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We investigated the association between ACTN3 R577X
polymorphism and jumping (vertical squat and counter-
movement jump tests) and sprint ability (30m dash) in
non-athletic, healthy young adults [N5 284 (217 male),
mean (SD) age: 21 (2) years]. We analyzed the differences in
the study phenotypes among ACTN3 R577X genotypes by
one-way analysis of covariance before and after adjusting
for sex, age, weight and height (confounders). We also
compared the genotype and allele frequencies between those
with the best and worst results in the aforementioned tests
( � 90th vs o90th of the sex-specific percentile, respec-
tively). We used logistic regression to calculate the odds

ratio (OR) for having the best performance. We did not
observe a significant association between ACTN3 R577X
genotypes and the study phenotypes before and after adjust-
ing for potential confounders, nor after analyzing males and
females separately. We did not observe significant differ-
ences in genotype frequencies between those with the best or
the worst performance. The OR for an individual with the
RR genotype to be in the top 10 percentile was o1.00 for
jump tests and o1.015 for sprint tests (all P40.05). In
summary, a-actinin-3 deficiency does not negatively influ-
ence the ability to generate explosive leg muscle power in a
young non-athletic population.

The expression of a-actinin-3 is almost exclusively
restricted to fast twitch (type II) muscle fibers (Mills
et al., 2001). In this fiber subtype, it constitutes the
predominant component of the Z-disc, where it acts
as a lattice structure that anchors actin-containing
thin filaments; it stabilizes the muscle contractile
apparatus, thereby conferring a higher capacity for
force absorption/transmission compared with slow
(type I) fibers (Squire, 1997; Mills et al., 2001).
Through an interaction with the signalling protein
calcineurin, a-actinin-3 might also promote the for-
mation of fast twitch fibers (Yang et al., 2003).
A premature stop codon polymorphism (R577X,

rs1815739) in ACTN3, the gene encoding for the
synthesis of a-actinin-3 in skeletal muscle fibers, was
first described by North et al. (1999). Although this
genetic variation is not associated with any known
disease phenotype, with few notable exceptions (Lu-
cia et al., 2007), the a-actinin-3-deficient XX geno-
type is believed to preclude top-level athletic
performance in ‘‘pure’’ power and sprint sports

(sprinting, jumping, weightlifting and throwing
events), especially in women (Yang et al., 2003).
More controversy exists on the putative role of the

ACTN3 R577X polymorphism in muscle phenotypes
(particularly, the ability to produce peak power) in a
non-athletic population. Walsh et al. (2008) reported
that women, but not men, deficient in a-actinin-3 (i.e.
ACTN3 XX genotype) had lower knee extension
shortening and lengthening peak isokinetic torque
compared with their RR/RX referents, across the
adult age span (22–40 years). The high-velocity
torque of knee extensor muscles was unaffected by
ACTN3 genotypes in Caucasian adult men (McCau-
ley et al., 2009). In another report, however, healthy
young men with the RR genotype showed signifi-
cantly higher relative dynamic quadricep torques at
3001/s and a greater percentage of type IIX fibers
than those with the XX genotype (Vincent et al.,
2007). Additional controversy stems from the fact
that in older adults (mean age � 65 years), the XX
genotype was associated with a higher knee extensor
concentric peak power compared with the RR and
RX genotypes (Delmonico et al., 2007).*Contributed equally.
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Discrepancies between studies might be related to
the differences in age, gender, ethnic background or
fitness level of the selected subjects. A source of
disparity can also arise from the different testing
batteries used to characterize muscle power pheno-
types. Naturally occurring jumping, throwing or
sprinting actions are multi-joint movements that
involve the coordinated participation of the majority
of lower limb muscles (Ashley & Weiss, 1994; Brown
& Weir, 2001). During actual high muscle power
actions (e.g. in team sport games), angular velocities
at the hip or knee joints in the aforementioned
actions can approach 800–10001/s (Bosco et al.,
1983). However, the previously mentioned studies
on non-athletes used predominantly isokinetic tests
involving single-joint movements (e.g. knee exten-
sion) at relatively low angular velocities ( � 3001/s).
The main purpose of our study was to examine the

association between ACTN3 R577X polymorphism
and the ability to produce peak power in non-
athletic, young adults of both genders. Peak power
was evaluated using jumping and sprint tests of
practical applicability and involving naturally occur-
ring multi-joint movements. Based on the fact that
previous findings on elite athletics [as those by Yang
et al., (2003)] cannot be extrapolated to the general
population and that muscle phenotypes (e.g. ‘‘explo-
sive’’ power) are complex traits not reducible to a
single polymorphism, we hypothesized that the abil-
ity to produce peak power is not associated with
ACTN3 R577X genotypes in non-athletic, physically
active young adults.

