
279

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Trustworthy Autonomic Architecture (TAArch): Implementation and Empirical Investigation

Thaddeus Eze and Richard Anthony

Autonomic Computing Research Group

School of Computing & Mathematical Sciences (CMS)

University of Greenwich, London, United Kingdom

{T.O.Eze and R.J.Anthony}@gre.ac.uk

Abstract — This paper presents a new architecture for

trustworthy autonomic systems. This trustworthy autonomic

architecture is different from the traditional autonomic

computing architecture and includes mechanisms and

instrumentation to explicitly support run-time self-validation

and trustworthiness. The state of practice does not lend itself

robustly enough to support trustworthiness and system

dependability. For example, despite validating system’s decisions

within a logical boundary set for the system, there’s the

possibility of overall erratic behaviour or inconsistency in the

system emerging for example, at a different logical level or on a

different time scale. So a more thorough and holistic approach,

with a higher level of check, is required to convincingly address

the dependability and trustworthy concerns. Validation alone

does not always guarantee trustworthiness as each individual

decision could be correct (validated) but overall system may not

be consistent and thus not dependable. A robust approach

requires that validation and trustworthiness are designed in and

integral at the architectural level, and not treated as add-ons as

they cannot be reliably retro-fitted to systems. This paper

analyses the current state of practice in autonomic architecture,

presents a different architectural approach for trustworthy

autonomic systems, and uses a datacentre scenario as the basis

for empirical analysis of behaviour and performance. Results

show that the proposed trustworthy autonomic architecture has

significant performance improvement over existing architectures

and can be relied upon to operate (or manage) almost all level of

datacentre scale and complexity.

Keywords - trustworthy architecture; trustability; validation;

datacentre; autonomic system; dependability; stability; autonomic

architecture

I. INTRODUCTION

A robust autonomic architecture is a vital key to

achieving dependable (or trustworthy) autonomic systems.

We have made initial progress [1] in this direction to address

the issue of autonomic trustworthiness through adequate run-

time conformance testing as integral part of a trustworthy

autonomic architecture (different from the traditional

autonomic architecture). This work is an extension of the

initial progress and the implementation (with empirical

analysis) of the new trustworthy architecture. The traditional

autonomic architecture as originally presented in the

autonomic computing blueprint [2] has been widely accepted

and deployed across an ever-widening spectrum of autonomic

system (AS) design and implementations. Research results in

the autonomic research community are based, predominantly,

on the architecture’s basic MAPE (monitor-analyse-plan-

execute) control loop, e.g., [3][4]. Several implementation

variations of this control loop, for example [5][6], have been

promoted. While [5] breaks the MAPE components into two

main groups with the Monitor/Analyze group handling

reactive tasks and the Plan/Execute group responsible for

proactive adaptation, [6] adopts a slightly different approach.

In [6], the MAPE architecture is divided into global and local

sub-architectures, which implement Analyze/Planning and

Monitor/Execute components, respectively. Alternative

approaches, e.g., the intelligent machine design (IMD) based

approach [7] have also been proposed. However, research [8]

shows that most approaches are MAPE [9] based. Despite

progress made, the traditional autonomic architecture and its

variations is not sophisticated enough to produce trustworthy

ASs. A new approach with inbuilt mechanisms and

instrumentation to support trustworthiness is required.

At the core of system trustworthiness is validation and

this has to satisfy run-time requirements. In large systems

with very wide behavioural space and many dimensions of

freedom, it is close to impossible to comprehensively predict

possible outcomes at design time. So it becomes highly

complex to make sure or determine whether the autonomic

manager’s (AM’s) decision(s) are in the overall interest and

good of the system. There is a vital need, then, to dynamically

validate the run-time decisions of the AM to avoid the system

‘shooting itself in the foot’ through control brevity, i.e., either

too loose or too tight control leading to unresponsive or

unstable system respectively. The traditional autonomic

architecture does not explicitly and integrally support run-

time self-validation; a common practice is to treat validation

and other needed capabilities as add-ons. Identifying such

challenges, the traditional architecture has been extended

(e.g., in [10]) to accommodate validation by integrating a self-

test activity into the autonomic architecture. But the question

is whether validation alone can guarantee trustworthiness.

The need for trustworthiness in the face of the peculiar

nature of ASs, (e.g., context dynamism) comes with unique

and complex challenges validation alone cannot sufficiently

address. Take for instance; if a manager (AM) erratically

changes its decision, it ends up introducing noise to the

system rather than smoothly steering the system. In that

instance, a typical validation check will pass each correct

decision (following a particular logic or rule) but this could

lead to oscillation in the system resulting in instability and

inconsistent output, which could emerge at a different logical

level or time scale. A typical example could be an AM that

follows a set of rules to decide when to move a server to or

280

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

from a pool of servers; as long as the conditions of the rules

are met, the AM will move servers around not minding the

frequency of changes in the conditions. An erratic change of

decision (high rate of moving servers around) will cause

undesirable oscillations that ultimately detriment the system.

What is required is a kind of intelligence that enables the

manager to smartly carry out a change only when it is safe

and efficient to do so – within a particular (defined) safety

margin. A higher level of self-monitoring to achieve, for

example, stability over longer time frames, is absent in the

MAPE-orientated architectures. This is why autonomic

systems need a different approach. The ultimate goal of the

new approach is not just to achieve self-management but also

to achieve consistency and reliability of results through self-

management. These are the core values of the proposed

architecture in this paper.

We look at the background of work towards AS

trustworthy architecture in Section II. We present a new

trustworthy autonomic architecture in Section III and present

a datacentre-based implementation and empirical analysis of

the new architecture in Section IV. Section V concludes the

work.

II. BACKGROUND

The idea espoused in this work is that trustworthiness

(and any other desired autonomic capability) should be

conceived at design stage. This means that the autonomic

architecture should be flexible (and yet robust) enough to

provide instrumentations that allow designers to specify

processes to achieve desired goals. It then follows that we

need to rethink the autonomic architecture. In this section, we

look at the current state of practice and efforts directed

towards AS trustworthiness. We analyse few proposed

trustworthy architectures and some isolated bits of work that

could contribute to trustworthy autonomic computing.

Trustworthiness requires a holistic approach, i.e., a long-term

focus as against the near-term needs that merely address

methods for building trust into existing systems. This means

that trustworthiness needs to be designed into systems as

integral properties.

Chan et al. [11] asks the critical question of “How can

we trust an autonomic system to make the best decision?” and

proposes a ‘trust’ architecture to win the trust of autonomic

system users. The proposal is to introduce trust into the

system by assigning an “instantaneous trust index” (ITI) to

each execution of a system’s AM –where ITI could be

computed, for example, by examining what fraction of AM

suggested actions the user accepts unchanged, or by

examining how extensive the changes that the user makes to

the suggested actions are. The overall trust index, which

reflects the system administration’s level of trust in the AM,

is computed as the function f(ITIi) where i = 1, 2, 3, … and

ITIi are the individual ITIs for each AM execution. This is

similar to the proposal in this work in the sense that it

considers trust as architecture-based and also defines trust in

the language of the user. However, this method will be overly

complex (and may be out of control) in large systems with

multiple AMs if the user is required to moderate every single

AM suggested action. In such systems some of the AM’s

decisions are not transparent to the human user. Another

effort that supports the idea that dependability should be

conceived at design time and not retro-fitted to systems is the

work in [12]. Hall and Rapanotti [12] propose an Assurance-

Driven Design and posit that engineering design should

include the detailing of a design for a solution that guarantees

satisfaction of set requirements and the construction of

arguments to assure users that the solution will provide the

needed functionality and qualities. The key point here is that

trustworthiness is all about securing the confidence of the user

(that the system will do what it says) and the way to achieve

this is by getting the design (architecture) right. This is the

thrust of this work.

Shuaib et al. [7] propose a framework that will allow for

proper certification of A-C systems. Central to this framework

is an alternative autonomic architecture based on Intelligent

Machine Design (IMD), which draws from the human

autonomic nervous system.

Kikuchi et al. [13] proposes a policy verification and

validation framework that is based on model checking to

verify the validity of administrator’s specified policies in a

policy-based system. Because a known performing policy

may lead to erroneous behaviour if the system (in any aspect)

is changed slightly, the framework is based on checking the

consistency of the policy and the system’s defined model or

characteristics. This is another important aspect of the

proposed solution in this work –validation is done with

reference to the system’s defined goal.

A trustworthy autonomic grid computing architecture is

presented in [14]. This is to be enabled through a proposed

fifth self-* functionality, self-regulating: Self-regulating

capability is able to derive policies from high-level policies

and requirements at run-time to regulate self-managing

behaviours. One concern here is that proposing a fifth

autonomic functionality to regulate the self-CHOP

functionalities as a solution to AS trustworthiness assumes

that trustworthiness can be achieved when all four

functionalities perform ‘optimally’. This assumption is not

entirely correct. The self-CHOP functionalities alone do not

ensure trustworthiness in ASs. Take for example; the self-

CHOP functionalities do not address validation, which is a

key factor in AS trustworthiness. The self-CHOP (or

sometimes referred to as self-*) stands for self-Configuring,

self-Healing, self-Optimising, and self-Protecting. These are

the characteristics or functional areas that define the

capabilities of autonomic systems and will be referred to as

autonomic functionalities in this paper.

Another idea is that trustworthiness is achieved when a

system is able to provide accounts of its behaviour to the

extent that the user can understand and trust. But these

accounts must, amongst other things, satisfy three

requirements: provide a representation of the policy guiding

the accounting, some mechanism for validation and

accounting for system’s behaviour in response to user

demands [15]. The system’s actions are transparent to the user

281

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and also allow the user (if required) the privilege of

authorising or not authorising a particular process. This is a

positive step (at least it provides the user a level of confidence

and trust) but also important is a mechanism that ensures that

any ‘authorised’ process does not lead to unreliable or

misleading results. This is one aspect not considered by many

research efforts. There are possibilities of erratic behaviour

(which is not healthy to the system) despite the AM’s

decisions being approved. One powerful way of addressing

this challenge is by implementing a dead-zone (DZ) logic

originally presented in [16]. A DZ, which is a simple

mechanism to prevent unnecessary, inefficient and ineffective

control brevity when the system is sufficiently close to its

target value, is implemented in [16] using Tolerance-Range-

Check (TRC) object. The TRC object encapsulates DZ logic

and a three-way decision fork that flags which action (left,

null or right) to take depending on the rules specified. The

size of the DZ can be dynamically adjusted to suit changes in

environmental volatility. A key use of this technique is to

reduce oscillation and ensure stability in the face of high rate

of adaptability despite process correctness. A mechanism to

automatically monitor the stability of an autonomic

component, in terms of the rate the component changes its

decision (for example when close to a threshold tipping

point), was presented in [17]. The DecisionChangeInterval

property is implemented in the AGILE policy language [17]

on decision making objects such as rules and utility functions.

This allows the system to monitor itself and take action if it

detects instability at a higher level than the actual decision

making activity. This technique is used in the proposed

solution herein.

