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Relational event models for longitudinal

network data with an application to

interhospital patient transfers

Duy Vuab∗, Alessandro Lomia, Daniele Masciac, Francesca Pallottid

The main objective of this paper is to introduce and illustrate relational event models, a new class of statistical

models for the analysis of time-stamped data with complex temporal and relational dependencies. We outline the

main differences between recently proposed relational event models and more conventional network models based

on the graph-theoretic formalism typically adopted in empirical studies of social networks. Our main contribution

involves the definition and implementation of a marked point process extension of currently available models.

According to this approach, the sequence of events of interest is decomposed into two components: (a) event time,

and (b) event destination. This decomposition transforms the problem of selection of event destination in relational

event models into a conditional multinomial logistic regression problem. The main advantages of this formulation

are the possibility of controlling for the effect of event-specific data and a significant reduction in the estimation

time of currently available relational event models. We demonstrate the empirical value of the model in an analysis

of interhospital patient transfer within a regional community of health care organizations. We conclude with a

discussion of how the models we presented help to overcome some the limitations of statistical models for networks

that are currently available.

Keywords: Social network analysis; relational event models; inter-organizational relations; interhospital

patient transfers

1. Introduction

Interest in statistical models for the analysis of longitudinal network data has increased considerably in recent years 
[1, 2, 3]. In medicine, for example, innovative approaches to the statistical analysis of longitudinal networks has helped to 
reframe as network problems a wide variety of problems traditionally understood almost exclusively in terms of individual 
attitudes, behaviors, or decisions [4, 5]. The interest in longitudinal analysis of network data is not only stimulating 
fundamental innovation in statistical modeling, but it is also gradually changing the way in which we think of social
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networks as bases for policy intervention [6], and - more importantly - as objects of theoretical interest [7]. Despite the 
increasing methodological and theoretical interest in the dynamic analysis of social networks [3], relatively little work 
has been done on continuous-time models for large-scale dynamic networks [8]. Recently derived relational event models 
represent one of the most promising directions for developing such models [9].

Relational event models are based on a representation of network data that departs in at least four ways from that 
imposed by the more widely adopted - but also more restrictive formalism of graph theory [7]. First, relational event data 
consists of sequences of events encoding interactions between actors represented conventionally as nodes. Edges are not 
simply present, absent, or characterized in terms of an aggregate weight. Rather, edges are defined in terms of observed 
sequences of discrete events that need not be discretized into network ties. Second, edges are not recorded at discrete time 
intervals of fixed length, but as time-stamped event sequences that are continuously observed. Third, edges are defined in 
terms of event recurrences, rather than state transitions [10]. Unlike the more established stochastic actor-oriented models 
(SAOMs) [11], relational events models do not conceive network ties as states with an intrinsic tendency to endure over 
time [2]. Fourth, and finally, relational event models do not assume that the observed event network is the outcome of a 
Markov process such that the current state of the network determines probabilistically its further evolution: the time frame 
in which network effects actually operate on behavior is considered more like an empirical problem than like an 
assumption.

Against the backdrop of this general discussion, the main methodological contribution of this paper involves the 
implementation of a marked point process extension of currently available relational event models [9]. The main 
advantage of the new approach is the possibility to control for effects associated with event-specific data. The proposed 
model extension accomplishes this task by decomposing events sequences into two parts: (a) event times which can be 
modelled by counting processes, and (b) event destinations (or the “marks”) which can be modelled via discrete choice 
functions. As far as we are aware, this paper presents the first empirical application of this model.

We demonstrate the empirical merits of the present extension of the relational event model in the context of data that 
we have collected on the network of interhospital patient transfer events observed within a small regional community. 
Health care organizations may interact in a variety of ways involving a mixture of collaborative resource exchanges and 
competitive interdependences [12]. Interhospital patient transfers - events generated by decisions of medical staff in one 
hospital (sender) to move the patient to another hospital (receiver) - have frequently been interpreted as an example of 
how the embeddedness in networks of resource exchange relations affects the capacity of hospitals to deliver health care 
services [13, 14, 15, 16], and to collaborate for the benefit of patients [17].

We organize the rest of this paper as follows. In Section 2, we present our new relational event model based on marked 
point processes. In section 3, we introduce the empirical setting, describe the data, and define a suite of covariates and 
network statistics which may assist in modeling the complex dynamics of the interhospital patient transfer event network. 
Section 4 reports the empirical estimates. Section 5 concludes the paper by discussing the contribution of relational event 
models to the analysis of network data, and by outlining potential directions for future research.

2. Relational event models

Building on models for the analysis of event histories [18], the basic idea behind relational event models involves 
modeling time-to-event data as the outcome of a multivariate point process. A number of recent extensions for the 
relational event framework have been proposed to address specific issues raised by the modelling of time-stamped data 
with complex temporal and spatial dependencies. For example, multivariate point processes have been used to derive a 
model for multicast events, i.e., events with one sender but multiple receivers - and study the asymptotic properties of its 
maximum partial likelihood [19]. Relational event models with additive intensity functions allowing for time-varying 
network effects have also been considered [8]. Other variants with diminishing effects (decay) of events are currently being 
developed [20].
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In this paper, we contribute to this rapidly expanding line of contemporary research by considering the relational event 
framework from the marked point process perspective. This will allow us to control for critical covariate effects on multiple 
types of events that may connect the same nodes in a dynamic event network. One innovative aspect of our prosed model 
is its being less computationally intensive than previous approaches that have attempted to deal with the same issue [9, 8].

2.1. The analysis of relational event networks

A point process is a stochastic process whose realization is an ordered list of points on the time line where events occur, 
denoted by E = {t1, t2, . . . , tm} where t1 < t2 < . . . < tm ∈ R+. Marked point processes extend this concept further by 
allowing other important information to be stored along with each event time [21]. For example, in the case of patient 
transfer data that we discuss later in the paper, a marked point process on each hospital i can be used to characterize a 
time-ordered set of transfer events from i, denoted by Ei = {(te, je)} where te ∈ R+ and je ∈ {1, . . . , n} is the time and 
destination of the eth event. We assume that the total number of hospitals is n and they are indexed from 1 to n.

The marked point process of relational events originating from hospital i in turn can be modelled by a conditional

intensity function λi

(

t, j|Ht−

)

where Ht− denotes the history of all transfer events right before time t. In the illustrative

case that we develop later in the paper, history also includes information on the medical specialties from and towards

which a patient is transferred denoted by ms(e) and mr(e), respectively (where the subscript s stands for sender and r for

receiver). Such information is already available before the transfer time and can affect the choice of transfer destination.

