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Abstract Stochastic rainfall models are widely used in

hydrological studies because they provide a framework not

only for deriving information about the characteristics of

rainfall but also for generating precipitation inputs to

simulation models whenever data are not available. A

stochastic point process model based on a class of doubly

stochastic Poisson processes is proposed to analyse fine-

scale point rainfall time series. In this model, rain cells

arrive according to a doubly stochastic Poisson process

whose arrival rate is determined by a finite-state Markov

chain. Each rain cell has a random lifetime. During the

lifetime of each rain cell, instantaneous random depths of

rainfall bursts (pulses) occur according to a Poisson pro-

cess. The covariance structure of the point process of pulse

occurrences is studied. Moment properties of the time

series of accumulated rainfall in discrete time intervals are

derived to model 5-min rainfall data, over a period of 69

years, from Germany. Second-moment as well as third-

moment properties of the rainfall are considered. The

results show that the proposed model is capable of repro-

ducing rainfall properties well at various sub-hourly reso-

lutions. Incorporation of third-order moment properties in

estimation showed a clear improvement in fitting. A good

fit to the extremes is found at larger resolutions, both at

12-h and 24-h levels, despite underestimation at 5-min

aggregation. The proportion of dry intervals is studied by

comparing the proportion of time intervals, from the

observed and simulated data, with rainfall depth below

small thresholds. A good agreement was found at 5-min

aggregation and for larger aggregation levels a closer fit

was obtained when the threshold was increased. A simu-

lation study is presented to assess the performance of the

estimation method.

Keywords Moment properties � Point process �
Precipitation � Rainfall generator � Stochastic models �
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1 Introduction

An important challenge we face in environmental or eco-

logical impact studies is to provide fast and realistic sim-

ulations of atmospheric variables such as rainfall at various

temporal scales. Stochastic point process models provide a

basis for generating synthetic rainfall input to hydrological

models where the observed data at the required temporal

scale are not available. They also enable us to assess the

risk associated with hydrological systems. There has been a

number of stochastic point process models developed by

many authors over the years. Among these, the models

based on Poisson cluster processes (Rodriguez-Iturbe et al.

1987; Cowpertwait 1994; Onof and Wheater 1994;

Wheater et al. 2005) utilizing either the Neyman-Scott or

Bartlett-Lewis processes have received much attention,

since their model structure reflects well the climatological

features of the rainfall generating mechanism. A good

review of developments in modelling rainfall using Poisson

cluster processes is provided by Onof et al. (2000). In

addition, rainfall models based on Markov processes have

also made a reasonable contribution to help tackle this
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challenge. See for example, Smith and Karr (1983), Bar-

dossy and Plate (1991), Ramesh (1998), Onof et al. (2002)

and Ramesh and Onof (2014) amongst others.

Much of the work on this topic, however, has concen-

trated on modelling rainfall data recorded at hourly or

longer aggregation levels. Stochastic models for fine-scale

rainfall are equally important, because in some hydrolog-

ical applications there is a need to reproduce rainfall time

series at fine temporal resolutions. For example, sub-hourly

rainfall is required as input to urban drainage models and

for small rural catchment studies. In addition, the study of

climate change impacts on hydrology and water manage-

ment initiatives requires the availability of data at fine

temporal resolutions, which is usually not available from

general circulation model (GCM) simulations. The best

available approach to generating such rainfall currently lies

in the combination of an hourly stochastic rainfall simu-

lator, together with a disaggregator making use of down-

scaling techniques. There has been some recent work on

modelling fine-scale rainfall using point process models.

Rather than attempting to reproduce actual rainfall records

at a fine-scale, using downscaling techniques or by other

methods, these stochastic point process models aim to

generate synthetic precipitation time series directly from

the proposed stochastic model. One good example of this is

provided by the work of Cowpertwait et al. (2007, 2011)

who developed a Bartlett-Lewis pulse model to study fine-

scale rainfall structure. Their model particularly enables

the reproduction of the fine time-scale properties of rain-

fall. A class of doubly stochastic Poisson processes was

employed by Ramesh et al. (2012, 2013) and Thayakaran

and Ramesh (2013) to study fine-scale rainfall intensity

using rainfall bucket tip times data. They utilised maxi-

mum likelihood methods to estimate parameters of their

models.

Our main objective in this paper is to develop a simple

stochastic point process model capable of reproducing fine-

scale structure of the rainfall process. The other objective is

to provide a fast and efficient way of generating synthetic

fine-scale rainfall input to hydrological models directly

from one stochastic model. In this regard, and to take this

fine-scale rainfall modelling work further, we develop a

simple point process model based on a doubly stochastic

Poisson process, following the Poisson cluster pulse model

approach of Cowpertwait et al. (2007). Our preliminary

work on this (Ramesh and Thayakaran 2012), analysing

properties of rainfall time series at sub-hourly resolutions,

produced encouraging initial results. In this paper, we

extend this work further and accommodate third-order

moments in estimation. Mathematical expressions for the

moment properties of the accumulated rainfall in disjoint

intervals are derived. The proposed stochastic model is

fitted to 69 years of 5-min rainfall time series from

Germany. The results of the analysis show that the pro-

posed model is capable of reproducing rainfall properties

well at various sub-hourly resolutions. Furthermore, the

analysis incorporating third-order moments produced better

results than the one that used only up to second-order

moments. Unlike Cowpertwait et al. (2007), who used

superposition of two Bartlett-Lewis pulse models to

account for different storm types, we use one simple model

to reproduce sub-hourly rainfall structure. The novel con-

tribution of this study is the derivation of the third-order

moment properties of the proposed model, as well as their

incorporation in estimation, to reproduce fine-scale struc-

ture of rainfall more accurately. The proposed model pro-

vides a solid framework to generate synthetic fine-scale

rainfall input to hydrological models directly from one

stochastic point process model. In addition, the availability

of a new stochastic model for the generation of fine-scale

rainfall, at various sub-hourly scales, provides scientists

with a useful tool for environmental or ecological impact

studies.

The following section provides a background to this

work, illustrates the model framework and then focuses on

deriving moment properties of various component pro-

cesses, such as the cell and pulse arrival processes. Prop-

erties of the aggregated rainfall sequence are studied and

mathematical expressions for the third-order moment and

the coefficient of skewness are derived. Section 3 presents

the results of data analysis using 5-min rainfall aggrega-

tions and compares the results of two different analyses

that used second and third-order moments in estimation.

