Impact of Sustainable Energy Savings in Nigerian Telecoms Industry

Satya Shah^{1, a}, Olumide Olajide Ojo¹, Elmira Naghi Ganji¹ and Ahmed Kadry Idris Abdellah¹

¹Applied Engineering and Management, Faculty of Engineering and Science, University of Greenwich, UK

Abstract. The efforts towards mitigating the effects of climate change should be more focused towards reducing CO2 and greenhouse gases emissions within the current regulations. One of the ways to achieve this is through encouraging more energy saving practices and reduction of carbon footprint within all production, commercial and service related functions within organisations. Nigeria has been identified with higher emission of greenhouse gases due to downstream gas flaring combined with rapid industrialisation, urbanisation and commercialisation activities. This research paper examines the potential impacts of energy saving within Nigerian telecoms industry, and highlights how telecoms base stations have great challenges and threats towards the climate change from the amount of energy generated within the system. The paper conducts a literature study on energy savings with key focus towards energy usage, its impacts, and concepts and towards the benefits of energy saving practices. The research also investigates within the concept of energy saving towards using sustainable methods for addressing the climate change issues. Further investigations towards the prospect of using renewable energy technologies such as wind, solar, geothermal and others are presented within the paper. Finally, sustainability assessment of these renewable technologies had been conducted towards providing recommendations for more suitable, alternative and affordable strategies for replacing or complementing conventional methods of powering telecoms industries in future.

1 Introduction

Maximizing profit and cutting cost is an ideal economic concept trending globally especially in manufacturing, production, services, and utilities within industries. While reducing the costs, one of the biggest challenges is that of the strategic sustainability plan partly due to their current corporate social responsibility. Previous studies have all demonstrated that a sustainable practice within any industry improves the profit maximisation and provides the company with a better image value. This has led to many industries adopting and designing sustainable chain models and practices that aims to reduce overall cost of operations [1]. In the past thirteen years from 2003-2015 there has been huge growth within the Nigerian telecoms subscribers' base. This has led to the average energy demands by the service provider for the delivery of telecom services increased as well. Hence, energy saving measures and reduction in greenhouse gas emissions (GHG) is considered to be one of the safest ways towards sustainable business practices within the telecoms industry. The initial capital investment in the industry has made it very difficult for new service providers coming in to the sector to thrive until recently. In the recent years, the sector has been a little bit competitive as the existing network providers are all looking for ways to improve on their tariff for it to be suitable and affordable by subscribers. This prompted the telecommunication

companies in Nigeria to start looking for ways of cutting down on their running cost and general expenses. Nigerian telecommunication sector is presently the fastest growing market in Africa; and it is among the ten fastest growing telecommunication industries in the world. Recent suggests that Nigerian Telecoms sector manages over 135 million active subscribers as at the end of 2014 [2].

There have been significant impacts on other economies such as financial sector due to the growth within the telecoms sector in general. For instance, the growth in telecoms industry facilitates better and improved performance levels within banking services through operations and service provision such as ATM services, general banking transactions, money transfers, electronic banking, and other E-commerce based banking transactions. Same is also true for other industries such as advertising, media and service sectors due to the substantial growth within the telecoms industry. The problems associated with cell site base stations in Nigeria telecommunication sector in terms of cost, environmental pollution, security and management. These problems can be solved through this research on energy savings where the best and safest form of energy supply was recommended. Here are some major issues that the research study aims to examine:

 Environmental pollution - the conventional method of power generation in running the cell

^a Corresponding author: s.shah@gre.ac.uk

- site base stations in telecommunication industry pollutes the environment.
- **High site running cost** The cost incurred in powering the cell site base stations affects both call and data bundle tariffs.
- Management method The processes and methods of cell site base station management is cumbersome and tedious, and the logistics in powering them are complex.
- Sites vandalism and theft The theft attempts on the stored diesel due to scarcity of fuel, hike or increase in the price of the fossil fuel.