We further assume a separable form for the marked point intensity function [22]:

λi

(

t, j|Ht−

)

= λi

(

t|Ht−

)

× pi
(

j|Ht−

)

,

where the transfer time t is modelled by the conditional intensity function λi

(

t|Ht−

)

and the mark j is modelled by

conditional mark probabilities pi
(

j|Ht−

)

.

Intuitively, this separable form assumes that the relational process of interest may be divided into two steps: the first

involves a decision to initiate - or “send” a specific relational event. In the example we develop in the empirical part of

the paper, the decision concerns transferring a patient from a sender to a receiver hospital. The second step involves the

choice of destination - or “receiver” of the event. In our illustration, this second step involves the choice of one among

the eligible hospitals with the required knowledge and resources as signaled by the presence of the medical specialty

mr(e) for which the patient is being transferred. A number of exogenous and endogenous factors can also contribute to

this decision process. For example, hospitals prefer to transfer their patients to other hospitals in the same administrative

unit or to established partners with which they have collaborated in the past. The former (location) is an example of an

exogenous factor - a factor whose effect does not depend on network structure. The latter (event repetition) is an example

of an endogenous factor - a factor whose effect depends on the self-organizing tendencies of the network. Sections 3.3

and 3.4 will discuss in detail how these (exogenous) covariate and (endogenous) network effects may be incorporated in

relational event models.

For our current purposes, a particularly important feature of patient transfer data is that transfer events can be classified

into within- and between- specialty. A within-specialty events involve a patient transferred across different hospitals but

within the same medical specialties (patients for whom, in other words, ms(e) = mr(e)). A between-specialty event is

recorded whenever a patient is transferred across hospitals but between different medical specialties, i.e. ms(e) 6= mr(e).

To compare hospital collaboration networks between these different event sequences, we will assume two distinct models

for each event type. Each model has a different baseline intensity function and separate vectors of covariate and network

effects.

Within-specialty model. For the sequence of within-specialty events, the conditional intensity function λi
w(t|Ht− ) for 

transfer times from hospital i can be defined in the Cox proportional hazard form [23]:

λw
i (t|Ht−) = λw

0 (t) exp
[

θ
⊤
w s(t, i)

]

, (1)
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where the superscript w stands for the within-specialty setting, s(t, i) is the vector of covariate and network statistics for

the sending hospital i, θw and λw
0 (t) are sending effects and the baseline rate of the transfer time model for within-specialty

events, respectively. To control for the effect of erratic changes in the baseline rate during the observation period, we also

0

0

assume a non-parametric form for λw(t), a flexible and widely used approach in survival and event history analysis [24]. 
Other parametric choices for λw(t) are also possible, though the resulting statistical inference will be less tractable in the

presence of time-dependent network statistics s(t, i) [25].

The mark j or the transfer destination can be considered as a conditional multinomial logistic regression problem [26]

where potential choices are limited to hospitals having the specialty for which the patient is being transferred, i.e. mr(e).

In other words, the probability that an eligible hospital j is chosen as the transfer destination is defined by:

pwi (j|Ht−) =
fw
i (j|Ht−)

∑

k∈D(mr(e))

fw
i (k|Ht−)

,
(2)

where D
(

mr(e)
)

is the set of hospitals at time t having the specialty mr(e) and fw
i (j|Ht−) is individual choice function.

The sending hospital i must be excluded from the potential set D
(

mr(e)
)

since we are only considering interhospital

patient transfer events. Each individual choice function in turn is given by:

fw
i (j|Ht−) = exp

[

β
⊤
w s(t, i, j)

]

, (3)

where s(t, i, j) is the vector of covariate and network statistics between i and j, and βw are corresponding effects of the

transfer destination model for within-specialty events.

Between-specialty model. Similar to within-specialty events, the conditional intensity function for the transfer times of

between-specialty events is given by:

λb
i (t|Ht−) = λb

0(t) exp
[

θ
⊤
b s(t, i)

]

,

where θb and λb,0(t) are sending effects and the baseline rate of the tranfer time model for between-specialty events.

Similar network statistics s(t, i) can be used for both within and between-specialty models; however, different baseline

intensities, i.e. λw
0 (t) and λb

0(t), and network effects, i.e. θw and θb, are assumed.

Similarly, the mark j for between-specialty events is also modelled as a conditional multinomial logistic regression

problem where potential choices are limited to hospitals having the specialty for which the patient is being transferred.

The individual choice function for between-specialty events has the same form as the individual choice function for

within-specialty events, but with a different set of network effects βb:

f b
i (j|Ht−) = exp

[

β
⊤
b s(t, i, j)

]

,

Aggregate model. To demonstrate the relevance of our separability assumption and the predictive ability of network

statistic, we also consider the aggregate setting where the model is fitted to all patient transfer events. A likelihood ratio

test is then used to compare the goodness of fit between this aggregate model and the above combination of two different

within and between-speciality models.

2.2. Model estimation, comparison, and interpretation

For parsimony, but without loss of generality, we limit our discussion to estimation procedures only for within-specialty

events. Similar procedures are applied to the between-specialty model. Firstly, since the non-parametric form of the

baseline intensity λw
0 (t) is assumed, parameters θw can be estimated by maximizing the partial likelihood of the form
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[24]:

PL(θw) =
∏

e∈Ew

exp
[

θ
⊤
w s(te, ie)

]

n
∑

i=1

exp
[

θ
⊤
w s(te, i)

]

,
(4)

where Ew is the sequence of within-specialty events, ie is the sending hospital of transfer event e. The covariance matrix of 
the maximum partial likelihood estimate θˆw is computed as the inverse of the negative Hessian matrix of the last 
iteration. Large-sample results based on the partial likelihood can be found in [24, 18] where no assumption about the 
independence of individual point processes is made. A recent theoretical justification of this partial likelihood approach 
especifically for network data has been discussed thoroughly in [19]. In practice, we can generate a nested case-control 
data set of network statistics s(t, i) over event times, and then rely on conditional logistic regression models to obtain θˆw 

and its standard errors. We discuss in details about this implementation in the appendix B.

