
279

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Trustworthy Autonomic Architecture (TAArch): Implementation and Empirical Investigation 
 

Thaddeus Eze and Richard Anthony 

 
Autonomic Computing Research Group 

School of Computing & Mathematical Sciences (CMS) 

University of Greenwich, London, United Kingdom 

{T.O.Eze and R.J.Anthony}@gre.ac.uk 

   
Abstract — This paper presents a new architecture for 

trustworthy autonomic systems. This trustworthy autonomic 

architecture is different from the traditional autonomic 

computing architecture and includes mechanisms and 

instrumentation to explicitly support run-time self-validation 

and trustworthiness. The state of practice does not lend itself 

robustly enough to support trustworthiness and system 

dependability. For example, despite validating system’s decisions 

within a logical boundary set for the system, there’s the 

possibility of overall erratic behaviour or inconsistency in the 

system emerging for example, at a different logical level or on a 

different time scale. So a more thorough and holistic approach, 

with a higher level of check, is required to convincingly address 

the dependability and trustworthy concerns. Validation alone 

does not always guarantee trustworthiness as each individual 

decision could be correct (validated) but overall system may not 

be consistent and thus not dependable. A robust approach 

requires that validation and trustworthiness are designed in and 

integral at the architectural level, and not treated as add-ons as 

they cannot be reliably retro-fitted to systems. This paper 

analyses the current state of practice in autonomic architecture, 

presents a different architectural approach for trustworthy 

autonomic systems, and uses a datacentre scenario as the basis 

for empirical analysis of behaviour and performance. Results 

show that the proposed trustworthy autonomic architecture has 

significant performance improvement over existing architectures 

and can be relied upon to operate (or manage) almost all level of 

datacentre scale and complexity.  

Keywords - trustworthy architecture; trustability; validation; 

datacentre; autonomic system; dependability; stability; autonomic 

architecture 

I.  INTRODUCTION 

A robust autonomic architecture is a vital key to 

achieving dependable (or trustworthy) autonomic systems. 

We have made initial progress [1] in this direction to address 

the issue of autonomic trustworthiness through adequate run-

time conformance testing as integral part of a trustworthy 

autonomic architecture (different from the traditional 

autonomic architecture). This work is an extension of the 

initial progress and the implementation (with empirical 

analysis) of the new trustworthy architecture. The traditional 

autonomic architecture as originally presented in the 

autonomic computing blueprint [2] has been widely accepted 

and deployed across an ever-widening spectrum of autonomic 

system (AS) design and implementations. Research results in 

the autonomic research community are based, predominantly, 

on the architecture’s basic MAPE (monitor-analyse-plan-

execute) control loop, e.g., [3][4]. Several implementation 

variations of this control loop, for example [5][6], have been 

promoted.  While [5] breaks the MAPE components into two 

main groups with the Monitor/Analyze group handling 

reactive tasks and the Plan/Execute group responsible for 

proactive adaptation, [6] adopts a slightly different approach. 

In [6], the MAPE architecture is divided into global and local 

sub-architectures, which implement Analyze/Planning and 

Monitor/Execute components, respectively. Alternative 

approaches, e.g., the intelligent machine design (IMD) based 

approach [7] have also been proposed. However, research [8] 

shows that most approaches are MAPE [9] based. Despite 

progress made, the traditional autonomic architecture and its 

variations is not sophisticated enough to produce trustworthy 

ASs. A new approach with inbuilt mechanisms and 

instrumentation to support trustworthiness is required. 

At the core of system trustworthiness is validation and 

this has to satisfy run-time requirements. In large systems 

with very wide behavioural space and many dimensions of 

freedom, it is close to impossible to comprehensively predict 

possible outcomes at design time. So it becomes highly 

complex to make sure or determine whether the autonomic 

manager’s (AM’s) decision(s) are in the overall interest and 

good of the system. There is a vital need, then, to dynamically 

validate the run-time decisions of the AM to avoid the system 

‘shooting itself in the foot’ through control brevity, i.e., either 

too loose or too tight control leading to unresponsive or 

unstable system respectively. The traditional autonomic 

architecture does not explicitly and integrally support run-

time self-validation; a common practice is to treat validation 

and other needed capabilities as add-ons. Identifying such 

challenges, the traditional architecture has been extended 

(e.g., in [10]) to accommodate validation by integrating a self-

test activity into the autonomic architecture. But the question 

is whether validation alone can guarantee trustworthiness.   

The need for trustworthiness in the face of the peculiar 

nature of ASs, (e.g., context dynamism) comes with unique 

and complex challenges validation alone cannot sufficiently 

address. Take for instance; if a manager (AM) erratically 

changes its decision, it ends up introducing noise to the 

system rather than smoothly steering the system. In that 

instance, a typical validation check will pass each correct 

decision (following a particular logic or rule) but this could 

lead to oscillation in the system resulting in instability and 

inconsistent output, which could emerge at a different logical 

level or time scale. A typical example could be an AM that 

follows a set of rules to decide when to move a server to or 
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from a pool of servers; as long as the conditions of the rules 

are met, the AM will move servers around not minding the 

frequency of changes in the conditions.  An erratic change of 

decision (high rate of moving servers around) will cause 

undesirable oscillations that ultimately detriment the system. 

What is required is a kind of intelligence that enables the 

manager to smartly carry out a change only when it is safe 

and efficient to do so – within a particular (defined) safety 

margin. A higher level of self-monitoring to achieve, for 

example, stability over longer time frames, is absent in the 

MAPE-orientated architectures. This is why autonomic 

systems need a different approach. The ultimate goal of the 

new approach is not just to achieve self-management but also 

to achieve consistency and reliability of results through self-

management. These are the core values of the proposed 

architecture in this paper. 

We look at the background of work towards AS 

trustworthy architecture in Section II. We present a new 

trustworthy autonomic architecture in Section III and present 

a datacentre-based implementation and empirical analysis of 

the new architecture in Section IV. Section V concludes the 

work. 

II. BACKGROUND 

The idea espoused in this work is that trustworthiness 

(and any other desired autonomic capability) should be 

conceived at design stage. This means that the autonomic 

architecture should be flexible (and yet robust) enough to 

provide instrumentations that allow designers to specify 

processes to achieve desired goals. It then follows that we 

need to rethink the autonomic architecture. In this section, we 

look at the current state of practice and efforts directed 

towards AS trustworthiness. We analyse few proposed 

trustworthy architectures and some isolated bits of work that 

could contribute to trustworthy autonomic computing. 

Trustworthiness requires a holistic approach, i.e., a long-term 

focus as against the near-term needs that merely address 

methods for building trust into existing systems. This means 

that trustworthiness needs to be designed into systems as 

integral properties. 

Chan et al. [11] asks the critical question of “How can 

we trust an autonomic system to make the best decision?” and 

proposes a ‘trust’ architecture to win the trust of autonomic 

system users. The proposal is to introduce trust into the 

system by assigning an “instantaneous trust index” (ITI) to 

each execution of a system’s AM –where ITI could be 

computed, for example, by examining what fraction of AM 

suggested actions the user accepts unchanged, or by 

examining how extensive the changes that the user makes to 

the suggested actions are. The overall trust index, which 

reflects the system administration’s level of trust in the AM, 

is computed as the function f(ITIi) where i = 1, 2, 3, … and 

ITIi are the individual ITIs for each AM execution. This is 

similar to the proposal in this work in the sense that it 

considers trust as architecture-based and also defines trust in 

the language of the user. However, this method will be overly 

complex (and may be out of control) in large systems with 

multiple AMs if the user is required to moderate every single 

AM suggested action. In such systems some of the AM’s 

decisions are not transparent to the human user. Another 

effort that supports the idea that dependability should be 

conceived at design time and not retro-fitted to systems is the 

work in [12]. Hall and Rapanotti [12] propose an Assurance-

Driven Design and posit that engineering design should 

include the detailing of a design for a solution that guarantees 

satisfaction of set requirements and the construction of 

arguments to assure users that the solution will provide the 

needed functionality and qualities. The key point here is that 

trustworthiness is all about securing the confidence of the user 

(that the system will do what it says) and the way to achieve 

this is by getting the design (architecture) right. This is the 

thrust of this work.  

Shuaib et al. [7] propose a framework that will allow for 

proper certification of A-C systems. Central to this framework 

is an alternative autonomic architecture based on Intelligent 

Machine Design (IMD), which draws from the human 

autonomic nervous system. 

Kikuchi et al. [13] proposes a policy verification and 

validation framework that is based on model checking to 

verify the validity of administrator’s specified policies in a 

policy-based system. Because a known performing policy 

may lead to erroneous behaviour if the system (in any aspect) 

is changed slightly, the framework is based on checking the 

consistency of the policy and the system’s defined model or 

characteristics. This is another important aspect of the 

proposed solution in this work –validation is done with 

reference to the system’s defined goal.  

A trustworthy autonomic grid computing architecture is 

presented in [14]. This is to be enabled through a proposed 

fifth self-* functionality, self-regulating: Self-regulating 

capability is able to derive policies from high-level policies 

and requirements at run-time to regulate self-managing 

behaviours. One concern here is that proposing a fifth 

autonomic functionality to regulate the self-CHOP 

functionalities as a solution to AS trustworthiness assumes 

that trustworthiness can be achieved when all four 

functionalities perform ‘optimally’. This assumption is not 

entirely correct. The self-CHOP functionalities alone do not 

ensure trustworthiness in ASs. Take for example; the self-

CHOP functionalities do not address validation, which is a 

key factor in AS trustworthiness. The self-CHOP (or 

sometimes referred to as self-*) stands for self-Configuring, 

self-Healing, self-Optimising, and self-Protecting. These are 

the characteristics or functional areas that define the 

capabilities of autonomic systems and will be referred to as 

autonomic functionalities in this paper.  

Another idea is that trustworthiness is achieved when a 

system is able to provide accounts of its behaviour to the 

extent that the user can understand and trust. But these 

accounts must, amongst other things, satisfy three 

requirements: provide a representation of the policy guiding 

the accounting, some mechanism for validation and 

accounting for system’s behaviour in response to user 

demands [15]. The system’s actions are transparent to the user 
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and also allow the user (if required) the privilege of 

authorising or not authorising a particular process. This is a 

positive step (at least it provides the user a level of confidence 

and trust) but also important is a mechanism that ensures that 

any ‘authorised’ process does not lead to unreliable or 

misleading results. This is one aspect not considered by many 

research efforts. There are possibilities of erratic behaviour 

(which is not healthy to the system) despite the AM’s 

decisions being approved. One powerful way of addressing 

this challenge is by implementing a dead-zone (DZ) logic 

originally presented in [16]. A DZ, which is a simple 

mechanism to prevent unnecessary, inefficient and ineffective 

control brevity when the system is sufficiently close to its 

target value, is implemented in [16] using Tolerance-Range-

Check (TRC) object. The TRC object encapsulates DZ logic 

and a three-way decision fork that flags which action (left, 

null or right) to take depending on the rules specified. The 

size of the DZ can be dynamically adjusted to suit changes in 

environmental volatility. A key use of this technique is to 

reduce oscillation and ensure stability in the face of high rate 

of adaptability despite process correctness. A mechanism to 

automatically monitor the stability of an autonomic 

component, in terms of the rate the component changes its 

decision (for example when close to a threshold tipping 

point), was presented in [17]. The DecisionChangeInterval 

property is implemented in the AGILE policy language [17] 

on decision making objects such as rules and utility functions. 

