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Abstract 

It is generally asserted that reliable and intuitive control of upper-limb prostheses requires 

adequate feedback of prosthetic finger positions and pinch forces applied to objects. Body-

powered prostheses (BPPs) provide the user with direct proprioceptive feedback. Currently 

available BPPs often require high cable operation forces, which complicates control of the forces 

at the terminal device. 

The aim of this study is to quantify the influence of high cable forces on object manipulation with 

voluntary-closing prostheses. Able-bodied male subjects were fitted with a bypass-prosthesis 

with low and high cable force settings for the prehensor. Subjects were requested to grasp and 
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transfer a collapsible object as fast as they could without dropping or breaking it. The object had 

a low and a high breaking force setting. Subjects conducted significantly more successful 

manipulations with the low cable force setting, both for the low (33 % more) and high (50 %) 

object’s breaking force. The time to complete the task was not different between settings during 

successful manipulation trials. In conclusion: high cable forces lead to reduced pinch force 

control during object manipulation. This implies that low cable operation forces should be a key 

design requirement for voluntary-closing BPPs.  

Keywords: 

body-powered prostheses, Bowden cable operation forces, Extended Physiological 

Proprioception (EPP), hand prosthesis, mechanical egg, object manipulation, pinch force 

control, proprioceptive feedback, prosthetic design, prosthetic evaluation, sensory feedback, 

upper-limb prostheses, voluntary-closing. 

Abbreviations: 

BPP - Body-powered prosthesis 

VC – voluntary-closing 

VO – voluntary-opening 

Corresponding author: 

Please address all correspondence to Mona Hichert, MSc; Delft Institute of Prosthetics and 

Orthotics, Department of BioMechanical Engineering, Delft University of Technology, 



Pinch Force Control in Body-Powered Prostheses 

3 

Mekelweg 2, 2628CD Delft, The Netherlands; Phone: +31 (0)15 2785241,  

Fax: +31 (0)15 2784717, Email: M.Hichert@tudelft.nl 

     Introduction 

     Myo-electric prostheses 

It is generally asserted that upper-limb prosthesis operation requires sufficient feedback to 

obtain adequate dexterous manipulation (1,2). Myo-electric prostheses require visual 

confirmation of movements of the terminal device as there is no other direct form of feedback 

about the action of the prehensor. Several approaches to pinch force feedback have been  

investigated in the last decades such as vibro-tactile feedback (3,4), mechano-tactile feedback 

(pressure on skin) (5–7), electro-tactile feedback (electro-cutaneous stimulation) (8–10), skin 

stretch (11), and force feedback spanning the joint (12). None of them have been implemented 

in commercial myo-electric prostheses and all except the latter target tactile feedback. 

However, in dynamic force feedback tasks, proprioception is the key player and tactile 

feedback has only an ancillary role (13). 

      Body-powered prostheses 

The first body-powered prosthesis (BPP) was designed by Ballif in 1818 (14). Current BPPs still 

rely on the same principle: A shoulder harness captures the relative motion of shoulder and arm 

movements and transmits their action via a Bowden cable to operate a prosthetic prehensor. 

Two types of prehensors are used: Voluntary-Closing (VC) and Voluntary-Opening (VO) which  

open or close when the cable is pulled. The VC BPP provides the user with Extended 

Physiological Proprioception (EPP) (15). EPP extends the concept of proprioception to tools 
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connected to the body, in this case a prosthesis. This has the inherent benefit of direct  

proprioceptive feedback about the prehensor’s movement and forces through the movement 

and forces of the harness. 