Extremes of the historical data are compared with the

simulated extremes at various resolutions. The proportion

of dry intervals is also studied. A simulation study is car-

ried out to evaluate the performance of the estimation

method. Conclusions and possible further work are sum-

marised in Sect. 4.

2 Model framework and moment properties

2.1 Background

Doubly stochastic Poisson processes (DSPP) provide a

flexible set of point process models for fine-scale rainfall.

Ramesh et al. (2012, 2013) utilised this class of processes

and developed stochastic models, for a single-site and

multiple sites respectively. These models were used to

analyse data collected in the form of rainfall bucket tip-

time series. One of the advantages of these models, over

most other point process models for rainfall, is that it is

possible to write down their likelihood function which

allows us to estimate the model parameters using maxi-

mum likelihood methods. However, the rainfall bucket tip-
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time series is not usually available for a long period of

time. Most of the longer series of rainfall data are available

in accumulated form, hourly or sub-hourly, rather than in

tip-time series format. Moreover, the above DSPP models

cannot be fitted directly to data collected in aggregated

form, such as hourly rainfall, using the maximum likeli-

hood method. Therefore it is useful to look for alternative

models, based on doubly stochastic processes, that can be

used to model sub-hourly data collected in aggregated

form. Motivated by the performance of the above class of

doubly stochastic models, we seek to develop models with

the same structure that can be used to analyse accumulated

rainfall sequences at fine time scales.

2.2 Model formulation

The point process model we propose here is constructed

from a special class of DSPP where the arrival rate of the

point process is governed by a finite-state irreducible

Markov chain. See for example, Ramesh (1995, 1998) and

Davison and Ramesh (1996). Suppose that the rain cells, at

time Ti say, arrive according to a two-state DSPP where the

arrival rate is switching between the high intensity (/2) and

low intensity (/1) states at random times controlled by the

underlying Markov chain. The transition rates of the

Markov chain are k (for 1 ! 2) and l (for 2 ! 1)

respectively. Therefore, the parameters of the cell arrival

processM(t) are specified by the arrival rate matrix L of the

cell occurrences and the infinitesimal generator Q of the

underlying Markov chain, where

L ¼ /1 0

0 /2

� �
and Q ¼ �k k

l �l

� �
:

Each rain cell generated by the process has a random

lifetime of length L which is taken to be exponentially

distributed with parameter g and independent of the life-

time of other cells. A cell originating at time Ti will be

active for a period of Li and terminates at time Ti þ Li.

When the cell at Ti is active instantaneous random pulses

of rainfall occur, during ½Ti; Ti þ LiÞ, at times Tij according

to a Poisson process at rate n. This process of instantaneous
pulse arrival terminates with the cell lifetime. Therefore,

each cell of the point process generates a series of pulses

during its lifetime, and associated with each pulse is a

random rainfall depth, Xij. As a result, the process fTij;Xijg
takes the form of a marked point process Cox and Isham

(1980). In our derivation of model properties later on in

Sect. 2.3, we treat the pulses in distinct cells as independent

but allow those within a single cell to be dependent. We

shall refer to this model as a doubly stochastic pulse (DSP)

model. A diagram showing the structure of this process is

given in Fig. 1. It is clear from this that the formulation of

our model is very similar to that of Cowpertwait et al.

(2007), but the difference lies in the mechanism for the cell

arrivals. Since this process operates in continuous time, we

integrate the DSP process to obtain rainfall depths over

discrete disjoint time intervals and use their moment

properties for model fitting and assessment.

2.3 Moment properties of the pulse process

It follows from the structure of the point process that the

moment properties of the DSP process are functions of

those of the cell arrival process. Therefore, we shall first

review the properties of the cell arrival process before

moving onto derive the properties of the pulse process. The

second-order moment properties of the cell arrival process

M(t) can be obtained as functions of the model parameters

and these are given below (see for example, Ramesh 1998).

The stationary distribution p ¼ ðp1; p2Þ of the cell arrival

process M(t) is obtained by solving pQ ¼ 0, where 0 ¼
ð0; 0Þ; and is given by p ¼ l=ðkþ lÞ; k=ðkþ lÞð Þ: Let 1 be
a column vector of ones, then the mean arrival rate of the

cell process is given by

EðMðtÞÞ ¼ m ¼ pL1 ¼ k/2 þ l/1

kþ l
:

The covariance density of the cell arrival process M(t) can

be obtained as, for t[ 0;

cMðtÞ ¼ kl

ðkþ lÞ2
ð/1 � /2Þ2e�ðkþlÞt ¼ Ae�ðkþlÞt ð1Þ

which shows that its covariance decays exponentially with

time.

We shall now study the moment properties of the pulse

arrival process and focus our attention on deriving an

expression for its covariance density. These moment

properties are required to derive the statistical properties of

the aggregated rainfall process later in Sect. 2.4. The life-

times Li of the rain cells, under the DSP model framework,

are assumed to be exponentially distributed with parameter

g and hence we have EðLiÞ ¼ 1=g: Let us take N(t) as the

counting process of pulse occurrences from all cells gen-

erated by the process M(t). An active cell generates a series

of instantaneous pulses at Poisson rate n during its lifetime

and therefore the mean number of pulses per cell is n=g. As
noted earlier, the arrival rate of the cell process is m and

hence the mean arrival rate of the pulse process is given by

EðNðtÞÞ ¼ mn=g.
It is well known that the covariance density of a point

process can be expressed as a function of its product

density. As shown by Cox and Isham (1980), the product

density of the point process N(t) at distinct time points

t1,t2,. . .,tk for k = 1,2,3,. . . can be written as
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pkðt1; . . .; tkÞdt1. . .dtk ¼ P dNðt1Þ ¼ dNðt2Þf
¼ � � � ¼ dNðtkÞ ¼ 1g:

We consider two distinct pulses at time t and t þ u (u[ 0)

which may come from the same cell or different cells

generated by the process M(t). For pulses that come from

the same cell, the contribution to the product density

p2ðt; t þ uÞ is given by p2ðt; t þ uÞ ¼ EðNðtÞÞne�gu ¼
ðmn2=gÞe�gu. For two pulses at time t and t þ u that come

from different cells, with their cell origins at t � v

and t þ u� w respectively, the contribution to the pro-

duct density p2ðt; t þ uÞ of the pulse process N(t) is given

by

p2ðt; t þ uÞ ¼ n2
Z 1

v¼0

e�gv
Z u

w¼0

e�gw pM2 ðuþ v� wÞdwdv:

ð2Þ

From Eq. (1), the product density of the cell arrival process

M(t) becomes

pM2 ðuþ v� wÞ ¼ cMðuþ v� wÞ þ m2

¼ Ae�ðkþlÞðuþv�wÞ þ m2: ð3Þ

Substituting Eq. (3) in Eq. (2) and completing the integral

shows that the contribution to the product density by two

pulses that come from different cells is

p2ðt; t þ uÞ ¼ mn
g

� �2

ð1� e�guÞ þ n2A
e�ðkþlÞu � e�gu
� �
g2 � ðkþ lÞ2

:

ð4Þ

The covariance density (Cox and Isham 1980) of the

pulse process N(t) for u� 0 can be written in terms of its

product density as

cðuÞ ¼ CovfNðtÞ;Nðt þ uÞg

¼ mn
g

� �
dðuÞ þ p2ðt; t þ uÞ � mn

g

� �2

;

where dð�Þ is the Dirac delta function. Substitution from

Eq. (4) and rearranging the terms in the above expression

(a)

2

1 Ti

Time

(b)

(c)

Time

Ti Li Ti + Li Ti+1 Li+1 Ti+1 + Li+1

Xi2 Xi3

Xi1 Xij

Ti Ti1 Ti2 Ti3 Tij Ti + Li Time

Fig. 1 Schematic description of

the DSP model: a the cell

arrival process based on a two-

state DSPP. b The cell lifetimes

of the two cells at time Ti and

Tiþ1. c The pulse process in the

cell that originates at time Ti
and terminates at time Ti þ Li
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gives, after some algebra, the covariance density of this

DSP process N(t) for u� 0 as

cðuÞ ¼ mn
g

� �
dðuÞ þ A1e

�ðkþlÞu þ B2 � B1½ �e�gu; ð5Þ

where A1 ¼ n2A=ðg2 � ðkþ lÞ2Þ, B1 ¼ nm=gð Þ2þn2A=

g2 � ðkþ lÞ2
� 	

and B2 ¼ n2m=g

 �

. In the above expres-

sion, A1 and B1 correspond to the contribution from pulses

generated by different cells whereas B2 corresponds to the

contribution from different pulses within the same cell,

where the depths of these pulses may be dependent.

2.4 Moment properties of the aggregated rainfall

In most applications, the rainfall data are usually available in

aggregated form in equally spaced time intervals of fixed

length. The DSP process we have developed, however,

evolves in continuous time. We now, therefore, derive math-

ematical expressions for the moment properties of the aggre-

gated rainfall arising from theDSP process. These expressions

are useful to describe theproperties of the accumulated rainfall

and can be used for model fitting and assessment.

Let Y
ðhÞ
i be the total amount of rainfall in disjoint time

intervals of fixed length h, for i ¼ 1; 2; . . .. We can express

this as

Y
ðhÞ
i ¼

Z ih

ði�1Þh
XðtÞdNðtÞ;

where X(t) is the depth of a pulse at time t. Without

assuming any distribution for the pulse depth, let E½XðtÞ� ¼
lX be the mean depth of the pulses. Then the mean of the

aggregated rainfall in the intervals can be written as

E Y
ðhÞ
i

h i
¼
Z ih

ði�1Þh
EðXðtÞÞdNðtÞ ¼ mn

g

� �
lXh: ð6Þ

Using the well known Campbell’s theorem from Daley

and Vere-Jones (2007), and utilizing the covariance density

of the pulse arrival process given in Eq. (5), we can now

work out the variance and autocovariance function of the

aggregated rainfall process. Following this, we have

Var Y
ðhÞ
i

h i
¼
Z h

0

Z h

0

Cov XðsÞdNðsÞ;XðtÞdNðtÞ½ �

¼
Z h

0

EðX2ÞE dNðtÞ½ �

þ 2

Z h

0

Z h

s

E� XðsÞXðtÞ½ �Cov dNðsÞ; dNðtÞ½ �;

where the double integral is separated into two parts to

account for the cases s ¼ t and s 6¼ t. In addition, we need

to distinguish whether the pulses at times t and s belong to

the same cell or come from different cells. For

contributions to Cov dNðsÞ; dNðtÞ½ �, when pulses come from

different cells, the multiplier E XðsÞXðtÞ½ � in the above

expression becomes l2X . We shall write this multiplier as

E XijXik

� �
when pulses come from the same cell. This will

allow us to accommodate some within-cell depth depen-

dence. However, it is assumed that any two pulses within a

cell, regardless of their location within the cell, have the

same expected product of depths. Under this setting, the

variance function becomes

Var Y
ðhÞ
i

h i
¼ EðX2Þ mn

g

� �
h

þ 2 l2XA1w1ðkþ lÞ þ 2 E XijXik

� �
B2 � B1l

2
X

� �
w1ðgÞ;

ð7Þ

where w1ðkþ lÞ ¼ ðkþ lÞh� 1þ e�ðkþlÞh� �
=ðkþ lÞ2

and w1ðgÞ ¼ gh� 1þ e�gh
� �

=g2.
Following a similar approach we can derive the auto-

covariance function for the aggregated rainfall in two dis-

tinct intervals. Again by distinguishing the contributions

from pulses within the same cell, we derived an expression

given as, for k� 1,

Cov Y
ðhÞ
i ; Y

ðhÞ
iþk

h i
¼
Z ðkþ1Þh

kh

Z h

0

Cov XðsÞdNðsÞ;XðtÞdNðtÞ½ �

¼
Z ðkþ1Þh

kh

Z h

0

E XðsÞXðtÞ½ �Cov dNðsÞ; dNðtÞ½ �

¼ l2XA1w2ðkþ lÞ þ E XijXik

� �
B2 � B1l

2
X

� �
w2ðgÞ;

ð8Þ

where w2ðkþ lÞ ¼ e�ðkþlÞðk�1Þh 1� e�ðkþlÞh� �2
=ðkþ lÞ2

and w2ðgÞ ¼ e�gðk�1Þh 1� e�gh
� �2

=g2: When considering

the special case where all pulse depths are independent

E XijXik


 �
can be replaced by l2X in Eqs. (7) and (8).