This allows the system to monitor itself and take action if it 

detects instability at a higher level than the actual decision 

making activity. This technique is used in the proposed 

solution herein.  

Heo and Abdelzaher [18] present ‘AdaptGuard’, a 

software designed to guard adaptive systems from instability 

resulting from system disruptions. The software is able to 

infer and detect instability and then intervenes (to restore the 

system) without actually understanding the root cause of the 

problem –root-cause-agnostic recovery. Instability is another 

aspect addressed in the solution proposed in our work. 

Because AM control brevity could lead to instability despite 

process correctness, it is important to also consider this 

scenario. Hawthorne et al. [19] demonstrates Teleo-Reactive 

(T-R) programming approach to autonomic software systems 

and shows how T-R technique can be used to detect validation 

issues at design time and thus reducing the cost of validation 

issues. 

Validation is central to achieving trustworthy 

autonomics and this has to meet run-time requirements. A 

generic self-test approach is presented in [10]. The authours 

of [10] extended the MAPE control loop to include a new 

function called Test (Figure 1). By this they define a new 

control loop comprising Monitor, Analyse, Decision, Test and 

Execute –MADTE activities. The MADTE loop works like 

the MAPE loop only that the Decision activity calls the Test 

activity to validate a chosen action should it determine to 

adapt a suggested behaviour. The Test activity carries out a 

test on the action and returns its result to the Decision activity, 

which then decides whether to implement, skip or choose 

another action. (An adaptation is favoured if Test indicates 

that it will lead to component’s better performance in terms of 

characteristics such as optimisation, robustness or security.) 

The process is repeated if the latter is the case. When an 

action is decided on, the decision activity passes it to the 

Execute activity for implementation. This is vital to run-time 

self-validation and is consistent with our proposed solution in 

this work in terms of designing validation into the system’s 

architecture. A feedback-based validation, which relies on a 

kind of secondary (mostly external) expertise feedback to 

validate the output of a system is presented in [20]. This is 

reactionary and has no contribution to the result of the system 

in the first place. Though this may suffice for some specific 

system’s needs, what is generally required for AS validation 

is run-time validation of decisions (or processes) that lead to 

system outputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that AS trustworthiness goes beyond 

secure computing. It is result orientated; not focusing on how 

a goal is achieved but the dependability of the output 

achieved. All systems, no matter how simple or complex, are 

designed to meet a need, but not all systems have security 

concerns. So trustworthiness is not all about security and 

validation. On the other hand, it is not about showing that a 

system or process works but also making sure that it does 

exactly what it is meant to do. This aspect is addressed in the 

proposed trustworthy autonomic architecture by a component 

that carries out a longer term assessment of the system’s 

actions. These are the evolving challenges and where work 

must be concentrated if we are to achieve certifiable 

autonomic systems. 

 

A. Autonomic architecture life-cycle  

We argue that trustworthiness cannot be reliably 

retrofitted into systems but must be designed into system 

architectures. We track autonomic architecture (leading to 

trustworthiness) pictorially in a number of progressive stages 

addressing it in an increasing level of detail and 

sophistication. Figure 2 provides a key to the symbols used. 

 

Figure 1: Control loop with a test function [10] 
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Figure 3 illustrates the progression, in sophistication, of 

autonomic architectures and how close they have come to 

achieving trustworthiness. Although this may not be 

exhaustive as several variations and hybrids of the 

combinations may exist, it represents a series of discrete 

progressions in current approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two distinct levels of sophistication are identified: The 

first level represents the traditional autonomic architecture 

(Figure 3 (i) and (ii)) basically concerned with direct self-

management of controlled/monitored system following some 

basic sense-manage-actuate logic defined in AC. For the 

prevailing context, AC is just a container of autonomic 

control logic, which could be based on MAPE or any other 

autonomic control logic. The original autonomic architecture 

proposed with the introduction of autonomic computing [2] 

falls within this level. This achieves basic self-management 

capability and has since been adapted by several researchers 

to offer more smartness and sophistication. To add a degree of 

trust and safeguard, an external interface for user control input 

is introduced in (ii). This chronicles such approaches that 

provide a console for external administrative interactions 

(e.g., real-time monitoring, tweaking, feedback, 

knowledgebase source, trust input, etc.) with the autonomic 

process. An example of level (ii) is work in [15], where the 

system’s actions are transparent to the user and the user can 

moderate the behaviour of the system by allowing or 

disallowing system decided actions. The system has a console 

that offers the user the privilege of authorising or not 

authorising a particular process. Another example in this 

category is unmanned vehicles (UVs). In UVs there are 

provisions for activating auto piloting and manual piloting. 

The user can decide when to activate either or run a hybrid.  

The second level (Figure 3 (iii) and (iv)) represents 

efforts towards addressing run-time validation. 

Instrumentations to enable systems check the conformity of 

management decisions are added. This includes such 

approaches that are capable of run-time self-validation of 

autonomic management decisions. The validation check is 

done by the VC component and the check results in either a 

pass (in which case the validated decision is actuated) or a 

fail. Where the check fails VC sends feedback to AC with 

notification of failure (e.g., policy violation) and new decision 

is generated. An additional layer of sophistication is 

introduced in Figure 3 (iv) with external touch-point for 

higher level of manageability control. This can be in the form 

of an outer control loop monitoring over a longer time frame 

an inner (shorter time frame) control loop. The work in [10] 

(explained in Section II), which is an extension of MAPE 

control to include a ‘Test’ activity corresponds to level (iii) of 

Figure 3. The Test activity tests every suggested action 

(decision) by the plan activity. If the test fails the action is 

dropped and a new one is decided again. The work in [21] 

corresponds to level (iv) of Figure 3. The work in [10] is 

extended in [21] to include auxiliary test services components 

that facilitate manual test management and a detailed 

description of interactions between test managers and other 

components. Here test managers implement closed control 

loops on autonomic managers (such as autonomic managers 

implement on managed resources) to validate change requests 

generated by the autonomic managers. 

At the level of current sophistication (state-of-the-art), 

there are techniques to provide run-time validation check (for 

behavioural and structural conformity), additional console for 

higher level (external) control, etc. Emerging and needed 

capabilities include techniques for managing oscillatory 

behaviour in autonomic systems. These are mainly 

implemented in isolation. What is required is a holistic 

framework that collates all these capabilities into a single 

autonomic unit. Policy autonomics is one of the most used 

autonomic solutions. Autonomic managers (AMs) follow 

rules to decide on actions. As long as policies are validated 

against set rules the AM adapts its behaviour accordingly. 

This may mean changing between states. And when the 

change becomes rapid (despite meeting validation 

requirements) it is capable of introducing oscillation, 

vibration and erratic behaviour (all in form of noise) into the 

system. This is more noticeable in highly sensitive systems. 

So a trustworthy autonomic architecture needs to provide a 

way of addressing these issues. Level (v) of Figure 3 falls 

within the next level of sophistication required to address the 

ValidationCheck 

S 

AC VC 

V

C 

DC 

Sensor (source of ambient/context information) 

Direct control 

AutonomicController 

Actuator (executing autonomic decisions) 

Console for external injection / control / arbiter 

 

Feedback 

DependabilityCheck 

A 

     Figure 2: Pictographic key used for the architecture life-cycle. 

S A AC 

S A AC 

VC S A 

VC S A AC 

(i) 

(iv) 

(iii) 

(ii) 

S AC (v) D

C 

DC A VC 

Figure 3: Pictorial representation of autonomic architecture life-cycles. 

AC 



283

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

identified issues and ensure dependability. This is at the core 

of the proposed solution presented in next the Section. 

III. TRUSTWORTHY AUTONOMIC ARCHITECTURE 

This section presents the new trustworthy autonomic 

architecture (TAArch). First, a general view of the 

architecture is presented and then followed by detailed 

explanation of its components. Figure 4 explains a 

trustworthy autonomic framework with three major 

components that embody self-management, self-validation 

and dependability. The architecture builds on the traditional 

autonomic architecture (denoted as the AutonomicController 

(AC) component). Other components include 

ValidationCheck (VC –which is integrated with the decision-

making object of the controller to validate all 

AutonomicController decisions) and DependabilityCheck 

(DC) component, which guarantees stability and reliability 

after validation. The DC component works at a different time 

scale, thus overseas the finer-grained sequence of decisions 

made by the AC and VC. 

The AC component (based on, e.g., MAPE logic, IMD 

framework, etc.) monitors the managed sub-system for 

context information and takes decision for action based on 

this information. The decided action is validated against the 

system’s goal (described as policies) by the VC component 

before execution. If validation fails, (e.g., policy violation) it 

reports back to the AC otherwise the DC is called to ensure 

that outcome does not lead to, for example, instability in the 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The DependabilityCheck component comprises of other 

sub-components, which makes it possible to be adapted to 

address different challenges. This feature makes the 

architecture generic and suitable to address even evolving 

autonomic capability requirements. For instance, in [22], the 

architecture is adapted to address interoperability challenges 

in complex interactions between AMs in multi-manager 

scenarios. Predictive component is one example of the 

DependabilityCheck sub-components that allows it to predict 

the outcome of the system based on the validated decision. 

The DependabilityCheck either prevents execution and sends 

feedback in form of some calibration parameters to the 

AutonomicController or calls the actuator to execute the 

validated decision. 

A. Overview of the TAArch architecture components 

This section presents the TAArch architecture in a 

number of progressive stages addressing it in an increasing 

level of detail. First, the self-management process is defined 

as a Sense–Manage–Actuate loop where Sense and Actuate 

define Touchpoints (the autonomic manager’s interface with a 

managed system) and Manage is the embodiment of the 

actual autonomic self-management. Figure 5 is a detailed 

representation of the architectural framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Traditionally, the AutonomicController (AC) senses 

context information, decides (following some rules) on what 

action to take and then executes the action. This is the basic 

routine of any AM and is at the core of most of the autonomic 

architectures in use today (Figure 3). At this level the 

autonomic unit matters but the content of the unit does not 

matter much, i.e., it does not matter what autonomic control 

logic (e.g., MAPE, IMD, etc.) that is employed so long as it 

provides the desired autonomic functionalities. This means 

that the AC component can be configured according to any 

autonomic control logic of choice making the framework 

generic as it is not tied to any one control logic. Basically, the 

AC component introduces some smartness into the system by 

intelligently controlling the decision-making of the system. 

Once an action is decided, following detailed analysis of 

context information, the decision is passed on for execution. 

This is at the level of sophistication defined by the autonomic 

architecture life-cycle level 1 (Figure 3 (i) and (ii)). So, the 

AC component of the TAArch framework provides designers 

the platform to express rules that govern target goal and 

policies that drive decisions on context information for system 

adaptation to achieve the target goal.  