Heo and Abdelzaher [18] present ‘AdaptGuard’, a

software designed to guard adaptive systems from instability

resulting from system disruptions. The software is able to

infer and detect instability and then intervenes (to restore the

system) without actually understanding the root cause of the

problem –root-cause-agnostic recovery. Instability is another

aspect addressed in the solution proposed in our work.

Because AM control brevity could lead to instability despite

process correctness, it is important to also consider this

scenario. Hawthorne et al. [19] demonstrates Teleo-Reactive

(T-R) programming approach to autonomic software systems

and shows how T-R technique can be used to detect validation

issues at design time and thus reducing the cost of validation

issues.

Validation is central to achieving trustworthy

autonomics and this has to meet run-time requirements. A

generic self-test approach is presented in [10]. The authours

of [10] extended the MAPE control loop to include a new

function called Test (Figure 1). By this they define a new

control loop comprising Monitor, Analyse, Decision, Test and

Execute –MADTE activities. The MADTE loop works like

the MAPE loop only that the Decision activity calls the Test

activity to validate a chosen action should it determine to

adapt a suggested behaviour. The Test activity carries out a

test on the action and returns its result to the Decision activity,

which then decides whether to implement, skip or choose

another action. (An adaptation is favoured if Test indicates

that it will lead to component’s better performance in terms of

characteristics such as optimisation, robustness or security.)

The process is repeated if the latter is the case. When an

action is decided on, the decision activity passes it to the

Execute activity for implementation. This is vital to run-time

self-validation and is consistent with our proposed solution in

this work in terms of designing validation into the system’s

architecture. A feedback-based validation, which relies on a

kind of secondary (mostly external) expertise feedback to

validate the output of a system is presented in [20]. This is

reactionary and has no contribution to the result of the system

in the first place. Though this may suffice for some specific

system’s needs, what is generally required for AS validation

is run-time validation of decisions (or processes) that lead to

system outputs.

It should be noted that AS trustworthiness goes beyond

secure computing. It is result orientated; not focusing on how

a goal is achieved but the dependability of the output

achieved. All systems, no matter how simple or complex, are

designed to meet a need, but not all systems have security

concerns. So trustworthiness is not all about security and

validation. On the other hand, it is not about showing that a

system or process works but also making sure that it does

exactly what it is meant to do. This aspect is addressed in the

proposed trustworthy autonomic architecture by a component

that carries out a longer term assessment of the system’s

actions. These are the evolving challenges and where work

must be concentrated if we are to achieve certifiable

autonomic systems.

A. Autonomic architecture life-cycle

We argue that trustworthiness cannot be reliably

retrofitted into systems but must be designed into system

architectures. We track autonomic architecture (leading to

trustworthiness) pictorially in a number of progressive stages

addressing it in an increasing level of detail and

sophistication. Figure 2 provides a key to the symbols used.

Figure 1: Control loop with a test function [10]

Test

Monitor

Execute

Decision

Analyze

282

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3 illustrates the progression, in sophistication, of

autonomic architectures and how close they have come to

achieving trustworthiness. Although this may not be

exhaustive as several variations and hybrids of the

combinations may exist, it represents a series of discrete

progressions in current approaches.

Two distinct levels of sophistication are identified: The

first level represents the traditional autonomic architecture

(Figure 3 (i) and (ii)) basically concerned with direct self-

management of controlled/monitored system following some

basic sense-manage-actuate logic defined in AC. For the

prevailing context, AC is just a container of autonomic

control logic, which could be based on MAPE or any other

autonomic control logic. The original autonomic architecture

proposed with the introduction of autonomic computing [2]

falls within this level. This achieves basic self-management

capability and has since been adapted by several researchers

to offer more smartness and sophistication. To add a degree of

trust and safeguard, an external interface for user control input

is introduced in (ii). This chronicles such approaches that

provide a console for external administrative interactions

(e.g., real-time monitoring, tweaking, feedback,

knowledgebase source, trust input, etc.) with the autonomic

process. An example of level (ii) is work in [15], where the

system’s actions are transparent to the user and the user can

moderate the behaviour of the system by allowing or

disallowing system decided actions. The system has a console

that offers the user the privilege of authorising or not

authorising a particular process. Another example in this

category is unmanned vehicles (UVs). In UVs there are

provisions for activating auto piloting and manual piloting.

The user can decide when to activate either or run a hybrid.

The second level (Figure 3 (iii) and (iv)) represents

efforts towards addressing run-time validation.

Instrumentations to enable systems check the conformity of

management decisions are added. This includes such

approaches that are capable of run-time self-validation of

autonomic management decisions. The validation check is

done by the VC component and the check results in either a

pass (in which case the validated decision is actuated) or a

fail. Where the check fails VC sends feedback to AC with

notification of failure (e.g., policy violation) and new decision

is generated. An additional layer of sophistication is

introduced in Figure 3 (iv) with external touch-point for

higher level of manageability control. This can be in the form

of an outer control loop monitoring over a longer time frame

an inner (shorter time frame) control loop. The work in [10]

(explained in Section II), which is an extension of MAPE

control to include a ‘Test’ activity corresponds to level (iii) of

Figure 3. The Test activity tests every suggested action

(decision) by the plan activity. If the test fails the action is

dropped and a new one is decided again. The work in [21]

corresponds to level (iv) of Figure 3. The work in [10] is

extended in [21] to include auxiliary test services components

that facilitate manual test management and a detailed

description of interactions between test managers and other

components. Here test managers implement closed control

loops on autonomic managers (such as autonomic managers

implement on managed resources) to validate change requests

generated by the autonomic managers.

At the level of current sophistication (state-of-the-art),

there are techniques to provide run-time validation check (for

behavioural and structural conformity), additional console for

higher level (external) control, etc. Emerging and needed

capabilities include techniques for managing oscillatory

behaviour in autonomic systems. These are mainly

implemented in isolation. What is required is a holistic

framework that collates all these capabilities into a single

autonomic unit. Policy autonomics is one of the most used

autonomic solutions. Autonomic managers (AMs) follow

rules to decide on actions. As long as policies are validated

against set rules the AM adapts its behaviour accordingly.

This may mean changing between states. And when the

change becomes rapid (despite meeting validation

requirements) it is capable of introducing oscillation,

vibration and erratic behaviour (all in form of noise) into the

system. This is more noticeable in highly sensitive systems.

So a trustworthy autonomic architecture needs to provide a

way of addressing these issues. Level (v) of Figure 3 falls

within the next level of sophistication required to address the

ValidationCheck

S

AC VC

V

C

DC

Sensor (source of ambient/context information)

Direct control

AutonomicController

Actuator (executing autonomic decisions)

Console for external injection / control / arbiter

Feedback

DependabilityCheck

A

 Figure 2: Pictographic key used for the architecture life-cycle.

S A AC

S A AC

VC S A

VC S A AC

(i)

(iv)

(iii)

(ii)

S AC (v) D

C

DC A VC

Figure 3: Pictorial representation of autonomic architecture life-cycles.

AC

283

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

identified issues and ensure dependability. This is at the core

of the proposed solution presented in next the Section.

III. TRUSTWORTHY AUTONOMIC ARCHITECTURE

This section presents the new trustworthy autonomic

architecture (TAArch). First, a general view of the

architecture is presented and then followed by detailed

explanation of its components. Figure 4 explains a

trustworthy autonomic framework with three major

components that embody self-management, self-validation

and dependability. The architecture builds on the traditional

autonomic architecture (denoted as the AutonomicController

(AC) component). Other components include

ValidationCheck (VC –which is integrated with the decision-

making object of the controller to validate all

AutonomicController decisions) and DependabilityCheck

(DC) component, which guarantees stability and reliability

after validation. The DC component works at a different time

scale, thus overseas the finer-grained sequence of decisions

made by the AC and VC.

The AC component (based on, e.g., MAPE logic, IMD

framework, etc.) monitors the managed sub-system for

context information and takes decision for action based on

this information. The decided action is validated against the

system’s goal (described as policies) by the VC component

before execution. If validation fails, (e.g., policy violation) it

reports back to the AC otherwise the DC is called to ensure

that outcome does not lead to, for example, instability in the

system.

The DependabilityCheck component comprises of other

sub-components, which makes it possible to be adapted to

address different challenges. This feature makes the

architecture generic and suitable to address even evolving

autonomic capability requirements. For instance, in [22], the

architecture is adapted to address interoperability challenges

in complex interactions between AMs in multi-manager

scenarios. Predictive component is one example of the

DependabilityCheck sub-components that allows it to predict

the outcome of the system based on the validated decision.

The DependabilityCheck either prevents execution and sends

feedback in form of some calibration parameters to the

AutonomicController or calls the actuator to execute the

validated decision.

A. Overview of the TAArch architecture components

This section presents the TAArch architecture in a

number of progressive stages addressing it in an increasing

level of detail. First, the self-management process is defined

as a Sense–Manage–Actuate loop where Sense and Actuate

define Touchpoints (the autonomic manager’s interface with a

managed system) and Manage is the embodiment of the

actual autonomic self-management. Figure 5 is a detailed

representation of the architectural framework.

Traditionally, the AutonomicController (AC) senses

context information, decides (following some rules) on what

action to take and then executes the action. This is the basic

routine of any AM and is at the core of most of the autonomic

architectures in use today (Figure 3). At this level the

autonomic unit matters but the content of the unit does not

matter much, i.e., it does not matter what autonomic control

logic (e.g., MAPE, IMD, etc.) that is employed so long as it

provides the desired autonomic functionalities. This means

that the AC component can be configured according to any

autonomic control logic of choice making the framework

generic as it is not tied to any one control logic. Basically, the

AC component introduces some smartness into the system by

intelligently controlling the decision-making of the system.

Once an action is decided, following detailed analysis of

context information, the decision is passed on for execution.

This is at the level of sophistication defined by the autonomic

architecture life-cycle level 1 (Figure 3 (i) and (ii)). So, the

AC component of the TAArch framework provides designers

the platform to express rules that govern target goal and

policies that drive decisions on context information for system

adaptation to achieve the target goal.

But, the nature of ASs raises one significant concern;

input variables (context info) are dynamic and (most times)

not predictable. Although rules and policies are carefully and

robustly constructed, sensors (data sources) sometimes do

inject rogue variables that are capable of thwarting process

Figure 4: Trustworthy autonomic architecture

DependabilityCheck (DC) A
u

to
n
o

m
ic

S

y
st

em

ValidationCheck (VC)

AutonomicController (AC)

MS

VC

DC

AC

(b)
(a)

Managed System (MS)

i

ii

iii

iv

v

-the loop i→ii→iv

represents a shorter time

frame within which AC and

VC operate while the loop

i→ii→iii→v represents a

longer time frame within

which DC operates.

fa
il

fa
il

pass

pa
ss

Sensor

 Actuator

recalibration feedback

control feedback

AC VC DC

short term adaptation

longer term adaptation

Figure 5: Detailed structure of the TAArch framework.

