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Abstract 

The effect of technological innovation on employment is of major concern for workers and 

their unions, policy-makers and academic researchers. We Meta-analyse 570 estimates from 

35 primary studies that estimate a derived labour demand model. We contribute to existing 

attempts at evidence synthesis by addressing the risks of selection bias and that of data 

dependence in observational studies. Our findings indicate that: (i) hierarchical meta-

regression models are sufficiently versatile for addressing both selection bias and data 

dependence in observational-data studies; (ii) innovation’s effect on employment is positive 

but small and highly heterogeneous; (iii) only a small part of residual heterogeneity is explained 

by moderating factors;  (iv) selection bias tends to reflect preference for upholding prevalent 

hypotheses on the employment-effects of process and product innovations; (v) country-specific 

effect-size estimates are related to labour-market and product-market regulation in six OECD 

countries in a U-shaped fashion; and (vi) OLS estimates reflect upward bias whereas those 

based on time-differenced or within estimators reflect a downward bias. Our findings point out 

to a range of data quality and modeling issues that should be addressed in future research.  
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Technological innovation and employment in derived labour demand models:  

A hierarchical meta-regression analysis 

 

 

1. Introduction 

 

The effect of technological change on employment has always divided opinions. Since the 

Luddite riots of the early 19th century in England, workers and their unions have emphasized 

the risks of de-skilling and technological unemployment. Against this, business managers and 

policy makers tended to consider technological change as essential for growth and job creation. 

In between, economic theory calls for qualified conclusions: whilst technological innovation 

may be associated with worker displacement in the short run, the effect is more likely to be 

positive in the long run as compensation mechanisms induce higher demand for labour.  

 

Several narrative reviews of the extant literature exist. Chennells and van Reenen (2002) 

discuss the variation in the evidence base in the light of modeling, estimation and data-related 

issues. Others reviews pay attention to additional sources of heterogeneity such as 

compensation mechanisms, levels of development, and types of technological innovation 

among others (Spiezia et al., 2002; Piva, 2003; Pianta, 2004; and Vivarelli (2014).  Existing 

narrative reviews offer three general conclusions. First, the effect of technological innovation 

on employment is contingent on a wide range of moderating factors, including labour market 

flexibility, product market competition, types of innovation, national innovation systems, and 

international trade. Second, the balance of evidence does not point out a negative effect on 

employment, but process innovation is more likely to be associated with job destruction 

whereas product innovation is more likely to be associated with job creation. Finally, the effect 

is more likely to be negative when the data relates to unskilled labour.  

 

We have identified a number of issues that justify a systematic review. First, existing reviews 

pool evidence based on three different models (derived labour demand, skill/wage share and 

innovation-decomposition models), which may yield non-comparable estimates. Secondly, 

reviewer authors are aware of the heterogeneity in the evidence base, but their conclusions 

concerning the sources of heterogeneity require quantitative verification. Third, existing 

reviews do not take into account the risk of publication selection bias, which may arise when 
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authors or editors choose to publish findings that support or reject a given hypothesis more 

often than contradictory or insignificant findings.  Fourth, conclusions based on narrative 

reviews do not take account of data dependence that may arise when primary studies draw on 

the same or overlapping datasets. Finally, and despite the significant role accorded to labour- 

and product-market flexibility in the theoretical models, existing reviews do not evaluate 

systematically the effect of labour or product market institutions on primary-study findings.  

 

We aim to address these issues through meta-regression analysis, a quantitative method of 

literature review that has been used extensively in medical research and has gathered 

momentum in economics research (Stanley and Doucouliagos, 2012; Stanley et al., 2013). 

Focusing on comparable estimates based on a derived labour demand model, we report the 

following findings: (i) the extent of between-study heterogeneity is high (over 75%) in the full 

sample and in some sub-samples of the evidence base; (ii) the effect-size is positive but small 

in the full sample and in subsamples of paired innovation and skill types; (iii) the effect on 

unskilled labour demand is smaller than skilled or mix-skills labour demand, but there is no 

systematic difference between the latter; (iv) there is evidence of moderate positive publication 

selection bias in the overall evidence base, but the bias is larger in process and product 

innovation subsamples and reflects selection in favour of prevalent hypotheses; (v) the 

evidence for six OECD countries reveals a U-shaped relationship between the ‘effect-size’ 

estimates and labour/product market regulation; and (vii) although the effect is larger in 

primary studies published after 2000, it is relatively smaller when the primary studies use panel 

data and instrumental variable estimation methods, data related to high-innovation-intensity 

firms/industries and intellectual property assets as a proxy for innovation.  

 

The rest of the paper is organised as follows. In section 2, we summarise the existing review 

findings and highlight the issues that cannot be addressed effectively in narrative reviews in 

general. Section 3 introduces the derived labour demand model and discusses why we restrict 

our sample to primary studies that draw on this model only. In section 4 we report the 

systematic review rules and provide an overview of the evidence base with respect to 

dimensions such as study type/date, model specification, sample characteristics, and estimation 

methods. In section 5, we introduce the bivariate and multivariate meta-regression models and 

discuss how we choose the appropriate estimators. Section 6 reports the meta-regression 

findings and compare the latter with theoretical predictions and narrative review findings. In 

the conclusions, we discuss the implications for future research.  
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2.  Technological innovation and employment: what do we know? 

 

Writing only a few years after the Luddite Riots, Riccardo was of the view that the “substitution 

of machinery for human labour is often very injurious to the interests of the class of labourers.” 

(Quoted in Mokyr et al, 2015: 33). Marx went further by arguing that “the machine can only 

be employed profitably, if it … is the product of far fewer men than it replaces” (quoted in 

Vivarelli, 2014: 127). Mokyr et al. (2015) demonstrate that the ‘technology anxiety’ reflected 

in these statements has emerged repeatedly – mainly at times of rapid technological change 

and/or deep economic recessions. At other times, both economists and policy-makers have 

taken the view that job losses caused by technological change are temporary and would be 

reversed as a wide range of compensation mechanisms trigger new demand for labour.  

 

Yet the multiplicity of the compensation mechanisms (e.g., occupational reallocation, lower 

product prices, output expansion, higher investment, etc.) has made it difficult to derive non-

contingent conclusions. As Vivarelli (2014) has indicated, the compensation mechanisms 

require strict assumptions, overlook the secondary adverse demand effects that may result from 

falling wages, and may not all work in tandem. Therefore, Vivarelli (2014: 121) argue that 

“…economic theory does not have a clear-cut answer regarding the employment effect of 

innovation.” Therefore, attention should “… focus on aggregate, sectoral, and microeconomic 

empirical analyses that take into account the different forms of technical change … the various 

compensation mechanisms and the possible hindrances they face.”  

 

The call for empirical research is justified, but the empirical evidence has also proved 

inconclusive.  Even though a negative relationship between technological innovation and 

employment cannot be established, the positive relationship tend to be reported when R&D 

and/or product innovation 1  are used as proxies for technological change and when the 

estimations are based on high-tech industry/firm data (Vivarelli, 2014). In contrast, process 

innovation is reported to have a negative effect on employment and the adverse effect may be 

exacerbated as trade openness increases (Spiezia et al., 2002; Piva, 2003; Pianta, 2004). A third 

conclusion is that labour market flexibility and higher levels of product-market competition are 

usually associated with positive or less adverse innovation effects on employment (See also 

Benavente and Rodolfo, 2008). Finally, technological innovation may be skill-biased, with job 



5 
 

creation for skilled labour being at the expense of job destruction for unskilled labour (Berman 

et al., 1998; Machin, 2001). 

 

Chennells and van Reenen (2002) draw attention to methodological issues as additional sources 

of heterogeneity in the evidence base. For example, a positive effect-size estimates are more 

likely to be reported when primary studies use cross-section data. However, such estimates 

may be biased due to correlated fixed effects. Furthermore, the choice of technological 

innovation may be endogenous to changes in skill supply or changes in labour-market 

institutions. The use of time-differenced data may eliminate the fixed effects, but it may also 

exacerbate the measurement problems and lead to downward bias in estimated parameters, 

which is more prevalent when differencing is based on short time periods such as subsequent 

years (Draca et al., 2007). 

 

As technological change is un-observable, Chennells and van Reenen (2002) also draw 

attention to measurement issues that arise when researchers use various innovation proxies 

such as research and development (R&D) investment, ICT (information and 

telecommunications technology) investment, intellectual property assets (IPAs) consisting of 

patents and trademarks, or knowledge spillovers captured by knowledge capital pools at the 

industry, regional or national levels. Whereas R&D investment has the advantage of being 

measured by a comparable unit of account (currency), the effect-size estimates based on this 

measure may be biased due to existence of spillover effects. On the other hand, knowledge 

spillovers may allow for capturing technology diffusion but they are difficult to measure and 

the lag-structure in the relationship between spillovers and employment is not known.2  

 

The brief summary above indicates that the effect of technological innovation on total 

employment or on employment of skilled, mix-skills and unskilled labour is likely to be highly 

heterogeneous. Of the sources of heterogeneity, product innovation is expected to have a 

positive employment effects in contrast to process innovation. Secondly, the positive effect on 

total demand for labour may conceal a negative effect on the demand for unskilled labour. 

Third, the reported effect-size estimates are vulnerable to imperfections in the measurement of 

technological innovation. Finally, the effect-size estimates are likely to be contaminated with 

biases due to correlated fixed effects or endogeneity in the relationship between technological 

innovation and employment.  
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Although the existing reviews provide informative and valuable insights, they leave a number 

of issues unresolved. Existing reviews are silent on selection bias that, if exists, leads to 

truncated samples that, in turn, leads to distorted averages and confidence intervals for effect-

size estimates (Doucouliagos and Laroche, 2009). Reviewers acknowledge the sources of 

heterogeneity but they neither provide quantitative estimates for its incidence nor do they 

discuss the extent to which it can be explained by moderating factors that capture its sources. 

Third, the existing reviews do not address between- and within-study data dependence, which 

is a major concern in the synthesis of research evidence based on observational data. Finally, 

and in spite of the theoretical predictions about the mediating roles of the labour-market 

flexibility and product-market competition, the existing reviews do not provide a systematic 

evaluation of how effect-size estimates based on data from different OECD countries relate to 

labour- and product-market institutions in those countries. We address these issues and gaps in 

the knowledge base by drawing on bivariate and multivariate meta-regression techniques.  

 

 

3. The derived labour demand model  

 

This meta-analysis is based on primary studies that estimate various specifications of the so-

called derived labour demand model (DLDM). Following Van Reenen (1997) and Chennells 

and van Reenen (2002), a fully-specified industry-level DLDM can be written as follows:  

 

𝑙𝑜𝑔𝐿 = (𝜎 − 1) log(𝐴 𝐵⁄ ) − 𝜎 log(𝑊/𝑃) + 𝑙𝑜𝑔𝐾 + 𝜎𝑙𝑜𝑔𝑅   (1) 

 

Replacing the unobserved technology variables (𝐴 and 𝐵) with an appropriate measure of 

innovation, and assuming that the cost of capital is constant across industries but varies over 

time, the stochastic version of the DLDM can be written as: 

 

𝑙𝑜𝑔𝐿𝑖𝑡 = 𝛾log(𝑇𝑒𝑐ℎ_𝐼𝑛𝑛𝑜𝑣)𝑖𝑡 + 𝛽1 log(𝑊/𝑃)𝑖𝑡 + 𝛽2𝑙𝑜𝑔𝐾𝑖𝑡 + 𝜏𝑡 + 𝜀𝑖𝑡  (2) 

 

where  i is industry; 𝜏𝑡 is a set of time dummies that capture the cost of capital over time; 𝜀𝑖𝑡 is 

a white noise error term; 𝛽1  is the elasticity of substitution between capital and labour in 

response to change in real wages; and Tech_Innov is an innovation measure (e.g., R&D 

intensity, patent or trade-mark counts, ICT, knowledge spillovers, etc.) that proxies for 

technological change.   
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Equation (2) is an industry-level DLDM, but it can also be used for estimations with firm-level 

data. The difference between industry- and firm-level estimates depends on whether 

technological diffusion is immediate and whether innovation by a given firm has a strong 

creative destruction effect on its competitors. If diffusion is slow and the creative destruction 

effect is strong (i.e., if innovation by a given firm renders the technology of its competitors 

obsolete at fast rates), the firm level estimates of the innovation-employment relationship can 

be expected to be larger than industry-level estimates. This is because the innovative firm will 

enjoy increased market share and hence its demand for labour will be higher for a given 

increase in innovation.  

