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POWER OF PREEMPTION FOR MINIMIZING TOTAL
COMPLETION TIME ON UNIFORM PARALLEL MACHINES∗
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Abstract. For scheduling problems on parallel machines, the power of preemption is defined as
the supremum ratio of the cost of an optimal nonpreemptive schedule over the cost of an optimal
preemptive schedule (for the same input), where the cost is defined by a fixed common cost function.
We present a tight analysis of the power of preemption for the problem of minimizing the total
completion time on m ≥ 2 uniformly related machines, showing that its value for m = 2 is equal to
1.2, and its overall value is approximately 1.39795.
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1. Introduction. In parallel machine scheduling, we are given the jobs of a set
N = {J1, J2, . . . , Jn}, all available at time zero (where Jj is also called job j), and
m ≥ 2 parallel machines M1, M2, . . . ,Mm (where Mi is also called machine i). If
a job Jj ∈ N is processed on machine Mi completely, then its processing time is
defined to be pij . There are three main types of scheduling systems with parallel
machines: (i) identical parallel machines, for which the processing times are machine-
independent, i.e., pij = pj ; (ii) uniformly related (or uniform) parallel machines, which
have different speeds, so that pij = pj/si, where si denotes the speed of machine Mi;
and (iii) unrelated parallel machines, for which the processing time of a job depends
on the machine assignment. For the models on identical and uniform machines, the
value pj is referred to as the size of job Jj ∈ N .

In a nonpreemptive schedule, each job is processed on the machine it is assigned to
without interruption. In a preemptive schedule, the processing of a job on a machine
can be interrupted at any time and then resumed either on that or on any other
machine, provided that the job is not processed on two or more machines at the same
time.

Given a scheduling problem, let S be a feasible schedule and let Cj (S) denote the
completion time of job Jj in schedule S. Among the most popular objective functions
studied in scheduling literature are the total completion time

∑
Cj (S), i.e., the sum

of completion times, and the makespan Cmax (S) = max {Cj (S) |Jj ∈ N}, i.e., the
maximum completion time.

Given a schedule S, denote by Φ(S) the value of the objective function Φ ∈
{∑Cj , Cmax} computed for S and refer to it as the cost of S. For a scheduling
problem to minimize an objective Φ on m parallel machines (identical, uniformly
related, or unrelated), let S∗

np and S∗
p denote, respectively, an optimal nonpreemptive

and an optimal preemptive schedule with respect to function Φ.
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Given a problem instance of minimizing an objective Φ, denoteR = Φ(S∗
np)/Φ(S

∗
p)

and call this value the cost ratio (for that instance). Define the power of preemption
as the supremum ratio R = Φ(S∗

np)/Φ(S
∗
p) across all instances of the problem at hand.

We denote the power of preemption by ρ. If the number of machines is constrained
to be at most m, then we denote the power of preemption restricted to such family
of instances by ρm, and thus ρ = supm≥2 ρm. Since by definition ρm+1 ≥ ρm holds
for any m ≥ 2, it follows that ρ = limm→∞ ρm.

The main interest in studying the power of preemption is that this value deter-
mines what can be gained if preemption is allowed. Most preemptive models assume
that preemption is free, but in real life every preemption slows the system, in general,
and increases the processing time of preempted jobs. Thus, when the power of pre-
emption is small, it is beneficial to use nonpreemptive schedules instead of preemptive
ones. From a purely theoretical point of view, this is a clean, basic, and natural com-
binatorial optimization problem; it does not depend on models of complexity, and it
provides an interesting comparison between well-known related scheduling problems.

The purpose of this paper is to establish the value of the power of preemption for
the scheduling problem of minimizing total completion time on m uniformly related
machines. Specifically, we show that for this problem ρ ≈ 1.39795 and ρ2 = 1.2.

The remainder of this paper is organized as follows. Section 2 presents an overview
of known results on the power of preemption for various models on parallel machines.
For the model of minimizing total completion time on uniformly related machines,
the well-known algorithms for finding optimal nonpreemptive and preemptive sched-
ules are described in section 3. In section 4, we explain how to transform a given
instance of the problem under consideration into an instance that possesses required
properties, without decreasing the cost ratio. The value ρ of the power of preemption
for the model with uniform related machines is derived in section 5, and a sequence
of instances is exhibited for which the cost ratio tends to the established value of ρ.
The case of two uniform machines is addressed in section 6, where it is shown that
the power of preemption is exactly 1.2.

2. Power of preemption: A review. In order to determine the exact value
of ρ for a particular problem of minimizing a given objective the following should be
done:
(i) demonstrate that the inequality

(1)
Φ
(
S∗
np

)
Φ
(
S∗
p

) ≤ ρ

holds for all instances of the problem;
(ii) exhibit instances of the problem for which (1) holds as equality (possibly in the

supremum), i.e., show that the value of ρ is tight.
Most of the known results on the power of preemption have been established for

the problem of minimizing the makespan.
If preemption is not allowed, the problem of minimizing the makespan is NP-

hard, even on two identical parallel machines. By contrast, finding a preemptive
schedule that minimizes the makespan can be done in polynomial time, even in the
most general settings with unrelated machines. See a focused survey [5] on parallel
machine scheduling with the makespan objective for details and references. Thus,
in order to give the concept of the power of preemption practical meaning, for the
problem of minimizing the objective Φ = Cmax, the studies on the power of preemption
are normally accompanied by an additional point:
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POWER OF PREEMPTION FOR TOTAL COMPLETION TIME 103

(iii) develop a polynomial-time algorithm that finds a nonpreemptive schedule Snp

such that the inequalities

(2)
Φ
(
S∗
np

)
Φ
(
S∗
p

) ≤ Φ (Snp)

Φ
(
S∗
p

) ≤ ρ

hold for all instances, i.e., the ratio between the cost of a heuristic schedule
Snp and the cost of an optimal preemptive schedule does not exceed the upper
bound ρ that is claimed for the cost ratio.

Without loss of generality, throughout this paper it is assumed that for the models
on identical and uniform machines, the jobs are numbered in LPT (Longest Processing
Time) order, i.e., in a nondecreasing order of their sizes:

(3) p1 ≥ p2 ≥ · · · ≥ pn.

Let Nu = {J1, J2, . . . , Ju} denote the set of u longest jobs, 1 ≤ u ≤ n. Define
p (Nu) =

∑u
j=1 pj and p (N) =

∑n
j=1 pj.

In the case of identical machines, for an optimal preemptive schedule S∗
p the

equality

(4) Cmax

(
S∗
p

)
= max {T, p1}

holds, where T = p (N) /m is the average machine load. An optimal schedule S∗
p

can be found in O (n) time by a so-called wrap-around algorithm developed in [17].
As proved in [1], in the case of m identical machines the power of preemption for
Φ = Cmax is given by ρm = 2 − 2/ (m+ 1). Moreover, it is demonstrated in [1] that
a nonpreemptive schedule Snp, for which (2) holds (that is, the second inequality of
(2) holds), can be found in O (m+ n logn) time by applying the famous LPT List
Scheduling algorithm, which scans the jobs in the order of their LPT numbering and
assigns the next job to the first available machine (see also [15]). For the class of
instances with Cmax(S

∗
p) = p1, the value of the power of preemption is strictly smaller

than the global bound 2− 2/ (m+ 1), as established in [19].
Unless stated otherwise, for the model with m uniform machines, throughout this

paper assume that the machines are numbered in nonincreasing order of their speeds,
i.e.,

(5) s1 ≥ s2 ≥ · · · ≥ sm.

Define Su =
∑u

i=1 si, the total speed of the u fastest machines, 1 ≤ u ≤ m, and
introduce

Tu =
p (Nu)

Su
, 1 ≤ u ≤ m− 1, Tm =

p (N)

Sm
.

According to [9], for an optimal preemptive schedule S∗
p the equality

(6) Cmax

(
S∗
p

)
= max {Tu|1 ≤ u ≤ m}

holds, and an optimal schedule S∗
p can be found in O (n+m logm) time. It is shown

in [25] that ρm = 2− 1/m, and a nonpreemptive schedule Snp for which (2) holds can
be found in O (m+ n logn) time by a version of the LPT List Scheduling algorithm.
As clarified in [24], this bound is tight for the class of instances where Cmax

(
S∗
p

)
= Tm
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104 L. EPSTEIN, A. LEVIN, A. J. SOPER, AND V. A. STRUSEVICH

holds; however, for the class of instances for which Cmax

(
S∗
p

)
= Tu, 1 ≤ u ≤ m− 1,

the value of ρm becomes 2−min
{

1
u ,

1
m−u

}
. For m = 2, a parametric analysis of the

power of preemption with respect to the speed of the faster machine is independently
performed in [12] and [23]. For m = 3, a similar analysis is contained in [23], provided
that the machine speeds take at most two values, 1 and s ≥ 1.

