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Abstract Cloud computing has become common practice for a wide variety
of user communities. Yet, the energy efficiency and end-to-end performance
benefits of cloud computing are not fully understood. Here, we focus specifi-
cally on the trade-off between local power saving and increased execution time
when work is offloaded from a user’s PC to a cloud environment. We have set
up a 14-node private cloud and have executed a variety of applications with
different processing demands. We have measured the energy cost at the level
of the individual user’s PC, at the level of the cloud, as well as at the two
combined, contrasted to the execution time for each application when run-
ning on the PC and when running on the cloud. Our results indicate that the
tradeoff between energy cost and performance differs considerably between
applications of different types. In most cases investigated, the total increase
in energy consumption, incurred by running that additional application, was
reduced significantly. This shows that research on using cloud computing as
a means to reduce the overall carbon footprint of IT is warranted. Of course,
the energy gains were more pronounced for energy-selfish users, who are only
interested in reducing their own carbon footprint, but these savings came at
the expense of performance, with execution time increase ranging from 1%
to 84% for different applications.
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1 Introduction

Cloud computing has become a common paradigm for computational resource
provision. This paper investigates the viability of computation offloading to
a cloud for personal computers (PCs) with regard to reducing energy costs.
In other words, can computation offloading reduce the amount of required

Yongpil Yoon, Georgia Sakellari, Richard J. Anthony and Avgoustinos Filippoupolitis

Dept. of Computing and Information Systems, University of Greeenwich,
e-mail: yongpil.yoon@gre.ac.uk, g.sakellari@gre.ac.uk, r.j.anthony@gre.ac.uk,

a.filippoupolitis@gre.ac.uk

1



2 Authors Suppressed Due to Excessive Length

energy for a PC to complete certain tasks? And what is the overall energy
consumed by the PC and the cloud in this case?

2 Related work

Computation offloading means executing certain tasks on more resourceful
computers which are not in the user’s immediate computing environment, so
as to: 1) reduce energy consumption of the user’s computing device, and/or
2) improve the performance of computation. Computation offloading first be-
gan and has been studied mainly for mobile devices [1, 2, 3, 4, 5] because
of the noticeable difference in computation power between mobile devices
and cloud servers [6]. Performance difference between PCs and computing
resources from cloud providers is often negligible and sometimes PCs out-
perform cloud computing resources. Although resources from clouds can be
massively scalable, it may not be cost-effective depending on factors such
as the type of tasks to offload, required amount of data transmission, ac-
ceptable latency etc [7, 8]. Therefore, it is important to know under what
circumstances offloading is beneficial for PCs.

For mobile devices, proposed techniques may differ slightly in architectures
or implementations but all share the same fundamental idea, that a mobile
device can stay idle or compute less by offloading parts of program code
to the cloud. Most implementations, such as Phone2Cloud [9], Cuckoo [10],
COMET [11] and MAUI [12], focus on identifying tasks that can be offloaded
at runtime and how this can be achieved. Recently, other perspectives of com-
putation offloading, such as energy consumption, have been investigated. For
example, the energy cost of additional communication for offloading has been
addressed in [13] in order to make more energy-efficient offloading decisions in
cellular networks. Computation offloading as a service for mobile devices has
been suggested by [14] to bridge the gaps between the offloading demands of
mobile devices and the general computing resources, such as VMs, provided
by commercial cloud providers. Energy-aware scheduling of the executions of
offloaded computation into the cloud has been studied in [15].

3 Experimental Methodology

We have chosen to scope our initial investigation around the energy usage con-
sidered in isolation to provide an important baseline for further work, which
will take into account additional aspects including the energy cost of net-
work communication and the additional latency of the transfers. To evaluate
whether computation offloading is beneficial for PCs in terms of power con-
sumption, we have conducted experiments using a real world private cloud.
In our experiments, computation is offloaded at the application level which
means the entire execution of application software was offloaded to the cloud
rather than offloading some parts of computation (function/method level)
like existing offloading techniques for mobile devices, e.g., MAUI - method
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level (RPC-like) [12], Cuckoo - method level (RMI-like) [10]. Different appli-
cations which require different amounts of computation were run both locally
on a PC and remotely on a VM created in our private cloud. In the case of
offloading, the VM ran the application and sent the results back to the PC or
saved resulting files in the cloud when completed. The total execution time
of each application was measured as well as the power loads (Wattage) of the
PC and Cloud servers during this execution time, at one-second intervals.