Methods
Subjects

Written consent was obtained from each subject. The study
protocol was approved by the institutional ethics committee
[Universidad Europea de Madrid (UEM), Spain] and was in
accordance with the Declaration of Helsinki for Human
Research. The sample was comprised of 284 healthy young
adults (university students) [mean (SD) age: 21 (2) years
(range: 21, 32)] of both genders (217 men, 67 women). Inclu-
sion criteria were to be free of any diagnosed cardiorespiratory
disease, and not to be engaged in competitive sports nor in (i)
formal, supervised ‘‘power’’ (weight lifting, alpine skiing) or
jumping-oriented type of training (plyometrics, volleyball and
basketball) or in (ii) endurance training (running, swimming
and bicycling), that is, performing less than one (power) or
three (endurance) structured weekly training sessions within
the previous year. All participants were of the same Spanish
(Caucasian) ancestry for at least three generations.

Genotype assessment

Our study was designed and performed in accordance with the
recommendations for the human genotype–phenotype asso-
ciation studies recently published by the NCI-NHGRI Work-
ing Group on Replication in Association Studies (Chanock et
al., 2007). These recommendations include, among others, the

following items: indicating the time period and location of
subject recruitment, success rate for DNA acquisition, sample
tracking methods or genotyping with a second technology in a
second, well-reputed laboratory.

During winter–spring 2008, we extracted genomic DNA
from saliva samples of students in two different universities of
the same city (Madrid, Spain): Universidad Politécnica and
UEM (N5 200 and 84 subjects, respectively).

‘‘Reference’’ genotyping

Genotyping was originally performed during fall 2008 in the
genetics laboratory of UEM (Madrid). The polymerase chain
reaction (PCR) was performed in order to amplify the
sequence containing the mutation. A fragment of 303 bp was
amplified with the following primers: forward CTGTTGCC
TGTGGTAAGTGGG, with 50; VIC labelling and reverse
TGGTCACAGTATGCAGGAGGG (Lucia et al., 2006). The
PCR conditions were as follows: initial denaturing at 95 1C for
5min; 35 cycles at 95 1C for 30 s, 60 1C for 30 s, 72 1C 30 s and
a final extension at 72 1C for 10min.

ACTN3 genotypes were established by enzymatic digestion
of amplicons with DdeI (Lucia et al., 2006). The R577X
change creates a restriction site resulting in fragments of
108, 97 and 86 bp. Digestion of the R577 allele yields frag-
ments of 205 and 86 bp. Digestion products (108 bp for 577X
and 205 bp for R577) were detected by capillary electrophor-
esis in an ABI Prism 310 genetic analyzer (Applied Biosys-
tems, Foster City, California, USA).

Reliability assessment of genotype analysis in a second
laboratory

Following recent recommendations (Chanock et al., 2007),
genotype results in 100 samples were corroborated in a
different laboratory (Progenika Biopharma, Parque Tecnoló-
gico de Zamudio, Derio-Vizcaya, Spain) during fall 2008 using
a different technology, i.e. a newly developed low-density
DNA microarray based on allele-specific probes. The design,
fabrication, validation and analysis of the arrays were per-
formed following the procedure described elsewhere (Tejedor
et al., 2005). In brief, the PCR products were fluorescently
labelled and hybridized to the DNA microarray in an auto-
mated platform (Ventana Medical Systems Inc., Tucson,
Arizona, USA). The microarrays were scanned (Innopsys
SA, Carbonne, France) and we determined variants using a
developed software that converts the intensity of the spots into
the genotype of each variant.

Phenotype assessment

Vertical jump tests

Squat (SJ) and counter-movement jump (CMJ) tests were
performed using an infrared contact timing platform (Globus
Ergo Tester, Codognè, Italy) to evaluate leg muscles’ ability to
produce ‘‘explosive’’ power (Young et al., 2001).

