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 22 

Abstract 23 

Strawberry blossom weevil (SBW), Anthonomus rubi Herbst (Coleoptera: Curculionidae) and 24 

European tarnished plant bug (ETB), Lygus rugulipennis Poppius (Hetereoptera: Miridae), cause 25 

significant damage to strawberry and raspberry crops. Using the SBW aggregation pheromone and 26 

ETB sex pheromone we optimized and tested a single trap for both species. A series of field 27 

experiments in crops and semi-natural habitats in five European countries tested capture of the 28 

target pests and the ability to avoid captures of beneficial arthropods. A Unitrap containing a 29 

trapping agent of water and detergent and with a cross vane was more efficient at capturing both 30 

species compared to traps which incorporated glue as a trapping agent. Adding a green cross vane 31 

deterred attraction of non-pest species such as bees, but did not compromise catches of the target 32 

pests. The trap caught higher numbers of ETB and SBW if deployed at ground level and although a 33 

cross vane was not important for catches of ETB it was needed for significant captures of SBW. The 34 

potential for mass trapping SBW and ETB simultaneously in soft fruit crops is discussed including 35 

potential improvements to make this more effective and economic to deploy. 36 

 37 
Key words: Apoidea, bycatch, monitoring, mass trapping, pheromone, plant volatiles 38 

 39 
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Introduction 41 

 42 

Across Europe, strawberry blossom weevil (SBW), Anthonomus rubi Herbst (Coleoptera: 43 

Curculionidae) and European tarnished plant bug (ETB), Lygus rugulipennis Poppius (Hetereoptera: 44 

Miridae) are serious pests in strawberry and some cane fruits causing economic loss for farmers. 45 

SBW females lay eggs in flower buds and then partially sever the peduncles. Damaged buds do not 46 

develop further resulting in a loss of yield (Aasen & Trandem, 2006; Jay et al., 2008). ETB pierces and 47 

feeds on flowers and developing fruitlets, causing fruit distortion and considerably decreasing fruit 48 

quality for market, up to 80% distorted fruits (Cross et al., 2011; Fitzgerald & Jay, 2011).  49 

Foliar applications of insecticides are the main method of controlling these pests. The loss of 50 

active compounds through the pesticides approval process, the evolution of pesticide resistance in 51 

many pest populations (e.g. in SWB, Aasen & Trandem, 2006), the need for selective control 52 

measures to prevent disruption of integrated pest management (IPM) practices (Hillocks, 2012; 53 

2013) and high losses in organic production all require better timed and targeted control 54 

applications and alternative control methods for key pest species. In addition, the incidence of 55 

pesticide residues in fresh produce (European Food Safety Authority, 2015) and harm to beneficial 56 

insects (e.g. Croft & Brown, 1975; Cressey, 2015) are all justifications for alternative approaches to 57 

pesticide use (Hillocks, 2012, 2013).  58 

In the EU, users of pesticides are required by law to monitor pests when possible, and only 59 

apply pesticides when pests are present in damaging numbers and other measures have failed, 60 

taking the resistance risk into account (Sustainable Use Directive 2009/128/EC). The use of 61 

pheromone traps for monitoring insect pests is widespread in Europe and other main fruit growing 62 

regions of the world (Walton et al., 2004; Teixeira et al., 2009; Haghani et al., 2016). Trap design, 63 

placement and attractants may all have an important role in pheromone trap effectiveness, 64 

depending on pest behaviour and finding the best combination of these factors will improve trap 65 

efficacy (Blackmer et al., 2008; Switzer et al., 2009; Singh et al., 2013; Renkema et al., 2014).  66 
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Effective monitoring traps also have the potential to control pests through mass trapping 67 

(Faccoli and Stergulc, 2008; Witzgall et al., 2010; Abbes et al., 2012; Mwatawala et al., 2015) aiming 68 

to reduce pest numbers, sufficiently, to reduce fruit damage. Mass trapping has been used in the 69 

long term management of many pests and has the potential to be exploited for commercial 70 

strawberry production by suppressing or even eradicating low-density, isolated pest populations (El-71 

Sayed et al., 2006). The combination of mass trapping and releases of the predator Nesidiocoris 72 

tenuis (Reuter) resulted in a 50% reduction in tomato fruit infestation by the tomato leaf miner, Tuta 73 

absoluta (Meyrick) (Lepidoptera: Gelechiidae), compared to conventional treatments (Abbes et al., 74 