Secondly, parameters βw of the transfer destination model may be estimated by maximizing the likelihood of discrete

choice probabilities of all within-specialty transfer events given by:

L(βw) =
∏

e∈Ew

exp
[

β
⊤
w s(te, ie, je)

]

n
∑

j=1

exp
[

β
⊤
w s(te, ie, j)

]

.
(5)

In practice, similar to the estimation of θ̂w, we can generate a nested case-control data set of network statistics s(t, i, j)

over event times, and then employ a discrete-choice modelling library to obtain β̂w and its standard errors.

Without considering the computation cost of network statistics s(t, i) and s(t, i, j) which can vary significantly by 
modelling choices, the time complexity of both estimation procedures for transfer time and destination models is linear in 
the number of nodes n and the number of events |E|, i.e. O(n × |E|). For the original relational event framework [9] 
where a single intensity function is used to model both transfer times and destination choices, however, time complexity of 
the partial likelihood estimation procedure is quadratic in the number of nodes n, i.e. O(n2 × |E|). Consequently, besides 
the ability to control for covariate data on events, computational gain is another advantage of our proposed framework, 
which is sustantially important when the network size in terms of nodes n is large. For those readers who are interested 
in the scalability of the relational event framework, two other promising approaches that have been explored are online 
inference [8] and nested case-control sampling [27]. They have been applied successfully to the analysis of networks with 
ten thousands of nodes and events. The state of the art exponential random graph models and stochastic actor-oriented 
models can not handle such large size of network data. Finally, conditional logistic regression can be slow when the 
number of predictors is large. In this case, regularization terms such as lasso penalty [28] can be used not only to introduce 
sparsification but also reduce the estimation time.

To verify the separability assumption and demonstrate the predictive ability of different sets of network statistics, we 
carry yearly rolling prediction experiments which are the most appropriate out-of-sample evaluation for timestamped 
event data [25, 8]. At the beginning of every year of the observation period, we estimate model coefficients using all 
historical events up to that time point and then employ this learned model to make prediction about hospital destinations 
for all events in the next year. This yearly rolling evaluation process is repeated until all test events are considered. To 
compare different models on this prediction task, we employ recall criterion which is defined as the percentage of the 
correct hospitals that are found in the sorted likelihood lists from positions 1 to K:

Recall =

∑

(t,i,j)∈E
I[j ∈ Top(t, i,K)]

|E|
(6)

where K is the cut-point, E is the set of test events and Top(t, i,K) is the top-K list of potential hospital destinations

for the transfer event from i ranked based on the intensity function λi

(

t, j|Ht−

)

. However, to compare network effects
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across three speciality settings, i.e. an in-sample evaluation, we use Akaike Information Criterion with a correction for 
finite sample sizes (AICc) [29] defined as follows:

AICc = −2× logPL(θ̂) + 2× p+ 2×
(p+ 1)(p+ 2)

m× n− p− 2
, (7)

where P L(θ) is the partial likelihood (4), θˆ is the maximum likelihood estimate of the coefficient vector θ, p is the 
number of variables, and m = |E| is the total number of transfer events. Models with smaller AICc values are preferred.

Regarding model interpretation, a positive estimate of parameter θ typically indicates that events are more likely to 
occur with higher values of the corresponding covariate or network statistic. A negative estimate means that events are 
less likely to occur with higher values of the corresponding covariate. Specific interpretations for each covariate or 
network statistics will be discussed in greater detail in Sections 3.3 and 3.4. Finally, to allow for the relative comparison 
between effect sizes of covariates and network statistics, we also apply a standardization step, i.e. we transform all 
variables so that their means and variances are 0 and 1, respectively.

2.3. Related work

Compared to the original relational event model [9], the main novelty of our separable sender intensity and receiver 
choice model is that it allows a more detailed representation of the data-generating process where event-specific 
information is available. Moreover, the weighted relational event model in [30] considers the separation between events 
weights and dyads rather than the separation between senders and receiver effects. Our model adds more flexibility to the 
relational event framework by elaborating that different aspects of event generation processes can actually be modelled by 
different probabilistic components: full parametric survival models can be used in modelling event times or sender effects 
while different discrete-choice and regression models can be used to model receiver and weight effects, respectively. This 
separability in turn allows us to control for effects associated with event-specific data.

Another distinctive feature of this separable model is its scalability. Under this intensity decomposition approach, the 
model estimation time can be reduced from quadratic to linear in the number of network nodes. In combination with 
the nested case-control sampling method [27], this model may be usefully applied to the analysis of large collaboration 
networks. Although this scalability feature can not be illustrated fully in our relatively small application data set, it is 
critical in promoting wider applications of the relational event framework. Network data as continuous-time processes 
have been considered long ago time in statistical social network literature [31, 32]; however, computationally intensive 
estimation procedures have limited their applications until recently.

3. Empirical illustration: Interhospital patient transfer

In medicine, methodological interest in developing statistical models for the analysis of social networks follows but at the 
same time helps to frame - the recurrent observation that if individuals are connected so is their health [33]. Recently, this 
argument has been transposed and extended to the analysis of relations between health care organizations: if health care 
organizations are connected, so must be the outcomes of their activities and the quality of the services they render [34, 35, 
17]. In the illustrative analysis that we present later in the paper, hospitals are represented as nodes in an event network. 
Patient transfer events defined edges in a network of interdependent event streams. In the empirical part of the paper we 
focus our attention on the dynamics of the networks generated by different kinds of interhospital patient transfer events. 
The case study illustrates how the marked point process approach helps to specify and estimate models that take into 
account - and distinguish between - different kinds of events.
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3.1. Interhospital patient transfer as a network process

Given increasingly scarce healthcare resources and highly differentiated hospitals, interhospital transfer is an essential part 
of the care of many patients. This is particularly the case for critically ill patients [36]. Pressure on resources is making 
patient transfer and sharing between partner hospitals increasingly relevant also for the treatment of elective patients.

Building on recent studies on interhospital patient mobility, we are interested in how sequences of interhospital patients 
transfer events give rise to an interorganizational network whose statistical properties may be examined empirically [35]. 
Patient transfer requires that partner hospitals commit resources to joint infrastructural investments in support of relational 
coordination [13, 37]. For this reason, patient transfer relations are typically interpreted as a reliable signal of collaboration 
between sending and receiving hospitals [15, 12]. Interhospital patient transfer is a dyadic relation established by hospitals 
in a highly decentralized fashion. In the analysis that we report in Section 4, we focus on the emergent properties of the 
network resulting from the accumulation of these apparently independent dyadic relations. We limit our analysis to the 
transfer of elective patients. We exclude emergency transfers because emergency networks are strongly constrained by 
exogenous factors.