SJ tests. The SJ tests were performed without rebound or
previous counter movement. Subjects kept both hands on the
hips and trunk straight before and during jumps. Before the
jumps, they reached 901 of knee flexion angle for � 1 s and
during jumps they could not perform hip or knee flexions
(Bosco et al., 1982, 1983).

CMJ tests. Subjects started from a standing position, with
the trunk straight, legs extended and both hands on hips, and



performed a vertical jump with a prior fast counter movement
allowing 901 knee flexion (Bosco et al., 1982, 1983). During
jumps, they kept both hands on the hips, the trunk straight
and they could not perform hip or knee flexions.

Both tests were performed three times (each separated by a
2-min rest period) and the best score was retained.

Sprint test

Subjects performed a 30-m sprint test in an indoor rubberized
track under two conditions: (i) starting from the stationary
(standing) position (with one foot in front of the other)
(Young et al., 2001) and (ii) starting with a previous 15m
run (running), thereby allowing achieving higher speeds in the
first meters of the test (Alcaraz et al., 2009). The difference in
performance time between both tests (at 15 and 30m, respec-
tively) was used as an index of a subject’s ability to produce
acceleration, i.e. lesser difference implies higher acceleration
capacity. We used photoelectric gates at 0, 15 and 30m to start
and stop a digital timer.

The participants were encouraged to do their best when
performing the tests and were advised not to perform stren-
uous physical activity within the previous 48 h. Because the
subjects were students of the School of Sports Sciences, they
were familiarized with the tests. Nevertheless, 1 week before
the tests, all the participants received comprehensive instruc-
tions on the tests, after which a familiarization session took
place. All the tests were performed during spring 2008 in the
same location (UEM) and under the supervision of the same
researchers.

Reliability assessment of phenotype measurements

A subgroup of subjects [age: 21 (2) years (range: 21, 28) of both
genders (nine men, five women)] were asked to participate in a
reliability study. They performed the same tests under the same
conditions 7 days later. Realistically, a certain amount of error
is always present when collecting data. The main components
of measurement error are systematic bias (e.g. general learning
on the tests) and random error due to biological or mechanical
variation. To avoid systematic bias, all subjects received a
familiarization session 1 week before the tests.

Statistical analysis

Hardy–Weinberg equilibrium within the study groups was
tested using a chi-square test. We compared the genotype
frequencies between males and females with the chi-square test.

A required sample size of 144 subjects was determined to be
large enough to detect a medium effect size of 0.30 with a
power of 90% and an a of 5%.

Reliability assessment of phenotype measurements

Differences between scores obtained on day 1 and day 2
(intertrial difference D1–D2) were analyzed by one-way ana-
lysis of covariance (ANCOVA) for repeated measures, where
D1 and D2 were entered as factors and sex, age, weight and
height as covariates. Because no interaction was found be-
tween sex � test, all the analyses were performed for both men
and women together.

Association between the ACTN3 R577X polymorphism and leg
muscle power

We analyzed the differences in the study phenotypes among
variants of the ACTN3 R577X polymorphism by one-way

analysis of variance (Model 1), where the ACTN3 R577X
polymorphism was entered as a fixed factor and the phenotype
was entered as a dependent variable. Because age, weight and
height might be potential confounders, we performed one-way
ANCOVA (Model 2) where the ACTN3 R577X polymorph-
ism was entered as a fixed factor, the phenotype was entered as
a dependent variable and age, weight and height were entered
as covariates. We did not observe an interaction effect between
sex � ACTN3 R577X polymorphism and phenotypes (all
P40.2); therefore, all the analyses were performed with men
and women together and sex was included as a covariate in
Model 2. We used the Bonferroni and Holm method to correct
for multiple testing (Holm, 1979; Shaffer, 1995).

Genotype and allele frequency comparisons between those with
the best and the worst performance in the study tests

In order to examine whether subjects with the best perfor-
mance had a different genotype and allele frequency compared
with those with lower performance, we classified the popula-
tion into two groups based on an arbitrary cut-off point:
� 90th of the sex-specific percentile and o90th of the sex-
specific percentile. The rationale for choosing 90th percentile
was based on the fact that subjects in the top 10%might have a
favorable genetic endowment to perform better. To investigate
the influence of these cut-offs on the findings, we performed
sensitivity analyses after varying those cut-offs ( � 75th and
� 95th). We compared the genotype and allele frequencies
between groups (o90th and � 90th sex-specific percentile)
with the chi-square test. In order to estimate the effect size, we
used logistic regression analysis to calculate the odds ratio
(OR) for having the best performance in the jump and sprint
tests ( � 90th of the sex-specific percentile) after adjusting for
sex, age, weight and height, and using the dominant model.