 

Drawing on Chennells and van Reenen (2002) and other reviews, the theoretical predictions 

from the model can be stated as follows:  

 

1. The higher is the firm’s market power, the less likely it is to observe a positive 

relationship between technological innovation and employment. This is because firms 

with high market power will set prices above marginal costs, depressing the level of 

demand for products/services and hence the level of demand for labour.  

 

2. Stronger employment protection legislation (EPL) and/or more rigid product-market 

regulation (PMR) are more likely to be associated with negative effects of technological 

innovation on employment – mainly due to reduced competition and flexibility in the 

product and labour markets respectively.  

 

3. However, the positive effect in (2) may be dampened or reversed if high levels of 

product-market competition reduce job security and the workers demand higher wages 

to compensate for the latter (Amable and Gatti, 2004). 

 

4. The higher the rate of substitution between capital and labour is, the more likely it is 

to observe a negative relationship between technological innovation and employment. 

 

5. The relationship between technological innovation and employment at the firm level is 

more likely to be positive if innovation does not diffuse immediately and the innovative 

firm increases its market share at the expense of its competitors. 
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6. Process innovation is associated with reduced demand for labour whereas product 

innovation is more likely to be associated with output expansion and hence higher 

demand for labour.     

 

In the meta-regression analysis, we will include empirical studies that draw on: (i) a complete 

version of the DLDM specified above; (ii) an uncompensated labour-demand version where at 

least wages and technological innovation are controlled for (van Reenen, 1997); or (iii) any 

variant in between where capital or output is controlled for.  One aim of this study is to establish 

where the balance of the evidence lies and whether the synthesized evidence conforms to 

narrative review conclusions and predictions from the DLDM. Another aim is to test whether 

the existing ‘effect-size’ estimates vary between different model specifications, estimation 

techniques, sample characteristics, and other moderating factors.  

 

Given our focus on DLDM studies, we exclude studies using a variant of the skill/wage share 

or innovation-decomposition models. Skill/wage share models yield estimates that measure the 

effect of innovation on the share of skilled (unskilled) labour in total wage bill or in total 

employment (Berman et al, 1994 and 1998; Antonioli et al., 2011; Xu and Li, 2008). This is in 

contrast to DLDM studies, which report the effect of innovation on the demand for total, skilled 

or unskilled labour. The innovation-decomposition model (Harrison et al., 2008 and 2014; Hall 

et al., 2008; Benavente and Lauterbach, 2008) allows for estimating effects on the demand for 

labour but it measures innovation differently than the DLDM. Whilst process innovation is 

usually a binary variable, product innovation is measured by the number of new products 

introduced. Studies informed by this model are excluded because the dichotomous proxy for 

process innovation (whether the firm introduces process innovation or not) has limited 

informational content and the proxy for product innovation (number of ‘new products’ 

introduced) may reflect innovation, strategic competition or both. These differences, their 

sources and their implications for our inclusion/exclusion decisions are discussed in detail in 

Part 1 of the Appendix.3 

 

 

4.  Systematic review rules and overview of the research field 
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In this systematic review, we follow the best-practice recommendations in Stanley et al. (2013) 

with respect to literature search, study inclusion and exclusion decisions, and data extraction. 

We have conducted title and abstract searches in eight electronic databases, using 21 key search 

terms and their extensions. The search was restricted to the period 1980-2013. The initial year 

is chosen on the basis of information from existing reviews, in which included empirical studies 

published before 1980 do not feature.  The final year was determined by the start of the research 

project in the last quarter of 2013. Although we restricted the search to studies published in 

English, we did not impose any restriction on the country of origin for the data.  

 

Studies informed by skill/wage share or innovation-decomposition models are excluded for 

reasons indicated above and discussed further in Part1 of the Appendix. We have also excluded 

a handful of studies that provide useful/innovative insights on technical competitiveness and 

cost competitiveness or much needed information on under-studied countries such as India. 

Some of these are excluded because they occupy a mid-ground position between the innovation 

decomposition model and the DLDM by controlling for different technological 

competitiveness measures in the same estimation (Bpgliacino and Pianta, 2010). Some are 

excluded because they are published after the cut-off date of 2013 for this study (e.g., Ciriaci 

et al., 2016; Mitra and Jha, 2015). Some others (Piva and Vivarelli, 2004b) draw on the same 

dataset as Piva and Vivarelli, (2005): an Italian firm-level database derived from questionnaire 

surveys commissioned by the investment bank Mediocredito Centrale (MCC) from 1992-1997. 

Given that the former is included in our sample, the latter has been excluded.  

 

Two independent reviewers read the titles and abstracts of all studies captured in the electronic 

searches, using a range of first-stage inclusion criteria designed to ascertain if the study: (i) 

investigates the effect of technological innovation however measured on employment of skilled, 

unskilled or mix-skills labour; (ii) has an empirical dimension as opposed to a theoretical focus 

only; and (iii) is NOT a review only. In the second stage, again two independent reviewers read 

the full text of the included studies and used second-stage inclusion criteria. The latter are 

designed to ensure that the included study: (i) draws on a variant of the DLDM as opposed to 

wage/skill share models or innovation decomposition models; (ii) discusses and documents the 

data used; (iii) discusses and documents the estimation methodology in the light of theoretical 

and econometric literature; and (iv) reports ‘effect-size’ estimates together with standard errors 

or t-values and associated sample sizes. The process led to inclusion of 27 primary studies. The 
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number eventually increased to 35 as a result of discovering new studies through snowballing 

and manual search.  

 

We extracted all ‘effect-size’ estimates (570 in total) reported in 35 primary studies, coding 

each estimate with respect to: (i) Publication type (journal article, working paper, book chapter, 

etc.) and date; (ii) model specification (full/uncompensated DLDM, differenced or level 

specification, inclusion of time/industry dummies, etc.); (iii) sample characteristics (country of 

origin for the data, firm/industry data, high/low/mixed levels of innovation intensity, 

panel/cross-section data, small/large firms, etc.); and (iv) estimation methods (OLS, Fixed 

effect or within estimators, and instrumental variable estimators such as GMM, 2SLS or 3SLS). 

We included all reported estimates for two reasons:4 (i) to make full use of existing information; 

and (ii) to avoid the risk of aggravating the selection problem that may exist at the primary-

study level with an additional sample selection problem that arises when reviewers rely on 

estimates that they or primary-study authors consider as ‘preferred’.  

 

Given that the unit of measurement for the dependent and independent variables differs within 

and between studies, we calculate partial correlation coefficients (PCCs) to ensure that the 

estimates are comparable. The PCC and its standard errors are calculated in accordance with 

(3) below, where 𝑡𝑖 and 𝑑𝑓𝑖 are the t-values and degrees of freedom reported in primary studies. 

 

𝑝𝑐𝑐𝑖 = 𝑡𝑖 √𝑡𝑖
2 + 𝑑𝑓𝑖

2⁄   and   𝑠𝑒_𝑝𝑐𝑐𝑖 = √(1 − 𝑝𝑐𝑐𝑖
2) 𝑑𝑓𝑖⁄    (3) 

 

The PCC measures the strength of the association between technological innovation and 

employment - after controlling for other determinants of the demand for labour in the DLDM. 

Its standard error represents variations due to sampling error. Doucouliagos (2011) suggests 

that a partial correlation that is less than ±0.07 can be regarded as small, even if it is statistically 

significant. The partial correlation indicates strong association (large effect) if it is greater than 

±0.33, whilst a PCC in between indicates moderate effect.5  

Table A1 in the Appendix provides an overview of the included studies, with information on a 

range of study characteristics. The majority of the primary studies included in this meta-

analysis are published journal articles (71%), followed by working papers (26%). 74% of the 
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studies utilised firm-level data, 14% utilised industry-level data, and the remainder utilised 

sector-level data.  

The number of estimates reported in primary studies varies between 2 and 105. Median values 

of the within-study estimates are all positive except for three studies (Piva and Vivarelli, 2004a; 

Rottmann and Ruschinski, 1998; Yochum and Rhiel, 1990). The median estimate and t-value 

for the ‘effect-size’ estimates in the sample are 0.036 and 1.850, respectively. This summary 

points out to positive and significant median estimates, but the latter vary considerably between 

studies. The median estimates in firm-level studies vary between -0.017 (Piva and Vivarelli, 

2004a) and 0.155 (Westermann and Schaeffer, 2001). In industry-level studies/estimations, the 

estimates vary between -0.550 (Yochum and Rhiel, 1990) and 0.257 (Berndt et al., 1992). 

Finally, the sector-level estimates vary between 0.062 (Luchesse and Pianta, 2012) and 0.242 

(Mastrostefano and Pianta, 2009).   

Funnel graphs in Figure 1 provide more information about the extent of heterogeneity and the 

risk of publication selection bias. The graphs are based on six evidence pools, distinguished by 

different combinations of innovation and skill types for which evidence exists. The mean-effect 

(represented by the vertical line) is positive in all evidence pools, with the exception of 

evidence pool (4) that reflect the estimates for unskilled labour demand. The distribution of the 

estimates around the vertical line indicates a moderate positive selection bias in graphs (3) to 

(6). This is evident from the relatively larger number of estimates above the mean compared to 

those below the mean. The two exceptions are evidence pools (1) and (2). 

 
In evidence pool (1), there is an indication of a strong negative selection bias with respect to 

process innovation, whereas in (2) we observe evidence of strong positive selection bias with 

respect to product innovation. These visual indicators will be tested formally through meta-

regression below. If confirmed, they indicate that summary measures or vote-counting results 

cannot be relied upon for correct inference about the effects of technological innovation on 

employment. 

 

Moreover, a significant number of estimates are beyond the 95% pseudo confidence intervals 

– indicating heterogeneity that cannot be explained by sampling errors (Sterne and Harbord, 

2004). Using the random-effect meta-regression estimator proposed by Harbord and Higgins 

(2008), we find that residual heterogeneity that cannot be explained by sampling differences is 
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excessive (75% and over) in three evidence pools (3, 5 6), but it is moderate or low in evidence 

pools (1, 2 and 4).  
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Figure 1: Funnel plots - potential selection bias and heterogeneity6 

 

  
1. Process innovation and mixed-skills labour.   

    Heterogeneity: 68% 

2. Product innovation and mixed-skills labour 

    Heterogeneity: 29% 

 

  
3. Undifferentiated innovation and skilled labour 

    Heterogeneity: 75% 

4. Undifferentiated innovation and unskilled labour 

     Heterogeneity: 59% 

 

  
5. Undifferentiated innovation and mixed-skills 

    Heterogeneity: 88% 

6. Full sample  

    Heterogeneity: 85% 
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5.  Why hierarchical meta-regression? 