To date, body-powered hooks are equally preferred to myo-electric hands (16). Stated 

advantages of body-powered prostheses compared to myo-electric prostheses (17–19) include 

mass, robustness and cost-efficiency. However, BPPs are still far from optimal in spite of the 

advances since the patenting of the Dorrance split hook in 1912. Body-powered hands are less 

preferred than hooks (16). A user might prefer a prosthetic hand instead of a hook for cosmetic 

reasons, but then he needs to exert 1.5–8 times more mechanical work and will experience 2–

27 times higher hysteresis or energy dissipation (20). Further advances in harness design (16), 

reduction of friction in the transmission (20,21), and weight reduction of the prosthesis (19) are  

possible. Fundamental improvement in BPP design could be realized by optimizing the 

relationship between the forces and displacements at the prehensor and those at the shoulder 

harness (22). Progress is currently impeded by the limited understanding of how cable forces 

influence grasping performance and comfort. 

     Cable forces in prosthesis operation 

Current BPPs usually require high operating forces (22), which lead to pain and fatigue during 

or after operation (16) and may additionally disturb the feedback and control of pinch forces.  

Previous work in our group demonstrated that the control of operation forces decreases with  

higher cable forces (23).However, these experiments were done without prehensor and objects.  

This means  the dynamic effects of prosthesis–object interaction and compensatory strategies  

of the user were not considered. Therefore, the effect of high cable operation forces for 

prosthesis-object-interaction remains unexplored.  
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This study aims to quantify the influence of high cable forces on the accuracy of pinch force 

control, when a VC BPP is used to grasp an object and transport it without exceeding pre-defined  

force boundaries. We hypothesize that high cable operation forces reduce the task performance 

in terms of the amount of successfully transported objects.  

     Approach 

Able-bodied subjects were equipped with a by-pass socket and BPP. They were instructed to 

execute a repeatable abstract task of grasping an object and transferring it to another predefined  

position. The object transfer involves arm movements, which influence the pinch forces if the 

subject does not correct for this effect. Therefore the object transfer simulates the type of 

challenges that VC body-powered prosthetic users experience in daily activities. In order to  

inherently include interaction force limits in this manipulation task, a “mechanical egg” (5) was 

used which offers repeatable limits: at too little force subjects can’t lift it, and at an adjustable 

level it “breaks” mechanically. Abstract collapsible objects have been used in diverse studies 

investigating feedback and pinch force control (5,24), since they offer a natural challenging 

dynamic grasping task. As prosthetic users aim to execute grasping tasks as quickly as they  

would with an intact hand, time to execute the task was taken as an outcome measure. Subjects 

were asked to execute the task as quickly as they could without breaking the object. Breaking 

an object in daily life is inconvenient and is generally avoided. 
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              Materials and Methods 

       Subjects 

Twelve able-bodied male subjects (11 right & 1 left handed, age: 30±8 (mean±SD) years old, 

height: 179±5 cm weight: 88±8 kg) participated in this study. The data of one of the subjects was 

excluded from data analysis because he was unable to successfully complete 80 % of the trials. 

In addition, the force data of a second subject were not available for analysis. None of the  

subjects had experience operating BPPs. The Research Ethics Board of the University of New 

Brunswick, where the experiments were conducted, approved the experiments (REB #2014- 

064). All subjects signed an informed consent form prior to the experiments. 

       Apparatus 

Subjects were fitted with a custom-made prosthesis consisting of a modified prehensor, which 

was attached to an adjustable bypass fitting, and linked to an adjustable “figure-of-nine”  

harness to provide the cable forces to close the prehensor (Fig 1). The equipment was 

manufactured and modified in the Atlantic Clinic for Upper Limb Prosthetics in Fredericton, 

Canada. The length of the socket was adapted to the subject’s lower arm. Likewise, the 

harness could be modified and adapted to the subject’s shoulder width and upper arm length. 

A standard 1/16’’ (.159 cm) diameter stainless steel cable (C100) running through a cable 

housing for C-100HD cable (CH-100HD). To reduce friction in the cable a Teflon liner for  

heavy duty cable housing (CH100-HD) (all from Hosmer Dorrance Corporation, Chattanooga,  

USA) was placed in the inside of the cable housing. The coefficient of friction was reported to 

be 0.092 and assuming a maximum cable curvature of 90 degrees we would expect the static 
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efficiency of force transmission of the Bowden cable to be more than 90% according to  

Carlson et al. (25). 

