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Highlights: 

1. A forecasting model by using GERT stochastic network analysis technique; 

2. The model is generalised to be applicable to any product structure;   

3. The model can predict product return quantity, probability, and expected time; 

4. The model can also predict parts, components, materials and disposal in the same manner. 

Highlights (for review)
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Forecasting Return of Used Products for Remanufacturing Using 

Graphical Evaluation and Review Technique 

Abstract 

This research develops a forecasting model that can predict the quantity, time and 

probability of product return, recyclable parts/components/materials and disposal. It 

adopts the Graphical Evaluation and Review Technique (GERT) by translating the 

remanufacturing operational process into a stochastic network. This stochastic 

network possesses two characteristics: activities having a probability of occurrence 

associated with them; and time to perform an activity. Together with the GERT 

method, Mason’s rule is applied to calculate the equivalence transfer function of the 

system, therefore predicting the desired outcomes. A generic eight-step process on 

how to implement this method in any structure of return products and 

remanufacturing network is provided. A numerical example is presented to 

demonstrate the result of using GERT on forecasting printer remanufacturing 

outcomes. The main contribution of this research is: Instead of giving one result such 

as either return quantity, or time, or probability, our research can forecast three of 

these outcomes simultaneously, and the algorithm is generalised to be applicable to 

any product structure and remanufacturing network. 

Keywords: return forecasting, GERT, product return, remanufacturing, 

Moment-Generating Function, transfer function.          
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1. Introduction 

The challenges of sustainable production concern primarily the energy consumption 

and the subsequent challenges associated with reducing the carbon footprint, other 

forms of pollution, natural resource depletion, waste management and landfill space. 

In this specific area, the focus on sustainability has created a plethora of terms often 

used to represent the same concept such as eco-efficiency, remanufacturing, green 

technology, cleaner production etc. Glavic and Lukman (2007) explain the semantic 

differences between the various terms. Achieving eco-efficient production and 

consumption systems requires ‘closing the loop’ to create circular systems. To do so, 

Lund (1984) proposed the concept of remanufacturing. According to Lund (1984), 

remanufacturing is interpreted as a full production process that transfers a worn, 

durable product into both a useful and an economic state. Remanufacturing as a key 

enabler to sustainable production plays a strategic role in waste management and 

environmentally conscious production (Ijomah et al., 2007). From manufacturers’ 

point of view, the economic efficiency of remanufacturing is clear and such systems 

would also be more eco-efficient. Kerra and Ryan (2001) studied Xerox photocopiers 

in Australia and found that remanufacturing can reduce resource consumption and 

waste generation over the life cycle of a photocopier.  

However, managing remanufacturing operations has proved to be challenging (Zhou 

et al., 2006). Many scholars have studied the inherent complexity and uncertainty of 

the remanufacturing system. Guide and Srivastava (1997) suggested that the 

remanufacturing system is a complex system. To cope with uncertainty there is a need 
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for accurate and up-to-date information, including the remanufacturing rate of 

materials and the frequency of using a specific processing route. Guide (2000)  

investigated production practices in American remanufacturing enterprises to identify 

multiple uncertainties and their impact on remanufacturing production, such as 

uncertainty of return of product, dismantling of parts, remanufacturing rate of 

materials, lead time of remanufacturing, and imbalance between recycling and 

demand. These uncertainties bring a big challenge in managing a remanufacturing 

system. Therefore, to plan remanufacturing production effectively, forecasting of 

product return and their time must be in place.  

Conventionally, forecasting models can be classified into qualitative and quantitative 

approaches. The former is based on subjective judgement when historical data are 

unavailable. The latter is dominated by practice. Some commonly used quantitative 

forecasting methods include time series methods, e.g. moving average, linear 

prediction; causal/econometric forecasting methods, e.g. regression analysis and 

autoregressive moving average with exogenous input; judgemental methods, e.g. 