 

Given the presence of heterogeneity, summary measures (particularly those that conceal a high 

level of heterogeneity) cannot be generalised to other contexts. In addition, summary measures 

that ignore the risk of selection bias can lead to incorrect inference in narrative reviews. That 

is why we conduct meta-regression analysis to quantify the sources of heterogeneity and take 

account of selection bias.  

 

Our methodology is informed by Stanley (2005, 2008) and Stanley and Doucouliagos (2012). 

The underpinning theoretical framework is that of Egger et al. (1997), who postulate that 

researchers search across model specifications, econometric techniques and data measures to 

find sufficiently large (hence statistically-significant) effect-size estimates. This postulate 

implies that reported estimates are correlated with their standard errors. Denoting the effect 

size with ei and the standard error with 𝑆𝐸𝑖 , and assuming that the error term (𝑢𝑖 ) is 

independently and identically distributed (i.i.d.), the selection process can be stated as follows:  

 

𝑝𝑐𝑐𝑖 = 𝛽 + 𝛼𝑠𝑒_𝑝𝑐𝑐𝑖 + 𝑢𝑖         (4a)  

 

However, model (4a) raises four estimation issues. First, the model is heteroskedastic because 

effect-size estimates have widely-different standard errors. To address this issue, we estimate 

a weighted least squares (WLS) version of (4a), where precision-squared (1/𝑠𝑒_𝑝𝑐𝑐𝑖
2) is used 

as weights. This is equivalent to dividing both sides of (4a) with the standard error (Stanley 

and Doucouliagos, 2014 and 2012; Stanley, 2008), leading to:  

 

𝑡𝑖 = 𝛼 + 𝛽(1 𝑠𝑒_𝑝𝑐𝑐𝑖⁄ ) + 𝑣𝑖         (4b) 

 

Here 𝑡𝑖 is the t-value associated with the reported estimate and the error term 𝑣𝑖 is the error 

term in (4a) divided with the standard error. Model (4b) yields minimum-variance linear 

unbiased estimates if the Gauss-Markov conditions are satisfied. Testing for 𝛼 = 0 is a test for 

publication selection bias or funnel asymmetry test (FAT), whereas testing for  𝛽 = 0  is a 

‘genuine effect’ test or precision-effect test (PET) after controlling for selection bias. The latter 

is considered as substantial if |α| ≥ 1 or as severe if |α| ≥ 2 (Doucouliagos and Stanley, 2009; 
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2012). Testing for selection bias is justified given the evidence about its prevalence in both 

social-scientific and medical research (Card and Krueger, 1995; Dickersin and Min, 1993; 

Ioannidis, 2005; and Simmons et al., 2011).7  

 

The second issue in estimating the Egger model is that the relationship between primary-study 

estimates and their standard errors may be non-linear. Indeed, Stanley and Doucouliagos (2014) 

provide evidence that a quadratic specification is superior if the PET rejects the null hypothesis 

of zero effect. Then, the specifications of the non-linear Egger model (5a) and its WLS 

equivalent (5b) are:   

 

𝑝𝑐𝑐𝑖 = 𝛾 + 𝛿𝑠𝑒_𝑝𝑐𝑐𝑖
2 + 𝜔𝑖         (5a)  

𝑡𝑖 = 𝛾(1 𝑠𝑒_𝑝𝑐𝑐𝑖⁄ ) + 𝛿𝑠𝑒_𝑝𝑐𝑐𝑖 + 𝜃𝑖        (5b) 

 

Model (5b) is estimated without a constant term and only if genuine effect is established beyond 

selection bias. It is referred to as precision-effect test corrected for standard errors (PEESE). 

 

The third issue is about which estimator is better-suited for the data at hand. Many meta-

analysis studies tend to estimate (4b and/or 5b) with ordinary least squares (OLS), which is 

equivalent to estimating models (4a and/or 5a) with a WLS statistical package that uses 1/SE2 

as weights. However, standard WLS would yield biased estimates in the presence of data 

dependence, which arises when a primary study using a particular dataset report multiple 

estimates or when different studies use overlapping datasets (Doucouliagos and Laroche, 2009). 

Data dependence may be an issue here because most studies report multiple estimates and some 

also use datasets from the same country of origin with different or overlapping time periods 

(see Table A1 in the Appendix).  

 

Such sources of within- and between-study dependence can be taken into account by: (i) 

obtaining bootstrapped standard errors; (ii) conducting clustered data analysis; and (iii) using 

hierarchical models (Doucouliagos and Laroche, 2009). The first two methods correct the 

standard errors for within-study dependence but without modeling the sources of within- or 

between-study dependence explicitly. Stated differently, the first two methods may correct for 

standard errors but they may suffer from model misspecification bias if within- and/or between-

study dependence exists.  
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Snijder and Bosker (2012) draw attention to additional sources of bias when standard non-

hierarchical estimators is used (with or without clustering) in the presence of dependence. First, 

the sample size is exaggerated dramatically when the primary-study estimates are treated as 

independent despite evidence of between- or within-study dependence. Secondly, and 

irrespective of the sample size, there is a high risk of committing type-I error (i.e., rejecting the 

null hypothesis when the latter is true) if there is between-study dependence. If within-study 

dependence exists, the precision-effect test (PET) would be too conservative - i.e., the type-I 

error probability would be too low.  

 

Third, clustered-data estimations are robust but inefficient. They work well if the sample 

includes 30 or more studies and if the number of ‘effect-size’ estimates per study are similar in 

number – which is rarely the case. Fourth, HMs allow for quantifying the level of intra-study 

correlation (ISC) – i.e., the extent of within-study dependence – in addition to variances of the 

between-study and/or within-study random-effect components. The larger is the ISC, the more 

severe is the risk of biased estimates or summary measures.  

 

One drawback of the HMs is that they assume normality of the model residuals. This 

assumption is more explicit in HMs compared to standard WLS. However, violation of the 

normality assumption affects the confidence intervals (or the p-values) – not the coefficient 

estimates. We take account of this issue by estimating the HMs with heteroskedastic standard 

errors at two higher-level clusters: skill and innovation types. We base our conclusions on the 

estimation with smallest log-likelihood value in magnitude.  Therefore, we are of the view that 

HMs, if justified by LR tests, address a wide range of estimation issues with little or no cost 

for consistency and/or correct inference (Demidenko, 2004; McCulloch et al., 2008; Snijder 

and Bosker, 2012).   

 

In building our HMs, we nest the primary studies (lower-level groups) within six higher-level 

groups that correspond to unique pairs of innovation and skill types.8 We also allow for random 

variation in the effect-size estimates due to random intercepts (RI) or random intercepts and 

slopes (RIS). The choice between OLS and HM; and between the RI and RIS specifications is 

based on likelihood ratio (LR) tests, with the null hypothesis that the compared model is nested 

within the preferred HM.9 The RI and RIS specifications of the PET-FAT and PEESE models 

are given in Part 2 of the Appendix.  
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The final issue is that some studies report disproportionately large numbers of estimates 

compared to the rest. For example, four studies (van Reenen, 1997; Berndt et al., 1992; 

Lachenmaier and Rottmann, 2011; and Yang and Lin, 2008) account for 43% of the total 

estimates in the evidence pool. Even though the HM takes account of between- and within-

study dependence, the sheer number of estimates reported by such studies may dominate the 

informational content of the evidence base and the meta-regression estimates. Therefore, we 

estimate all meta-regression models by also weighting the estimates with the inverse of the 

number of estimates reported by each study. This weighting scheme ensures that the weight of 

each study in the sample is equal to one. 

 

The ‘average’ employment effect in the bivariate meta-regression is more reliable than other 

summary measures that do not account for selection bias. However, its out-of-sample 

generalizability may be limited due to excessive heterogeneity. Therefore, we obtain 

quantitative measures of heterogeneity using a random-effect meta-regression model proposed 

by Harbord and Higgins (2008).  Then we verify the sources of heterogeneity by augmenting 

bivariate meta-regression model with a range of dummy variables (Z) that capture the 

dimensions of the research field.  The random-intercepts-only (RI) and random-intercepts-and-

slopes (RIS) specifications of the multivariate meta-regression model (MVMRM) are given in 

Part 2 in the Appendix. 

 

We estimate the PET/FAT/PEESE models for 5 sub-samples of paired innovation and skill 

types and for the full sample. Table 1 reports the results together with model diagnostics such 

as LR test statistics, log-likelihood values for hierarchical and the comparator models, variance 

inflation factors, levels of heterogeneity, and intra-study correlation (ISC). The MVMRM is 

estimated with the full sample, controlling for skill and innovation types as additional sources 

of heterogeneity. To avoid multicollinearity and overfitting, we follow a general-to-specific 

model-estimation routine; and present the general model results in Table A4 in the Appendix. 

The specific model is obtained by omitting the most insignificant covariates (those with the 

largest p-value) one at a time until all remaining covariates are statistically significant. Results 

from the specific model are presented in Table 2 in the main text.  
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6.  Hierarchical meta-regression results 

 

Table 1 consists of two panels. In panel A, we present the PET/FAT results for the level of 

selection bias (α) and for the ‘effect-size’ estimates (β) after controlling for selection bias. 

Columns A1 to A3 and A6 report HM estimation results based on HM specifications justified 

by LR tests. In columns A4 and A5, we use standard WLS as the latter is justified by LR tests. 

LR test Chi-square and log-likelihood values justify the HM specification where used. Finally, 

the robustness of the results to equal study weights is checked and the results, which are 

consistent with Table 1, are reported in Table A3 in the Appendix. 

 

Before discussing the findings in Table 1, we would like to draw attention to two pieces 

information that HMs provide: (i) the variances of the random-effect components (not reported 

here to save space but available on request); and (ii) the intra-study correlation (ISC) results at 

the bottom of the table. The variances of the random-effect components are significantly 

different than zero and indicate the presence of random effects at the study level – which reflect 

study-specific random intercepts. However, random effects at the higher level (innovation and 

skill type pairs) in the full sample (A6 and B6), are either small or insignificant. Finally, the 

estimated variances also indicate the presence of random slopes where the latter are justified 

by LR tests.  

 

On the other hand, the ISCs indicate the presence of dependence between primary-study 

estimates, which ranges from 0.121 - 0.731. These magnitudes indicate moderate to strong 

intra-study dependence or “social grouping”, which the HMs take into account explicitly 

(Snijder and Bosker, 2012). The research and practice implication of these findings is that it is 

highly advisable to model within- and between-study dependence explicitly and use the wide 

range of diagnostics that HM estimators allow for so that the meta-regression model is specified 

correctly and the correct estimator is made.  

 

Other findings in Table 1 indicate that selection bias is moderate or insignificant in four 

evidence clusters (A3 to A6), but substantial in two clusters (A1 and A2).  In the latter, the bias 

is negative in A1 (process innovation and demand for mixed-skills labour) but positive in A2 

(product innovation and demand for mixed-skills labour). This finding confirms the visual story 

in the funnel plots – and is consistent with the suspicion that some researchers report selectively 

those empirical results that are statistically significant in the ‘right’ direction. In other words, 
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there is a preponderance of confirmatory estimates that support the theoretical predictions 

process innovation has a negative effect on employment whereas product innovation has a 

positive effect (Katsoulacos, 1984; Harrison et al, 2008; 2014)10. This finding demonstrates 

that the theory-congruent conclusions reported in narrative reviews may be misleading as they 

are based on highly-selected evidence.  