284

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and policy deliberations. In addition, the operating

environment itself can have varying volatility –causing a

controller to become unstable in some circumstances. Thus, a

mechanism is needed to mitigate behavioural (e.g.,

contradiction between two policies, goal distortion, etc.) and

structural (e.g., illegal structure not conforming to

requirement, division by zero, etc.) anomalies. This is where

the ValidationCheck (VC) component comes in. It should be

noted that AC will always decide on action(s) no matter what

the input variable is. Once the AC reaches a decision, it

passes control to the VC, which then validates the decision

and passes it on for execution. If the check fails, VC sends

control feedback (CF) to AC while retaining previous passed

decision. A control feedback is more of an inhibition

command that controls what actions are and are not allowed

by the manager. This can be configured according to

deployment requirements. In a nutshell, the VC, while

focusing on the goal of the system, deploys self-validation

mechanisms to continuously perform self-validation of the

manager’s behaviour and configuration against its behavioural

goals and also reflects on the quality of the manager’s

adaptation behaviour. Again, the nature and level of test is

entirely user-defined. So, the VC is a higher level mechanism

that oversees the AM to keep the system’s goal on track. The

ultimate concern here is to maintain system goal adhering to

defined rules, i.e., adding a level of trust by ensuring that

target goal is reached only within the boundaries of specified

rules. It is then left for designers to define what constitute

validation ‘pass’ and validation ‘fail’. Actual component logic

are application specific but some examples in literature

include fuzzy logic [24], reinforcement learning [23], etc.

This is at the level of sophistication defined by the autonomic

architecture life-cycle level 2 (Figure 3 (iii) and (iv)).

But in real life we understand that despite the AM taking

legitimate decisions within the boundaries of specified rules,

it is still possible to have overall system behavioural

inconsistencies. That is, a situation where each individual

decision could be correct (by logic) and yet the overall

behaviour is wrong. This kind of situation where the manager

erratically (though legally) changes its mind, thereby injecting

oscillation into the system, could be a major concern

especially in large scale and sensitive systems. This is beyond

the level of current consideration in the state of practice

(Figure 3). Therefore, it is necessary to find a way of enabling

the AM to avoid unnecessary and inefficient change of

decisions that could lead to oscillation. This task is handled

by the DC component. It allows the manager change its

decision (i.e., adapt) only when it is necessary and safe to do

so. Consider a simple example of a room temperature

controller in which, it is necessary to track a dynamic goal –a

target room temperature. The AM is configured to maintain

the target temperature by automatically switching heating ON

or OFF according to the logic in (1). A VC would allow any

decision or action that complies with this basic logic.

With the lag in adjusting the temperature the system may

decide to switch ON or OFF heating at every slight tick of the

gauge below or above target (when room temperature is

sufficiently close to the target temperature). This may in turn

cause oscillation, which can lead to undesirable effects. The

effects are more pronounced in more sensitive and critical

systems where such changes come at some cost. For example,

a datacentre management system that erratically switches

servers between pools at every slight fluctuation in demand

load is cost ineffective. Actual component and sub-component

logic are user-defined. One powerful logic example, as

explained in Section II, for implementing the DC component

is the dead-zone (DZ) logic [16]. DZ logic has been shown to

offer a reliable means of achieving self-stabilisation,

dependable systems and TAC.

 The DC component may also implement other sub-

components like Prediction, Learning, etc. This enables it to

predict the outcome of the system and to decide whether it is

safe to allow a particular decision or not. An example sub-

component logic is Trend Analysis (TA) logic. TA logic

identifies patterns within streams of information supplied

directly from different sources (e.g., sensors). By identifying

trends and patterns within a particular information, (e.g.,

spikes in signal strength, fluctuation in stock price,

rising/falling trends etc.) the logic enables the AM to make

more-informed control decisions and this has the potential of

reducing the number of control adjustments and can improve

overall efficiency and stability. Also, the analysis of recent

trends enables a more accurate prediction of the future. With

TA, managers can base decisions on a more-complete view of

system behaviour. The usage and importance of TA are

discussed in more detail in [16].

So after validation phase, the DC is called to check

(based on specified rules) for dependability. DC avoids

unnecessary and inefficient control inputs to maintain

stability. If the check passes, control is passed to the Actuator

otherwise a recalibration feedback (RF) is sent to AC. An

example of RF is dynamically adjusting (or retuning) the DZ

boundary width (explained later) as appropriate. The RF

enables the manager to adjust its behaviour to maintain the

level of required trust. So, while VC looks at the immediate

actions, DC takes a longer term view of the manager’s

behaviour over a certain defined time interval. A particular

aspect of concern, though, is that for dynamic systems the

boundary definition of DZ may itself be context dependent

(e.g., in some circumstances it may be appropriate to allow

some level of changes, which under different circumstances

may be considered destabilising). This concern is taken into

consideration when defining such boundaries.

So the current state-of-the-art of autonomic architecture

suffices for short term adaptation. To handle longer term

frame adaptation, e.g., cases where continuous validation fails

to guarantee stability and reliability, requires a robust

autonomic approach. This robust autonomic approach is what

the proposed TAArch offers. Consider the whole architecture

as a nested control loop (Figure 4 (b)) with AC the core

control loop while VC and DC are intermediate and outer

𝐼𝐹 𝑅𝑜𝑜𝑚𝑇𝑒𝑚𝑝 < 𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑒𝑚𝑝 𝑇𝐻𝐸𝑁 𝑂𝑁_𝐻𝑒𝑎𝑡𝑖𝑛𝑔

𝐼𝐹 𝑅𝑜𝑜𝑚𝑇𝑒𝑚𝑝 > 𝑇𝑎𝑟𝑔𝑒𝑡𝑇𝑒𝑚𝑝 𝑇𝐻𝐸𝑁 𝑂𝐹𝐹_𝐻𝑒𝑎𝑡𝑖𝑛𝑔

(1)

285

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

control loops, respectively. In summary, a system, no matter

the context of deployment, is truly trustworthy when its

actions are continuously validated (i.e., at run time) to satisfy

set requirements (system goal) and results produced are

dependable and not misleading.

IV. IMPLEMENTATION AND EMPIRICAL ANALYSIS

 To demonstrate the feasibility and practicability of the

new architecture, this section presents an implementation and

simulation analysis of the TAArch architecture using a

datacentre case example scenario. This analysis is a complex

and robust implementation of TAArch demonstrated in a

resource allocation scenario, which models basic datacentre

resource allocation management. Although the demonstration

uses a datacentre scenario, which though offers a way of

efficiently managing complex datacentres, the application of

TAArch can be widespread. In other words, although a

datacentre is used to demonstrate the functionalities of the

proposed architecture, it is not limited to this scenario. The

datacentre model represents a very simple datacentre scenario

where the simulation focuses on the efficiency and

dependability of resource request and allocation management

rather than other vast areas of datacentre, e.g., security,

power, and cooling etc. So the purpose of the experiments is

to demonstrate the applicability and performance of the

proposed architecture and not to investigate datacentres

themselves. However, the datacentre is chosen as

implementation scenario because its many dimensions of

complexity and large number of tuning parameters offer a rich

domain in which to evaluate a wide range of techniques, tools

and frameworks.

In this example, detailed experiments are designed to

analyse three different systems based on three different

autonomic architectures. The first system, comprising of only

AC component, is based on the traditional architecture

represented by level 1 (Figure 3 (i) and (ii)) of the autonomic

architecture life-cycle. This system will be referred to as

sysAC. The second system, comprising of both the AC and

VC components, is based on the current level of practice

represented by Figure 3 (iii) and (iv). This system will be

referred to as sysVC. The third and TAArch-based system,

referred to as sysDC, comprises of all three (AC, VC, and

DC) components. This system falls within the representation

of level (v) of Figure 3. The purpose of this implementation is

to illustrate how powerful and robust the TAArch framework

is when compared to existing frameworks.

A. Scheduling and Resource Allocation

Several research, e.g., [25][26][27], have proposed

scheduling algorithms that optimise the performance of

datacentres. In a utility function based approach, Das et al.

[25] are able to quantify and manage trade-offs between

competing goals such as performance and energy

consumption. Their approach reduced datacentre power

consumption by up to 14%. Other works that have resulted in

improved performance and resource utilisation by proposing

new scheduling algorithms include [26], which focuses on the

allocation of virtual machines in datacentre nodes and [27],

which uses a ‘greedy resource allocation algorithm’ that

allows distributing a web workload among different servers

assigned to each service. Our work, on the other hand, does

not propose any new scheduling algorithm for efficient

utilisation of datacentre resources; however, it uses basic

resource allocation technique to model the performance of

datacentre autonomic managers in terms of the effectiveness

of resource request and allocation management.

Let us consider the model of the datacenter used in this

experimentation in detail, (in terms of scheduling and request

services). The datacentre model comprises a pool of resources

Si (live servers), a pool of shutdown servers Ši (ready to be

powered and restored to Si as need be), a list of applications

Aj, a pool of services Ṳ (a combination of applications and

their provisioning servers), and an autonomic manager

(performance manager PeM) that optimises the entire system.

Aj and Si are, respectively, a collection of applications

supported (as services) by the datacentre and a collection of

servers available to the manager (PeM) for provisioning (or

scheduling) available services according to request. As

service requests arrive, PeM dynamically populates Ṳ to

service the requests. Ṳ is defined by equation (2):

Where Ai: (Si … Sn) means that (Si … Sn) servers are currently

allocated to Application Ai and n is the number of application

entries into Ṳ. (2) indicates that a server can be (re)deployed

for different applications. All the servers i in Si are up and

running (constantly available –or so desired by PeM) waiting

for (re)deployment. The primary performance goal of PeM is

to minimise oscillation and maximise stability (including just-

in-time service delivery to meet service level achievement

target) while the secondary performance goal is to maximise

throughput.

Service (application) requests arrive and are queued. If

there are enough resources to service a particular request then

it is serviced otherwise it remains in the queue (or may

eventually be dropped). The manager checks for resource

availability and deploys server(s) according to the size of the

request. The size of application requests and the capacity of

servers are defined in million instructions per second (MIPS).

In this report ‘size’ and ‘capacity’ are used interchangeably

and mostly would refer to MIPS i.e., the extent of its

processing requirement. When a server is deployed it is

placed in a queue for a time defined by the variable

ProvisioningTime. This queue simulates the time (delay) it

takes to load or configure a server with necessary application.

Recall from Equation (2) that any server can be (re)configured

for different applications and so servers are not pre-

configured. Servers are then ‘Provisioned’ after spending

ProvisioningTime in the queue. The provisioning pool is

(2)

 A1: (S11, S12, S13, …, S1i)

 A2: (S21, S22, S23, …, S2i)

 … … … … … …

 An: (Sn1, Sn2, Sn3, …, Sni)

Ṳ =

286

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

constantly populated as requests arrive. Now as a result of the

lag between provisioning time and the rate of request arrival

or as a result of some unforeseen process disruptions, some

servers do overshoot their provisioning time and thereby left

redundant in the queue. This can be addressed by the

manager, depending on configuration, to reduce the impact on

the whole system. As requests are fully serviced (completed)

servers are released into the server pool and redeployed. Note

that service level achievement (SLA) is calculated based on

accepted requests. Rejected or dropped requests are not

considered in calculating SLA. The essence of the request

queue is to allow the manager to accept requests only when it

has enough resources to service them. Service contract is

entered only when requests are accepted. So the manager

could look at its capacity (in terms of available resources),

compare that with the capacity requested and say ‘sorry I

haven’t got enough resources’ and reject or drop the request.