To complete the discussion of the power of preemption of the problems of min-
imizing the makespan, consider the model with m unrelated machines. An optimal
preemptive schedule S∗

p can be found in polynomial time by solving a linear program-
ming problem that determines the values xij , equal to the total length of the time
intervals during which job Jj is processed on machine Mi; see, for example, [14]. The
values xij/pij can be rounded to produce a nonpreemptive schedule Snp. In partic-
ular, a rounding procedure that is attributed to Shmoys and Tardos and reproduced
in [16] and [7] finds a nonpreemptive schedule Snp such that (2) holds for ρ = 4. This
bound is tight, as proved in [7].

We now turn to considering the issues of the power of preemption for the objective
function Φ =

∑
Cj and its weighted counterpart Φ =

∑
wjCj . In the latter case, job

Jj additionally has a positive weight wj associated with it, which reflects its relative
importance.

For identical machines, it is proved in [18] that allowing preemption does not
reduce the optimal value of Φ =

∑
wjCj , i.e., for that model ρ = 1. Notice that the

problem of minimizing Φ =
∑
wjCj is NP-hard, even for two identical machines [3].

The problem of minimizing
∑
Cj on unrelated parallel machines belongs to a

group of rare scheduling problems for which solving the preemptive version is harder
than its nonpreemptive counterpart: finding schedule S∗

np reduces to a rectangular
assignment problem and takes strongly polynomial time [3, 10], while the problem
of finding schedule S∗

p is NP-hard, as proved in [21]. For the problem of minimizing
Φ =

∑
wjCj on unrelated parallel machines, approximability results established by

Sitters in [22] can be interpreted in terms of the power of preemption, which they
imply for that very general model ρ ≤ 1.81, which improves a previously known
bound of 2 [20].

This paper focuses on the problems of minimizing the unweighted function Φ =∑
Cj on uniformly related machines. Unlike the problems of minimizing the makespan

discussed above, here both versions of the problem, nonpreemptive and preemptive,
are polynomially solvable. Indeed, an optimal nonpreemptive schedule S∗

np can be
found in O (m+ n logn) time [6], while finding an optimal preemptive schedule S∗

p

takes O (n logn+ nm) time; see [4, 8, 13]. Detailed descriptions of the corresponding
algorithms are given in section 3.

3. Algorithms on uniform machines. An instance I of the problem with n
jobs andm parallel uniformly related machines is defined by the list Ln = (p1, p2, . . . , pn)
of the sizes of the jobs, and the list Mm = (s1, s2, . . . , sm) of the machine speeds. The
objective is the total completion time Φ =

∑
Cj . As assumed in section 2, the jobs

are numbered in the LPT order (3), while the machines are numbered in accordance
with (5). Without loss of generality, we may assume that n ≥ m; otherwise, the
m − n slowest machines can be removed since they will not be assigned any jobs in
any optimal schedule, preemptive or nonpreemptive. This holds since moving the jobs
or parts of jobs of one machine to another empty machine that is not slower does not
harm the schedule. The running time for this redistribution step is O(m + n), using
methods of median selection and partitioning.

Sometimes, to stress for which instance a schedule S is created, we will write
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POWER OF PREEMPTION FOR TOTAL COMPLETION TIME 105

S (I), explicitly referring to instance I.
The algorithm for finding an optimal nonpreemptive schedule S∗

np scans the jobs
in the order of their numbering and forms the processing sequence on each machine
in a backwards manner, starting from the rear end, so that the next job is assigned
to the machine on which it makes the smallest contribution to the objective function.
Formally, the algorithm can be stated similarly to [2] (and this is a special case of
the algorithm for unrelated machines [10, 3]). In the description of the algorithm,
Πi denotes the sequence of jobs assigned to machine Mi, and ◦ is the operation of
concatenation, i.e., Jj ◦ Π denotes the sequence obtained by adding job Jj at the
beginning of the current sequence Π.

Algorithm QSumNP
1. If necessary, renumber the jobs in accordance with (3) and the machines in

accordance with (5).
2. For each machine Mi, i = 1, 2, . . . ,m, define Πi := ∅ and ωi := 1/si.
3. For each j from 1 to n do

(a) Find the smallest index v with ωv = min1≤i≤m ωi.
(b) Update Πv := Jj ◦Πv and update ωv := ωv +

1
sv
.

As shown in [11], for n ≥ mAlgorithm QSumNP can be implemented inO(n log n)
time (the values ωi are stored in a priority queue, where even a simple binary heap
allows one to implement all steps except for the initial sorting in time O(n logm)).
Notice that in schedule S∗

np, on each machine the jobs are processed in the order
opposite to their numbering, i.e., in nondecreasing order of their sizes, which is known
as the Shortest Processing Time (SPT) rule. Each machine Mi has a a multiplier
associated with it, denoted by ωi, which is updated during the run. For each j,
1 ≤ j ≤ n, the algorithm matches job Jj to the smallest available multiplier ωv,
possible ties being broken in favor of the machine with the smallest index; i.e., the
job is assigned to the fastest machine associated with the current smallest multiplier.
The contribution of job Jj to the total cost Φ

(
S∗
np

)
=
∑
Cj

(
S∗
np

)
is defined as ωvpj

(where ωv is the value calculated in step 3(a) for j). Notice also that since the value
Φ
(
S∗
np

)
is the sum of all contributions of the jobs, the contribution of job Jj may be

different from its completion time.
The algorithm for finding an optimal preemptive schedule S∗

p scans the jobs in
the SPT order, i.e., in a nondecreasing order of the sizes, opposite to their numbering.
Each job is assigned preemptively in such a way that its completion time is minimized.
For example, job Jn is assigned to the fastest machine M1, so that it completes at
time Δt = pn/s1. During the time interval [0,Δt] , machine Mi, 2 ≤ i ≤ m, processes
part of job Jn−i+1 (assumingm ≤ n). Then the remaining part of job Jn−1 is assigned
to machine M1, where it will be processed for (pn−1 − Δt · s2)/s1 time units, while
during that time interval each of the other machines will process part of a job (if such
a job exists), etc. A formal description of the algorithm given below follows [2].

Algorithm QSumP
1. If necessary, renumber the jobs in accordance with (3) and the machines in

accordance with (5).
2. Define a := 0.
3. For i = n, n− 1, . . . , 1 do

(a) Compute Δt = pi/s1 and k := min {m, i}.
(b) For v from 0 to k − 1 do

i. Schedule job Ji−v on machine Mv+1 during the time interval
[a, a+Δt) .
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106 L. EPSTEIN, A. LEVIN, A. J. SOPER, AND V. A. STRUSEVICH

ii. Update pi−v := pi−v −Δt · sv+1.
(c) Update a := a+Δt.

The running time of Algorithm QSumP is O(n logn+nm). Notice that in schedule
S∗
p each job is completed on the fastest machine M1 (even if it is processed on M1

during a time interval of zero length), and the completion order follows the SPT rule.
In what follows, when we discuss optimal schedules, we will assume that when

multiple optimal schedules exist, the optimal schedule we consider is the one created
by the corresponding algorithm given here.

4. Tight instances. For the problem of scheduling n jobs on m uniformly re-
lated machines to minimize total completion time Φ (S) =

∑n
j=1 Cj (S), let ρ be the

power of preemption, i.e., (1) holds for any instance of the problem. An instance I∗

is called tight if for that instance the following equality holds:

Φ
(
S∗
np (I

∗)
)

Φ
(
S∗
p (I

∗)
) = ρ.

Observe that ρ is defined as a supremum of an infinite set of values, and thus,
in general, there need not be a tight instance. In such cases, there is a sequence of
instances whose sequence of cost ratios approaches ρ. Such a sequence is called a tight
sequence.

In this section, we establish the existence of a tight sequence that possesses specific
properties.

Lemma 1. There exists a tight sequence in which for every element of the sequence
all jobs are identical, i.e., pj, j = 1, . . . , n, are the same.

Proof. It suffices to show that given a set ofmmachines with speeds s1, s2, . . . , sm
and an upper bound n on the number of jobs, there exists an instance maximizing the
power of preemption that is restricted to instances with this set of machines and at
most n jobs such that the vector of sizes is binary. This claim implies that there is a
tight sequence of instances with binary job sizes. Since zero-sized jobs can be seen to
complete at time zero, given a tight sequence with binary job sizes, we can delete the
zero-sized jobs from each instance of the sequence, and this does not affect the cost
for both the optimal nonpreemptive schedule and the optimal preemptive schedule.