Although the second-order properties capture the char-

acteristics of the process well in most point process appli-

cations, higher moments may provide improved results in

terms of reproduction of the properties of interest. To this

end, following Cowpertwait et al. (2007), we shall incor-

porate the third-order moment in our analysis. The deriva-

tion of the third moment E Y ðhÞ
 �3h i
follows a similar

approach to that of the second moment, but becomes more

complex algebraically. Therefore only an outline of the

derivation is given along with the final expression in

Appendix A. The third moment about the mean lðhÞ3 is

lðhÞ3 ¼E Y
ðhÞ
i � E Y

ðhÞ
i

h i� 	3� �

¼E Y
ðhÞ
i

h i3� �
� 3E Y

ðhÞ
i

h i
Var Y

ðhÞ
i

h i
� E Y

ðhÞ
i

h ih i3
:

From this the coefficient of skewness of the aggregated

rainfall process is shown to be
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jðhÞ ¼
E Y

ðhÞ
i � E Y

ðhÞ
i

h i� 	3� �

E Y
ðhÞ
i � E Y

ðhÞ
i

h i� 	2� �3=2 ¼ lðhÞ3

Var Y
ðhÞ
i

h ih i3=2 : ð9Þ

3 Model fitting and assessment

We shall explore the application of the proposed DSP

model in the analysis of fine-scale rainfall data and assess

how well it reproduces the properties of the rainfall over a

range of sub-hourly resolutions. We aim to do this using 69

years (1931–1999) of 5-min rainfall data from Bochum in

Germany.

In this analysis, we consider the special case where the

pulse depths Xij are independent random variables that

follow an exponential distribution with parameter h.
Therefore, we have lX ¼ E XðtÞ½ � ¼ 1=h. The data, recor-

ded at the 5-min aggregation level, allow us to fit the model

over a range of sub-hourly accumulations. We shall make

use of the mathematical expressions for the moment

properties of the accumulated rainfall in our model fitting.

There are 7 parameters in our model and we estimate 6 of

them by the method of moments approach using the

observed and theoretical values of these properties. The

parameter lX ¼ 1=h is estimated separately for each month

from the sample mean of rainfall depth by using the

equation, which follows from Eq. (6),

lX ¼ g
mn

� �
�x; ð10Þ

where �x is the estimated average of hourly rainfall for each

month.

Although we employed the method of moments to

estimate the other parameters, which essentially equates

the sample moments to theoretical moments from the

model, the estimation can be done in different ways. In this

application, we constructed an objective function as the

sum of squares of differences between the sample and

theoretical values of the moment properties at different

aggregation levels and then minimized it using standard

optimisation routines. This is carried out separately for

each month by considering the data for a month as reali-

sations of a stationary point process. Essentially the process

of model fitting involves calculating the empirical mean,

variance, correlation, coefficient of variation and skewness

from the observed data at each aggregation level and

matching these with the corresponding theoretical values,

calculated using Eqs. (6–9), for a given set of parameter

values. The role of the objective function and the optimiser

employed was to find the best possible match using a

minimum error criterion. We used the statistical software

environment R for the optimisation and for the simulation

of the process (R Development Core Team 2011). A

number of options were available for the objective function

depending on the application, but we used a form of

weighted sum of squares. We employed the routines ‘‘op-

tim’’ and ‘‘nlminb’’ in R for parameter estimation in our

analysis. The following subsections describe two different

methods used to estimate the first 6 parameters of the

model and discuss the results produced. Once these

parameter estimates were determined, Eq. (10) was used to

estimate the final parameter lX .

3.1 Estimation using second-order moments

The first 6 parameters of the model k, l, /1 , /2, g and n
were estimated using the following dimensionless func-

tions; the coefficient of variation mðhÞ and the autocorre-

lation qðhÞ at lag 1 of the aggregated rainfall process.

Explicitly, these are

mðhÞ ¼
E Y

ðhÞ
i � E Y

ðhÞ
i

h i� 	2� �1=2

EðYðhÞ
i Þ

;

qðhÞ ¼ Corr Y
ðhÞ
i ; Y

ðhÞ
iþ1

h i
:

ð11Þ

We need at least 6 sample properties of the aggregated

process to fit the model and we employed 8 properties in

our estimation. They are mðhÞ and qðhÞ at h = 5, 20, 30 and

60 min aggregation levels. The estimates of the functions

from the empirical data, denoted by m̂ðhÞ and q̂ðhÞ (for h=
1/12, 1/3, 1/2 and 1 h), were calculated for each month

using 69 years of 5-min rainfall series accumulated at

appropriate time scales. Parameter estimates can be

obtained by using an objective function constructed from

the sum of squares of differences between the sample

values and their corresponding theoretical values of the

proposed model. The estimated values of parameters {k̂, l̂,

/̂1, /̂2, ĝ and n̂} for each month were obtained by min-

imising the weighted sum of squares of dimensionless

functions, as given below in Eq. (12), using standard

optimisation routines:

X
h¼ 1

12
;1
3
;1
2
;1

1

Varðm̂ðhÞÞ m̂ðhÞ� mðhÞð Þ2þ 1

Varðq̂ðhÞÞ q̂ðhÞ�qðhÞð Þ2
� �

: ð12Þ

In the above expression, mðhÞ and qðhÞ are theoretical

values as given by Eqs. (6–11) whereas m̂ðhÞ and q̂ðhÞ are
calculated for each month from the 69 years of data. In

addition, following Jesus and Chandler (2011), the weights

in the objective function were taken as the reciprocal of the

variance of the empirical values of the functions calculated

separately for each of the 69 years. We also experimented
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with other objective functions but this was found to give

better results. The above function was minimised sepa-

rately for each month to obtain estimates of the model

parameters. We used the simplex algorithm of Nelder and

Mead (1965) for the optimisation, since it does not require

the calculation of derivatives.

The estimated parameters were then used to calculate

the fitted values of the various theoretical properties. The

observed and fitted values of the mean, standard deviation,

coefficient of variation and lag 1 autocorrelation of the

aggregated rainfall are displayed in Figs. 2, 3, 4 and 5. In

almost all cases near perfect fits, and in some cases exact,

were obtained for all properties with the exception of the

lag 1 autocorrelation. The mean gave an excellent fit at all

time scales. The standard deviation and coefficient of

variation showed near perfect fits for most months, at all

time scales, with small deviations from the perfect fit

during the summer months. The autocorrelation was

reproduced well at smaller aggregation levels, however

there appeared to be a slight underestimation at larger

aggregations for all months. One point to note here is that h

= 10 min aggregation was not used in the fitting but the

model has certainly reproduced all the properties well for

this time-scale. This reveals that the model is capable of

producing estimates of quantities not used in the fitting

which adds strength to this DSP modelling framework.