Delphi method, statistical survey; artificial intelligence methods, e.g. artificial neural 

networks, data mining, machine learning; and others such as simulation (Wikepedia, 

2015). Nevertheless, since there are many uncertainties in a remanufacturing system, 

it is difficult to make conventional forecasting methods play a role, in view of the 

current situation in which research on product return predictions is still scarce 

(Andrew-munot et al., 2015; Fleischmann et al., 1997; Kelle and Silver, 1989).  

The importance of forecasting is significant in remanufacturing operations. To 
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construct a profitable remanufacturing process and reverse logistics system, its 

capacity planning, remanufacturing scheduling, inventory management, network 

design and resourcing allocation heavily rely on the amount of product return. These 

strategic plans are primarily based on return forecasting. In a recently published 

literature review by Govindan et al. (2014), return forecasting has been identified one 

of research gaps that needs to be addressed. This motivates us to develop a new 

approach that can be used in forecasting returns for remanufacturing production. The 

proposed model is able to predict products’ return quantity, possibility and time 

through applying the theories of stochastic networks and feedback control systems 

(Pritsker and Happ, 1966; Samuel, 1956). Furthermore, it also can estimate the 

amount and time of detachable parts based on product structure. The result of this 

paper contributes to the literature of return forecasting methods and we hope it could 

help responsible manufacturers and remanufacturers to improve the efficiency of 

production scheduling through forecasting returns. 

Section 2 reviews the relevant literature on returns and forecasting methods. The 

proposed Graphical Evaluation and Review Technique (GERT) methodology with 

Mason’s rules is described in Section 3. By using this methodology, Section 4 

provides more details on how to apply GERT on analysing a product return and 

remanufacturing stochastic network, followed by a numerical example in Section 5. 

Section 6 concludes.       

2. Literature review 

2.1 Probability distribution of product returns 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Despite uncertainties, distribution of product return is expected to obey a certain type 

of random distribution. Thierry (1993) stated that the uncertainties of return time, 

quantity and quality have a considerable impact on remanufacturing production 

planning and optimisation. García-Alvarado et al. (2015) and Decroix et al. (2005) 

assumed that product returns conform to a discrete distribution. Some researchers 

consider product return or processing time to obey a Poisson distribution (Bayındır et 

al., 2003; Zhao et al., 2015; Kiesmüller and van der Laan, 2001; Toktay et al., 2000). 

De Brito and Dekker (2004) suggested that if market demand is subject to a 

homogeneous Poisson distribution, the return rate of discarded products will also 

conform to the same distribution.  

The majority of returned products are due to malfunction or breakdown. Most of the 

existing research treats machine breakdown time as a negative exponential 

distribution (Christer and Waller, 2015; Fu et al., 2015; Ke and Wang, 1999; Taylor 

and Andrushchenko, 2014). It refers to the life cycle of a non-aging product, i.e. one 

not totally worn but one that fails to function for some reason, before it reaches to the 

expected end of life. This indirectly implies that the time of multiple uses of product 

should also obey a negative exponential distribution, as adopted in this research.        

2.2 Forecasting models on return quantity 

It is quite common that product return is assumed to be independent of demand 

(García-Alvarado et al., 2015; Richter, 1996a, 1996b), while others believe that there 

are some links between return and demand (Kelle and Silver, 1989; Kiesmüller and 

van der Laan, 2001; Toktay et al., 2000).  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Kiesmüller and van der Laan (2001) and Kelle and Silver (1989) considered the 

situation where return product quantity is probability correlated with product demand. 

Toktay et al. (2000) predicted probability densities for the return probability and the 

return delay based on real-time sales and return data by applying Bayesian statistics 

and survival analysis. De Brito and van der Laan (2009) suggested that it is 

reasonable to select historical information about sales and returns in terms of products’ 

characteristics when predicting return quantity.  

Carrasco-Gallego and Ponce-Cueto (2009) suggest that univariate time series models 

would be useful when only data available are historic return series in a linear reverse 

logistics system. In contrast, when available data are in a wider range variety, 

dynamic regression models would be more suitable (Kumar and Yamaoka, 2007). 