2012). Mass trapping often reduces populations of pests in crops (e.g. Mafra-Neto & Habib, 2003), 75 

but there are fewer studies demonstrating successful damage reduction. Examples of successful use 76 

of mass trapping against Coleoptera include the spruce bark beetle, Ips typographus (L.) (Faccoli & 77 

Stergulc, 2008), and the palm weevils Rhynchophorus palmarum (L.) (Oehschlager et al., 2002) and R. 78 

ferrugineus (Olivier) (Dembilio & Jaques, 2015).  79 

The male-produced aggregation pheromone of SBW was identified as a blend of Grandlure I, 80 

Grandlure II and lavandulol by Innocenzi et al. (2001), and further work was carried out to make the 81 

blend more cost-effective by Innocenzi et al. (2001) and Cross et al. (2006b). In addition, the effect 82 

of host plant volatiles on SBW was investigated. Bichão et al. (2005a,b) showed that some neurons 83 

on the antenna of A. rubi are narrowly tuned to a few structurally related sesquiterpenes, aromatics 84 

or monoterpenes. Adding these plant volatiles to the aggregation pheromone has the potential to 85 

increase the attractiveness to SBW (Cross et al., 2006b; Wibe et al., 2011; 2014a). Currently a blend 86 

of SBW aggregation pheromone and one plant volatile, 1,4-dimethoxybenzene, is widely used for 87 

SBW monitoring (Wibe et al., 2011; 2014a). 88 

Three compounds have been identified as components of the ETB female sex pheromone 89 

(Innocenzi et al., 2004; Frati et al., 2009) and a blend of these was further optimised and tested in 90 

field trials (Innocenzi et al., 2004, 2005; Fountain et al., 2008, 2011; Cross et al., 2011) to develop an 91 

effective lure and trap for monitoring males (Fountain et al., 2014). In addition, some plant volatiles 92 
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such as phenylacetaldehyde have been identified as attractants for female ETB (Frati et al., 2009; 93 

Fountain et al., 2010; Koczor et al., 2012).  94 

For both target species, initial testing assessed different trap types and colours, most 95 

frequently using traps which incorporated sticky glue as the trapping agent (Innocenzi et al., 2001; 96 

Cross et al., 2006a, 2006b; Jay et al., 2008). These traps were not optimal for SBW as weevils were 97 

often found around the traps, but not in or on them (Cross et al., 2006a). Initial experiments for 98 

attracting ETB employed various sticky trap designs and colours but this was before the pheromone 99 

was widely available (Holopainen et al., 2001; Blackmer et al., 2008).  100 

Changes in trap design leading to improved pest capture will make a monitoring trap more 101 

sensitive and mass trapping more effective. Traps must be competitive with the surrounding crop, 102 

ensure the pest is captured and not kill or disrupt significant numbers of natural enemies and other 103 

beneficial insects, e.g. pollinators. In addition, it should not become saturated with bycatch and it 104 

should be easy to use and maintain, and be cost effective. 105 

To help reduce pesticide inputs, further development of the traps was necessary to a) 106 

improve target pest capture, b) combine traps for two common species in strawberry and c) develop 107 

a trap which was easy to maintain and economically viable for future mass trapping. Studies were 108 

carried out in Denmark, Latvia, Norway, Switzerland and the UK comparing the effect of various trap 109 

designs on captures of the target pests including non-target, beneficial, species.  110 

 111 

Materials and methods 112 

Traps 113 

Two basic designs of trap were evaluated; delta traps (20 cm x 20 cm) with white sticky inserts and 114 

green Unitraps consisting of a bucket with a funnelled entrance and green or white cross vanes 115 

between the bucket and the roof (bucket 16 cm dia, 12.5 cm high with 3 cm dia opening, cross vanes 116 

10 cm high, cover 16.5 cm dia). The latter trap, from hereon in, will be referred to as Unitraps. Water 117 

(250 ml) and a drop of detergent was added to the Unitraps as killing agent. Traps were purchased 118 
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from Agrisense (Treforest, Pontypridd, UK), International Pheromone Systems Ltd. (The Wirral, 119 

Merseyside, UK) or Agralan (Swindon, UK). 120 

 121 

Lures 122 

For trapping ETB with live females, individual mature, virgin, female ETB from a laboratory culture 123 

were contained in a cage (hair roller 6 cm x 3 cm with gauze around the outside and a lid at either 124 

end, holding the gauze in place). The cage contained a piece of damp paper and a section of bean as 125 

food and was anchored into the top of the trap under the roof. Female ETB were replaced weekly. 126 