3.2 Estimation incorporating third-order moments

We now analyse results which incorporated third-order

moments in the fitting, since this has been found useful in

modelling rainfall (Cowpertwait et al. 2007). With the

coefficient of skewness jðhÞ given in Eq. (9), we now have

three model functions to utilise in estimation. Under the
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Fig. 2 Observed and fitted values of the mean of the aggregated rainfall for the DSP model at h = 5, 10, 20, 30, 60 min aggregations, using

second-order moments in estimation
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model framework, we have six parameters to estimate

using the moment method and we consider nine properties

to include the coefficient of skewness. These are the

coefficient of variation mðhÞ, the autocorrelation qðhÞ at lag
1 and the coefficient of skewness jðhÞ, all at three different
aggregation levels of h ¼ 5, 10 and 20 min. The following

objective function, which incorporates third-order

moments in parameter estimation, was used in our analysis:

X
h¼ 1

12
;1
6
;1
3

1

Varðm̂ðhÞÞ m̂ðhÞ � mðhÞð Þ2þ 1

Varðq̂ðhÞÞ q̂ðhÞð
�

�qðhÞÞ2þ 1

VarðĵðhÞÞ ĵðhÞ � jðhÞð Þ2
�
:

This objective function was minimised, separately for each

month, to obtain estimates of the model parameters. These

are given in Table 1. Estimated parameters showed some

variation across months. Values of l̂ were larger for

summer months showing smaller mean sojourn times (1=l)

in the higher rainfall intensity state. The estimates /̂2 were

also higher, in general, for the summer months and showed

that the cell arrival rates in state 2 vary from about 2.4–7.8

cells per hour. The pulse arrival rate n̂ also showed vari-

ation across months from about 223–290 pulses per hour

throughout the year. The mean duration of cell lifetime

(1=g) fell between 8 and 24 min. It was noticeable that the

cell durations were shorter in summer months (8–10 min)

when compared with other months. This is consistent with

the nature of the summer rainfall, as they are mostly gen-

erated from thunder storms of high intensity and shorter

duration. The estimates also showed that the mean depth of

the pulses (lx) tend to be larger in summer months with the

highest value in July.

Figures 6, 7, 8 and 9 show the corresponding results

when the third-order moments are incorporated into the

parameter estimation process. These clearly show an

improvement over the earlier results of the method that
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Fig. 3 Observed and fitted

values of the standard deviation

of the aggregated rainfall for the

DSP model at h = 5, 10, 20, 30,

60 min aggregations, using

second-order moments in

estimation
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used themoments up to the second-order. Although the same

model is used here, the parameter estimates are obviously

different from the earlier values due to the fact that the

coefficient of skewness was used in estimation for this sec-

ondmethod. Inmost cases a near perfect fit was obtained and

in some cases an exact fit was obtained when the third-order

moments were incorporated. The mean, standard deviation

and coefficient of variation have all been reproduced

remarkably well at all aggregation levels, including those

that were not used in fitting (h = 30, h = 60 min). Comparing

these with earlier results reveals that incorporating third-

order moments in estimation has certainly produced much

better results for most of the properties.

The mean appears to be estimated equally well by both

methods. The standard deviation and coefficient of varia-

tion were clearly in better agreement with their empirical

counterparts at all aggregations when third-order moments

are used. This is visible in the plots, particularly for the

summer months where the first method consistently

showed a slight underestimation. The autocorrelation at lag

one, however, was an exception. Although it was estimated

well at small aggregation levels, the fit got worse at higher

levels of aggregation, especially at those that were not used

in fitting, showing consistent underestimation. Neverthe-

less, the observed and fitted values of the coefficient of

skewness were in very good agreement in Fig. 10. Here

again the results showed a near perfect fit at all aggregation

levels. In addition to this, as we will see in Sect. 3.3,

incorporation of third-order moments in estimation repro-

duced the extremes better than the earlier method.

3.3 Extremes and proportion of dry periods

In many hydrological applications, more emphasis is

placed upon a stochastic model’s ability to reproduce the

properties of extreme rainfall rather than the usual moment
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Fig. 4 Observed and fitted values of the coefficient of variation of the aggregated rainfall for the DSP model at h = 5, 10, 20, 30, 60 min

aggregations, using second-order moments in estimation
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Fig. 5 Observed and fitted values of the autocorrelation (lag one) of the aggregated rainfall for the DSP model at h = 5, 10, 20, 30 min

aggregations, using second-order moments in estimation

Table 1 Parameter estimates

for the DSP model

incorporating third-order

moments in estimation

Month k̂ l̂ /̂1 /̂2
ĝ n̂ l̂x

JAN 0.0306 2.6900 0.0998 3.4795 3.5699 263.5150 0.0085

FEB 0.0161 1.6124 0.0819 2.9469 3.0257 264.8286 0.0079

MAR 0.0090 5.0823 0.1282 5.6073 5.7007 289.9880 0.0102

APR 0.0245 4.8790 0.0764 5.0201 5.1021 246.6266 0.0156

MAY 0.0529 7.0143 0.0400 7.1321 7.1555 239.9341 0.0272

JUN 0.0411 7.7027 0.0331 7.8086 7.8255 237.8311 0.0486

JUL 0.0199 6.7546 0.0318 6.8875 6.8837 245.2713 0.0591

AUG 0.0197 6.1291 0.0276 6.3391 6.3118 265.9815 0.0502

SEP 0.0491 6.9914 0.0205 7.1563 7.1348 246.2618 0.0387

OCT 0.0147 1.9679 0.0362 2.4563 2.4956 223.6488 0.0166

NOV 0.1154 3.7691 0.0430 4.1023 4.1339 269.6375 0.0087

DEC 0.0234 1.8008 0.0860 2.9616 3.0464 227.5842 0.0099
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properties. One good example arises in urban drainage

modelling within the context of flood estimation. One can

find many other examples of this in analyses involving

environmental data, see for example Ramesh and Davison

(2002), Davison and Ramesh (2000) and Leiva et al.