This whole process goes on and the manager manages the

system to the level of its sophistication. This process is

explained in Appendix A.

A basic system without any form of smartness can

barely go far before the whole system is clogged due to

inefficient and unstructured resource management. The level

to which any autonomic manager can successfully and

efficiently manage the process defined above depends on its

level of sophistication. For us this largely depends on how

each manager is wired (in terms of architecture) and not

necessarily the scheduling algorithm or actual component

logic used. For example, two managers, differently wired,

may employ the same scheduling algorithm but achieve

different results. Results here may be looked at in terms of,

say, ‘with such level of available resources how many

requests were successfully serviced’. These are the kind of

considerations in the following experiments where three

differently wired autonomic managers are analysed.

B. Experimental Design, Workload and Parameters

The experiments are designed and implemented using

the TAArch application (Appendix A). This application is

developed using the C# programming language. The scope of

the experiments focuses on the performance of datacentre

autonomic managers in resource request and allocation

management activities under varying workloads. Although

some workload parameters are sourced from experimental

results of other research, e.g., [28][29][30], the designed

experiments allow for the tailoring of all parameters

according to user preferences. Simulations are designed to

model several options of real datacentre scenarios. So,

depending on what is being investigated the user can design

individual scenarios and set workloads according to specific

requirements.

The result of every simulation analysis is relative to the

set of workload or parameter set used, which configure the

specific application instance. The parameter set used for the

datacentre model analysis here are classified into internal and

external variables. Internal variables are those variables that

do not change during run-time, e.g., the capacity of a server.

External variables, on the other hand, are those that can

change in the cause of the simulation, e.g., the rate at which

requests arrive. External variables are usually system

generated and are always unpredictable. The experimental

design has the capacity for heterogeneous workload

representation. That means that even the internal variables can

be reset before simulation begins thereby offering the

possibility of scaling to high/low load to suit user preferences

(see Appendix A). The range of value options for most of the

variables reflects the experimental results of other research

especially [28][29][30]. Note that the following variables are

used with the C# application that has been designed to

simulate the datacentre model and run the stated experiments.

 Internal Variables
Below is the list of internal variables used in this experiment.

Some of the variables used are specific to this experiment

while some are general datacentre variables.

- server.sCapacity:

This represents the service capacity of each server and for the

purposes of the experiments here all servers are assumed to be

of equal capacity. Server capacity (size) is measured in MIPS.

- RetrieveRequestParam:

Tuning parameter indicating when to start shutting services

(this simulates service request completion) –at which point

some running requests are closed as completed. This value is

measured as percentage of number of servers in use and has

been restricted to value between 0.1 and 0.3. The margin 0.1 –

0.3 (representing 10 to 30%) is used because experiments

show that it is the safest margin within which accurate results

can be guaranteed. The datacentre is not completely settled

below 10% and beyond 30% scenarios with low number of

servers will yield inaccurate results. The higher the value of

RetrieveRequestParam the earlier the start of request

completion.

- RetrieveRate:

Indicates rate at which requests are completed once

simulation for service request completion is initiated. Value is

relative to rate of request arrival – e.g., if value is 5, then it

means service request completion is five times slower than

rate of service request.

- BurstSize:

Indicates how long the user wants the burst (injected

disturbance) to last. This value is measured in milliseconds.

Burst is a disturbance introduced by the user to cause

disruption in the system. This alters the smooth running of the

system and managers react to it differently. Often times

injecting a burst disorientates the system. The nature of this

disruption is usually in the form of sudden burst or significant

shift in the rate of service request.

- ServerProvisioningTime:

Indicates how long it takes to load or configure a server with

an application. This is relative to the rate of request arrival -it

287

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is measured as half the rate of request arrival, e.g., the value

of 3 will translate to 1.5 of rate of request arrival.

- ServerOnTime:

Indicates how long it takes a server to power on. This is

relative to the rate of request arrival -it is

ServerProvisioningTime + 1.

- RequestRateParam:

A constant used to adjust the possible range of request rate.

The user of the TAArch Application (Appendix A) can set

request rate according to preference but this preference may

not be accommodated within the available rate range. For

example, if the least available rate is 1 request/second and the

user wishes to use 2 requests/second, the RequestRateParam

parameter can be used to extend the available range. A higher

value increases the range for a lower rate of request arrival.

 External Variables
Below is the list of external variables used in this experiment.

Recall that external variables, also known as dynamic

variables, are those variables that are fed into the system

during run-time either as system generated (dynamic

sensitivity to contextual changes) or human input (through

external touch-points). Some of the variables used are specific

to this experiment while some are general datacentre

variables.

- DZConst:

DZConst is the tuning parameter the manager uses to

dynamically adjust dead-zone boundaries. The dead-zone

boundary is also known as DZWidth. Because this variable

has significant effect on the system, it is suggested that the

initial value be set at 1.5. The manager usually adjusts this

value dynamically and there is also a provision to manually

adjust the value during run time.

- AppSize:

The application size variable represents the size or capacity of

a service request (request for an application). In the

experiments that follow, except otherwise changed, all

applications are initially assumed to be of the same size.

There are touch-points to dynamically change this value. The

application size variable is measured in MIPS.

- RequestRate:

This variable also referred to as rate of service request or rate

of request arrival is the measure of the frequency of service

request. This is in terms of the number of requests recorded

per unit of time. In real systems, this can be calculated as an

average for all services (applications) or for individual

services. In [28], for example, RequestRate values are

calculated for each service and are presented in requests/day.

The experiments of this work take an average of RequestRate

for all services and represent values as requests/second.

- BurstInterval:

The burst interval variable defines the interval at which bursts

are injected into the system during the simulation. This is

specific to the experimental application and is dependent on

what the user wants to investigate. Usually bursts are

introduced once at a specific time or several at random times.

The experimental workload is flexible in that all

variables can be scaled to suit user’s workload (high or low)

requirements. Every experiment has a detailed workload

outline used as shown in the following experiments.

C. Manager Logic

Manager logic details the individual control logic

employed by each of the managers in order to achieve the

performance goal. This explains the logical composition of

each manager. The three autonomic managers track the life-

cycle of autonomic architecture as presented in Figure 3.

sysAC represents the AutonomicControler level based

manager while sysVC represents the ValidationCheck level

based manager. sysDC represents the DependabilityCheck

level based manager and this conforms to TAArch

architecture.

The primary goal of the AM (also referred to as the

performance manager –PeM), represented by each of sysAC,

sysVC, and sysDC, is to ensure that the system remains stable

under almost all perceivable operating and contextual

circumstances and is capable of achieving desired and

dependable results within such circumstances (i.e., over the

expected range of contexts and environmental conditions and

beyond). The secondary goal is to maximise throughput.

 sysAC

This manager implements the basic autonomic control

logic. Structurally based on Figure 3 (ii), the manager receives

requests and allocates resources accordingly. The basic

allocation logic here is to deploy a server whenever capacity

offset (i.e., excess capacity of running servers –these are used

to service new requests) is less than the current capacity of a

single request. This is known as the DecisionBoundary. This

is depicted, for example, as:

if (app1ACOffset < app1.appCapacity)

{ <...deploy server...> }

Where

app1ACOffset = app1ACAvailableCapacity -
app1ACRunningCapacity;

sysAC has no additional intelligence. For example,

decisions are not validated and the manager does not consider

the rate at which system behaviour crosses the

DecisionBoundary. As long as boundary conditions are met,

the manager executes appropriate decisions.

 sysVC
This manager shows a higher level of intelligence than

sysAC. One aspect of validation here is to check the

performance of the manager in terms of correctness. The

288

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

manager does not start a job that cannot be completed –i.e., at

every DecisionBoundary the manager checks to make sure

that it has enough resources to service a request. Where this is

not the case (meaning the check has failed), the manager

rejects the request and updates itself. The manager has a limit

to which it can allow capacity deficit expressed as:

else if (app1VCOffset <= (0 - app1.appCapacity))

 {
 DroppedRequestCountVC += 1;
 }

So, in addition to the basic control and resource

allocation logic of sysAC, sysVC carries out a validation of

every allocation decision. Validation here is in terms of

behavioural (e.g., starting a job only when there are enough

capacity to complete it) and structural (e.g., avoiding

initiating provisioning when server pool is empty i.e.,

listViewServer.Items.Count = 0) correctness.

sysVC is within the representation of current stages of

autonomic architecture life-cycle presented in Section II as

Figure 3 (iii) and (iv). Beyond the level of validation, sysVC

exhibits no further intelligence.

 sysDC
sysDC performs all the activities of the sysAC and sysVC

managers with additional intelligence. The manager looks at

the balance of cost over longer term and retunes its

configuration to ensure a balanced performance. For example,

the manager implements dead-zone (DZ) logic on decision

boundaries. Firstly, the dead-zone boundaries (upper and

lower bounds), for example, are calculated as:

Note: the size of DZ boundary depends on the nature of the

system and data being processed. For example, in fine-

grained data instance, where small shifts from the target

can easily tip decisions –sometimes leading to erratic

behaviour, the DZ boundary is expected to be small and

closely tracked to the target value. However, in other cases

as in this experiment, the DZ boundary cannot be as

closely tracked to the target value. Here the target value

(DecisionBoundary) is defined by capacity Offset (see (7)

later) and this is used by the AM to decide whether or not

to deploy a server. And because Offset is populated in

serverCapacity and depleted in appCapacity (i.e.,

the difference between available and requested capacity)

any behaviour shift across the decision boundary (on either

side of the boundary) is in excess of appCapacity. This

means that fluctuations around the decision boundary are

usually in multiples of appCapacity and to handle erratic

behaviour around DecisionBoundary the AM will need to

take appCapacity into consideration when calculating

DZ boundaries. This explains the boundary size calculation

of (3). Offset is positive when there is excess capacity than

required and negative when there is a shortfall. Also,

sample simulation results show that smaller sizes of dead-

zone boundary have no effect on the system behaviour.