 

 Effect-size estimates for process and product innovation demonstrate that this is the case. For 

process innovation (A1), the average effect size is positive (0.029) and significant. The estimate 

remains significant in B1 where we also control for quadratic relationship between primary-

study estimates and their standard errors.  In contrast, the average effect size for product 

innovation (A2) is insignificant! This is because the risk of selection bias in this evidence pool 

is the highest (α = 1.895), and unsurprisingly, the effect-size estimate becomes insignificant 

when selection bias is taken into account.  

 

Consistent (PEESE) ‘effect-size’ estimates (𝛾) in Panel B of Table 1 should be considered as 

small because they fall below the benchmark of 0.07 suggested by Doucouliagos, (2011) and 

the earlier benchmark of 0.10 suggested by Cohen (1988).  Given the confidence interval 

around the point estimates, the small but positive effect of technological innovation on the 

demand for labour may well be practically insignificant. This is irrespective of the evidence 

pool one focuses on. 

 

Furthermore, the results in Panel B lend some support to the skill-biased technological change 

hypothesis in that the positive effect on skilled labour demand (0.029 in B4) is larger than 

unskilled labour (0.007 in B5). However, it must also be noted that the effect on skilled-labour 

demand is smaller than the effect on mixed-skills labour (0.039 in B3). This anomaly reflects 

the relatively higher level of positive selection in the evidence pool for skilled-labour demand 

(0.937 in A4) compared to mixed-skills labour demand (insignificant in A3). Hence, we 

conclude that more but less-selected evidence from DLDM estimations is required to ascertain 

the extent of skill-biased technical change.  
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Table 1: Technological innovation and employment: Effect-size estimates by innovation and skill type 

 

 Panel A: PET/FAT Panel B: PEESE 

Dependent variable: t-value (A1) (A2) (A3) (A4) (A5) (A6) (B1) (B3) (B4) (B5) (B6) 

β (in PET/FAT);  𝛾 (in PEESE) 0. 029*** 0.004 0.037*** 0.025*** 0.004* 0.025*** 0.027*** 0.039*** 0.029*** 0.007*** 0.028*** 

 (0.008) (0.004) (0.007) (0.006) (0.002) (0.006) (0.007) (0.006) (0.005) (0.002) (0.005) 

α -1.405** 1.895*** 0.210 0.937*** 0.712** 0.461      

 (0.683) (0.141) (0.378) (0.298) (0.287) (0.392)      

Std. error       -17.959*** -9.073*** 3.531** 2.053 -1.187 

       (3.407) (1.997) (1.380) (1.289) (2.090) 

Observations 66 69 344 42 43 567 66 344 42 43 567 

Studies 14 13 21 7 7 35 14 21 7 7 35 

LR Test chi2 11.927 0.719 22.317 231.916   2.765 20.420 27.83 47.714 372.342 10.633 33.207 

P> chi2 0.000 0.397 0.000 0.000 0.096 0.000 0.000 0.000 0.000 0.005 0.000 

Log-likelihood (HM) -107.500 -105.052 -825.242 -87.664 -79.054 -1289.587 -109.829 -825.802 -89.189 -81.236 -1290.414 

Log-likelihood (Comp. model) -130.225 -108.570 -848.867 N.A. N.A. -1348.930 -125.722 -849.161 N.A. N.A. -1359.481 

Heterogeneity# 68% 29% 88% 75% 59% 85% N.A. N.A. N.A. N.A. N.A. 

Estimator HM2/RI HM2/RI HM2/RI WLS WLS HM3/RIS HM2/RI HM2/RI WLS WLS HM3/RIS 

Within-study correlation (ICC) 0.573*** 0.210*** 0.38*** N.A. N.A. 0.121* 0.731*** 0.439*** N.A. N.A. 0.186** 
Notes: Samples: A1 & B1 - process innovation and demand for mixed-skills labour; A2 - product innovation and demand for mixed-skills labour; A3 & B3 - undifferentiated 

innovation and demand for mixed-skills labour; A4 & B4 - undifferentiated innovation and skilled labour; A5 & B5 - undifferentiated innovation and demand for unskilled 

labour; A6 & B6 - full sample. Estimators: WLS – weighted least squares; HM2/RI - two-level hierarchical estimation with random intercepts; HM2/RIS - two-level 

hierarchical estimation with random intercepts and slopes; HM3/RIS - three-level hierarchical estimation with random intercepts and slopes. Robust standard errors (in 

brackets) are clustered at the study level. Three observations with undue influence are excluded, using the DFBETA influence statistics. # indicates the proportion of residual 

between-study variation due to heterogeneity, as opposed to within-study sampling variability.  *, **, *** indicate significance at 10%, 5% and 1%, respectively.  N.A.: Not 

applicable.  
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Finally, the evidence in Table 1 also points out a trade-off between selection bias and residual 

heterogeneity. The latter is higher (between 75% - 88%) when selection bias is small or 

insignificant. On the other hand, when heterogeneity is low (between 29% - 68%), the selection 

bias is substantial (greater than one) in two out of three estimations. This evident trade-off 

indicates the need not only for less selected estimates, but also for better data quality and 

estimation methods that would reduce the level of residual heterogeneity in less-selected 

estimates. In what follows, we conduct multi-variate meta-regression analysis to shed light on 

the sources of heterogeneity listed in Table 2. 

 

We organise the potential sources of heterogeneity in four categories: (i) publication type/date 

to verify if journal articles and work published after 2000 report systematically different 

estimates; (ii) variations in DLDM specification to verify if econometric specifications matter; 

(iii) characteristics of the samples used in primary studies to verify if data type, innovation type 

and measure, skill type, and country of origin for the firm/industry data are conducive to 

different estimates; and (iv) estimation methods to verify if controlling for endogeneity and 

time-invariant fixed effects lead to different estimates. The covariates within each category are 

dummy variables that take the value of 1 if the primary-study estimate is associated with the 

controlled characteristic and zero if it is associated with the excluded characteristic(s). They 

are all interacted with precision to capture their effects on ‘effect-size’ estimates reported in 

primary studies.  

 

Coefficients on the covariates should be interpreted as follows: a positive (negative) and 

significant coefficient indicates that primary-study estimates characterised by the control 

dummy are larger (smaller) than those associated with the reference category. A non-significant 

coefficient indicates no systematic difference between the primary-study estimates associated 

with the controlled and reference categories. The expected signs on the coefficients are 

informed by conclusions reported in the narrative reviews discussed above and by our reading 

of the studies included in the meta-analysis.  
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Table 2: Sources of heterogeneity and expected effect sign  
 

Sources of variation in the evidence 

base 

Controlled 

category 

Reference 

category 

Expected 

sign 

A. Publication type and date    

Journal article, working paper, book 

chapter 
Journal article 

Working paper, 

book chapter 
+/- 

Publication date after 2000 Yes 
Publications 2000 

and before 
+ 

B. Model specification    

Informed by theoretical DLDM Yes Ad hoc DLDM n.a. 

Dynamic specification Yes No - 

Time dummies included  Yes No +/- 

Industry or sector dummies 

included 
Yes No - 

Wage included in model Yes No n.a. 

Output included in model Yes No n.a. 

Capital included in model Yes No n.a. 

Long-term effect (3 lags or more) Yes No - 

C. Sample characteristics    

Panel data Yes 
Cross-section, 

time-series 
- 

Industry or sector data Yes Firm - 

Innovation measure: R&D   + 

Innovation measure: Intellectual 

property assets (IPAs) 
Yes No n.a. 

Innovation measure: ITC Yes No +/- 

Innovation measures: R&D+IPA Yes No n.a. 

Innovation type: Process Yes No - 

Innovation type: Product Yes No + 

Newness of Innovation: First to 

industry or country  
Yes First to firm 

 

+ 

Skill type: Unskilled labour Yes 
Mixed skills and 

skilled labour 

 

- 

Sector: Manufacturing  Yes Other sectors +/- 

Country: Canada, France, Germany, 

Italy, Netherlands, Norway, Spain, 

Sweden, UK, USA, OECD 

Countries  

Yes 

 

Data from Non-

OECD countries 

and other Country 

 

n.a. 

High innovation intensity Yes No + 

Firm size: Large Yes 
Small and mixed-

size firms 

 

+/- 

D. Estimation method    

GMM Yes OLS and all others   - 

Differenced / within Yes No - 

 

 

Estimation results from the general model (Table A4 in the Appendix) indicate that the 

moderating variables reduce the residual heterogeneity only marginally – from 85% in the full-

sample bivariate model in Table 1 column A6 to 79% in general MVMRM in Table A4. 
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Another observation is that the specification of the DLDM, the measure for innovation (with 

the exception of ICT and intellectual property assets), the country of origin for the data (with 

the exception of Canada and the US) are insignificant in explaining heterogeneity. Finally, the 

results indicate that the effects of innovation types (insignificant in the case of process 

innovation, negative and significant in the case of product innovation) are the opposite of what 

the theory predicts. However, we do not use the general model findings as a basis for inference 

as the coefficient estimates may be unstable due to multicollinearity, with a VIF value of 13.41.  

 

Specific-model estimation results, presented in Table 3, are obtained by dropping the covariates 

with the largest p-value one at a time until all remaining covariates are significant. Then 

precision is added to the model to verify if the sign/significance of the covariates remain stable. 

Finally, to account for heteroscedasticity, the specific model is estimated with two different 

types of heteroskedastic residual-error structures at the innovation-type level (column 2) and 

at the skill-type level (column 3). Finally, we estimated the specific model by weighting the 

primary-study estimates with the inverse of the total number of estimates in each study (column 

4).The preferred model is (4), given the lower magnitude of the log-likelihood value.  

 

We derive two sets of conclusions from the results in Table 3: (a) conclusions supported by 

highly-consistent evidence (marked bold); and (b) conclusions supported by moderately-

consistent evidence. The former depend on significance of the moderating factor in column (4) 

and sign/magnitude consistency with preceding columns. The latter depend on significance and 

sign/magnitude consistency across columns 1 to 3. 
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Table 3: Sources of heterogeneity: Specific model estimations 

Dependent variable: t-value (1) (2) (3) (4) 

Publication type/year     

Precision 0.004 0.003 0.006 0.005 

 (0.013) (0.013) (0.012) (0.013) 

Publication date after 2000 0.023*** 0.023** 0.020*** 0.011** 

 (0.009) (0.009) (0.007) (0.006) 

Model specification     

Output included in model -0.023*** -0.022*** -0.024*** -0.016* 
 (0.008) (0.008) (0.008) (0.009) 

Long-term effect (3 yrs. or more) -0.016*** -0.016*** -0.017*** -0.026*** 

 (0.006) (0.006) (0.004) (0.005) 

Sample characteristics     

Data type: Panel -0.023** -0.023** -0.015* -0.004 

 (0.010) (0.010) (0.008) (0.010) 

Industry or sector data 0.039** 0.036** 0.030* 0.026 

 (0.017) (0.016) (0.018) (0.017) 

Innovation measure: IPA -0.010*** -0.009*** -0.010*** -0.009** 

 (0.003) (0.003) (0.003) (0.004) 

Innovation measure: ICT 0.114** 0.106** 0.116** -0.020 

 (0.049) (0.042) (0.054) (0.109) 

Skill type: Unskilled labour -0.020*** -0.020*** -0.019*** -0.017*** 
 (0.005) (0.005) (0.006) (0.004) 

Sector: Manufacturing 0.043*** 0.043*** 0.036*** 0.023** 

 (0.010) (0.010) (0.009) (0.011) 
Canada data -0.048** -0.049** -0.042* -0.032** 

 (0.021) (0.021) (0.023) (0.013) 
UK data 0.022* 0.023* 0.016 0.011 

 (0.013) (0.013) (0.013) (0.018) 

US data 0.075*** 0.075*** 0.063*** 0.058*** 
 (0.014) (0.014) (0.014) (0.021) 

OECD countries data 0.016*** 0.015*** 0.015** 0.012*** 

 (0.005) (0.005) (0.006) (0.004) 
High innovation intensity -0.035*** -0.035*** -0.027*** -0.029** 

 (0.006) (0.006) (0.005) (0.013) 

Estimation method     

Differenced / within estimation -0.012*** -0.011*** -0.011*** -0.009* 

 (0.003) (0.003) (0.003) (0.005) 
Constant -0.151 -0.138 -0.037 0.599 

 (0.314) (0.307) (0.329) (0.483) 

Intra-study correlation  0.256*** N.A. N.A. N.A. 

