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ABSTRACT 

One of the recent trends of robot design involves the evolution of 

morphology and controller of robots using techniques from 

evolutionary computation. In this co-evolution process, the 

evolution system utilises the stochastic and heuristic nature of 

artificial evolution to evolve robots for various tasks. Inspired by 

natural evolution, a population of initial solutions is randomly 

created and selected parents are mated to produce offspring. Based 

on the performance or fitness of individual solutions including 

children, next generation is chosen and this process continues until 

a solution of satisfactory performance is reached. Among various 

methods of evolution, Genetic Algorithms (GA) are commonly 

used for co-evolution. In this paper, the effect of change in various 

evolution parameters in the GA on the final solution is studied. 

Parameters such as size of population, number of generations 

evolved and several variation parameters are varied. Robots are 

evolved from a specific set of parts which includes various 

structural components, active and passive joints and sensors. 
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1. INTRODUCTION 
Evolutionary Algorithms (EAs) are a part of Evolutionary 

Robotics. It is the area of robotics that deals with application of the 

concept of biological evolution process to search for solutions in 

robotics [1]. Robotics found the first application of EAs for sensor 

positioning on a mobile robot in the early 90s [2]. Since then, they 

were regularly used to evolve the robot body plan or referred to as 

robot morphology, robot controller or both morphology and 

controller. While more than 95% of reported applications were in 

designing a controller for the robot, only about 1% seemed to show 

positive findings while using EAs for the co-evolution process [3]. 

Further, the latter has only been able to evolve robots purely for 

locomotion with simple obstacle avoidance.  

Developed in 2014, RoboGen is an open-source evolution platform 

that can evolve mobile robots for primitive locomotion tasks [4]. It 

is a package capable of handling the co-evolution process of 

evolving complete virtual robots. It runs an evolution engine and 

simulation engine side by side with data transferred multiple times 

during the evolution process. The evolution engine performs the 

primary steps involved in the evolution process and the simulation 

engine estimates the performance of each evolved individual.  

Due to multiple factors such as costly computation requirements, 

large number of adjustable variables, and their random nature, the 

applications of EAs have been constrained to highly targeted design 

and optimisation problems. For instance, EAs were applied to 

perform only wing design [5], optimise robot arm lengths [6] and 

vary robot shape parameters [7]. The key applications and 

advantages of EAs in robotics are discussed in [8], [9], [10], [11]. 

It can be safely stated that for improving the evolution process to 

evolve buildable robots, we need to have a better understanding of 

the process itself. Therefore, in this paper, efforts have been 

undertaken to study and analyse the behaviour of evolved robots 

under various conditions.  

2. THEORY AND EXPERIMENT SETUP 
A co-evolution process involves evolution of the robot morphology 

and controller for a specific application. In this work, robots are 

evolved to evade obstacles and cover as much distance as possible 

in a chosen time frame. The software package, RoboGen evolves a 

robot from a list of available parts namely, a core component brick 

that houses an IMU (Inertial Measurement Unit), controller and 

battery, a fixed brick, a parametric bar joint with variables to 

configure the arm length and tilt angle, an active servo motor driven 

joint, a passive hinge, an IR (Infrared) based distance sensor and a 

light sensor. The core and fixed component can connect up to four 

parts while all other parts allow only connections on both sides. 

Robot body plans in Table 2 and part details in Table 3 can be 

referred for obtaining a better understanding of how the robots are 

visualised. As per input parameters, it evolves robots and with the 

help of a physics based simulator, each robot is evaluated 

individually. The 3D printable robot part files and controller code 

are generated finally to physically test the robot. The simulations 

were performed on a Linux PC with an Intel i7 dual core 2.50GHz 

processor.  

The EA used to evolve morphology in RoboGen is a Genetic 

Algorithm (GA) with a tree based representation of the phenotype. 

