustrative purpose. The quadratic and cubic polyno-
mial kernel functions and the radial basis kernel func-
tion are used for training MIMO-SVM surrogate
model. Figure 3 shows the fitting results with different
kernel functions and different sample size. MCS with
106 samples is employed to estimate the failure prob-
abilities of interest, based on the trained MIMO-SVM
model. The failure probabilities of LSFs are summar-
ized in Table 1.

It can be seen from Figure 3 that the MIMO-SVM
model possesses highly approximated precision when
an appropriate number of failure samples is included in
the training data set. However, the sample size seems to
have a small influence on the approximated precision
of the MIMO-SVM model when it is larger than 10.
For this example, the MIMO-SVM models with differ-
ent kernel functions may have similar precision.
The simulation results from MCS (the second row in
Table 1) are considered as ‘‘actual’’ ones, and they are
used to compare to the computational results obtained
by the proposed method. Table 1 indicates the pre-
sented method is as accurate as MCS. It is more effi-
cient than the latter because it only needs a small
number of training samples.

It is worth noting that the MIMO-SVM model is
constructed only by one training run, while the number

of training runs of a single-output SVM is identical
with the number of LSFs in a system. Furthermore, a
single-output SVM may require a different training
data set for each LSF in the system. In this example,
the MIMO-SVM model and the single-output SVM
model have very similar precision, while the former
needs as less as 10 training samples and the latter needs
40 training samples.

Example 2

As shown in Figure 4, a speed reducer44 has been
designed to minimize its weight. There are 11 prob-
abilistic constraints, and they represent bending, con-
tact stress, longitudinal displacement, stress of the
shaft, and geometry constraints. This design optimi-
zation problem has seven design variables: gear width
(x1), teeth module (x2), number of teeth in the pinion
(x3), distance between bearings (x4, x5), and axis dia-
meters (x6 and x7). Input random variables x1–x7 are
mutually independent normal random variables with
a standard deviation of 0.005. The objective function
and the formulae of the probabilistic optimization are
given by

find x= x1, . . . , x7ð Þ
min f xð Þ= 0:7854x1x2

2

3:3333x2
3 + 14:0934x3 � 43:0934

� �
� 1:508x1 x2

6 + x2
7

� �
+ 7:477 x3

6 + x3
7

� �
+

0:7854 x4x2
6 + x5x2

7

� �
s:t: Pr gi xð Þ.0½ � � 1� F bið Þ, i= 1, . . . , 11

ð17Þ

and

Figure 2. Flowchart of the presented method.

Table 1. The failure probabilities of all LSFs in Example
1 (3 10–3).

LSFs g1(x) g2(x) g3(x) g4(x) gs(x)

MCS 0.853 0.229 0.879 0.240 2.22
Single SVM 0.904 0.204 0.852 0.256 2.22
M-poly-2 (10) 0.904 0.204 0.852 0.256 2.22
M-poly-3 (10) 0.876 0.246 0.866 0.224 2.21
M-poly-2 (20) 0.904 0.204 0.852 0.256 2.22
M-RBF (10) 0.976 0.212 0.924 0.260 2.37
M-RBF (20) 0.904 0.204 0.848 0.256 2.21

LSF: limit state function; MCS: Monte Carlo simulation; SVM: support

vector machine; RBF: radial basis function; MIMO-SVM: multi-input

multi-output support vector machine.

M is MIMO-SVM.

The numbers in the parentheses are the sample size.

Li et al. 7



Figure 3. The LSFs fitted by MIMO-SVM with different kernel functions and different sample sizes: (a) Poly-2 with 10 samples, (b)
Poly-3 with 10 samples, (c) Poly-2 with 20 samples, (d) Poly-2 with 40 samples, (e) RBF with 10 samples, (f) RBF with 20 samples,
and (g) RBF with 40 samples.
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� 1
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5:0� x7� 5:5

ð18Þ

It is obvious that all these 11 probabilistic con-
straints are required to be estimated in each iteration
during the optimization process regardless of the usage
of a double-loop or a single-loop optimization algo-
rithm. Here, this study focuses on how to solve 11
probabilistic constraints simultaneously based on the
presented method to reduce the total computational
cost. Table 2 summarizes three groups of optimization
results reported in the literature,44 and these optimiza-
tion results are selected to perform our illustration.

