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Green Fluorescent Protein: is seeing believing and is that enough? 

Abstract:  

Intracellular compartmentalisation is a significant barrier to the successful nucleocytosolic delivery of biologics. 

The endocytic system has been shown to be responsible for compartmentalisation, providing an entry point, and 

trigger(s) for the activation of drug delivery systems. Consequently, many of the technologies used to understand 

endocytosis have found utility within the field of drug delivery. The use of fluorescent proteins as markers 

denoting compartmentalisation within the endocytic system has become commonplace. Several of the limitations 

associated with the use of green fluorescent protein (GFP) within the context of drug delivery have been 

explored here by asking a series of related questions: (1) Are molecules that regulate fusion to a specific 

compartment (i.e. Rab- or SNARE-GFP fusions) a good choice of marker for that compartment? (2) How 

reliable was GFP-marker overexpression when used to define a given endocytic compartment?  (3) Can 

glutathione-s-transferase (GST) fused in frame with GFP (GST-GFP) act as a fluid phase endocytic probe? (4) 

Was GFP fluorescence a robust indicator of (GFP) protein integrity? This study concluded that there are many 

appropriate and useful applications for GFP; however, thought and an understanding of the biological and 

physicochemical character of these markers are required for the generation of meaningful data. 
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Introduction.  

The scientific method requires the iterative gathering and interpretation of 

evidence used to test a hypothesis (Wagensberg, 2014). The careful design of 

experiments helps mitigate the possibility of the misinterpretation of data and is, 

consequently, something deserving of a great deal of attention. Reliable interpretation 

requires an understanding of the tools used during an empirical investigation, and this 

paper seeks to further characterise some of the uses (and missuses) of Green Fluorescent 

Protein (GFP), a tool that has had a profound impact upon the world of cell biology, 

within the context of drug delivery and gene therapy (Wahlfors et al., 2001). 

GFP and its fluorescent variants (Wachter, 2006) have been widely used since the 

discovery that a mutation of residue 65 (from serine to threonine), dramatically improved its 

spectral properties (Heim et al., 1995). GFP is commonly used as a protein “tag” that has 

been readily visualised in fixed or live cells either directly, using its intrinsic fluorescence i.e. 

“Brainbow” technology (Weissman and Pan, 2015), or indirectly using antibodies which have 

been identified via a secondary antibody conjugated to a fluorophore, radioisotope or enzyme 

(Nakamura et al., 2008). Here a further investigation into the usefulness of GFP within the 

context of drug delivery has been undertaken. Four questions pertinent to the use of GFP 

within various experimental situations have been posed: (1) Are molecules that regulate 

fusion to a specific compartment (i.e. Rab- or SNARE- GFP fusion proteins) a good choice of 

marker for that compartment (compartments described in figure 1)? (2) How reliable were 

GFP-marker overexpression experiments when used to define a given endocytic 

compartment?  (3) Can GST-GFP act as a fluid phase endocytic probe? (4) Was GFP 

fluorescence a robust indicator of (GFP) protein integrity?   
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Materials and Methods.  

Equipment: The orbital shaker, French Press, centrifuges (RC6 Plus) and microtiter plate 

reader (Microplate Photometer Multiskan FC) were from ThermoFischer, (Loughbourgh, 

UK). The mini-PROTEAN tetra cell, minitrans-blot, electrophoretic transfer cell and power 

supplies were from BioRad (Hemel Hempstead, UK). Fluorescence spectra were measured 

using a Fluoromax- 4 spectrofluorometer (Horiba Scientific, Middlesex, UK). Microscopic 

images were obtained using either: an Eclipse 90i microscope (Nikon UK Ltd., Surrey, UK) 

fitted with an Apo60 objective and a DS-Qi1Mc camera or an inverted Zeiss LSM880 fitted 

with a plan apochromat 63x (numerical aperture 1.40) oil emersion objective, (Carl Zeiss 

Ltd., Cambridge, UK) both with dedicated software. GST-GFP production and enrichment: 

The production and enrichment of glutathione-s-transferase (GST) fused in frame with GFP 

(GFP-GST) has been previously described (Pettit et al., 2014). In brief Escherichia coli 

MC1061 were transformed with pGFP-GST [GenBank JN232535.1] and were cultured in 

10mL of 2xYT (containing 25 µg/mL ampicillin) overnight at 37 oC shaking at 200 RPM. 