The experiments were conducted on a Dell Optiplex 7010 desktop machine
running the Linux operating system (Ubuntu 14.04.1). The PC has Intel Core
i5-3550 3.30GHz (Quad core), 16GB DDR3 1600MHz memory, and 750GB
SATA-II hard drive. The power-management configurations of the PC and
the OS were not changed from their default settings, e.g., sleep, hibernate,
disk spin-down configurations. It was possible that the screen timeout occurs
in the PC while waiting for the completion of remote execution but the power
consumed by its display (monitor) was not measured. Also, the applications
executed in the cloud sent the current progress of computation back to the
PC after the execution had finished.

Our cloud testbed was a private OpenStack1 cloud infrastructure consist-
ing of 14 machines, each with 4-core Intel Xeon E5-2407 2.20Ghz, 48GB
DDR3 1333Mhz ECC registered memory, and 500GB SCSI hard drive. A
virtual machine with 4 virtual cores (vCPU), 8GB memory, and 40GB disk
space was used to run the offloaded computations. There was no background
traffic in the cloud during our experiments. In order to measure the power
consumption of the PC a Watts up? .Net energy meter2 was used. It can mea-
sure wattage to the nearest tenth of a watt with an accuracy of ±1.5%. The
meter logged the power load of the PC at 1 s intervals during the executions.

In our experiments, the computation power used by a VM in the cloud is
very similar to (but slightly lower than) the user PC’s. If a more powerful VM
is used, our results might be different. We plan to expand our experiments to
investigate the effect that the different VM configurations and PC specifica-
tions have in both the introduced power consumption and the performance of
each application. However, to put things into context, the VM used is consid-
ered quite large for cloud providers. For example, Microsoft Azure considers
VM instances with 4 virtual cores and 7GB RAM as large and VM instances
with 8 cores and 14 GB RAM as extra large 3. A more powerful VM than
the one we used will cost considerably more to the PC user, neutralising at
least any financial benefit of the corresponding energy savings. The cost of
the PC user to access the cloud is an aspect that we do not take into account
here, but will also consider in the next steps of our research.

We have chosen four different applications for our experiments with the
primary criterion that they are computationally intensive. All four were ex-

1 http://www.openstack.org
2 https://www.wattsupmeters.com
3 https://azure.microsoft.com/en-us/documentation/articles/cloud-services-sizes-specs/
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ecuted with a multithreading/multiprocessing option apart from SCID vs.
PC which runs only on a single core. SCID vs. PC is a chess toolkit, which
requires continuous data transmission for drawing its graphical user interface
when run remotely. We ran chess engine vs. chess engine tournamentwhich
requires computation for searching through databases. avconv is an open
source video and audio converting program. It is a command line program
and takes video or audio files as its input and writes converted files to the
disk. Video transcoding involves heavy computation as well as constant read
and write to a disk is required. A 1080p 30fps video file of 886MB size en-
coded using x264 codec was used as input data and the video was converted
to a h264 mp4 file. pi mp.py is a multi-threaded python implementation of π
estimation using Monte Carlo method. 200 million random points were used
to estimate π in each execution. It requires repetitive arithmetic calculations
and a large amount of memory. Blender is op, featuring 3D modelling, video
editing, camera object tracking, etc. In our experiments, a demo file provided
by blender, called BMW benchmark, was rendered from command line. The
output of the rendering is a JPEG file.

The results of the executions were sent back to the PC if it was simply
text output, but if an application needed to write a file, that was saved in the
cloud (in the VM where the application was executed) and thus the execution
time we measured in the latter case does not include the transmission time
of the resulting files. Neither the PC nor the VM in the cloud performed
any other user-level activity during our experiment. There is some natural
variance in the power usage of the cloud infrastructure, comprising as it does
8 compute nodes in a rack, subject to temperature fluctuations. We have
found that this variation was in the worst case 3.2%. To reduce the impact of
noise in the measured cloud power usage, each application run was repeated
10 times and the average values are used in the results presented here.

4 Experimental results on Power Consumption Vs.
Performance Tradeoff

To investigate the effect of computation offloading on the energy consumption
of PCs, we focus on the nature of the tradeoff between power consumption
and performance. For the latter, we use the total execution time for each ap-
plication, measured experimentally when running locally and when offloaded
to the cloud. We have also calculated the energy consumption of the PC and
the cloud (power consumption × execution time) during the executions.