Secondly, the zone areas are defined as follows (two

zones are defined with one on either side of the

DecisionBoundary –see Figures 8 and 9):

if (app1DCOffset < app1.appCapacity)
{

App1.SystemBehaviour = "IsInDeployZone";
}
else
{

App1.SystemBehaviour = "IsNotInDeployZone";
}

Then stability is maintained by persisting the behaviour

(DecisionBoundary outcome) of the system across the zones

as follows:

if (app1DCOffset >= app1.appCapacity)
{ App1.SystemBehaviour = "IsNotInDeployZone"; }

if ((App1.SystemBehaviour == "IsInDeployZone") &&

(app1DCOffset < App1.DZUpperBound))
{ App1.SystemBehaviour = "IsInDeployZone"; }
else
{ App1.SystemBehaviour = "IsNotInDeployZone"; }

if ((App1.SystemBehaviour == "IsNotInDeployZone") &&

(app1DCOffset > App1.DZLowerBound))
{ App1.SystemBehaviour = "IsNotInDeployZone"; }
else
{ App1.SystemBehaviour = "IsInDeployZone"; }

Thus, the DecisionBoundary in sysAC and sysVC, which

is (app1DCOffset < app1.appCapacity) now becomes

(App1.SystemBehaviour == "IsInDeployZone") in sysDC. The

AM dynamically changes the DZ.DZConst value between three

values of 1, 1.5 and 2. By doing this the manager is sensitive

to its own behaviour and proactively regulates (retunes) its

decision pattern to maintain stability and reliability.

App1.DZUpperBound = (app1.appCapacity +
(app1.appCapacity * DZ.DZConst));

App1.DZLowerBound = (app1.appCapacity -
(app1.appCapacity * DZ.DZConst));

(3)

IsInDeployZone

IsNotInDeployZone

O
ff

se
t

[m
ip

s]

DZUpperBound

DZLowerBound

DecisionBoundary

Simulation time

Figure 6: Dead-zone logic implemented by SysDC.

289

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In Figure 6, the area shaded in green represents the

‘IsInDeployZone’, which means the manager should deploy a

server while the area shaded in blue represents the

‘IsNotInDeployZone’, which means the manager should not

deploy a server. Likewise, the dotted shade pattern represents

the ‘IsInDeployZone’ while the diagonal shade pattern

represents the ‘IsNotInDeployZone’. As shown, if, for

example, the system behaviour falls within the

‘IsNotInDeployZone’ area, the manager persists the action

associated to this zone until system behaviour falls below the

‘DZLowerBound’ boundary at which point the action

associated to the ‘IsInDeployZone’ area is activated. This way

the AM is able to maintain reliability and efficiency. The AM

also retunes its behaviour (as explained earlier) by adjusting

DZWidth if fluctuation is not reduced to an acceptable level.

Thus, three behaviour regions (in which different actions are

activated) are defined; ‘upper region’ (IsNotInDeployZone

with ‘DO NOT DEPLOY SERVER’ action), ‘lower region’

(IsInDeployZone with ‘DEPLOY SERVER’ action), and ‘in DZ’

(within the DZWidth with either of the two actions). It is

important to note, as shown in Figure 6, that within the DZ

boundary (i.e., the ‘in DZ’ region), either of the actions

associated to ‘IsInDeployZone’ and ‘IsNotInDeployZone’

areas could be maintained depending on the ‘current action’

prior to deviation into the ‘in DZ’ region. So actions activated

in the ‘upper region’ and ‘lower region’ are respectively

persisted in the ‘in DZ’ region. This is further explained in

Figure 7, which shows the resultant effect of the DZ logic in

terms of what zone action is activated per time.

Figure 7 explains what happens in Figure 6. As system

behaviour fluctuates around decision boundary, the manager

dynamically adjusts the DZ boundary to mitigate erratic

adaptation. As shown, minor deviations across the

DecisionBoundary do not result in decision (or action)

change. In this case (Figure 7) actions for IsInDeployZone and

IsNotInDeployZone are persisted at states x and y respectively

despite system behaviour crossing the decision boundary at

those state points.

Figure 8 is a representation of the next level of

sophistication in autonomic architecture life-cycle required to

ensure dependability. This is presented in Section II as Figure

3 (v).

To illustrate the overall operation of the DZ logic, a

simple numeric example is given: Let us consider a simple

use-case example in which a room temperature controller is

set to maintain temperature at 20
0
C: The AM is configured to

turn ON heating when room temperature falls below the target

temperature (20
0
C) and to turn OFF heating otherwise. If, for

example, the room temperature keeps fluctuating between

19
0
C and 21

0
C the manager will as well fluctuate with its

decisions (i.e., erratic behaviour of frequently turning heating

ON and OFF). This situation is undesirable and can be

enormously costly in crucial systems. To mitigate this

situation, the manager can implement DZ logic with a

DZLowerBound of 19
0
C and DZUpperBound of 21

0
C. This

will allow the manager to turn off heating only when room the

temperature rises above 21
0
C and to turn on heating only

when it falls below 19
0
C. Putting this in the context of (20)

means that, e.g.:

DZUpperBound = (20 + (20 * 0.05))
DZLowerBound = (20 – (20 * 0.05))

This will calm the erratic behaviour of the AM.

However, if the erratic behaviour does not drop to an

acceptable level the manager can further retune itself by

increasing DZConst by multiples of 0.05 (e.g., DZConst +=

0.05). If on the other hand the AM discovers that it is not

making decisions frequently enough, (i.e., the room is getting

too cold or too hot) it can retune its behaviour to increase its

rate of decision-making by reducing the DZ boundaries (e.g.,

DZConst –= 0.05). So the AM retunes itself by dynamically

adjusting the DZ boundaries using (DZConst = 0.05) as

appropriate. It is important to note that the average of the DZ

boundaries is equal to the target goal – e.g., the average of

19
0
C and 21

0
C is 20

0
C, which is the target temperature.

D. Simulation Scenarios and Metrics

In the following simulations to analyse the performances

of the three systems (sysAC, sysVC and sysDC), four

simulation scenarios are used. The scenarios are presented in

Table I. The user of the TAArch application can define further

scenarios as required.

Table I: Resource allocation simulation scenarios

Scenario Description Metrics

Scenario 1 Basic simulation with uniform

request rate and application size

SLA
Delay cost

Server deployment rate

Optimum provisioning

(Offset analysis)

Scenario 2 Basic simulation with uniform

request rate and varying
application sizes

Scenario 3 Uniform application size with

burst injected at a particular
time in the simulation

Scenario 4 Varying application sizes with

inconsistent request rate

Simulation time

O
ff

se
t

[m
ip

s]

IsInDeployZone

IsNotInDeployZone

DZBoundary

(Dynamic)

DecisionBoundary

System Behaviour

x

y

x

y

Figure 7: Illustration explaining actual performance effect of DZ logic.

S AC D

C

DC A VC

Figure 8: Structural representation of sysDC.

290

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Scenario 1: In scenario 1, all parameters are kept constant

except those (e.g., DZConst) that may need dynamic tuning

by the manager as need arises. This scenario gives a default

view of the behaviour of the managers under normal

condition. Under this scenario of normal condition, it is

expected that all managers will behave significantly closely.

Scenario 2: This scenario creates a condition where the

managers will have to deal with irregular sizes of service

request. This leads to contention between applications –huge

applications will demand huge resources thereby starving

smaller applications. Performance analysis here will include

individual application analysis. Request rate is kept constant

so that the effect of varying application sizes could be better

analysed.

Scenario 3: In this scenario, request rate and application size

are kept constant while burst is injected at a chosen time

(SimulationTime) in the simulation. This is similar to Scenario

1 just that a sudden and unexpected disruption (burst) is

injected into the system. This will measure the robustness of

the AMs in adhering to the goal of the system. The impact of

the burst is relative to the size of the burst (BurstSize).

Scenario 4: This is the most complex scenario with resource

contention and two instances of burst injection. This scenario

creates the combined effect of Scenarios 2 and 3 put together.

Request sizes vary leading to resource contention and request

rate is highly erratic. Inconsistent request rate can also lead to

‘flooding’, which also is a kind of burst. Flooding is a

situation where the system is inundated with requests at

disproportionate rate.

All metrics are mathematically defined giving the reader

a clear picture of the definition criteria should they wish to

replicate this experiment.

SLA: Service level achievement is the ratio of provided

service to requested service. It measures the system’s level of

success in meeting request needs. Note that requests and

services are not time bound so the time it takes to complete a

request does not count in this regard. The metric is defined as:

Where ProvisionedCapacity is the total deployed server

capacity (excluding those in queue and including those

already reclaimed back to the pool) and RequestedCapacity is

the total size of request (including completed requests).

AvailableCapacity is ProvisionedCapacity minus capacity of

reclaimed servers (ReclaimedCapacity) while

RunningCapacity is the total size of request (excluding

completed requests). In (4), (i) is more of a whole picture

consideration –considering the entire capacity activities of the

system while (ii) takes a real time view of the system –

tracking to the minute details of the system with delay,

completed requests and reclaimed server effects all

considered. The reference value for SLA is 1 indicating

100%. Values above 1 indicate over-provisioning while

values under 1 indicate shortfall. Optimum provisioning is

achieved at close proximity to 1.

Delay cost: Delay cost can be calculated in many different

ways as the cost can be influenced by many delay

contributors. In this instance, delay cost is defined as the cost

(in capacity) as a result of the delay experienced by the

servers. This delay affects the completion time of service

requests. This is mathematically represented as:

 =
()

 =

 (5)

ProvisioningCapacity is the capacity of servers in queue

while DeployedCapacity is the total capacity of all deployed

servers. The lower value of delay cost means the better

performance of the system.

Deployment Rate: Server (re)deployment rate is the ratio of

server deployment to service request. It measures the

frequency at which managers deploy servers with regards to

the nature of requests. This is mathematically represented as:

 =

()
 (6)

The lower value of deployment rate means the better

performance of the system translating to better maximisation

of throughput.

Optimum provisioning: This metric is also an offset

analysis. It indicates whether and when the manager is over or

under provisioning. This is also known as efficiency

calculation. Offset is calculated as:

 (7)

Under normal circumstances, average offset is not expected to

fall below zero. The system is optimally provisioning when

offset falls between zero and the average capacity of all

applications. The closer to zero the offset value is, the better

the performance of the system.

Note that, for all metrics, low or high values do not always

necessarily translate to better performance. It is not usually

realistic for the supposed better manager to always

outperform the other managers. There are times when the

manager underperforms and usually there may be a tradeoff of

some kind that explains the situation.

(4)

 𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

 (i)

 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

 (ii)
SLA =

291

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. Experimental Results

Results are presented and analysed according to

simulation scenarios. For precise results, ten different

simulations of each Scenario are performed and results

presented are based on average of these ten simulations. For

each of the ten simulations, the parameters used are presented.

It is important to note the workload and parameters used for

individual simulations as results will largely depend on those.

Scenario 1: Basic simulation with uniform request rate

and application size

Table II is a collection of major parameters used in this

scenario. The number of requests and the distribution of those

requests amongst applications differ with each AM as they are

dynamically generated and unpredictable. This does not

distort the results as analysis is based on system-wide

performance and not on individual application performance.

Table II: Scenario 1 simulation parameters

Parameter Value

of servers 300

of applications 4

Request rate 1 req/sec

Application capacity (MIPS) 20000

Server capacity (MIPS) 40000

Internal

variables

RetrieveRate 5x

RequestRateParam 10

RetrieveRequestParam 0.2

ServerProvisioningTime 3 (1.5 sec)

Managers (sysAC, sysVC & sysDC) PeM

DZConst 1.5

In every simulation, there are 300 servers of 40000

MIPS capacity each. This means there is a total of initial

12000000 MIPS to share between requests for four

applications (App1, App2, App3, and App4). Reclaimed

servers are later added to this available capacity. If the total

requested capacity is higher than the total provisioned

capacity, the unused server list will be empty (leaving the

manager with a deficit of outstanding requests without

resources to service them) and the datacentre is overloaded.