This type of models can capture the relationship among different activities and 

illustrate the consequence of various adopted strategies. Hanafi et al. (2008) adopt 

fuzzy Coloured Petri Net (CPN) approach to simulate product return network and 

forecast time and location of returns. It is noted that CPN was initially developed for 

project management, which then extended to various comprehensive techniques, one 

of them is GERT.     

Similar to Hanafi et al. (2008) and Kumar and Yamaoka (2007), in this paper we 

adopt GERT approach to capture the dynamic process of remanufacturing operations 

to predict return quantity, time and probability.   

2.3 Prediction of parts disassembly 
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This refers to predicting the time and availability of disassembling parts. The 

fluctuation of disassembly time is usually reflected in operations time variance, which 

is not simply accumulated by adding up operations time among different processes. 

Therefore, the uncertainty of remanufacturing has deepened. Lye et al. (2000) used 

the shortest path algorithm to optimise the disassembly and reassembly sequence. 

Gungor and Gupta (2001) applied a branch-and-bound algorithm to predict the 

disassembly of products. However, calculation of these methods is extremely time 

consuming. In this paper, the adopted GERT together with Mason’s rule simplifies the 

calculation by using Laplace transfer functions.    

2.4  Graphical Evaluation and Review Technique (GERT) and its application 

GERT was first developed by Pritsker and Happ (1966). ‘It is a procedure for … (1) 

analysing networks that contained activities that had a probability of occurrence 

associated with them, and (2) treating the plausibility that the time to perform an 

activity was not a constant, but a random variable … Networks containing these two 

elements were described by the term ‘stochastic networks’” (Pritsker, 1966, p. iii) . 

This technique was initially developed for managing the Apollo project, which was 

then widely adopted in project management such as risk management (Ahmed et al., 

2007), dynamic scheduling (Pena-Mora and Li, 2001), managing uncertainty (De 

Meyer et al., 2002) and many others.  

In the last three decades, the applications of GERT have been extended to other areas. 

For instance, Fisher and Goldstein (1983) applied a similar technique in analysing 

cognition behaviour; and Kosugi et al. (2004) applied GERT to evaluate energy 
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efficiency in the R&D projects of CO2 capture technologies. Five technologies were 

studied and their R&D processes were analogised into stochastic networks with the 

above-mentioned two characteristics; that is, probability and a random variable. By 

using GERT, they predicted the time of project completion, success probabilities and 

cost effectiveness of investment. 

In system engineering, stochastic network modelling is a technique for analysing the 

events of a process with branches of probability and closed loops. It is effective for 

prediction and planning when uncertainty exists among different operations. Through 

analysis of the transition function between nodes of stochastic networks, recovery 

network models with multi-starts to multi-terminals and multi-loops can be analysed. 

Xie et al. (2007) built a forecasting model for reclaiming and reusing products based 

on GERT network theory. Through the GERT method, the average time of every 

disassembly process and the availability rate of parts were derived. However, the 

model was designed for a specific product structure, which would be hard to apply in 

general. Zhou et al. (2010) justified that product return and remanufacturing (PRR) 

networks have the same characteristics as stochastic networks: multiple loops because 

of product use and reuse; branches and loops for different remanufacturing activities; 

uncertainty and randomness in the process; the entire network having more than one 

start point and end point. Hence, applying GERT in the analysis of these PRR 

networks is feasible and viable. They developed a product return forecasting model by 

using the GERT technique, and figured out the quantity and timing of 

remanufacturable parts and components as well as recyclable materials. However, the 
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model did not take into account product return and resale in first- and second-hand 

markets, and in particular the decision on remanufacturing activities was limited, 

without including disposal.  

This paper develops a generic forecasting model of product return and 

remanufacturing quantity, time and probability. It can be applied to any type of 

products provided that the BOM is known. We start by mapping the product return 

and remanufacturing process, as shown in Figure 1. This is then translated into a 

GERT network, as shown in Figure 2. Based on the structure of the network, a series 

of process transfer functions are derived to calculate quantity, time and probability.  

