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1. Introduction 

Carbon fibre reinforced polymer composites with high strength, stiffness and 

load-bearing/weight ratio have a wide range of applications [1, 2], such as in 

commercial and military aircrafts. Primary load bearing aerospace composites are 

normally fabricated using traditional thermal curing technologies [3], in which the 

composite material is placed in an autoclave [4, 5], and the surrounding air is heated by 

electric wires which transfer the heat to the material. The main problems of the 

traditional technology are non-uniform temperature distribution, low curing efficiency, 

long process cycle, and high energy consumption and cost [6]. For aerospace 

applications, the most serious limitation is the inability of fabricating composite 

materials of large and variable thickness, because of serious defects and decrease of 

performance induced by temperature gradients [7, 8]. More recently, microwave curing 

technology has been considered as a very attractive alternative to autoclave curing for 

the fabrication of high performance aerospace composites [9, 10].  

Comparing to the conventional heating, the advantages of microwave heating 

include: (i) volumetric and selective heating, (ii) fast heating rates, (iii) quick start-up 

and stopping, (iv) reduction of curing time, (v) saving energy, (vi) higher level of safety 

and automation, and (vii) friendly to the environment [11]. During microwave curing, 

energy is supplied by an electromagnetic field directly to the composite material. This 

results in rapid heating throughout the material thickness with uniform temperature 

distribution, reduced energy consumption and cost [12]. Meanwhile, the composite 

performance is improved [13]. Composites cured by microwave had better impact 

strength [14] and stiffness [15] than that of traditional thermal cured ones. The carbon 

fibre in composite can effectively absorb microwave, and the interface strength of 
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composite was highly improved [16]. It was reported that carbon fibre screens have 

strong absorption of microwave in broadband frequency [17]. In addition, the 

microwave curing process provided higher joint strength [18], decreased the stresses 

deformation and total curing time of composite materials [19]. 

However, in the current microwave curing methods [20], the process parameters of 

traditional thermal heating (the manufacturer’s recommended cure cycles) have been 

adopted without modifications and thorough validation, such as heating rate, dwell 

temperature and curing time. As known, the microwave can accelerate the curing rate of 

polymer resins at a frequency of 2.45 GHz [21], but the reaction process of resin is the 

same with thermal curing [22]. To take full advantage of the microwave curing, a more 

applicable method should be developed based on its unique heat transfer and curing 

mechanisms to improve the composite quality, especially in the reduction of residual 

stresses. 

This paper introduces a cyclic heating and cooling process for microwave curing of 

carbon fibre reinforced composites. For conventional autoclave curing, only one cooling 

down during heating process can be achieved, because of the large temperature 

hysteresis induced by low efficiency heat transfer. And the cure-induced stresses of 

composites can be just slightly reduced [23]. While the use of microwave has make it 

possible to cyclic heat and cool composite in a fast rate. The effects on residual stresses, 

curing cycle and energy consumption of current microwave curing process, microwave 

curing with one cooling down and traditional thermal curing process are compared and 

analyzed. The microwave curing equipment is developed to satisfy the aim of this work. 

Mechanical strength of different curing processes manufactured composite samples are 

measured and analyzed.  
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2. Theories used in the new microwave curing technology 

2.1 Microwave heat conduction mechanism 

During traditional thermal curing of carbon fibre composite, heat is conducted via 

the surrounding air to the surface of the composite in an autoclave, then to the inside of 

the material. In comparison, during microwave curing, only high absorption materials 

such as carbon fibres are heated [19]. The heat is conducted from carbon fibre to resin, 

which results in cross-linking reaction of resin, as shown in Fig.1 (a). The composite is 

typically composed of over 60% volume fraction of carbon fibres. Because the 

composite is heated directly by microwave, the temperatures of surrounding air and tool 

material remain relatively low during microwave heating (Fig.1 (b)). 