Observations 567 567 567 567 

Studies 35 35 35 35 

LR Test chi2 215.618 216.082 216.077 4319.460 

P> chi2 0.000 0.000 0.000 0.000 

Log-likelihood (HM) -1221.714 -1219.098 -1176.717 -80.321  

Log-likelihood (Comp. model) -1252.818 N.A. N.A. N.A. 

VIF 8.05 8.05 8.05 8.05 

Heterogeneity# 80% 80% 80% 80% 

Estimation HM3/RI HM3/RI HM3/RI HM3/RI 

Notes: HM3/RI indicates three-level HM with random intercepts. # the proportion of residual between-study 

variation due to heterogeneity.  Homoscedastic residual-error structures (column 1); followed by heteroskedastic 

residual-error structures by skill type (column 2) and by innovation type (column 3). Column 4 reports estimates 

based on sampling weights defined as the inverse of the number estimates within each primary study. Three 

observations with undue influence are excluded, using the DFBETA influence statistics. *, **, *** indicate 

significance at 10%, 5% and 1%, respectively. N.A.: mot available with heteroskedastic error structure. 
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Findings supported by highly-consistent evidence are in partial agreement only with two 

narrative review conclusions.  First, the effect of technological innovation on unskilled labour 

demand is smaller compared to the effect on skilled or mixed-skills labour demand. This is 

also in line with the skill bias reported in skill/wage share literature. Our contribution here is 

to combine both bivariate and multivariate meta-regression results and reveal that the effect on 

unskilled labour demand is positive but too small to be practically significant. Secondly, we 

confirm the conclusion in Vivarelli (2014) and report that primary studies published after 2000 

tend to report relatively larger employment-effect estimates compared to previous studies.  

 

However, our strongly-consistent findings are either incongruent with narrative review 

findings or shed new light on a number of moderating factors that they are unable to evaluate 

in a conclusive manner. For example, estimates based on high-innovation or high-tech 

firm/industry data in primary studies are relatively smaller than those associated with the 

reference category. This is in contrast to the conclusion in Vivarelli (2014).11 Secondly, we 

find no systematic difference between estimates based on process and product innovation data 

as both are insignificant in the specific MVMRM and their effects in the bivariate meta-

regression are the opposite of the consensus view. Third, the effect of technological innovation 

on labour demand is relatively smaller in the long run. This is in contrast to theoretical 

predictions that worker displacement in the short run may be reversed as compensation 

mechanisms trigger new demand for labour in the long run. However, this findings is in line 

with the creative destruction argument in Schumpeterian models, where firm/industry 

innovation becomes obsolete as competitors introduce new technology (Aghion et al., 2014). 

 

Other strongly-consistent findings that shed new light on the role of the moderating factors can 

be listed as follows: 

 

1. Inclusion of output in the empirical model is associated with smaller estimates 

compared to models that do not control for output. This may be because firm 

optimisation implied by the theoretical model does not hold every period. Stated 

differently, firm/industry employment may be responding not only to capital and 

labour costs but also to demand shocks, the exclusion of which may be a source of 

omitted variable bias.  
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2. Technological innovation measured by intellectual property assets (IPAs) is 

associated with smaller estimates compared to all other measures of innovation. 

This finding can bridge the evidence gap for two reasons. First, it may indicate that 

the IPA counts may not reflect the true quality of the technological innovation they 

protect. Secondly, it addresses the lack of a quantitative measure for how patents 

and trademarks affect the demand for labour compared to other measures of 

technological innovation.  

 

3. The effect on manufacturing employment is larger compared to non-manufacturing 

employment. This is despite the fact that the unit of analysis (firm versus industry) 

is distributed evenly between manufacturing and non-manufacturing sectors. This 

finding points out to policy dilemmas in that manufacturing firms/industries that 

innovate register higher demand for labour compared to services even though the 

share of manufacturing in total employment is declining in OECD and non-EOCD 

countries.  

 

4. There is evidence that the effect is larger in OECD compared to non-OECD 

countries and in the USA compared to all other countries. However, other country 

data is not associated with significantly different employment-effect estimates. This 

pattern does not conform to theoretical predictions that different levels of labour-

market flexibility and product-market competition may be associated with different 

innovation effects on employment. Below, we probe this issue further by estimating 

separate bivariate meta-regressions for individual countries. 

 

5. Data based on firms/industries classified as highly innovative by primary-study 

authors is associated with smaller effect-size estimates. This is in contrast to 

frequent policy statements that establish short-cuts in the relationship between 

innovation and employment generation. We suggest that future research should 

investigate non-linearities in the innovation-employment relationship in the light of 

two empirical patterns from Schumpeterian models. The first concerns the inverted-

U relationship between innovation intensity and firm survival (Ugur et al., 2016). 

The relatively lower levels of employment associated with high-innovation-

intensity may be due to a common pattern among exiting firms with high innovation 

intensity: a significant drop in the level of employment during the 2-3 year period 
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before exit. The second concerns the inverted-U relationship between innovation 

intensity at the industry level (creative destruction) and total factor productivity 

(TFP) at the firm level (Aghion et al., 2014). The relative fall in firm’s TFP growth 

rates when industry innovation intensity (creative destruction) increases may be 

inducing relatively lower levels of demand for labour at the firm or industry levels.  

 

6. Effect-size estimates based on differenced data or fixed-effect estimators are smaller 

than those based on level data. This is in line with econometric theory, which clearly 

indicates that differenced or demeaned data is associated with attenuation bias. It 

also bridges the gap in evidence synthesis for this research field, as narrative reviews 

are silent on the trade-off between the need to correct for correlated fixed effects 

(which differencing and fixed-effect estimations do) and the attenuation bias in the 

latter when the variables are likely to be mis-measured.  

 

 

Results in Table 3 also allow for some conclusions based on moderately-consistent evidence. 

Two of these are worth highlighting here. First, and in contrast to the conclusion in Vivarelli 

(2014), panel data is associated with relatively smaller effect-size estimates compared to cross-

section data. This is to be expected econometrically because cross-section data does not allow 

for taking account of endogeneity and correlated fixed effects. Secondly, and in contrast to the 

suggestion in Chennells and van Reenen (2002), we find that industry/sector level data is 

associated with larger estimates compared to firm-level data. These findings suggests that the 

informational content of the existing estimates may be hampered by data quality, for which 

econometrics can provide only partial solutions.12  

 

In what follows, we will provide further bivariate meta-regression estimates based on isolated 

evidence pools with a view to examine heterogeneity between countries and between different 

estimation methods. We undertake this exercise because country dummies and 

OLS/instrumental variable dummies have turned out to be insignificant in explaining 

heterogeneity in the overall evidence base. To save space, we present only the PEESE results 

that take account of the quadratic relationship between primary-study estimates and their 

standard errors.13 In panel A of Table 4, we present the findings for some OECD countries; 

whereas in Panel B we present the findings for different estimation methods. 
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Results in Panel A indicate that the effect of technological innovation on employment do not 

vary in a monotonic fashion as the level of employment protection legislation (EPL) and 

product-market regulation (PMR) changes in six OECD countries for which more than 10 

observations exist. The countries in Panel A are listed in decreasing order of EPL and PMR 

indices for the period 1998-2003 (OECD, 2004: 117; OECD, 2013: 29).14  In contrast to 

theoretical predictions, the country-specific effect of technological innovation on labour 

demand is relatively higher at both ends of the labour- and product-market rigidity indices. The 

effect is relatively larger in France and Sweden and in the US at the higher and lower ends 

respectively, compared to Germany, Italy and the UK in the middle. 

 

Our interpretation of this U-shaped pattern is that labour-market flexibility (one of the 

necessary conditions for job creation under technological innovation) may be high in countries 

with high and low EPL and PMR. In low EPL and PMR countries such as the US, labour-

market flexibility follows from relatively easier hiring and firing aided by product-market 

competition. In the high EPL and PMR countries, on the other hand, labour-market flexibility 

may result from labour unions’ agreements to wage flexibility in exchange for job security. 

This interpretation is in line with non-linear relationships reported by Calmfors and Driffill 

(1988) and Amable and Gatti (2004).  

 

On the other hand, the results in Panel B confirms the expected upward bias in OLS estimations, 

which do not take account of endogeneity and correlated fixed effects. The difference between 

different instrumental variable estimators (GMM difference and system, GMM and 

2SLS/3SLS) is quite small.    
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Table 4: Indicators of heterogeneity through bivariate meta-regression estimates 
 

Panel A: Heterogeneity by country (PEESE) 

 (1b) (2b) (3b) (4b) (5b) (6b) 

VARIABLES France Sweden Germany Italy UK US 

β 0.070*** 0.038** 0.029*** 0.033*** 0.029*** 0.057*** 

 (0.019) (0.014) (0.007) (0.008) (0.004) (0.017) 

Std. error -208.155 -154.473 -8.166 -16.023 5.781 -25.853*** 

 (167.880) (157.674) (12.339) (20.498) (9.020) (8.644) 

Observations 11 23 95 11 171 95 

Number of groups 2 2 8 3 4 5 

LR Test chi2 41.263 6.648 15.921 22.966 44.333 20.529 

P> chi2 0.000 0.036 0.000 0.000 0.000 0.000 

Log-likelihood (HM)# -26.321 -65.781 -182.228 -20.337 -310.868 -241.610 

Log-likelihood (CM)# -26.321 -66.013 -192.098 -20.337 -312.035 -250.223 

EPL / PMR (Highest to 

lowest)## 
1 2 3 4 5 6 

 

Panel B: Heterogeneity by estimator (PEESE) 

 (1b) (2b) (3b) (4b) 

Dependent variable: t-value OLS GMM-All GMM-Sys 2SLS - 3SLS 

     

β 0.035*** 0.015*** 0.014*** 0.012*** 

 (0.004) (0.004) (0.005) (0.004) 

Std. error -6.764* 51.931** 67.531** 56.347*** 

 (3.804) (20.360) (27.545) (19.647) 

Observations 297 111 64 120 

Studies 21 8 6 11 

LR Test chi2 82.515 39.975 31.927 42.382 

P> chi2 0.000 0.000 0.000 0.000 

Log-likelihood (HM) -670.639 -202.834 -126.691 -221.097 

Log-likelihood (Comp. model) -681.760 -208.530 -129.786 -227.030 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All are estimated as two-level hierarchical models with random intercepts. #: HM is hierarchical model; CM 

is comparator model. ##: EPL is employment protection legislation; PMR is product-market regulations. Both indicate rigidities in the labour and product markets, 

respectively.  
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7.  Conclusions 

 

The analysis above demonstrates that meta-analysis is an effective method of synthesizing the 

evidence on the relationship between technological innovation and employment estimated 

through some variant of the DLDM. The method has enabled us to verify the qualitative 

conclusions put forward in existing reviews and to shed new light on the effects of moderating 

factors with respect to which they are either silent or inconclusive. We provide partial empirical 

support to two conclusions reported in prior reviews: (i) technological innovation increases the 

demand for skilled labour more than unskilled labour; and (ii) primary studies published after 

2000 tend to report relatively larger ‘effect-size’ estimates. However, the empirical support for 

these conclusions is qualified: the effect on skilled-labour demand is not larger (in fact it is 

smaller) than the effect on mixed-skills labour demand; and that the increased availability of 

panel data after 2000 is not necessarily the driver of larger estimates reported in more recent 

studies. If anything, estimates based on panel-data are relatively smaller than those based on 

cross-section or time-series data.  