 

Fig 1. Apparatus. Side-view (a) and back-view (b) of one subject wearing the custom-made bypass-prosthesis. The prehensor 

(1) is connected to the fitting. The prehensor (1) was connected via a Bowden cable (3) to the “figure-of-nine” harness (5). The 

Bowden cable forces were measured before and after the outer cable housing with force sensor 1 (2) and force sensor 2 (4). 

             Prehensor 

The voluntary-closing Grip 3 prehensor (TRS Inc., Boulder, USA) was chosen because of its 

mechanical efficiency and linear relationships between cable operation forces and cable 

excursions as well as between cable operation forces and pinch forces (Fig 6 and 10 in (20)). 

The relationship between the pinch force and the cable force of a non-deformable object was 

determined to be 

0.64
pinch

cable

F

F
 (1) 

The cable force required to start building up a pinch force is dependent on the prehensor’s spring 

stiffness and the prehensor’s opening. Thus, with small modifications, the prehensor could 

facilitate different cable force settings to generate the same pinch force. The original prehensor’s 

torsion spring was replaced by interchangeable linear springs of different stiffness fixed at the 

prehensor’s thumb lever (Fig 2). The settings consisted of either two parallel springs (0.11 N/mm 

each), or three parallel springs (1.7 N/mm each). These different settings then required either  

low or high cable forces to close the prehensor. The high force setting (~40-50 N) represents 

the required forces to operate a TRS hook, a Hosmer APRL hand or hook as shown in the study 

of Smit and Plettenburg (Fig 10 in (20)). The low force setting (~10-15 N) was chosen according 
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to the preferred forces of prostheses users as shown in the results of a preliminary study of our 

group (23). 

Fig 2. Prehensor. TRS hook with the internal torsion spring replaced by external linear springs in the high force setting (3 x  

1.7 N/mm springs); 2 x 0.11 N/mm springs were used for the low force setting.  

       Test object: “mechanical egg” 

Subjects needed to interact with a force-sensitive test object (Fig 3). The object was called a 

“mechanical egg” since it “breaks” when excessive pinch force is applied. This “mechanical egg”  

is the same device as designed and used in the study of Meek et al. (5). The original grasping 

surface of the egg was rounded to match the TRS finger’s shape and covered with non-slip 

material (Dycem Ltd, Bristol, UK) at the finger and the thumb grasping surface, in order to 

enhance the grip quality. The weight of the object (and thereby the slipping force) remained  

constant during the experiments (385 g). 

Fig3.Test object. The “mechanical egg’s” breaking mechanism (5) is shown in the left picture (a) and the experimental setup is 

shown to the right (b).   

The object’s breaking force was adjusted to a high and low breaking force setting, resulting in  

two pinch force margins at which the egg will not break or drop during manipulation. Table 1  

contains the statically determined cable forces for both prehensor’s spring stiffness settings at  

which the object slips of the prehensor (Fslip), thus the minimum required cable force to hold the 

test object, and the cable forces at which the object breaks for the low and high breaking forces 

(Fbreak). Fig 4 illustrates the relationship between cable and pinch forces. For training purposes, 

a third setting with an even higher breaking force was applied.  

Table 1. The statically determined minimum required cable forces to hold the “mechanical egg” (Fslip) and its maximum 

allowed cable forces (Fbreak) for the two object’s breaking force settings derived for the prehensor’s two spring stiffnesses. 
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spring 
stiffness 

0.22 
N/mm 

0.22 
N/mm 

5.1 
N/mm 

5.1 
N/mm 

breaking 
force 

high low high low 

minimum 
required 
cable force 
(Fslip) [N] 

5.3±0.3 28.8±0.3 

maximum 
allowed 
cable force 
(Fbreak) [N] 

14.3±1.3 10.1±0.8 42.2±0.6 38.8±0.4 

 