Finally, we compared the mean level of the study pheno-
types between groups by one-way ANCOVA, where group
was entered as a fixed factor, the phenotype was entered as a
dependent variable and sex, age, weight and height were
entered as covariates.

All the analyses were performed with the Statistical Pack-
age for Social Sciences (SPSS, v. 16.0 for Windows; SPSS Inc.,
Chicago, Illinois, USA), and the level of significance was set at
a � 0.05.

Results

Genotype distributions met Hardy–Weinberg equili-
brium (w2 5 0.061, P5 0.803). We did not observe
differences (w2 5 2.109, P5 0.348) in the genotype
distributions in men [70 (32.4%), 103 (47.7%) and 43
(19.9%) for RR, RX and XX, respectively] and
women [20 (29.9%), 38 (56.7%) and 9 (13.4%) for
RR, RX and XX, respectively]. Genotype and allele
frequencies were within the range previously re-
ported for Caucasians of European ancestry, with
� 18% of individuals carrying the a-actinin-3-defi-
cient (XX) genotype (Yang et al., 2003; Lucia et al.,
2006).

Reliability of genotype analysis

No failures occurred in sample collection and DNA
acquisition. Genotyping success rate was 499.6%



(only one missing data). Parallel genotyping results
of the ACTN3 R577X polymorphism showed 100%
concordance between the two laboratories.

Reliability of phenotype measurements

The mean values and SD for the two trials and the
mean intertrial difference for the study phenotypes
are shown in Table 1. We did not observe an
intertrial difference in any of the study tests.

Association between the ACTN3 R577X polymorphism
and leg muscle power

The association between the ACTN3 R577X poly-
morphism and study phenotypes is presented in
Table 2. We did not observe any effect of the
ACTN3 R577X polymorphism on the study pheno-
types before (Model 1) and after adjusting for sex,
age, weight and height (Model 2). We repeated the
analyses separately in men and women and the
results did not materially change.

Genotype and allele frequency comparisons between
those with the best and the worst performance in the
phenotype tests

To examine whether those with the best performance
( � 90th of the sex-specific percentile) had different
genotype frequencies from those with lower perfor-
mance (o90th of the sex-specific percentile), we
compared the genotype frequencies between groups
for the jump and sprint tests. We did not observe
differences in genotype (Table 3) or allele (Table 4)
frequencies between groups. The OR [95% confi-
dence interval (CI)] for an individual with the RR
variant to be in the top 10 percentile ( � 90th of the
sex-specific percentile) was 0.907 (95% CI: 0.473–
1.740, P5 0.777) and 0.769 (95% CI: 0.392–1.511,
P5 0.446) for SJ and CMJ, respectively. The OR for
being in the top 10 percentile in the 15 and 30m (30m
running start spring test) was 1.022 (95% CI: 0.515–

2.029, P5 0.950) and 0.699 (95% CI: 0.324–1.377,
P5 0.275), respectively. The OR for the 15 and 30 s
(30m standing start spring test) was 1.014 (95% CI:
0.531–1.934, P5 0.967) and 0.875 (95% CI: 0.450–
1.703, P5 0.695). The results remained the same
after changing the cut-off point to � 75th percentile
or to � 95th percentile (data not shown).
Mean levels of the study phenotypes were signifi-

cantly higher in the group classified in the � 90th
percentile compared with the groupo90th percentile
(Fig. 1).

Discussion

The main finding of our study was that the ACTN3
R577X polymorphism does not seem to influence the
ability to produce peak (explosive) power in non-
athletic, young adults of both genders. Leg muscles’
peak power was evaluated using jumping and sprint
tests of practical applicability. Subjects’ performance
in these tests did not show considerable interindivi-
dual variability and was considerably lower (e.g.
20% lower performance in CMJ tests) than that
reported previously for power-trained young adults
(Baker et al., 1994). Thus, we can discard the
existence of a major confounding effect arising
from an eventual strong power training background
of the subjects or a large individual variability in
training levels. We did not find any interaction effect
between gender, genotypes and the phenotypes stu-
died. Although previous research showed a stronger
association between R577X genotypes and exercise
capacity phenotypes in women than in men (Yang et
al., 2003; Clarkson et al., 2005; Walsh et al., 2008),
our findings are in overall agreement with others that
did not report the R577X effect on muscle pheno-
types to be gender specific (Delmonico et al., 2007).
ACTN3 is the first structural skeletal-muscle gene

for which a genotype–elite sports performance phe-
notype association has been clearly demonstrated,
especially in women (MacArthur & North, 2004,