But, the nature of ASs raises one significant concern; 

input variables (context info) are dynamic and (most times) 

not predictable. Although rules and policies are carefully and 

robustly constructed, sensors (data sources) sometimes do 

inject rogue variables that are capable of thwarting process 

Figure 4: Trustworthy autonomic architecture 
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and policy deliberations. In addition, the operating 

environment itself can have varying volatility –causing a 

controller to become unstable in some circumstances. Thus, a 

mechanism is needed to mitigate behavioural (e.g., 

contradiction between two policies, goal distortion, etc.) and 

structural (e.g., illegal structure not conforming to 

requirement, division by zero, etc.) anomalies. This is where 

the ValidationCheck (VC) component comes in. It should be 

noted that AC will always decide on action(s) no matter what 

the input variable is. Once the AC reaches a decision, it 

passes control to the VC, which then validates the decision 

and passes it on for execution. If the check fails, VC sends 

control feedback (CF) to AC while retaining previous passed 

decision. A control feedback is more of an inhibition 

command that controls what actions are and are not allowed 

by the manager. This can be configured according to 

deployment requirements. In a nutshell, the VC, while 

focusing on the goal of the system, deploys self-validation 

mechanisms to continuously perform self-validation of the 

manager’s behaviour and configuration against its behavioural 

goals and also reflects on the quality of the manager’s 

adaptation behaviour. Again, the nature and level of test is 

entirely user-defined. So, the VC is a higher level mechanism 

that oversees the AM to keep the system’s goal on track. The 

ultimate concern here is to maintain system goal adhering to 

defined rules, i.e., adding a level of trust by ensuring that 

target goal is reached only within the boundaries of specified 

rules. It is then left for designers to define what constitute 

validation ‘pass’ and validation ‘fail’. Actual component logic 

are application specific but some examples in literature 

include fuzzy logic [24], reinforcement learning [23], etc. 

This is at the level of sophistication defined by the autonomic 

architecture life-cycle level 2 (Figure 3 (iii) and (iv)). 

But in real life we understand that despite the AM taking 

legitimate decisions within the boundaries of specified rules, 

it is still possible to have overall system behavioural 

inconsistencies. That is, a situation where each individual 

decision could be correct (by logic) and yet the overall 

behaviour is wrong. This kind of situation where the manager 

erratically (though legally) changes its mind, thereby injecting 

oscillation into the system, could be a major concern 

especially in large scale and sensitive systems. This is beyond 

the level of current consideration in the state of practice 

(Figure 3). Therefore, it is necessary to find a way of enabling 

the AM to avoid unnecessary and inefficient change of 

decisions that could lead to oscillation. This task is handled 

by the DC component. It allows the manager change its 

decision (i.e., adapt) only when it is necessary and safe to do 

so. Consider a simple example of a room temperature 

controller in which, it is necessary to track a dynamic goal –a 

target room temperature. The AM is configured to maintain 

the target temperature by automatically switching heating ON 

or OFF according to the logic in (1). A VC would allow any 

decision or action that complies with this basic logic. 

 

 

 

With the lag in adjusting the temperature the system may 

decide to switch ON or OFF heating at every slight tick of the 

gauge below or above target (when room temperature is 

sufficiently close to the target temperature). This may in turn 

cause oscillation, which can lead to undesirable effects. The 

effects are more pronounced in more sensitive and critical 

systems where such changes come at some cost. For example, 

a datacentre management system that erratically switches 

servers between pools at every slight fluctuation in demand 

load is cost ineffective. Actual component and sub-component 

logic are user-defined. One powerful logic example, as 

explained in Section II, for implementing the DC component 

is the dead-zone (DZ) logic [16]. DZ logic has been shown to 

offer a reliable means of achieving self-stabilisation, 

dependable systems and TAC. 

 The DC component may also implement other sub-

components like Prediction, Learning, etc. This enables it to 

predict the outcome of the system and to decide whether it is 

safe to allow a particular decision or not. An example sub-

component logic is Trend Analysis (TA) logic. TA logic 

identifies patterns within streams of information supplied 

directly from different sources (e.g., sensors). By identifying 

trends and patterns within a particular information, (e.g., 

spikes in signal strength, fluctuation in stock price, 

rising/falling trends etc.) the logic enables the AM to make 

more-informed control decisions and this has the potential of 

reducing the number of control adjustments and can improve 

overall efficiency and stability. Also, the analysis of recent 

trends enables a more accurate prediction of the future. With 

TA, managers can base decisions on a more-complete view of 

system behaviour. The usage and importance of TA are 

discussed in more detail in [16]. 

So after validation phase, the DC is called to check 

(based on specified rules) for dependability. DC avoids 

unnecessary and inefficient control inputs to maintain 

stability. If the check passes, control is passed to the Actuator 

otherwise a recalibration feedback (RF) is sent to AC. An 

example of RF is dynamically adjusting (or retuning) the DZ 

boundary width (explained later) as appropriate. The RF 

enables the manager to adjust its behaviour to maintain the 

level of required trust. So, while VC looks at the immediate 

actions, DC takes a longer term view of the manager’s 

behaviour over a certain defined time interval. A particular 

aspect of concern, though, is that for dynamic systems the 

boundary definition of DZ may itself be context dependent 

(e.g., in some circumstances it may be appropriate to allow 

some level of changes, which under different circumstances 

may be considered destabilising). This concern is taken into 

consideration when defining such boundaries. 

So the current state-of-the-art of autonomic architecture 

suffices for short term adaptation. To handle longer term 

frame adaptation, e.g., cases where continuous validation fails 

to guarantee stability and reliability, requires a robust 

autonomic approach. This robust autonomic approach is what 

the proposed TAArch offers. Consider the whole architecture 

as a nested control loop (Figure 4 (b)) with AC the core 

control loop while VC and DC are intermediate and outer 

𝐼𝐹 𝑅𝑜𝑜𝑚𝑇𝑒𝑚𝑝 <  𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑒𝑚𝑝 𝑇𝐻𝐸𝑁 𝑂𝑁_𝐻𝑒𝑎𝑡𝑖𝑛𝑔 

𝐼𝐹 𝑅𝑜𝑜𝑚𝑇𝑒𝑚𝑝 >  𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑒𝑚𝑝 𝑇𝐻𝐸𝑁 𝑂𝐹𝐹_𝐻𝑒𝑎𝑡𝑖𝑛𝑔 

 

(1) 
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control loops, respectively. In summary, a system, no matter 

the context of deployment, is truly trustworthy when its 

actions are continuously validated (i.e., at run time) to satisfy 

set requirements (system goal) and results produced are 

dependable and not misleading. 

IV. IMPLEMENTATION AND EMPIRICAL ANALYSIS 

 To demonstrate the feasibility and practicability of the 

new architecture, this section presents an implementation and 

simulation analysis of the TAArch architecture using a 

datacentre case example scenario. This analysis is a complex 

and robust implementation of TAArch demonstrated in a 

resource allocation scenario, which models basic datacentre 

resource allocation management. Although the demonstration 

uses a datacentre scenario, which though offers a way of 

efficiently managing complex datacentres, the application of 

TAArch can be widespread. In other words, although a 

datacentre is used to demonstrate the functionalities of the 

proposed architecture, it is not limited to this scenario. The 

datacentre model represents a very simple datacentre scenario 

where the simulation focuses on the efficiency and 

dependability of resource request and allocation management 

rather than other vast areas of datacentre, e.g., security, 

power, and cooling etc. So the purpose of the experiments is 

to demonstrate the applicability and performance of the 

proposed architecture and not to investigate datacentres 

themselves. However, the datacentre is chosen as 

implementation scenario because its many dimensions of 

complexity and large number of tuning parameters offer a rich 

domain in which to evaluate a wide range of techniques, tools 

and frameworks. 

In this example, detailed experiments are designed to 

analyse three different systems based on three different 

autonomic architectures. The first system, comprising of only 

AC component, is based on the traditional architecture 

represented by level 1 (Figure 3 (i) and (ii)) of the autonomic 

architecture life-cycle. This system will be referred to as 

sysAC. The second system, comprising of both the AC and 

VC components, is based on the current level of practice 

represented by Figure 3 (iii) and (iv). This system will be 

referred to as sysVC. The third and TAArch-based system, 

referred to as sysDC, comprises of all three (AC, VC, and 

DC) components. This system falls within the representation 

of level (v) of Figure 3. The purpose of this implementation is 

to illustrate how powerful and robust the TAArch framework 

is when compared to existing frameworks. 

A. Scheduling and Resource Allocation 

Several research, e.g., [25][26][27], have proposed 

scheduling algorithms that optimise the performance of 

datacentres. In a utility function based approach, Das et al. 

[25] are able to quantify and manage trade-offs between 

competing goals such as performance and energy 

consumption. Their approach reduced datacentre power 

consumption by up to 14%. Other works that have resulted in 

improved performance and resource utilisation by proposing 

new scheduling algorithms include [26], which focuses on the 

allocation of virtual machines in datacentre nodes and [27], 

which uses a ‘greedy resource allocation algorithm’ that 

allows distributing a web workload among different servers 

assigned to each service. Our work, on the other hand, does 

not propose any new scheduling algorithm for efficient 

utilisation of datacentre resources; however, it uses basic 

resource allocation technique to model the performance of 

datacentre autonomic managers in terms of the effectiveness 

of resource request and allocation management. 

Let us consider the model of the datacenter used in this 

experimentation in detail, (in terms of scheduling and request 

services). The datacentre model comprises a pool of resources 

Si (live servers), a pool of shutdown servers Ši (ready to be 

powered and restored to Si as need be), a list of applications 

Aj, a pool of services Ṳ (a combination of applications and 

their provisioning servers), and an autonomic manager 

(performance manager PeM) that optimises the entire system. 

Aj and Si are, respectively, a collection of applications 

supported (as services) by the datacentre and a collection of 

servers available to the manager (PeM) for provisioning (or 

scheduling) available services according to request. As 

service requests arrive, PeM dynamically populates Ṳ to 

service the requests. Ṳ is defined by equation (2): 

 

 

 

 

 

 

 

Where Ai: (Si … Sn) means that (Si … Sn) servers are currently 

allocated to Application Ai and n is the number of application 

entries into Ṳ. (2) indicates that a server can be (re)deployed 

for different applications. All the servers i in Si are up and 

running (constantly available –or so desired by PeM) waiting 

for (re)deployment. The primary performance goal of PeM is 

to minimise oscillation and maximise stability (including just-

in-time service delivery to meet service level achievement 

target) while the secondary performance goal is to maximise 

throughput.  

Service (application) requests arrive and are queued. If 

there are enough resources to service a particular request then 

it is serviced otherwise it remains in the queue (or may 

eventually be dropped). The manager checks for resource 

availability and deploys server(s) according to the size of the 

request. The size of application requests and the capacity of 

servers are defined in million instructions per second (MIPS). 

In this report ‘size’ and ‘capacity’ are used interchangeably 

and mostly would refer to MIPS i.e., the extent of its 

processing requirement. When a server is deployed it is 

placed in a queue for a time defined by the variable 

ProvisioningTime. This queue simulates the time (delay) it 

takes to load or configure a server with necessary application. 

Recall from Equation (2) that any server can be (re)configured 

for different applications and so servers are not pre-

configured. Servers are then ‘Provisioned’ after spending 

ProvisioningTime in the queue. The provisioning pool is 

(2) 

       A1: (S11, S12, S13, …, S1i) 

       A2: (S21, S22, S23, …, S2i) 

           …   …    …   …  …  … 

        An: (Sn1, Sn2, Sn3, …, Sni) 

 

Ṳ   = 
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constantly populated as requests arrive. Now as a result of the 

lag between provisioning time and the rate of request arrival 

or as a result of some unforeseen process disruptions, some 

servers do overshoot their provisioning time and thereby left 

redundant in the queue. This can be addressed by the 

manager, depending on configuration, to reduce the impact on 

the whole system. As requests are fully serviced (completed) 

servers are released into the server pool and redeployed. Note 

that service level achievement (SLA) is calculated based on 

accepted requests. Rejected or dropped requests are not 

considered in calculating SLA. The essence of the request 

queue is to allow the manager to accept requests only when it 

has enough resources to service them. Service contract is 

entered only when requests are accepted. So the manager 

could look at its capacity (in terms of available resources), 

compare that with the capacity requested and say ‘sorry I 

haven’t got enough resources’ and reject or drop the request. 