(2016). In addition, knowledge of the extremes enables us

to assess the risk associated with hydrological systems. In

view of this, we shall evaluate the performance of our

proposed model in capturing the properties of extreme

rainfall. In this regard, we compare the extreme values of

the 69 years of observed rainfall data with those generated

by the proposed DSP model.

The annual maxima of the empirical data from the

observed 69 year long historical record were extracted,

ordered and plotted against the corresponding Gumbel

reduced variates at each aggregation level. Fifty copies of

the 5-min rainfall series, each 69 years long, were then

simulated from the fitted model. Each copy of the simu-

lated data was subsequently aggregated to generate 1, 12

and 24 h rainfall series. The annual maxima of each of the

50 simulated series, at each aggregation level, were

extracted and ordered to make up the interval plots against

the corresponding Gumbel reduced variates. These were

superimposed on the corresponding Gumbel reduced vari-

ate plots of the empirical data for comparison.

Figure 11 shows the results for h = 5 min (top panel) and

h = 60 min (bottom panel) aggregations whereas the results

of h = 12, 24 h are displayed in Fig. 12. The red solid

circles show the mean of the maxima from the 50 simu-

lations and the blue squares connected by the solid line

show the empirical annual maximum values. At h = 5 min

aggregation level the model vastly underestimates the

extremes. When h = 60 min there was evidence of over-

estimation at the lower end and underestimation at the
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Fig. 6 Observed and fitted values of the mean of the aggregated rainfall for the DSP model at h ¼ 5, 10, 20, 30, 60 min aggregations, using

third-order moments in estimation
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upper end of the reduced variates. Nevertheless, there was

evidence of substantial improvement at larger values of

h. Clearly there was very good agreement at h = 12, 24 h

aggregations, as all of the empirical values fell within the

range of the simulated values. Furthermore, the mean of the

simulated annual maxima fell reasonably close to the

empirical annual maxima, at h = 12 and 24, for much of the

period. It is encouraging to note that this was the case for

the values corresponding to the return periods from about

5–100 years. Hence, the proposed model, although under-

estimating the extremes at sub-hourly aggregation, appears

to capture the extremes well at larger aggregations. The

estimation of extreme values at smaller time-scales is a

common problem for most stochastic models for rainfall,

and our results concur with the findings of previous pub-

lished studies, see for example Cowpertwait et al. (2007)

or Verhoest et al. (1997).

In order to asses the performance of the two estimation

methods in reproducing extremes, we compared the

ordered empirical annual maxima with those generated by

the parameter estimates of the two methods. Table 2 shows

the means of the ordered annual maxima from 50 simula-

tions for the two methods, together with the ordered

empirical annual maxima, at 12- and 24-h aggregation

levels. These are compared for a range of reduced Gumbel

variates covering the values that correspond to the return

period from 5 years to 100 years. Note that the interval

plots based on the simulations, using the method which

incorporates third-order moments in estimation (Method

2), are shown in Fig. 12 for the whole period. Results

presented in Table 2 show that Method 2 performed much

better than the method that used second-order moments in

estimation (Method 1), at both aggregation levels. The

above result and Fig. 12 clearly show that Method 2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.

0
0.

4
0.

8

SD plot for 60 minute levels of aggregation

m
m

/h
ou

r

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.
0

0.
4

SD plot for 30 minute levels of aggregation

m
m

/h
ou

r

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.
0

0.
3

0.
6

SD plot for 20 minute levels of aggregation

m
m

/h
ou

r

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.
00

0.
15

SD plot for 10 minute levels of aggregation

m
m

/h
ou

r

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.
00

0.
10

SD plot for 5 minute levels of aggregation

m
m

/h
ou

r FITTED OBSERVED

Fig. 7 Observed and fitted values of the standard deviation of the aggregated rainfall for the DSP model at h ¼ 5, 10, 20, 30, 60 min

aggregations, using third-order moments in estimation
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outperformed Method 1 and reproduced extremes well at

higher aggregations.

Another property of interest to hydrologists is the pro-

portion of intervals with little or no rain. This will help to

quantify the proportion of dry periods. Very often the

gauge rainfall data are recorded in a rounded form (to the

nearest 0.1 mm) and hence, following Cowpertwait et al.

(2007), we calculate the proportion of rainfall below a

small threshold p̂fYh
i \dg for d[ 0


 �
instead of the actual

proportion of dry intervals (d ¼ 0). Therefore by choosing

smaller values of d we can provide approximate estimates

of the proportion of dry intervals.

The proportion of intervals below a given threshold were

calculated for each month, using 50 samples of 69 years of

simulated 5-min data, for each of the 5-min, 1 and 24 h

aggregations (h ¼ 1=12; 1; 24). The mean of the 50 values

was calculated, at each aggregation, for each calendar

month. The observed proportions for the historical data and

the average of the simulated values, from the fittedmodel, for

different thresholds are given in Table 3. In order to find a

good estimate of the proportion of dry periods at h ¼ 1=12

aggregation level, a small threshold of d ¼ 0:05 mm was

used. For the hourly rainfall, two threshold values of d ¼
0:05; 0:1 mmwere used. Higher threshold values (d ¼ 0:5; 2

mm) were used for the daily rainfall, as occasional light rain

during the day may cause discrepancies between the

observed and simulated proportions.

The numerical results presented in Table 3 show that, in

general, the model reproduces the observed proportions

well at 5-min aggregation, although it tends to over-esti-

mate slightly. However, the differences we observed are

between 0.01 for February and 0.022 for June. At the hourly

aggregation level, the model tended to consistently under-

estimate the proportions each month when d ¼ 0:05 mm.
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Fig. 8 Observed and fitted values of the coefficient of variation of the aggregated rainfall for the DSP model at h ¼ 5, 10, 20, 30, 60 min

aggregations, using third-order moments in estimation
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However, when the threshold was increased to 0.1 mm the

observed and simulated proportions were in good agree-

ment, except for October, with the summer month June

again showing the largest difference of 0.027. Finally, at a

daily level, there was consistent over-estimation when the

threshold was set at 0.5 mm. When the threshold increased

to 2 mm the observed and simulated proportions became

very close. This indicates that the frequency of very light

rain events, over a period of a day, was greater in the

observed data. The differences tended to be larger in the

summer months and smaller in the winter months, with June

once again showing the highest difference of 0.026 and

February showing the smallest difference of 0.012.