Clearly, we can disregard the instances in which all n jobs have zero size. There-
fore, without loss of generality, we can normalize the job sizes so that the largest size
is equal to 1. Thus, an instance is associated with a vector of n variables p1, p2, . . . , pn
such that

(7) 1 = p1 ≥ p2 ≥ · · · ≥ pn ≥ 0.

For schedule S∗
np, let the contribution of job Jj ∈ N to Φ

(
S∗
np

)
be ajpj , where

aj depends on n and m, as well as on the index of the job in the sorted list and the
machine speeds. Indeed, the objective function value Φ

(
S∗
np

)
is a linear function of the

variables p1, . . . , pn (given the ordering) since, as follows from Algorithm QSumNP,
the contribution ωvpj of job Jj to the objective function is the product of its multiplier
and its size, and the objective function value is the sum of contributions of the jobs.

Similarly, Φ
(
S∗
p

)
is a linear function which can be written as

∑n
j=1 bjpj. We prove

this by induction on the iterations of Algorithm QSumP. Specifically, we show that in
each iteration the values of a and of Δt, as well as the updated values of pj , Jj ∈ N ,
are all linear functions of the original sizes p1, . . . , pn. Recall that Algorithm QSumP
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POWER OF PREEMPTION FOR TOTAL COMPLETION TIME 107

considers the jobs in the order opposite their numbering given by (7), and that in
iteration φ, where the value of the index i is n− φ+ 1, the completion time of job Ji
is defined. First, since the values of p1, p2, . . . , pn are updated in each iteration of the
algorithm, we show by induction that (7) holds after every iteration, and moreover,
after iteration φ, pn−φ+1 = pn−φ+2 = · · · = pn = 0. Due to the sorting, these
properties hold before any iterations are performed.

Assume that the properties hold after iteration φ − 1. In iteration φ, step 3(a),
a time interval of length Δt is determined such that Δt =

pn−φ+1

s1
, and for k =

min{n−φ+1,m}, job n−v−φ+2 for 1 ≤ v ≤ k is assigned to machineMv during this
time interval. Since the processing time which can be used on machineMv during this
time interval is Δt·sv and s1 ≥ s2 ≥ · · · ≥ sm, we have Δt·s1 ≥ Δt·s2 ≥ · · · ≥ Δt·sm,
and since the value pn−v−φ+2 is decreased by Δt · sv for 1 ≤ v ≤ k, the values
pn, pn−1, . . . , pn−φ+2 are already equal to zero, so pn−k−φ+1, . . . , p1 are unchanged,
and the sorted order is kept. Moreover, for v = 1, the new value of pn−v−φ+2 is zero
by the choice of Δt. Finally, we now demonstrate that Φ

(
S∗
p

)
is a linear function of

the original sizes pj. To do this we show that after each iteration of the algorithm the
current values of p1, . . . , pn linear depend on the original sizes of the jobs. Consider
iteration φ; then for every job Jj the value of pj either remains the same or decreases
by Δt · sv (for some value of v), where Δt depends linearly on the current values of
p1, p2, . . . , pn, which is linear in the original sizes using the induction hypothesis. For
each job, the completion time of the job is the sum of all Δt values in a prefix of the
list of iterations of the algorithm (all iterations up to and including the iteration in
which its completion time is defined), and those are also linear in the original sizes of
the jobs.

Thus, we have that the power of preemption of this subclass of instances is the
optimal value of the following mathematical program:

maximize

∑n
j=1 ajpj∑n
j=1 bjpj

subject to p1 = 1,
pj − pj+1 ≥ 0, 1 ≤ j ≤ n− 1,
pn ≥ 0.

For this problem, the matrix of the constraints defines a nonempty bounded poly-
tope, and for any feasible solution, the denominator of the objective function is posi-
tive. This implies that the optimal value of the objective function, which we denote by
λ∗, is finite. Solving the above mathematical program is equivalent to finding a max-
imizer of the objective function

∑n
j=1 ajpj − λ∗ · (∑n

j=1 bjpj) subject to the same set
of constraints. The resulting problem is a linear program over a nonempty polytope.
Thus, we know that there exists an optimal solution for this linear program that is an
extreme point of the polytope. Observe that the structure of the constraint matrix
that defines this polytope is such that in each row all entries are zero, except at most
one 1 and at most one −1. Such constraint matrices are known to be totally unimod-
ular, and since the right-hand side of the system of constraints is an integer vector, we
deduce that all extreme points of the polytope are integral. Since all feasible integ-
ral solutions are in fact binary due to (7), Lemma 1 is proved.

In our search for a tight sequence, Lemma 1 allows us to focus on instances in
which all processing times are unit, i.e., pj = 1, Jj ∈ N . For the analysis of ρ, we
will consider large inputs, with numbers of jobs growing to infinity as justified by the
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108 L. EPSTEIN, A. LEVIN, A. J. SOPER, AND V. A. STRUSEVICH

following lemma.

Lemma 2. There is a tight sequence such that the numbers of unit-sized jobs of
the instances along the sequence form a monotonically increasing sequence of integers,
growing to infinity.

Proof. Let I be an instance with n unit-sized jobs J1, . . . , Jn. We create an
instance I ′ with 2n unit-sized jobs J ′

1, . . . , J
′
2n by duplicating each machine; in other

words, instead of usingmmachinesM1,M2, . . . ,Mm with the speed vector (s1, s2, . . . ,
sm) we will use 2m machines M ′

1, M
′
2, . . . ,M

′
2m−1,M

′
2m with the speed vector (s1, s1,

s2, s2, . . . , sm, sm). Observe that a nonpreemptive optimal schedule for instance I ′

can be formed by running on machines M ′
2i−1 and M ′

2i the same number of jobs
that in schedule S∗

np(I) are executed on machine Mi, 1 ≤ i ≤ m, and thus the cost of
S∗
np(I

′) is exactly twice the cost of S∗
np(I). The last claim can be proved by examining

the action of Algorithm QSumNP. If the selected machine for job Jj is Mv for input
I, then for instance I ′ jobs J ′

2j−1 and J ′
2j will be assigned, respectively, to machines

M ′
2v−1 andM ′

2v. On the other hand, for instance I ′, we can reproduce the assignment
in schedule S∗

p(I) twice: on the machines M ′
1, M

′
3, . . . ,M

′
2m−1 with the odd indices,

and on the machinesM ′
2,M

′
4, . . . ,M

′
2m with the even indices. This results in a feasible

preemptive schedule for instance I ′ whose cost is twice that of S∗
p(I). Hence, the cost

of S∗
p(I

′) is at most twice that of S∗
p(I).

Thus, for any instance I with n unit-sized jobs and m machines, we can form an
instance I ′ with 2n unit-sized jobs and 2m machines such that

Φ
(
S∗
np (I)

)
Φ
(
S∗
p (I)

) ≤ Φ
(
S∗
np (I

′)
)

Φ
(
S∗
p (I

′)
) ,

i.e., the cost ratio for instance I is no more than that for instance I ′. Therefore,
given a tight sequence, we conclude that there is a tight sequence that is an infinite
sequence of instances whereby the sequence of numbers of unit-sized jobs is (strictly)
monotone increasing, and the lemma holds.

Lemma 2 demonstrates the existence of a tight sequence rather than of a finite
number of tight instances. It plays an important role in the proof of Theorem 2.

Given an instance of the problem, consider the run of Algorithm QSumNP and the
run of Algorithm QSumP. Recall that only instances with m ≤ n need be considered.

Since we deal with instances that contain only unit-sized jobs, the cost of an op-
timal nonpreemptive schedule depends on the list of the multipliers generated during
the run of Algorithm QSumNP. For an instance I, Algorithm QSumNP generates a
list of n used multipliers, so that for each job the product of its size and the matched
multiplier defines its contribution to the total cost. Additionally, upon the completion
of the algorithm, each machine Mi supplies a multiplier ωi, 1 ≤ i ≤ m, which we call
a ready multiplier. Should the instance under consideration contain another job Jn+1,
that job would be matched by Algorithm QSumNP to the smallest ready multiplier.
If additional jobs arrive, the list of m ready multipliers will be modified, so that if k

si
is the smallest ready multiplier (where in the case of ties i is the minimum index of a
machine whose current multiplier is the smallest one), then k+1

si
is inserted into the

list as the multiplier of machine Mi, while
k
si

is removed from the list.

Another representation would be to create n multipliers of the form k
si

for k =
1, 2, . . . , n for each machine Mi, 1 ≤ i ≤ m, and sort this list in nondecreasing order,
provided that the elements of equal value are additionally sorted by increasing order of
the machine indices. Let Ω (I) be this sorted list of length n ·m, where each multiplier
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POWER OF PREEMPTION FOR TOTAL COMPLETION TIME 109

Table 1

Runing AlgorithmQSumNP for eight unit-sized jobs.