This whole process goes on and the manager manages the 

system to the level of its sophistication. This process is 

explained in Appendix A. 

A basic system without any form of smartness can 

barely go far before the whole system is clogged due to 

inefficient and unstructured resource management. The level 

to which any autonomic manager can successfully and 

efficiently manage the process defined above depends on its 

level of sophistication. For us this largely depends on how 

each manager is wired (in terms of architecture) and not 

necessarily the scheduling algorithm or actual component 

logic used. For example, two managers, differently wired, 

may employ the same scheduling algorithm but achieve 

different results. Results here may be looked at in terms of, 

say, ‘with such level of available resources how many 

requests were successfully serviced’. These are the kind of 

considerations in the following experiments where three 

differently wired autonomic managers are analysed. 

B. Experimental Design, Workload and Parameters 

The experiments are designed and implemented using 

the TAArch application (Appendix A). This application is 

developed using the C# programming language. The scope of 

the experiments focuses on the performance of datacentre 

autonomic managers in resource request and allocation 

management activities under varying workloads. Although 

some workload parameters are sourced from experimental 

results of other research, e.g., [28][29][30], the designed 

experiments allow for the tailoring of all parameters 

according to user preferences. Simulations are designed to 

model several options of real datacentre scenarios. So, 

depending on what is being investigated the user can design 

individual scenarios and set workloads according to specific 

requirements. 

The result of every simulation analysis is relative to the 

set of workload or parameter set used, which configure the 

specific application instance. The parameter set used for the 

datacentre model analysis here are classified into internal and 

external variables. Internal variables are those variables that 

do not change during run-time, e.g., the capacity of a server. 

External variables, on the other hand, are those that can 

change in the cause of the simulation, e.g., the rate at which 

requests arrive. External variables are usually system 

generated and are always unpredictable. The experimental 

design has the capacity for heterogeneous workload 

representation. That means that even the internal variables can 

be reset before simulation begins thereby offering the 

possibility of scaling to high/low load to suit user preferences 

(see Appendix A). The range of value options for most of the 

variables reflects the experimental results of other research 

especially [28][29][30]. Note that the following variables are 

used with the C# application that has been designed to 

simulate the datacentre model and run the stated experiments. 

 

 Internal Variables 
Below is the list of internal variables used in this experiment. 

Some of the variables used are specific to this experiment 

while some are general datacentre variables. 

 

- server.sCapacity: 

This represents the service capacity of each server and for the 

purposes of the experiments here all servers are assumed to be 

of equal capacity. Server capacity (size) is measured in MIPS. 
 

- RetrieveRequestParam: 

Tuning parameter indicating when to start shutting services 

(this simulates service request completion) –at which point 

some running requests are closed as completed. This value is 

measured as percentage of number of servers in use and has 

been restricted to value between 0.1 and 0.3. The margin 0.1 – 

0.3 (representing 10 to 30%) is used because experiments 

show that it is the safest margin within which accurate results 

can be guaranteed. The datacentre is not completely settled 

below 10% and beyond 30% scenarios with low number of 

servers will yield inaccurate results. The higher the value of 

RetrieveRequestParam the earlier the start of request 

completion. 
 

- RetrieveRate: 

Indicates rate at which requests are completed once 

simulation for service request completion is initiated. Value is 

relative to rate of request arrival – e.g., if value is 5, then it 

means service request completion is five times slower than 

rate of service request. 
 

- BurstSize: 

Indicates how long the user wants the burst (injected 

disturbance) to last. This value is measured in milliseconds. 

Burst is a disturbance introduced by the user to cause 

disruption in the system. This alters the smooth running of the 

system and managers react to it differently. Often times 

injecting a burst disorientates the system. The nature of this 

disruption is usually in the form of sudden burst or significant 

shift in the rate of service request. 
 

- ServerProvisioningTime: 

Indicates how long it takes to load or configure a server with 

an application. This is relative to the rate of request arrival -it 
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is measured as half the rate of request arrival, e.g., the value 

of 3 will translate to 1.5 of rate of request arrival. 
 

- ServerOnTime: 

Indicates how long it takes a server to power on. This is 

relative to the rate of request arrival -it is 

ServerProvisioningTime + 1. 
 

- RequestRateParam: 

A constant used to adjust the possible range of request rate. 

The user of the TAArch Application (Appendix A) can set 

request rate according to preference but this preference may 

not be accommodated within the available rate range. For 

example, if the least available rate is 1 request/second and the 

user wishes to use 2 requests/second, the RequestRateParam 

parameter can be used to extend the available range. A higher 

value increases the range for a lower rate of request arrival. 

 

 External Variables 
Below is the list of external variables used in this experiment. 

Recall that external variables, also known as dynamic 

variables, are those variables that are fed into the system 

during run-time either as system generated (dynamic 

sensitivity to contextual changes) or human input (through 

external touch-points). Some of the variables used are specific 

to this experiment while some are general datacentre 

variables. 

 

- DZConst: 

DZConst is the tuning parameter the manager uses to 

dynamically adjust dead-zone boundaries. The dead-zone 

boundary is also known as DZWidth. Because this variable 

has significant effect on the system, it is suggested that the 

initial value be set at 1.5. The manager usually adjusts this 

value dynamically and there is also a provision to manually 

adjust the value during run time. 
 

- AppSize: 

The application size variable represents the size or capacity of 

a service request (request for an application). In the 

experiments that follow, except otherwise changed, all 

applications are initially assumed to be of the same size. 

There are touch-points to dynamically change this value. The 

application size variable is measured in MIPS. 
 

- RequestRate: 

This variable also referred to as rate of service request or rate 

of request arrival is the measure of the frequency of service 

request. This is in terms of the number of requests recorded 

per unit of time. In real systems, this can be calculated as an 

average for all services (applications) or for individual 

services. In [28], for example, RequestRate values are 

calculated for each service and are presented in requests/day. 

The experiments of this work take an average of RequestRate 

for all services and represent values as requests/second. 
 

- BurstInterval: 

The burst interval variable defines the interval at which bursts 

are injected into the system during the simulation. This is 

specific to the experimental application and is dependent on 

what the user wants to investigate. Usually bursts are 

introduced once at a specific time or several at random times. 

 

The experimental workload is flexible in that all 

variables can be scaled to suit user’s workload (high or low) 

requirements. Every experiment has a detailed workload 

outline used as shown in the following experiments. 

C. Manager Logic 

Manager logic details the individual control logic 

employed by each of the managers in order to achieve the 

performance goal. This explains the logical composition of 

each manager. The three autonomic managers track the life-

cycle of autonomic architecture as presented in Figure 3. 

sysAC represents the AutonomicControler level based 

manager while sysVC represents the ValidationCheck level 

based manager. sysDC represents the DependabilityCheck 

level based manager and this conforms to TAArch 

architecture. 

The primary goal of the AM (also referred to as the 

performance manager –PeM), represented by each of sysAC, 

sysVC, and sysDC, is to ensure that the system remains stable 

under almost all perceivable operating and contextual 

circumstances and is capable of achieving desired and 

dependable results within such circumstances (i.e., over the 

expected range of contexts and environmental conditions and 

beyond). The secondary goal is to maximise throughput. 

 

 sysAC 

This manager implements the basic autonomic control 

logic. Structurally based on Figure 3 (ii), the manager receives 

requests and allocates resources accordingly. The basic 

allocation logic here is to deploy a server whenever capacity 

offset (i.e., excess capacity of running servers –these are used 

to service new requests) is less than the current capacity of a 

single request. This is known as the DecisionBoundary. This 

is depicted, for example, as: 

 
if (app1ACOffset < app1.appCapacity) 

{  <...deploy server...>  } 

Where 

app1ACOffset = app1ACAvailableCapacity - 
app1ACRunningCapacity; 

 
sysAC has no additional intelligence. For example, 

decisions are not validated and the manager does not consider 

the rate at which system behaviour crosses the 

DecisionBoundary. As long as boundary conditions are met, 

the manager executes appropriate decisions. 

 

 sysVC 
This manager shows a higher level of intelligence than 

sysAC. One aspect of validation here is to check the 

performance of the manager in terms of correctness. The 
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manager does not start a job that cannot be completed –i.e., at 

every DecisionBoundary the manager checks to make sure 

that it has enough resources to service a request. Where this is 

not the case (meaning the check has failed), the manager 

rejects the request and updates itself. The manager has a limit 

to which it can allow capacity deficit expressed as: 

 
else if (app1VCOffset <= (0 - app1.appCapacity)) 

 { 
     DroppedRequestCountVC += 1; 
 } 

 
So, in addition to the basic control and resource 

allocation logic of sysAC, sysVC carries out a validation of 

every allocation decision. Validation here is in terms of 

behavioural (e.g., starting a job only when there are enough 

capacity to complete it) and structural (e.g., avoiding 

initiating provisioning when server pool is empty i.e., 

listViewServer.Items.Count = 0) correctness. 

sysVC is within the representation of current stages of 

autonomic architecture life-cycle presented in Section II as 

Figure 3 (iii) and (iv). Beyond the level of validation, sysVC 

exhibits no further intelligence. 

 

 sysDC 
sysDC performs all the activities of the sysAC and sysVC 

managers with additional intelligence. The manager looks at 

the balance of cost over longer term and retunes its 

configuration to ensure a balanced performance. For example, 

the manager implements dead-zone (DZ) logic on decision 

boundaries. Firstly, the dead-zone boundaries (upper and 

lower bounds), for example, are calculated as: 

 
 

 

 

 

 
Note: the size of DZ boundary depends on the nature of the 

system and data being processed. For example, in fine-

grained data instance, where small shifts from the target 

can easily tip decisions –sometimes leading to erratic 

behaviour, the DZ boundary is expected to be small and 

closely tracked to the target value. However, in other cases 

as in this experiment, the DZ boundary cannot be as 

closely tracked to the target value. Here the target value 

(DecisionBoundary) is defined by capacity Offset (see (7) 

later) and this is used by the AM to decide whether or not 

to deploy a server. And because Offset is populated in 

serverCapacity and depleted in appCapacity (i.e., 

the difference between available and requested capacity) 

any behaviour shift across the decision boundary (on either 

side of the boundary) is in excess of appCapacity. This 

means that fluctuations around the decision boundary are 

usually in multiples of appCapacity and to handle erratic 

behaviour around DecisionBoundary the AM will need to 

take appCapacity into consideration when calculating 

DZ boundaries. This explains the boundary size calculation 

of (3). Offset is positive when there is excess capacity than 

required and negative when there is a shortfall. Also, 

sample simulation results show that smaller sizes of dead-

zone boundary have no effect on the system behaviour.  