This culture was used to inoculate 1000 mL of 2xYT (containing 25 µg/mL ampicillin), 

which was left to incubate for 4 hours at 37 oC shaking at 200 rpm prior to the addition of 

IPTG to a final concentration of 1 mM. After an additional 4 h incubation, the bacteria were 

sedimented by centrifugation (6 000 xG for 10 min., at 4 oC). The bacterial pellet was 

suspended in 10 mL of PBS containing 10x EDTA free COmpleteTM protease inhibitor 

cocktail (Roche, Burgess Hill, UK). The bacterial suspension was then subject to lysis using a 

French Press set to 1500 psi to avoid the possibility of recombinant protein conformational 

relaxation (associated with detergent lysis). Sodium azide (final concentration of 0.02 % 

(w/v)) was then added to the preparation as a bacteriostatic. The GST-GFP protein was then 

enriched by affinity chromatography using glutathione-conjugated Sepharose 4b (GE 

Healthcare, Bucks, UK), in accordance with the manufacturer’s instructions and characterised 
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using gel electrophoresis, Coomassie staining and Western immunoblotting.  Spectroscopic 

and fluorescence analysis of GST-GFP. Previously spectrophotometric characterisation of 

GST-GFP determined that a wavelength of 484 nm was optimal for GFP excitation and was 

in agreement with the literature (Pettit et al., 2014). Consequently, GST-GFP emission spectra 

were recorded using an excitation wavelength of 484 nm using a Fluoromax- 4 

spectrofluorometer (Horiba Scientific, Middlesex, UK). GST-GFP stability and pull-down 

experiments: Enriched GST-GFP (500 μg) (in PBS) was placed in a sterile Eppendorf tube. 

Where a pull-down experiment was performed, glutathione conjugated Sepharose 4b beads 

(GE Healthcare, Bucks, UK) (200 µl bed volume in PBS) were added to the tube. The 

specified amount of protease was added to each tube and incubated at 37 oC for the specified 

time. When performing pull-down experiments the preparation was subject to sedimentation 

(1 min., at 14 000 rpm 4o C) and the emission spectra, or emission at 492 nm, for the 

supernatant was measured as stated. The pellet was suspended in 1 mL of PBS. Finally, 10 μl 

of this was then added to 1 mL of Laemmli buffer for analysis Western immunoblotting using 

a GFP specific polyclonal antibody (Cat No. CAB4211; Invitrogen, Paisley, UK). The 

emission spectra of the supernatants (after excitation at 484 nm) were recorded, prior to the 

addition of the Laemmli buffer. Cell culture, microscopy and “pulse-chase” experiments: 

Vero cells (ATCC number CCL-81), were cultured as previously described (Dyer et al., 

2015). Purified GST-GFP in PBS was filter sterilised using a 0.2 micron filter (Milipore Ltd, 

Hertfordshire, UK) and added to cultured cells at a concentration of 1 mg/mL in the presence 

of 200 µM Leupeptin (Sigma-Aldrich Company Ltd., Dorset, UK). This “pulse” of GST-GFP 

was added to complete cell culture media and incubated for 4 hours at 37 oC. The cells were 

then washed three times with fresh sterile PBS and returned to incubate in complete media for 

an additional 20h at 37oC in 5% (v/v) CO2. The cells were then washed 3 times in PBS and 

fixed with either cold methanol or formaldehyde (as noted) and as previously described (Dyer 
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et al., 2013; Dyer et al., 2015). Immunostaining was performed as previously described 

(Richardson et al., 2004; Richardson et al., 2008; Dyer et al., 2013; Dyer et al., 2015) using 

EEA1 (BD Bioscience,) LAMP1 or LAMP2 specific monoclonal antibodies (DHSB 

hybridoma bank, University of Iowa, USA) as previously described (Richardson et al., 2004; 