4.1 Power Consumption and Performance

First we established a baseline power consumption for the PC and likewise
for the cloud. The cloud required 1036.00 W on average when IDLE while the
PC required only 22.23 W when IDLE. The cloud requires much more power
compared to the PC since it has more machines which are power-hungrier
than the PC. Obviously, the PC requires noticeably less power while simply
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Fig. 1: Energy-selfish user’s perspective (PC only)

waiting for the cloud to finish the execution, than when running applications
locally. The part a’s (left column) of figures 1-4 show the execution time vs.
power consumption tradeoff. When only one core is used, about 40% less
power is required (”SCID vs PC”) and when four cores are used, nearly 70%
less power is required on average, but if seen in isolation, this is misleading.
The average power load only represents the power consumption per unit time
and thus, the total amount of energy consumed by each application depends
on the execution time, as seen in the part b’s (right column) of figures 1-4.
The cloud required 1054.47 W of power on average during the executions.
However, the introduced power load by the executions of the PC (the dif-
ference between the average power load when applications are running and
when IDLE) was 41.63 W on average, while the average introduced power
load in the cloud was only 18.47 W. When computation was offloaded almost
all applications took much longer (up to 84% longer) to finish certain tasks,
although the VM in the cloud has the same number of processors as the PC.
The additional end-to-end time includes network transfer latency, but this
was very low because of the small amount of data needed to be transmit-
ted. Any execution time increases were mainly due to the lower computing
power of the VM in the cloud (vCPUs vs. real CPUs). Although less power
is required per unit time when computation is offloaded, the total amount of
energy required increases in proportion to the execution time.

4.2 Energy Consumption

The part b’s (right column) of Fig.1-4 show the percentage of the energy
difference consumed on average by each application over 10 runs each, both
from the PC user perspective and the total (PC+cloud) perspective.

Based on our results, the energy Vs. performance tradeoff introduced by
computation offloading differs considerably depending on the application and
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Fig. 3: Energy-altruistic user’s perspective (PC+CLOUD)

on the perspective taken. We can broadly classify energy-conscious users as
either “energy-selfish users”, who are interested only in reducing the energy
cost of their own PCs, versus “energy-altruistic users”, who are interested in
the overall reduction of the energy cost of their computation, which includes
both their PC and the Cloud infrastructure. For the sake of simplicity, we
have not considered energy costs introduced by the network connection to
the cloud. The two terms may make sense from a societal angle where human
users may be interested in reducing their own devices’ energy consumption
only or may care about reducing the total environmental impact of their com-
putation, but they can also have practical technical meaning from a system
perspective. For instance, an energy-selfish entity could be a battery-operated
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Fig. 4: Energy-altruistic user’s perspective (PC+CLOUD): Increases introduced by the
applications in remote operation

device, such as a vehicle, a wearable device or a sensor, which for operational
reasons is designed to offload its computation to a cloud infrastructure that
is not resource-constrained.

For energy-selfish users, we have observed that offloading is most beneficial
for the application that runs on a single core, as the local power consump-
tion dropped significantly without a noticeable increase in execution time.
The other three applications also experienced considerable reduction in local
power consumption, but mostly at a noticeable expense in execution time.
Overall, all applications have considerably reduced local energy usage when
offloaded (varying from 63.75% up to 98.88% reduction in energy introduced
by the application compared to local execution). For energy-altruistic users,
we have also observed that offloading clearly benefits the single-core appli-
cation, since, again, the execution time does not increase much, but for the
rest of the applications executing them remotely significantly increases the
total energy of the system, simply because the energy costs for running a
cloud are much higher. Looking at the applications in isolation though, the
total amount of energy introduced by each one is less for remote execution
(varying from 0.97% up to 20.28%) compared to local execution.

5 Conclusions and Future Work

This paper has studied the viability of computation offloading for PCs with
respect to the energy Vs. performance tradeoff for computationally heavy
applications. We see that in most cases, the user can sacrifice performance to
make considerable energy savings, not only locally, but also when the total
energy cost, including the cloud’s, is taken into account. If a cloud infrastruc-
ture already exists and runs applications, adding one more incurs less total
energy cost at the PC and cloud than a new application would incur running
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on the PC only. This is significant because it shows that adopting cloud com-
puting can be a meaningful option for reducing the overall carbon footprint of
IT. For energy-selfish users, only interested in reducing their own carbon foot-
print, these savings are considerably greater. In both cases, the energy savings
come at the expense of performance. In our experiments, the execution time
increase ranged between 1% and 84% depending on the application. These
initial experiments have provided a valuable baseline for exploration and we
plan to extend them for different VM configurations. Looking at other areas
of future work, we will investigate simultaneous executions of many compu-
tationally light applications. This will yield more accurate relation between
the amount of energy saved and other factors like computation power of the
cloud and the heaviness of applications that are offloaded.
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