
1

The V-Network Testbed for Malware Analysis
Muhammad Aminu Ahmad∗, Steve Woodhead∗ and Diane Gan∗∗

∗ Department of Engineering Science
∗∗Department of Computing and Information Systems

University of Greenwich
{m.ahmad, s.r.woodhead, d.gan}@gre.ac.uk

Abstract—This paper presents a virtualised network envir-
onment that serves as a stable and re-usable platform for the
analysis of malware propagation. The platform, which has been
developed using VMware virtualisation technology, enables the
use of either a graphical user interface or scripts to create
virtual networks, clone, restart and take snapshots of virtual
machines, reset experiments, clean virtual machines and manage
the entire infrastructure remotely. The virtualised environment
uses open source routing software to support the deployment of
intrusion detection systems and other malware attack sensors,
and is therefore suitable for evaluating countermeasure systems
before deployment on live networks. An empirical analysis of
network worm propagation has been conducted using worm
outbreak experiments on Class A size networks to demonstrate
the capability of the developed platform.

Index Terms—testbed, malware analysis, virtualisation

I. INTRODUCTION

Malicious software (malware) is a significant risk to the
security of computer systems, particularly self-propagating
malware (termed a worm) because of its highly virulent nature
[1]. To fully understand the propagation behavior and infection
patterns of computer network worms, security researchers need
to have a safe and convenient environment that is isolated from
the Internet in order to analyse the behavior of this malicious
software. Large scale network worm outbreak scenarios are
difficult to simulate due to the complexity and resources
required in setting up a controlled environment for worm
propagation and countermeasure testing [2].

Thus, this paper presents a virtualised network environment
termed V-Network. V-Network has been developed with the
aim of studying the infection and propagation patterns of
network worms and testing a range of countermeasure systems.
V-Network is platform independent, which makes it convenient
for UNIX-based or Windows-based experimentation. Finally,
V-Network has been designed with the capability of resetting
and re-running experiments from a standard baseline in a
controlled environment either using a graphical user interface
or command line scripts.

The remainder of the paper is organized as follows. Section
II presents a summary of the related work to the study. Section
III presents the design of the V-Network testbed. Section IV
presents a small range of worm experiments conducted using
the V-Network testbed. Section V discusses the impact of
the V-Network testbed. Section VI concludes the study and
identifies possible future work.

II. RELATED WORK

A range of testing methods have been used to study the
propagation of worms, such as simulation, emulation and
virtualised systems.

Simulation systems use tools and processes to imitate and
model a real network environment. Simulation is an accep-
ted and widely used technology in studying the epidemic
of network worms; example simulation tools include NS-
3 and SSFNet. The NS-3 simulator [3] is an open-source
simulation system that provides features including support
for virtualisation software, scalability, modularity and tracing
architecture. The Scalable Simulation Framework Network
(SSFNet) simulator [4] was developed with various network
simulation applications and topologies, traffic and scalability.
To enhance scalability and provide ease of use and distributed
network simulation, Riley [5] developed the Georgia Tech
Network Simulator (GTNetS). Another powerful software sim-
ulation package is the Optimized Network Engineering Tool
(OPNET). OPNET [6] is capable of simulating a large range of
communication systems from a single LAN to global satellite
networks and can be used for discrete event simulations.
Despite advances in using parallel/distributed execution capab-
ilities to develop datagram-level simulators, researchers have
been unable to achieve a simulated network size similar to that
of the IPv4 address space [2]. This is due to the processing
and memory requirements needed and limitation in modelling
operating system features, however, they attained an improved
level of fidelity [7]. Some simulation systems use a Finite
State Machine (FSM) to represent a network node such as the
Internet Worm Simulator (IWS) and Parallel Worm Simulator
(PWS). Thus, these provide a high level of scalability and less
resource requirement than datagram level simulators. IWS [8]
achieved a scale to the size of the IPv4 address space and
PWS [9] provides good Internet topology at the autonomous
system level. However, simulation systems have limitations in
modelling the heterogeneity, topology and the granularity of
the Internet [7]. Simulation systems also exhibit limitations
in scale, incur high processing and memory requirements and
cannot model the full range of operating system features [2].