Richardson et al., 2008; Dyer et al., 2015). Over-expression experiments: were conducted as 

previously described (Richardson et al., 2004). Briefly, 5x105 Vero cells / well were used to 

seed a 6 well plate. To each well, complete media was added to a final volume of 1.5 mL and 

the plate placed in a humidified cell culture incubator (37 oC; 5% (v/v) CO2) overnight. Pulse-

chase and transfection experiments. Texas Red labelled (TxR)-wheat-germ agglutinin (WGA) 

(TxR-WGA) (Invitrogen, Paisley, UK), was used at a concentration of 10 µg/mL in complete 

media containing 200 µM leupeptin (Sigma Chemical Company, Dorset, UK).  Cells were 

incubated with TxR-WGA for 4 hours and then transfected using lipofection over 4 hours and 

incubated for a further 40 hours prior to fixation. Lipofection was performed using 

Lipofectamine 2000 (Invitrogen, Paisley, UK) as per the manufacturer’s instructions using 2.5 

µg of plasmid per well. The eGFP-Rab5 encoding plasmid has been previously described 

(Richardson et al., 2004; Roberts et al., 1999). Where there was no transfection cells were 

subject to a pulse (4 hours), washed 3 times with PBS and then incubated for a further 20 

hours in complete media prior to fixation. Sequence comparisons; were performed using the 

DNAStar software suite by Lasergene (Madison WI, USA). Protein sequences were obtained 

(http://www.uniprot.org) and analysed using the MegaAlign application (DNAStar by 

LASERGENE, Madison WI) deploying the Clustal-W algorithm. Protein sequence identities 

(and UniProt reference numbers) are given (table 1). 

 

  

http://www.uniprot.org/
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Results. 

Sequence comparisons as an indicator of marker viability. When the primary protein 

sequences of the Rat Sarcoma (Ras)-related in brain (Rab)5 isoforms a, b and c were 

analysed, a very high level of sequence identity was evident (table 2, i.e. between 81.9 and 

87.4 %). Given the antigens used to generate the selection of antibodies to Rab5 documented 

(table 3), it was unlikely that the antibodies listed would be specific for a given isoform, given 

the identity (%) between the antigens used to raise them. The similarity between the various 

primary protein sequences of isoforms of the Rab6-subfamily (Rab6a, Rab6a’, Rab6b, Rab6c 

and Rab41) was also striking (table 4, i.e. between 98.6 – 61.3% sequence identity). Table 5 

describes the antigens used to raise selective commercially available antibodies and further 

emphasises the capacity for mislabelling specific isoforms of Rab6 using commercially 

available antibodies. Table 6 describes the levels of protein sequence similarity that result 

from comparing syntaxin7 and syntaxin12 (also called syntaxin13), which also demonstrated 

a high level of sequence identity (56.2%). 

Over-expressed GFP-fusion proteins as intracellular markers. In an effort to evaluate the 

compartmentalisation of transiently expressed eGFP-Rab5a in relation to an endocytosed 

probe (TxR-WGA), eGFP-Rab5a was expressed in Vero cells. EEA1 has been well 

documented as a Rab5 binding partner (Simonsen et al., 1998), which interacts with 

membrane inositol phosphates (Simonsen et al., 1998). Figure 2 (panels: (a) (anti-EEA1 

localisation), (b) (eGFP-Rab5a) and (c) (merge) show a considerable degree of co-

localisation, with specific examples of vesicles positive for both EEA1 and eGFP-Rab5a 

being denoted by arrows in the inset. These vesicles are of a size, distribution and 

morphology typical of Vero cells (Dyer et al., 2013; Richardson et al., 2008; Richardson et 

al., 2004). Figure 2 also shows the effect of probing cells expressing eGFP-Rab5a (panel d) 

with TxR-WGA (panels e). The expanded vesicular structures positive for both TxR-WGA 
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and eGFP-Rab5a (panel f) were profound. This phenotype has been associated with very high 

(~50 µg/mL) concentrations of WGA (Dyer et al., 2013) or the constitutively active, GTP 

locked Rab5 mutant, Rab5:Q79L (Barbieri et al., 1996). Figure 2 (panel g) shows cells that 

have been incubated with TxR-WGA after transient transfection with eGFP-Rab5:Q79L 

(panel i). The similarity in phenotype (i.e. expanded GFP positive vesicles) between eGFP-

Rab5a co-incubated with WGA (panel e) and the eGFP-Rab5:Q79L mutant (panel h) was 

striking. Figure 2 (panel i) shows the co-localisation of TxR-WGA and the overexpressed 

eGFP-Rab5:Q79L mutant. In the absence of the Rab5 transfection TxR-WGA (panel j) can be 

seen localising to a LAMP1 positive (late endocytic) compartment (panel l). Specific 

examples of vesicles positive for both TxR-WGA and LAMP1 have been denoted by arrows 

(inset).  