The aim of this research study is to minimise the energy costs by encouraging the use of alternative renewable power sources that are relatively available, economic and environmental friendly within Nigerian Telecoms sector. The study conducts a comprehensive study on the cost of powering telecommunication cell sites, practices on cell sites management and ways of reduction by network providers. The research also aims to analyse and assess better alternative power sources and management practices and providing recommendations based on the findings of research. The study adopted comparative studies of the sustainability indicators for the power generation in running cell sites within Nigerian Telecoms industry. The sustainability indicators considered were adapted from [3] that includes, cost and availability of electricity from government grid, cost of generating set acquired, and maintenance and running cost, including greenhouse emission and social impacts (noise pollution, security, hazards etc.). Further sustainability assessment was carried out on the alternative renewable energy and the key factors considered such as the cost of acquiring the alternative renewable energy, maintenance and running cost and the greenhouse emission and social impacts.

2 Literature Review

Energy consumptions increase on daily basis especially in the fast growing and non-OECD countries like China, India, and Nigeria etc. which are having rapid economic growth. The increase in population and economic growth of these countries will further increase their energy consumptions. Meanwhile increase in energy needs and requirements poses threat to the environmental degeneration. As energy consumption increases, the greenhouse gas emission to the environment will also increase especially with electricity generation through the extensive use of fossil fuels with generating sets. According to the United States environmental protection agency report, the world generated about 46 billion metric tons of greenhouse gases which is expressed as carbon dioxide (CO₂) through human activities in 2010 and the use of fossil fuel in energy generation increased the greenhouse gas emissions by about 35% from 1990 to 2010 [4]. Renewable energy can be defined as energy flows which are replenished at the same rate as they are used [5]. Green power represents renewable energy resources and technologies that provide the highest

environmental benefit [6]. It is said to be the energy obtained from the continuous or repetitive currents of energy recurring in the natural environment. This is an important aspect of energy due to some recent realisable facts which include:

- Degradation: There is a limited access to all nonrenewable energy sources like coal, petroleum, natural gas and so on because they do not replenish.
- Consumption increase: The growth in the world population and technology advancement will surely increase demand for energy which indirectly results to demand in the non-renewable energy resources that are limited.
- Sustainability the development that meets the needs of the present without compromising the ability of future generations to meet their own needs [7].

2.1 Renewable Energy Sources

The use of renewable energy is needed to keep up with the sustainability pace and the use of the renewable energy will support and have positive impact on the energy supply, it will help build good environment, society and economy. It was confirmed that Effluent from coal mining can degrade local water quality by lowering pH and increasing concentrations of solids and heavy metals; leachate water from overburden dumps can also have high metal concentrations [8]. Renewable energy can be derived from natural resources and processes that replenishes within a short time scale and can be derived directly or indirectly [9]. Some of the types of renewable energy technologies are as discussed below.

- **Hydropower** is the generation of electricity through water, and mostly generated through the use of hydroelectric dams in rivers. It is one of the technologies that provide 20% of the global electricity supply [10].
- Solar Energy relates to generation of electricity through the use of harnessed energy from the sun, and can also be stored for future use.
- Wind Energy: This is another clean energy source. It is the generation of electricity using turbine turned by wind.
- Geothermal Energy: This is the energy generated through the heat stored in the rock by the rock natural heat flow.
- Wave Energy: This is the type of energy generated in relation to ocean waves generated by passing over long stretches of water called fetches [5].
- Biomass is the conversion of biological waste to source of energy. Biomass provides about 40% energy source in the developing countries of the world [10].

2.2 Overview of Energy Savings

It has been evident from many research studies that one of the most common research areas in the modern era has been that of Energy Saving and Sustainability. Increase in energy cost and environmental impacts of generating the electricity is really giving reasons for energy savings and making energy saving more important. There is a need to take global environmental protection seriously in the future to ensure companies liabilities; the concept of "Green integration" is a set of solutions for contributing to environmental protection regarding energy system design, architectural & building design, and energy management [11]. Great importance is towards green energy which includes the renewable energy and power generation source like solar power, hydroelectric power, wind power and biogas/biomass power. These are the common environmental friendly and non-polluting energy sources that can be used effectively for energy saving purposes. The Green or renewable energy is considered to be best alternative energy source for many years compared to traditional energy due to higher expenses. Energy saving is a means designed to minimize the use of some forms of energy sources like gas. electricity for environmental, cost and socio economic reasons. Energy savings' means an amount of saved energy determined by measuring and/or estimating consumption before and after implementation of an energy efficiency improvement measure, whilst ensuring normalisation for external conditions that affect energy consumption [12].