Lures for SBW were polyethylene sachets containing 100 μl of 1:4:1 blend of Grandlure I: 127 

Grandlure II: lavandulol plus 200 mg 1,4-dimethoxybenzene (Wibe et al., 2014) (International 128 

Pheromone Systems Ltd.).  Lures for ETB were pipette tips containing 10 μg hexyl butyrate, 0.3 μg 129 

(E)-2-hexenyl butyrate and 2 μg (E)-4-oxo-2-hexenal in 100 μl sunflower oil (Fountain et al., 2014), 130 

prepared at the Natural Resources Institute. Lures were hung from the roof of delta traps or the 131 

cover of Unitraps. 132 

 133 

Comparison of delta traps and Unitraps for trapping ETB 134 

Two experiments were carried out in a weed field (Chenopodium and Matricaria) at NIAB EMR in the 135 

UK (Lat: 51.285494 north, Long: 0.461177 east) using virgin female ETB as bait (Table 1). In 136 

Experiment A (27 June – 11 July 2008), delta traps and Unitraps were compared with different 137 

materials for retaining the insects. The delta traps had either the standard wet glue inserts, dry glue 138 

inserts (Agrisense), wet glue inserts with additional sticker or wet glue inserts sprayed with 139 

cypermethrin (0.0014 ml sticky base-1, equivalent to 0.35 L ha-1). The Unitraps had white cross vanes 140 

or cross vanes constructed from white insect trapping cards impregnated with lambda-cyhalothrin. A 141 

clear delta trap was also tested, made of clear vinyl sheets held together at the top with a paper 142 

binder and with a white, wet, glue insert (Table 1). 143 
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In Experiment B (27 August – 1 September 2008), different coloured traps were compared. 144 

These were green delta traps, clear delta traps, and green Unitraps with white, green or yellow cross 145 

vanes. A sticky stake trap was also tested consisting of a wooden stake (3 x 3 x 40 cm) inserted in the 146 

ground and coated in Oecotack insect trapping glue (Agralan) above ground. 147 

Delta traps were suspended on two bamboo canes (50 cm above the ground) and Unitraps 148 

were dug into the ground to the level of the funnel. Four replicates of each trap in each experiment 149 

in a randomised block design were spaced >10 m apart and the numbers of male ETB captured 150 

recorded weekly.   151 

 152 

Investigation of effects of grid on Unitraps for ETB to exclude capture of bees (Apoidea) 153 

The trial was set up in a weed field (Chenopodium and Matricaria) at NIAB EMR in 2009. Traps were 154 

Unitraps with a green or white cross vanes baited with ETB pheromone. The latter were tested with 155 

or without a black plastic grid (4 x 5 mm mesh) fitted over the hole of the funnel since white is 156 

attractive to bees. Catches of ETB in these traps were compared with those in a green delta trap with 157 

a white sticky insert. There were 5 replicates of each treatment in a randomised block design and 158 

the traps were spaced >10 m apart. Traps were in place from 11 May - 19 June and from 11 May - 18 159 

August and catches were recorded either weekly or fortnightly.  160 

 161 

Effect of cross vane height on catches of ETB and SBW  162 

ETB trials were in the UK on the perimeter of a strawberry crop at NIAB EMR (15 July - 12 August 163 

2013). SBW trials were in a strawberry crop in the north-west area of Norway, Møre and Romsdal 164 

County (Lat: 62.697778 north, Long: 7.385278 east) (2 July – 27 August 2013). Traps were baited 165 

with the corresponding synthetic pheromone lures. 166 

For the ETB trial, Unitraps had either no cross vane (lid attached directly to bucket), a normal 167 

size cross vane (10 cm high), or the cross vane area was doubled by joining up two cross vanes with a 168 

1 ml pipette tip on each corner to secure the vanes (20 cm high). For the SBW test, Unitraps had 169 
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either no cross vane, a standard height (10 cm) cross vane or a vane which was half the height (5 170 

cm). All cross vanes were green and the traps stood on the ground and held in place with a wire 171 

hoop.  172 

There were 10 replicates of each treatment arranged in a randomised complete block 173 

design. Plots were rows with single traps deployed spaced 10 m apart for ETB and 20 m apart for 174 

SBW. Counts of SBW and male ETB were made weekly.  175 

 176 

Comparison of trap designs for trapping of SBW and ETB 177 

Ten different trap designs were compared to find one effective trap for both SBW and ETB. 178 