GFP fluorescence as a marker for protein integrity. Figure 3 (panel a) shows the emission 

spectra of GST-GFP over time and there was no readily quantifiable alteration in emission 

spectra over the 300min documented. The protease trypsin (~0.5units / 500µg GST-GFP) also 

had very little effect upon the emission spectra of GST-GFP over 300min (panel b), which 

was similar to the effect produced by adding proteinase k (10units / 500µg GST-GFP) (panel 

c). When the integrity of the protein GST-GFP was examined by Western immunoblotting, it 

was evident that at 5min, both trypsin (~0.5 units / 500µg GST-GFP) and proteinase k (10 

units / 500µg GST-GFP) had digested GST-GFP, whereas the negative control (no protease) 

was stable over 300min. A solution to this impasse i.e. using the spectral properties of GFP to 

monitor protein integrity, was found by using the GST portion of GST-GFP to bind to 

glutathione-conjugated Sepharose after protease treatment and, after washing away any non-

bound material, assaying for fluorescence emission at 492 nm (figure 3: panel e).  

The use of GFP as an endocytic probe. The utility of eGFP as a probe for endocytic capture 

(i.e. as cargo) was explored (figure 4). The late endocytic marker lysosome associated 
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membrane protein (LAMP)1 has been well-characterised and localises to late endosomes, 

endolysosomes and lysosomes (Chen et al., 1985). The anti-LAMP1 and anti-LAMP2 

antibodies required the fixation of cells in cold methanol for immunofluorescence work. After 

MeOH fixation, little GFP signal was evident (figure 4: panel a) despite the LAMP1 signal 

being readily detectable (panel b). After fixation using aldehyde, the signal from GST-GFP 

(panel d) was clearly coincident with that from TxR-bovine serum albumin (BSA) (panel e), 

which, at 24h, has been reported resident in a late endocytic compartment (panel f) 

(Richardson et al., 2008). The data describing the localisation of GST-GFP relative to TxR-

BSA (panels d, e and f) appears to be substantiated by those describing the location of GST-

GFP (panel g) relative to early endosomal marker EEA1 (panel h) after 24h. Here there 

appears to be some signal from GFP, however, there was some, but not exclusive localisation 

between GFP-GST and EEA1. Figure 4 (panel j) highlights another problem with using GFP-

GST as a probe. Here, aldehyde fixed cells co-labelled with TxR-WGA, display a marked 

lack of GFP signal (panel j) relative to a robust TxR-WGA signal (panel k) when examined 

using an LSM880. This made assessing the level of co-localisation very difficult (panel l). 

   

 

 

  



 10 

Discussion. 

When interpreting data from single cell assays, a variety of assumptions are often made with 

regard to the nature of a GFP “tag". The first is that if the GFP molecule has been degraded, 

then fluorescence output would be reduced accordingly. The second is that a GFP tagged 

molecule will behave in a way that was representative of the analogue it was being used to 

mimic. Finally, there remains an assumption that because a molecule has been documented in 

a specific location, that location is where the molecule in question must function. This final 

observation is a fallacy, as a molecule will be observed where there is a large pool of the 

molecule, even a reservoir, which may not necessarily be the place where the molecule 

functions. However, unpacking this assumption is beyond the scope of this paper. The first 

and second assumptions are challenged herein by addressing the questions stated in the 

introduction: 