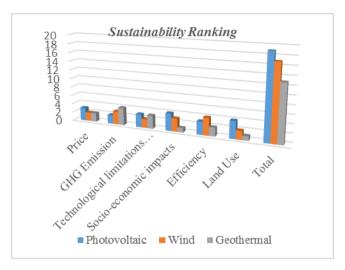
Energy savings has been in use in the developed nations of the world years before now, the concept is just spreading to the developing countries with this vast economic growth and rapid industrialisation that comes with additional energy requirements. Energy savings is set as a new approach to maintain a suitable environment and to control the greenhouse gas emission which is being released mostly from power generation through fossil fuel. The cost of running paper industry in China has been on the high side for a while now and the cost is mostly incurred from energy consumption, a research by [13] analysed the methods of cutting energy costs which also triggers reduction of CO₂ emission by encouraging low energy consumption. Some factors like Energy price. industry structure, profile margin and technology were added to analyse energy intensity in paper industry for better result. This research developed a long time energy saving model for paper industry in China. This research is the first that will analyse energy saving potential in paper industry in China. It ascertained that upgrade of technology in paper industry or introduction of new production technology which increases productivity will go a long way in reducing power consumption and thereby enhanced energy saving. It also looked into how energy especially electricity consumption can be saved in the telecommunication industry in China [1]. It critically estimated the amount of electricity being consumed by the technology of the telecommunication industry and looked into how this can be reduced to the barest minimum. A model was generated or developed for the technological energy saving in the telecommunication industry in China. Some parts of Indian experience extreme cold in winter which will always increase energy consumption for heating especially during winter. It was researched into, how energy could be saved and CO₂ emission reduced around this time of the season and beyond in India [14]. The theoretical energy saving

analysis of air conditioning system using HPHX for Indian climatic zones was also studied by [15]. They carried out an analysis in twenty five (25) cities in India representing different Indian climatic zones.

Another research discussed on ways thermal comfort could be achieved without the use of energy thereby saving energy to also reduce CO₂ emission for better sustainability in Mexico [16]. The research encouraged the use of building materials with high heat capacity to reduce heat in buildings, schedules to control room temperature and control the number of occupants in the building. Taiwan industrial sector was able to use energy saving potential insight through this research [17]. The research highlighted the energy saving potentials of similar countries in Asia and was able to analyse them to work out potential energy savings in the industrial sector in Taiwan. It analysed Taiwan industrial structure, energy use and Greenhouse gas emission in full. Energy saving is a strategic approach which can promote sustainable development. The safe practice in industries and homes has been what the sustainability awareness is all about to achieve the reduction of greenhouse gas release into the atmosphere, energy saving is part of the main method that can be adopted for this to be achieved. Sustainability or Sustainable development has been commonly defined as "Economic and social development that meets the needs of the current generation considering the ability of future generations to meet their own needs" [18]. This definition reflects the three most important aspect of human living which are; economic, social and ecological development.

Research also considered solar energy as one of the important aspects for the future of cleaner energy, including many energy experts expected renewable energy revolution to start once solar systems starts extracting more energy from the sun than at the present time [19]. Similar studies focusses towards the need for implementation of environmental conservation or energy saving policies that effects the economic growth of the African countries due to being within the current stages of industrialisation [20]. Although there are many studies that have focussed within African continent, however there is a lack of research that focuses on the linkage between energy consumption, carbon emission and economic growth. The concept of sustainability in energy saving relates to things that can be done to achieve a comfortable environment in homes and industries towards economic, environmental and social satisfaction. However, maximizing profit and building very good social responsibility status in any country, every sector or organisation should embrace and encourage the use of sustainable practice in every aspect of their productions and services. Meanwhile, potential energy saving is one of the strong tool for sustainable development. Energy generation and consumption especially through the use of coal, fossil fuels and the rest release a lot of harmful greenhouse gases to the atmosphere, apart from the air pollution, these gases reacts with some other elements in the atmosphere which at the end will cause series of damages to the earth thereby affecting the smooth living of the creatures.