Emulation [10] is to take the properties of a system and
reproduce it with a different type of system. This allows the
use of computing nodes and network links to form a system
with more emulated elements than real elements. A node in
the emulation system represents a real host running in the
form of software. To achieve a large-scale emulation, multiple
nodes can be instantiated on a single physical machine.



2

Emulation systems have the characteristics of simulation and
real world systems and they have the potential to achieve
high fidelity, scale and effectiveness [7]. Emulab [11] and
DETERLab [12] are some of the emulation systems which
have been used by security researchers in the past. Emulab
[11] enables users to develop their experiments with a set
of PCs connected in a customised topology via a graphical
user interface and then load the desired operating system on
to the PCs for experimentation. The DETERLab [12] enables
user access to a specified set of nodes with custom operating
system and allows experimentation with network topology
using switches, firewalls, physical nodes, and offers attacks
and defence tools. Emulation systems are generally better
than simulation systems in scale and effectiveness because
they allow for interaction with the operating system and
serve as a compromise between simulation and real world
systems. Nevertheless, emulation systems such as DETERLab
and Emulab have a limited scale of experiments and physical
resources available for users; therefore, they are not suitable
for large scale experimentation of worm propagation and other
network attacks [12]. Additionally, emulation systems have
performance drawbacks because each instruction on the guest
system has to be translated by the software bridge for the host
system [13].

Virtualisation systems use the technique of separating re-
sources and services from the underlying physical delivery to
form an environment with virtual machines and other network
infrastructure on a host. Virtualisation systems provide speed
performance which is better than emulation systems because
the guest hosts can directly access the physical host hardware
[13]. Some existing virtualised testbeds include V-NetLab
[14], ViSe [15], vGround [16] and VMT [17]. V-NetLab
utilizes network virtualisation at the data-link layer in order
to allow for the re-use of the same set of IP addresses in
different virtual networks. V-NetLab is also designed to enable
the virtual networks to be accessed remotely without the need
for physical access to the hardware. ViSe is a virtualised
platform developed to test malware attacks against a range of
operating systems and evaluate them using intrusion detection
systems. The testbed contains 10 operating systems and 40
exploits (both local and remote) against the programs running
on the operating systems. vGround is an environment that
comprises three virtual enterprise networks connected by three
virtual routers capable of hosting hundreds of virtual machines.
VMT is a virtualised network testbed developed for zero-
day worm analysis and countermeasure testing. The testbed
comprises four enterprise networks with few a hundred virtual
machines. Although virtualisation systems require relatively
high computational resource in order to host a large number
of virtual nodes, they have the potential to achieve high fidelity
and effectiveness as noted by Perumalla and Sundaragopalan
[7]. Perumalla and Sundaragopalan also noted that virtualised
systems are not limited to scalability at the expense of an
amount of computation power. Furthermore, White et al. [13]
noted that virtualisation systems provide speed performance
better than emulation systems because the guest hosts can
directly access the physical host hardware.

III. V-NETWORK

A. Design

The V-Network testbed contains four virtualised enterprise
networks comprising a number of virtual network cells. The
virtual network cells contain LANs with a DHCP server for
IP address management, a DNS server for name resolution,
an NTP server to provide a time synchronization service for
the virtual hosts, a logging server to keep a record of worm
infection activities and routers for internal routing services.
The virtual enterprise networks are connected together using
a border router to enable data communication and routing
services across the internetwork. The design was chosen to
study how worm infection spreads across multiple networks
that are physically and geographically separated and to fa-
cilitate the deployment of countermeasure systems. Figure 1
details the logical design of an enterprise network in the V-
Network testbed. The V-Network testbed uses the Quagga
routing suite [18] to provide routing services. The VMware
vSphere 5.5 [19] hypervisor has been used for virtualization
services, which also comprises VMware vCenter Server for
remote management of the ESXi servers. VMware vSphere
was chosen for the development of the V-Network testbed
due to its strong performance in comparison to KVM, Xen
and Microsoft Hyper-V in the utilization of CPU, memory
disk I/O and network I/O as determined by Hwang et al. [20].