3.4 Simulation study

Since the likelihood function of the model we proposed

for the accumulated rainfall data was not available, we

employed the moment method to estimate the parameters

in our analysis. The method of moments simply equates

sample moments from the observed data to the theoret-

ical moments of the model being fitted to obtain esti-

mates of the parameters. It is important to note that

moment estimators, unlike maximum likelihood estima-

tors, do not necessarily have the usual large sample

properties leading to asymptotic results. Nevertheless, we

carried out a simulation study to evaluate the statistical

performance of the estimation method we employed in

our analysis.

The observed data was a 69-year long accumulated

rainfall series in 5-min intervals and our stochastic point

process model was fitted separately for each month. A

month with 31 days had 616,032 observations, although

most of them were zero, especially for a summer month.

The simulation study was carried out for a typical summer

month, August, with simulated rainfall data over a period
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Fig. 9 Observed and fitted values of the autocorrelation (lag one) of the aggregated rainfall for the DSP model at h ¼ 5, 10, 20, 30 min

aggregations, using third-order moments in estimation
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of length nl ¼ 20; 40; 60; 69 years, as described in the

algorithm given below.

• Simulate one hundred (n ¼ 100) sample series from the

fitted values of the parameters (h) for the month.

• Aggregate the simulated data in h ¼ 5; 10; 20 min

intervals.

• Calculate their sample statistics: coefficient of variation

mðhÞ, lag 1 autocorrelation qðhÞ and coefficient of

skewness jðhÞ for each value of h.

• Compute the moment estimates (ĥ) for the simulated

samples, using the objective function used in Sect. 3.2.

• Compute the mean, bias and mean squared error of the

moment estimates, separately for each of the parame-

ters, using the expressions

Mean ¼ 1

n

Xn
i¼1

ĥ; Bias ¼ 1

n

Xn
i¼1

ðĥ� hÞ;

MSE ¼ 1

n

Xn
i¼1

ðĥ� hÞ2;

where n = 100 and h ¼ k, l, /1, /2, g and n are the

fitted parameter values of the empirical rainfall data for

the month under study and ĥ is the corresponding

estimate for the simulated data.

The above steps were repeated with nl ¼ 20; 40; 60; 69 years

of data to produce a table of average, bias, root mean squared

error (
ffiffiffiffiffiffiffiffiffiffi
MSE

p
) for each of the 6 parameters. The results are

presented in Table 4 where the fitted parameter values for

August are noted as the true values used in the simulation.
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Fig. 10 Observed and fitted values of the coefficient of skewness of the aggregated rainfall for the DSP model at h ¼ 5, 10, 20, 30, 60 min

aggregations, using third-order moments in estimation
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The means of the simulated estimates showed that these

are generally close to the corresponding true values. The

means of l̂ and n̂ were converging towards their true values

as nl became large, whereas the means of /̂2 and ĝ did not

seem to exhibit this property. It is worth pointing out that

the parameters /2 and g are positively correlated and when

/2 increased g also increased. The reason for this is that

much of the rain cells come from the high intensity state 2

and, as we are equating the rainfall moments in our esti-

mation, increased arrival rate /2 of rain cells results in

smaller cell lifetimes of 1=g, and vice-versa. Means of k̂

and /̂1 do not seem to show much variation.

The bias of l̂ and n̂ became smaller when nl became

larger but both /̂2 and ĝ seemed to show a slight negative

bias. As we can see from the values, k̂ and /̂1 both show

very small negative bias and again do not show much

variation with nl. The root mean squared errors seemed to

stay more or less at the same level for most of the

parameters, as nl increased, except for /̂2 and ĝ which

showed a slight increase. One possible reason for that

might be that the moment estimates may be slightly biased

because of the serial correlation in the data, as noted by

Cowpertwait et al. (2007), especially at sub-hourly

aggregation levels which show high autocorrelation. Ide-

ally we would have liked the bias and MSE of the esti-

mators to converge to zero asymptotically for all

parameters, as would those of the maximum likelihood

estimators which have good large sample statistical prop-

erties. However, the means of the simulated estimates were

closer to their true values and the relative sizes of the bias

and root mean squared errors seemed to be reasonably

small for the application.

4 Conclusions and future work

We have developed a doubly stochastic point process

model, using instantaneous pulses, to study the fine-scale

structure of sub-hourly rainfall time series. Second and

third-order moment properties of the aggregated rainfall for

the proposed DSP model were derived. The model was

used to analyse 69 years of 5-min rainfall data. The

empirical properties of the rainfall accumulations were

shown to be in very good agreement with the fitted theo-

retical values over a range of sub-hourly time scales,

including those that were not used in fitting. Although the

use of second-order moments in estimation produced very
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Fig. 11 Ordered annual maxima of the 5-min (top panel) and 1-h

(bottom panel) aggregated rainfall plotted against the reduced

Gumbel variate. Empirical annual maximum values are shown as

blue squares connected by a solid line. Interval plots based on annual

maxima of 50 simulations, each 69 years long, are also shown. The

red solid circles are the mean of the 50 simulated maxima
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Fig. 12 Ordered annual maxima of the 12-h (top panel) and 24-h

(bottom panel) aggregated rainfall plotted against the reduced

Gumbel variate. Empirical annual maximum values are shown as

blue squares connected by a solid line. Interval plots based on annual

maxima of 50 simulations, each 69 years long, are also shown. The

red solid circles are the mean of the 50 simulated maxima

Table 2 Ordered empirical annual maxima for the 12- and 24-h aggregated rainfall and the corresponding ordered reduced Gumbel variates

Gumbel reduced variate 12-h aggregation 24-h aggregation

Empirical maxima Simulated maxima Empirical maxima Simulated maxima

Method 1 Method 2 Method 1 Method 2

1.44 37.05 22.53 39.25 45.12 24.55 42.50

1.52 37.70 22.86 40.10 48.96 24.91 43.37

1.61 38.30 23.27 41.04 49.00 25.39 44.37

1.70 39.95 23.65 41.86 49.68 25.81 45.46

1.80 40.16 24.10 42.78 50.1 26.27 46.52

1.90 47.32 24.65 44.29 50.81 26.87 47.54

2.02 49.00 25.19 45.43 51.17 27.41 48.86

2.16 49.15 25.77 46.80 52.55 27.93 50.30

2.31 49.20 26.39 48.20 55.65 28.60 51.86

2.48 50.81 27.07 50.24 56.58 29.40 54.14

2.68 53.90 28.09 52.44 62.80 30.47 56.66

2.94 55.45 29.44 55.02 63.50 31.96 59.26

3.28 56.58 31.04 58.89 67.08 33.39 63.60

3.78 60.50 33.47 65.08 67.90 35.68 69.42

4.81 67.90 37.99 80.71 75.95 40.40 81.35

The average annual maxima, based on 50 simulations of 69-year long series, for the two estimation methods are also shown

Stoch Environ Res Risk Assess

123



good results, incorporation of third-order moments showed

a clear improvement in fitting. Overall, the results of our

analysis suggest that the proposed stochastic model is

capable of reproducing the fine-scale structure of the

rainfall process, and hence could be a useful tool in envi-

ronmental or ecological impact studies.