Experiments were carried out in the UK and Latvia on two occasions, one to coincide with SBW 179 

emergence (UK 19 March – 05 July 2012; Latvia 17 May – 19 July 2012) and the second with the ETB 180 

main flight period (UK 23-31 July 2012; Latvia 30 July - 31 August 2012).  181 

In the UK, organic strawberry plantations in Hereford (Lat: 52.050051 north, Long:-2.491226 182 

west) were utilised for the SBW experiment and a strawberry crop at NIAB EMR for the ETB test. In 183 

Latvia the SBW trial was set up in organic strawberry plantations (Lat: 57.113804 north, Long: 184 

24.530401 east; Lat: 56.807688 north, Long: 24.271681 east; Lat: 56.630664 north, Long: 23.344844 185 

east; Lat: 56.595720 north, Long: 23.272959 east; Lat: 56.921632 north, Long: 23.211209 east) and 186 

the ETB trial in a sowing of Medicago sativa L. near Vecauce (Lat: 56.595720 north, Long: 23.27295 187 

east). 188 

Trap designs tested are shown in Table 2 and were baited with the synthetic SBW or ETB 189 

lures according to the target pest. Traps included Unitraps with different coloured cross vanes, with 190 

and without excluders. The effect of attaching the lure inside the bucket rather than to the top of 191 

the cross vanes was tested. Traps made of a vertical cylinder of card (25 cm x 10 cm dia) coated with 192 

dry glue in different colours were tested as these are supplied commercially for ETB (Agralan), as 193 

were the Xlure-RTU sticky trap (12 cm x 3 cm) from Russell IPM. Two simple, homemade traps were 194 
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tested: the sticky stake trap and a white plastic strip (45 x 150 x 3 mm) in 45 mm pot containing 195 

water + 0.1% Triton X100. 196 

The two experiments (one in the UK and one in Latvia) were set up as a randomised 197 

complete block design. There were five replicates of each treatment in each experiment. Because of 198 

the area needed for each replicate, experiments were conducted across several plantations, with 199 

each considered a replicate with all 10 treatments. Traps were deployed 15-20 m apart along the 200 

edges of the fields. The traps were stood on the ground, with foliage around them removed. Sticky 201 

traps were set with their bottom edge touching the ground. Unitraps were held in place with a wire 202 

hoop and contained water plus a drop of detergent.  203 

Total counts of SBW and male ETB in each trap were made every 2 weeks. Bycatch of other 204 

notable insects were recorded into broad taxa and included honeybees, bumblebees, solitary bees 205 

and Diptera (>2 mm).  206 

 207 

Effect of trap height and habitat on catches of ETB and SBW 208 

The ETB trial was set up in a strawberry plantation (cv. ‘Finesse’) at NIAB EMR (14 August - 26 209 

September 2011). Treatments were green cross vane Unitraps with water and detergent as a 210 

trapping agent. Traps were wired in position at ground level (0 m) or onto the bracing bar of the 211 

tunnel (1.25 m from the ground) or onto the centre top ridge pole of tunnel (4 m from the ground). 212 

Traps were baited with the synthetic ETB sex pheromone lure. The trial had a randomised complete 213 

block design with 5 replicates and the traps were arranged around the edge of the plantation >10 m 214 

apart.  Trap catches were recorded weekly. 215 

The SBW trials were carried out in raspberry in 2012 at three locations in Denmark, Norway 216 

and Switzerland (Table 3). Three habitat types were tested; the crop (raspberry), the boundary of 217 

the crop and 50 m into the adjacent forest. Traps were green Unitraps with a white cross vane with a 218 

synthetic SBW lure, a pollinator exclusion grid across the funnel opening, and water with detergent 219 

as the trapping agent in the bucket. Traps were mounted on poles at three heights above ground 220 
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level (0 m, 0.5 m and 1.5 m). There were 9 replicates in Denmark and Norway and 12 in Switzerland. 221 

Traps in each habitat were >3 m apart and catches recorded every 7-14 days.  222 

 223 

Data analysis 224 

All analyses were carried out using Genstat v 14 (VSN International, 2011). Mean total catches 225 

during the experiments were square root transformed, to stabilise the variances, and subjected to 226 

analysis of variance (ANOVA). Where significant differences between means were indicated, these 227 

were tested for significance by a Least Significant Difference (LSD) test using P <0.05 to indicate 228 

significant differences.  229 

For the UK experiments fixed effects were the treatments (e.g. trap design, cross vane 230 

height, trap height, habitat etc.) and random effects were the blocks in the randomised experiment 231 

designs.  232 

The Latvia and UK data for the trap type experiment to capture SBW or ETB were combined 233 