3. Description of GERT methodology: A generic eight-step process 

The inputs of the GERT are the parameters for each activity. These parameters include: 

the probability from activity (node) i to activity (node) j, estimated time period for 

each activity and the product original structure. In this case, the outputs are the 

prediction of product return quantity, timing and probability, salvageable 

parts/components/materials’ quantity, timing and probability, and finally disposal.      

To generalise and also simplify the process, the methodology can be described in 

eight steps: 

Step 1: Mapping the process in order to derive the causal flow chart; 

Step 2: Translating the flow chart into the stochastic network; 

Step 3: Estimating each activity’s parameters (from node i to node j): probability ijP  

and time probability density function if t ;  
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Step 4: Integrating the two parameters of each activity (i,j) into one transfer function 

 ijw s : ( ) ( )ij ij ijw s P M s  

Where ( ) ( ) ( )i it s t s
ij i iM s E e e f t dt


    is a moment-generating function (MGF).   

Step 5: Applying Mason’s rules (Mason, 1956a) - details explained in 4.4.2 -  

calculate total equivalence transfer function 
0nEW from initial node 0 to node j based 

on the network structure and the value of  ijw s . This is a rather complex calculation 

but indeed a key stage; 

Step 6: According to the definition of MGF, the probability (
0 jEP ) of the activity from 

initial node 0 to j is  
0 0 0j jE E

s
P W s  ; 

Step 7: According to the characteristics of MGF (Pishro-Nik, 2016), the expected 

return time from initial node 0 to node j is:

0 0

0

1 0 0

1
( ) [ ( )] | [ ( )] |

n n

n

E s E s
E

E t M s W s
s P s

  
     ; 

Step 8: The predicted quantity of product return/parts/components/materials equals to 

the probability of each activity multiple total amount of sold product: 
0 jEP Sales .    

In the following section, further details on how to calculate each activity and the 

desired outcomes are provided.                     

4. Analysis of the GERT remanufacturing networks  

4.1 Mapping the process of product return and remanufacturing 

As shown in Figure 1, when a consumer receives a product, if he/she is not satisfied 

with the product it can be returned to the retailer. The returned products will be tested 
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and classified into directly resellable or reconditionable and for sale back to the 

first-hand market. This is a common practice in mobile phones and laptops, for 

instance refurbished Apple Macs; there might be some products going to the 

second-hand market at a lower price. In this research, to simplify the case, we assume 

that retailers are involved in both first- and second-hand markets. If a product is not 

resellable, it will be sent to a remanufacturer to undertake sorting and testing. Based 

on return quality, remanufacturing processes include: (a) disassembling product into 

parts, reconditioning and resale; (b) disassembling parts into components, 

reconditioning and resale; (c) extracting useful materials from components and sale to 

a material market; and (d) disposal. 

Insert Figure 1 here. 

4.2 GERT Stochastic Network 

In the GERT network, each node is presented by a different icon. In inputs, there are 

three types of relationship: XOR, OR and AND. Outputs have two types of 

relationships: non-deterministic and deterministic. By combining input and output, 

there are six logic nodes, as shown in Table 1. 

Insert Table 1 here. 

In the GERT network, a line with an arrow means a job and each line has two 

parameters: probability, which means the possibility of doing the job; and time, which 

means the duration of the job. 

The network for product return and remanufacturing is shown in Figure 2. For each 
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node i, the process can be classified as three types, the distribution times of which are: 

 Activity 1: sales from new product launch to exit market. We assume that the 

process time obeys a normal distribution 2( ,  )N   , which reflects the curve of the 

product life cycle.  

 Activity 2: multiple uses of products. We assume that the multiple usage time    
is a negative exponential distribution given the fact that it is in correlation with 

product breakdowns (Christer and Waller, 2015; Fu et al., 2015; Ke and Wang, 1999; 

Taylor and Andrushchenko, 2014). 

 Activity 3: remanufacturing-related activities include sorting, testing, dismantling 

and so on. Without loss of generosity, to simplify the mathematical process, we 

assume that the process time    is a constant (Xie et al., 2007).  