Are molecules that regulate fusion to a specific compartment (i.e. Rab- or SNARE-GFP 

fusions) a good choice of marker for that compartment? The various Rab5 isoforms 

documented (table 2) generally have the same intracellular distribution (i.e. to early endocytic 

compartments) (Chen et al., 2014). Consequently, the issue of misidentifying a Rab5 isoform 

would not present a huge problem in terms of mislabelling a specific intracellular 

compartment. Most intracellular markers occupy more than one intracellular compartment, a 

specific example being the transferrin receptor, which is often used as a marker for recycling 

endosomes (i.e. a Rab11 enriched compartment) (Richardson, 2010). This receptor cycles 

through early and recycling endosomes en route to the plasma membrane, and back to the 

early endosome after internalisation.  The Rab6 subfamily of proteins is a little more diverse 

than the various isoforms of Rab5, regulating fusion through the Golgi network (Liu and 

Storrie, 2015). However, specific isoforms have demonstrated tissue specific expression. 

Rab6b has been found mainly in neuronal cells (Opdam et al., 2000), and Rab6c has been 



 11 

documented in: brain, testes, prostate and breast tissue (Young et al., 2010). Functional 

variance between Rab6a and Rab6a’ has been reported during the retrograde transport of ricin 

(Utskarpen et al., 2006; Liu and Storrie, 2015). Consequently, the result of mislabelling a 

particular Rab6 isoform, or expressing it in an inappropriate cell type, may be a little more 

misleading. The result of misidentifying syntaxin proteins, such as 7 and 13, may be more 

drastic as misidentifying them would, in all likelihood, lead to the generation of false 

positives or negative conclusions in relation to subcellular distribution or trafficking. 

Syntaxin13 typically catalyses vesicle fusion events between early endocytic structures, such 

as early endosomes (McBride et al., 1999). Syntaxin7, also a t-soluble N-ethylmaleimide 

sensitive factor attachment protein receptor (SNARE) heavy chain, catalyses both heterotypic 

and homotypic fusion to late endosomes (Mullock et al., 2000; Pryor et al., 2004). The 

similarity between the protein sequences of all of these molecules makes the generation of 

specific polyclonal antibodies challenging.  The consequences of misidentifying syntaxin7 

and 13 have been reported (Mullock et al., 2000). Here additional immunodepletive steps to 

removed cross-reactive antibodies were taken to ensure antibody specificity (Mullock et al., 

2000). 

Equivalently, monoclonal antibodies may be used to identify molecules that act as 

compartmental “doorkeepers”, responsible for regulating fusion to, and consequently the 

identity of a specific intracellular compartment (Dyer et al., 2013). This is considerably more 

time consuming and expensive than generating polyclonal antisera. Given the challenges and 

expense associated with generating polyclonal or monoclonal antibodies, specific for proteins 

with such a high degree of similarity, it may be easier and more accurate to express these 

molecules as GFP-fusion proteins. Rather than immunodetecting Rab6a and Rab6a’ after 

siRNA knockdown, qPCR has been used (Utskarpen et al., 2006). This approach has many 

limitations with regard to examining the trafficking of endocytosed cargo within the context 
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of single-cell assays, but is certainly worth considering when using a population based cell 

assay. When considering the utility of a specific marker, the general and the specific need to 

be considered separately, given that there are nearly always exceptions to any rules of thumb. 

An example might be the distribution of syntaxin6 in melanocytes. In B16F10 cells syntaxin6 

has been documented to localise to late endosomes (Wade et al., 2001). However, this 

localisation has been reported to be melanocyte specific and would not be expected in more 

generic epithelial cells. 

How reliable were GFP-marker overexpression experiments when used to define a given 

endocytic compartment?  Over a 24h timeframe, a pulse of WGA has been documented in a 

late endocytic compartment, which would normally contain markers including LAMP1 (or 2), 

lysosomal hydrolases (such as cathepsin D), or even well-characterised probes such as bovine 

serum albumin (BSA) or BSA-colloidal gold, subject to endolysosomal translocation 