In the empirical analysis we concentrate on differences in the relational mechanisms underlying two different kinds of 
interhospital patient transfer. The first involves patient that are transferred across hospital and between different clinical 
specialties. The second involves patients that are transferred between hospitals but within the same clinical specialty. We 
emphasize this distinction because recent research has shown that different kinds of patient transfer are driven by different 
partner selection criteria and give rise to different forms of relational coordination between hospitals [17].

3.2. Empirical setting

The data set we analyze contains information on interhospital patient transfer events from 2005 to 2008 between 35 
hospitals located in Abruzzo, a small central Italian region with 1,300,000 inhabitants. There are 22 public and 13 
accredited private hospitals serving the regional community. Among a total number of 3,462 transfer events, 2,858 
events are across clinical specialties, i.e., the specialty in the sender hospital is different from the specialty in the 
receiving hospital. In other words, the majority of interhospital patient transfer events occur between, rather than within 
clinical specialties. Daily rates of within and between-specialty events are plotted in Figures 1(a) and 1(b). They varied 
substantially across the observation period - an observation lending support for the non-parametric form of baseline 
intensities discussed in Section 2. Patient transfer events only occurred among 35 out of 44 distinct specialties listed 
by the Agency of Public Health.

In Section 2 we have discussed how the model we propose may be adopted to account for different kinds of events. 
That discussion is directly relevant here because interhospital transfer events within and between specialties are clearly 
different. The former kind of event (within specialty transfer) is typically motivated by contingent operational factors 
related to bed availability, or differences in capacity constraints between the sender and the receiver hospital [17]. The 
latter kind of event (between specialty interhospital transfer) is typically motivated by difference in competencies and 
capabilities between the sender and receiver hospital. It is possible that the networks induced by these different kinds 
of events will be different, and it may be interesting to understand exactly how these differences emerge and affect the 
dynamics of interhospital patient transfer relations.

Besides internal differences in medical specialties, other factors like, for example, the geographical location of partner 
hospitals can also affect the likelihood of observing interhospital patient transfer events. Figure 2(a) shows the histogram 
of pairwise distances between 35 hospitals. Minimum and maximum distances are 2 and 146 kilometers, respectively. 
Figure 2(b) shows the correlation plot between these distances and edge event counts. It reveals that hospitals are more 
likely to establish patient transfer relationships with closer partners. Figures 3(a) and 3(b) overlay the within and between-

specialty patient transfer networks on the geographical map of the region. Additional information on hospitals provided 
by the Regional Agency of Public Health is listed in Table 1. Moreover, there is a negative effect of the matching between 
institutional categories - as defined by public and private ownership - of sending and receiving hospitals on event counts.
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(b) Between-specialty event network

Figure 3. The interhospital patient transfer networks overplaid over the geographical map. Edge width is plotted proportionally to the cumulative numbers of events over edges.

Table 1. Covariate data on hospitals provided by the Agency of Public Health. Longitudinal covariates marked by (*) are

updated at the beginning of every year.

Covariate Unit of Measure Controls for Differences in

Geographical distance Kilometers Distances

Institutional category Dimensionless category Organizational form

Local health units (LHUs) Dimensionless category Administrative areas

Level of care provided Dimensionless category Capacity and technology

Size∗ Hospital beds Hospital size

Occupancy rate∗ Proportion of beds occupied Hospital capacity management

Competition Dimensionless proportion Levels of rivalry

Similarity∗ Dimensionless proportion Internal organizational structure

covariate implies that patients are more likely to be transferred to hospitals with high covariate values. A negative effect,

on the other hand, means transfer events tend to flow to hospitals with low covariate values. In our analysis, two covariates

including size and occupancy rate are used as receiver variables.

Matching covariates. A matching covariate is used to represent the binary similarity between two hospitals in terms

of their categorical charateristics. Formally, a matching covariate between two hospitals i and j on a time-dependent

categorical covariate c is defined as:

sc(t, i, j) = I
[

c(t, i) = c(t, j)
]

, (8)

where c(t, i) and c(t, j) denote the covariate values of hospitals i and j at time t, respectively; and I(x) is an indicator

function that equals to 1 if the statement x is true or 0, otherwise. A matching covariate on institutional category, for

example, equals to 1 if two hospitals are both private or public, otherwise it is 0. A negative effect of this covariate means

that patients are more likely to be transferred between institutional categories, i.e. from public hospitals to private ones or

vise versa. In our analysis, matching variables are used for three covariates including institutional category, local health

units (LHUs), and level of care provided.

Undirectional covariates. An undirectional covariate is used to represent some symmetric dyadic charateristics between

two hospitals such as their geographical distance or similarity measured by the proportion of overlapping medical

specialities that they provide. A negative effect of geographical distance, for example, means that patients are more likely
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Table 2. Network statistics and interpretations.

Network Statistics Interpretation

Out degree

Out intensity

In degree

In intensity

Recent sending

Recent receiving

Repetition

Reciprocity

Assortativity by degree

Assortativity by inten-

sity

Transitive closure

Cyclic closure

Sending and receiving

balance

A positive estimate of the out degree coefficient may be taken as evidence that 
hospitals with a higher number of established partners are more likely to transfer 
patients out.

Its positive out intensity effect may be interpreted as evidence that hospitals with 
high patient transfer intensity in the past tend to transfer more patients out.

A positive effect of in degree will provide evidence for preferential attachment 
phenomenon where hospitals with a larger number of sending partners tend to 
receive more patients in the future.

A positive effect of in intensity is also expected to support for the preferential 
attachment phenomenon, i.e. hospitals currently receiving a large number of 
patients are more likely to be selected as transfer destinations in future transfers. 
A negative coefficient of recent sending provides empirical evidence for the recency 
effect in patient transfer events, i.e. there is an increase in the event likelihood 
following a recent one.

A negative estimate of coefficient associated with recent sending implies a 
clustering tendency in the selection of hospital destinations, hospitals recently 
chosen as transfer destinations are more likely to be selected in the future.

A positive effect of repetition can be interpreted as a tendency that hospitals prefer 
to choose previous partners as destinations for their future patient transfers.

A positive effect of reciprocity may be taken as evidence that hospitals tend to 
reciprocate collaboration ties by transfering patients to their previous partners who 
have shared patients with them before.