The parameter ijP  refers to the probability of state i transitioning to state j with the 

value of a P. The superscripts p, c and m mean that the product can be dismantled into 

a number of p parts, c components and m types of materials, respectively.  

Insert Figure 2 here. 

4.3 Notation  

The description of each node is shown Table 2: 

Insert Table 2 here. 

The transition process is shown in Table 3. 

Insert Table 3 here. 
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4.4 Mathematical model 

4.4.1 Moment-Generating Function (MGF) 

The Moment-Generating Function (MGF) is used to describe a random variable’s 

probability distribution as an alternative specification. Compared with the cumulative 

distribution function (CDF) or probability density function (PDF), MGF offers a 

different method of analysing results through the weighted sum of random variables 

(Wikipedia). The MGF of a random variable t is defined: 

 ( ) ( ),   ts
tM s E e s R          (1) 

wherever this expectation exists. 

In the PRR network, assuming that the density function is continuous and the 

completion time’s density function at node i is ( )if t , then the MGF of it  is the MGF 

of the arrow from i to j, which is 

 ( ) ( ) ( )i it s t s
ij i iM s E e e f t dt


           (2) 

If it  is constant, the MGF is  

 ( ) it s
ijM s e         (3) 

If it  obeys a negative exponential distribution, the MGF is 

 
1

( )
1ij

i

M s
s          (4) 

While if  it  obeys the normal distribution 2( ,  )N   , the MGF is 

 
2 21

2( )
i s s

ijM s e
          (5) 
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4.4.2 Mason equivalence principle  

The equivalence transfer function from any node i to node j can be obtained by using 

Mason’s rules (Mason, 1956b): 
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where lG  is the gain of the l th forward route from i to j, and l is the loop gain of 

the l th loop,  1,l n , and must be an integer. In control theory, ‘gain’ means the path 

or loop’s transfer function i.e. output is divided by input.   

 is the determinant of the graph, where 
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Where L refers to a loop 

xL  is the sum of the transfer coefficient for different loops 

x yL L  is the sum of the transfer coefficient for two non-touch loops 

x y zL L L  is the sum of the transfer coefficient for three non-touch loops 

( 1) ...k   is the sum of the transfer coefficient for k non-touch loops 

….; 

4.4.3 Transfer functions for the product recycling process 

The process must account from initial node 0. Through using (3), (4) and (5), the 

MGF for each state transition is  

0
01( ) t sM s e  , 

2 2
0

1
2

12 13( ) ( )
s s

M s M s e
    , 1

21( ) t sM s e , 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

33 34
1

1
( ) ( )

1
M s M s

s   , 2
45 47( ) ( ) t sM s M s e  , 3

56( ) t sM s e , 

66 67
2

1
( ) ( )

1
M s M s

s   , 4
78 7,11 7,15( ) ( ) ( ) t sM s M s M s e   , 

5
89 8,10 8,11( ) ( ) ( ) t sM s M s M s e   , 6

9,10 9,12
( ) ( )

pt sp pM s M s e  , 

7
10,11 10,13( ) ( )

ct sc cM s M s e  , 8
11,14 11,15( ) ( )

mt sm mM s M s e   

The transfer function for arrow (i, j) is described below: 
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Therefore, the transfer function for each state transition is  
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4.4.4 Forecasting product return 

From state 0 to state 7, there are 2 paths, which are 0→1→3→4→7 and 0→1→3→4

→5→6→7. Its characteristic formula is 
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and by using (6) for simplification, the equivalence transfer function is 
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from 0 to j is the first-order derivation of MGF. 

Therefore, the probability of product return is: 

 
07

3 4 6
4

2 5

(1 )
(1 ) (1 )

PE

P P P
P

P P

             (11) 

With the expected time: 
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Theorem: For the probability at each stage in the network, it must be in the range of

 0,1 .  

Proof. 
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The expected time of product return is: 
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4.4.5 Forecasting remanufacture-able parts 

From node 7 to node 12, which is the parts inventory, the equivalence transfer 

function is 
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And the probability of remanufacturable parts p is 
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The expected recycling time is  
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If the quantity of returned product is wq ，the amount of thp  parts in each product’s 

BOM is pq ，then the amount of remanufacturablethp  part is  
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Substituting (11) and (17) into (20), we have 
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And the total remanufacturable part is 
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where *
partsK means the remanufacturable parts in each product. 