ENTERPRISE NETWORK A ENTERPRISE NETWORK B

RIP

ENTERPRISE NETWORK C ENTERPRISE NETWORK D

RIPRIP

RIP

Virtualised LANGateway

Border 
Router

Fig. 1: V-Network enterprise network design

The V-Network testbed has the following features:
• Fidelity: V-Network uses real-world operating systems,

applications, and other networking software, which
provides a platform that offers a realistic way of present-
ing the technology and applications. Unlike vGround
that supports Linux-based worm experimentation only, V-
Network has been designed to be platform independent,
i.e., it supports Windows-based and Linux-based worm
experiments.

• Scalability: The current implementation of the V-Network
supports 1200 virtual machines across four virtual en-



3

terprise networks. The implementation of the V-Network
framework also supports the integration of physical and
virtualised networks to increase the scale of the infra-
structure. The V-Network has a scale larger than VMT
reported by Shahzad et al. and ViSe reported by Arnes
at al.

• Management: V-Network provides utility scripts for man-
aging the infrastructure to facilitate malware experiment-
ation such as re-usability, resetting and tearing down vir-
tual machines. This enables the development of multiple
sessions of different worm experiments quickly, contrary
to VMT [17] that used a substantially manual method.

• Background traffic: Unlike VMT, vGround and ViSe, V-
Network provides support for replaying traffic collected
in a .pcap file format as background traffic. The traffic
can be replayed as collected or in a client-server commu-
nication fashion.

B. Implementation

The V-Network testbed has been implemented using the
following resources:

• Four servers running VMware ESXi 5.5 server for virtu-
alization services, each with an Intel Core i7 (12 virtual
cores at 3.40 GHz) processor, 64GB of RAM and 2TB
of hard disk storage capacity.

• Two servers running the Quagga routing suite to provide
routing services, each with an Intel Core i7 (8 virtual
cores at 3.40GHz) processor, 24GB of RAM and 1TB of
hard disk storage capacity.

• A server running the NTP daemon for time synchroniza-
tion across all hosts, with an Intel Core i7 (8 virtual cores
at 3.40GHz) processor, 24GB of RAM and 1TB of hard
disk storage capacity.

• A server running a custom-developed logging server
daemon to keep record of host activities, with an Intel
Core i7 (8 virtual cores at 3.40GHz) processor, 16GB of
RAM and 1TB of hard disk storage capacity.

• A server running VMware vCenter server for managing
the ESXi servers remotely, with an Intel Core i7 (8 virtual
cores at 3.40GHz) processor, 16GB of RAM and 1TB of
hard disk storage capacity.

• Two Ethernet switches.
Figure 2 presents the physical design of the V-Network test-
bed.

Each ESXi server accommodates virtual machines in dif-
ferent “portgroups”. The portgroups are attached to virtual
switches in order to form a number of virtualised LANs
within the V-Network testbed. The management network has
been configured to enable administrative control over the
V-Network ESXi servers. The vSphere Web client is used
to remotely monitor, control and manage the infrastructure
through the vCenter Server using scripts or the GUI. The traffic
network is used to provide other network services such as
routing and time synchronization. The DMZ of the V-Network
testbed is connected to the Internet through a firewall for NTP
update prior to experimentation. Figure 3 details the physical
and logical design of the V-Network implementation.

C. Worm Daemon

The V-Network testbed uses a worm daemon developed by
Shahzad [21] with the capabilities of facilitating a worm attack
event using chosen worm characteristics. The worm system
consists of both client and server modules capable of sending
and receiving UDP datagrams. The client module is used to
initiate a worm attack against desired targets. The virtual
hosts are made susceptible by running the server module,
which listens on a specific UDP port and then, after receiving
an “infection” datagram, continuously transmits “infectious”
UDP datagrams. Upon infection, a susceptible host will send
its time stamp and IP address information to the logging
server for record management. The logging server has been
configured with a logging daemon that keeps the details of
infected host addresses and infection time. This process will
continue until full infection is achieved based on the details
recorded on the logging server.