3 Research Methodology


The papers presents the use of comparative research that compares the conventional energy usage for power generation in telecommunications cell sites base stations with the alternative renewable energy sources. The present method of power generation, which is largely dependent on fossil fuel, is harmful to the environment non-economical. Research shows telecommunication use above 150 million litres of diesel every year to power the existing base station which is not environmental friendly [21]. Global demand trends towards maintaining a sustainable environment that entails reducing human footprint and emission of greenhouse gases. This has become imperative to mitigate the challenges of global warming which is the prime factor for climate change. Hence, to better understand the particular aspect, this research study investigates alternative sources of energy that aims to support sustainability through suggestion of renewable energy technology sources that have been identified. Sustainability assessment was then carried out using some sustainability indicators adapted from [3]. These were looked into within the identified renewable energy sources. The sustainability indicators used include;

- 1. Price of generated electricity;
- 2. Greenhouse Gas Emission (GHG);
- 3. Efficiency of the energy generation;
- 4. Technological limitation and availability;
- 5. Socio-economic impacts;
- 6. Land use.

The sustainability assessment was done to rank the identified alternative energy sources in order to know which one of them will be the best to be considered after considering some other factors. The research then looked power the requirement in telecommunication base station to be sure of selecting the best alternative that could generate enough energy needed to power the cell site base station. The best of all these renewable energy technology is then selected and fully analysed, it was then compared economically and environmentally with the conventional way of power generation (diesel generator) in the telecommunication base station in Nigeria.

4 Results and Discussions

Some identified renewable energy that are clean and sustainable which could be used as alternative to fossil fuel power generation includes: *Bio-Energy, Geothermal, Hydro-power, Solar, Wind and Natural gas.* Meanwhile, considering some other factors in telecommunication industry, the best three were selected that could fit into this research. The selected three renewable energy technology selected are; Wind, Solar-Photovoltaic and Geothermal. Sustainability assessment carried out on the best three identified renewable energy technology result as shown in fig.1 indicates that the most appropriate alternative source of energy is Solar-photovoltaic energy after considering some other physical factors during further analysis.

Fig.1. Sustainability Ranking for Renewable Energy Technology in Nigeria

Several studies have shown that telecommunication base station consumes an average of about 12,500kw/h of electricity annually [22].

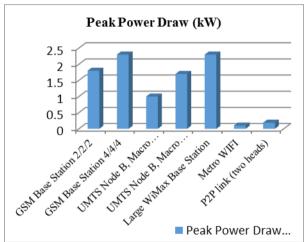


Fig.2. Power Requirement of various Base Stations

Every base station requires this amount of power for the equipment to work at the maximum rate and efficiency; therefore, there is a need to be sure that the chosen alternative will be able to meet the power requirement of a typical telecommunication cell site base station. This can be supported by daily solar radiation data (kWh/m²/d.) as well as the highest power required to power a telecommunication base station. The highest power that can be drawn by the fully loaded GS/3G base station is traditionally estimated to be about 3.5kw on the average. This estimation is based on the worst case scenario after critical analysis of an experimental result summarized in figure.2. A field experiment in Ibadan, southwest Nigeria chosen as the worst case scenario site shows that solar-photovoltaic can generate enough electricity required to power any cell site base station [22].

4.1 Economic and Environmental Analysis

The economic and environmental aspect of this research was looked into using typical base station settings and then the overall savings was looked into considering the number of base stations in Nigeria. Reports ascertain that Nigeria telecommunication sector runs well above 35,000 cell sites by different telecommunication companies [2]. According to data from the Ministry of Communication Technology, between 2013 and December, 2014, 2G-enabled sites have increased from 22, 578 to 28,289 while 3G-enabled sites have increased from less than 10,000 to 15,048 during the same period [2].