and analysed using ANOVA. The fixed effects were trap type and country and random effects were 234 

blocks nested within country and treatments nested within blocks.  Data from this experiment was 235 

also analysed using a Generalised Linear Mixed Model (GLMM) (Breslow, N.E. & Clayton, D.G., 1993) 236 

with the Poisson distribution and a log-link. This was analysed with the same fixed effects and the 237 

same random effect model as the ANOVA, above.  Where the ANOVA gave significant trap type x 238 

country interactions for all variables, this was not the case in the GLMM analyses for any of the 239 

variables.  This lack of interaction in the GLMM with its log-link implies that the trap type means 240 

differed between the two countries by a fixed multiplier which corresponded to the relative 241 

abundances in the two countries. To preserve conformity with other analyses the overall means of 242 

trap type were reported from the ANOVA analyses. 243 

When analysing the effect of trap height on catches of SBW catches, mean counts over the 244 

trapping season for countries (Norway, Denmark, Switzerland) were analysed using ANOVA with trap 245 
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height, habitat and country as fixed effects and replicates within country, and height within blocks as 246 

random effects. A GLMM analysis was also used but in this case gave similar results to the ANOVA. 247 

 248 

Results 249 

Comparison of delta traps and Unitraps for trapping ETB 250 

In Experiment A, catches of ETB were low and there were no significant differences between the 251 

trap types tested (F6,18 =1.22, P=0.343; data not shown). The addition of lambda-cyhalothrin or 252 

cypermethrin to the traps did not significantly improve ETB catches.  253 

In Experiment B, there were significantly more male ETB captured in the green cross vane 254 

Unitrap compared to the green or clear delta traps (F6, 18=2.16, P=0.096, lsd=2.768, Figure 1). 255 

Unitraps with white or yellow cross vanes had intermediate trap catches. 256 

 257 

Investigation of effects of a grid on Unitraps for ETB to exclude capture of bees (Apoidea) 258 

Using a plastic grid over the hole of the funnel in the white cross vane Unitraps significantly reduced 259 

the numbers of captured bumblebees (F4,16 = 6.25, P=0.003, lsd=0.837, Figure 2) and honeybees 260 

(F4,16=60.44, P<0.001, lsd=0.756, Figure 2). Although the white cross vane Unitraps had fewer ETB if a 261 

grid was placed over the funnel hole, this was not significant. The main differences were that the 262 

green cross vane Unitrap without a grid captured significantly more male ETB than the green Unitrap 263 

with a grid or a green delta trap with a sticky glue insert (F4,16=7.24, P=0.002, lsd=1.248, Figure 2). 264 

These results suggested that a grid is not needed if a green cross vane is used in the Unitraps. Green 265 

cross vanes reduced the bycatch whilst maintaining a significant catch of male ETB. 266 

 267 

Effect of cross vane height on catches of ETB and SBW 268 

In the UK trial, the height of the green cross vane had no effect on the numbers of male ETB trapped 269 

in the Unitraps. There was also no effect on bumblebee (F2,18=1.19, P=0.328, lsd=0.380), carabid 270 

(F2,18=0.08, P=0.924, lsd=0.876), spider (F2,18=0.78, P=0.474, lsd=0.716), earwig (F2,18=1.47, P=0.257, 271 
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lsd=0.689), large Diptera (F2,18=0.92, P=0.417, lsd=0.845) or ant numbers (F2,18=0.10, P=0.908, 272 

lsd=0.695). However, in general, captures of some notable groups of invertebrates did increase as 273 

the vane height was increased, including the mirid Calocoris norvegicus (Gmelin) (F2,18=11.12, 274 

P<0.001, lsd=0.729), slugs (F2,18=3.58, P=0.049, lsd=1.010), Coccinellidae (F2,18=5.68, P=0.012, 275 

lsd=0.801) and Opilione (F2,18=9.04, P=0.002, lsd=0.718, Figure 3).  276 

In the trial in Norway, SBW catches were significantly lower in the half height (5 cm) cross 277 

vane Unitraps compared to the full height cross vane traps (F2,18=5.21, P=0.016, lsd=0.681, Figure 4). 278 

When the cross vane was removed altogether, intermediate numbers of SBW were captured.  279 

 280 

Comparison of trap designs for trapping of SBW and ETB 281 

For the SBW and ETB experiments there was no evidence of a trap type x country interaction in the 282 