 

We have demonstrated that best practice in meta-regression analysis can be enhanced through 

explicit modeling of between- and within-study dependence.  Hierarchical models are well-

suited for this purpose for two reasons. First, they are flexible enough to allow for correct 

choice between nested models and estimators on the basis of LR tests. Secondly, they allow 

for consistent ‘effect-size’ estimates and correct inference at a relatively small cost that may 

arise when the normality assumption about the error term is violated.  

 

Our findings suggest that narrative review conclusions may be incorrect when they draw on 

highly selected estimates. This was evident with respect to the effects of process and product 

innovation on mixed-skills labour demand. The selection bias in these evidence pools is in the 

direction of theoretical predictions; and the level of selection is so high that the effect-size 

estimates turn out to be the opposite of what the narrative reviews report. Our findings are also 

in contradiction with narrative review conclusions concerning the employment effects at the 

industry level (which turns out to be relatively larger than firm-level effect) and within high-

innovation-intensity firms or industries (which turns out to be smaller than the excluded 

categories).  
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They also shed new light on some moderating factors with respect to which the narrative 

reviews are either silent or inconclusive. Specifically, we found that: (i) the inclusion of output 

in the DLDM is associated with smaller innovation effects on employment; (ii) measuring 

technological innovation with R&D investment has no systematic effect on reported estimates, 

but the reported estimates are relatively smaller when innovation is measured with patents or 

trademarks and relatively larger when innovation is measured with investment in ICT; (iii) the 

effect of labour- and product-market regulation on the relationship between innovation and 

employment is more nuanced than the narrative review conclusions in that both high and low 

regulation countries may derive larger employment gains from innovation as labour unions 

trade off job security with wage flexibility in high-regulation countries. 

 

This review suggests that persistent heterogeneity and lack of conformity between meta-

analysis findings and some theoretical predictions (particularly those related to process and 

product innovation) raises important questions about the informational content of the existing 

evidence. The latter may be constrained by data quality and modeling issues. Chennells and 

van Reenen (2002) provide an authoritative account of the difficulties involved in measuring 

innovation as a proxy for the unobservable technological change. Therefore, we suggest that 

investment in better-quality data is necessary to reduce the risk of mismeasurement. In our 

view, the transition to capitalisation of R&D expenditures is a step in the right direction because 

it will bring a common approach to R&D deflators and to the building of R&D capital stock 

from R&D investments. We also think that the R&D capital should be augmented with other 

intangible assets to create a measure of knowledge capital as suggested by Clayton et al. (2009).  

 

Irrespective of the innovation measure adopted, knowledge diffusion remains a central issue 

for modeling. In the literature on R&D and productivity (e.g., Griliches, 1979; Hall et al., 2010; 

Hall, 2011) knowledge diffusion is modelled as a separate source of productivity because it is 

considered as complement rather than substitute to own knowledge capital. In the innovation 

and employment literature reviewed here none of the studies control for knowledge diffusion 

as a separate source of technological change. Although constructing the external knowledge 

pools poses additional measurement issues (Griliches, 1992), its exclusion from the theoretical 

and empirical models is rather ad hoc – and may be a source of omitted variable bias.  

 

Another modeling issue is the lag structure in the relationship between the knowledge stock 

(both own and external knowledge stock) and employment. Fifty percent of the included 



32 
 

studies use contemporaneous values of employment and innovation and 31% use between 1 

and 3 lags for technological innovation, with the remaining 19% using more than 3 lags. The 

variation in the lag choices appears to be driven by empirical concerns rather than justifications 

on theoretical grounds. Therefore, we suggest better linkage with the literature on innovation 

and growth/productivity with a view to highlight not only the need for taking account of the 

lag structure in the relationship between technological innovation and employment, but also to 

acknowledge the difficulties in identifying the lag structure in firm-level as opposed to 

industry-level data.  

 

A final modeling issue concerns the need for explicit incorporation of market power and 

creative destruction into the theoretical and empirical models. The Schumpeterian growth 

literature (Aghion et al., 2014) provides useful insights about the rationale for their inclusion 

in the growth models and their implications for growth. One way in which the Schumpeterian 

insights can be incorporated into the derived labour demand model is to allow for interactions 

between technological innovation and market power. Another way is to treat innovation 

intensity in the industry or the region not only as a source of knowledge spillovers but also as 

a source of creative destruction that makes the firm’s or the industry’s own technology obsolete.  
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Appendix 

 

Part 1: Derived labour demand model (DLDM) and competing models  

This study meta-analyses ‘effect-size’ estimates from a DLDM, which is based on an industry-

level production function (A1) with constant elasticity of substitution between capital and 

labour (van Reenen, 1997; Chennells and van Reenen, 2002).  

 

𝑄 = 𝑇[(𝐴𝐿)(𝜎−1) 𝜎⁄ + (𝐵𝐾)(𝜎−1) 𝜎⁄ ]𝜎/(1−𝜎)      (A1) 

 

In (A1), 𝑌 is output, 𝐿 is employment, and 𝐾 is capital stock. Of the technology parameters, 𝑇, 

A and B represent Hicks-neutral, Harrod-neutral and Solow-neutral technological change, 

respectively.15 Finally, 𝜎 is the non-unitary constant elasticity of substitution between capital 

and labour. 

 

Assuming profit maximisation, the level of employment that satisfies the first-order condition 

for profit-maximisation is:  

 

𝑙𝑜𝑔𝐿 = 𝑙𝑜𝑔𝑄 − 𝜎 log(𝑊/𝑃) + (𝜎 − 1)𝑙𝑜𝑔𝐴     (A2) 

 

Allowing capital to vary too, we can substitute for output (𝑄) in (A3) using the capital stock 

(K) and the cost of capital (R). Then the DLDM can be written as follows:  

 

𝑙𝑜𝑔𝐿 = (𝜎 − 1) log(𝐴 𝐵⁄ ) − 𝜎 log(𝑊/𝑃) + 𝑙𝑜𝑔𝐾 + 𝜎𝑙𝑜𝑔𝑅   (A3) 

 

Finally, replacing the unobserved technology variables (𝐴 and 𝐵) with an appropriate measure 

of innovation, and assuming that the cost of capital is constant across industries but varies over 

time, the stochastic version of the DLDM can be written as: 

 

𝑙𝑜𝑔𝐿𝑖𝑡 = 𝛾log(𝑇𝑒𝑐ℎ_𝐼𝑛𝑛𝑜𝑣)𝑖𝑡 + 𝛽1 log(𝑊/𝑃)𝑖𝑡 + 𝛽2𝑙𝑜𝑔𝐾𝑖𝑡 + 𝜏𝑡 + 𝜀𝑖𝑡  (A4) 

 

 

The skill share model (Berman et al., 1994; 1998 and Machin, 2001) differs from the DLDM 

in two ways: (i) it begins with a translog cost function as the dual of the production function; 

and (ii) it relaxes the assumption of Hicks-neutral technology by assuming that the marginal 

rate of substitution between inputs (e.g., capital and labour) is not constant across skill types. 

 

Given a translog cost function, the share of labour in total cost can be written as: 
 

𝑆𝑖 = 𝑃𝑖𝑋𝑖 𝑇𝐶⁄ =
𝑑𝑙𝑛𝑇𝐶

𝑑𝑙𝑛𝑃𝑖
= 𝛼𝑖 + ∑ 𝛾𝑖𝑗𝑙𝑛𝑃𝑗𝑗 + 𝛾𝑖𝑦𝑙𝑛𝑌 +𝛾𝑖𝑡𝑡    (A5) 

 
Where i and j are unskilled and skilled labour inputs, P is price (wage) of unskilled and 
skilled labour, Y is output and t is time (representing technological change). 
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Replacing the time-oriented technology measure with observable proxy for technology 
(T) and assuming that capital is a quasi-fixed input, we can rewrite: 
 
 
𝑆𝑖 = 𝛼𝑖 + ∑ 𝛾𝑖𝑗𝑙𝑛𝑃𝑗𝑗 + 𝛾𝑖𝑦𝑙𝑛𝑌 +𝛾𝑖𝑘𝑙𝑛𝐾 + 𝛾𝑖𝑧𝑇     (A6) 

 
Given two types of labour (u for unskilled and s for skilled labour), we can express the 
relative demand between unskilled labour (u) and skilled labour (s) as the difference in 
cost shares: 
 
(𝑆𝑖𝑡 − 𝑆𝑗𝑡) = (𝛼𝑖 − 𝛼𝑗) + ∑ (𝛾𝑝𝑖 − 𝛾𝑝𝑗)𝑙𝑛𝑃𝑗𝑡𝑗 + (𝛾𝑦𝑖 − 𝛾𝑦𝑗)𝑙𝑛𝑌𝑡 + (𝛾𝑘𝑖 − 𝛾𝑘𝑗)𝑙𝑛𝐾𝑡 + (𝛾𝑇𝑖 −

𝛾𝑇𝑗)𝑇𝑡           (A7) 

 
Imposing constant returns to scale and homogeneity of degree one in prices, the 
reduced form is: 
 

∆𝑆𝑗
∗ = 𝛽0 + 𝛽1∆ ln(𝑃𝑗 𝑃𝑖⁄ ) + 𝛽2∆ ln(𝐾 𝑌⁄ ) +𝛽3∆𝑍     (A8) 

 
Here ∆𝑆𝑠

∗ is the first-difference of skilled labour share in wage bill. Capital investment 
data is used instead of capital stock data – unlike the derived labour demand model 
where capital stock is required.  
 

 

Skill-share models are not included in this meta-analysis because the outcome 

(dependent) variable measures the share of skilled (or unskilled) labour in total 

employment (or wage bill) - rather than the aggregate demand for skilled or unskilled 

labour per se.  