The fast heating rate of composite by microwave leads to strong heat radiation and 

convection between part, tool and environment. Considering the balance of heat transfer, 

the microwave heating conduction of composite part can be expressed as [11]: 

2 2 2

2 2 2p p x y z p E r R

T T T T
C k k k Q Q

t x y z
  

   
      

   
                       (1) 

Where T  is curing temperature, t  is curing time, p  and r  are density of 

composite and resin respectively, pC  is the specific heat capacity of composite, xk , 

yk and zk are the composite coefficients of heat conduction at x, y and z directions. RQ  

is the heat generation rate density of curing reaction, and EQ  is the density of the heat 

generation rate of composite and has the relationship with microwave frequency, the 

intensity of electric field around composite and the dielectric loss tangent of material 

[24]. 

The heat of composite transfer to tool in the x, y and z directions and no heat flow 

in the symmetrical plane of the composite. In the boundaries of composite and tool, the 
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convective cooling and surface-to-ambient radiation should also be considered. The 

above equations are the basis for determining the parameters in the proposed new 

microwave curing process control method.  

 

2.2 Residual stress induced during microwave curing 

Because of the complex variation of viscoelastic properties of composites, the 

semi-empirical theory was developed to express the stresses induced during microwave 

curing. Due to the selective heating of microwave, the significant temperature 

difference between fibre/resin and composite/tool should be considered. Assuming there 

are interfaces among fibre/resin and composite/tool, respectively, as illustrated in Fig.2 

(a). During heating and cooling, the interfaces suffer stresses caused by the mismatch of 

the Coefficients of Thermal Expansion (CTE) of different materials, as shown in Fig.2 

(b). The shear stresses of these interfaces are employed to express the stresses variation 

during heating and cooling process. The assumption of no sliding on the interface and 

uniform stress distribution in the thickness (large length to thickness ratio) were adopted. 

Thus, the strain loads of heating and cooling process induced by thermal expansion and 

shrinkage were related with the temperature variation, CTE of fibre/tool and modulus of 

resin/composite. Considering the viscoelastic properties of composites during curing, 

the viscoelastic stresses are introduced. The induced stresses caused by the fibre/resin 

and composite/tool interactions can be expressed as below: 

( )f

fiber reisn f f rT E                                                 (2) 

( )t

composite tool t t pT E                                                (3) 

Where f  and t  are the CTEs of carbon fibre and tool. fE  and tE  are the 
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modulus of carbon fibre and tool, respectively.   ( )r   and   ( )p   represent the 

viscoelastic stresses of the resin and composite related with time, respectively. fT  

and tT are the temperature difference of fibre and tool in a time period. At the 

beginning of curing, the resin is sol liquid with an infinity value of loss modulus. As the 

temperature rises, it starts to gel, and the phase changes from sol-gelled rubber state to 

totally cured gelled glass state. Before the gelation of resin, the accumulated stresses in 

fibre-resin and composite-tool can be relaxed. However, after gelation, the resin starts to 

store stresses due to the viscoelastic properties of sol-gelled rubber phase [25]. 

Meanwhile, under the constraint by the outer vacuum pressure and tool friction, the 

elastic deformation of composite cannot be released instantaneously. Thus there is 

delayed elastic response to elastic deformation. The hysteresis of elastic deformation 

leads to the stress accumulation of composite during the continuous curing process. 

Because of the chemical reaction of resin, the stress will be ‘locked’ in the composite 

until curing completed and resulting in warpage of the composite.  