A phenotype refers to the physical representation of the robot where 

the observable characteristics of the robot are seen and a genotype 

refers to the internal representation of genetic information just as in 

biology. The GA works by randomly initialising a fixed population 

of parents () and evaluating them as per application through a 

fitness function. After the fitness evaluation process is completed, 

the population is randomly divided into  groups of two and the 

best individual in each group is chosen as a parent. This selection 

method is called a deterministic tournament strategy.  Later, on 

these selected parents, various mutation operators are applied. 

Mutation refers to the changes applied through several ways to the 

parent to evolve an offspring. As per the set probabilities and 

Gaussian distribution in the evolution configuration file, operations 

such as addition and deletion of parts, modification of parametric 

variables, duplication, swapping and removal of sub-tree are 

performed on the robot tree. The mutated children are then added 

on to the population and the entire population is ranked according 
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to their fitness and the best  individuals are retained and the rest 

are deleted from the population. This method is a (μ+) evolution 

strategy where μ is the parent size and  is the number of children 

[12]. 

A similar process is performed on the neural network oscillator 

controller to evolve controller for each evolved body. Oscillatory 

neuron controller has been previously proved to be better than 

standard Artificial Neural Network (ANN) controller in the co-

evolution process to evolve controllers to robots [13]. An 

oscillatory neural network is a variation of a standard artificial 

neural network with oscillators acting as signal generators along 

with inputs from sensors while generating motor control signals. 

Probability and bounds are set for mutation of period, phase and 

amplitude of oscillator, neurone bias and weights. Sample 

evolution configuration parameters which are used as default 

values during the experiment are listed in Table 1.  

Table 1. Evolution parameters. 

Parameter Value 

Population size  

Number of evolved children 

Number of generations  

Probability of brain mutation 

Sigma value of brain 

Brain Bounds 

Minimum and maximum number of initial parts 

Probability of node insertion 

Probability of sub-tree removal 

Probability of duplicating sub-tree 

Probability of swapping sub-tree 

Probability of node removal 

Probability of modifying parameters 

20 

20 

100 

0.3 

0.7 

3:3 

2:10 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

 

The fitness function evaluation begins by recording the velocities 

and distance sensor values in every simulation step.  An increase in 

movement speed is encouraged while proximity to obstacles is 

discouraged. At the end of the simulation, the recorded values are 

used to calculate the final fitness value which eventually is the best 

fitness calculated from the list of individual stepwise fitness 

calculations. This calculation is performed on all individuals of the 

solutions population. This is the most computationally demanding 

step as each robot is evaluated separately in a virtual 3D 

environment.  

Table 2. Stages of evolution. 

Morphology Details 

 

Generation- 

1 

Fitness- 

0.0001 

No. of 

parts- 7 

 

Generation- 

2  

Fitness- 

0.13 

No. of 

parts- 13 

 

Generation- 

7 

Fitness- 

0.39 

No. of 

parts- 15 

 

Generation- 

19 

Fitness- 

0.61 

No. of 

parts- 12 

 

Generation- 

61 

Fitness- 

0.91 

No. of 

parts- 12 

 

Generation- 

79 

Fitness- 

1.06 

No. of 

parts- 13 

 

Generation- 

3098 

Fitness- 

1.80 

No. of 

parts- 14 

 

Generation- 

3203 

Fitness- 

1.84 

No. of 

parts- 15 

 

Generation- 

37570 

Fitness- 

2.72 

No. of 

parts- 16 

 

The effectiveness of the evolver is only as good as its fitness 

evaluating platform. Consequently, the simulator plays an 
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important role in the entire process. In the experiments performed 

unless mentioned, each robot was run for eight seconds in the 

virtual environment with a flat surface and readings are recorded 

every 0.005s to avoid any considerable loss of data.  Though the 

experiments could have been performed on a more accurate scale 

by increasing the step resolution and simulation time, this 

combination seemed sufficient to generate reasonable output 

results.   

Table 3. Part details. 