Fig 4. Cable to pinch force. The cable force to pinch force relationship is shown when the TRS hook is fully closed and when 

the test object is held utilizing the prehensor’s low spring stiffness setting. The force at which the object slips out of the  

prehensor (Fslip), and the forces at which the “mechanical egg” breaks span the operating window in which the test object can 

be manipulated, for both the low (F1,break) and high (F2,break) breaking force settings. Note that the cable force at which the TRS 

hook starts to build up a pinch force on the test object is an estimation, since it was not experimentally determined. As a  

consequence the pinch force values are not representative.  

       Measured signals 

A custom-made timer was pressed by the subject to indicate the start and end of each trial. The 

subject reported the task completion time to the experimenter. Cable operation forces were  

measured at both the forearm and back of the subject. Forces were measured with two mini S 

beam 222N load cells (FUTEK Advanced Sensor Technology, Inc., Irvine, United States),  

amplified with a CPS amplifier (SCAIME S.A.S., Juvigny, France) and fed into the analogue input  

of a motion capture system (Vicon Motion Systems Ltd., Oxford, United Kingdom) at 1000 Hz. 

The signals were recorded using Nexus 1.8.3 software (Vicon Motion Systems Ltd., Oxford, UK),  

and stored for off-line analysis after each trial. The recorded motion capture data were not used  

for the current study. 
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       Metrics 

The number of failures and the time required completing the task served as the task metrics. 

Prosthetic users should be able to manipulate objects efficiently without breaking or dropping 

them.  

       Procedure 

Each subject wore the bypass-prosthesis on the left arm (Fig 1) and was seated at a table  

(height: 73cm). After adjusting the prosthesis and the seat to a height comfortable for each 

subject, the training session commenced. Subjects were instructed to operate the prosthesis 

using shoulder protraction of the right side, and humeral adduction and anteflexion of the left 

side and had freedom of choice in their control movements.  First, the subject familiarized 

themselves with the operation of the device by moving wooden blocks (2.5 x 2.5 x 2.5 cm) from  

the predefined low (1 cm above the table) to high position (16 cm above the table) , start position 

B to target position C in Fig 5. Training continued with the “mechanical egg”, starting with the 

stiffest setting, followed by the two test conditions, the high and low breaking force settings.  

Once the subject was familiar with the “mechanical egg’s” function at the training setting, the  

timer (A in Fig 5) was introduced. For training purposes, each setting had to be conducted at  

least 10 times with 3 successful trials in a row before subjects moved on to a lower breaking  

force setting. Training ended when they could successfully execute the trial at the egg’s low  

force setting.  

 

Fig 5. Visualization of one trial. The subject hits the self-timer button A to start the time measurement, moves 29 cm to grasp  

the object at the lower area B, then moves  the object 29 cm to the higher target area C. After releasing the object, the subject  

needs to hit the self-timer to stop the time measurement.   
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The four experimental conditions were tested in a counterbalanced order, combinations of low  

and high cable forces and low and high breaking force setting. A trial consisted of starting the  

timer with the prosthesis, transferring the test object from the low to high position, and stopping  

the timer. The subjects were instructed to transfer the egg as quickly as possible without  

breaking or dropping it (Fig 5). Subsequently, the subject reported the time or a failure to the  

experimenter. Each of the four experimental conditions was tested 25 times, resulting in a total  

of 100 trials per subject. After the experiment was completed, the subjects were asked during a  

semi-structured interview which system they preferred, the low or the high cable force setting,  

and why they preferred that system.  

       Data analysis 

For 11 subjects the number of failures and the average times over the 25 trials per condition  

were analyzed with a repeated measures ANOVA (IBM SPSS Statistics Version 20 - IBM  

Corporation, Armonk, United States). 

The recorded Voltage of the force sensors was converted into Newton and filtered with a 3rd  

order filter (filtfilt function) at 10 Hz (Matlab Version 2013b - The MathWorks, Inc., Natick, United  

States) for 10 subjects. The peak forces (maxima) were determined for each successful trial and  

averaged per condition.  