To release the ‘locked’ stress, a cyclic heating and cooling method is proposed and 

shown in Fig.3. ( )g t  is defined as the temperature variation of composite under the 

cyclic heating-cooling process ( ( )P t , ( )A t  and ( )t  denote the average 

temperatures, amplitude and variation frequency respectively). Compare with the 

traditional autoclave curing methods, the curing temperature in the reaction process 

remain invariable (dwell stage), or only one cooling down and re-heating can be achieve 

[23]. While in the case of traditional autoclave curing methods, it is impractical to 

realize the cyclic heating and cooling process due to the high temperature of 

surrounding air and tool which gives rise to a bad control ability of composite 

temperature. According to Eq.1, the strong heat dissipation of composite can lead to fast 
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cooling down rate. Meanwhile, the volumetric heating of microwave provided fast 

heating rate of composite. Through cyclic heating and cooling, the stress ‘locked’ in the 

previous stage (e.g., heating in Fig.2 (b)) will be reduced in the next stage (e.g., cooling 

in Fig.2 (b)) by the almost same value but opposite direction stresses. Base on the 

Maxwell viscoelastic mode, the relationship between stresses and strains can be 

expressed as: 

( ) ( )t E t                                                        (4) 

According to the Bolzmann superposition principle, the integral representation of 

( )t  and ( )t  is shown below: 

0

( )
( ) ( , )

t d
t E t d

d

 
   


                                           (5) 

Where, ( , )E t   is the relaxation modulus related to the degree of curing and 

curing time. According to the basic viscoelastic mechanics theory, the relaxation 

modulus can convert to exponential function: 

( , ) ( )exp( )
( )

t
E t E a


 

 


                                           (6) 

Where, ( )   is the relaxation time, which related with the degree of curing. 

( )
( )

( )E

 
 


                                                       (7) 

The heating or cooling process is the same as applying strain with constant rate on 

the material. 

( )t t                                                            (8) 

Thus, the above Eq. (5) can be written as:  
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For the fibre and resin interaction stresses, the fibre shrinkage/expansion during 

heating/cooling process can be considered as applying loads on the resin matrix. The 

fibre has nearly constant modulus as the variation of curing temperature, but the 

elasticity modulus of resin changes with the curing state. The relationship between 

modulus and degree of curing can be expressed as follows [26]: 

0

0 0

( ) 0

( ) ( )

r gel

r gel

E E

E E E E

  

   

  

   
                                    (10) 

Where, 
0E  is the elasticity modulus of resin at the initial state, E

 is the 

modulus of fully cured resin. Because of the resin is liquid at the room temperature, the 

initial elasticity modulus of resin is approximately equal to zero ( 0 0E  ), before the 

gelation point. gel  is the degree of curing of resin at the gelation point. On account of 

the time temperature equivalence principle, raising the temperature and increasing the 

time has the same influence on the viscoelastic properties of resin. The viscoelastic 

parameters at different temperature of resin can be transferred by the shift factor Ta . 

According to the free volume theory and WLF (Williams-Landel-Ferry) equation, the 

shift factor is calculated as follows: 

1

2

( )
lg

( )

g

T

g

C T T
a

C T T

 


 
                                                 (11) 
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Where, 1C  and 2C  are the constants related with resin. For the reference 

temperature of resin ( gT , glass-transition temperature), the 1C  and 2C  have value of 

17.4 and 51.6 respectively [27]. Under a certain heating rate (T qt ), the relationship 

between shift factor and relaxation time is: 

1
( )

( )
r

T

t
qt




                                                      (12) 

With regard to the tool-part interaction during curing, the mechanical properties of 

tool remain constant, but the composite material exhibits obvious viscoelastic 

characteristic. The relaxation modulus of carbon fibre reinforced composite materials is 

related to its dynamic thermal mechanical properties, the relaxation modulus is 

determined from: 

' 2 2

2 2

( )(1 ( ))
( )

( )

p p

p

p

E t t
E t

t

 

 


                                             (13) 

Where, ( )pE t  and 
' ( )pE t  are the relaxation modulus and storage modulus of 

composite material, respectively.   is the testing frequency of dynamic thermal 

mechanical analyzing of composite. Also, the relaxation time ( )p t  of Maxwell model 

can be expressed as: 

''

'

( )1
( )

tan ( ) ( )

p

p

p p

E t
t

t E t


 
                                              (14) 

Here, tan ( )p t  is the loss tangent of composite, 
'' ( )pE t  is the loss modulus of 

composite. Base on the above analysis, the temperature variation value of one heating or 

cooling down process can be calculated by considering the accumulation and release of 

thermal stresses in the cyclic process. 