4.4.6 Forecasting remanufacturable components 

Similarly, from node 7 to node 13, which is the component inventory, the equivalence 

transfer function is 
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and the probability of remanufacturable component c from part p with its recycling 

time expectation is 
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Lemma 1: The probability from node 0 to 7 must be in the range of [0, 1].  

Proof. 
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If the quantity of product is wq ，the amount of the thc component from the thp part 

in each product is p
cq ，then the amount of the returned thc  component from thethp

part is  
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where  
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The total returned component is 
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where componentsK   is the total remanufacturable component in each product. 

4.4.7 Forecasting recyclable materials  

Likewise, from node 7 to node 14, which is the material inventory, the equivalence 

transfer function is  
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The probability and time of material recycle for component i are 
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Lemma 2: The probability from node 7 to 14 must be in the range of [0, 1]. 

Proof. 
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 (33.2) 

Hence, we have 
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If the weight of material m from component c is c
mg , the returned weight of m is 
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And the total weight of the returned component is 
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where materialK   is the total renewable material in each product. 

4.4.8 Forecasting discarded materials 

Finally, from node 7 to node 15, which is the material inventory, the equivalence 

transfer function is  
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The probability and time of raw material manufacture for component c are 
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(40) 

Lemma 3: The probability from node 7 to 15 must be in the range of [0, 1]. 

Proof.  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

           

7,15

9 10 7 8 11

12 13 8 7 10 9 1

, ,

3

Because   1 0,1 0, (1 ) 0,

          (1 ) 0,( ,1 ) 0;   and , , , 0

 Therefore,    0
E

p c m

p

c m m

P P P P P

P

P

P P P P P P

       
    


 

    

(41.1) 

 
7,15

7,15

8 7 9 10 12 9 11 12 13

9 10

, ,

7 8

, ,
8 7 9 11 1 72 813

For ( (1 ( ) (1 )))(1 )

                 

    Because, 0 ( ) 1,

     Hence, ( (1 (1 )))(1 )

(1 )

(1 ;)

E

E

cp c m

p c m

p c m

p c m

P P P P P P P P P

P P

P P P P P

P P

P PP

P

P

     


  
    



 




 
    

(41.2) 

 

7,15

7,15

9 11

, ,
7 8

7 8

12

8 7 13

7 8 13

8 7 13 8 7 13

 also

    because , 0,   and (1 ) 0,

    then  ( )(1 ) ;

    and because  0 , ,(1 ) 1,

         ( )(1 ) ( )

     Therefore,  

(1 )

( ) 1

 

1

E

E

p

m

m

c

p c

m

m

mP

P P P

P P P

P P P

P P P

P P

P PP

P

P P

  
   

  


 

    
, , 1p c m 

 (41.3) 

Hence, we have 
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If the weight of discarded material m from component j is c
md , the discarded weight of 

m is 
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And the total weight of the returned component is 
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where discardK   is the total discarded material in each product. 

5. Numerical example 

A printer manufacturer begins to deal with product return and remanufacturing. Table 

4 shows the probability and time duration of a printer’s return and recycling. One 

printer can be disassembled into four parts: ink cartridge, cleaning device, trolley and 

paper feeder. Each part contains screws, chips, plastic components and metal 

components (or some of them). In line with Insert Figure 2, the parameters are listed 

in Tables 4 and 5. 

Insert Table 4,5,6 and 7 here. 

(1) Prediction of product returns: 

Applying Eq. (12) and Eq.(14)-(15) and Table 4, the probability of the product 

returning is
07

0.82EP  , and the expected return time is 
07

200.9Et   weeks.  