Sl. No. Part type 
No. of 

occurrences 
Colour 

1 Core brick 1 Red 

2 Fixed brick 2 Grey 

3 Passive joint 3 Red-Green 

4 Active joint 3 Red-Green 

5 Parametric bar 6 Red 

6 Light sensor 1 Red 

7 IR distance sensor 0  

 

To confirm the physical buildability of the evolved robot, multiple 

design constraints are applied during the evolution process. They 

are, discarding robots whose parts intersect with each other, include 

only one core part as there needs to be only a single controller and 

to also satisfy the maximum I/O ports requirements of the controller 

board by allowing only up to three sensors and eight motors during 

the evolution process.   

3. EXPERIMENTS  
The evolution parameter values applied are listed in Table 1. As per 

each experiment, μ, , number of generations and the maximum 

initial parts available for evolution were suitably modified.  

Multiple experiments were designed specifically to observe the 

effects of variations of individual parameters in the fitness of the 

robot.  

 

3.1 Generations 
To study the effect of generations on the fitness value, the 

population size was fixed at 20 and with a maximum of 20 initial 

parts, robots were allowed to evolve on a flat surface for 37,000 

generations. Fig. 1 shows the improvement in best individual’s 

fitness and average fitness of the entire population as the 

generations progressed. It was observed that the evolution of robot 

morphology was extremely slow with the final robot shape (the last 

robot shown in Table 2) remained so in the last 32000 generations 

where the fitness increased from around 1.8 to 2.7. The number of 

parts were 16 and 7 in the last and first generations respectively. 

The changes observed to the morphology as the generations 

progressed is shown in Table 2. Even though generations evolved 

for more than 37,000 the morphology change was observed only 9 

times. To help comprehend various parts of the evolved robot, the 

parts and their positions in the final evolved robot (last figure in 

Table 2) is listed in Table 3.  

In the next set of experiments, the number of evolved generations 

was varied keeping all other parameters constant. Multiple 

experiments with the maximum generations doubling in every 

experiment from 100 to 35,000 was performed. It was observed that 

the fitness values were repeatable until about 10,000 maximum 

generations after which, there was a drastic difference between 

corresponding fitness values from experiments run for less than 

10,000 generations and more than 10,000 generations. However, 

there seemed to show repeatability of output when the same 

experiment was run multiple times.  

Being a stochastic process, the evolution is initiated by a seed 

number for the random number generator. In all the experiments 

above, the seed was set at 1. However, it was also found that 

changing the seed meant loss of repeatability of the experiments 

which is an advantage of evolutionary algorithms. Though multiple 

experiments were performed to see the effect of change in the seed 

number to the evolution process, the results exhibited complete 

randomness and therefore those observations are not reported here. 

 

Figure 1. Fitness of best robot and average fitness of 

population versus generations 

 

The average fitness of all the members in the population showed an 

expected deviation from the best individuals initially as seen in Fig. 

1. But, as the fitness of the best individual settled, the average 

fitness also moved towards the best fitness. There were multiple 

occasions during the experiments where the standard deviation of 

the population converged to zero. This meant that all the individuals 

in the population were identical. 

3.2 Initial Parts 
The initial number of parts allowed to be used for robot building 

also played a role in behaviour of the robot. In the experiments 

conducted, the range of maximum number of initial parts were 

varied from 10 to 100. Even though they seemed to have a clear 

impact on the fitness progression, the plots did not exhibit any 

patterns. As shown in Fig. 2, experiment with 80 initial parts 

showed the least increase in fitness rate over the period of the 

experiment. It was followed by experiment with 100 initial parts 

and experiment with 50 initial parts showed the best overall rate of 

increase.  