As shown in Fig.3, if the first cooling down at the gelation point is to reduce the 
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curing reaction rate to nearly zero, the point at 0t  time is considered as the start point 

of the cyclic heating-cooling and the cure-induced stresses is also nearly zero. The 

temperature should be raised to cure the composite, but this process will induce thermal 

stresses from the CTE mismatch of fibre/resin and tool/part. The heating time 1 0t t  

and temperature at this point is the initial values of stresses calculation. After the 

heating process, the cooling down is implemented to reduce the thermal stresses 

accumulated in 1 0t t  time period. For fibre/resin and tool/part interaction stresses, the 

applied strains on the resin and composite are: 

1 01= f

t t

f

fu T  , 
1 01= t

t t

t

tu T                                              (15) 

Here, 1

f

u  is the strain of fibre applied on the resin, and 1

t

u  is the strain of tool 

applied on the composite part. From 0t  to 1t  time period, the stresses of fibre/resin 

and tool/part at the heating process are analyzed separately, as shown below. The 

stresses accumulate from 1t  to 2t  can be determined by using the same equations.  

11 0

01 0

1

1 0

0

1

1 0 1 0

0

1

sin ( )

( ) 1 exp( ))
( )

( ) 1 exp( ))
( )

( ) (

( ) (

t t

t t

t t t t

f

tt t f

fibre re f f r t

t

f

f f r

r t

t

f f

f f f r

r

u r

t

r

T E t

t
T E t

t

t
T E T t

t

E

E

  

 


 

  








 



   

    

    

 
 
 

 
 
 

                   (16) 

1
1 0

1 0
0

1

1 0

0

1

1 0 1 0

0

1

( )

( )exp( )
( )

( ) 1 exp

( )

= ( ) ( ))(
( )

t
t t t

tool part t t t t p
t

t

t

t t t t p

p
t

t

t t

t t t t t t

t

u

t p

p
t

p

p

T E t

t
T E t

t
E t

t
T E T t

t
E t



  


 



  




 



 

 
 

  


   



  

 
 
 

  





                   (17) 

 



11 
 

2.3. Microwave curing kinetics  

For the purpose of controlling the curing process and ensuring the complete curing 

of composites, the microwave curing kinetics of composite should be studied. As 

microwave heating does not change the structures of the cured products [28], the 

methods for analyzing the kinetics of the traditional thermal heating are still applicable. 

The degree of curing composite is denoted as  , which is the ratio of the extent of 

exothermic reaction at certain curing temperature. According to the Arrhenius law [29], 

the microwave curing kinetics of reaction is expressed as: 

exp( )( )(1 )m n

ad dt K E RT B     
                              (18)                                  

Where, K is the frequency factor, aE is the activation energy, R is the universal 

gas constant, B is a temperature independent parameter, m and n are the orders of the 

autocatalytic and non-catalyzed polymerization reactions, respectively. For microwave 

curing kinetics, the activation energy aE is lower than the conventional thermal curing. 

Thus higher curing reaction rate in a microwave process can be expected [30]. At the 

beginning of curing, the reaction rate is very low. After the curing temperature reaches a 

certain level, the reaction rate accelerates quickly to arrive the gelation point. Gelation 

is a sudden and irreversible transformation of resin from a viscous liquid to an elastic 

gel glass. The cyclic heating-cooling process leads to the variation of curing rate. The 

curing reaction rate at the heating stage is the fastest, and is the lowest in the cooling 

stage. 