Costs	Background
Purchasing cost:	This is the cost incurred to purchase or to put the power source on site.
Maintenance cost:	this is the cost incurred in maintaining the energy generation source e.g. repairs, servicing, etc.
Fuelling cost:	This is the cost incurred on fuelling if need be.
Emission:	This has to do with the greenhouse gas emitted into the environment.
Life span:	This looks into how long the power generation set will last or will be due for replacement due to efficiency declination.
Miscellaneous cost:	This might be associated with some other little additional cost that might come in over the year. It might be extra fuelling cost due to fuel scarcity, additional cost on maintenance, transportation of materials or equipment to and from sites etc.

Table 1. Criteria Used in Economic Analysis.

The cost of setting up and running of a conventional diesel generator powered system was first looked into while the chosen alternative which is solar photovoltaic energy was then analysed.

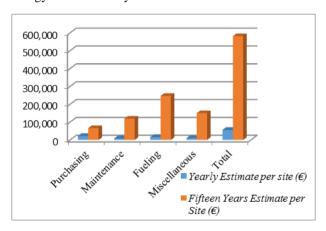
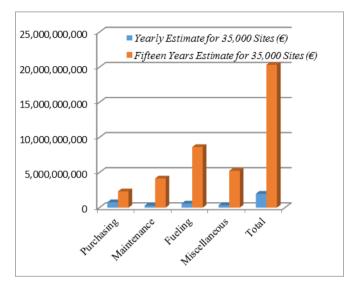



Fig.3. Estimated cost for diesel generator base station per site.

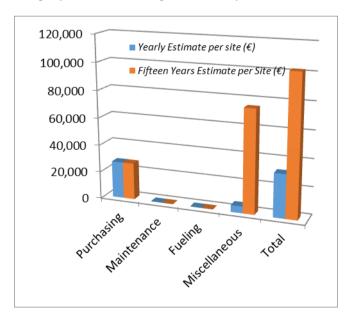
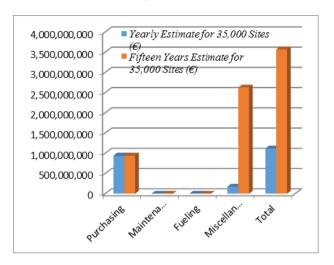

The cost analysis over the period of fifteen years was then looked into for the best conclusion to be drawn and best recommendation made. The factors and conditions considered in carrying out the economic and environmental analysis include as shown in figure 3. Similarly, the representation of the associated costs for the active 35,000 base stations in Nigeria using diesel generator for a year and fifteen years is shown in fig.4 below.

Fig.4. Estimated cost for diesel generator base station for 35,000 sites.


4.2 Base Station with Solar Power Generation

The cost associated with solar photovoltaic power generation in any telecommunication base station is just the purchasing cost of the system and the little miscellaneous cost of running the site. Looking into the future for about fifteen years running, the cost on the site will still remain the same except for the little increase associated with miscellaneous which might entails payment of labour cost for occasional cleaning of the solar panel surface, replacement of damaged or less performing battery if any, occasional cleaning of the power storage equipment boxes etc. Fig.5 summarises the cost per year and over the span of fifteen years.

Fig.5. Estimated cost for solar photovoltaic power system base station per site.

Meanwhile fig.6 highlights the cost yearly estimates for the 35,000 as well as the period of fifteen years.

Fig.6. Estimated cost for solar photovoltaic power system base station for 35,000 sites.

4.3 Benefits of Solar Photovoltaic Energy System

In all, this proposed change is to the benefit of the Nigeria telecommunication industry, the environment and the world at large. These overall benefits include;

- 1. *Profit maximisation* the telecommunication industry in Nigeria will be opportune to increase their profit margin due to the reduction in the running cost of the base stations.
- Better network coverage this encourages more base stations roll out for better coverage especially in the rural areas. The base station roll out will be of advantage to the people, the country and the operators.
- 3. *High social responsibility status* improves the social responsibility status, through an environmental conscious and friendly industry that supports the green campaign.
- 4. Longer life span the new method of renewable energy system i.e. the solar photovoltaic is more durable than the conventional diesel generators in use.
- 5. Improved logistics the stress of logistics and procurement process on generators maintenance and transportation of fossil fuel to the cell site base stations will be eliminated, thus improving employee efficiency for other aspects of the business.
- 6. *Keeping on with trend* the telecommunication industry in Nigeria will be able to follow the present trend in sustainable energy movement in the world.