Job J1 J2 J3 J4 J5 J6 J7 J8
Machine M1 M2 M1 M1 M2 M3 M1 M2

Used multiplier 1/3 1/2 2/3 1 1 1 4/3 3/2

appears in the list as many times as it occurs. In this list, the first n elements are
used multipliers, and the (n+ 1)th element is the first ready multiplier. Notice that
Algorithm QSumNP actually assigns job Jj according to the jth element in the list
so that if the jth element in the list is k

si
, then job Jj is assigned to be processed on

machine Mi in the kth position from the rear.
To illustrate the introduced notions, consider an instance of eight unit-sized jobs

Jj , 1 ≤ j ≤ 8, to be processed on machines M1, M2, and M3 with the speeds s1 = 3,
s2 = 2, and s3 = 1. Running Algorithm QSumNP and scanning the jobs in the order
of their numbering, these jobs are allocated to the machines and associated with the
used multipliers as shown in Table 1.

Notice that the ties are broken to give preference to a faster machine with a
smaller index. The algorithm terminates while delivering ready multipliers 5/3, 2,
and 2 for machines M1, M2, and M3, respectively. The corresponding list Ω (I) is
given by

(1/3, 1/2, 2/3, 1, 1, 1, 4/3, 3/2, 5/3, 2, 2, 2, 7/3, 5/2, 8/3, 3, 3, 7/2, 4, 4, 5, 6, 7, 8) .

The following scaling procedure is crucial for further analysis. If necessary, we
scale all speeds of the machines in such a way that the smallest ready multiplier
generated upon the completion of Algorithm QSumNP is equal to 1 (that is, we
multiply all speeds by the smallest ready multiplier). Notice that such a scaling does
not affect the cost ratio. For example, to scale the eight-job instance above, we need
to multiply all the speeds of the machines by 5/3.

Due to the performed scaling, the smallest ready multiplier generated upon the
completion of Algorithm QSumNP is equal to 1. For an instance with n unit-sized jobs
in schedule S∗

np, no machine is assigned more jobs than its speed, and in particular,
a machine whose speed is strictly below 1 has no jobs assigned to it. A machine of
speed s will be assigned at least �s�− 1 jobs (as otherwise, a ready multiplier on that
machine is less than 1). It is assigned at most 	s
 jobs, since a larger number of jobs
means that a multiplier strictly above 1 has been used by the algorithm, which means
that all multipliers of value 1 have been used and there cannot be a ready multiplier
with that value. In particular, Algorithm QSumNP outputs a schedule in which any
machine of speed 1 has at most one job assigned to it.

Note that as a result of scaling, the minimum machine speed may become less
than 1, however, this does not happen in instances which we are interested in, as we
show now. This will allow us in further analysis to assume that no machine speed is
below 1.

Lemma 3. Given an instance I of n unit-sized jobs and m machines such that
the minimum machine speed is smaller than 1 (i.e., mini si < 1), there is an instance
I ′ of n unit-sized jobs and m machines such that the minimum machine speed in I ′

equals 1, and the cost ratio for I ′ is no less than that for I.

Proof. Take an instance I for which mini si < 1 and transform it into instance
I ′ as described below. For every machine M whose speed is below 1, change its
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110 L. EPSTEIN, A. LEVIN, A. J. SOPER, AND V. A. STRUSEVICH

speed to 1 (without changing the numbering of the machines). Since instance I is
scaled, it follows from the structure of Algorithm QSumNP that in schedule S∗

np(I) the
machines with speeds below 1 receive no jobs. Then, in the resulting optimal schedule
S∗
np(I

′) for instance I ′, the assignment of jobs to machines remains as in S∗
np(I),

since the machines are numbered in accordance with (5) and the ties are broken in
favor of the machines with smaller indices, and since the smallest ready multiplier
is equal to 1. The cost of an optimal nonpreemptive schedule does not change, i.e.,
Φ
(
S∗
np(I

′)
)
= Φ

(
S∗
np(I)

)
. The described transformation may only decrease the cost

of an optimal preemptive schedule, since when speeds increase, it is still possible to
use any previous optimal schedule as a (not necessarily optimal) schedule for I ′, i.e.,
Φ
(
S∗
p(I

′)
) ≤ Φ

(
S∗
p(I)

)
. Thus, the cost ratio for instance I is no larger than that for

instance I ′. This proves the claim.

Now, we show a stronger property for the speeds. The property is that among
instances with n unit-sized jobs and m ≤ n machines, it suffices to consider instances
with at most one machine of speed s > 1 and all other m− 1 machines of speed 1 (by
Lemma 3, no machine has a speed below 1).

To show this, we do the following. Consider an appropriately scaled instance
I that, in particular, contains a machine M (x) of speed s(x) = x + α > 1, and a
machine M (y) of speed s(y) = y + β > 1, where x, y ≥ 1 are integers and α and β
are nonnegative numbers such that α, β ≤ 1. If one of the speeds s(x) and s(y) is an
integer (or if both are), the values α and β are selected (out of 0 and 1) in such a
way that Algorithm QSumNP assigns x jobs to machine M (x) and y jobs to machine
M (y).

We examine the effect of changing the speeds of machines M (x) and M (y) to
s(x) + s(y) − 1 and 1, respectively, keeping the other machines untouched. We show
in Lemma 4 that this modification cannot increase the value Φ

(
S∗
p

)
of the optimal

preemptive schedule, and in Lemma 5 we prove that it cannot decrease the value
Φ
(
S∗
np

)
of the optimal nonpreemptive schedule. Applying this modification as long

as there are at least two machines with speeds strictly larger than 1 results in a new
instance I ′ whose cost ratio is no less than the cost ratio of I, and it has an additional
property that there is at most one machine of speed larger than 1. Notice that we
may assume that there is exactly one machine of speed larger than 1 in instance I ′;
otherwise, if no machine has a speed larger than 1, then the machines are identical
and the cost ratio for that instance is 1.

Lemma 4. Changing the speeds of the two machines M (x) and M (y) from s(x)

and s(y) to s(x) + s(y) − 1 and 1, respectively, does not increase the cost of an optimal
preemptive schedule.

Proof. Consider an optimal preemptive schedule S∗
p for the given initial instance

I. We will emulate the allocation of jobs to M (x) and M (y) of speeds s(x) and s(y),
respectively, using the two machines of speeds s(x)+s(y)−1 and 1. To do this, consider
a (maximal) time interval T of length t such that in schedule S∗

p a part of one job

(say, J ′) runs on machine M (x) of speed s(x), and a part of another job (say, J ′′) runs
on machine M (y) of speed s(y); see Figure 1(a). The proof below is presented for the
case when both machines M (x) and M (y) are busy in interval T (if this is not the
case, no job will be run instead of running the missing job).

The processing amounts of job J ′ and of job J ′′ in interval T (the sizes of parts
of these jobs that are processed) are equal to ts(x) and ts(y), respectively.

We show that the same processing amount of each of these jobs in interval T can
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POWER OF PREEMPTION FOR TOTAL COMPLETION TIME 111

M (y) · · ·
...

...

...

M (x) · · · J ′ · · ·

J ′′ · · ·

� �t

(a)

M (y) · · ·
...

...

...

M (x) · · · J ′ J ′′ · · ·

J ′′ J ′ · · ·

� �t0 � �t− t0

(b)

Fig. 1. Interval T (a) in schedule S∗
p ; (b) in the modified schedule.

be achieved by the following modification. Assign speed s(x) + s(y) − 1 to machine
M (x), and speed 1 to machine M (y). Define

t0 := t · s(x) − 1

s(x) + s(y) − 2
.

Process job J ′ during the first t0 time units of interval T on machine M (x), and
in the remaining part of interval T on machine M (y). Similarly, run job J ′′ during
the first t0 time units of interval T on machine M (y) of speed 1, and in the remaining
part of interval T on machine M (x); see Figure 1(b). This transformation does not
affect other jobs and machines, and none of J ′ and J ′′ is processed on two machines
simultaneously.

The total processing amount of job J ′ during T in the modified schedule is

t · s(x) − 1

s(x) + s(y) − 2
· (s(x) + s(y) − 1) + t

(
1− s(x) − 1

s(x) + s(y) − 2

)
= t · s(x),

i.e., is equal to the processing amount of J ′ during interval T before the modification.
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112 L. EPSTEIN, A. LEVIN, A. J. SOPER, AND V. A. STRUSEVICH

Similarly, the total processing amount of job J ′′ during interval T is

t · s(x) − 1

s(x) + s(y) − 2
· 1 + t

(
1− s(x) − 1

s(x) + s(y) − 2

)
· (s(x) + s(y) − 1) = t · s(y),

again the same as the total processing amount of this job during T before the modifi-
cation. Since Algorithm QSumP creates a finite number of intervals like interval T in
the above transformation, it follows that this process of dealing with these intervals
one by one will terminate. The cost of the constructed preemptive schedule for the
modified instance is the same as the cost for the initial instance I.