D. Configuration Scripts

To conduct an experiment, a base virtual machine is con-
figured with the correct worm daemon and then cloned to the
required number of virtual machines. The V-Network imple-
mentation comprises a number of customised utility scripts
to facilitate large scale management of virtual machines. The
utility scripts are Create-VMs, Start-VMs, Stop-VMs, Pause-
VMs, Resume-VMs, Snapshot-VMs, Reset-VMs, Move-VMs
and Teardown-VMs.

IV. EXPERIMENTATION

This section presents the methodology used to evaluate
the capability of the V-Network testbed using worm outbreak
scenarios. The candidate worms employed were the Slammer
worm and a contemporary worm that has been characterised
based on the ShellShock (CVE-2014-6271) [22] vulnerability
of 2014. The section also details the experimental parameters
used for the worm experiments and the results obtained.

The capability of the V-Network testbed was evaluated using
worm propagation experiments. For Slammer, Moore et al.
[23] reported that the worm had a susceptible population of at
least 75, 000 hosts. They also noted that Slammer exhibited
an average scan rate of 4000 datagrams per infected host
per second and had a datagram size of 404 bytes. Ahmad
and Woodhead [1] reported the likely susceptible population
and potential datagram size of the ShellShock vulnerability as
having values of circa 42.5k and 2000 bytes respectively.

Using the identified metrics along with the size of routable
IPv4 address space (3, 673, 309, 759 [24]), the number of
susceptible hosts per million Internet hosts for each pseudo-
worm was determined using Pm =

[(
Sp

Rip

)
∗ 1, 000, 000

]
,

where, Pm denotes the value of susceptible hosts per million
Internet hosts, Sp denotes the absolute number of susceptible
hosts and Rip denotes the number of routable IPv4 addresses.
The results were 21 and 12 susceptible hosts per million
Internet hosts for the Slammer and ShellShock pseudo-worms
respectively. For experimentation in the V-Network, the values
were scaled down depending on the number of required hosts.



4

vCenter
 Server

Log Server

Router
(Quagga)vSphere Web 

Client
Administrator

ESXi Host A ESXi Host B ESXi Host C ESXi Host D

Management Network
Traffic Network

NTP Server

VMKernel Port Vmotion

Management network port

Virtual Switch 1

Server portgroup

Virtual machine portgroup

Server portgroup

Virtual machine portgroup

Virtual Switch N

.

Virtual management 
switch

VMKernel Port Vmotion

Management network port

Virtual Switch 1

Server portgroup

Virtual machine portgroup

Server portgroup

Virtual machine portgroup

Virtual Switch N
.

Virtual management 
switch

VMKernel Port Vmotion

Management network port

Virtual Switch 1

Server portgroup

Virtual machine portgroup

Server portgroup

Virtual machine portgroup

Virtual Switch N
.

Virtual management 
switch

VMKernel Port Vmotion

Management network port

Virtual Switch 1

Server portgroup

Virtual machine portgroup

Server portgroup

Virtual machine portgroup

Virtual Switch N
.

Virtual management 
switch

Fig. 2: V-Network physical implementation

vCenter
 Server

Log Server

Router
(Quagga)

VSphere 
Web Client

Administrator

ESXi Host A ESXi Host B ESXi Host C ESXi Host D

Management Network Traffic Network

NTP Server

Firewall

Virtualised 
LAN 2

Virtualised 
LAN 3

Virtualised LAN 1

Virtualised 
LAN 2

Virtualised 
LAN 3

Virtualised LAN 1

Virtualised 
LAN 2

Virtualised 
LAN 3

Virtualised LAN 1

Virtualised 
LAN 2

Virtualised 
LAN 3

Virtualised LAN 1

ENTERPRISE NETWORK A ENTERPRISE NETWORK B ENTERPRISE NETWORK C ENTERPRISE NETWORK D

Internet

Fig. 3: V-Network physical and logical implementation

Three and five class A (224 IP addresses) size networks
were used for the Slammer and ShellShock pseudo-worms.
The resulting values were

[(
224
)
∗ 3 ∗

(
21

1000000

)]
= 1057 and[(

224
)
∗ 5 ∗

(
12

1000000

)]
= 1007 susceptible hosts respectively.