Table 1. Mean values (standard deviation) for the day 1 (D1) and day 2 (D2) trials and the mean intertrial difference for the tests

D1 D2 Mean difference 95% CI P-value

SJ
Flight time (s) 0.525 (0.052) 0.527 (0.056) � 0.004 � 0.006, 0.001 0.562
Vertical displacement of CG (cm) 0.341 (0.066) 0.345 (0.072) � 0.003 � 0.008, 0.002 0.439

CMJ
Flight time (s) 0.543 (0.052) 0.545 (0.052) � 0.002 � 0.005, 0.001 0.997
Vertical displacement of CG (cm) 0.364 (0.068) 0.367 (0.069) � 0.003 � 0.007, 0.000 0.967

30 m running start
Time at 15 m (s) 2.058 (0.122) 2.045 (0.142) 0.013 � 0.008, 0.035 0.983
Time at 30 m (s) 4.006 (0.273) 3.985 (0.308) 0.024 � 0.012, 0.052 0.790

30 m standing start
Time at 15 m (s) 2.630 (0.129) 2.616 (0.124) 0.013 � 0.006, 0.032 0.479
Time at 30 m (s) 4.611 (0.250) 4.591 (0.256) 0.019 � 0.009, 0.048 0.724

SJ, squat jump; CMJ, counter-movement jump; CG, center of gravity.



Ta
bl

e
2.

M
ea

n
(s

ta
nd

ar
d

er
ro

r)
es

tim
at

es
of

st
ud

y
ph

en
ot

yp
es

by
ge

no
ty

pe
s

of
A

C
TN

3
R

57
7X

(r
s1

81
57

39
)

po
ly

m
or

ph
is

m

M
od

el
1

P
ov

er
al

l
P

do
m

.
P

re
ce

ss
.

M
od

el
2

P
ov

er
al

l
P

do
m

.
P

re
ce

ss
.

R
R

( n
5

90
)

R
X

(n
5

14
1)

X
X

(n
5

52
)

R
R

(n
5

90
)

R
X

(n
5

14
1)

X
X

(n
5

52
)

V
er

tic
al

ju
m

p
te

st
s

S
J Fl

ig
ht

tim
e

(s
)

54
6.

6
(5

.1
)

54
5.

0
(4

.1
)

54
0.

3
(6

.6
)

4
0.

1
4

0.
1

4
0.

1
54

8.
6

(4
.4

)
54

7.
5

(3
.3

)
53

6.
2

(5
.5

)
4

0.
1

4
0.

1
4

0.
05

V
er

tic
al

di
sp

la
ce

m
en

t
of

C
G

(c
m

)
36

.9
(0

.7
)

36
.7

(0
.5

)
36

.1
(0

.9
)

4
0.

1
4

0.
1

4
0.

1
37

.2
(0

.6
)

37
.1

(0
.5

)
35

.6
(0

.7
)

4
0.

1
4

0.
1

4
0.

05
C

M
J Fl
ig

ht
tim

e
(s

)
55

5.
4

(5
.1

)
55

3.
7

(4
.3

)
55

5.
9

(6
.9

)
4

0.
1

4
0.

1
4

0.
1

55
9.

1
(4

.6
)

55
6.

2
(3

.5
)

55
0.

6
(5

.7
)

4
0.

1
4

0.
1

4
0.

1
V

er
tic

al
di

sp
la

ce
m

en
t

of
C

G
(c

m
)

38
.1

(0
.7

)
37

.9
(0

.6
)

38
.2

(0
.9

)
4

0.
1

4
0.

1
4

0.
1

38
.6

(0
.6

)
38

.2
(0

.5
)

37
.5

(0
.8

)
4

0.
1

4
0.

1
4

0.
1

S
pr

in
t

te
st

s
30

m
ru

nn
in

g
st

ar
t

Ti
m

e
at

15
m

(s
)

(A
)

2.
00

(0
.0

2)
2.

01
(0

.1
9)

1.
98

(0
.0

2)
4

0.
1

4
0.