In this numerical example, 10 training samples are
generated by LHS. Radial basis kernel function is cho-
sen and the corresponding parameters are determined
by grid-search method. The single MIMO-SVM surro-
gate model is trained according to the above informa-
tion. Then, based on the trained MIMO-SVM model,
MCS with 105 samples is employed to estimate the fail-
ure probabilities of all 11 LSFs. In this article, the fail-
ure probabilities of all 11 probabilistic constraints for
the three optimization cases are verified, that is, deter-
ministic optimum, performance measure approach
(PMA), and PMA + envelope function.44 The compu-
tational results are summarized in Table 3.

Similar to Example 1, a single MIMO-SVM surro-
gate model is constructed for all 11 LSFs, while 11
SVM surrogate models with one output are needed to
be constructed in a traditional way. The training

Figure 4. Schematic speed reducer configuration.

Table 2. The optimization results given by Lee and Lee.44

Optimization
method

Objective
function

Design variables

Deterministic 2992 (3.50, 0.70, 17.0, 7.30, 7.72,
3.35, 5.29)

PMA 3037 (3.60, 0.70, 17.8, 7.30, 7.79,
3.40, 5.34)

PMA+ envelope
function

3100 (3.60, 0.70, 17.2, 8.30, 8.30,
3.58, 5.45)

Table 3. The failure probabilities of all LSFs in Example 2.

LSF Deterministic PMA PMA + envelope function

MCS MIMO-SVM MCS MIMO-SVM MCS MIMO-SVM

g1(x) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
g2(x) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
g3(x) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
g4(x) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
g5(x) 0.0923 0.0908 0.0000 0.0000 0.0000 0.0000
g6(x) 0.1763 0.1768 0.0000 0.0000 0.0000 0.0000
g7(x) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
g8(x) 0.4999 0.4978 4.5100 3 1025 3.700 3 1025 4.3000 3 1025 4.6 3 1025

g9(x) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
g10(x) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
g11(x) 0.4667 0.4668 0.0157 0.0154 0.0000 0.0000

LSF: limit state function; MCS: Monte Carlo simulation; MIMO-SVM: multiple-input multiple-output SVM.
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sample size is only 10 for the presented MIMO-SVM
surrogate model, while at most 110 samples may be
needed when using a single-output SVM model. It can
be seen from Table 3 that the computational results
obtained by the presented MIMO-SVM surrogate
model with MCS are very close to those obtained
directly by MCS. This indicates that the presented
MIMO-SVM model has high accuracy under the con-
dition of small number of samples and moderate
dimensions.

Conclusion

It is well known that most of traditional structural
reliability methods cannot be applied to deal with mul-
tiple LSFs simultaneously, when the failure probability
of each LSF is of interest. A new structural reliability
method using MIMO-SVM is presented to handle mul-
tiple LSFs for this issue which may arise in an RBDO
problem and/or a problem with multiple failure modes.
The main idea of the presented method is to construct
a single surrogate model for all multiple LSFs using
MIMO-SVM because all LSFs share the common
input parameters and model (numerical or physical
one). In order to obtain a good coverage of input para-
meter space, LHS and LHS + US are proposed to
generate a training data set with a portion of failure
samples. Finally, the failure probabilities of all LSFs
are estimated by MCS based on the trained MIMO-
SVM surrogate model. The most attractive advantages
of this presented method are that all LSFs are approxi-
mated only using one training data set and the training
operation is only run one time. These will be benefited
for the estimation of probabilistic constraints in RBDO
and structural reliability analysis with multiple failure
modes. Numerical examples indicate that that the pre-
sented method needs a small amount of computational
cost to achieve an accurate reliability analysis. Thus, it
is suitable for RBDO with multiple probabilistic con-
straints and multiple modes reliability analysis.

A limitation of this study is the passive way of gen-
eration of training samples. Future work will involve
combining the active learning techniques and MIMO-
SVM to further reduce the computational cost and
then apply it in practical RBDO.
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