Furthermore, the bandwidth available for an infected host
and the worm datagram size determine how fast a worm can
send datagrams. The average Internet connection speed was
estimated to be within the range 10 Mbps to 1000 Mbps
[25]. Although it is impossible for a host to achieve the
maximum speed of a network card, the vast majority of
Internet connected hosts are capable of transmitting data at
60 Mbps for 120 Mbps [26]. Thus based on the assumption
that the Internet connected hosts exhibit an average data
transmission rate of 90 Mbps, the scan rate S, achievable
for a single worm instance to transmit a datagram of size M

(in bytes), over a C megabits Internet connection per second
can be determined using S = C

(M∗8) . Therefore, the likely
average scan rate for the ShellShock pseudo-worm is circa(
90,000,000
2000∗8

)
= 5625 datagrams per second. The scan rates of

the pseudo-worms were then scaled down by a factor of 32 and
45 for the Slammer and ShellShock pseudo-worms to avoid
overloading server resources. The resulting scan rate employed
in the experiments is 125 “infectious” datagrams per second
for Slammer and ShellShock.

The reported worm propagation experiments were conduc-
ted by creating the required number of virtual machines for
each pseudo-worm with the correct daemon. The virtual ma-
chines were then powered to automatically synchronize their
time with the NTP server, and wait for inbound datagrams.
The worm infection event was initiated by sending a UDP



5

datagram to one of the vulnerable virtual machines. The virtual
machines used Damn Small Linux (DSL) [27] as the operating
system. A virtual machine in each LAN was configured to
regenerate network traffic collected in a .pcap file. The traffic
regeneration process was facilitated using the tcpreplay
[28] tool. The dataset used as background traffic during the
experiments is the CAIDA ITDK [29] anonymised Internet
data sets of 20/3/14, for two equinox backbones based in
Chicago and San Jose.

For each pseudo-worm experiment, a number of hosts (1057
for Slammer and 1007 for ShellShock) were configured with
the correct daemon for worm attack datagrams while other
hosts (one host in each LAN) were configured to replay
the CAIDA ITDK anonymised traces as background traffic
between endpoints across the V-Network internetwork.

A. Slammer Pseudo-worm

The Slammer pseudo-worm experiment was conducted us-
ing 1057 susceptible hosts across three class A size networks.
The pseudo-worm daemon was configured to listen on UDP
port 1434 and then transmit UDP datagrams to port 1434 at
a scan rate of 125 “infectious” datagrams per second, once
“infected”. Five Slammer pseudo-worm propagation experi-
ments were conducted using one initially infected host. Figure
4 shows the average result of the five experiments.

The Slammer pseudo-worm experiment was repeated with
an initial hit-list [30] of 10 and 20 hosts. Figure 5 shows the
results of the Slammer pseudo-worm propagation using hit-
lists of 10 and 20 hosts.

B. ShellShock Pseudo-worm

The ShellShock pseudo-worm experiment was conducted
using 1006 susceptible hosts across five class A size networks.
The pseudo-worm daemon was configured to listen on UDP
port 8080 and then transmit UDP datagrams to port 8080 at
a scan rate of 125 “infectious” datagrams per second, once
“infected”. Five ShellShock pseudo-worm experiments were
conducted using one initially infected host. Figure 6 shows
the average result of the five experiments.

As with Slammer, the ShellShock-based worm experiment
was repeated with a hit-list [30] of 10 and 20 hosts. Figure
7 shows the results of ShellShock pseudo-worm propagation
using hit-lists of 10 ad 20 hosts.

V. DISCUSSION

The results of the experiments were scaled up by a factor
of 32 and 45 for the Slammer and ShellShock pseudo-worms
respectively. The Slammer pseudo-worm propagation infected
95% (1004) of the hosts in 90 seconds as shown in Figure 4.
Additionally, the Slammer pseudo-worm infected 95% (1004)
of the hosts in 55 seconds using a hit-list of 10 hosts as
shown in Figure 5, and also infected 95% of the population
45 seconds using a hit-list of 20 hosts. For ShellShock
propagation, the worm infected 95% (956) of the hosts in 130
seconds as shown in Figure 6. With the hit-lists of 10 and
20 hosts, ShellShock infected 95% of the hosts in 56 seconds

and 40 seconds respectively as shown in Figure 7. Thus, the V-
Network testbed has demonstrated the capability of providing
a stable and convenient environment for malware analysis. The
isolation of the V-Network testbed from the Internet makes live
networks safe during the worm outbreak experiments. The V-
Network testbed has also demonstrated the ability to support
different worm outbreak experiments.