A positive coefficient of assortativity by degree would implies that the network is 
assortative in terms of collaboration degrees, i.e. hospitals with a higher number 
of established partners are more likely to collaborate with hospitals with a larger 
number of sending partners.

A positive effect of assortativity by intensity implies that hospitals with high 
sending intensity are more likely to collaborate with hospitals with high receiving 
intensity.

A positive estimate of coefficient associated with the transitive closure statistic 
(Figure 4(a)) may be interpreted as evidence that hospitals prefer to select partners 
of their partners as transfer destinations.

A negative effect of cyclic closure (Figure 4(b)) in the presence of a positive 
transitive closure effect, on the other hand, implies a hierarchical clustered 
collaboration structure.

Negative effects of these statistics (Figures 4(c) and 4(d)) imply an unbalanced 
structure in the patient transfer network. In other words, hospitals are less likely 
to collaborate with each other if they share the same sending or receiving partners. 
The existence of this unbalanced structure could be attributed to the specialization 
of hospitals.

Our third question concerns differences in covariate effects and collaboration structures between two different kinds

of event sequences: within-specialty and between-specialty patient transfer across hopsitals. For example, we would

expect that geographical distance to have a similar effect on both event settings, i.e., patients should be more likely to

be transferred between hospitals in geographically close proximity. However, we anticipate some substantial variations in

collaboration structures between within-specialty and between-specialty settings. In our comparative analysis, we report

parameter estimates of the full relational event model fitted on three event settings, within-speciality, between-speciality,

and aggregate event sequences.
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(b) Comparison of Covariates and Network Statistics

Figure 5. Predictive comparison experiments between: (a) nonseparability and separability assumptions, and (b) covariates and network statistics. Error bars represents 2 standard

errors of recall means on all test events. The higher the recall is, the better out-of-sample prediction performance that a model achieves.

4.2. Results

Separability assumption. We consider the full relational event model of all covariates and network statistics discussed in 
Section 3.4 with two different assumptions: the nonseparable model where both sender and receiver components are 
modelled by the same intensity function [9] and our proposed separable model as discussed in Section 2.1. To isolate the 
effect of the time weighting parameter α in this experiment, we fix α = 0, i.e. all events are assigned equal weights 1.0, 
resulting in count-based network statistics considered previously in [9, 25, 19, 17]. Both models are compared in a yearly 
rolling prediction experiment where the goal is to correctly predict hospital destinations of 2709 test transfer events during 
the period from 2006 to 2008. We do not compare these models on the period 2005 since historical events are not yet 
available to construct network statistics. Moreover, we only focus on the aggregate setting to allow for a large number 
of test events. Figure 5(a) shows the recall performance of two models. Consistently across all cut points, the separable 
model achieves better prediction performance than the nonseparable one.

Network statistics. To highlight the predictive ability of our proposed network statistics for interhospital patient transfer 
data, we compare two nested separable relational event models. The first covariate only model includes all covariates 
listed in Table 1, the Complementarity indicator discussed in Section 3.3, and two temporal statistics, recent sending and 
recent receiving. The second model is the full network model that includes all covariates and network statistics discussed 
in Section 3.4. An evaluation setting similar to the nonseparability and separability assumption experiment is also used for 
this comparison. Figure 5(b) shows the consistently better prediction performance of the network model over the covariate 
one.

Model interpretation. Supporting by two comparision results above, we only consider the full network model with

the separable assumption in this model interpretation discussion. In particular, since our main goal here is to compare

network effects across three event settings, within-speciality, between-speciality, and aggregate event sequences, we will

estimate the models on all available data, i.e. consider an in-sample evaluation. To achieve the best model fit, we vary time

decay parameter α from 0 to 1.0 with step size 0.05 to search for its optimal value. Different value of α can be used for

each network statistics; however, such extreme choice requires a high dimensional grid search to find the optimal set of

these time-weighting parameters. We choose to use only one time-weight parameter α for all network statistics to achieve

parsimony, especially when our application data set is small.

Figure 6 shows AICcs of the network model across all event sequences. These AICc plots demonstrate the predictive
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(c) Between-specialty events

Figure 6. Model comparison between the network model at different time-weighting parameter values across aggregate, within-specialty, and between-specialty event sequences.

Time decay parameter α is varied 0 to 1.0 with step size .05 to search for the optimal value when computing time-weighted network statistics.

improvement when the time-weighted method is used in the computation of network statistics. In all settings, the optimal

value of α is far from 0 where all events are assigned equal weights 1.0. Optimal values for time decay parameter α for

aggregate, within-specialty, and between-specialty settings are 0.6, 0.3, and 0.6, respectively. A goodness of fit test can

also be used to compare two models: the aggregate model (the null hypothesis) versus the combination of two separate

within and betwee-speciality models (the alternative hypothesis). The likelihood ratio statistic computed at optimal time

decay parameters is 808.2 with 25 degrees of freedom. It supports for our choice of considering two different models for

within and between-speciality event sequences. Further model checking results of these selected models using Schoenfeld

residuals are presented in the appendix C. The selected models are presented in Table 3 and their interpretations will be

discussed next. It is important to note that standard errors of main model parameters θ and β in Table 3 are approximated

in the sense that their calculations are carried independently from the time decay paramter α.

Temporal and network effects of the transfer time model in Table 3 are all similar and statistically significant across both

within-specialty and between-specialty settings. The positive effects of out degree and out intensity provide evidence that

hospitals who have many established partners or are very active in patient transfer are more likely to continue sending their

patients out. The negative effect of recent sending implies that transfer events are clustered rather than homogeneoulsy

distributed over time. Finally, the positive effect of the complementarity indicator implies that patients in the between-

specialty setting are more likely to be transferred from hospitals that do not have the medical specialty for which a patient

is being transferred, rather than from hospitals having that specialty.