Friction losses were determined by comparing measured input and output forces of the Bowden  

cable.  
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       Results 

The prehensor’s high spring stiffness of 5.1 N/mm resulted in a 3.5 to 4 times higher cable 

operation force measured at the forearm than the low prehensor’s spring stiffness (0.22 N/mm)  

as indicated in Table 2.  
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Table 2. The peak forces for successful trials measured at the forearm (2 in Fig 1) and at the back (4 in Fig 1) of the subject and

averaged over all subjects per condition.   

spring stiffness 
0.22 

N/mm 

0.22 

N/mm 

5.1 

N/mm 

5.1 

N/mm 

breaking force high low high low 

force@forearm 

(F1) [N] 

(mean±std)  

12.6±0.9 10.7±0.9 43.5±2.1 42.0±2.5 

force@back 

(F2) [N] 

(mean±std) 

15.5±1.2 13.3±1.2 51.5±2.2 49.8±2.9 

efficiencies 

Bowden cable 

81% 80% 84% 84% 

 

High cable operation forces resulted in significantly more unsuccessful trials (F(10,1)=6.763,  

p=0.026, Fig 6). The task completion time, however, was not significantly affected by the 

magnitude of the cable force (F(10,1)=4.097, p=0.071, Fig 7).  

 

Fig 6. Number of unsuccessful trials. The number of unsuccessful trials out of 25 trials per condition are indicated by “x” per  

subject (N=11), averaged over all subjects (“o”) with the 95% confidence intervals (whiskers). The results are compared for the  

high (left) versus the low (right) breaking force setting of the test object as well as the low (0.22 N/mm) versus high (5.1 N/mm)  

spring stiffness of the prehensor. 

 

Fig 7. Task completion time. The time to complete the experimental task was determined by the average of all successful  

trials per condition per subject (N=11) indicated by “x”. The error bars represent the average of all subjects (“o“) with the 95%  
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confidence intervals (whiskers). High (left) versus low (right)) breaking force setting of the test object as well as the low (0.22 

N/mm) versus high (5.1 N/mm) spring stiffness of the prehensor were compared.  

Subjects exerted significantly less force on the control cable during the task execution at the  

object’s low breaking versus the high breaking force condition (Table 2; force@forearm: 

F(9,1)=114.608, p<0.001; force@back: F(9,1)=123.013, p<0.001). The low object’s breaking  

force resulted in significantly more unsuccessful trials than the high breaking force setting 

(F(10,1)=25.817, p<0.001, Fig 6). Subjects completed the experimental task significantly quicker  

at the high object’s breaking force setting (F(10,1)=25.346, p<0.001, Fig 7).  

The prehensor’s spring stiffnesses and the object’s breaking forces did not show interaction 

effects for the number of unsuccessful trials (F(10,1)=0.225, p=0.646) and the average task  

execution time (F(10,1)=1.461, p=0.255).  

The outcome of the semi-structured interviews of the subjects showed that ten of the eleven  

subjects preferred the low spring-stiffness setting. The reported reasons for the low spring- 

stiffness system preference were the ease to control and distinguish pinch force and a higher  

long term comfort (less load on the axillar region, less tiring, less required effort).  

       Discussion 

This study aimed to quantify the influence of high cable forces on the accuracy of pinch force  

control, when a VC BPP is used to grasp an object and transport it, while not exceeding pre- 

defined force boundaries. To create two different cable force levels, springs with different  

endpoint stiffnesses were mounted on the prehensor. We hypothesized that high cable operation  

forces reduce the task performance. The results showed that higher cable operation forces  

resulted in more unsuccessful trials and thus an inferior task performance compared to lower  