 

3. New process control method for microwave curing 

Instead of commonly using the manufacturer’s recommended cure cycles of 
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traditional thermal process in the current microwave curing technologies, the proposed 

new method is based on the cyclic heating-cooling process as illustrated in Fig.4, which 

reduces the cure-induced stress through the alternating stress reduction of repeating 

heating and cooling during the curing process. For example, the stresses ‘locked’ in the 

heating stage will be calculated based on the semi-empirical equations of Eq. 16 and Eq. 

17. Then, the calculated stresses can be devoted to calculate the temperature variation at 

next cooling stage, which can reduce the accumulated stresses. It is noted that at the 

cooling stage, the degree of curing and viscoelastic properties of composite are already 

changed. Thus, the cooling down process will not be the same with the heating stage. 

In current microwave curing methods, there is slightly temperature fluctuation in 

the dwell stage. Because of the heat strongly dissipates from composite to surrounding 

environment and leads to difficulties of temperature control. However, the new 

microwave curing method actively controls the fluctuation of temperature during the 

‘dwell’ stage in order to reduce cure-induced stresses. Traditional autoclave curing with 

quick heating rate normally results in uneven temperature distribution in the composite 

[31]. In comparison, the fast heating rate of microwave curing can maintain a more even 

temperature distribution across the composite and the tool, and can reduce residual 

stress [19]. The results of the experiment carried out in this project indicated that fast 

cooling rates using the new microwave curing method can further reduce the induced 

stress. Therefore, heating rate rH  and cooling rate rC  should be controlled within 

the maximum heating and cooling capability of the microwave curing equipment. The 

long dwell period in current microwave curing methods can be reduced, as there is no 

need for stress relaxation by long dwell time in the new cyclic heating-cooling method. 

The dwell temperature and time parameters change with time, and can be expressed as: 
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1.0r heating tH t D t  
                                             (19)                                                                    

char( ) ( ) 2P t A t T 
                                                (20)                                                                           

Eq.19 means that the degree of curing should arrive nearly 1.0 before the final 

cooling process at least. Eq.20 means that the maximum heating temperature cannot 

exceed the char temperature of resin ( charT ). In order to improve the quality of composite, 

the excessive resin in the prepreg will be extruded at the lowest viscosity where the 

holding time is tR . Fig.4 shows the whole microwave curing cycle with technical 

parameters using the new cyclic heating-cooling method for composites that meet the 

requirements of aerospace applications.  

After the first (Heating) stage and when the resin reaction rate reaches the highest 

values, temperature pT  at that point should be ‘maintained’ (but with controlled cyclic 

variation) to allow resin extrusion for improving the compaction degree until the 

gelation point. The controlled temperature variation before the gelation point aims to 

release the stresses accumulated during heating stage, and to control the cross-linking 

reaction rate. To ensure nearly no new stresses are induced, the temperature should be 

reduced, from the gelation point to the temperature ( / 0d dtT   ) at which the resin reaction 

rate is nearly zero. The next heating stage is to rekindle the curing reaction, and the 

following cooling stage will reduce the stresses accumulated during the preceding 

heating stage. The cyclic heating-cooling process continues until the composite totally 

cured. Since the thickness of the composite is far smaller than the other two dimensions, 

the stress imposed by the tool along the thickness direction of composite is ignored. As 

shown in Fig.4, the temperature profile accordingly changed as exponential, because of 

the exponentially variation of the loss tangent and curing degree of composite.  
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4. Materials and experiment methods 

Carbon fibre reinforced bismaleimide composite samples of 200mm×200mm× 

2.3mm size were fabricated by ply 18 plies of T700/QY9611 (carbon fibre T700 

reinforced bismaleimide resin QY9611) unidirectional prepreg with the matrix volume 

fraction of 35.7%. This kind of prepreg has high usage temperature and strength, usually 

applied in primary load bearing composites in aircrafts. The ply sequence is 

[02/-45/0/45/0/90/04/90/0/45/0/-45/02] and generally used in parts bearing tensile loads. 