Regarding covariate effects in the transfer destination model, the positive and statistically significant of size flow in both

within-specialty and between-specialty settings implies that patients are more likely to be transferred to large hospitals

in terms of beds. Additionally, the effect of occupancy rate flow is statistically significant and negative in both event

sequences, which can be interpreted that patients are more likely to be transferred low hospitals in terms of occupancy

rates. Moreover, negative and statistically significant effects of geographical distance and institutional category in both

sequences confirm our findings in Section 3, i.e. hospitals prefer to send their patients to nearby ones or ones in different

institutional categories. In particular, the hazard ratio of a patient transfer event connecting 2 hospitals in the within-

specialty network decreases by an estimated 1.9% for one additional km in distance, while the same estimated value in

the between-specialty network is 3.1%. In other words, the preference for establishing patient transfer relationships with

closer partners is 1.6 times weaker in the within-specialty network than in the between-specialty network. Besides the

geographical preference, hospitals are more likely to establish patient transfer relations with others in their same local

health units. The effect of LHU membership is statistically significant and positive in both sequences. However, level of

 13
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care provided is not associated with the propensity of being chosen as transfer destinations in both event sequences. Both

estimated coefficients are not statistically significant.

The within-specialty and between-specialty networks are different on two covariate effects: competition and similarity.

These effects are statistically significant in the between-specialty network, but not in the within-specialty network. Their

positive effects provide evidence that in the between-specialty network, highly competing or similar hospitals are more

preferred as transfer destinations. The presence of collaborative patient transfer events between competing hospitals

is consistent with prior results on collaboration between competitors [12], while the higher likelihood of observing

collaborative patient transfer events between similar hospitals is consistent with absorptive capacity arguments according

to which similarity facilitates interorganizational communication, learning and knowledge sharing [39].

Regarding collaboration structures between hospitals, positive effects of repetition and reciprocity across both within-

specialty and between-specialty settings provide evidence that hospitals tend to maintain and reciprocate to their

established patient transfer relations. Furthermore, the repetition and reciprocity effects are stronger in the within-specialty

network. For instance, the hazard ratio of a patient transfer event connecting 2 hospitals in the within-specialty network

increases by an estimated 0.3% per one unit increment in the repetition statistic, while the same estimated value in

the between-specialty network is 0.01%. In other words, the preference for transfering patients to partners who have

collaborated on one transfer in the past is nearly 30 times stronger in the within-specialty network than in the between-

specialty network. Moreover, the negative effect of recent receiving implies a clustering tendency in the selection of

hospital destinations, i.e. hospitals recently chosen as transfer destinations are more likely to be selected in the future.

However, other network effects act differently between within-specialty and between-specialty settings. While hospitals’

popularity measured by in degree and in intensity has no effect or negative effect on attracting future tranfers in the

within-specialty setting, they are both positive in the between-specialty setting. Additionally, the within-specialty patient

transfer network is disassortative (i.e., negative assortativity effects) while the between-specialty patient transfer network

is assortative (i.e., positive assortativity effects). Finally, the only positive and statistically significant effect of transitive

closure in the within-specialty network at level .05 implies a weakly clustered but hierarchical collaboration structure. On

the other hand, for the between-specialty patient transfer network, the effect of cyclic closure is positive and statistically

significant, while transitive closure is not significant. These effects, associated with negative and significant sending and

receiving balance effects imply a clustered but flat and unbalanced collaboration structure among hospitals. Clearly,

the different logics underlying the interhospital patient within and between specialties sustain different principles of

organziational bonding [40].

5. Discussion and conclusions

In this paper we have introduced relational event models for the analysis of longitudinal network data. The marked point

process variant that we have presented improves over available models by allowing comparative analysis of the networks

generated by sequences of different micro-relational events.

The model we have presented has four main advantages over alternative analytical frameworks that are currently adopted

in the analysis of social and interorganizational networks. The first is that relational events are directly observable and

need not be aggregated somewhat arbitrarily into network ties whose stability may depend delicately on dichotomization

thresholds. This facilitates the development of models that better reflect the data generating process [7]. The second is
that the model scales to event networks of arbitrary size. In combination with nested case-control sampling methods [27],

this feature facilitates the analysis of large and very large event networks. The third advantage is that the marked point

process model that we have implemented allows identification of different events underlying observed relational patterns.

This feature of the model reduced the possibility that observed networks will be constructed out of heterogeneous events

[17]. Finally, the identification of a timing and a choice component in the overall relational event process opens the door
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Table 3. Estimated effects of the full network model in aggregate, within-specialty, and between-specialty event sequences.

Standard errors are in parentheses and ** for p < .01 and * for p < .05. First four effects are related to transfer times and

the rest are related to destination choices.

Aggregate Within Between

specialty specialty

Complementarity 0.18∗∗ - 0.41∗∗

(0.02) - (0.03)
Out degree 0.67∗∗ 0.55∗∗ 0.71∗∗

(0.02) (0.06) (0.03)
Out intensity 0.44∗∗ 0.41∗∗ 0.43∗∗

(0.01) (0.03) (0.01)
Recent sending −1.39∗∗ −1.67∗∗ −1.36∗∗

(0.15) (0.25) (0.16)

In degree 0.36∗∗ −0.02 0.22∗∗

(0.07) (0.15) (0.07)
In intensity 0.51∗∗ −0.48∗∗ 0.6∗∗

(0.05) (0.12) (0.05)
Recent receiving −1.05∗∗ −1.23∗∗ −0.94∗∗

(0.16) (0.24) (0.15)
Assortativity by degree −0.07 −0.23∗∗ 0.05

(0.04) (0.08) (0.04)
Assortativity by intensity 0.12∗∗ −0.24∗∗ 0.11∗∗

(0.03) (0.08) (0.04)
Reciprocity 0.09∗∗ 0.12∗∗ 0.08∗∗

(0.03) (0.04) (0.03)
Repetition 0.39∗∗ 1.07∗∗ 0.34∗∗

(0.03) (0.15) (0.05)
Transitive closure 3× 10−3 0.18∗ −0.02

(0.04) (0.09) (0.04)
Cyclic closure 0.32∗∗ 0.02 0.28∗∗

(0.05) (0.13) (0.06)
Sending Balance −0.35∗∗ −0.19 −0.23∗∗

(0.05) (0.15) (0.05)
Receiving Balance −0.28∗∗ −0.07 −0.32∗∗

(0.04) (0.06) (0.05)
Size flow 0.19∗ 1.22∗∗ 0.56∗∗

(0.09) (0.18) (0.1)
Occupancy rate flow −0.18∗∗ −0.39∗ −0.21∗∗

(0.06) (0.18) (0.07)
Geographical distance (Km) −0.78∗∗ −0.47∗∗ −0.85∗∗

(0.05) (0.11) (0.06)
Institutional category −0.48∗∗ −1∗ −0.55∗∗

(0.06) (0.4) (0.06)
LHU membership 0.70∗∗ 0.59∗∗ 0.74∗∗

(0.03) (0.07) (0.03)
Level of care provided −0.09∗∗ −0.07 −0.02

(0.04) (0.08) (0.04)
Competition 0.06∗∗ 0.07 0.06∗

(0.02) (0.05) (0.03)
Similarity 0.16∗∗ 0.05 0.20∗∗

(0.04) (0.08) (0.05)

to a more explicit framing of relational event models as decision models.