GLMM analysis for SBW counts, ETB counts, or any of the by-catches (not reported), but there were 283 

significant differences between the trap types.  Numbers of SBW captured in the Unitraps with white 284 

or green cross vanes, even with the 4 x 5 mm excluder grid, (F9,72=13.42, P<0.001, lsd=0.889, Figure 285 

5A) were significantly higher than in other trap types. The lure placed inside the bucket of the 286 

Unitrap, instead of under the lid, captured fewer SBW and was comparable in captures to the sticky 287 

stake, the pot trap and the yellow sticky card traps (Figure 5A).  288 

By-catch was also affected by trap design. Higher numbers of bumblebees, in particular, 289 

were captured in the Unitraps with the white cross vanes and no, 4 x 5 mm, excluder grid compared 290 

to most other traps (F9,72=10.74, P<0.001, lsd=0.418, Figure 5B). This was also true for honeybees 291 

(F9,72=2.83, P=0.007, lsd=0583, Figure 5C) and solitary bees (F9,72=5.15, P<0.001, lsd=0.632, Figure 292 

5D). However significant numbers of solitary bees were also captured in the pot trap and blue and 293 

yellow dry sticky glue traps.  294 

Large Diptera (>2 mm) were more abundant on traps which had glue as the trapping agent 295 

in comparison to liquid based traps and the Xlure R.T.U floor trap (F9,72=52.12, P<0.001, lsd=1.986, 296 

Figure 5E). 297 
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Later in the season, in the ETB trial, more ETB were captured in green or white cross vane 298 

Unitraps without the excluder grid compared to other trap types, although small numbers were 299 

captured in the pot trap and in the Unitrap with the excluder grid (F9,72=33.76, P<0.001, lsd=1.414, 300 

Figure 6A). Placing the pheromone lure inside the bucket of the Unitrap did not increase catches of 301 

ETB (Figure 6A). 302 

By-catch, later in the season, included honeybees and large Diptera. Honeybees were more 303 

likely to be captured in the Unitraps with the white cross vane and without the 4 x 5 mm excluder 304 

grid; small but significant numbers of honeybees were also captured on the blue sticky card 305 

(F9,72=3.57, P=0.001, lsd=0.598, Figure 6B). As with the previous study, earlier in the season, by-306 

catches of large Diptera (>2 mm) in the ETB experiment were higher on traps which comprised sticky 307 

glue, including the yellow wet and dry cards, the blue card and the sticky stake trap, in comparison 308 

to traps which used a liquid as the method of capture (F9,72=50.09, P<0.001, lsd=1.333, Figure 6C). 309 

 310 

Effect of trap height and habitat on catches of ETB and SBW 311 

In the UK experiment there were significantly more male ETB caught in traps placed on the ground 312 

within the strawberry row (mean 22.2) than in the traps wired to the tunnel bracing bar 1.25 m 313 

above ground (mean 1.0) or the ridge pole 4 m above ground (mean 0.2) (F2,8=29.13, P<0.001, 314 

lsd=1.558, data not shown).  315 

There were significant interactions between country and habitat (F4,14 = 10.61, P<0.001, lsd = 316 

0.55), and habitat and trap height (F4,42=3.13, P=0.024, lsd=0.257). There were no other significant 317 

interactions. The numbers of SBW captured in Denmark and Switzerland were lower than those in 318 

Norway, particularly in raspberry crops and the crop boundary compared to the forest (Figure 7A). In 319 

the boundary and the crop, SBW was more likely to be trapped at 0 m compared to 0.5 or 1.5 m 320 

(Figure 7B).  321 

 322 

Discussion 323 
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In this study we developed and tested traps for SBW and ETB monitoring. The best trap, 324 

effectively capturing both species with minimal bycatch, was the green cross vane Unitrap with no 325 

excluder grid over the hole to the funnel (Figure 8). This trap gave best capture of the two pest 326 

species if deployed on the ground. The white cross vanes previously used to trap SBW (Cross et al., 327 

2006a, b; Wibe et al., 2014) did not improve capture compared to green cross vanes and more bees 328 

were attracted. Bees could be excluded by use of a plastic mesh grid over the Unitrap funnel 329 

entrance, but this impeded the capture of ETB. Water and detergent were better for trapping ETB 330 

than glue, and ETB and SBW have been observed to free themselves from glue traps (pers. obs.). 331 