(Mullock et al., 2000). The dose of WGA (typically from 5-50 µg/mL) may also impact upon 

the morphology of late-endocytic compartments, however, here the dose of TxR-WGA was 

kept constant at 10 µg/mL as previously this had given a robust signal at a minimal 

concentration (of WGA) (Dyer et al., 2013). Observing a profound co-localisation between 

overexpressed eGFP-Rab5a and WGA at 48h post-transfection was unexpected (figure 2: 

panels d-f), as previously, at this time, the internalised WGA and Rab5 might be expected to 

occupy late and early endocytic compartments respectively (Dyer et al., 2013). This 

confusion was further underscored by the localisation of eGFP-Rab5 to an early endosomal 

antigen (EEA)1 positive compartment (figure 2: panels a-c). Moreover, after 24h, WGA was 

recorded in a LAMP positive set of vesicular structures (figure 2: panels j, k and l). These 

data are further contradicted by previously published data reporting eGFP-Rab5a localising to 

EEA1positive structures that are typically early endocytic (i.e. on early endosomes) 

(Simonsen et al., 1998; Roberts et al., 1999), yet WGA, when chased into eGFP-Rab5a 
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overexpressing cells can be seen in dramatically expanded Rab5 positive structures (figure 2: 

panels d-f). Given that EEA1 not only interacts with the Rab protein, as an effector, but also 

inositol phosphates on the early endosomal membrane (Simonsen et al., 1998), it is unlikely 

(although still possible), that the EEA1 signal was simply being redistributed by the 

overexpressed eGFP-Rab5a. Further, there are examples of Rab5a overexpression being 

separate and discreet from late endocytic markers (Dyer et al., 2013). Confusion was 

compounded by the data describing the eGFP-Rab5:Q79L mutant, a GTP locked 

constitutively active mutant of Rab5 (Barbieri et al., 1996). This has been documented to 

cause expanded vesicles that have often lost their compartmental identity as the “doorkeeper” 

or Rab protein regulating fusion becomes hyperactive (Barbieri et al., 1996). It is possible 

that the cells documented (panels d, e and f) were expressing a lot of Rab5a, which gave rise 

to a phenotype similar to that of the Rab5:Q79L mutant. Equivalently the phenotype observed 

may be due to an interaction between the WGA and the effects of Rab5 overexpression. This 

may not impact upon the assumption that the GFP tagged protein will behave in a similar way 

to its wild type analogue as this variance in phenotype may not be due to any alteration in 

protein function, but is instead due to there being much more Rab5 than would normally be 

found in a healthy cell.  It is important to note that when using these tools, in these specific 

circumstances, a degree of compartment identity has been lost. Care should also be exercised 

when using algorithms to quantitate the degree of co-localisation. Commonly used methods to 

quantify co-localisation include the use of Pearson's correlation coefficient (adapted by 

Manders) that are quite subjective though maybe useful if applied appropriately (Richardson 

et al., 2004; Dunn et al., 2011). Their usefulness is also defined by the definition of co-

localisation being employed and the inferences being made. If these experiments are an 

attempt to discover the function of a specific protein and are attempting to resolve individual 

molecules, they may also be limited by the resolution of even super-resolution techniques 



 14 

(Dunn et al., 2011). Figure 2 (panels j, k and l) clearly show late endocytic markers 

partitioned into microdomains, contained within the same vesicle. However, as there are 

varying degrees of co-localisation at the level of the pixel, as opposed to the vesicle, false 

negatives may result. 

Was GFP fluorescence a robust indicator of (GFP) protein integrity? GFP stability 

in the presence of proteases has been reported to be high (Aoki et al., 2008). Here the authors 

used a binding assay similar to the “pulldown” assay described here (figure 3: panel e) to 

monitor protein integrity (Aoki et al., 2008). Figure 3 (panels a-d) documents the effects of 

both proteinase k and trypsin upon the fluorescence of eGFP. Previously GST-GFP was 

sequenced using mass spectrometry, and determined both its absorption and emission spectra 

in relation to eGFP determined (Pettit et al., 2014). GST-GFP was found to exhibit maximum 

excitation when stimulated at 484nm with an emission peak at 492nm. This was in contrast to 

eGFP, which displays a maximum excitation peak at 488nm and an emission peak at 509nm 

(Pollock and Heim, 1999). When either protease was used to digest GST-GFP (confirmed by 

Western immunoblotting (figure 3: panel d), the fluorescence spectra remained unaltered after 

digestion (figure 3: panels a-c). The simplest explanation for the apparent disconnect between 

fluorescence and GST-GFP molecular weight, was that the fluorophore located within the 

eGFP beta-barrel spanning helix remained partially intact after digestion. This was 

unexpected. However, practically, this particular phenomenon was relatively easy to 

circumvent if the GFP molecule was designed to contain an affinity “tag” to aid enrichment. 