 

Finally, in the innovation decomposition model (Hall et al., 2008; Harrison et al., 2008 and 

2014), a firm can produce two types of products: old or only marginally modified products 

(j=1) and new or significantly improved products (j=2). The firm is observed in two different 

periods, t=1 and t=2. Outputs of old and new products in year t are denoted by Y1t and Y2t, 

respectively. In year t = 1, all products are old products by definition, so Y12 is zero. In period 

t = 2, the firm may produce old and new products, represented by Y21 and Y22. Given this set-

up, the production function is stated as follows: 

 

𝑌𝑗𝑡 = 𝑇 ∗ 𝐹(𝐾𝑗𝑡 +𝐿𝑗𝑡 +𝑀𝑗𝑡)𝑒
(𝜂+𝜋𝑗𝑡)       (A9) 

 

Here, T is Hicks-neutral technology; K is capital, L is labour and M is materials. The firm-

specific fixed effect (η) represents all unobservable factors that make a firm more (or less) 

productive compared to the average firm using the same technology.  Finally, π represents all 

unobservable shifts in the production function for reasons other than technological change, 

with an expected value of E(πit)=0.  
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Given technology (T), the cost function can be written as follows: 

 

𝐶(𝑊𝑖𝑡, 𝑌𝑖𝑡, 𝑇𝑖𝑡) = 
𝐶(𝑊𝑖𝑡)

𝑇𝑖𝑡𝑒
(𝜂+𝜋𝑗𝑡)

𝑌𝑖𝑡 + 𝐹𝐶𝑖       (A10) 

 

Where, 
𝐶(𝑊𝑖𝑡)

𝑇𝑖𝑡𝑒
(𝜂+𝜋𝑗𝑡)

 is marginal cost and 𝐹𝐶𝑖 is fixed cost.  

 

Employment growth in this model can be decomposed as follows: 

 
𝛥𝐿

𝐿
=−(𝑙𝑛𝑇12 − 𝑙𝑛𝑇11) + (𝑙𝑛𝑌12 − 𝑙𝑛𝑌11) +

𝑇11

𝑇22

𝑌22

𝑌11
− (𝜋12 − 𝜋11)   (A11) 

 

Using small case letter to represent growth, the model can be re-written as follows: 

 

𝑙 = 𝛼0 + 𝛼1𝑑 + 𝑦1 +𝛽2𝑦2 + 𝑢       (A12) 

 

Here y1 and y2 are rates of growth in output due to change in the production of old and new 

products, respectively. Parameter α0 is expected to have a negative sign and represents the 

average efficiency growth in the production of the old product. Parameter α1 measures the 

effect of process innovation on employment when process innovation is captured through a 

binary variable d. The effect of output growth due to production of old products is captured by 

the unitary coefficient on y1. Finally, the effect of product innovation on employment is 

captured by β2.  

 

In practice, however, real firm output is not observed as product price deflators are available 

only at the industry level. Denoting nominal output growth by g and industry-level prices with 

p; and pulling the growth in old products to the left, we obtain the model to be estimated as 

follows: 

 

𝑙 − (𝑔1 − 𝑝) = 𝛼0 + 𝛼1𝑑 +𝛽2𝑔2 + 𝑣      (A13) 

 

 

The difference with the DLDM is the omission of wages, which disappear when the labour 

demand due to production of old and new products is decomposed. Furthermore, the measures 

of technological innovation are either a binary variable for process innovation or product 

innovations count for product innovation.  

 

 

Part 2: Hierarchical models to be estimated 

 

The random-intercept (RI) and random-intercept-and-slopes (RIS) hierarchical PET-FAT 

models are specified as follows:  
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𝑡𝑖𝑗𝑘 =αℎ1 + βℎ1 (1 𝑝𝑐𝑐_𝑠𝑒𝑖𝑗𝑘⁄ ) +𝑣0𝑗
ℎ1 + 𝑣0𝑘

ℎ1 +𝜀𝑖𝑗𝑘          (A14) 

𝑡𝑖𝑗𝑘 =αℎ2 + βℎ2 (1 𝑠𝑒_𝑝𝑐𝑐𝑖𝑗𝑘⁄ )+𝑣0𝑗
ℎ2 + 𝑣0𝑘

ℎ2 + 𝑣1𝑘
ℎ2 (1 𝑠𝑒_𝑝𝑐𝑐𝑖𝑗𝑘⁄ ) +𝜖𝑖𝑗𝑘   (A15) 

 

Here, subscripts i and j and k refer to individual estimates (PCC), analytic clusters, and primary 

studies, respectively; and εijk and 𝜖𝑖𝑗𝑘 are error terms divided by the standard errors. Regression 

coefficients αℎ.  and βℎ.  measure selection bias and genuine effect, respectively. They are 

estimated with maximum likelihood (ML). Of the random-effect components, 𝑣0𝑗
ℎ.  is estimated 

as the variance of the random effects at the study level;  𝑣0𝑘
ℎ.  is the random effects at the level 

of analytic cluster (pairs of innovation and skill types); and  𝑣1𝑘
ℎ.   is estimated as the variance 

of random slopes (within-study variation). The choice between RI and RIS models in (A14) 

and (A15) will be guided by LR tests.  

 

The RI and RIS hierarchical PEESE models are given below: 

 

𝑡𝑖𝑗𝑘 = αℎ3𝑠𝑒_𝑝𝑐𝑐𝑖𝑗𝑘 + βℎ3 (1 𝑠𝑒_𝑝𝑐𝑐𝑖𝑗𝑘⁄ ) + 𝑣0𝑗
ℎ3 + 𝑣0𝑘

ℎ3 +𝜆𝑖𝑗𝑘             (A16) 

𝑡𝑖𝑗𝑘 =αℎ4𝑠𝑒_𝑝𝑐𝑐𝑖𝑗𝑘 + βℎ4 (1 𝑠𝑒_𝑝𝑐𝑐𝑖𝑗𝑘
⁄ ) +𝑣0𝑗

ℎ4 + 𝑣0𝑘
ℎ4 + 𝑣1𝑘

ℎ4 (1 𝑠𝑒_𝑝𝑐𝑐𝑖𝑗𝑘⁄ ) +𝑤𝑖𝑗𝑘  (A17) 

 

All subscripts, random effects, error terms and parameters are as defined above. 

 

The RI and RIS specifications of the multivariate meta-regression model (MVMRM) are given 

in (8a) and (8b), respectively:   

 

𝑡𝑖𝑗𝑘 =αℎ5𝑠𝑒𝑝𝑐𝑐𝑖𝑗𝑘 + βℎ5(1 𝑝𝑐𝑐𝑠𝑒𝑖𝑗𝑘)⁄ +∑ 𝜃𝑚
𝑚

𝑍𝑚(1 𝑠𝑒𝑝𝑐𝑐𝑖𝑗𝑘)⁄ +𝑣0𝑗
ℎ5 

+𝑣0𝑘
ℎ5 +𝜉𝑖𝑗𝑘           (8a)  

𝑡𝑖𝑗𝑘 =αℎ6𝑠𝑒_𝑝𝑐𝑐𝑖𝑗𝑘 + βℎ6(1 𝑝𝑐𝑐𝑠𝑒𝑖𝑗𝑘)⁄ + ∑ 𝜃𝑚𝑚 𝑍𝑚(1 𝑠𝑒_𝑝𝑐𝑐𝑖𝑗𝑘)⁄ +𝑣0𝑗
ℎ6 + 𝑣0𝑘

ℎ6 +  

𝑣1𝑘
ℎ6(1 𝑝𝑐𝑐_𝑠𝑒𝑖𝑗𝑘)⁄ +𝜇𝑖𝑗𝑘        (8b)  

 

The mx1 vector of covariates (Zm) are the observed sources of variation as defined in Table 2 

in main text above. The corresponding summary statistics for these moderating factors are in 

Table A2 in the Appendix below.  
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Part 3: Tables 

Table A1: Technological innovation and employment: Overview of the evidence base 

 

Study 

Publication 

type Country 

Unit of analysis 

(count) 

Data 

period 

Innovation measure 

Innovation type 

Skill 

type 

Estimation 

method 

Median 

PCC 

Median 

t-value 

Reported 

estimates 

Akcigit and Kerr (2012) Working paper US Firm (n.a.) 1978-1992 IPA Undifferentiated Mixed OLS 0.060 7.250 11 

Araujo et al (2011) Working paper Non OECD Firm (10810) 1997-2005 ICT, IPA Undifferentiated Unskilled GMM 0.008 2.188 4 

Berndt et al (1992) Working paper US Industry (20) 1968-1986 ICT Undifferentiated Mixed OLS 0.257 0.995 60 

Blanchflower and Burgess (1995) Working paper OECD Mixed Firm (889) 1989 ICT Undifferentiated Mixed OLS 0.072 1.910 34 

Blechinger et al (1998) Working paper Mixed Firm (16374) 1992 
R&D, Process innovation, 
Innovation count 

Undifferentiated Mixed OLS 0.008 0.471 21 

Bogliacino and Vivarelli (2012) Journal article OECD mixed Sector (25) 1996-2005 R&D Undifferentiated Mixed GLS 0.067 3.000 11 

Bogliacino et al (2012) Journal article OECD mixed Firm (677) 1990-2008 R&D Undifferentiated Mixed LSDVC 0.042 2.300 5 

Brouwer et al (1993) Journal article Netherlands Firm (771) 1983-1988 R&D, Product innovation Product Mixed OLS 0.008 0.225 2 

Buerger et al (2012) Journal article Germany Industry (270) 1999-2005 IPA, R&D Undifferentiated Mixed LAD 0.022 0.540 24 

Carlsson and Smedsaas (2007) Journal article Sweden Firm (1516) 1989-1996 ICT Undifferentiated Mixed FE WG 0.027 2.321 8 

Coad and Rao (2010) Journal article Sweden Firm (1577) 1973-2004 R&D Undifferentiated Mixed LAD 0.035 3.560 15 

Coad and Rao (2011) Journal article US Firm (527) 1963-1998 R&D Undifferentiated Mixed LSDVC 0.086 5.560 16 

Conte and Vivarelli (2011) Journal article Non OECD Industry (28) 1980-1991 ICT Undifferentiated Unskilled GMM 0.034 2.004 6 

Cozzarin (2004) Journal article Canada Firm (5212) 1999 
IPA, R&D, Innovation 

count 
Undifferentiated Mixed GLS 0.009 0.678 9 

Evangelista and Vezzani (2011) Journal article OECD mixed Firm (57856) 2002-2004 Process Innovation Process Mixed 3SLS 0.008 1.453 3 

Giuliodori and Stucchi (2010) Working paper Spain Firm (2350) 1991-2005 
Process and Product 

Innovation 

Both product and 

process 
Mixed FE WG 0.021 2.333 28 

Greenan and Guellec (2000) Journal article France Firm (13126) 1985-1991 
Process and Product 
Innovation, Innovation 

count 

Undifferentiated Mixed OLS 0.051 3.885 10 

Greenhalgh et al (2001) Journal article UK Firm (151) 1987-1994 IPA, R&D Undifferentiated Mixed FE WG 0.082 2.140 28 

Greenhalgh et al (2011) Working paper UK Firm (7038) 2000-2006 IPA Undifferentiated Mixed FE WG 0.022 4.119 11 

Lachenmaier and Rottmann 
(2006) 

Working paper Germany Firm (4567) 1982-2003 
Product and Process 
Innovation 

Both product and 
process 

Mixed OLS 0.057 4.063 8 

Lachenmaier and Rottmann 

(2011) 
Journal article Germany Firm (690) 1982-2002 

R&D, Process and Product 

Innovation 
Undifferentiated Mixed GMM 0.019 1.633 40 

Lucchese and Pianta (2012) Journal article OECD mixed Sector (21) 1995-2007 
Process and Product 

Innovation 

Both product and 

process 
Mixed WLS 0.062 1.003 2 

Mastrostefano and Pianta (2009) Journal article OECD mixed Sector (10) 1994-2001 Product innovation Product Mixed OLS 0.242 2.050 4 
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Osterman (1986) Journal article US Industry (40) 1972-1978 ICT Undifferentiated Skilled OLS 0.054 0.331 6 

Pianta (2000) Book chapter OECD mixed Sector (49) 1989-1993 
R&D, Process and Product 