For comparison, the composite samples were fabricated using the traditional thermal 

curing, the current microwave curing, the microwave curing with one cooling down and 

the proposed new microwave curing technology respectively. Each curing technologies 

tested three different samples respectively and the statistical results were analyzed. 

Experiment of the new method is shown in Fig.5 (a). Three Fibre Bragg Grating 

(FBG) sensors are embedded in the middle of the sample to measure the strains during 

curing (note: strain can be converted to residual stress) [32, 33]. The aluminium foil is 

stuck on the edge of the prepreg to avoid arcing of carbon fibre, and a capillary tube is 

applied to compensate the temperature change according to the reading of the FBG 

sensor as shown in Fig.5 (b). The air tube is connected to the compressed air bag to 

control the cooling rate. The advanced microwave curing system (octagon chamber, 

2.45GHz, 20 kW power, 16 microwave sources and antennas of waveguide slots) were 

designed and manufactured by the authors. The Labview-PCI data acquisition (two 

PCI-1727U card) was developed to separately control each microwave sources, which 

can provide uniform temperature distribution of composite during curing process. Two 

optical fiber fluorescent sensors are placed on the surface of a vacuum bag to measure 

the microwave curing temperature. The dynamical thermal mechanical properties of 
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four composite samples were measured by using DMA 242 E (NETZSCH). The 

mechanical strength of composite samples were measured by using MTS C45 electronic 

universal testing machine. The ZEISS EVO18 scanning electron microscope was 

applied to observe the fracture surface of tested samples (surface gold plating).  

One of the tested sample’s dynamic mechanical analyzing (DMA) result is shown 

in Fig 6. The storage modulus (
'E ) of composite changes from 7GPa to 30GPa and 

decreases after the char temperature. The loss modulus (
''E ) represents the viscoelastic 

properties of composite and quickly goes down after heating process. At the gelation 

point, the loss modulus occurs a peak at about 240 oC, and the corresponding degree of 

curing is about 0.78. For the new curing process, the first heating stage is aiming at 

increasing the degree of curing of composite (after gelation point, as shown in Fig. 4) 

and the temperature should not be too high to cause the over-reaction of resin. As a 

result, the boundary conditions of the above equations can be expressed as:  

0 0t  , 
1 16mint  , 

1 0
90f o

t tT C  , 
1 0

40t o

t tT C                            (21) 

Here, 
1 0

f

t tT   and 
1 0

t

t tT   are calculated by the thermal heat conduction equation 

and verified by the experiment. The experiment frequency of dynamic mechanical 

analyze is 2  , heating rate is 5.5 oC/min ( 130 5.5oT C t  ). The properties of 

materials provided by the material suppliers are shown in Table 1. According to the 

results calculated by Eq. 16 and Eq. 17, the T  of the following equations from 1t  to 

2t  time period can be determined. The equation of storage and loss modulus of 

composite were acquired by fitting the experimental data: 
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 3 2 6

'
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              (22) 

-3 -6 20.58 3 10 1.2 10 20 175

tan ( ) 0.15
175 325

1 exp(20 0.08 )

o o

p o o

T T C T C

T
C T C

T
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

 
   

              (23) 

Based on the semi-empirical equations of Eq. 16 and Eq. 17, the calculation results 

of cure-induced stresses at the heating stage can be divided as elastic portion (stresses 

from fibre and tool) and viscoelastic portion (stresses from resin and composite). The 

fibre/resin interaction stress should be considered more than tool/part interaction stress, 

because of high percentage of the fibre/resin CTE mismatch influence on composite’s 

deformation. For the elastic stresses reduction, the temperature cooling down is better to 

be the same as heating stage. However, the viscoelastic stresses from resin and 

composite raised exponentially, so the temperature profile accordingly changed as 

exponential variation. The calculation results are shown in Fig.8, and degree of curing 

of composite is also calculated based on the equation of composite curing kinetics of 

reaction (parameters are measured in [34]) during the cyclic heating-cooling process. 