The simulated extreme values at daily and 12-hourly

aggregations are in very good agreement with their

empirical counterparts. However, although the model

reproduces the moment properties well, it underestimates

the extremes at fine time-scale. The results from the anal-

ysis of the proportion of dry periods, using intervals with

rainfall depths below appropriate threshold levels, show

that the model generally reproduces the observed propor-

tions well. The simulation study shows that the estimation

method used is capable of reproducing the estimates closer

to the true values, although it may not have the desired

large sample properties which maximum likelihood esti-

mators exhibit. Overall, the above analyses indicate that

the proposed modelling approach is able to fit data over a

range of sub-hourly time scales and reproduce most of the

properties well. It has potential application in many areas,

as it provides a fast and efficient way of generating syn-

thetic fine-scale rainfall input to hydrological models

directly from one stochastic model.

Despite this, there is potential to develop the model

further to employ a 3-state doubly stochastic model for cell

arrivals and also to explore its capability to handle aggre-

gations at higher levels. The 3-state model, along with

further developments to study other hydrological properties

Table 3 Proportion of rainfall

below defined thresholds at

different time scales. Here p̂O
and p̂S represent the estimates of

the proportions for the observed

and simulated series

Month po ps po ps po ps po ps po ps

JAN 0.951 0.964 0.848 0.757 0.866 0.865 0.903 0.975 0.976 0.991

FEB 0.958 0.968 0.867 0.769 0.883 0.872 0.915 0.979 0.979 0.991

MAR 0.961 0.972 0.867 0.841 0.892 0.907 0.919 0.971 0.980 0.995

APR 0.960 0.972 0.878 0.821 0.893 0.877 0.917 0.974 0.979 0.991

MAY 0.964 0.980 0.898 0.867 0.908 0.891 0.924 0.969 0.974 0.991

JUN 0.962 0.984 0.892 0.856 0.902 0.875 0.916 0.958 0.968 0.994

JUL 0.965 0.987 0.895 0.892 0.907 0.902 0.919 0.950 0.969 0.992

AUG 0.968 0.986 0.906 0.886 0.916 0.898 0.927 0.957 0.969 0.993

SEP 0.965 0.984 0.899 0.873 0.909 0.891 0.923 0.964 0.972 0.993

OCT 0.959 0.971 0.887 0.793 0.899 0.859 0.921 0.978 0.975 0.991

NOV 0.952 0.964 0.852 0.730 0.872 0.848 0.905 0.978 0.973 0.989

DEC 0.949 0.966 0.849 0.748 0.869 0.875 0.902 0.975 0.972 0.992

Threshold d(mm) 0.05 0.05 0.05 0.05 0.1 0.1 0.5 0.5 2 2

Scale (h) 1/12 1/12 1 1 1 1 24 24 24 24

Table 4 Simulation study

results: values of the mean, bias

and root mean squared error

(
ffiffiffiffiffiffiffiffiffiffi
MSE

p
) for the moment

estimates of the parameters

based on 100 simulated series of

length nl years for the month of

August. True values are the

fitted parameter values for the

observed rainfall data for

August

nl k̂ l̂ /̂1 /̂2
ĝ n̂

Mean 20 0.01964 6.21585 0.02008 6.21159 6.22667 270.2398

40 0.01966 6.20756 0.02046 6.19146 6.20708 268.9749

60 0.01963 6.17081 0.01971 6.16408 6.17867 269.7928

69 0.01963 6.14516 0.01983 6.14164 6.15634 268.2950

True values 0.01970 6.12910 0.02760 6.33910 6.31180 265.9815

Bias 20 -6.4E-05 0.08675 -0.00752 -0.12751 -0.08513 4.25827

40 -7.0E-05 0.07846 -0.00715 -0.14764 -0.10472 3.99343

60 -6.9E-05 0.04171 -0.00789 -0.17502 -0.13313 3.81131

69 -6.6E-05 0.01606 -0.00777 -0.19746 -0.15546 2.31354

ffiffiffiffiffiffiffiffiffiffi
MSE

p
20 7.80E-05 0.25363 0.00784 0.30055 0.28529 8.31461

40 7.28E-05 0.26760 0.00732 0.32294 0.30633 8.00499

60 6.87E-05 0.26515 0.00803 0.33909 0.32019 8.22053

69 7.28E-05 0.27809 0.00792 0.36235 0.34201 8.37347
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of interest, may be a fruitful area for future work. Although

our model based on one doubly stochastic process has

performed well, another possibility is to consider super-

posing two doubly stochastic pulse processes, as in Cow-

pertwait et al. (2007), to better account for different types of

precipitation, such as convective and stratiform.
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Appendix

The derivation of the third moment involves considering

the product densities of three pulses at times x ¼ t, y ¼
t þ u and z ¼ t þ uþ v and taking account of the contri-

bution from three different cases. The three cases are where

the pulses come from three different cells, two of them

from the same cell and one from another, and all three

come from the same cell. Following this, we find that the

third moment about the origin of the aggregated rainfall, in

intervals of length h, can be written as

E Y
ðhÞ
i

h i3� �
¼
Z h

t¼0

Z h

y¼0

Z h

z¼0

E XðtÞXðyÞXðzÞdNðtÞdNðyÞdNðzÞ½ �

¼ 6

Z h
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Z h�t
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Z h�t�u
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h i

þ
Z h

t¼0

E ðXðtÞÞ3dNðtÞ
h i

:

After a lengthy algebraic calculation, considering various

cases noted above, we find that the third moment about the

origin of the aggregated process is given by
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