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

800

900

1000

1100

Time (second)

N
u

m
b

er
 o

f 
in

fe
ct

ed
 h

o
st

s

 

 

Fig. 4: Slammer pseudo-worm propagation behavior

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000

Time (second)

N
u

m
b

er
 o

f 
in

fe
ct

ed
 h

o
st

s

 

 

Hit-list of 10 hosts
Hit-list of 20 hosts

Fig. 5: Slammer pseudo-worm propagation using hit-lists

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

800

900

1000

Time (second)

N
u

m
b

er
 o

f 
in

fe
ct

ed
 h

o
st

s

 

 

Fig. 6: ShellShock pseudo-worm propagation behavior



6

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000

Time (second)

N
u

m
b

er
 o

f 
in

fe
ct

ed
 h

o
st

s

 

 

Hist-list of 10 hosts
Hist-list of 20 hosts

Fig. 7: ShellShock pseudo-worm propagation using hit-lists

VI. CONCLUSION AND FUTURE WORK

This paper has reported a virtualised environment, which
has been termed V-Network, for the analysis of network worm
propagation and testing of countermeasure systems. The V-
Network testbed has a scale of 1200 virtual machines across
multiple virtual networks. The performance of V-Network was
tested using a previously known worm outbreak scenario, and
a contemporary worm scenario that was characterised based
on the ShellShock vulnerability of 2014. The results show that
the V-Network testbed is a stable and convenient platform for
the analysis of malware propagation.

In terms of future work, the V-Network testbed will be fur-
ther employed to analyse other malware infection behaviours,
network attacks and testing of countermeasure systems. Al-
though, V-Network can be integrated with physical networks,
there is also scope for the scale of the testbed infrastructure
to be further enhanced.

REFERENCES

[1] Muhammad Aminu Ahmad and Steve Woodhead. Containment of
fast scanning computer network worms. In Internet and Distributed
Computing Systems, volume 9258 of Lecture Notes in Computer Science,
pages 235–247. Springer International Publishing, 2015.

[2] Sally Floyd and Vern Paxson. Difficulties in simulating the internet.
IEEE/ACM Transactions on Networking (TON), 9(4):392–403, 2001.

[3] Thomas R Henderson, Mathieu Lacage, George F Riley, C Dowell, and
JB Kopena. Network simulations with the ns-3 simulator. SIGCOMM
demonstration, 14, 2008.

[4] Sunghyun Yoon and Young Boo Kim. A design of network simulation
environment using ssfnet. In In Advances in System Simulation,
SIMUL’09. First International Conference on IEEE, pages 73 – 78, 2009.

[5] George F Riley. The georgia tech network simulator. In Proceedings
of the ACM SIGCOMM workshop on Models, methods and tools for
reproducible network research, pages 5–12. ACM, 2003.

[6] Xinjie Chang. Network simulations with opnet. In Proceedings of
the 31st conference on Winter simulation: Simulation—a bridge to the
future-Volume 1, pages 307–314. ACM, 1999.

[7] Kalyan S Perumalla and Srikanth Sundaragopalan. High-fidelity mod-
eling of computer network worms. In Computer Security Applications
Conference, 2004. 20th Annual, pages 126–135. IEEE, 2004.

[8] Luc Tidy, Steve Woodhead, and Jodie Wetherall. Simulation of zero-
day worm epidemiology in the dynamic, heterogeneous internet. The
Journal of Defense Modeling and Simulation: Applications, Methodo-
logy, Technology, 12(2):123–138, 2015.

[9] Songjie Wei, Jelena Mirkovic, and Martin Swany. Distributed worm
simulation with a realistic internet model. In Proceedings of the 19th
Workshop on Principles of Advanced and Distributed Simulation, pages
71–79. IEEE Computer Society, 2005.