An example might be a 6-histidine tag or a GST “tag” as documented here (figure 3: panel e).  

Can GST-GFP act as a fluid phase endocytic probe? Given the well-characterised 

effects of pH upon eGFP’s fluorescent properties (Roberts et al., 2016) it was not surprising 

to note the aberrant compartmentalisation of GST-GFP post-endocytic capture. Very recently, 

the problem of eGFP’s instability at low pH has been addressed using tandem dimer GFP 
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variant (Ishil et al., 2007; Roberts et al., 2016), however the problem of lysosomal proteases 

and methanol fixation remain. For optimal fluorescence yield, eGFP has been reported to 

require aldehyde fixation rather than fixation in cold methanol (Dyer et al., 2013). 

Consequently, the combination of low pH, methanol fixation and the presence of lysosomal 

proteases would not predispose eGFP as a robust fluid phase endolysosomal marker. This was 

underscored in figure 4. Consequently, it may be more advantageous to use a transiently or 

stably expressed, well-characterised fluorescent protein fused to the cytosolic termini of a 

lysosomal trans-membrane protein as a marker such as LAMP1-RFP (Sherer et al., 2003). 

Finally, the choice of marker should also be dictated by application. Is it essential to know 

how many molecules are in a given compartment for optimal therapeutic effect? If so then 

perhaps a radiolabel is a more useful “tag” than any fluorescent molecule due to the ease of 

quantification. Previously, we have published a study quantifying the modulation of 

subcellular distribution mediated by of a series of well-defined radiolabelled 

poly(amidoamine) polymers after their administration in vivo (Richardson et al., 2010). When 

the possibility of optimising a dose to minimise non-specific side effects is considered, the 

use of radioprobes remains attractive. That said radioprobes have limited use relative to 

fluorescent probes within the context of a single cell assay, which is also very useful for early 

stage evaluation of advanced drug delivery system function and subcellular distribution (Seib, 

et al., 2006; Richardson et al., 2008). 
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Conclusion. 

 GFP remains a useful tool to evaluate subcellular trafficking, providing the limitations 

associated with its biochemistry are understood. This is true of any marker used to define a 

compartment. GFP’s stability and fluorescent properties are not intimately connected, 

consequently care needs to be taken when designing experiments that might expose GFP to 

proteases either during in vitro cell free assays or in a cell based assay.  These observations 

highlight some of the pitfalls working with eGFP. More generally, they also highlight the 

need for carefully designed experiments, a need to understand and characterise the tools you 

are using and the use of multiple controls in order to interrupt the data they produce in a 

useful and meaningful way. Is seeing believing? No, though clearly fluorescent proteins are 

extremely useful tools though as ever, context is everything. 
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Tables. 

Table 1: Protein sequence identity. Adapted from: Echard et al., 2001, Liu and Storrie 2015 and the 

Uniprot (www.uniprot.org) and Abcam (www.abcam.com) websites.  

  

http://www.uniprot.org/
http://www.abcam.com/
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Table 2: Rab5 family members and their level of protein sequence identity. Rab5a isoform 2 is identical to isoform 1 with the exception of 

the deletion of “AAFLTQTVCLDDTT” in isoform 2. Rab5b isoform 2 is identical to isoform 1 with the exception of the deletion of 

“TFARAKTWVKELQRQASPSIVIALAGNKADLANKRMVEYEE” in isoform 2. Rab5c isoform 2 contains an additional N-terminal 

“MELSWRSPSPLSASLHSTSPHPHALWTTTAGRA”. In each instance isoform 1 has been used in the above. 

 

  

 

Table 3: Antigen similarity (identity (%) for select Rab5-specific antibodies (listed in table 1) 

 

 

Table 4: Rab6-subfamily members and their level of protein sequence identity 
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Table 5: Antigen similarity (identity (%) for Select Rab6 subfamily-specific antibodies 

 

  
 

 
Table 6: Similarity (identity (%)) between the primary structure of syntaxin7 and 12 (13)  
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Figures. 