The case study that we have examined on interhospital patient transfer provides a useful illustration of how these various
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features of the models we have proposed may be able to sustain empirical analysis of complex relational data. More

specifically, we have shown that the aggregate results mask a considerable level of heterogeneity in logics underlying

patient transfer relations between hospitals. We have found that in the within-specialty network hospitals are selected

as transfer destinations regardless their levels of competition or similarity with sending hospitals. On the contrary, high

levels of competition or similarity between hospitals in the between-specialty network predict a higher likelihood of

observing a collaborative patient transfer relation. Moreover, the well-known preferential attachment mechanism [41] also

acts in opposite ways across the two network settings. On one hand, popular hospitals in the between-specialty network

tend to receive more patients. On the other hand, popular hospitals in the within-specialty network are less likely to

be selected as transfer destinations. Another difference between two networks is their assortative mixing patterns [42].

While the between-specialty network is assortative (i.e., highly collaborative hospitals tend to transfer their patients to

popular hospitals), the within-specialty network is disassortative (i.e., highly collaborative hospitals are less likely to

send their patients to popular hospitals). Finally, clustering structures of two patient transfer networks are significantly

different. Collaborations between hospitals in the within-specialty network is weakly clustered but hierarchical, whereas

collaborations between hospitals in the between-specialty network is clustered but flat and unbalanced.

Many research questions still need to be addressed in future work to advance the proposed marked point process

approach for relational event data. The first problem is to develop a rigorous approach for model checking where observed

network statistics can be compared with simulated ones following goodness of fit methods that have been introduced

in exponential random graph models [43] and stochastic actor oriented models [44]. Such a goodness of fit procedure

will require the estimation not only of covariate and network parameters but also the baseline intensity function so that

network event data sets can be simulated. While Breslow’s estimator of the baseline intensity function [23] can be obtained

by plugging in the partial likelihood estimator of the transfer time model, another more efficient approach is to use a fully

parametric model for event times. The second problem is to employ other discrete choice models for event marks (i.e.,

transfer destinations) such as probit models [26]. A more advanced approach to discrete choice modelling would be

generalized additive models [45] which allow for non-linear effects of covariate and network statistics. For example, it
is possible that the preferential attachment effect, rather than strictly following a log-linear pattern imposed by the logit

function, might saturate when the in degree statistic reaches a threshold value. Such a network threshold effect has been

considered in modelling diffusion through networks [46].
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Appendix: Relational event models for

longitudinal network data with an application to

interhospital patient transfers

Duy Vuab∗, Alessandro Lomia, Daniele Masciac, Francesca Pallottid

A. Network effects

Network effects in relational event models can be represented as network statistics which can be divided into four types:

nodal, dyadic, assortative , and clustering network statistics.

A.1. Nodal network statistics

They are computed based on past transfer events from and to each hospital. They are included in both the transfer event

and destination models to estimate structural and temporal effects of past patient transfer activities on future ones. For

the analysis of interhospital patient transfer networks, we consider six nodal network statistics including out degree, out

intensity, in degree, in intensity, recent sending, and recent receiving.

Out degree is the number of hospitals to which a hospital has shared patients. Formally, it may be defined as:

Out degree(t, i) =
∑

k 6=i

I
[

Nik(t) > 0
]

, (1)

where Nik(t) is the number of transfer events from hospital i to hospital k by time t. This nodal network statistic which

is visualized in Figure 1(a) is included in the transfer event model to estimate the effect of hospitals’ collaboration scope

on their propensity to initiate new patient transfer events. A positive estimate of the coefficient associated with out degree

may be taken as evidence that hospitals with a higher number of established partners are more likely to transfer patients

out.

Out intensity. While out degree measures the past collaboration activity of a hospital in terms of scope, out intensity

measures its collaboration activity in terms of intensity (see Figures 1(a) and 1(b)). Particularly, it is defined as the average
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number of patient transfer events that hospital i has initiated per each of its collaboration ties:

Out intensity(t, i) =

∑

k 6=i

Nik(t)
∑

e=1

f(t, T e
ik, α)

∑

k 6=i

I
[

Nik(t) > 0
]

,
(2)

where T e
ik is time of transfer event e from hospital i to hospital k. Moreover, each transfer event is assigned a time-

dependent weight f(t, T e
ik, α) to account for its temporal relevance:

f(t, T e
ik, α) =

1

(t− T e
ik)

α
, (3)

where α > 0 is time-decay parameter which could be optimized by a grid search. Intuitively, this time-weighting scheme

[1] effectively imposes a criterion that events close to the current time t are more important than those further in the past.

This statistic is included in the transfer event model. Its positive effect may be interpreted as evidence that hospitals with

high patient transfer intensity in the past tend to transfer more patients out.

In degree. To explore the effects of popularity on the propensity that hospitals will be chosen as transfer destinations,

two nodal network statistics, in degree and in intensity in Figures 1(c) and 1(d), are considered. Particularly, to measure

the popularity scope of hospital j, we define in degree as the number of hospitals from which j has received patients:

In degree(t, j) =
∑

k 6=j

I
[

Nkj(t) > 0
]

. (4)

A positive effect of in degree will provide evidence for preferential attachment phenomenon [2] where hospitals with a

larger number of sending partners tend to receive more patients in the future.

In intensity. To measure hospitals’ popularity in terms of intensity, we define in intensity as the number of transfer

events that a hospital has received per each of its sending partners:

In intensity(t, j) =

∑

k 6=j

Nkj(t)
∑

e=1

f(t, T e
kj , α)

∑

k 6=j

I
[

Nkj(t) > 0
]

.
(5)

Each receiving event is also assigned a time-dependent weight f(t, T e
kj , α) similar to the definition of out intensity. A

positive effect of in intensity is also expected to support for the preferential attachment phenomenon [2], i.e. hospitals

currently receiving a large number of patients are more likely to be selected as transfer destinations in future transfers.