Lemma 5. Changing the speeds of the two machines M (x) and M (y) from s(x) =
x+ α and s(y) = y+ β to s(x) + s(y) − 1 = x+ y+ α+ β − 1 and 1, respectively, does
not decrease the cost of an optimal nonpreemptive schedule.

Proof. Consider optimal nonpreemptive schedules S∗
np (I) for I, and S∗

np (I
′) for

I ′, where I ′ is the instance with the modified speeds (recall that we assume that
the schedules are created by Algorithm QSumNP). According to our notation, for I,
Algorithm QSumNP assigns x and y jobs to machines M (x) and M (y), respectively.

For instance I, let Ω (I) be the sorted list of n ·m multipliers that consists of n
multipliers for each machine. Recall that in this list, the first n elements are used
multipliers, and the (n + 1)th element is the first ready multiplier, which is equal to
1. For instance I ′, list Ω (I ′) is defined similarly, though the value of the (n + 1)th
multiplier is yet to be evaluated. Since the jobs are unit-sized, the cost of a schedule
(and in particular, the costs of S∗

np (I) and of S∗
np (I

′)) is equal to the sum of all used
multipliers in list Ω (I) (or in list Ω (I ′), respectively). For instance I, all fractional
multipliers, i.e., those strictly less than 1, appear among the first n elements of Ω(I)
and thus they are used multipliers.

Making the transfer from instance I to instance I ′, we transform list Ω (I) into list
Ω (I ′) by the removal of all multipliers related to machines M (x) and M (y), followed
by the insertion of multipliers of the form k

s(x)+s(y)−1
and k, where 1 ≤ k ≤ n is an

integer. The later multipliers are, respectively, supplied by machines M (x) and M (y)

in instance I ′.
By assumption, in list Ω(I) the number of fractional multipliers is no larger than

n, and the number of multipliers no larger than 1 is at least n+1. Before we proceed
with the analysis for instance I ′, we show that the value of the (n + 1)th element of
Ω(I ′) is 1, since we are currently examining only instances for which the first ready
multiplier is equal to 1. For this purpose, we show that the number of fractional
multipliers in Ω(I ′) is no larger than that of Ω(I), and that the number of multipliers
no larger than 1 in Ω(I ′) is no smaller than that of Ω(I).

For any instance, a machine M of speed s supplies �s� − 1 fractional multipliers.
The only difference between Ω(I) and Ω(I ′) in terms of fractional multipliers can be
the difference between the numbers of such multipliers supplied by M (x) and M (y).
Thus, the change in the number of fractional multipliers is −((�x+α�−1)+(�y+β�−
1))+(�x+α+y+β−1�−1) (note thatM (y) no longer supplies a fractional multiplier,
as its modified speed is 1). Due to a simple property �λ1�+ �λ2� ≥ �λ1 + λ2�, which
holds for any real λ1 and λ2, we have that the change is nonpositive.

For any instance, a machine M of speed s supplies 	s
 multipliers no larger than
1. The only difference between Ω(I) and Ω(I ′) in terms of such multipliers can be
the difference between the numbers of such multipliers supplied by M (x) and M (y).
Thus, the change in the number of multipliers no larger than 1 is −((	x+α
)+ (	y+
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POWER OF PREEMPTION FOR TOTAL COMPLETION TIME 113

β
)) + (	x + α + y + β − 1
 + 1) (in this case, M (y) now supplies one multiplier of
value 1). Due to a simple property 	λ1
+ 	λ2
 ≤ 	λ1 + λ2
, which holds for any real
λ1 and λ2, we have that the change is nonnegative.

Thus, I ′ is a valid input. Compare the prefixes of length n in the lists Ω(I) and
Ω(I ′), which are essentially the lists of used multipliers. It follows that the prefix
of length n of Ω(I ′) contains all fractional multipliers of all machines, and for each
machine other than M (x) and M (y), these multipliers are the same multipliers as in
Ω(I). The remaining multipliers in the prefixes under consideration are the fractional
multipliers supplied by machines M (x) and M (y), and possibly some multipliers of
value 1 (ensuring that the total number of multipliers in each prefix is n).

Let Γ denote the sum of fractional multipliers for all machines excluding machines
M (x) andM (y), and let g be the number of such multipliers; both these values are the

same for lists Ω(I) and Ω(I ′). The value x(x+1)
2(x+α)+

y(y+1)
2(y+β) represents the sum of the x+y

smallest multipliers associated with machines M (x) and M (y) in list Ω (I). Since in
instance I machine M (x) receives x jobs, and machine M (y) receives y jobs, it follows
that the used multipliers supplied by machines M (x) and M (y) are of the form k

x+α

for k = 1, 2, . . . , x, and of the form k
y+β for k = 1, 2, . . . , y, respectively. All remaining

used multipliers in Ω(I) are equal to 1, and there are n− g− (x+ y) such multipliers.

Thus, the cost for I can be computed as Γ + (n− g − x− y) + x(x+1)
2(x+α) +

y(y+1)
2(y+β) .

The proof is split into two cases, depending on the value of α + β. Notice that
the equality

(8)
z(z + 1)

z + γ
= z + 1− γ − γ(1− γ)

z + γ

holds for any z > 0 and γ ≥ 0. We will apply it several times, always for a positive
integer z and 0 ≤ γ ≤ 1. In particular, for z = x and γ = α we have

(9)
x(x+ 1)

x+ α
= x+ 1− α− α(1− α)

x+ α
,

and for z = y and γ = β we have

(10)
y(y + 1)

y + β
= y + 1− β − β(1 − β)

y + β
.

Case 1. Assume that α + β ≥ 1. If α + β > 1, we have x + y + α + β − 1 >
x + y, so M (x) supplies x + y fractional multipliers for I ′ of values k

x+y+α+β−1 for

k = 1, 2, . . . , x+ y. The cost of the corresponding schedule becomes Γ + (n− g − x−
y) + (x+y)(x+y+1)

2(x+y+α+β−1) .

If α+ β = 1, we have x+ y + α+ β − 1 = x + y, so that machine M (x) supplies
x+ y− 1 fractional multipliers of values k

x+y+α+β−1 for k = 1, 2, . . . , x+ y− 1. In this

case, the cost of the corresponding schedule is Γ+(n−g−x−y+1)+ (x+y−1)(x+y)
2(x+y+α+β−1) =

Γ+ (n− g− x− y)+ (x+y)(x+y+1)
2(x+y+α+β−1) , since in this case x+ y+α+ β− 1 = x+ y holds.

Comparing the cost to Γ + (n − g − x − y) + x(x+1)
2(x+α) +

y(y+1)
2(y+β) , in order to show

that the cost for I ′ is no smaller than that of I, we show that the following holds:

(11)
(x+ y)(x+ y + 1)

2(x+ y + α+ β − 1)
≥ x(x+ 1)

2(x+ α)
+
y(y + 1)

2(y + β)
.
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114 L. EPSTEIN, A. LEVIN, A. J. SOPER, AND V. A. STRUSEVICH

Applying (8) with z = x+ y and γ = α+ β − 1, we deduce

(x+ y)(x+ y + 1)

x+ y + α+ β − 1
= x+ y + 1− (α+ β − 1)− (α+ β − 1)(2− α− β)

x+ y + α+ β − 1

= x+ y + 2− (α+ β)− (α+ β − 1)(2− α− β)

x+ y + α+ β − 1
.

We first prove that

(12)
(α+ β − 1)(2− α− β)

x+ y + α+ β − 1
≤ α(1 − α)

x+ α
+
β(1− β)

y + β
,

which is equivalent to showing that the expression

G : = (α+ β − 1) (2 − α− β) (x+ α) (y + β)− α(1 − α) (x+ y + α+ β − 1) (y + β)

−β(1− β) (x+ y + α+ β − 1) (x+ α)

is nonpositive. Using simple algebra we get that

G = (x+ 1)xβ(β − 1) + (y + 1) yα(α − 1)− 2 (α− 1) (β − 1)xy

= x(β − 1) ((x+ 1)β + (1− α) y) + y(α− 1) ((y + 1)α+ (1− β)x) .

Since 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1, we obtain that G ≤ 0, i.e., (12) holds. Using
(12) we obtain

x+ y + 2− (α+ β)− (α+ β − 1)(2− α− β)

x+ y + α+ β − 1

≥ x+ y + 2− (α + β)− α(1− α)

x+ α
− β(1 − β)

y + β

=

[
(x+ 1)− α− α(1 − α)

x+ α

]
+

[
(y + 1)− β − β(1 − β)

y + β

]
.