Insert Figure 3 here. 
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Although the mean   and variance 
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  can be derived, it is 

not possible to decide which distribution exactly is. To verify the analytic result, we 

cross-checked it through a simulation in Matlab. The results of product return 

probability density function (PDF) is shown in Figure 3 and the cumulative 

probability function (CPF) in Figure 4.  Figure 3 indicates that the expected product 

return peak time is week 200.94 with the probability of 82.04%, which matches the 

analytic result. In addition, the PDF shows a negative skewness. It means after the 

expected time, product return rate will rapidly reduce. This is useful information for 

remanufacturers when planning capacity in advance. From Figure 4, it suggests that 

the remanufacturer should consider allocating the major resources no later than week 

150 when the return rate reaches 50%, for the sake of economic benefits.                  

(2) Prediction of renewable parts 

Applying Eq. (17) and (19), the renewable parts probability and expected time are 

derived. For example, the probability and expected time for the ink cartridge are 

7,12

1 0.39
E

P  , 
7,12

1 0.65Et   weeks. 

(3) Prediction of remanufactured components 

Remanufactured components can be predicted by using Eq. (24), (26) and (27). For 

example, the probability and expected time for the chip from the paper feeder are 

7,13

2,4 0.2176EP  , 
7,13

2,4 1.1735Et   weeks. 

(4) Prediction of extracted materials 
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For example, through Eq. (32), (34) and (35), the probability and expected time for 

remanufactured raw plastic from plastic parts on the trolley are 
7,14

3,3,1 0.32EP  ,  

7,14

3,3,1 0.9350Et   weeks. 

(5) Prediction of disposal waste 

Equations Eq. (40), (42) and (43) are used to calculate the discarded waste. For 

example, the probability and expected time for discarded metal from metal parts on 

the cleaning device are 
7,15

2,4,2 0.09EP  , 
7,15

2,4,2 0.6341Et   weeks. 

For 1000 printers, the renewed, remanufactured, recycled and discarded materials are 

as follows: 

(1) Through Eq. (20)-(22), 1054 parts will be remanufactured, including 321 ink 

cartridges, 137 cleaning devices, 229 trolleys and 367 paper feeders. 

(2) There are 9664 remanufactured components, including 6335 screws, 467 chips, 

1378 plastic components and 1484 metal components, by using Eq. (28)-(30). 

(3) Applying Eq. (36)-(38), total recycled materials are 1827.4g, including 1180.1g 

plastic material and 647.3g metal material. 

(4) Applying Eq. (44)-(46), total discarded materials are 674.6g, including 491.9g 

plastic material and 182.7g metal material. 

6. Conclusion 

This research applies the GERT technique to develop a forecasting model to predict 

the quantity, probability and time of product returns, parts and components 
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remanufacturing, material extracting and final disposal, respectively. The steps of 

using this model involve process mapping, developing GERT stochastic networks and 

deriving the transfer function of each transfer process and a system equivalence 

transfer function. The model can be used in any type of product and the 

remanufacturing process in general. Compared to existing research, the uniqueness of 

this model is the ability to capture the dynamics of reverse logistics system and 

remanufacturing process with stochastic features, and be able to predict desired 

outputs. The main contributions of this research are: developing a new approach and 

procedure that can be easily adopted in any structure of PRR network; and to our 

knowledge, this possibly is the first model that can predict the quantity, time and 

probability of return simultaneously. While we appreciate that the model itself may 

appear to be mathematically challenging to general practitioners, we hope the result of 

implement of model could provide the practitioners the predicted return statues so 

they can use them when planning and scheduling remanufacturing more efficiently.         

Our model assumes that the data are extracted from historic data. But how the past 

data are analysed are into consideration in this paper, which could limit the utilisation 

of the available information. For future research, it would be worth considering 

developing a model that integrates with other methodologies that can handle different 

type of historical data, such as grey theory when part of data are incomplete, fuzzy 

logic when data are imprecise, and machine learning to improve predictive capacity. 