Pinch Force Control in Body-Powered Prostheses 

15 

cable forces, which is in line with our hypothesis. Subjective interview reports showed that 

subjects preferred the lower cable forces as well. Interestingly, high cable forces did not increase  

the task execution time. This finding might indicate that the subjects either did prioritize the task 

execution time over the successful task performance, or were not aware of their accuracy in 

controlling the decreased pinch force. A recent study has shown that high cable operation forces  

result in a larger deviation in the targeted cable forces (23). The TRS prehensor cable forces 

relate linearly to the pinch forces as shown in Fig 10 of (20). Consequently, a wider deviation of 

pinch forces could be expected at higher cable forces. This wider deviation seems to result in 

decreased pinch force control accuracy. Required cable forces for a 15 N pinch force range from 

33 (TRS hook) to 131 N (Hosmer soft hand) for VC prehensors (20). The cable forces of this 

study ranged from 16 to 52 N (as measured at the subjects’ back) for the two cable force 

conditions and show effects in pinch force control accuracy. This emphasizes the urgency of 

lowering the required cable operation forces for VC BPPs to achieve better pinch force control. 

Additionally, users of body-powered hands also complained about “slowness in movement, 

insufficient grip strength and high-energy expenditure” (17). These problems can be tackled with  

lower cable operation forces. 

The difficulty of the task was manipulated by utilizing two breaking force settings of a “mechanical  

egg”. The narrower the object’s grasping force margin, the more critical the pinch forces on the  

object became. Thus the task gets more challenging, which is indicated by the higher number of  

failures and the longer task execution time in the low breaking force setting. Fragile objects were  

hypothesized to require more attention from the user and the manipulation to be more time-

consuming than rigid objects. We did not find interaction effects between the magnitude of 
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breaking and cable force. Thus irrespective of the task difficulty, we can conclude that higher  

cable operation forces deteriorate the pinch force control accuracy. 

The differences of cable forces measured simultaneously at the forearm and at the back of each 

subject are striking (Table 2). These differences are mainly due to friction, a well-known  

disadvantage of Bowden cables, which increases with the curvature of the cable (25). In our  

experiment the friction losses result in efficiencies between 80 and 84% of the exerted forces, 

despite the Teflon liner in the outer cable housing to improve the efficiency of force transmission. 

According to Carlson, in a static set up an efficiency of 80% implies a cable curvature of 

approximately 150 degrees (25). Since the angle was never more than 90 degrees in this set 

up, it would suggest that there is a different behavior of the Bowden cable during dynamic 

prosthesis operation. This corresponds to recent evidence presented at the ISPO Europe  

conference 2016: Preliminary results on the dynamic properties of different types of Bowden  

cables were discussed (26), that suggest decreasing efficiencies for increasing cable velocities.  

Unfortunately, in this experiment cable velocities were not measured, preventing further analysis 

on the impact of dynamic properties of the Bowden cable on the pinch force control accuracy 

and the human controller’s abilities to anticipate for this apparently unknown behavior of the  

system. However, it is clear that the Bowden cable introduces additional inefficiencies above  

those of the prehensor (20,21). Interestingly, the measured cable forces during the object  

transfer task at the prehensor’s 5.1 N/mm spring stiffness and object’s low breaking force (Table  

2) exceed the statically determined cable forces at which the “mechanical egg’ breaks (Table 1). 

We speculate that dynamic effects might have allowed subjects to exceed the statically  

determined breaking forces. 
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       Study limitations 

Instead of amputees, the experiment was performed by able-bodied subjects without experience  

in prosthesis operation. The task performance might differ between subjects with and without  

arm deficiencies due to different anatomy and the lack of experience in prosthesis operation.  

Experienced users might have developed strategies to grasp several objects efficiently in  

activities of daily living (ADL). However, a predefined, non-varying grasping surface was utilized 

in this experiment, removing the need to develop different grasping strategies. The subjects 

learned quickly how to grasp the test object due to the intuitive operation of a VC prehensor and  

were already able to distinguish grasping forces during the training session. In a previous study 

(23), no differences in the deviations of the controlled forces were found between subjects with  

and without arm deficiencies. As a consequence, performance differences between prosthetic 

users and our healthy control subjects are not expected for these experimental conditions.  