 

5. Discussion of Results 

The samples for traditional thermal curing were heated in an autoclave with the 

same vacuum pressure and conditions of microwave curing. The autoclave heating 

process followed the manufacturer’s recommended cure (MRC) cycle. The samples for 

current microwave curing were heated using parameters basically the same as 

traditional thermal curing, except that the dwell time at 200°C was cut down, because of 

the fast microwave curing rate. The comparison of measured curing temperature curve 
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of a set of the experimental samples can be seen in Fig.7. The new microwave curing 

process and degree of curing of composite are shown in Fig.8, the fluctuation of curing 

degree at 185°C is ignored. The microwave curing process with one cooling down at the 

gelation point has been tested to verify the effectiveness of the new microwave curing. 

It is clear that the new microwave curing method reduced the total curing time to 45% 

of the traditional autoclave curing. In order to verify the reliability of the results, three 

samples of each curing technologies were tested respectively and the statistical results 

are shown in Fig. 9 and Fig. 10. The measured strains with standard deviations 

corresponding to the temperature of different curing process are shown in Fig.9. In Fig. 

10, the residual stress converted from the residual strain and modulus of totally cured 

composite (200GPa) are compared with standard deviations.  

As shown in Fig. 9, the demould strains of the displayed set of samples were 

measured when they were demoulded from the tool and marked with solid dots in the 

figure. Then, the statistical residual strains were obtained after 12 hours of demoulding 

(placed at room temperature with no constraint) and marked in 1320 minute in Fig. 9. 

The measured stress of the sample cured by the new microwave curing technology is 

positive (tensile), whilst the stresses of the samples cured by the traditional thermal, 

current microwave curing and microwave curing with one cooling down are negative 

(compressive), as shown in Fig. 10. The compressive stresses of the samples cured by 

traditional thermal and current microwave methods increased after 12 hours, and this is 

caused by the imposed stresses of tool. However, for the sample cured by the new 

method, the tensile stress is further reduced since the compressive stresses of tool are 

released after 12 hours. The results shown in Fig. 10 of four different curing processes 

exhibit that the maximum warpage of the new microwave curing technology is smaller 
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than other curing process. This interesting results indicate that the microwave curing 

with one cooling down has lower strain but higher warpage than current microwave 

curing. The reason may be due to the tool-part interaction. 

As shown in Table 2, the mechanical strength of three different curing processes 

are measured according to American Society for Testing Material (ASTM) standards. 

The tensile strength of the new microwave cured samples are lower than the current 

microwave and autoclave cured ones. The flexural strength and tensile modulus of 

microwave cured samples are higher than the autoclave cured ones. In order to 

analyzing the reasons, the SEM micrographs of samples cured by different process 

showing the fracture surface after tensile and three-point flexural test are illustrated in 

Fig.11. For the tensile strength, the fracture surface of tensile test samples have different 

amount of residue resin. The new and current microwave process cured sample have 

more residue resin on the surface of fibres. The autoclave cured sample has a relatively 

clean fibre fracture section. This indicate that the microwave cured composites have 

stronger interfacial bonding than the autoclave cured one. However, the microwave 

cured composite showed lower tensile strength than the autoclave specimens may due to 

greater void content [35]. The main reason is that the fast reaction rate of microwave 

leads to the impurities can hardly be extruded from resin.  

The tensile modulus mainly depends on the toughness of resin matrix, and the 

microwave cured resin has higher tensile modulus than autoclave cured one [36]. As the 

cyclic microwave heating and cooling process, the curing reaction also occurs cyclic 

acceleration and deceleration phenomenon. This can affect the curing of resin and 

reduce the influence of microwave on resin reaction in the cooling down stage, lead to 

lower tensile modulus of composite. Fig. 11(b), (d) and (f) exhibit the breakage section 