In the initial 50 generations, the rate of increase of fitness exhibited 

a different pattern with experiment evolving from 70 initial parts 

showed fastest speed followed by experiments with 60 and 90 

initial parts. The lowest rate of change was exhibited by experiment 

with 10 initial parts followed by 80 initial parts. Experiment with 

60 initial parts was fastest to settle down in ±5% of its final fitness 

followed by experiments with 90 and 100 initial parts. Despite 

allowing the use of a particular number of initial parts, the 

experiments performed showed random initial parts in the actual 

evolved robot in the first generation. There was also random 

increase or decrease of parts on the robot as the generations 

progressed. This can be noted from the data in Table 4.  The best 

fit robot in the set of experiments were seen in the experiment with 
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50 initial parts and worst performing individuals were found in 

experiment with 80 initial parts.  

3.3 Population size 
The population size was varied from 20 to 100 members and 

experiments were run for over 10,000 generations. As expected, 

parts with 100 individuals stabilised first to a fitness value of 2.1 in 

about 2000 generations while the 20-member sized population 

needed the maximum time to reach close to 2.1. It can be seen from 

the curves in Fig. 3.   

 

Figure 3. Fitness variation to population size. 

 

3.4 Obstacles  
To understand how robots behave when they are placed in a 

different environment with multiple obstacles, robots were first 

evolved with just a few obstacles as shown in Fig. 4 (a). This was 

expected to help the robot evolve with the obstacle sensors. It’s 

travel route was then recorded (red lines in Fig. 4 (a)) and in the 

next experiment, the same robot was placed in a different setup with 

new obstacles. It was observed that the robot was able to perform 

minor course corrections. The corrected course along with new 

obstacle positions are shown in Fig. 4 (b).  

To evolve robot in a complicated arena, an experiment was 

designed to evolve a robot in a maze shaped arena. Though the 

robots were allowed to evolve for 3000 generations with a 100 

seconds window for every robot to cover the arena, the best fit 

individual showed a fitness of 0.64 and could just exit the central 

area. It was unexpected to noted that the evolved robot did not 

appear to have any distance sensors. The route taken by the best 

robot to solve the maze is shown in Fig. 4 (c). 

3.5 Child population size 
The number of children evolved at the end of each generation was 

varied to see its effect on the fitness. The child population was 

incremented from 10 to 40 with the parent population fixed at 40 

individuals. The best fitness and average fitness of the population 

in each case is marked by the curves in Fig. 5. The slowest to 

increase the best fitness value was the population generating 20 

children. It was followed by 10 and 30 child populations. The best 

performance was shown by population evolving 40 children. The 

tendency for the average fitness value of the entire population to 

gradually touch the best fitness value is also seen as in previous 

cases.  

 

4. DISCUSSIONS  
The experiments reported above offer multiple suggestions and 

insights to the evolution process. Despite the evolution process was 

performed on a 4-thread processor with a thread handling evolution 

and the other three threads performing the fitness analysis in 

parallel, the experiments took a few hours to even days in most 

instances. The population size, number of parts, number of 

generations run and simulation time were the major factors in 

determining the time taken. Ultimately, they underline that 

evolution is a time consuming and computationally expensive 

process.  

Among remarks pertaining to the evolution parameters, the part 

number had a clear relation with the corresponding fitness of the 

robot (evident from Table 4). The initial number of parts available 

for building the first population had an effect on the progress of the 

population. Though the relationship is not exactly clear, there 

seems to be a correlation between the fitness, part number and 

population size.  

 

 

 

Figure 2. Fitness change to initial number of parts. 

 

Table 4. Parts numbers and fitness in 

different experiments. 

Max. 

initial 

parts 

allowed 

Initial 

number 

of parts 

No. of 

parts 

at 

1000 

gens. 

Best 

fitness 

at 1000 

gens. 

10 10 7 1.6 

20 7 21 2.3 

30 17 22 2.1 

40 17 16 2.1 

50 37 32 3.3 

60 23 14 1.7 

70 20 19 1.6 

80 5 70 1 

90 20 22 2.4 

100 74 19 1.4 
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The evolution process showed focus mainly on evolving controller 

than evolving morphology. In the entire evolution procedure, the 

robot morphology was altered 4 to 5 times in the first 100 

generations and only a few times later depending on how far the 

evolution was run. This may be due to the low probability values 

set for body mutations. Further, the same might have also caused 

the population to evolve identical individuals that later gradually 

reduced the diversity of the population and ultimately reduce the 

standard deviation of the population to zero.  In the current setup, 

robots are always evaluated as a single entity without looking at the 

body plan and controller separately. This is a widely-accepted 

technique and has advantages. However, it could be time to explore 

other practices.  