 

Secondly, the zone areas are defined as follows (two 

zones are defined with one on either side of the 

DecisionBoundary –see Figures 8 and 9): 

 

 
if (app1DCOffset < app1.appCapacity) 
{  

App1.SystemBehaviour = "IsInDeployZone";  
} 
else 
{  

App1.SystemBehaviour = "IsNotInDeployZone";  
} 

 

 

Then stability is maintained by persisting the behaviour 

(DecisionBoundary outcome) of the system across the zones 

as follows: 

 

 
if (app1DCOffset >= app1.appCapacity) 
{ App1.SystemBehaviour = "IsNotInDeployZone"; } 
 
if ((App1.SystemBehaviour == "IsInDeployZone") && 

(app1DCOffset < App1.DZUpperBound)) 
{ App1.SystemBehaviour = "IsInDeployZone"; } 
else  
{ App1.SystemBehaviour = "IsNotInDeployZone"; } 
 
if ((App1.SystemBehaviour == "IsNotInDeployZone") && 

(app1DCOffset > App1.DZLowerBound)) 
{ App1.SystemBehaviour = "IsNotInDeployZone"; } 
else  
{ App1.SystemBehaviour = "IsInDeployZone"; } 

 
 

Thus, the DecisionBoundary in sysAC and sysVC, which 

is (app1DCOffset < app1.appCapacity) now becomes 

(App1.SystemBehaviour == "IsInDeployZone") in sysDC. The 

AM dynamically changes the DZ.DZConst value between three 

values of 1, 1.5 and 2. By doing this the manager is sensitive 

to its own behaviour and proactively regulates (retunes) its 

decision pattern to maintain stability and reliability. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

App1.DZUpperBound = (app1.appCapacity +   
(app1.appCapacity * DZ.DZConst)); 
 

App1.DZLowerBound = (app1.appCapacity - 
(app1.appCapacity * DZ.DZConst)); 

(3) 
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Figure 6: Dead-zone logic implemented by SysDC. 
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In Figure 6, the area shaded in green represents the 

‘IsInDeployZone’, which means the manager should deploy a 

server while the area shaded in blue represents the 

‘IsNotInDeployZone’, which means the manager should not 

deploy a server. Likewise, the dotted shade pattern represents 

the ‘IsInDeployZone’ while the diagonal shade pattern 

represents the ‘IsNotInDeployZone’. As shown, if, for 

example, the system behaviour falls within the 

‘IsNotInDeployZone’ area, the manager persists the action 

associated to this zone until system behaviour falls below the 

‘DZLowerBound’ boundary at which point the action 

associated to the ‘IsInDeployZone’ area is activated. This way 

the AM is able to maintain reliability and efficiency. The AM 

also retunes its behaviour (as explained earlier) by adjusting 

DZWidth if fluctuation is not reduced to an acceptable level. 

Thus, three behaviour regions (in which different actions are 

activated) are defined; ‘upper region’ (IsNotInDeployZone 

with ‘DO NOT DEPLOY SERVER’ action), ‘lower region’ 

(IsInDeployZone with ‘DEPLOY SERVER’ action), and ‘in DZ’ 

(within the DZWidth with either of the two actions). It is 

important to note, as shown in Figure 6, that within the DZ 

boundary (i.e., the ‘in DZ’ region), either of the actions 

associated to ‘IsInDeployZone’ and ‘IsNotInDeployZone’ 

areas could be maintained depending on the ‘current action’ 

prior to deviation into the ‘in DZ’ region. So actions activated 

in the ‘upper region’ and ‘lower region’ are respectively 

persisted in the ‘in DZ’ region. This is further explained in 

Figure 7, which shows the resultant effect of the DZ logic in 

terms of what zone action is activated per time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 explains what happens in Figure 6. As system 

behaviour fluctuates around decision boundary, the manager 

dynamically adjusts the DZ boundary to mitigate erratic 

adaptation. As shown, minor deviations across the 

DecisionBoundary do not result in decision (or action) 

change. In this case (Figure 7) actions for IsInDeployZone and 

IsNotInDeployZone are persisted at states x and y respectively 

despite system behaviour crossing the decision boundary at 

those state points. 
 

 

 

 

 

Figure 8 is a representation of the next level of 

sophistication in autonomic architecture life-cycle required to 

ensure dependability. This is presented in Section II as Figure 

3 (v).  

To illustrate the overall operation of the DZ logic, a 

simple numeric example is given: Let us consider a simple 

use-case example in which a room temperature controller is 

set to maintain temperature at 20
0
C: The AM is configured to 

turn ON heating when room temperature falls below the target 

temperature (20
0
C) and to turn OFF heating otherwise. If, for 

example, the room temperature keeps fluctuating between 

19
0
C and 21

0
C the manager will as well fluctuate with its 

decisions (i.e., erratic behaviour of frequently turning heating 

ON and OFF). This situation is undesirable and can be 

enormously costly in crucial systems. To mitigate this 

situation, the manager can implement DZ logic with a 

DZLowerBound of 19
0
C and DZUpperBound of 21

0
C. This 

will allow the manager to turn off heating only when room the 

temperature rises above 21
0
C and to turn on heating only 

when it falls below 19
0
C. Putting this in the context of (20) 

means that, e.g.:  

 
DZUpperBound = (20 + (20 * 0.05)) 
DZLowerBound = (20 – (20 * 0.05)) 

 

This will calm the erratic behaviour of the AM. 

However, if the erratic behaviour does not drop to an 

acceptable level the manager can further retune itself by 

increasing DZConst by multiples of 0.05 (e.g., DZConst += 

0.05). If on the other hand the AM discovers that it is not 

making decisions frequently enough, (i.e., the room is getting 

too cold or too hot) it can retune its behaviour to increase its 

rate of decision-making by reducing the DZ boundaries (e.g., 

DZConst –= 0.05). So the AM retunes itself by dynamically 

adjusting the DZ boundaries using (DZConst  = 0.05) as 

appropriate. It is important to note that the average of the DZ 

boundaries is equal to the target goal – e.g., the average of 

19
0
C and 21

0
C is 20

0
C, which is the target temperature. 

D. Simulation Scenarios and Metrics 

In the following simulations to analyse the performances 

of the three systems (sysAC, sysVC and sysDC), four 

simulation scenarios are used. The scenarios are presented in 

Table I. The user of the TAArch application can define further 

scenarios as required. 

 

Table I: Resource allocation simulation scenarios 

Scenario Description Metrics 

Scenario 1 Basic simulation with uniform 

request rate and application size 

 

 

SLA 
Delay cost 

Server deployment rate 

Optimum provisioning 

(Offset analysis) 

Scenario 2 Basic simulation with uniform 

request rate and varying 
application sizes 

Scenario 3 Uniform application size with 

burst injected at a particular 
time in the simulation  

Scenario 4 Varying application sizes with 

inconsistent request rate 
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Scenario 1: In scenario 1, all parameters are kept constant 

except those (e.g., DZConst) that may need dynamic tuning 

by the manager as need arises. This scenario gives a default 

view of the behaviour of the managers under normal 

condition. Under this scenario of normal condition, it is 

expected that all managers will behave significantly closely. 
  

Scenario 2: This scenario creates a condition where the 

managers will have to deal with irregular sizes of service 

request. This leads to contention between applications –huge 

applications will demand huge resources thereby starving 

smaller applications. Performance analysis here will include 

individual application analysis. Request rate is kept constant 

so that the effect of varying application sizes could be better 

analysed. 

 

Scenario 3: In this scenario, request rate and application size 

are kept constant while burst is injected at a chosen time 

(SimulationTime) in the simulation. This is similar to Scenario 

1 just that a sudden and unexpected disruption (burst) is 

injected into the system. This will measure the robustness of 

the AMs in adhering to the goal of the system. The impact of 

the burst is relative to the size of the burst (BurstSize). 
 

Scenario 4: This is the most complex scenario with resource 

contention and two instances of burst injection. This scenario 

creates the combined effect of Scenarios 2 and 3 put together. 

Request sizes vary leading to resource contention and request 

rate is highly erratic. Inconsistent request rate can also lead to 

‘flooding’, which also is a kind of burst. Flooding is a 

situation where the system is inundated with requests at 

disproportionate rate. 
 

All metrics are mathematically defined giving the reader 

a clear picture of the definition criteria should they wish to 

replicate this experiment.  

 

SLA: Service level achievement is the ratio of provided 

service to requested service. It measures the system’s level of 

success in meeting request needs. Note that requests and 

services are not time bound so the time it takes to complete a 

request does not count in this regard. The metric is defined as: 

 

 
 

 

 
 

 

 

Where ProvisionedCapacity is the total deployed server 

capacity (excluding those in queue and including those 

already reclaimed back to the pool) and RequestedCapacity is 

the total size of request (including completed requests). 

AvailableCapacity is ProvisionedCapacity minus capacity of 

reclaimed servers (ReclaimedCapacity) while 

RunningCapacity is the total size of request (excluding 

completed requests). In (4), (i) is more of a whole picture 

consideration –considering the entire capacity activities of the 

system while (ii) takes a real time view of the system –

tracking to the minute details of the system with delay, 

completed requests and reclaimed server effects all 

considered. The reference value for SLA is 1 indicating 

100%. Values above 1 indicate over-provisioning while 

values under 1 indicate shortfall. Optimum provisioning is 

achieved at close proximity to 1. 

 

Delay cost: Delay cost can be calculated in many different 

ways as the cost can be influenced by many delay 

contributors. In this instance, delay cost is defined as the cost 

(in capacity) as a result of the delay experienced by the 

servers. This delay affects the completion time of service 

requests. This is mathematically represented as: 

 
 

              =      
(                                    )

                
 

 

       =      
                    

                
               (5) 

 
 

ProvisioningCapacity is the capacity of servers in queue 

while DeployedCapacity is the total capacity of all deployed 

servers. The lower value of delay cost means the better 

performance of the system. 

 

Deployment Rate: Server (re)deployment rate is the ratio of 

server deployment to service request. It measures the 

frequency at which managers deploy servers with regards to 

the nature of requests. This is mathematically represented as: 

 
               = 

                

(                                   )
       (6) 

 
The lower value of deployment rate means the better 

performance of the system translating to better maximisation 

of throughput. 

 

Optimum provisioning: This metric is also an offset 

analysis. It indicates whether and when the manager is over or 

under provisioning. This is also known as efficiency 

calculation. Offset is calculated as: 

 
                                              (7) 

 
Under normal circumstances, average offset is not expected to 

fall below zero. The system is optimally provisioning when 

offset falls between zero and the average capacity of all 

applications. The closer to zero the offset value is, the better 

the performance of the system.  

 

Note that, for all metrics, low or high values do not always 

necessarily translate to better performance. It is not usually 

realistic for the supposed better manager to always 

outperform the other managers. There are times when the 

manager underperforms and usually there may be a tradeoff of 

some kind that explains the situation. 

(4) 

         𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

     (i) 
 

      𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

       (ii) 
SLA   = 
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E. Experimental Results 

Results are presented and analysed according to 

simulation scenarios. For precise results, ten different 

simulations of each Scenario are performed and results 

presented are based on average of these ten simulations. For 

each of the ten simulations, the parameters used are presented. 

It is important to note the workload and parameters used for 

individual simulations as results will largely depend on those. 

 

Scenario 1: Basic simulation with uniform request rate 

and application size 

 

Table II is a collection of major parameters used in this 

scenario. The number of requests and the distribution of those 

requests amongst applications differ with each AM as they are 

dynamically generated and unpredictable. This does not 

distort the results as analysis is based on system-wide 

performance and not on individual application performance. 

 
Table II: Scenario 1 simulation parameters 

Parameter Value 

# of servers 300 

# of applications 4 

Request rate 1 req/sec 

Application capacity (MIPS) 20000 

Server capacity (MIPS) 40000 

 

Internal 

variables 

RetrieveRate 5x 

RequestRateParam 10 

RetrieveRequestParam 0.2 

ServerProvisioningTime 3 (1.5 sec) 

Managers  (sysAC, sysVC & sysDC) PeM 

DZConst 1.5 

 

In every simulation, there are 300 servers of 40000 

MIPS capacity each. This means there is a total of initial 

12000000 MIPS to share between requests for four 

applications (App1, App2, App3, and App4). Reclaimed 

servers are later added to this available capacity. If the total 

requested capacity is higher than the total provisioned 

capacity, the unused server list will be empty (leaving the 

manager with a deficit of outstanding requests without 

resources to service them) and the datacentre is overloaded. 