1
4

0.
1

1.
97

(0
.0

2)
2.

00
(0

.0
1)

2.
01

(0
.0

2)
4

0.
1

4
0.

1
4

0.
1

Ti
m

e
at

30
m

(s
)

(B
)

3.
91

(0
.0

4)
3.

93
(0

.0
3)

3.
89

(0
.0

5)
4

0.
1

4
0.

1
4

0.
1

3.
88

(0
.0

3)
3.

91
(0

.0
2)

3.
94

(0
.0

3)
4

0.
1

4
0.

1
4

0.
1

30
m

st
an

di
ng

st
ar

t
Ti

m
e

at
15

m
(s

)
(C

)
2.

61
(0

.0
2)

2.
61

(0
.0

2)
2.

61
(0

.0
2)

4
0.

1
4

0.
1

4
0.

1
3.

60
(0

.0
2)

2.
60

(0
.0

1)
2.

63
(0

.0
2)

4
0.

1
4

0.
1

4
0.

1
Ti

m
e

at
30

m
(s

)
(D

)
4.

54
(0

.0
4)

4.
56

(0
.0

3)
4.

57
(0

.0
4)

4
0.

1
4

0.
1

4
0.

1
4.

53
(0

.0
3)

4.
55

(0
.0

2)
4.

61
(0

.0
3)

4
0.

1
4

0.
1

4
0.

05
A

cc
el

er
at

io
n

in
de

x
C

–A
(s

)
0.

61
(0

.0
1)

0.
60

(0
.0

1)
0.

62
(0

.0
1)

4
0.

1
4

0.
1

4
0.

1
0.

62
(0

.0
2)

0.
60

(0
.0

1)
0.

62
(0

.0
2)

4
0.

1
4

0.
1

4
0.

1
D

–B
(s

)
0.

63
(0

.0
2)

0.
64

(0
.0

2)
0.

67
(0

.0
1)

4
0.

1
4

0.
1

4
0.

1
0.

65
(0

.0
2)

0.
64

(0
.0

2)
0.

67
(0

.0
3)

4
0.

1
4

0.
1

4
0.

1

M
od

el
1:

un
ad

ju
st

ed
.

M
od

el
2:

ad
ju

st
ed

fo
r

se
x,

w
ei

gh
t,

he
ig

ht
an

d
ag

e.

do
m

.,
do

m
in

an
t;

re
ce

ss
,

re
ce

ss
iv

e;
S

J,
sq

ua
t

ju
m

p;
C

M
J,

co
un

te
r-

m
ov

em
en

t
ju

m
p;

C
G

,
ce

nt
er

of
gr

av
ity

;
R

R
,

m
aj

or
al

le
le

;
X

X
,

m
in

or
al

le
le

.



2007). This would suggest the existence of a ‘‘trade-
off’’ between power/sprint and endurance phenotypic
traits such that an individual could be inherently
predisposed toward athletic performance in either
sprint/power or endurance events (Garland et al.,
1990). However, the putative role of the ACTN3
R577X polymorphism on muscle phenotypes in the
Caucasian non-athletic population, particularly in
men, is not well established. Others have reported
that the absence of a-actinin-3 protein influences
negatively knee extension peak isokinetic torque in
middle-aged women but not in men (Walsh et al.,
2008). Similarly, McCauley et al. (2009) reported no
association between ACTN3 R577X genotypes and
high-velocity torque of knee extensor muscles in
adult men. However, Vincent et al. (2007) showed
that healthy young men with the RR genotype had
significantly higher relative dynamic quadriceps tor-
ques at 3001/s and a greater percentage of type IIX
fibers than those with the XX genotype. A source of

disparity between studies can arise from the different
testing batteries used to characterize muscle power
phenotypes. Most jumping or sprinting actions that
are naturally performed by young humans are multi-
joint movements involving high angular velocities
that involve the coordinated participation of the
majority of lower limb muscles (Ashley & Weiss,
1994; Brown & Weir, 2001), whereas most previous
studies on ACTN3 R577X in non-athletes used
predominantly isokinetic tests involving single-joint
movements (e.g. knee extension) at relatively low
angular velocities ( � 3001/s). While there is a high
likelihood that a-actinin-3 is important to produce
high levels of skeletal muscle power, other factors may
be at least as important as the intrinsic characteristics
of muscle proteins; these include the ability to coordi-
nate and sequence complex muscle actions (e.g. take-
off in the case of jumping) and properties of the skeletal
muscle tissue (muscle mass, the ratio of muscle fiber to
tendon cross-sectional area or the relative length of
fibers and tendons) (Lucia et al., 2007). In fact, we
recently reported a-actinin-3 deficiency in a former
Olympic-class long jumper (Lucia et al., 2007). Long
jump involves complex muscle actions (i.e. a combina-
tion of sprint, take-off and landing abilities) that are
not only influenced by muscle protein characteristics.
In summary, we found no overall evidence that a-