The fitness of populations exhibited a step by step improvement in 

all the experiments. The same trend was followed by the average 

fitness curves too. There have even been cases where the standard 

deviation of the population was consistently equal or close to zero. 

This suggests a lack of diversity among individuals in the 

population despite it is mathematically possible to have extremely 

high possible combinations of part connections depending on the 

parts limit set. To avoid solutions being stuck in the local 

maximum, various probabilities involved could also be altered.   

The experiments also indicate that the best value for the number of 

children evolved at the end of every population was equal to the 

population size itself. Further, it should be noted that in the 

population updating strategy, the offspring and parent population 

are equally considered for transfer to the next generation which is 

unlike in biological systems where parents are always discarded. 

Among the experiments performed, the poorest performing 

experiment was the one which evolved half its population size.   

After extensive simulations, it can be stated without a doubt that, 

there is strong need for more research to be performed to improve 

the effect of EAs on the co-evolution process. Every aspect of the 

evolution process from population initialisation, controller type 

selection, fitness function design to EA applied should be 

individually studied and optimised or modified to reduce the time 

consumed and evolve better results. 

While the process of simultaneously evolving the robot body and 

controller has been attempted since 1994 [14], the effectiveness of 

the process is still questionable. After days of evolution, the best 

robot evolved to transverse through the maze shown in Fig. 4 (c) 

was just able to move out of the centre. It also lacked obstacle 

sensors which were a primary requirement to detect the obstacles. 

Instead of that, the robot focussed on remembering the trajectory 

than taking decisions based on sensory feedback. The trend of 

 

  

      (a)            (b)    (c) 

Figure 4. Obstacle avoidance trajectories of evolved robots. 

 

Figure 5. Fitness variation to child population size. 
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repeating trajectory was also observed in other experiments (Fig. 

4(a) and (b)). About the evolved controller, though the oscillatory 

controller helped the evolved robots to start moving from early 

generations itself, there did not seem any improvement in the 

obstacle avoidance capabilities of the evolved controller. However, 

it may be argued that due to not choosing optimum parameters of 

the EAs, the output did not seem to be satisfactory. In cases where 

suitable sensors were added, there did not seem to be any guarantee 

on whether they were being used or not. This is a common problem 

with artificial intelligence based controller methods where it is 

extremely tough to interpret the internal wiring of the controller. 

All these demonstrate that EAs work and can evolve solutions to 

problems but not necessarily intelligent solutions.  

 

5. CONCLUSIONS 
EAs are known for evolving unintuitive solutions to problems and 

have been helping designers arrive at solutions to complex 

problems and there are multiple advantages of the using EAs in 

robotics. Further, in this paper, they have exhibited satisfactory 

results in evolving robots to perform repetitive actions like 

following a same set of steps with minute changes allowable in real 

time. But the question to be asked is if such an evolution process 

can outperform the current system of individual manual robot 

programming. Even though the answer to it may not be positive at 

least for now, it can be hoped that the full benefit of artificial 

intelligence based EAs for the co-evolution process is something to 

look forward to in the future. 

 

6. FUTURE PLAN 
In the immediate future, the first step will be to 3D print the evolved 

robot bodies and test their performance with the virtually evolved 

robot to confirm the accuracy of the simulations. Steps will also be 

taken to perform controller only evolution of robots with the 

morphologies evolved in the above experiments. This should shed 

light in evaluating the performance of a purely EA and ANN based 

control system. Among other tasks, the evolution probabilities will 

be altered as an attempt to improve the evolution process and the 

use of High Performance Computing (HPC) for evolving the robots 

will also be explored. 
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