Innovation 
Undifferentiated Mixed OLS 0.177 1.720 17 

Piva and Vivarelli (2004a) Journal article Italy Firm (488) 1989-1997 R&D Undifferentiated Skilled SUR -0.017 -0.335 2 

Piva and Vivarelli (2004b) Journal article Italy Firm (318) 1992-1997 R&D Undifferentiated Mixed FE WG 0.019 0.775 6 

Rottmann and Ruschinski (1998) Journal article Germany Firm (1982) 1980-1992 
Product and Process 

Innovation 

Both product and 

process 
Mixed IV -0.003 -0.252 4 

Smolny (1998) Journal article Germany Firm (2405) 1980-1992 
Product and Process 
Innovation 

Both product and 
process 

Mixed OLS 0.021 2.550 2 

Smolny (2002) Journal article Germany Firm (2405) 1980-1992 
Product and Process 

Innovation 

Both product and 

process 
Mixed OLS 0.029 2.800 2 

Srour et al (2013) Working paper Turkey Firm (17462) 1980-2001 R&D, IPA  Undifferentiated Unskilled OLS 0.011 3.024 12 

van Reenen (1997) Journal article UK Firm (598) 1977-1982 

IPA, Innovation count, 

Product and Process 

Innovation 

Undifferentiated Mixed OLS 0.027 1.251 105 

Westermann and Schaefer (2001) Journal article Germany Firm (450) 1981-1993 ICT Undifferentiated Mixed OLS 0.155 2.779 12 

Yang and Lin (2008) Journal article Non OECD Firm (492) 1997-2003 
IPA, R&D, Process and 

Product Innovation 
Undifferentiated Mixed GMM 0.036 1.801 37 

Yochum and Rhiel (1990) Journal article US Industry (1) 1946-1983 Process Innovation Process Mixed OLS -0.550 -3.642 2 

All     
 

   0.036 1.850 567 
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Table A2: Summary statistic for moderating variables 
 

Moderating variables Obsn.  Mean Std Dev Min Max 

Effect indicators      

PCC 567 0.058 0.152 -0.619 0.906 

Standard error of PCC 567 0.051 0.072 0.004 0.267 

Precision 567 60.282 56.107 3.742 284.462 

Publication type and date      

Journal article 567 0.637 0.481 0 1 

Publication date after 2000 567 0.536 0.499 0 1 

Model specification      

Informed by theoretical DLDM  567 0.760 0.427 0 1 

Dynamic specification allowed 567 0.295 0.456 0 1 

Time dummies included  567 0.356 0.479 0 1 

Industry or sector dummies  567 0.236 0.425 0 1 

Wage included in labour demand model 567 0.515 0.500 0 1 

Output included in labour demand model 567 0.598 0.491 0 1 

Capital included in labour demand model 567 0.388 0.488 0 1 

Long-term effect (3 lags or more) 567 0.127 0.333 0 1 

Sample characteristics      

Data type: Panel 567 0.714 0.452 0 1 

Industry or sector data 567 0.233 0.423 0 1 

Innovation measure: R&D 567 0.217 0.413 0 1 

Innovation measure: IPA 567 0.159 0.366 0 1 

Innovation type: Process 567 0.118 0.323 0 1 

Innovation type: Product 567 0.122 0.327 0 1 

Innovation measure: ICT 567 0.122 0.327 0 1 

Innovation measures: R&D + IPA 567 0.249 0.433 0 1 

Newness of Innovation: First to country or 

industry  
567 0.002 

0.042 0 1 

Skill type: Unskilled labour 567 0.076 0.265 0 1 

Sector: Manufacturing  567 0.873 0.333 0 1 

Canada data 567 0.016 0.125 0 1 

France data 567 0.019 0.138 0 1 

Germany data 567 0.168 0.374 0 1 

Italy data 567 0.019 0.138 0 1 

Netherlands data 567 0.004 0.059 0 1 

Norway data 567 0.005 0.073 0 1 

Spain data 567 0.053 0.224 0 1 

Sweden data 567 0.041 0.197 0 1 

UK data 567 0.302 0.459 0 1 

US data 567 0.168 0.374 0 1 

OECD Countries data 567 0.917 0.276 0 1 

High innovation intensity  567 0.120 0.325 0 1 

Firm size: Large  567 0.028 0.166 0 1 

Estimation method      

GMM 567 0.196 0.397 0 1 

Differenced/within estimators 567 0.713 0.453 0 1 
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Table A3: Robustness check 1: PET/FAT/PEESE results using sampling weights 

 Panel A Panel B 

 (1a) (2a) (3a) (4a) (5a) (6a) (1b) (3b) (4b) (5b) (6b) 

Dependent variable: t-value PET/FAT PET/FAT PET/FAT PET/FAT PET/FAT PET/FAT PEESE PEESE PEESE PEESE PEESE 

            

β 0.032** 0.007 0.031*** 0.026*** 0.004* 0.016*** 0.020*** 0.035*** 0.027*** 0.005** 0.021*** 

 (0.014) (0.005) (0.008) (0.003) (0.002) (0.006) (0.006) (0.007) (0.003) (0.002) (0.006) 

α -1.686 1.979*** 0.556 0.357 0.170 0.857**      

 (1.243) (0.158) (0.535) (0.552) (0.317) (0.428)      

Std. error       -21.466*** 5.228 2.242 0.558 0.886 

       (2.871) (4.866) (1.470) (1.640) (5.593) 

Observations 66 69 344 44 43 567 66 344 42 43 567 

Studies 14 13 21 7 7 35 14 21 7 7 35 

Notes: The bivariate meta-regression models are estimated with sampling weights to ensure that the weight of each study in the sample is equal to one. See notes 

under Table 1 in the main text for model diagnostics and description of the evidence clusters.  
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Table A4: Multivariate meta-regression results: General model 

 
Dependent variable: t-value    
    

Precision -0.014 Sector: Manufacturing 0.045*** 
 (0.023)  (0.012) 

Publication type and date  Canada data -0.053** 

Journal article 0.005  (0.024) 
 (0.008) France data 0.003 

Publication date after 2000 0.023*  (0.023) 
 (0.012) Germany data -0.001 

Model specification   (0.013) 

Informed by theoretical DLDM -0.003 Italy data -0.002 
 (0.010)  (0.017) 

Dynamic model utilized 0.005 Netherlands data -0.017 
 (0.008)  (0.065) 

Time dummies included  -0.007 Norway data 0.001 
 (0.007)  (0.047) 

Industry or sector dummies included 0.006 Spain data -0.008 
 (0.007)  (0.017) 

Wage included in model 0.003 Sweden data -0.016 
 (0.006)  (0.012) 

Output included in model -0.016 UK data 0.022 
 (0.014)  (0.019) 

Capital included in model 0.001 US data 0.074*** 
 (0.008)  (0.020) 

Long-term effect (3 lags or more) -0.015** OECD countries data 0.026* 
 (0.006)  (0.015) 

Sample characteristics  High innovation intensity -0.034*** 

Data type: Panel -0.014  (0.006) 
 (0.016) Firm size: Large -0.012 

Industry of sector data 0.035*  (0.013) 
 (0.019) Estimation method  

Innovation measure: R&D -0.003 Estimator: GMM -0.002 
 (0.006)  (0.004) 

Innovation measure: IPA -0.012** Differenced / within -0.013*** 
 (0.005)  (0.004) 

Innovation measure: ICT 0.098** Constant 0.048 
 (0.049)   (0.399) 

Innovation measures: R&D + IPA -0.005 Observations 567 
 (0.006) Studies 35 

Innovation type: Process -0.009 LR Test chi2 242 
 (0.007) P> chi2 0.000 

Innovation type: Product -0.013* Log-likelihood (HM) -1218.331 
 (0.007) Log-likelihood (Comp. model) -1226.925 

Innovation is first to industry or country -0.044 VIF 13.41 
 (0.030) Heterogeneity# 79% 

Skill type: Unskilled labour -0.024*** Estimation HM2-RI 
 (0.004)   

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 



47 
 

Notes 

1 See Katsoulacos (1984) on the difference between the employment effects of process and product innovation.  
2  See Griliches (1992) on the measurement of knowledge spillovers and the lag structure in the relationship 

between R&D spillovers and productivity.  
3 Although excluded in this meta-analysis, findings based on the skill/wage share or innovation-decomposition 

models deserve separate reviews.  
4 We exclude the outliers from estimation if they are found to have undue influence (i.e., if they are associated 

with a dfbeta statistic greater than one in magnitude).  
5 These magnitudes are smaller than those in Cohen (1988), who suggests that the PCC represents small effect if 

its absolute value is less than 0.10, medium effect if it is 0.25, and large if it is greater than 0.4. We adopt 

Doucouliagos (2011) guidelines as the latter take into account the observed distribution of 22,000 PCCs from a 

range of fields in economics research.  
6 The heterogeneity measure is a generalization of Cochran’s Q and indicates the proportion of residual between-

study variation due to heterogeneity, as opposed to within-study sampling variability (Harbord and Higgins, 2008). 

Higgins et al. (2003) suggest that heterogeneity is low if the measure is between 25%–50%, moderate if it is 

between 51%–75%, and high if over 75%. 
7 There is a mistaken presumption that the Egger et al. (1997) model makes the detection of publication selection 

bias almost inevitable because of the positive association between effect-size estimates and their standard errors 

(or because of the negative association between effect-size estimates and their precision). On the contrary, 

simulation results in Stanley (2008) indicate that the funnel asymmetry test based on Egger et al (1997) has low 

power - i.e., it tends to fail detecting publication selection when the latter actually exists.   
8 The evidence pools are the same as those that underpins the funnel graphs above.  
9 As a further check, we also compare the log-likelihood ratio for alternative estimators and for different HM 

specifications. A smaller log-likelihood value in magnitude provides additional evidence in favour of the 

estimator/specification at hand.  
10  Katsoulacos (1986: 12) reports that his theoretical results lend support to the "often quoted empirical 

observation . . . that product innovation is more likely to have a favourable employment effect than process 

innovation." 
11 We have checked the data and established that the relatively smaller estimates based on high-innovation-

intensity firms/industries is NOT due to preponderance of industry-level estimates in our sample. We have 

established that the total number of studies and observations for high-innovation-intensity estimates are 6 and 

68, respectively. Of the 6 studies (Akcigit and Kerr, 2012; Bogliacino et al, 2012; Buerger et al, 2012; Coad and 

Rao, 2011; Greenhalgh et al, 2001; and Lachenmaier and Rottmann, 2011) only one (Buerger et al, 2012) 

utilizes industry-level data. Of the 68 estimates, only 24 are based on industry-level data.  
12 As Griliches and Mairesse (1995: 22) have noted in the context of R&D productivity literature, much of the 

work “has been guided … by what ‘econometrics’ as a technology might be able to do … rather than focusing on 

the more important but technically less tractable problems of data quality and model specification.” 
13 PEESE estimates are presented only if the PET/FAT estimates indicate significant effect-size estimate beyond 

selection bias. PET/FAT estimates are available on request.  
14 The ranking is based on 2003 data for labour-market flexibility and on 1998, 2003 and 2008 data for product-

market regulation.  
15 With Hicks-neutral technology, the relative factor shares remain constant for a given capital-output ratio 

(K/L) ratio. Harrod-neutral technology is labour-augmenting in that the relative factor shares remain constant at 

a given capital-output ratio. Finally, the Solow-neutral technology is capital-augmenting and leaves relative the 

factor shares constant at any labour-output ratio. 

                                                           