The prosthesis simulator was placed at the left arm, which was the non-dominant arm of 10 out  

of the 11 subjects. This is presumed to best reflect the actual situation of prosthesis users, who  

usually prefer to manipulate objects with their natural hand, making the affected side the non-

dominant side. The effect of operating the prosthesis simulator with the dominant versus the  

non-dominant side was not investigated.  

The task instructions of transferring the “mechanical egg” as quickly as possible from and to a 

predefined position without breaking the “egg” might have been interpreted in different ways. 

Subjects might have prioritized the task execution time over the number of failures or vice versa. 

If a penalty for failure would have been applied, the subjects would probably all have prioritized 

to execute the task successfully rather than completing the task as quickly as possible. This 
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might also explain why we did not find significant effects in the task execution time for the two 

cable force settings. 

      Implications and future research 

Design requirements for BPPs lack quantitative values especially when considering the user’s 

capacities and demands. This study clearly shows that pinch force control should be improved 

when utilizing low cable operation forces in the VC prosthetic design. However, there might be 

a disadvantage to reducing cable operation forces in terms of perception. A preliminary study 

showed that cable operation forces between 20-30 N are the preferred forces with fixed cable 

excursions (23). Plettenburg et al. suggest a relationship between the strength of the user and 

the preferred operation forces. This relationship as well as the influence of cable excursions on 

the preferred forces need to be investigated. Additionally, the optimal ratio between cable 

operation forces and pinch forces is yet to be determined. Future research should prioritize 

achieving a satisfactory grip strength at the best possible sensory feedback as a design criterion 

(16). 

A second crucial factor for the BPPs efficiency is the reduction of friction. The unpredictable 

behavior and the inefficiencies of the Bowden cable during dynamical task execution suggest a 

need for better solutions in BPPs design. The effects of the Bowden cable on pinch force control 

accuracy are unclear. This impedes the development of better prostheses. 

Another crucial factor for BPPs is the harness design: The primary concern for users is skin 

irritation, pain and exhaustion during or after operation of a BPP (16,17). The results of the semi-

structured interviews imply a higher long term comfort (less load on the axillar region, less tiring, 

less required effort) with lower cable operation forces. However, users feel restricted in their 

movements due to the harness. New harness designs are required. One commercially available 
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alternative to the harness is the ipsilateral scapular cutaneous anchor (27); a patch is glued to 

the back of the user and is connected to the Bowden cable. The ability to distinguish operation 

forces compared to the traditional harness and the range of possible operation forces is unclear. 

Additionally, with a new harness design the appearance as well as the ease of donning and 

doffing the prostheses could be improved, which are two additional user design preferences 

(17). 

The study of Lum et al. shows that fragile object manipulation is inferior with a prosthesis than 

with the intact biological hand (24). However, the performance of the VC BPP user was 

exceptional compared to the other prosthetic users. This single user performed the task without 

breaking a fragile object as successful as the able-bodied controls. Although it was a single user, 

it emphasizes the high potential benefits users may gain with improved BPPs design. This study 

indicated the benefits of one of the BPPs design criteria: a decreased cable operation force. 

More BPPs design criteria should be quantified, like the required pinch forces to manipulate 

objects and the resulting transmission ratio between cable forces and pinch forces for optimal 

VC BPP operation. 

Conclusion 

The goal of this research was to quantify the influence of high cable forces on object 

manipulation with a voluntary-closing, body-powered prosthesis. Lower cable operation forces 

lead to better control as shown by fewer unsuccessful trials, even though lower cable forces had 

no effect on task execution time. For the experimental conditions studied, we conclude that a 

lower cable force leads to improved performance during object manipulation. Therefore, we 
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argue that low cable operation forces should be a key design requirement for voluntary-closing 

BPPs. 
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