Figure 1: Cartoon Depicting Select Markers Defining Endocytosis and Exocytosis. This cartoon depicts both the endocytic and exocytic 

trafficking pathways and some of the more commonly used markers to identify organelles therein. Summarised are the various probes that 

have been documented within specific compartments over time. Adapted from (Mullock et al., 2001; Richardson et al., 2008; Dyer et al., 

2013) 
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Figure 2: Aberrant eGFP-Rab5a compartmentalisation and vesicular morphology. Here (panels a, b & c), eGFP-Rab5a transiently 

transfected Vero cells were aldehyde fixed and immunolabelled with a monoclonal anti-EEA primary antibody and a TxR conjugated- anti 

mouse secondary antibody 48 hours after transfection using Lipofectamine 2000. Panel (a) shows the detection of an anti-EEA1 antibody, 

panel (b) shows the eGFP signal and panel (c) is a merge of the red and green channel. Co-localisation was evident and exemplified by 

arrows in the panels inset (panels a & b). Panels (d, e and f) record Vero cells also transiently transfected with eGFP-Rab5a that have also 

been exposed to TxR-WGA (10µg/mL for 4h at 37oC) and then chased for an additional 40h in complete media containing 200µM leupeptin 

also at 37oC. Panel (d) depicts the red channel, panel (e) documents the green channel and panel (f) is a merge of the red and green channels. 

Panels (g, h & i) show Vero cells transiently transfected with eGFP-Rab5:Q79L and fed TxR-WGA as above after 48h. Panels (j, k and l) 

depict Vero cells incubated with TxR-WGA as above, and fixed in cold methanol before being immunolabelled with monoclonal primary 

antibody specific for LAMP2. This antibody was then detected using a mouse–IgG specific AlexaFluor 488 conjugated secondary. Imaging 

was on a Zeiss LSM880.The size bar is equal to approximately 5 microns. 
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Figure 3: GFP Fluorescence and Stability in Relation to Protease Activity. Panel (a) documents the emission spectra of GST-GFP over 300 

min in PBS after excitation at 484nm. The emission spectra of GST-GFP after exposure to ~0.5 units / 500µg GST-GFP of trypsin is shown 

(panel b) also over a similar time frame. Panel (c) documents the emission spectra of GST-GFP after exposure to 10units / 500µg GST-GFP 

of proteinase k. Panel (d) explores the molecular weight of GST-GFP by Western immunoblotting after 300min in PBS, 5 and 10min 

exposure to either 10units / 500µg GST-GFP, of proteinase k or ~0.5 units / 500µg GST-GFP of trypsin. Panel (e) documents the ability to 

affinity isolate GST-GFP from a protease digestion and then use the GFP portion of GST-GFP to quantify protein integrity using GST-GFP’s 

emission at 492nm. 
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Figure 4: Use of GFP as an endocytic probe. Panels (a, b and c) document Vero cells fixed in methanol, 20h after a 4h pulse of GST-GFP 

in complete media with 200µM leupeptin. These cells were then immunostained using an anti-LAMP1 monoclonal antibody and a mouse 

IgG specific – TxR conjugated secondary antibody. Aldehyde fixed cells (panels d, e and f) fixed 20h after a 4h pulse with both GST-GFP 

and TxR-BSA were documented. The localisation of a GST-GFP pulsed (as described above) to a compartment labelled with a primary 

monoclonal antibody specific for EEA1 and a mouse specific TxR labelled- secondary is documented (panel: (g) (GST-GFP), (h) (anti-

EEA1) and (i) (merge). These micrographs were acquired using a Nikon Ti-20 microscope. The localisation of GST-GFP, pulsed and chased 

as before is documented (panels j, k and l). The signal from GST-GFP (panel j) is very weak; where as the signal from a pulse of TxR-WGA 

(panel k) is robust. A merge (panels j and k) is shown and these images were acquired using a Zeiss LSM880. The size bar represents 

approximately 5 microns. 

 