5 Conclusions

The research study presents an understanding towards the energy saving concepts, sustainability and efficiency within the Telecoms industries in Nigeria. This awareness allows further strengthening Nigeria's industrial sector at large and allows the wider knowledge of sustainable

management and energy saving towards improving business and productivity. The research also serves to provide early insights for any major telecoms operators in the method of cell site base station management. The research has been able to simplify the cumbersome and tedious management methods of the base stations, and towards reducing the overhead costs of running cell site base stations. The vandalism and theft incidents in the base stations are aimed to be reduced to the minimum levels. The main reason for the theft is towards the stored fossil fuel whenever there is scarcity or increase of petroleum produce within the country. The newly recommended renewable energy technology to power the base stations according to the analysis in this research study is for an environmental friendly energy source.

The power saving measures which was carefully and critically analysed in this research has shown that the cell site base stations in Nigeria telecommunication industry could be well powered by renewable energy technology specifically using solar photovoltaic source. This will bring an end to the high cost of powering base station and will also eliminate the environmental pollution accosted with these base stations power supply in Nigeria telecommunication industry. This research illustrates that the solar photovoltaic energy system will be more efficient and cost effective than the present or conventional ways of powering telecommunication base stations in Nigeria.

The *sustainability and energy saving* is the latest and one of the common research areas within developing countries due to the revolution of the sustainable practices within domestic and commercial usage. This research explores on better utilisation of energy saving methods within telecoms industry by focussing towards cell site base stations as the reference. Further research is required towards better energy saving approaches on other business activities within the telecoms industries, specifically for the equipment requiring higher energy consumption such as air conditioners, computer sets and data equipment.

The potential energy saving has been focused in the academic literature in the recent years and this is due to the keen interest of conducive environment in order to secure the future of the unborn generations. It is also been considered by the world manufacturing industries as it provides a great opportunity for profit maximization. However, the telecommunication industry in Nigeria is still at the primary stages of practicing the energy source aspects. The source of energy or energy technology adopted in Nigeria telecommunication sector is not still powerful both economically and environmentally. The country's telecommunication sector still runs its cell sites base station on fossil fuel using diesel generating sets. This method is very expensive and thereby causing high tariffs in both calls and data services. This research sought to investigate more beneficial practices that could help the telecommunication sector in Nigeria to take advantage of the energy saving initiative. Apart from the outrageous running cost of the telecommunication cell site base stations in Nigeria, the negative environmental impacts of this approach cannot be denied. This can be due to the generation of public concerns and posing threat

to immediate environment. Hence, the harmful emissions of the greenhouse gases lead to the global warming. According to this paper, the solar photovoltaic energy system would be the best renewable energy that can be used as an alternative by the telecommunication operators in Nigeria in order to help them enhance the cost effectiveness and profit maximisation. By analysing the sustainability assessment procedures, environmental management advantages and its cost advantages were pointed out. In some non-EOCD countries such as china, India, Taiwan; several industries have been able to research and enhance the potential energy savings within different industries such as paper industry, food and beverages manufacturing and cement industries. However, Nigeria as a country with fast growing economy gradually moves towards attaining high industrialization and hence, requires focusing on energy saving practices in the next few years. Moreover, more researches could be carried out within the other industrial sectors of the country as most of them are still the beginning of practicing the sustainable industrialisation. Future research could be more focused on enhancing the awareness of residential energy savings involving all the people to provide them with the knowhow on energy savings that could be the most efficient and long-term sustainability practice within this field.