This would help to improve the accuracy of forecasting. 
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Table 1: Logic nodes for GERT 

Input/output Deterministic  Non-deterministic  

XOR     

OR      

AND     
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Table 2: Node description 

Node Indication  

0 Company manufactures the products 

1 First-hand market 

2 Goods returned without using 

3 Product in use in first-hand market 

4 Used product sorting 

5 Second-hand market including refurbishment 

6 Product in use in second-hand market 

7 Classifying products 

8 Product disassembly 

9 Parts refurbishment 

10 Component refurbishment 

11 Recycling for materials 

12 Refurbished parts inventory 

13 Refurbished components inventory 

14 Recycled material inventory 

15 Disposal 
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Table 3: Arrow indication for each process 

Arrow Indication 
Probability 

of Pij 

0→1 Product to first-hand market 100% 

1→2 Product return from the consumer 1- P1 

2→1 Return product to the retailer 100% 

1→3 Product sold to the customer in use P1 

3→3 Multiple uses by customer in first-hand market P2 

3→4 Product enters the sorting point P3 

4→5 Refurbishment P4 

4→7 
Product cannot be refurbished and enters product sorting 

and testing point 
1-P4 

5→6 Sold to the customer in second-hand market 100% 

6→6 Multiple uses by customer in second-hand market P5 

6→7 Product enters product sorting and testing point P6 

7→8 Product enters dismantling point P7 

7→11 Product goes to material extracting process P8 

7→15 Disposal 1-P7-P8 

8→9 Enter parts refurbishment process P9 

8→10 Enter component remanufacturing process P10 

8→11 Enter material extracting process 1- P9 – P10 
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9→10 
Part refurbishment fails so goes to component 

remanufacturing process 
       

9→12 Enter the parts inventory      

10→11  
Refurbishment fails so goes to material extracting 

process 
       

10→13 Enter component inventory      

11→14 Enter material inventory      

11→15 Disposal        

Where 2 3 5 60 1  0 1P P and P P       
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Table 4: Probabilities and parameters in line with Figure 2 

P1=0.95 P2=0.3 P3=0.6 P4=0.3 P5=0.3 

P6=0.6 P7=0.8 P8=0.15 P9=0.7 P10=0.2 

0 0.6t   2
0( 100,  30)N     1 60   1 0.1t   2 0.1t   

3 0.2t   2 24   4 0.1t   5 0.15t   1000wq   
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Table 5: Recycling probability and time for parts remanufacturing 

 
Remanufacture to 

parts ( 11
pP ) 

Component 

dismantling 

111 pP  

Processing 

time 6
pt  

Quantity in each 

product pq  

Ink cartridge 

(IC) 
0.7 0.3 0.4 1 

Cleaning 

device (CD) 
0.3 0.7 0.5 1 

Trolley (TO) 0.5 0.5 0.4 1 

Paper feeder 

(PF) 
0.8 0.2 0.3 1 
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Table 6: Recycling probability and time expectation for component remanufacturing 

 
Component 

remanufacturing12
cP  

Material 

recycling

121 cP  

Processing 

time 7
ct  

Quantity in each 

part (IC, CD, 

TO, PF) p
cq  

Screw (SR) 0.95 0.05 0.1 (4, 4, 8, 4) 

Chip (CI) 0.8 0.2 0.8 (0, 0, 1, 1) 

Plastic 

component 

(PC) 

0.6 0.4 0.3 (2, 1, 3, 1) 

Metal 

component 

(MC) 

0.7 0.3 0.4 (1, 2, 2, 1) 
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Table 7: Recycling probability and time for material recycling and disposal 

 
Material 

renewal 13
mP  

Waste

131 mP  

Processing 

time 8
mt  

Weight in each part 

(SR, CI, PC, MC) 

c
mg   (g) 

Plastic 

material 
0.8 0.2 0.5 (0, 0.3, 0.5, 0) 

Metal 

material 
0.9 0.1 0.8 (0.1, 0.05, 0, 0.3) 
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Figure 1: Closed-loop manufacturing and remanufacturing process 
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Figure 2: product recycling diagram 
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Figure 3. The simulation result of the product return’s PDF showing the expected time 200.94 with the 

probability 0.8204 
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Figure 4. The simulation result of the product return’s CPF 
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