Recent sending. To control for the recent activeness of a hospital in patient transfer, we define recent sending as the gap

time since its last sending event:

Recent sending(t, i) = t−max
e∈Ei

te, (6)

where te denotes time of transfer event e from hospital i. A negative coefficient of recent sending statistic provides

empirical evidence for the recency effect in patient transfer events, i.e. there is an increase in the event likelihood following

a recent one [3]. This can also be interpreted as evidence that patient transfer events tend to be clustered into groups rather

equally distributed over time.

Recent receiving. Similarly to recent sending, we define recent sending as the gap time since the last receiving event. It

is considered to estimate the recency effect in the transfer destination model. A negative estimate of coefficient associated

with recent sending implies a clustering tendency in the selection of hospital destinations, hospitals recently chosen as
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A.3. Assortative network statistics

Degree and intensity assortative mixing in our patient transfer network can be interpreted as a tendency whereby events are

more likely to occur between hospitals that are similar in collaboration degrees or intensities. Assortative network statistics

can also be considered as dyadic network statistics; however, they are defined as interactions between corresponding

sending and receiving statistics.

Assortativity by degree. This interaction between out degree of sending hospital i and in degree of receiving hospital j

models the assortativity effect in terms of collaboration scope and can be defined formally as:

Assortativity by degree(t, i, j) = out degree(t, i) × in degree(t, j). (9)

A positive coefficient of assortativity by degree would implies that the network is assortative in terms of collaboration

degrees. More specifically, it can be interpreted as evidence that hospitals with a wide sending scope prefer to transfer

their patients to hospitals with a high number of receiving ties (see Figure 2(c)).

Assortativity by intensity. This interaction between out intensity of sending hospital i and in intensity of receiving

hospital j models the assortativity effect in terms of collaboration intensities. A positive effect of assortativity by intensity

implies that hospitals with high sending intensity are more likely to collaborate with hospitals with high receiving intensity

(see Figure 2(d)).

A.4. Clustering network statistics

To model the tendency that patient transfer collaborations are clustered together rather than equally distributed across

the network, we propose four new local clustering statistics. Rather than based on 2-path statistics that ignore event

counts on edges as previous approaches [4, 5, 6], we measure the strength of these new clustering statistics by combining

time-weighted dyadic patient flows through harmonic mean.

Transitive closure. This network statistic measures the total strength of all 2-paths (see Figure 3(a)) from hospital i to
hospital j:

Transitive closure(t, i, j) =
∑

k 6=i,j

g
(

w(t, i, k),w(t, k, j)
)

, (10)

where the patient flow from hospital i to hospital k is measured by the current number of transfer events from i to k. To

model the diminishing importance of events far in the past, similar to the definitions of repetition and reciprocity, these

events are also assigned a temporal weights f(t, T e
ik, α):

w(t, i, k) =

Nik(t
−)

∑

e=1

f(t, T e
ik, α). (11)

The intensity of the patient flow from i to j through k is then computed as harmonic mean of patient flows from hospital i

to hospital k and from hospital k to hospital j. Formally, the harmonic mean of two flow values w1 and w2 is given by:

g(w1, w2) =
2w1w2

w1 + w2
. (12)

A positive estimate of coefficient associated with the transitive closure statistic may be interpreted as evidence that

hospitals prefer to select partners of their partners as transfer destinations.

Cyclic closure. This network statistic measures the total strength of all 2-paths to hospital i from hospital j (see

Figure 3(b)) and may be defined formally as follows:

Cyclic closure(t, i, j) =
∑

k 6=i,j

g
(

w(t, k, i),w(t, j, k)
)

(13)
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Table 1. The data frame of nested case-control data. The number of data rows for each unique event index is the current

number of at-risk edges right before the event time. Each of these data rows corresponds to each at-risk edge and is used

to store all current values of its covariates and network statistics. Among these at-risk data rows for a transfer event, only

the row on which the event occurs has case indicator value equal to 1.

Event Index Event Time Sender ID Receiver ID Case Indicator Statistic 1 . . . Statistic P

10 15/07/2005 1 2 0 1.0 . . . 4.5

10 15/07/2005 1 3 1 4.0 . . . 2.5

10 15/07/2005 . . . . . . . . . . . . . . . . . .

10 15/07/2005 34 35 0 3.0 . . . 7.2

(a) Aggregate events (b) Within-specialty events (c) Between-specialty events

Figure 4. Schoenfeld residuals for out degree effects at aggregate, within-specialty, between-specialty settings.

4. The final data matrix can be used as input for proportional hazard and discrete-choice modelling libraries. In

particular, we use the procedure PHREG in SAS to estimate coefficients for all models dicussed in our case study.

The event index of each event is unique; therefore, it can be used a stratification covariate in PHREG.

C. Model checking results based on Schoenfeld residuals

One important assumption of our separable relational event model is that covariate and network effects are time-invariant.

One visual check for this assumption is to plot Schoenfeld residuals against the observation time [7]. Figures 4, 5, 6, 7, 8,

9, and 10 show Schoenfeld residual plots for some covariate and network statistics of three models selected in Section 4.2:

out degree, geographical distance, competition, similarity, repetition, transitive closure, and cyclic closure. Only some

effects such as repetition or out degree slightly deviate from this time-invariant assumption on two ends of the observation

time which could be due to the lack of data points for the loess smoothing method. The small number of events could also

explain for the fluctuation of estimated effects in the within-speciality setting.
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Figure 5. Schoenfeld residuals for geographical distance effects at aggregate, within-specialty, between-specialty settings.

(a) Aggregate events (b) Within-specialty events (c) Between-specialty events

Figure 6. Schoenfeld residuals for competition effects at aggregate, within-specialty, between-specialty settings.

(a) Aggregate events (b) Within-specialty events (c) Between-specialty events

Figure 7. Schoenfeld residuals for similarity effects at aggregate, within-specialty, between-specialty settings.
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(a) Aggregate events (b) Within-specialty events (c) Between-specialty events

Figure 8. Schoenfeld residuals for repetition effects at aggregate, within-specialty, between-specialty settings.

(a) Aggregate events (b) Within-specialty events (c) Between-specialty events

Figure 9. Schoenfeld residuals for transitive closure effects at aggregate, within-specialty, between-specialty settings.

(a) Aggregate events (b) Within-specialty events (c) Between-specialty events

Figure 10. Schoenfeld residuals for cyclic closure effects at aggregate, within-specialty, between-specialty settings.