actinin-3 deficiency negatively influences the ability
to generate explosive leg muscle power (jumping,
sprinting) in a young non-athletic population, irre-
spective of gender.

Perspectives

ACTN3, also known as ‘‘the gene for speed,’’ is the
first structural skeletal muscle gene for which a geno-
type–phenotype association has been clearly documen-
ted in elite athletes, especially in women. The results
obtained in athletes are, however, difficult to extra-

Table 3. Genotype frequencies (n) in subjects with the best performance ( � 90th of the sex-specific percentile) vs those with lower performance 

(o90th of the sex-specific percentile)

o90th � 90th w2, P-value

RR RX XX RR RX XX

Jump tests
SJ 32.7 (74) 48.7 (110) 18.6 (42) 28.1 (16) 54.4 (31) 17.5 (10) 0.638, 0.727
CMJ 33.0 (75) 47.6 (108) 19.4 (44) 26.8 (15) 58.9 (33) 14.3 (8) 2.349, 0.309

30 m running start
15 m 30.4 (69) 51.1 (116) 18.5 (42) 37.5 (21) 44.6 (25) 17.9 (10) 1.099, 0.577
30 m 31.7 (72) 49.8 (113) 18.5 (42) 32.1 (18) 50.0 (28) 17.9 (10) 0.013, 0.993

30 m standing start
15 m 31.4 (71) 49.6 (112) 19.0 (43) 33.3 (19) 50.9 (29) 15.8 (9) 0.328, 0.849
30 m 31.4 (71) 51.8 (117) 16.8 (38) 33.3 (19) 42.1 (24) 24.6 (14) 2.393, 0.302

RR: major allele, and XX: minor allele of ACTN3 R577X (rs1815739) polymorphism.

SJ, squat jump; CMJ, counter-movement jump.

Table 4. Allele frequencies in subjects with the best performance

( � 90th of the sex-specific percentile) vs those with lower performance

(o90th of the sex-specific percentile)

o90th � 90th w2, P-value

p(R) q(X) p(R) q(X)

Jump tests
SJ 0.327 0.673 0.281 0.719 0.458, 0.498
CMJ 0.330 0.670 0.268 0.732 0.810, 0.368

30 m running start
15 m 0.304 0.696 0.318 0.682 1.045, 0.307
30 m 0.317 0.683 0.321 0.679 0.004, 0.951

30 m standing start
15 m 0.314 0.686 0.333 0.667 0.077, 0.781
30 m 0.314 0.686 0.333 0.667 0.077, 0.781

RR: major allele, and XX: minor allele of ACTN3 R577X (rs1815739)

polymorphism.

SJ, squat jump; CMJ, counter-movement jump, VO2max, maximum

oxygen uptake.



polate to the general population. Advances in the field
of genetics and exercise capacity seem to parallel the
growth of complexity and disparity between studies.
Differences in the age, baseline physical capacity and
ethnic origin of subjects and particularly in the differ-
ent tests used to characterize muscle phenotypes make
a comparison between studies difficult. Further, most
exercise phenotype traits are complex and are thus not
likely to be reducible to a single polymorphism, e.g.
ACTN3 R577X. The effects of epigenetic mechanisms
on gene expression are probably more important than
genetic polymorphisms per se. Further, there might be
other genetic variants, still to be determined, that
might not influence muscle phenotype individually,
but could exert complex interactions with candidate
genes as the one studied here. Finally, beyond geno-

type:phenotype interactions, the effect of MicroRNAs
on human muscle phenotypes remains to be deter-
mined. These short, non-coding RNA molecules reg-
ulate skeletal muscle post-transcriptional gene
expression and thus modulate important muscle as-
pects of muscle function, including contractility (van
Roiij et al., 2008).

Key words: genotype, allele, sports, endurance.
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