Overall the sticky traps were unsuitable for trapping SBW and ETB because they became 332 

contaminated and potentially saturated with other arthropods.  333 

The height of the Unitrap cross vanes did not affect the capture of ETB, but the 10 cm cross 334 

vanes were most effective for capture of SBW. However, an increase in cross vane height did 335 

increase the capture of some beneficial arthropods including Coccinellidae and Opilione. Trap 336 

contaminants, in particular slugs, seemed to increase with vane height and hence the management 337 

of slugs through irrigation control and crop management is needed. In addition, the height which the 338 

trap is placed affected trapping efficacy. The ETB traps placed near to the ground at crop height 339 

captured more males than traps placed higher in the tunnel structure. Likewise, SBW was more 340 

likely, in Norway, to be captured on the ground in the forest. This may be because the wild fruits are 341 

closer to the ground compared to commercially grown fruits which are tied vertically into post and 342 

wire systems with the fruit higher than would be natural.  343 

Although this trapping system is cost effective for monitoring, further improvements and 344 

reduction in cost need to be made for mass trapping. An attempt was made to find a low cost, small, 345 

trap that could be deployed in large numbers for mass trapping. However, none of the traps, 346 

including prototypes, were as affective as the Unitrap with green cross vanes (Figure 8).  347 

An obvious flaw in the trap system tested here is the lack of an attractant for female ETB. 348 

However, phenylacetaldehyde and/or (E)-cinnamaldehyde (Koczor et al., 2012) could be added to 349 
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the sex pheromone to increase catches of female ETB. An alternative method to the drowning 350 

solution, which needs to be emptied and topped up on a monthly basis, would make the trap easier 351 

to maintain. There is the potential to incorporate an insecticide (Navarro-Llopis et al., 2014) or 352 

biological control agent onto the inside of the trap. This would be a lure and kill system where the 353 

insect would enter and then die either inside the trap or after leaving. 354 

In addition, the lures also need maintenance. SBW lures last at least two months under field 355 

conditions (Cross et al., 2006a), but the longevity of the ETB lures is approximately four weeks 356 

(Fountain et al., 2014). It would be beneficial to increase the longevity of these lures and/or improve 357 

the deployment and replacement of lures in the traps. Finally, the traps were often placed in the leg 358 

row of the strawberry crop to avoid disturbance by spray machinery and fruit pickers, but this made 359 

them difficult to access on a regular basis (see Figure 8).  360 

In this study we did not test lures for both species in the trap at the same time. Further 361 

studies are required to ensure that the components of the two lures remain attractive to the pest 362 

species when placed together. It is considered unlikely there would be any interaction in view of the 363 

very different chemical structures of the pheromone components. A combined trap would save time 364 

in monitoring and push the cost-benefit ratio of mass trapping in the right direction. There is a real 365 

potential to mass trap (Fountain et al., 2015) or lure and kill ETB and SBW in strawberry crops. 366 

Future research should concentrate on trap optimization, ease of use and economics of deploying 367 

and maintaining these systems for reducing fruit damage in strawberry crops. 368 
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Table 1  Comparison of traps for capturing male ETB using virgin female ETB as bait in UK.  

Trap Capture device 

Experiment A (27 June – 11 July 2008)  

Green delta Wet glue sticky insert 

Green delta Dry glue sticky insert 

Green delta Wet glue sticky insert + cypermethrin 

Green delta Wet glue sticky insert + Oecotack 

Unitrap (white cross vane) Correx card + water with detergent 

Unitrap (lambda-cyhalothrin white cross vane) Water + detergent 

Clear delta Wet glue sticky insert 

Experiment B (27 August – 1 September 2008)  

Green delta Wet glue sticky insert + Oecotack 

Clear delta Wet glue sticky insert + Oecotack 

Agrisense vane funneled (white cross vanes) Water + detergent 

Unitrap (green cross vanes) Water + detergent 

Unitrap (white cross vanes) Water + detergent 

Unitrap (yellow cross vanes) Water + detergent 

Sticky stake trap Oecotack   

 495 

 496 
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Table 2  Trap designs tested for trapping SBW and ETB in the UK and Latvia. Traps were baited with synthetic SBW or ETB lures. 