So the simulation stops whenever any manager runs out of

resources (i.e., when the unused server list of any manager

becomes empty). It is necessary to stop the simulation at this

point because as soon as the unused server list of a particular

manager becomes empty, the RequestedCapacity for that

manager starts piling up while AvailableCapacity remains at

zero, which leads to continuously increasing negative Offset.

This will lead to inaccurate assessment of the three managers

(recall that all three managers are compared concurrently and

it is safer to do this while all three managers are active). Also,

at this point, usually, other managers may have outstanding

resources and this will mean better efficiency. Table III is a

number distribution of requests and services for ten

simulation runs of Scenario 1. The values shown are collected

at the end of each simulation, for example, it can be seen that

the manager of sysAC has no servers left in each of the

simulations while sysVC has a couple and sysDC even more.

Though sysAC and sysVC are able to service almost the same

number of requests, sysVC has outstanding server capacity

and could service more requests. However, the additional

smartness of sysVC does not always translate to better

performance as highlighted in Table III (this is an example of

manager interference leading to overcompensation). sysDC

clearly outperformed the others with an average of about 36

outstanding servers out of 300 initial servers. Figures 11-14

give a breakdown of the performances.

Table III: High level performance analysis of managers over ten

simulation runs of Scenario 1

The difference between requested capacity and

provisioned capacity (or in real time analysis, running

capacity and available capacity) is known as Offset. Where

offset is close to zero, the difference with respect to running

and available MIPS is low and the AM is therefore very

efficient. When offset is much greater than or much less than

zero, the AM is over-provisioning or under-provisioning

respectively and is very inefficient. The AMs are designed to

have a window of ‘optimum provisioning’ defined by the

interval (0 ≤ Offset ≤ AvgAppCapacity), which means that

the AM are configured to maintain AvailableCapacity of up to

average appCapacity for just-in-time provisioning. However,

AM efficiency is defined by its ability to maintain Offset as

close as possible to zero. Figure 9 shows the efficiency

analysis of the three managers in terms of maximising

resources. This is in terms average performances of the three

AMs over ten simulation runs. This means that the same

scenario was run for ten times and then the average result was

calculated. This gives a clearer picture and more accurate

analysis of manager performance.

Figure 9: Manager efficiency analysis for scenario 1.

-20000

-10000

0

10000

20000

30000

40000

1 51 101 151 201 251 301 351 401 451 501 551 601

av
er

ag
e

 o
ff

se
t

[m
ip

s]

simulation time [s]

Offset = AvailableCapacity - RunningCapacity

sysAC sysVC sysDC

Sim unused server serviced request deployed server

 AC VC DC AC VC DC AC VC DC

1 0 2 35 578 577 555 307 307 268

2 0 3 27 594 594 574 310 299 278

3 0 0 36 600 590 574 309 305 268

4 0 0 34 593 585 566 309 313 274

5 0 0 30 609 586 587 312 303 273

6 0 0 38 597 586 576 308 309 268

7 0 0 36 613 605 587 314 304 268

8 0 15 39 591 590 565 307 287 263

9 0 6 33 582 582 566 304 302 271

10 0 8 48 569 567 542 310 298 255

avg 0 3.4 35.6 592.6 586.2 569.2 309 302.7 268.6

292

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9 shows that, in terms of efficiency, sysAC

performed significantly similar to sysVC with a couple of

instances where sysAC also performed better than sysVC. This

is as a result of over compensation introduced by the extra

level of smartness in sysVC. The validation check of sysVC

gives it an advantage over sysAC but it sometimes leads to

over compensation. For example, though sysVC checks to

ensure resource availability against resource requests, it is not

adequately sensitive to erratic request fluctuation. High level

of erratic request fluctuation disorientates sysVC (as can be

seen in later scenarios where burst is injected) but this effect

is naturally and dynamically handled by sysDC. sysDC takes a

longer term look at the self-management effect on the

datacentre and retunes its self-management behaviour. The

rate at which the managers change decision, (which can

indicate erratic behaviour) is indicated by the gap between the

crests and troughs of the graph in Figure 9. Smaller gap

indicates erratic change of decision while bigger gap indicates

more persisted decision. As seen, sysDC has significantly

more persisted decisions and this allows it to more adequately

track resource availability against resource requests, which

leads to more efficient performance as can be seen. Recall that

optimum provisioning is defined by the (0 ≤ Offset ≤
AvgAppCapacity) interval, which in this case is between 0

and 20000 MIPS. sysDC clearly falls within this range,

though a bit towards the 20000 border. This means that while

sysAC and sysVC try to maintain AvailableCapacity of up to

20000 MIPS for just-in-time provisioning, sysDC efficiently

depletes this reserve to maximise resources while at the same

time maintaining the same level of performance and even

better compared to the other two. This is evidently seen in the

following deployment rate, SLA, and cost metrics analyses.

Figure 10: Server deployment rate analysis for scenario 1.

Figure 10 shows the rate at which the three AMs deploy

servers as requests arrive. With the same request rate, the

AMs deployed servers differently. While sysAC deployed the

most servers, sysDC deployed the least servers. This explains

why sysAC easily runs out of servers followed by sysVC while

sysDC still retains a couple of unused servers (Table III).

Interestingly, this does not negatively affect the performance

of sysDC and when sysDC underperforms in one aspect there

is usually compensation (say tradeoff) in another aspect. The

lower server deployment rate of sysDC resulted in lower SLA

value of sysDC (when compared to sysAC and sysVC –Figure

11) but this only keeps the value very close to the optimum

value of 1, which also indicates high efficiency.

Figure 11 depicts the service levels of the three AMs

with the zoomed-in inset revealing the gaps between their

performances. As expected, following from the result trend

above, sysAC and sysVC performed quite similarly with each

outperforming the other in some places. sysDC on the other

hand, keeps SLA as close as possible to the target goal of 1 (a

perfect system would keep SLA at 1). sysDC has the ability to

dynamically scale down unnecessary and inefficient

provisioning by proactively throttling oscillation. This

capability also leads to cost savings as shown in Figure 12.

Figure 11: Service level achievement (SLA) analysis for scenario 1.

Figure 12: Delay cost analysis for Scenario 1.

The high level of deployment rate (i.e., deploying more

MIPS than required) for sysAC and sysVC (Figure 10) leads to

high cost (in terms of excess MIPS) of servicing individual

requests. Also this means that the rate at which servers enter

the provisioning queue is much higher than the rate they leave

the queue. This results in an increasing number of redundant

servers in the queue, which contributes to delay cost (Figure

12). Also, the number of redundant servers for sysDC is

doubled by that of sysAC and sysVC.

0

0.5

1

1.5

2

2.5

1 51 101 151 201 251 301 351 401 451 501 551 601

ra
te

simulation time [s]

server deployment rate

sysAC sysVC sysDC

-0.18

0.02

0.22

0.42

0.62

0.82

1.02

1.22

1.42

1 51 101 151 201 251 301 351 401 451 501 551 601

simulation time [s]

sla
sysAC sysVC sysDC

0

0.1

0.2

0.3

0.4

0.5

0.6

1 51 101 151 201 251 301 351 401 451 501 551 601

m
ip

s

simulation time [s]

delay cost
sysAC sysVC sysDC

293

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The results analyses of Scenario 1 indicate that the

proposed TAArch (represented by sysDC) has significant

performance improvement over existing architectures. This

assertion is further tested in the following scenarios.

Scenario 2: Basic simulation with uniform request rate

and varying application sizes

Table IV is a collection of the major parameters used in

this scenario.

Table IV: Scenario 2 simulation parameters

Parameter Value

of servers 300

of applications 2

App capacity (MIPS)

App1 30000

App2 5000

Request rate 1 req/sec

Server capacity (MIPS) 40000

Internal

variables

RetrieveRate 5x

RequestRateParam 10

RetrieveRequestParam 0.2

ServerProvisioningTime 3 (1.5 sec)

Managers (sysAC, sysVC & sysDC) PeM

DZConst 1.5

In this scenario, there are 300 servers of 40000 capacity

each to be shared amongst two applications (App1 and App2).

This means there is a total of initial 12000000 MIPS to share

between requests for App1 with 30000 MIPS and App2 with

5000 MIPS. The capacity gap between the two applications is

so wide that it may naturally lead to contention with App1

demanding more resources than App2. In this kind of

situation where it is easy to underserve one application

because of the contention, it is left for the datacentre

autonomic managers to decide how best to efficiently allocate

resources. Results show that while sysAC maintained a

proportionate resource allocation (in terms of applications) for

the two applications, sysVC and sysDC prioritised

provisioning for App1 with much higher MIPS request. One

disadvantage of proportionate provisioning is that it treats

requests according to applications (in this case two

applications) and not according to capacity (in this case 30000

versus 5000). When this happens, the high capacity

application (App1) will be heavily under-provisioned while

the low capacity application (App2) will be adequately

provisioned (and sometimes over-provisioned) compared to

the level of provisioning for App1 as shown in Figure 14 (a)

for sysAC Offset analysis. Also this amounts to inefficiency

and explains why sysAC easily exhausts its resources as

shown in Table V. Table V shows the results of requests

distribution amongst the three managers.

The ‘dropped/queued request’ analysis shows that in

prioritising App1, sysVC and sysDC dropped more of App2

requests while sysAC, which does not drop any application,

struggled to cope with the capacity imbalance. For a clearer

picture Figure 13 shows how sysVC and sysDC prioritised

App1 over App2.

Table V: High level performance analysis of managers over ten

simulation runs of Scenario 2

Sim.

unused server serviced request deployed server

AC VC DC AC VC DC AC VC DC

1 0 118 127 423 242 231 399 227 207

2 0 113 125 465 263 251 422 233 213

3 0 132 145 450 234 225 418 211 191

4 0 120 113 447 248 254 411 211 223

5 0 124 122 440 246 243 405 218 218

6 0 100 120 451 259 250 413 237 221

7 0 108 127 470 265 253 420 239 208

8 0 96 114 434 262 258 404 236 228

9 0 102 116 458 261 257 413 241 222

10 0 107 112 428 250 249 394 225 219

avg 0 112 122.1 446.6 253 247.1 409.9 227.8 215

As can be seen in Figure 13, there is a consistent trend of

high rate of dropped App2 requests. This means that more

resources were allocated to App1 and thereby starving App2.

As this continued, it led to more App2 being dropped as there

were limited resources per time to service App2 requests.

Also noticeable is the smoothness of provisioning for App1

compared to the bumpiness of provisioning for App2 –this is

further explained in the Offset analysis that follows.