19 
 

after flexural test of new microwave process, current microwave process and autoclave 

cured samples, respectively. The microwave cured samples have more resin on the 

carbon fibres compare with the autoclave cured samples. More clean fibres and smooth 

grooves of resin can be founded on the breakage section of autoclave cured samples. It 

is known that the flexural strength of composites are determined by the interfacial 

strength between fibre and resin [37]. The previous research exhibited that microwave 

curing process can effectively improve the interfacial strength between carbon fibre and 

matrix resin [20, 38]. The reason is that the chemical mechanism of the fiber/matrix 

interface is essentially identical for microwave and thermal curing, but the selective 

heating of microwave leads to the prioritized heating of carbon fibre and can 

significantly increase the interfacial strength. However, for the new microwave process, 

the amount of heat conduct from fibre to resin during the cooling stage decreased. 

Therefore, the new cyclic heating and cooling curing process can effectively release the 

cure-induced stresses of composite, but may reduce the interfacial strength of fibre and 

resin compared with the traditional microwave curing process.  

The tensile strength above 1200 MPa can satisfy the requirements of aircrafts. 

However, the engineers desire to obtain high flexural strength and appropriate tensile 

modulus (from 150GPa to 170GPa) to cover the shortage of composite parts. Thus, the 

new microwave curing process has enormous potential in aerospace applications. 

Through recording the electrical power of the three experiments, the energy 

consumption results are: for the same volume of curing chamber (2000L), the energy 

consumption is 52 kWh for the new microwave curing, 105 kWh for current microwave 

curing, and 1800 kWh for autoclave (1m diameter and 2m length) curing respectively. 

This means that the energy consumption of the new microwave curing technology is 
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only 3% of the traditional autoclave curing, and 50% of current microwave curing. 

 

6. Conclusion 

This paper presented a new microwave curing technology based on a cyclic 

heating-cooling process control method by considering the unique characteristics of 

microwave heating. The experimental results demonstrated that: (i) cure-induced 

residual strains and warpage of composites can be significantly reduced by the new 

microwave curing process; (ii) total curing time can be reduced to 45% of traditional 

thermal curing and 56% of current microwave curing technologies and (iii) energy 

consumption can be reduced to 3% of autoclave curing and 50% of current microwave 

curing. The flexural strength and tensile modulus of samples cured by the new 

microwave curing process are higher than the autoclave cured ones, and the differences 

were analyzed by using SEM micrographs. Preliminary industrial validation has been 

carried out for primary load bearing aerospace composites. Further work is to develop 

recommendations and guidelines for using the new method and select technical 

parameters. 
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Artwork and Tables with Captions 

Fig.1. (a) Heat conduction between carbon fibre and resin; (b) Heat conduction between 

the composite and surrounding air and tool. 

Fig.2. (a) Assumed Interfaces between fibre-resin and composite-tool; (b) Changes in 

stress direction during heating and cooling. 

Fig.3. The proposed new cyclic heating and cooling method. 

Fig.4. The designed new microwave curing method of composites. 

Fig.5. (a) Sample preparation with FBG sensors; (b) Microwave curing in an octagon 

microwave chamber. 

Fig.6. Dynamic thermal mechanical analyzing results and degree of curing of composite 

sample. 

Fig.7. The comparison of measured temperature variations of four curing technologies.  

Fig.8. Zoomed portion of the curve in Fig.7 for the new microwave curing process 

showing parameters. 

Fig.9. The measured strains of samples cured by four process technologies. 

Fig.10. Comparison of residual stresses and maximum warpage of different curing 

technologies. 

Fig.11. SEM micrographs of samples cured by different process showing the fracture 

surface after tensile and three-point flexural test. (a) and (b) tensile and flexural test 

samples cured by new microwave process; (c) and (d) tensile and flexural test samples 

cured by current microwave process; (e) and (f) tensile and flexural test samples cured 

by autoclave. 

Table 1. Mechanical properties of composite material and tool. 

Table 2. Mechanical strength of three different curing processes. 

 

 