Applying (9) and (10), we finally deduce that

x+ y + 2− (α+ β)− (α+ β − 1)(2− α− β)

x+ y + α+ β − 1
≥ x(x + 1)

(x+ α)
+
y(y + 1)

(y + β)
,

i.e., (11) holds.
Case 2. Assume that α + β < 1. If α + β > 0, then machine M (x) supplies

x+ y− 1 fractional multipliers, and the cost of the corresponding schedule is Γ+(n−
g − x − y + 1) + (x+y−1)(x+y)

2(x+y+α+β−1) . If α = β = 0, then machine M (x) supplies x+ y − 2

fractional multipliers, and the cost of the corresponding schedule is Γ + (n− g − x−
y + 2) + (x+y−2)(x+y−1)

2(x+y+α+β−1) = Γ+ (n− g − x− y + 1) + (x+y)(x+y−1)
2(x+y+α+β−1) , since in this case

x+ y + α+ β − 1 = x+ y − 1 holds.

Comparing the cost of the corresponding schedule to Γ+(n−g−x−y)+ x(x+1)
2(x+α) +

y(y+1)
2(y+β) , in order to show that this cost for I ′ is no smaller than that of I, we show

that the following holds:

(13)
(x+ y − 1)(x+ y)

2(x+ y + α+ β − 1)
+ 1 ≥ x(x + 1)

2(x+ α)
+
y(y + 1)

2(y + β)
.
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POWER OF PREEMPTION FOR TOTAL COMPLETION TIME 115

Applying (8) with z = x+ y − 1 and γ = α+ β, we deduce

(x+ y − 1)(x+ y)

x+ y + α+ β − 1
+ 2 = (x+ y)− (α+ β) + 2− (α+ β)(1 − α− β)

x+ y + α+ β − 1
.

Next, we prove that

(14)
(α + β)(1− α− β)

x+ y + α+ β − 1
≤ α(1− α)

x+ α
+
β(1 − β)

y + β
,

which is equivalent to showing that the expression

H : = (α+ β)(1 − α− β) (x+ α) (y + β)− α(1 − α) (x+ y + α+ β − 1) (y + β)

−β(1− β) (x+ y + α+ β − 1) (x+ α)

is nonpositive. Compute

−H = x2 · β(1 − β) + x · (2αβ + β2 − β) + y2 · α(1 − α) + y · (2αβ + α2 − α)

+xy · [α(1 − α) + β(1 − β)− (α+ β)(1 − α− β)]− 2αβ(1− α− β).

Since x, y ≥ 1 and 1 ≥ α, β ≥ 0, we have

x2 · β(1 − β) + x · (2αβ + β2 − β) ≥ x(β(1 − β) + 2αβ + β2 − β) = 2xαβ ≥ 0,

y2 · α(1− α) + y · (2αβ + α2 − α) ≥ y(α(1− α) + 2αβ + α2 − α) = 2yαβ ≥ 0,

and

xy · [α(1− α) + β(1− β)− (α+ β)(1 − α− β)]− 2αβ(1 − α− β)

≥ xy(α(1 − α) + β(1 − β)− (α+ β)(1 − α− β)− 2αβ(1 − α− β))

= 2xyαβ · (α+ β) ≥ 0,

by α+ β < 1 and x, y ≥ 1.
Thus, H ≤ 0 and (14) holds. Using (14), we obtain

(x+ y)− (α+ β) + 2− (α+ β)(1 − α− β)

x+ y + α+ β − 1

≥ (x+ y)− (α+ β) + 2− α(1− α)

x+ α
− β(1− β)

y + β

=

[
x+ 1− α− α(1 − α)

x+ α

]
+

[
y + 1− β − β(1− β)

y + β

]
.

Applying (9) and (10), we finally deduce that

(x+ y)− (α+ β) + 2− (α+ β)(1 − α− β)

x+ y + α+ β − 1
≥ x(x + 1)

(x+ α)
+
y(y + 1)

(y + β)
,

i.e., (13) holds.

The remaining lemmas of this section will use all properties proved above, and
will impose a final restriction on the types of instances that should be analyzed for
computing ρm or ρ.

Definition 1. An instance I with n unit-sized jobs and m machines is called a
good input if it satisfies the following conditions:
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116 L. EPSTEIN, A. LEVIN, A. J. SOPER, AND V. A. STRUSEVICH

(a) n ≥ m;
(b) machine M1 has speed s, 1 < s ≤ n, while the speed of each of the remaining

machines M2, . . . ,Mm is 1;
(c) in schedule S∗

np (I) found by Algorithm QSumNP, at least one of the unit speed
machines is not assigned a job, so that the smallest ready multiplier is equal
to 1.

Lemma 6. Any instance I can be converted into a good input without decreasing
the cost ratio.

Proof. As proved earlier in this section, it suffices to consider an initial instance
I of n unit-sized jobs, and m machines of speeds no smaller than 1, where n ≥ m.
Moreover, in I the speeds are scaled so that the smallest ready multiplier is equal to
1. Further, by Lemmas 4 and 5, at least m− 1 of these machines are of speed 1. We
may assume that instance I contains a faster machine M1 of speed s > 1; otherwise,
all machines are identical.

Assume that in schedule S∗
np(I) each slower machine of speed 1 is assigned a job.

Then the only machine that can supply the smallest ready multiplier equal to 1 is the
faster machine M1. This is, however, impossible since Algorithm QSumNP breaks
ties for the smallest current multiplier in favor of a machine with a smaller index.

To prove the lemma, we need only show that the speed s of machine M1 is at
most n.

Assume that s > n. Let s′ = n, and let I ′ be a good input obtained from I by
changing the speed of machine M1 to s′. We claim that in both schedules S∗

np(I) and
S∗
np(I

′) all jobs are assigned to the first machine. This last claim holds since the first n
multipliers generated on the first machine are no larger than 1, while all the multipliers
related to the other machines are no smaller than 1, and Algorithm QSumNP breaks
ties in favor of a machine of a smaller index. Considering the jobs in the order of
their completion, we get Ck(S

∗
np(I)) =

k
s and Ck(S

∗
np(I

′)) = k
s′ , 1 ≤ k ≤ n. Thus, the

ratio Φ
(
S∗
np(I)

)
/Φ
(
S∗
np(I

′)
)
between the costs of optimal nonpreemptive schedules

for instances I and I ′ is s′
s .

We show now that the ratio Φ
(
S∗
p(I)

)
/Φ
(
S∗
p(I

′)
)
between the costs of optimal

preemptive schedules for I and I ′ is at least s′
s . To show this, consider an optimal

preemptive schedule S∗
p(I). Multiply the speed of each machine by a factor of s′

s . In
the resulting schedule Sp, all completion times increase by a factor of s

s′ , compared to
the completion times in schedule S∗

p(I). Increase the speed of each machine, except
machine M1, which now has a speed of s′ = n, back to its original speed of 1,
as in I. We obtain instance I ′. Consider schedule Sp (I

′), in which the starting
times of parts of jobs on all machines are kept as in schedule Sp. Such a schedule is
feasible since in instance I ′ the speeds of machines M2, . . .Mm have been increased
from s′

s to 1. Thus, the cost of Sp (I
′) is at most s

s′ times the cost of S∗
p(I), i.e.,

Φ
(
S∗
p(I

′)
) ≤ Φ (Sp(I

′)) ≤ s
s′Φ

(
S∗
p(I)

)
, as required.

Observe that

Φ
(
S∗
np(I)

)
Φ
(
S∗
p(I)

) =
s′
s Φ
(
S∗
np(I

′)
)

Φ
(
S∗
p(I)

) ≤
s′
s Φ
(
S∗
np(I

′)
)

s′
s Φ
(
S∗
p(I

′)
) =

Φ
(
S∗
np(I

′)
)

Φ
(
S∗
p(I

′)
) ,

so that the cost ratio for instance I is no more than that for a good input I ′. This
concludes the proof.

In fact, for analyzing ρ, we may further tighten the conditions of a good input as
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POWER OF PREEMPTION FOR TOTAL COMPLETION TIME 117

shown below.

Lemma 7. Let I be a good input with n jobs and m ≤ n machines, and a fast
machine of speed s ∈ (1, n]. Then, there exists a good input I ′ with n jobs and n
machines, a fast machine of the same speed s, such that the cost ratio for I ′ is no less
than that for I.