[10] Rodrigo N Calheiros, Rajkumar Buyya, and César AF De Rose. Building
an automated and self-configurable emulation testbed for grid applica-
tions. Software: Practice and Experience, 40(5):405–429, 2010.

[11] Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi
Guruprasad, Tim Stack, Kirk Webb, and Jay Lepreau. Large scale
virtualization in the emulab network testbed. In USENIX Annual
Technical Conference, pages 113–128, 2008.

[12] Graciela Perera, Nathan Miller, John Mela, Michael P McGarry, and
Jaime C Acosta. Emulating internet topology snapshots in deterlab.
In Proceedings of the third ACM conference on Data and application
security and privacy, pages 165–168. ACM, 2013.

[13] Joshua White and Adam Pilbeam. A survey of virtualization technolo-
gies with performance testing. arXiv preprint arXiv:1010.3233, 2010.

[14] Weiqing Sun, Varun Katta, Kumar Krishna, and R Sekar. V-netlab:
An approach for realizing logically isolated networks for security
experiments. CSET, 8:1–6, 2008.

[15] André Årnes, Paul Haas, Giovanni Vigna, and Richard A Kemmerer.
Digital forensic reconstruction and the virtual security testbed vise. In
Detection of Intrusions and Malware & Vulnerability Assessment, pages
144–163. Springer, 2006.

[16] Xuxian Jiang, Dongyan Xu, Helen Wang, and Eugene Spafford. Virtual
playgrounds for worm behavior investigation. In Recent Advances in
Intrusion Detection, pages 1–21. Springer, 2006.

[17] Khurram Shahzad, Steve Woodhead, and Panos Bakalis. A virtualized
network testbed for zero-day worm analysis and countermeasure testing.
In Advances in Security of Information and Communication Networks,
pages 54–64. Springer, 2013.

[18] Kunihiro Ishiguro, T Takada, Y Ohara, AD Zinin, G Natapov, and
A Mizutani. Quagga routing suite, 2007.

[19] Scott Lowe. Mastering VMware vSphere 5. John Wiley & Sons, 2011.
[20] Jinho Hwang, Sai Zeng, Frederick Y Wu, and Tim Wood. A component

based performance comparison of four hypervisors. In Integrated
Network Management (IM 2013), 2013 IFIP/IEEE International Sym-
posium, pages 269 – 276, May 2013.

[21] Khurram Shahzad and Steve Woodhead. A pseudo-worm daemon (pwd)
for empirical analysis of zero-day network worms and countermeasure
testing. In Computing, Communication and Networking Technologies
(ICCCNT), 2014 International Conference on, pages 1–6. IEEE, 2014.

[22] CVE. Common Vulnerabilities and Exposures. [Online].
Accessed on 19th October 2014. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-6271.

[23] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart
Staniford, and Nicholas Weaver. Inside the slammer worm. IEEE
Security & Privacy, (4):33–39, 2003.

[24] M Cotton and L Vegoda. Special use ipv4 addresses. Technical report,
BCP 153, RFC 5735, January, 2010.

[25] Net Index. [Online]. Accessed 16 November 2014. Available:
http://www.netindex.com/.

[26] Marshini Chetty, David Haslem, Andrew Baird, Ugochi Ofoha, Bethany
Sumner, and Rebecca Grinter. Why is my internet slow?: making
network speeds visible. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 1889–1898. ACM, 2011.

[27] Damn Small Linux. [Online]. Accessed 19th October 2014. Available:
http://www.damnsmalllinux.org/.

[28] Aaron Turner and M Bing. Tcpreplay: Pcap editing and replay tools
for* nix. online], http://tcpreplay. sourceforge. net, 2005.

[29] CAIDA. CAIDA, The Internet Topology Data Kit. [Online]. Accessed
on 11th November 2014. Avalable: http://www.caida.org/data/passive.

[30] Stuart Staniford, Vern Paxson, Nicholas Weaver, et al. How to own
the internet in your spare time. In USENIX Security Symposium, pages
149–167, 2002.