Figure 13: Dropped/queued request analysis for Scenario 2.

sysAC on the other hand did not drop any request and

trying to evenly joggle resources between the highly

imbalanced MIPS requests for the two applications meant that

more resources per time than necessary are used. This

explains why sysAC exhausted its resources quite early in the

simulation while the other managers have hundreds of servers

still unused (Table V). Figure 14 (a) shows that while App2 is

about adequately provisioned, App1 is heavily under-

provisioned. This is because sysAC evenly provisioned for the

two applications thereby starving App1, which has very high

MIPS requests. So by accepting all requests despite low

resource availability sysAC under-provisioned for App1 far

more than it did for App2 because of the large size of App1

requests. There is no check in sysAC to ensure resource

availability before requests are accepted.

In Figure 14, App2 offset is maintained at (0 ≥ -18000

MIPS) by sysAC, (-1666 ≥ -5000 MIPS) by sysVC and (0 ≥ -

5000 MIPS) by sysDC. Also, App1 offset ranges between

(50000 and -139000 MIPS) for sysAC, (60000 and -30000

MIPS) for sysVC and (30000 and -30000 MIPS) for sysDC.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

re
q

u
es

ts

ten simulations of Scenario 2

dropped/queued request

sysVC app1 sysVC app2
sysDC app1 sysDC app2

294

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This shows that while sysAC treats requests according to

applications (i.e., by trying to evenly provision for both

applications), sysVC and sysDC are sensitive to the individual

size of requests. As a result, by taking on all requests and

attempting an even distribution of resources for both

applications, sysAC heavily under-provisions for App1 and

this also affected its performance for App2. sysVC and sysDC

on the other hand, maintained more balanced resource

allocation for both applications in terms of request capacity

with sysDC showing higher efficiency than sysVC. Note that a

positive Offset above the optimal provisioning mark amounts

to over-provisioning while a negative Offset amounts to

under-provisioning. Recall that optimal provisioning mark is

defined by the interval (0 ≤ Offset ≤ AvgAppCapacity),

which in this case is (0 ≤ Offset ≤ ((30000 + 5000)/2)) –that

is, between 0 and 17500 MIPS.

(a) sysAC Offset analysis for App1 and App2. App2 is about adequately

provisioned (i.e., Offset ≈ 0) while App1 is heavily under-provisioned

(b) sysVC Offset analysis for App1 and App2. App2 is about adequately

provisioned while App1 over-provisioned (well above the optimal
provisioning mark, which is defined by 0 ≤ Offset ≤ AvgAppCapacity)

(c) sysDC Offset analysis for App1 and App2. App2 is about adequately

provisioned while App1 is slightly over-provisioned (slightly above the

optimal provisioning mark, which is defined by 0 ≤ Offset ≤

AvgAppCapacity)

Figure 14: Individual Offset analysis for scenario 2.

Figure 15 shows the average manager efficiency analysis

for all three systems. On the average sysAC did not stand up

to the complex provisioning condition of Scenario 2 as did the

other systems. Figure 15 shows that sysAC could not

efficiently cope with the level of resource contention

experienced between App1 and App2. sysVC and sysDC show

almost the same level of autonomic sophistication however,

sysDC is shown to be more efficient. Although both systems

have the same least under-provisioning value of -17500

MIPS, sysVC recorded a maximum over-provisioning value of

27500 MIPS (well above the optimal provisioning mark of

17500) while sysDC recorded a maximum positive Offset

value of 13500 MIPS (below the optimal provisioning mark).

This indicates that sysDC is efficiently more sophisticated in

handling complex resource allocation scenario that would

ordinarily prove difficult for traditional autonomic managers

(sysAC and sysVC) to handle. E.g., this increased efficiency

arises from the fact that the DependabilityCheck sub-

component of sysDC enables it to go beyond dropping

requests if there are insufficient resources to deploying

resources only when it is necessary and efficient to do so.

Figure 15: Manager efficiency analysis for scenario 2.

The results analysis of Scenario 2 is a further

corroboration of the assertion that the TAArch architecture

(represented by sysDC) has significant performance

improvement over existing architectures. There are two more

simulation scenarios to further test this assertion.

Scenario 3: Uniform application size with burst injected at

a particular time in the simulation

In this scenario, request rate and application size are kept

constant while burst is injected at a particular time (200s) in

the simulation. This is similar to Scenario 1 just that a sudden

and unexpected disruption is injected into the system. This

simulation will measure the robustness of the AMs in

adhering to the goal of the system. Another important factor

to look at is how long it takes the AMs to recover from the

disruption caused by the burst. The impact of the burst is

relative to the size of the burst, (which in this case is 2500

ms). Table VI is a collection of major parameters used.

-150000

-100000

-50000

0

50000

100000

1 51 101 151 201 251 301 351 401 451

av
er

ag
e

o
ff

se
t

[m
ip

s]

simulation time [s]

Offset [sysAC]

app1

app2

-40000

-20000

0

20000

40000

60000

80000

1 51 101 151 201 251 301 351 401 451

av
er

ag
e

o
ff

se
t

[m
ip

s]

simulation time [s]

Offset [sysVC]

app1

app2

-40000

-20000

0

20000

40000

1 51 101 151 201 251 301 351 401 451

av
e

ra
ge

 o
ff

se
t

[m
ip

s]

simulation time [s]

Offset [sysDC] app1

app2

-100000

-80000

-60000

-40000

-20000

0

20000

40000

1 51 101 151 201 251 301 351 401 451

av
er

ag
e

o
ff

se
t

[m
ip

s]

simulation time [s]

Offset

sysAC sysVC sysDC

295

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table VI: Scenario 3 simulation parameters
Parameter Value

of servers 300

of applications 4

Request rate 1 req/sec

Application capacity (MIPS) 20000

Server capacity (MIPS) 40000

Internal

variables

RetrieveRate 5x

RequestRateParam 10

RetrieveRequestParam 0.2

BurstSize 2500ms

ServerProvisioningTime 3 (1.5 sec)

Managers (sysAC, sysVC & sysDC) PeM

DZConst 1.5

In every simulation, there are 300 servers of 40000

MIPS each. This means there is a total of initial 12000000

MIPS to share between four applications (App1, App2, App3,

and App4). Reclaimed servers are subsequently added to this

available capacity. The managers receive requests and

allocate resources accordingly as long as AvailableCapacity is

not zero. The reliability of a manager will be measured by its

ability to remain efficient under almost all perceivable

operating circumstances. Table VII is a number-distribution

of requests and services for ten simulation runs of Scenario 3.

Table VII: High level performance analysis of managers over ten

simulation runs of Scenario 3
 unused server serviced request deployed server

AC VC DC AC VC DC AC VC DC

1 0 68 89 453 417 407 306 240 211

2 0 55 74 564 431 418 309 253 230

3 0 61 90 467 430 415 309 248 216

4 0 63 86 481 439 423 307 242 220

5 0 59 79 482 447 431 312 255 232

6 0 57 87 462 426 412 304 246 214

7 0 69 93 444 408 391 307 235 219

8 0 67 94 455 420 404 302 238 209

9 0 63 95 463 424 408 305 248 213

10 0 58 80 453 420 410 304 247 226

avg 0 62 86.7 472.4 426.2 411.9 306.5 245.2 219

On the average, from Table VII, sysAC had initiated

about 46.2 requests (924000 MIPS) more than sysVC and

about 60.5 requests (1210000 MIPS) more than sysDC but has

no extra capacity left to proceed beyond this point. However,

sysVC and sysDC both have about 2480000 MIPS and

3468000 MIPS extra capacity respectively. This means that,

under normal circumstances, both systems (sysVC and sysDC)

could conveniently provision for about additional 124 and

173.4 requests respectively. Clearly, sysDC is seen to have

outperformed the other systems. This is principally because

the dead-zone logic of sysDC helps it to significantly reduce

the number of activated decision boundaries. This means that

decisions are not erratically taken, which leads to high

efficiency and reliability. Figures 17 – 20 give a breakdown

of the performances.

Figure 16 shows how all three managers reacted to the

disruption injected at 200s. While sysVC and sysDC were able

to recover after about 9s each (with sysDC a bit less than

that), it took sysAC about 90s to recover. We can also see that

sysDC reasonably maintained provisioning within the optimal

provisioning mark, which in this case is between 0 and 20000

MIPS. There is also a noticeable trend that suggests an extra

level of autonomic sophistication in sysDC which is also a

sign of reliability. Notice that within pre disruption and post

disruption recovery both sysAC and sysVC maintained their

level of performances (which nonetheless is averagely about

5000 MIPS above the optimal provisioning mark) while

sysDC, within the same time frame, switched between two

levels of performance as shown by the solid black line. This is

the effect of dynamic (re)tuning of the DZWidth by sysDC.

This capability enables sysDC to systematically track the

system’s goal (in this case maintaining reliability and

efficiency within the optimal provisioning mark) by

dynamically retuning its decision boundary. As shown in

Figure 16, before the disruption sysDC maintained a steady

and continuous level of efficiency by keeping DZConst at 1.5

but as soon as the disruption sets in it quickly retunes itself

and reduced the DZConst to 1. At this point the manager

stopped accepting further requests (as the datacentre is now

receiving torrential streams of requests) but the initial shock

(caused by the lag between when the disruption started and

when the manager shuts its door) meant that a few resources

were released to mitigate the effect of the situation. This will

instantly start pushing up Offset until the datacentre

normalises and then as shown sysDC retunes its decision

boundary by returning DZConst back to 1.5. So while sysAC

is heavily affected by a disruption of this magnitude and

sysVC shows a remarkable level of robustness, sysDC shows a

longer term ability to sensitively throttle its behaviour to

efficiently and reliably track the goal of the entire system.

Figure 16: Manager efficiency analysis for scenario 3. The black solid line
indicates sysDC’s dynamic tuning of dead-zone boundary. The manager

started with a DZConst of 1.5 (left lower part of the line) then changed to

DZConst of 1 (high part) and then back to DZConst of 1.5.

Figure 17 shows that while sysVC and sysDC responded

to the disruption by rejecting requests as soon as they were

overwhelmed thereby pushing down their server deployment

rate, sysAC responded by deploying even more servers to

meet the current service demand. Despite deploying more

servers sysAC still could not meet up with demand rate, which

ultimately affected its SLA achievement (Figure 18). This is

because the provisioning rate, (which is dependent on

ProvioningTime) could not keep up with the rate at which

-200000

-150000

-100000

-50000

0

50000

1 51 101 151 201 251 301 351 401

av
e

ra
ge

 o
ff

se
t

[m
ip

s]

simulation time [s]

offset

sysAC sysVC sysDC

296

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

servers are deployed. As a result sysAC had more servers

(almost tripling that of sysDC) overshooting their

ProvisioningTime thereby getting redundant and pushing up

delay cost as well.

Figure 17: Server deployment rate analysis for scenario 3.

 As the datacentre settles (after the disruption) sysAC

starts normalising the rate of server deployment but because

there is already a huge backlog of requests (about 173000

MIPS as in Figure 16) it takes sysAC a long time to recover.

This also contributes to why it quickly exhausts its resources.

sysVC and sysDC on the other hand, with a small backlog of

about 7500 MIPS, need not deploy more resources than the

ordinary (Figure 17) but gradually absolves the backlog

allowing them to quickly recover.