So the simulation stops whenever any manager runs out of 

resources (i.e., when the unused server list of any manager 

becomes empty). It is necessary to stop the simulation at this 

point because as soon as the unused server list of a particular 

manager becomes empty, the RequestedCapacity for that 

manager starts piling up while AvailableCapacity remains at 

zero, which leads to continuously increasing negative Offset. 

This will lead to inaccurate assessment of the three managers 

(recall that all three managers are compared concurrently and 

it is safer to do this while all three managers are active). Also, 

at this point, usually, other managers may have outstanding 

resources and this will mean better efficiency. Table III is a 

number distribution of requests and services for ten 

simulation runs of Scenario 1. The values shown are collected 

at the end of each simulation, for example, it can be seen that 

the manager of sysAC has no servers left in each of the 

simulations while sysVC has a couple and sysDC even more. 

Though sysAC and sysVC are able to service almost the same 

number of requests, sysVC has outstanding server capacity 

and could service more requests. However, the additional 

smartness of sysVC does not always translate to better 

performance as highlighted in Table III (this is an example of 

manager interference leading to overcompensation). sysDC 

clearly outperformed the others with an average of about 36 

outstanding servers out of 300 initial servers. Figures 11-14 

give a breakdown of the performances. 

 
Table III: High level performance analysis of managers over ten 

simulation runs of Scenario 1 

  

The difference between requested capacity and 

provisioned capacity (or in real time analysis, running 

capacity and available capacity) is known as Offset. Where 

offset is close to zero, the difference with respect to running 

and available MIPS is low and the AM is therefore very 

efficient. When offset is much greater than or much less than 

zero, the AM is over-provisioning or under-provisioning 

respectively and is very inefficient. The AMs are designed to 

have a window of ‘optimum provisioning’ defined by the 

interval (0 ≤ Offset ≤ AvgAppCapacity), which means that 

the AM are configured to maintain AvailableCapacity of up to 

average appCapacity for just-in-time provisioning. However, 

AM efficiency is defined by its ability to maintain Offset as 

close as possible to zero. Figure 9 shows the efficiency 

analysis of the three managers in terms of maximising 

resources. This is in terms average performances of the three 

AMs over ten simulation runs. This means that the same 

scenario was run for ten times and then the average result was 

calculated. This gives a clearer picture and more accurate 

analysis of manager performance.  

 

 
Figure 9: Manager efficiency analysis for scenario 1. 
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Offset = AvailableCapacity - RunningCapacity 
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Sim unused server serviced request deployed server 

 AC VC DC AC VC DC AC VC DC 

1 0 2 35 578 577 555 307 307 268 

2 0 3 27 594 594 574 310 299 278 

3 0 0 36 600 590 574 309 305 268 

4 0 0 34 593 585 566 309 313 274 

5 0 0 30 609 586 587 312 303 273 

6 0 0 38 597 586 576 308 309 268 

7 0 0 36 613 605 587 314 304 268 

8 0 15 39 591 590 565 307 287 263 

9 0 6 33 582 582 566 304 302 271 

10 0 8 48 569 567 542 310 298 255 

avg 0 3.4 35.6 592.6 586.2 569.2 309 302.7 268.6 
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Figure 9 shows that, in terms of efficiency, sysAC 

performed significantly similar to sysVC with a couple of 

instances where sysAC also performed better than sysVC. This 

is as a result of over compensation introduced by the extra 

level of smartness in sysVC. The validation check of sysVC 

gives it an advantage over sysAC but it sometimes leads to 

over compensation. For example, though sysVC checks to 

ensure resource availability against resource requests, it is not 

adequately sensitive to erratic request fluctuation. High level 

of erratic request fluctuation disorientates sysVC (as can be 

seen in later scenarios where burst is injected) but this effect 

is naturally and dynamically handled by sysDC. sysDC takes a 

longer term look at the self-management effect on the 

datacentre and retunes its self-management behaviour. The 

rate at which the managers change decision, (which can 

indicate erratic behaviour) is indicated by the gap between the 

crests and troughs of the graph in Figure 9. Smaller gap 

indicates erratic change of decision while bigger gap indicates 

more persisted decision. As seen, sysDC has significantly 

more persisted decisions and this allows it to more adequately 

track resource availability against resource requests, which 

leads to more efficient performance as can be seen. Recall that 

optimum provisioning is defined by the (0 ≤ Offset ≤ 
AvgAppCapacity) interval, which in this case is between 0 

and 20000 MIPS. sysDC clearly falls within this range, 

though a bit towards the 20000 border. This means that while 

sysAC and sysVC try to maintain AvailableCapacity of up to 

20000 MIPS for just-in-time provisioning, sysDC efficiently 

depletes this reserve to maximise resources while at the same 

time maintaining the same level of performance and even 

better compared to the other two. This is evidently seen in the 

following deployment rate, SLA, and cost metrics analyses. 

 

 
Figure 10: Server deployment rate analysis for scenario 1. 

 

Figure 10 shows the rate at which the three AMs deploy 

servers as requests arrive. With the same request rate, the 

AMs deployed servers differently. While sysAC deployed the 

most servers, sysDC deployed the least servers. This explains 

why sysAC easily runs out of servers followed by sysVC while 

sysDC still retains a couple of unused servers (Table III). 

Interestingly, this does not negatively affect the performance 

of sysDC and when sysDC underperforms in one aspect there 

is usually compensation (say tradeoff) in another aspect. The 

lower server deployment rate of sysDC resulted in lower SLA 

value of sysDC (when compared to sysAC and sysVC –Figure 

11) but this only keeps the value very close to the optimum 

value of 1, which also indicates high efficiency. 

Figure 11 depicts the service levels of the three AMs 

with the zoomed-in inset revealing the gaps between their 

performances. As expected, following from the result trend 

above, sysAC and sysVC performed quite similarly with each 

outperforming the other in some places. sysDC on the other 

hand, keeps SLA as close as possible to the target goal of 1 (a 

perfect system would keep SLA at 1). sysDC has the ability to 

dynamically scale down unnecessary and inefficient 

provisioning by proactively throttling oscillation. This 

capability also leads to cost savings as shown in Figure 12. 

 

 
Figure 11: Service level achievement (SLA) analysis for scenario 1. 

 

 
Figure 12: Delay cost analysis for Scenario 1. 
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the provisioning queue is much higher than the rate they leave 

the queue. This results in an increasing number of redundant 
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12). Also, the number of redundant servers for sysDC is 

doubled by that of sysAC and sysVC. 
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The results analyses of Scenario 1 indicate that the 

proposed TAArch (represented by sysDC) has significant 

performance improvement over existing architectures. This 

assertion is further tested in the following scenarios. 

 

Scenario 2: Basic simulation with uniform request rate 

and varying application sizes 

 

Table IV is a collection of the major parameters used in 

this scenario.  

 
Table IV: Scenario 2 simulation parameters 

Parameter Value 

# of servers 300 

# of applications 2 

 

App capacity (MIPS) 

App1 30000 

App2 5000 

Request rate 1 req/sec 

Server capacity (MIPS) 40000 

 
Internal 

variables 

RetrieveRate 5x 

RequestRateParam 10 

RetrieveRequestParam 0.2 

ServerProvisioningTime 3 (1.5 sec) 

Managers  (sysAC, sysVC & sysDC) PeM 

DZConst 1.5 

 

In this scenario, there are 300 servers of 40000 capacity 

each to be shared amongst two applications (App1 and App2). 

This means there is a total of initial 12000000 MIPS to share 

between requests for App1 with 30000 MIPS and App2 with 

5000 MIPS. The capacity gap between the two applications is 

so wide that it may naturally lead to contention with App1 

demanding more resources than App2. In this kind of 

situation where it is easy to underserve one application 

because of the contention, it is left for the datacentre 

autonomic managers to decide how best to efficiently allocate 

resources. Results show that while sysAC maintained a 

proportionate resource allocation (in terms of applications) for 

the two applications, sysVC and sysDC prioritised 

provisioning for App1 with much higher MIPS request. One 

disadvantage of proportionate provisioning is that it treats 

requests according to applications (in this case two 

applications) and not according to capacity (in this case 30000 

versus 5000). When this happens, the high capacity 

application (App1) will be heavily under-provisioned while 

the low capacity application (App2) will be adequately 

provisioned (and sometimes over-provisioned) compared to 

the level of provisioning for App1 as shown in Figure 14 (a) 

for sysAC Offset analysis. Also this amounts to inefficiency 

and explains why sysAC easily exhausts its resources as 

shown in Table V. Table V shows the results of requests 

distribution amongst the three managers. 

The ‘dropped/queued request’ analysis shows that in 

prioritising App1, sysVC and sysDC dropped more of App2 

requests while sysAC, which does not drop any application, 

struggled to cope with the capacity imbalance. For a clearer 

picture Figure 13 shows how sysVC and sysDC prioritised 

App1 over App2. 

 

Table V: High level performance analysis of managers over ten 

simulation runs of Scenario 2 
  

Sim. 

unused server serviced request deployed server 

AC VC DC AC VC DC AC VC DC 

1 0 118 127 423 242 231 399 227 207 

2 0 113 125 465 263 251 422 233 213 

3 0 132 145 450 234 225 418 211 191 

4 0 120 113 447 248 254 411 211 223 

5 0 124 122 440 246 243 405 218 218 

6 0 100 120 451 259 250 413 237 221 

7 0 108 127 470 265 253 420 239 208 

8 0 96 114 434 262 258 404 236 228 

9 0 102 116 458 261 257 413 241 222 

10 0 107 112 428 250 249 394 225 219 

avg 0 112 122.1 446.6 253 247.1 409.9 227.8 215 

 

As can be seen in Figure 13, there is a consistent trend of 

high rate of dropped App2 requests. This means that more 

resources were allocated to App1 and thereby starving App2. 

As this continued, it led to more App2 being dropped as there 

were limited resources per time to service App2 requests. 

Also noticeable is the smoothness of provisioning for App1 

compared to the bumpiness of provisioning for App2 –this is 

further explained in the Offset analysis that follows. 

 

 
Figure 13: Dropped/queued request analysis for Scenario 2. 
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resource availability sysAC under-provisioned for App1 far 

more than it did for App2 because of the large size of App1 

requests. There is no check in sysAC to ensure resource 

availability before requests are accepted. 

In Figure 14, App2 offset is maintained at (0 ≥ -18000 

MIPS) by sysAC, (-1666 ≥ -5000 MIPS) by sysVC and (0 ≥ -
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MIPS) for sysVC and (30000 and -30000 MIPS) for sysDC. 
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This shows that while sysAC treats requests according to 

applications (i.e., by trying to evenly provision for both 

applications), sysVC and sysDC are sensitive to the individual 

size of requests. As a result, by taking on all requests and 

attempting an even distribution of resources for both 

applications, sysAC heavily under-provisions for App1 and 

this also affected its performance for App2. sysVC and sysDC 

on the other hand, maintained more balanced resource 

allocation for both applications in terms of request capacity 

with sysDC showing higher efficiency than sysVC. Note that a 

positive Offset above the optimal provisioning mark amounts 

to over-provisioning while a negative Offset amounts to 

under-provisioning. Recall that optimal provisioning mark is 

defined by the interval (0 ≤ Offset ≤ AvgAppCapacity), 

which in this case is (0 ≤ Offset ≤ ((30000 + 5000)/2)) –that 

is, between 0 and 17500 MIPS.  