Proof. If m = n in instance I, we are done. Thus, assumem < n. Add to I n−m
machines of speed 1 to obtain I ′ (with exactly n − 1 machines of speed 1). These
extra machines will not affect the cost of an optimal nonpreemptive schedule, since
Algorithm QSumNP assigns no job to any of them. This implies that Φ

(
S∗
np (I

′)
)
=

Φ
(
S∗
np (I)

)
. On the other hand, it follows that Φ

(
S∗
p (I)

) ≥ Φ
(
S∗
p (I

′)
)
, since it is

possible not to use the added machines in a preemptive schedule. Thus, I ′ is a good
input with m = n, and the cost ratio for I ′ is no less than that for the original instance
I.

To summarize the findings of this section, we present the following statement.

Theorem 1. For analyzing ρ, there is a tight sequence such that each instance
in the sequence is a good input with equal numbers of unit-sized jobs and machines,
and furthermore, the sequence of numbers of unit-sized jobs along the tight sequence
is monotonically increasing and tends to infinity.

Each instance I that is described in Theorem 1 can be represented by a pair (n, s),
where n is the number of unit-sized jobs and the number of processing machines, while
s, 1 ≤ s ≤ n, is the speed of the faster machine M1, with the other machines being of
speed 1.

5. The value of the power of preemption. Let I be an instance of a tight
sequence that satisfies the conditions of Theorem 1. For the optimal preemptive
schedule, the value of the objective function can be found as stated below.

Lemma 8. Let S∗
p be an optimal preemptive schedule for I. Then

(15) Φ
(
S∗
p

)
= s

(
s− 1

s

)n+1

+ n+ 1− s.

Proof. Applying Algorithm QSumP, we find an optimal schedule S∗
p in which

the jobs are completed on the fast machine M1 in accordance with the increasing
sequence C1

(
S∗
p

)
, C2

(
S∗
p

)
, . . . , Cn

(
S∗
p

)
. It is clear that C1

(
S∗
p

)
= 1/s, and for k,

1 ≤ k ≤ n−1, job Jk+1 is processed in the time interval
[
0, Ck

(
S∗
p

)]
on slow machines

(since there are sufficiently many machines to start it at time zero), starts on machine
M1 at time Ck

(
S∗
p

)
, and is processed there during

(
1− Ck

(
S∗
p

))
/s time units, i.e.,

(16) Ck+1

(
S∗
p

)
= Ck

(
S∗
p

)
+
(
1− Ck

(
S∗
p

))
/s, 1 ≤ k ≤ n− 1.

We use the recursive relation (16) to prove by induction that

(17) Ck

(
S∗
p

)
= 1−

(
s− 1

s

)k

, 1 ≤ k ≤ n.

It is clear that (17) holds for C1

(
S∗
p

)
= 1/s. Assume that it holds for all values

of k, 1 ≤ k ≤ q < n, and prove that it also holds for k = q + 1. Using (16) and (17)
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118 L. EPSTEIN, A. LEVIN, A. J. SOPER, AND V. A. STRUSEVICH

for k = q, we obtain

Cq+1

(
S∗
p

)
= Cq

(
S∗
p

)
+
(
1− Cq

(
S∗
p

))
/s =

1

s
+

(
s− 1

s

)
Cq

(
S∗
p

)
=

1

s
+

(
s− 1

s

)(
1−

(
s− 1

s

)q)

=
1

s
+
s− 1

s
−
(
s− 1

s

)(
s− 1

s

)q

= 1−
(
s− 1

s

)q+1

,

as required.
Then we derive

Φ
(
S∗
p

)
=

n∑
k=1

Ck

(
S∗
p

)
=

n∑
k=1

(
1−

(
s− 1

s

)k
)

= s

(
s− 1

s

)n+1

+ n+ 1− s,

which proves the lemma.

Now, we consider the value of the objective function of an optimal nonpreemptive
schedule for instance I.

Lemma 9. Let S∗
np be an optimal nonpreemptive schedule for the instance I. Then

(18) Φ
(
S∗
np

) ≤ n− s

2
+

1

2
,

and if s is integral, then Φ
(
S∗
np

)
= n− s

2 + 1
2 .

Proof. It is clear that Algorithm QSumNP assigns at least s− 1 jobs to machine
M1.

First, assume that the speed s of the fast machine is an integer. If Algorithm
QSumNP assigns exactly s − 1 jobs to machine M1, then there are no more jobs
left, since for the next job, if it existed, the multiplier on each machine would be
1, and that job would be assigned to M1 due to the tie-breaking rule. However,
the condition n = s − 1 contradicts the assumption s ≤ n. Thus, in schedule S∗

np,
Algorithm QSumNP assigns exactly s jobs to the fast machine M1, while each of the
remaining jobs is processed alone on a slow machine, which is always available.

The completion times of the jobs in schedule S∗
np are defined by

Ck

(
S∗
np

)
=
k

s
, 1 ≤ k ≤ s,

Ck

(
S∗
np

)
= 1, s+ 1 ≤ k ≤ n.

This implies that

Φ
(
S∗
np

)
=

n∑
k=1

Ck

(
S∗
np

)
=

s∑
k=1

k

s
+ (n− s) = n− 1

2
s+

1

2
,

i.e., for an integer s the claim holds.
If s is not integral, then Algorithm QSumNP assigns �s − 1� jobs to the fast

machine M1, while each of the remaining jobs is processed alone on a slow machine.
Denote s̄ = �s− 1�. The completion times of jobs are defined by

Ck

(
S∗
np

)
=
k

s
, 1 ≤ k ≤ s̄,

Ck

(
S∗
np

)
= 1, s̄+ 1 ≤ k ≤ n,
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POWER OF PREEMPTION FOR TOTAL COMPLETION TIME 119

so that

Φ
(
S∗
np

)
=

n∑
k=1

Ck

(
S∗
np

)
=
s̄ · (s̄+ 1)

2s
+ (n− s̄).

By s− 1 < s̄ < s, we have

0 >
1

2
(s− s̄− 1)

s− s̄

s
=
s̄ · (s̄+ 1)

2s
− s̄+

s

2
− 1

2
,

which implies that

Φ
(
S∗
np

)
=
s̄ · (s̄+ 1)

2s
+ (n− s̄) < n− s

2
+

1

2
,

which proves the lemma.

It follows from Lemmas 8 and 9 that for every good input I with n unit-sized
jobs and n machines, we have that

(19)
Φ
(
S∗
np(I)

)
Φ
(
S∗
p(I)

) ≤ sup
1≤s≤n

n− s
2 + 1

2

s
(
s−1
s

)n+1
+ n+ 1− s

.

For a positive integer n and a real s such that 1 ≤ s ≤ n, we let ψ(n, s) =
n− s

2+
1
2

s( s−1
s )n+1

+n+1−s
, and ψn = sup1≤s≤n ψ(n, s). Our next goal is to show that there is

a constant upper bound on the sequence {ψn}n. Here we show a bound of 4.

Lemma 10. For every positive integer n and real s such that 1 ≤ s ≤ n, we have
ψ(n, s) ≤ 4.

Proof. Since s ≤ n, we have n+1−s > 0, and as s
(
s−1
s

)n+1 ≥ 0, the denominator
of the definition of ψ(n, s) is positive.

First, assume that at least one of the inequalities n ≥ 7s/6 and s ≤ 7 holds. Since

s
(
s−1
s

)n+1 ≥ 0, it follows that ψ(n, s) =
n− s

2+
1
2

s( s−1
s )n+1

+n+1−s
≤ n− s

2+
1
2

n+1−s , and to prove

Lemma 10 it suffices to show that n− s/2 + 1/2 ≤ 4(n+ 1 − s), which is equivalent
to 7s ≤ 6n+ 7. If n ≥ 7s/6, then 7s ≤ 6n < 6n+ 7, while if s ≤ 7, then due to s ≤ n
we have 6s ≤ 6n, proving that 7s ≤ 6n+ 7 as required.

We are left with the case where s > 7 and n < 7s/6. We prove Lemma 10
by providing a lower bound on ( s−1

s )n+1. Since s−1
s < 1, we have that ( s−1

s )n+1

> ( s−1
s )7s/6+1. The function ( s−1

s )s−1 is monotonically nonincreasing, and lims→∞
( s−1

s )s−1 = 1
e ≈ 0.3678. Thus ( s−1

s )s−1 ≥ 0.367. Thus ( s−1
s )7(s−1)/6 ≥ 0.31, and us-

ing ( s−1
s )13/6 ≥ 0.7, which holds by s ≥ 7, we have ( s−1

s )7s/6+1 = ( s−1
s )7(s−1)/6+13/6 ≥

0.21 > 1/5. It is sufficient to show n−s/2+1/2
s/5+n+1−s ≤ 4, or alternatively, 27s ≤ 30n+ 35,

which holds as s ≤ n.

Now we are able to establish a tight bound on the power of preemption.