Trap design Killing agent Position of lure Source of trap 

Unitrap: White cross vane with excluder-grid (4x5 mm) Water + 0.1% Triton X100 Top of cross vane Agralan 

Unitrap: White cross vane with excluder-grid (4x5 mm) Water + 0.1% Triton X100 Inside bucket attached to funnel Agralan 

Unitrap: White cross vane without excluder-grid Water + 0.1% Triton X100 Top of cross vane Agralan 

Unitrap: Green cross vane without excluder-grid Water + 0.1% Triton X100 Top of cross vane Agralan 

Sticky stake trap (2.5 x 2.5 x 50 cm) Oecotack wet glue Top of stake NIAB EMR 

Yellow card cylinder (25 x 10 cm) Coated in wet glue Top of cylinder  Agralan 

Blue card cylinder (25 x 10 cm) Coated in dry glue Top of cylinder Agralan 

Yellow card cylinder (25 x 10 cm) Coated in dry glue Top of cylinder Agralan 

White plastic strip (45 x 150 x 3 mm) in 45 mm pot Water + 0.1% Triton X100 Top of strip NIAB EMR 

Xlure R.T.U floor trap Oecotack sticky insert inside Inside, in middle on base Russell 
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Table 3  Location and age of raspberry plantations used for testing the effect of trap 

height on catches of SBW (CH Switzerland, NO Norway, DK Denmark). 

Country Location 

Coordinates 

Latitude north, 

Longitude east 

Production 

type 
Plantation year 

CH Bruson, Valais 
46.0037, 7.3191 

Open 2005 

CH Nendaz, Valais 46.1834, 7.2942 Open 2005 

CH St Sébastien, Valais 46.198, 7.31306 Open 2004 

NO Skåla, Molde 62.6953, 07.3769 Protected 2010 

NO Skjønsby 60.8278, 10.7970 Open 2008 

NO Torp 59.6677, 10.6912 Open 2010 

DK Gyrstinge 55.4770, 11.6830 Open 2010 

DK Eggeslevmagle 55.2843, 11.3300 Protected 2010 

DK Kildebrønde 55.6033, 12.2650 Protected 2010 

 

 

 

 

Figure 8  Green cross vane Unitrap anchored into place on the ground in a strawberry crop. The 

pheromone dispensers are deployed in the cage inserted into the lid.  

 



 

 

Figure 1  Mean numbers (± S.E.) of male ETB captured in different traps (Table 1) baited with live 

female ETB in the UK (27 Aug – 1 Sept 2008; means  with the same letter are not significantly 

different, P > 0.05). 
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Figure 2  Mean catches (± S.E.) of bumblebees, honeybees and male ETB in green Unitraps with 

white or green coloured cross vanes, with and without a grid at the entrance to the funnel in 

comparison to a green Delta trap (UK, 11 May - 19 June and 11 May - 18 August; means with 

different letters for each species are significantly different , P < 0.05). 
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Figure 3  Mean numbers (± S.E.) of invertebrate bycatch captured in green Unitraps with either no 

cross vane, a single height (10 cm) or double height (20 cm) green cross vane (UK, 15 July - 12 August 

2013; means with different letters for each invertebrate group are significantly different, P < 0.05). 
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Figure 4  Mean numbers (± S.E.) of SBW captured in green Unitraps with either no cross vane, a full 

height (10 cm) or half height (5 cm) white cross vane (Norway, 16 July – 27 August 2013; means with 

different letters are significantly different , P < 0.05). 

 

0 

5 

10 

15 

20 

25 

full half none 

m
e

an
 n

u
m

b
e

r 
 o

f 
SB

W
 

cross vane 

a 

b 

ab 

Figure(s)4



 

 

 

 

Figure 5  Mean numbers (± S.E.) of A) SBW, B) bumblebees, C) honeybees D) solitary bees and E) 

large Diptera in ten trap designs (Table 2). Data from the locations pooled by LSD test after ANOVA 

on square root transformed data. Means with different letters are significantly different. The 

arithmetic means are presented here, whereas the means of the square-root transformed counts 

are grouped, hence there may be apparent discrepancies in the groupings.  
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Figure 6  Mean numbers (± S.E.) of A) ETB, B) honeybees and C) large Diptera in ten trap designs 

(Table 2). Data from the locations pooled by LSD test after ANOVA on square root transformed data. 

Means with different letters are significantly different. There were no significant differences in the 

numbers of honeybees in traps in the UK. The arithmetic means are presented here, whereas the 

means of the square-root transformed counts are grouped hence there may be some discrepancies 

in the groupings.  
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Figure 7  Mean number (± S.E.) of SBW per trap in A) the boundary, crop (raspberry) or forest in the 

3 countries (Denmark, Norway and Switzerland) and B) at different heights (0, 0.5 and 1.5 m) in the 3 

habitat types (boundary, crop and forest). Data from 9 (Denmark and Norway) or 12 locations 

(Switzerland) locations in 3 countries pooled by LSD test after ANOVA on square root transformed 

data. Means with different letters are significantly different.  
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