 

 
(a) sysAC Offset analysis for App1 and App2. App2 is about adequately 

provisioned (i.e., Offset ≈ 0) while App1 is heavily under-provisioned 
 

 
(b) sysVC Offset analysis for App1 and App2. App2 is about adequately 

provisioned while App1 over-provisioned (well above the optimal 
provisioning mark, which is defined by 0 ≤ Offset ≤ AvgAppCapacity) 

 

 
(c) sysDC Offset analysis for App1 and App2. App2 is about adequately 

provisioned while App1 is slightly over-provisioned (slightly above the 

optimal provisioning mark, which is defined by 0 ≤ Offset ≤ 

AvgAppCapacity) 
 

Figure 14: Individual Offset analysis for scenario 2. 

Figure 15 shows the average manager efficiency analysis 

for all three systems. On the average sysAC did not stand up 

to the complex provisioning condition of Scenario 2 as did the 

other systems. Figure 15 shows that sysAC could not 

efficiently cope with the level of resource contention 

experienced between App1 and App2. sysVC and sysDC show 

almost the same level of autonomic sophistication however, 

sysDC is shown to be more efficient. Although both systems 

have the same least under-provisioning value of -17500 

MIPS, sysVC recorded a maximum over-provisioning value of 

27500 MIPS (well above the optimal provisioning mark of 

17500) while sysDC recorded a maximum positive Offset 

value of 13500 MIPS (below the optimal provisioning mark). 

This indicates that sysDC is efficiently more sophisticated in 

handling complex resource allocation scenario that would 

ordinarily prove difficult for traditional autonomic managers 

(sysAC and sysVC) to handle. E.g., this increased efficiency 

arises from the fact that the DependabilityCheck sub-

component of sysDC enables it to go beyond dropping 

requests if there are insufficient resources to deploying 

resources only when it is necessary and efficient to do so.  
 

 

 
Figure 15: Manager efficiency analysis for scenario 2. 

 

 

The results analysis of Scenario 2 is a further 

corroboration of the assertion that the TAArch architecture 

(represented by sysDC) has significant performance 

improvement over existing architectures. There are two more 

simulation scenarios to further test this assertion. 
 

Scenario 3: Uniform application size with burst injected at 

a particular time in the   simulation 
 

In this scenario, request rate and application size are kept 
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the simulation. This is similar to Scenario 1 just that a sudden 

and unexpected disruption is injected into the system. This 

simulation will measure the robustness of the AMs in 

adhering to the goal of the system. Another important factor 

to look at is how long it takes the AMs to recover from the 

disruption caused by the burst. The impact of the burst is 

relative to the size of the burst, (which in this case is 2500 

ms). Table VI is a collection of major parameters used. 
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Table VI: Scenario 3 simulation parameters 
Parameter Value 

# of servers 300 

# of applications 4 

Request rate 1 req/sec 

Application capacity (MIPS) 20000 

Server capacity (MIPS) 40000 

 
Internal 

variables 

RetrieveRate 5x 

RequestRateParam 10 

RetrieveRequestParam 0.2 

BurstSize 2500ms 

ServerProvisioningTime 3 (1.5 sec) 

Managers  (sysAC, sysVC & sysDC) PeM 

DZConst 1.5 

  

In every simulation, there are 300 servers of 40000 

MIPS each. This means there is a total of initial 12000000 

MIPS to share between four applications (App1, App2, App3, 

and App4). Reclaimed servers are subsequently added to this 

available capacity. The managers receive requests and 

allocate resources accordingly as long as AvailableCapacity is 

not zero. The reliability of a manager will be measured by its 

ability to remain efficient under almost all perceivable 

operating circumstances. Table VII is a number-distribution 

of requests and services for ten simulation runs of Scenario 3. 

 
Table VII: High level performance analysis of managers over ten 

simulation runs of Scenario 3 
 unused server serviced request deployed server 

AC VC DC AC VC DC AC VC DC 

1 0 68 89 453 417 407 306 240 211 

2 0 55 74 564 431 418 309 253 230 

3 0 61 90 467 430 415 309 248 216 

4 0 63 86 481 439 423 307 242 220 

5 0 59 79 482 447 431 312 255 232 

6 0 57 87 462 426 412 304 246 214 

7 0 69 93 444 408 391 307 235 219 

8 0 67 94 455 420 404 302 238 209 

9 0 63 95 463 424 408 305 248 213 

10 0 58 80 453 420 410 304 247 226 

avg 0 62 86.7 472.4 426.2 411.9 306.5 245.2 219 

 

On the average, from Table VII, sysAC had initiated 

about 46.2 requests (924000 MIPS) more than sysVC and 

about 60.5 requests (1210000 MIPS) more than sysDC but has 

no extra capacity left to proceed beyond this point. However, 

sysVC and sysDC both have about 2480000 MIPS and 

3468000 MIPS extra capacity respectively. This means that, 

under normal circumstances, both systems (sysVC and sysDC) 

could conveniently provision for about additional 124 and 

173.4 requests respectively. Clearly, sysDC is seen to have 

outperformed the other systems. This is principally because 

the dead-zone logic of sysDC helps it to significantly reduce 

the number of activated decision boundaries. This means that 

decisions are not erratically taken, which leads to high 

efficiency and reliability. Figures 17 – 20 give a breakdown 

of the performances. 

Figure 16 shows how all three managers reacted to the 

disruption injected at 200s. While sysVC and sysDC were able 

to recover after about 9s each (with sysDC a bit less than 

that), it took sysAC about 90s to recover. We can also see that 

sysDC reasonably maintained provisioning within the optimal 

provisioning mark, which in this case is between 0 and 20000 

MIPS. There is also a noticeable trend that suggests an extra 

level of autonomic sophistication in sysDC which is also a 

sign of reliability. Notice that within pre disruption and post 

disruption recovery both sysAC and sysVC maintained their 

level of performances (which nonetheless is averagely about 

5000 MIPS above the optimal provisioning mark) while 

sysDC, within the same time frame, switched between two 

levels of performance as shown by the solid black line. This is 

the effect of dynamic (re)tuning of the DZWidth by sysDC. 

This capability enables sysDC to systematically track the 

system’s goal (in this case maintaining reliability and 

efficiency within the optimal provisioning mark) by 

dynamically retuning its decision boundary. As shown in 

Figure 16, before the disruption sysDC maintained a steady 

and continuous level of efficiency by keeping DZConst at 1.5 

but as soon as the disruption sets in it quickly retunes itself 

and reduced the DZConst to 1. At this point the manager 

stopped accepting further requests (as the datacentre is now 

receiving torrential streams of requests) but the initial shock 

(caused by the lag between when the disruption started and 

when the manager shuts its door) meant that a few resources 

were released to mitigate the effect of the situation. This will 

instantly start pushing up Offset until the datacentre 

normalises and then as shown sysDC retunes its decision 

boundary by returning DZConst back to 1.5. So while sysAC 

is heavily affected by a disruption of this magnitude and 

sysVC shows a remarkable level of robustness, sysDC shows a 

longer term ability to sensitively throttle its behaviour to 

efficiently and reliably track the goal of the entire system. 

 

 
Figure 16: Manager efficiency analysis for scenario 3. The black solid line 
indicates sysDC’s dynamic tuning of dead-zone boundary. The manager 

started with a DZConst of 1.5 (left lower part of the line) then changed to 

DZConst of 1 (high part) and then back to DZConst of 1.5. 

 

Figure 17 shows that while sysVC and sysDC responded 

to the disruption by rejecting requests as soon as they were 

overwhelmed thereby pushing down their server deployment 

rate, sysAC responded by deploying even more servers to 

meet the current service demand. Despite deploying more 

servers sysAC still could not meet up with demand rate, which 

ultimately affected its SLA achievement (Figure 18). This is 

because the provisioning rate, (which is dependent on 

ProvioningTime) could not keep up with the rate at which 
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servers are deployed. As a result sysAC had more servers 

(almost tripling that of sysDC) overshooting their 

ProvisioningTime thereby getting redundant and pushing up 

delay cost as well. 

 

 
Figure 17: Server deployment rate analysis for scenario 3. 

 As the datacentre settles (after the disruption) sysAC 

starts normalising the rate of server deployment but because 

there is already a huge backlog of requests (about 173000 

MIPS as in Figure 16) it takes sysAC a long time to recover. 

This also contributes to why it quickly exhausts its resources. 

sysVC and sysDC on the other hand, with a small backlog of 

about 7500 MIPS, need not deploy more resources than the 

ordinary (Figure 17) but gradually absolves the backlog 

allowing them to quickly recover. 

 

 
Figure 18: Service level achievement (SLA) analysis for scenario 3. 

High level of deployment rate (inefficient deployment of 

more MIPS than necessary) also leads to high cost (in terms 

of excess MIPS) of servicing individual requests. This means 

that the rate at which servers enter the provisioning queue is 

much higher than the rate they leave the queue. The rate for 

sysAC almost doubles that of sysVC and almost triples that of 

sysDC. This leads to increasing number of redundant servers 

in the queue, which contributes to delay cost. 

The results analysis of Scenario 3 shows that it is 

absolutely inefficient and unreliable to run a datacentre with a 

manager based on sysAC. While sysVC based AMs are more 

robust, their robustness is limited in terms of the extent of 

sensitivity to system’s goal under unfamiliar circumstances in 

which sysDC based AMs are more sophisticated and 

dynamically reliable. This further corroborates the assertion 

that the TAArch architecture (sysDC) has significant 

performance improvement over existing architectures. 

 

Scenario 4:  Varying application sizes with inconsistent 

request rate 

 

This is the most complex scenario with a combined 

effect of Scenarios 2 and 3 put together. The complexity 

presented by this scenario (i.e., a combined effect of resource 

contention and two injected disruptions) allows us to further 

test the robustness of these systems by stretching their 

capabilities to extremes. Table VIII is a collection of the 

major parameters used in this scenario. As in previous 

scenarios, results presented are based on average of ten 

different simulation runs. 

 
Table VIII: Scenario 4 simulation parameters 

Parameter Value 

# of servers 400 

# of applications 2 

 

App capacity (MIPS) 

App1 30000 

App2 15000 

Request rate (initial) 1 req/sec 

Server capacity (MIPS) 40000 

 
Internal 

variables 

RetrieveRate 5x 

RequestRateParam 10 

RetrieveRequestParam 0.2 

BurstSize 1500ms 

ServerProvisioningTime 3 (1.5 sec) 

Managers  (sysAC, sysVC & sysDC) PeM 

DZConst (initial) 1.5 

 

In every simulation of this scenario, there are 400 

servers of 40000 MIPS each to be shared amongst two 

applications (App1 and App2). This means there is a total of 

initial 16000000 MIPS to share between requests for App1 

with 30000 MIPS and App2 with 15000 MIPS. Table IX is a 

number distribution of requests and services for ten 

simulation runs of Scenario 4. 