References

- 1. Q. Zhang, N. Shah, J. Wassick, R. Helling, P. van Egerschot, Sustainable supply chain optimisation: An industrial case study. *Computers & Industrial Engineering*, **74**, 68-83 (2014)
- 2. AllAfrica.com, *Nigeria: Telecommunication Revolution 14 Years After, the Journey So Far.* Available: http://allafrica.com/stories/, (2015)
- 3. A. Evans, V. Strezov, T. J., Evans, Assessment of sustainability indicators for renewable energy technologies, Renewable and Sustainable Energy Reviews, 13 (5), 1082-1088 (2009)
- 4. EPA, Climate Change Indicators: Global Greenhouse Gas Emissions, US EPA. Available: http://www3.epa.gov/climatechange/science/indicators/ghg/global-ghg-emissions.html, (2015)
- 5. G. Boyle, *Renewable Energy: Power for a Sustainable Future*. Oxford: Oxford University Press, 14-56, 363-392 (1997)
- 6. Z. Elum, and A. Momodu, Climate change mitigation and renewable energy for sustainable development in Nigeria: A discourse approach. *Renewable and Sustainable Energy Reviews*, **76**, 72-80 (2017)
- World Commission on Environment and Development (1987), Our Common Future, Oxford University Press, Oxford, available at: www.cfr.org/economic-development/p26349, 2015
- 8. R.K. Tiwary, Environmental impact of coal mining on water regime and its management. *Water, Air & Soil Pollution*, **132**, 185-199 (2001)
- 9. TREIA. Definition of renewable energy, Available: www.treia.org/renewable-energy-defined, 2015

- 10. V. Nelson, *Introduction to renewable energy*. Boca Raton, FL: CRC Press, 15-70 (2011)
- INTELEC. 1st ed. Piscataway, N.J.: IEEE, 750-755 (2007)
- 12. Y. Dutil, and D. Rousse, Energy Costs of Energy Savings in Buildings: A Review. *Sustainability*, **4** (12), 1711-1732 (2012)
- B. Lin, M. Moubarak, Estimation of energy saving potential in China's paper industry. *Energy*, 65, 182-189 (2014)
- 14. T. Sivasakthivel, K. Murugesan, P. Sahoo, A study on energy and CO₂ saving potential of ground source heat pump system in India. *Renewable and Sustainable Energy Reviews*, **32**, 278-293 (2014)
- 15. TS. Jadhav, MM. Lele, Theoretical energy saving analysis of air conditioning system using heat pipe heat exchanger for Indian climatic zones. Eng Sci Technol Int J. 18, 69-73 (2015)
- I. Oropeza-Perez, P. Østergaard, Energy saving potential of utilizing natural ventilation under warm conditions – A case study of Mexico. *Applied Energy*, 130, 20-32 (2014)
- 17. S.M. Lu, C. Lu, K.T. Tseng, F. Chen, C.L. Chen, Energy-saving potential of the industrial sector of Taiwan. *Renewable and Sustainable Energy Reviews*, **21**, 674-683 (2013)
- 18. Brundtland, G.H. our common future. Report of the World Commission on environment and development: United Nations, (1987)
- U. Stritih, H. Paksoy, B.Turgut, E.Osterman, H.Evliya, V.Butala, Sustainable Energy management: solar energy and thermal storage technologies in two Mediterranean countries, Management of Environmental Quality, 26 (5), 764-90 (2015)
- 20. M.M. Albiman, N.N. Suleiman, H. O. Baka, The relationship between energy consumption, CO2 emissions and economic growth in Tanzania, International Journal of Energy Sector Management, 9 (3), 361-375 (2015)
- D. Ike, A. Adoghe, A. Abdulkareem, Analysis of Telecom Base Stations Powered By Solar Energy. International Journal of Scientific and Technology Research, 3(4), 1-6 (2015)
- 22. Infinite Focus Group, *Alternative and Sustainable Power for Nigerian*. Solar Power, Wexford: Infinite Focus Group, 5-10. Available: //infinitefocus-group.com/yahoo_site_admin/assets/docs/WHITE_Paper_Globacom.16865153.pdf, (2015)