Theorem 2. Let μ0 ≈ 0.7959 . . . be the solution of 2e−
1
μ −μ+μe− 1

μ = 0. Define

R (μ0) =
1−μ0

2

μ0e
− 1

μ0 +1−μ0

≈ 1.39795 . . . . Then the inequality

ρ = sup
Φ
(
S∗
np

)
Φ
(
S∗
p

) ≤ R (μ0)
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120 L. EPSTEIN, A. LEVIN, A. J. SOPER, AND V. A. STRUSEVICH

holds, i.e., R (μ0) is an upper bound on the power of preemption, and moreover, this
bound is tight.

Proof. For an integer n, let cn = supI∈In

Φ(S∗
np(I))

Φ(S∗
p(I))

, where In is the set of inputs

consisting of n jobs. We have ρ = supn≥1 cn. Using Lemma 2, we also have ρ =
lim supn→∞ cn. We have shown in a sequence of lemmas that it is sufficient to consider
inputs with unit-size jobs, and moreover, for every n, it is sufficient to consider good
inputs with m machines (and n unit-sized jobs). That is, by Lemma 2, the supremum
for ρ is achieved by a tight sequence of good inputs, with equal numbers of jobs and
machines per input, where the number of unit-sized jobs, n, grows to infinity.

Since the worst-case for ρ is achieved by a tight sequence where the number of
unit-sized jobs, n, grows to infinity, consider such a sequence of instances. In a tight
sequence, an instance, which is a good input satisfying the properties in Theorem 1, is
characterized by a pair (n, s), where n is the number of jobs and machines, while s ≤ n
is the speed of the faster machine. Consider all pairs (n, s) along a tight sequence.
Since 1 ≤ s ≤ n, it follows that the sequence of values s

n is bounded. By Lemma 10,
the sequence of values ψn is also bounded. Thus, there is a subsequence of indices
(of n) such that for this subsequence both s

n and ψn are converging, and consider
the sequence of instances corresponding to this subsequence of values of n. Observe
that the instances related to this subsequence form a tight sequence as well, and the
number of jobs in these instances grows to infinity. Let μ be the limit of s

n when n
grows to infinity (along this subsequence).

Thus, we deduce

ρ = lim sup
n→∞

cn ≤ lim sup
n→∞

ψn

≤ sup
0≤μ≤1

lim
n→∞

n− μn
2 + 1

2

(μn)
(

μn−1
μn

)n+1

+ n+ 1− μn
= sup

0≤μ≤1

1− μ
2

μe−
1
μ − μ+ 1

.

The derivative of function

R (μ) =
1− μ

2

μe−
1
μ − μ+ 1

is equal to

2e−
1
μ − μ+ μe−

1
μ

2μ3e−
2
μ − 4μ3e−

1
μ + 4μ2e−

1
μ + 2μ3 − 4μ2 + 2μ

,

so that R (μ) reaches its maximum at a stationary point, which is the solution of the

equation 2e−
1
μ − μ + μe−

1
μ = 0. Numerically, such a solution μ0 is approximately

equal to 0.7959 . . . , which gives an upper bound R (μ0) on the power of preemption
approximately equal to 1.39795 . . . .

To see that R (μ0) is also a lower bound on the power of preemption, we can
exhibit a tight sequence such that instance I� is associated with a pair of integers
(n�, s�). Instance I� is a good input that contains n� unit-sized jobs and n� machines,
such that the speed of the fast machine is s�, 1 < s� ≤ n, while the speed of each
remaining machine is equal to 1. Moreover,

lim
�→∞

s� = +∞, lim
�→∞

n� = +∞, lim
�→∞

s�
n�

= μ0.
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POWER OF PREEMPTION FOR TOTAL COMPLETION TIME 121

For the corresponding sequence of instances the sequence of cost ratios converges
to R (μ0).

6. The power of preemption for two machines. The upper bound on the
power of preemption established in Theorem 2 is a global bound that holds for all
instances of the problem of minimizing the total completion time on uniformly related
machines. This power of preemption is achieved as a limit for instances with huge
numbers of jobs and machines. However, for a fixed number of machines a smaller
bound can be derived, as shown below for the case of m = 2.

Theorem 3. In the case of two machines,

Φ
(
S∗
np

)
Φ
(
S∗
p

) = ρ2 ≤ 6

5
,

and this bound is tight.

Proof. If for some instance I

Φ
(
S∗
np (I)

)
Φ
(
S∗
p (I)

) = ρ2,

then, as established in section 4, we may assume that I is a good input. Consider
such an input that consists of n unit-sized jobs. Assume that machine M1 has speed
s, 1 < s ≤ n, while the speed of machine M2 is 1. For a schedule S, let Ck (S) ,
1 ≤ k ≤ n, be a nondecreasing sequence of the completion times in S.

Recall that in an optimal nonpreemptive schedule, for a good input at least one
slow machine is not assigned any jobs. Thus, in our case, in schedule S∗

np (I) all jobs
are processed on the fast machine M1, so that

(20) Ck

(
S∗
np

)
=
k

s
, 1 ≤ k ≤ n.

Notice that since the jobs are unit-sized, Algorithm QSumNP associates the mul-
tiplier k

s with the job to be scheduled in the kth position on machineM1. In particular,
in order to assign the last job to machine M1, the current multiplier n

s on machine
M1 cannot be larger than 1, so we have n ≤ s. This, together with the condition

s ≤ n, implies that s = n in instance I. Therefore, since
∑n

k=1
k
s = n(n+1)

2s , it follows
from s = n that

(21) Φ
(
S∗
np

)
=
n+ 1

2
.

Recall that in any preemptive schedule, the makespan, i.e., the completion time
of the last job, cannot be smaller than the ratio of all processing times to the sum
of speeds, which holds by simple averaging; see (6). This implies (when applied for a
prefix of k jobs of the job sequence) that

Ck

(
S∗
p

) ≥ k

s+ 1
, 1 ≤ k ≤ n.

First, assume that n ≥ 5. Then due to s = n, the inequality

(22)
Ck

(
S∗
np

)
Ck

(
S∗
p

) ≤ s+ 1

s
=
n+ 1

n
≤ 6

5
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122 L. EPSTEIN, A. LEVIN, A. J. SOPER, AND V. A. STRUSEVICH

holds for each k, 1 ≤ k ≤ n, and the cost ratio is therefore no larger than 6
5 for n ≥ 5.

We now prove the upper bound for small values of n, 1 ≤ n ≤ 4. If n = 1,
then obviously Φ

(
S∗
p

)
= C1

(
S∗
p

)
= Φ

(
S∗
np

)
= C1

(
S∗
np

)
= 1/s. For each value of

n ∈ {2, 3, 4}, we compute and analyze the ratios

Fn =

∑n
k=1 Ck

(
S∗
np

)
∑n

k=1 Ck

(
S∗
p

)
and show that none of them exceeds 6

5 . By direct computation, we deduce that

C2

(
S∗
p

)
=

2

s
− 1

s2
, C3

(
S∗
p

)
=

3

s
− 2

s2
+

1

s3
, C4

(
S∗
p

)
=

4

s
− 3

s2
+

2

s3
− 1

s4
.

Thus, C1

(
S∗
p

)
+ C2

(
S∗
p

)
= 3

s − 1
s2 , C1

(
S∗
p

)
+ C2

(
S∗
p

)
+ C3

(
S∗
p

)
= 6

s − 3
s2 + 1

s3 , and

C1

(
S∗
p

)
+ C2

(
S∗
p

)
+ C3

(
S∗
p

)
+ C4

(
S∗
p

)
=

10

s
− 6

s2
+

3

s3
− 1

s4
.

Applying (21) and the above expressions with s = n, we obtain

F2 =
3
2

1
s2 (3s− 1)

=
3
2
5
4

=
6

5
,

F3 =
4
2

1
s3 (6s

2 − 3s+ 1)
=

2
1
27 (54− 9 + 1)

=
27

23
<

6

5
,

F4 =
5
2

1
s4 (10s

3 − 6s2 + 3s− 1)
=

5/2
1

256 (640− 96 + 12− 1)
=

128

111
<

6

5
,

as required.
To complete the proof, we show that 6

5 is a tight bound on the power of preemption
for m = 2. To see this, consider an instance with two unit-sized jobs and s = 2. We
have that C1

(
S∗
np

)
= C1

(
S∗
p

)
= 1/2, C2

(
S∗
np

)
= 1, and C2

(
S∗
p

)
= 3/4, so that

Φ
(
S∗
np

)
= 3/2 and Φ

(
S∗
p

)
= 5/4, leading to the cost ratio of Φ

(
S∗
np

)
/Φ
(
S∗
p

)
= 6

5 .
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