 
Table IX: High level performance analysis of managers over ten 

simulation runs of Scenario 4 
  unused server serviced request deployed server 

AC VC DC AC VC DC AC VC DC 
1 0 109 120 474 395 394 435 339 316 
2 0 124 133 465 387 382 433 325 303 
3 0 123 125 471 400 397 443 330 314 
4 0 112 114 473 395 400 439 343 321 
5 0 114 130 476 398 402 440 335 304 
6 0 118 124 473 393 398 439 331 308 
7 0 115 117 468 393 394 437 336 320 
8 0 113 122 468 398 396 435 330 307 
9 0 113 116 476 395 401 444 342 322 

10 0 110 115 476 398 394 446 337 323 

avg 0 115 122 472 395 393 439 335 314 

 

Results reveal that sysAC is not adequately robust in 

such complex situations as in Scenario 4. The system is 

heavily inefficient in handling this type of situation (Figure 19 

(a)). Its algorithm, which maintains proportionate 

provisioning with respect to number of applications as against 
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capacity of requests, was disorientated by the level of 

contention and disruption experienced.  

As shown in Figure 19 the first burst was injected at 

100s while the second was injected at 250s. sysAC is limited 

in its ability to handle complex situations and so cannot be 

relied upon to operate large scale and complex datacentres. 

sysVC and sysDC both have a wide range of operability in 

complex situations. However, a closer look at sysVC and 

sysDC in this scenario reveals a unique change in expected (as 

observed in previous results) trend. The highlighted bits of 

Table IX show that sysDC dropped fewer requests than sysVC 

and thereby initiating more requests. Under normal 

circumstances, as observed in previous scenarios, sysVC 

usually would drop fewer requests than sysDC. In this 

situation the level of disturbance (as a result of resource 

contention and erratic request disorder) in the datacentre led 

to instability in sysVC, which caused it to over react by 

inefficiently dropping requests. This instability reveals a 

weakness in design because in real-life datacentres such 

disturbances (like sudden request spikes) do occur and 

managers are expected to adequately stabilise the entire 

system under such circumstances. sysDC on the other hand, 

with the capability of a longer term view of the entire system, 

was able to take on more requests. 

 

 
(a) Manager efficiency analysis of all three systems 

 
(b) Manager efficiency analysis for sysVC and sysDC. 

Figure 19: Manager efficiency analysis for Scenario 4. Bursts affect 

all managers at 100s and 250s time frames 

 

However, this achievement is with associated tradeoff in 

delay cost (Figure 20). This shows that sysDC is more 

sensitive to the relationship between requested MIPS and 

available MIPS. For example, in a situation where sysVC 

dropped a number of requests following a fixed decision 

boundary (when there is lack of immediate available 

resources to handle incoming requests), sysDC used a 

dynamic decision boundary to accommodate more requests 

allowing it to efficiently use up its available resources. By 

taking on more requests, sysDC trades off delay cost, which is 

not so much of importance but at the same time improves 

scheduling efficiency, which is of more importance. 

Interestingly, the efficiency level is not affected –Figure 19 

(b) shows that there is no significant difference in efficiency 

performance of both sysVC and sysDC. So what we have is a 

situation where, on the average, sysDC utilised significantly 

fewer resources (313.8 : 334.8 servers) to serve slightly 

higher amount of requests (395.8 : 395.2 requests) as sysVC 

(Table IX) resulting in improved efficiency (Figure 19 (b)) for 

sysDC and approximately same level of SLA (Figure 21) and 

delay cost (Figure 20) achievement for both sysVC and 

sysDC. 

 

 
Figure 20: Cost analysis for Scenario 4. 

 

There is consistent corroboration of the fact that sysAC 

is limited in the range of its operational scope when it comes 

to complex situations. Scenario 4 results show that it is highly 

expensive, inefficient and unreliable to operate complex 

datacentres with autonomic managers based on sysAC. 

However, sysAC based managers may suffice for simple and 

basic datacentres. On the other hand, sysDC has shown 

consistent reliability in all tested scenarios. The level of 

robustness exhibited in this scenario by sysDC is a clear 

indication that it is not a hard-wired one-directional self-

managing system. For example, in this scenario we have seen 

that sysDC does not only act when sysVC is taking more 

actions than necessary but also when it is taking fewer actions 

than necessary. So it can be said that sysDC is capable of 

reducing inefficient adaptation (e.g., when sysVC’s decisions 

are erratic) as well as increasing adaptation when it is 

necessary and efficient to (e.g., when sysVC is not making 

decisions frequently enough). This capability of increased 

adaptation is shown in Table IX and illustrated in Figures 20 
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to 22 –sysDC is able to maximise resources while achieving 

the same level of performance as sysVC. 

 

 
Figure 21: Service level achievement (SLA) analysis for scenario 4. 

 

From the results of the four experimental scenarios 

presented above we can conclude that sysAC has a narrow 

envelope of operational conditions in which it is both self-

managing and returns satisfactory behaviour. On the other 

hand, sysVC tends towards a wider operational envelope with 

increased efficiency and satisfactory behaviour, but once the 

limits of that envelope are reached the efficiency and 

reliability of the system drops. In moderate operational 

complexities sysVC performs adequately efficient but 

fluctuates rapidly and may need human input to override 

some decisions that lead to instability in the case of highly 

erratic and complex situation, which for example sysDC can 

deal with autonomically. Results have shown that sysDC is 

sufficiently sophisticated to operate efficiently and yield 

satisfactory results under almost all perceivable operating 

circumstances. So we can now confidently conclude that the 

proposed trustworthy autonomic architecture (represented by 

sysDC) has significant performance improvement over 

existing architectures and can be relied upon to operate (or 

manage) almost all level of datacentre scale and complexity. 

Generally, the combination of DC and VC (VC + DC) 

leads to significant performance improvement over VC. 

However, the extent of this improvement is application and 

context dependent. Results show that there are circumstances 

in which performance improvement is evident from VC + DC 

as well as circumstances in which improvement is not evident. 

Complex applications with the possibility of unexpected 

behaviour patterns, e.g., large scale datacentres with complex 

algorithms, will usually experience improvement with VC + 

DC. Also, applications that are sensitive to fluctuating 

environmental inputs (i.e., depend on volatile environmental 

information for decision-making), for example, auto stock 

trading systems are expected to see greater benefit from VC + 

DC. On the other hand, there are applications that are not 

expected to see any benefit.  Example includes small scale 

datacentres with predefined request rate and request capacity. 

V. CONCLUSION  

This paper has presented a new trustworthy autonomic 

architecture (TAArch). Different from the traditional 

autonomic solutions, TAArch consists of inbuilt mechanisms 

and instrumentation to support run-time self-validation and 

trustworthiness. The architecture guarantees self-monitoring 

over short time and longer time frames. At the core of the 

architecture are three components, the AutonomicController, 

ValidationCheck and DependabilityCheck, which allow 

developers to specify controls and processes to improve 

system trustability. We have presented a case example 

scenario to demonstrate the workings of the proposed 

approach. The empirical analysis case example scenario is an 

implementation of a datacentre resource request and 

allocation management designed to analyse the performance 

of the proposed TAArch architecture over existing autonomic 

architectures. Results show that TAArch is sufficiently 

sophisticated to operate efficiently and yield satisfactory 

results under almost all perceivable operating circumstances. 

Analyses also show that the proposed architecture achieves 

over 42% performance improvement (in terms of reliability) 

in a complex operating circumstance. It is also safe to 

conclude that the proposed trustworthy autonomic 

architecture has significant performance improvement over 

existing architectures and can be relied upon to operate (or 

manage) almost all level of datacentre scale and complexity. 

The importance of trustworthiness in computing, in 

general, has been echoed in the Computing Research 

Association’s ‘four grand challenges in trustworthy 

computing’ [31] and Microsoft’s white paper on Trustworthy 

Computing (TC) [32]. The Committee on Information 

Systems Trustworthiness in [33] defines a trustworthy system 

as one which does what people expect it to do – and nothing 

more – despite any form of disruption. Although this 

definition has been the driving force for achieving 

trustworthiness both in autonomic and non-autonomic 

systems, the peculiarity of context dynamism in autonomic 

computing places unique and different challenges on 

trustworthiness for autonomic systems. Validation for 

example, which is an essential requirement for 

trustworthiness, can be design-time based for non-autonomic 

systems but must be run-time based for autonomic systems. 

Despite the different challenges, it is generally accepted that 

trustworthiness is a non-negotiable priority for computing 

systems. For autonomic systems, the primary concern is not 

how a system operates to achieve a result but how dependable 

is that result from the user’s perspective. For complete 

reliance on autonomic computing systems, the human user 

will need a level of trust and confidence that these systems 

will satisfy specified requirements and will not fail. It is not 

sufficient that systems are performing within requirement 

boundaries, outputs must also be seen to be reliable and 

dependable. This is necessary for self-managing systems in 

order to mitigate the threat of losing control and confidence 

[34]. We posit that such capabilities need to be built in as 

integral part of the autonomic architecture and not treated as 

add-ons. 
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The traditional MAPE-based autonomic architecture as 

originally presented in [2] has been widely accepted and 

autonomic research efforts are predominantly based on this 

architecture’s control loop. We must admit that a good 

research success has been achieved using the MAPE-based 

architecture. However, we suppose, like others, e.g., [7][10], 

that this architecture is vague and thus cannot lead to the full 

goal of autonomic computing. For example, the MAPE-based 

architecture does not explicitly and integrally support run-

time self-validation, which is a prerequisite for 

trustworthiness.  
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APPENDIX A: TAArch Application 
 

The simulations of this paper are performed using the TAArch 

Application. To understand the workings of the application let us 

consider Figure A, which is a screen shot of a basic resource 

allocation simulation with 75 servers (x) and 4 applications (ix). The 

user selects the number of servers and applications and this will 

populate the Si and Aj pools respectively (labels x and ix). The 

application supports two experiments (‘Normal Simulation’ and 

‘Interoperability’, which is not covered here) as shown (iii) and in 

this case the ‘Normal Simulation’ option is selected, which will 

automatically check the PeM autonomic manager option (vi). Then 

the actual manager is selected, which in this case is the 

[AC+VC+DC] option representing all three managers. As shown 

(vii) the DZWidth can be manually controlled by the user or 

dynamically tuned by the system depending on which option is 

selected. Before the simulation starts it is possible to set the internal 

variables through (xiv) to user preferences. The possibility of 

changing the internal variables is deactivated (as shown by xiv) as 

soon as the simulation starts. Change of server capacity is also 

deactivated (i) as soon as simulation starts. Meanwhile, application 

size (i), which is an external variable, can be changed at any time in 

the simulation. Once all parameters are set the simulation can be 

started by clicking ‘Run Simulation’. For the purpose of this 

example the shutdown server pool Ši is not used (xi) –it is only used 

for the ‘Interoperability’ simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once the simulation starts, the manager starts populating the Ṳ 

pool (xiii). The view of this pool shows current and live updates of 

process status. ‘Available capacity’ shows running capacity available 

to serve individual application request while ‘Run’g requests’ are the 

total running individual request capacity. ‘Offset’ is the difference 

between running request capacity and available capacity. 

‘Server_ID’ shows the collection of servers currently providing 

services for individual application request. Depending on the number 

of servers in use, some of the allocated servers may no longer be 

visible in the Ṳ pool but can be viewed from the respective 

individual pool (xii). The provisioning servers, that is, servers that 

are been configured in the queue can be viewed through (ii). 

Individual results for the managers are displayed in (iv) and (v). Also 

as stated, data displayed below (viii) and in (ii) are for AC (sysAC). 

Although there is provision for live graphing of results through the 

‘Show Graph’ button, complete result values can be exported to 

Excel Sheet through the ‘Export Results’ button (vii). 
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Figure A: Simulation screen shot showing TAArch application front end. 