Figure 18: Service level achievement (SLA) analysis for scenario 3.

High level of deployment rate (inefficient deployment of

more MIPS than necessary) also leads to high cost (in terms

of excess MIPS) of servicing individual requests. This means

that the rate at which servers enter the provisioning queue is

much higher than the rate they leave the queue. The rate for

sysAC almost doubles that of sysVC and almost triples that of

sysDC. This leads to increasing number of redundant servers

in the queue, which contributes to delay cost.

The results analysis of Scenario 3 shows that it is

absolutely inefficient and unreliable to run a datacentre with a

manager based on sysAC. While sysVC based AMs are more

robust, their robustness is limited in terms of the extent of

sensitivity to system’s goal under unfamiliar circumstances in

which sysDC based AMs are more sophisticated and

dynamically reliable. This further corroborates the assertion

that the TAArch architecture (sysDC) has significant

performance improvement over existing architectures.

Scenario 4: Varying application sizes with inconsistent

request rate

This is the most complex scenario with a combined

effect of Scenarios 2 and 3 put together. The complexity

presented by this scenario (i.e., a combined effect of resource

contention and two injected disruptions) allows us to further

test the robustness of these systems by stretching their

capabilities to extremes. Table VIII is a collection of the

major parameters used in this scenario. As in previous

scenarios, results presented are based on average of ten

different simulation runs.

Table VIII: Scenario 4 simulation parameters

Parameter Value

of servers 400

of applications 2

App capacity (MIPS)

App1 30000

App2 15000

Request rate (initial) 1 req/sec

Server capacity (MIPS) 40000

Internal

variables

RetrieveRate 5x

RequestRateParam 10

RetrieveRequestParam 0.2

BurstSize 1500ms

ServerProvisioningTime 3 (1.5 sec)

Managers (sysAC, sysVC & sysDC) PeM

DZConst (initial) 1.5

In every simulation of this scenario, there are 400

servers of 40000 MIPS each to be shared amongst two

applications (App1 and App2). This means there is a total of

initial 16000000 MIPS to share between requests for App1

with 30000 MIPS and App2 with 15000 MIPS. Table IX is a

number distribution of requests and services for ten

simulation runs of Scenario 4.

Table IX: High level performance analysis of managers over ten

simulation runs of Scenario 4
 unused server serviced request deployed server

AC VC DC AC VC DC AC VC DC
1 0 109 120 474 395 394 435 339 316
2 0 124 133 465 387 382 433 325 303
3 0 123 125 471 400 397 443 330 314
4 0 112 114 473 395 400 439 343 321
5 0 114 130 476 398 402 440 335 304
6 0 118 124 473 393 398 439 331 308
7 0 115 117 468 393 394 437 336 320
8 0 113 122 468 398 396 435 330 307
9 0 113 116 476 395 401 444 342 322

10 0 110 115 476 398 394 446 337 323

avg 0 115 122 472 395 393 439 335 314

Results reveal that sysAC is not adequately robust in

such complex situations as in Scenario 4. The system is

heavily inefficient in handling this type of situation (Figure 19

(a)). Its algorithm, which maintains proportionate

provisioning with respect to number of applications as against

0

0.5

1

1.5

2

2.5

1 51 101 151 201 251 301 351 401

ra
te

simulation time [s]

server deployment rate

sysAC

sysVC

sysDC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 51 101 151 201 251 301 351 401
simulation time [s]

sla

sysAC

sysVC

sysDC

297

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

capacity of requests, was disorientated by the level of

contention and disruption experienced.

As shown in Figure 19 the first burst was injected at

100s while the second was injected at 250s. sysAC is limited

in its ability to handle complex situations and so cannot be

relied upon to operate large scale and complex datacentres.

sysVC and sysDC both have a wide range of operability in

complex situations. However, a closer look at sysVC and

sysDC in this scenario reveals a unique change in expected (as

observed in previous results) trend. The highlighted bits of

Table IX show that sysDC dropped fewer requests than sysVC

and thereby initiating more requests. Under normal

circumstances, as observed in previous scenarios, sysVC

usually would drop fewer requests than sysDC. In this

situation the level of disturbance (as a result of resource

contention and erratic request disorder) in the datacentre led

to instability in sysVC, which caused it to over react by

inefficiently dropping requests. This instability reveals a

weakness in design because in real-life datacentres such

disturbances (like sudden request spikes) do occur and

managers are expected to adequately stabilise the entire

system under such circumstances. sysDC on the other hand,

with the capability of a longer term view of the entire system,

was able to take on more requests.

(a) Manager efficiency analysis of all three systems

(b) Manager efficiency analysis for sysVC and sysDC.

Figure 19: Manager efficiency analysis for Scenario 4. Bursts affect

all managers at 100s and 250s time frames

However, this achievement is with associated tradeoff in

delay cost (Figure 20). This shows that sysDC is more

sensitive to the relationship between requested MIPS and

available MIPS. For example, in a situation where sysVC

dropped a number of requests following a fixed decision

boundary (when there is lack of immediate available

resources to handle incoming requests), sysDC used a

dynamic decision boundary to accommodate more requests

allowing it to efficiently use up its available resources. By

taking on more requests, sysDC trades off delay cost, which is

not so much of importance but at the same time improves

scheduling efficiency, which is of more importance.

Interestingly, the efficiency level is not affected –Figure 19

(b) shows that there is no significant difference in efficiency

performance of both sysVC and sysDC. So what we have is a

situation where, on the average, sysDC utilised significantly

fewer resources (313.8 : 334.8 servers) to serve slightly

higher amount of requests (395.8 : 395.2 requests) as sysVC

(Table IX) resulting in improved efficiency (Figure 19 (b)) for

sysDC and approximately same level of SLA (Figure 21) and

delay cost (Figure 20) achievement for both sysVC and

sysDC.

Figure 20: Cost analysis for Scenario 4.

There is consistent corroboration of the fact that sysAC

is limited in the range of its operational scope when it comes

to complex situations. Scenario 4 results show that it is highly

expensive, inefficient and unreliable to operate complex

datacentres with autonomic managers based on sysAC.

However, sysAC based managers may suffice for simple and

basic datacentres. On the other hand, sysDC has shown

consistent reliability in all tested scenarios. The level of

robustness exhibited in this scenario by sysDC is a clear

indication that it is not a hard-wired one-directional self-

managing system. For example, in this scenario we have seen

that sysDC does not only act when sysVC is taking more

actions than necessary but also when it is taking fewer actions

than necessary. So it can be said that sysDC is capable of

reducing inefficient adaptation (e.g., when sysVC’s decisions

are erratic) as well as increasing adaptation when it is

necessary and efficient to (e.g., when sysVC is not making

decisions frequently enough). This capability of increased

adaptation is shown in Table IX and illustrated in Figures 20

-700000

-600000

-500000

-400000

-300000

-200000

-100000

0

100000

1 51 101 151 201 251 301 351

av
er

ag
e

o
ff

se
t

[m
ip

s]

simulation time [s]

offset

sysAC

sysVC

sysDC

-40000

-30000

-20000

-10000

0

10000

20000

30000

40000

1 51 101 151 201 251 301 351

av
e

ra
ge

 o
ff

se
t

[m
ip

s]

simulation time [s]

offset

sysVC

sysDC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 51 101 151 201 251 301 351

m
ip

s

simulation time [s]

delay cost

sysAC

sysVC

sysDC

298

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to 22 –sysDC is able to maximise resources while achieving

the same level of performance as sysVC.

Figure 21: Service level achievement (SLA) analysis for scenario 4.

From the results of the four experimental scenarios

presented above we can conclude that sysAC has a narrow

envelope of operational conditions in which it is both self-

managing and returns satisfactory behaviour. On the other

hand, sysVC tends towards a wider operational envelope with

increased efficiency and satisfactory behaviour, but once the

limits of that envelope are reached the efficiency and

reliability of the system drops. In moderate operational

complexities sysVC performs adequately efficient but

fluctuates rapidly and may need human input to override

some decisions that lead to instability in the case of highly

erratic and complex situation, which for example sysDC can

deal with autonomically. Results have shown that sysDC is

sufficiently sophisticated to operate efficiently and yield

satisfactory results under almost all perceivable operating

circumstances. So we can now confidently conclude that the

proposed trustworthy autonomic architecture (represented by

sysDC) has significant performance improvement over

existing architectures and can be relied upon to operate (or

manage) almost all level of datacentre scale and complexity.

Generally, the combination of DC and VC (VC + DC)

leads to significant performance improvement over VC.

However, the extent of this improvement is application and

context dependent. Results show that there are circumstances

in which performance improvement is evident from VC + DC

as well as circumstances in which improvement is not evident.

Complex applications with the possibility of unexpected

behaviour patterns, e.g., large scale datacentres with complex

algorithms, will usually experience improvement with VC +

DC. Also, applications that are sensitive to fluctuating

environmental inputs (i.e., depend on volatile environmental

information for decision-making), for example, auto stock

trading systems are expected to see greater benefit from VC +

DC. On the other hand, there are applications that are not

expected to see any benefit. Example includes small scale

datacentres with predefined request rate and request capacity.

V. CONCLUSION

This paper has presented a new trustworthy autonomic

architecture (TAArch). Different from the traditional

autonomic solutions, TAArch consists of inbuilt mechanisms

and instrumentation to support run-time self-validation and

trustworthiness. The architecture guarantees self-monitoring

over short time and longer time frames. At the core of the

architecture are three components, the AutonomicController,

ValidationCheck and DependabilityCheck, which allow

developers to specify controls and processes to improve

system trustability. We have presented a case example

scenario to demonstrate the workings of the proposed

approach. The empirical analysis case example scenario is an

implementation of a datacentre resource request and

allocation management designed to analyse the performance

of the proposed TAArch architecture over existing autonomic

architectures. Results show that TAArch is sufficiently

sophisticated to operate efficiently and yield satisfactory

results under almost all perceivable operating circumstances.

Analyses also show that the proposed architecture achieves

over 42% performance improvement (in terms of reliability)

in a complex operating circumstance. It is also safe to

conclude that the proposed trustworthy autonomic

architecture has significant performance improvement over

existing architectures and can be relied upon to operate (or

manage) almost all level of datacentre scale and complexity.

The importance of trustworthiness in computing, in

general, has been echoed in the Computing Research

Association’s ‘four grand challenges in trustworthy

computing’ [31] and Microsoft’s white paper on Trustworthy

Computing (TC) [32]. The Committee on Information

Systems Trustworthiness in [33] defines a trustworthy system

as one which does what people expect it to do – and nothing

more – despite any form of disruption. Although this

definition has been the driving force for achieving

trustworthiness both in autonomic and non-autonomic

systems, the peculiarity of context dynamism in autonomic

computing places unique and different challenges on

trustworthiness for autonomic systems. Validation for

example, which is an essential requirement for

trustworthiness, can be design-time based for non-autonomic

systems but must be run-time based for autonomic systems.

Despite the different challenges, it is generally accepted that

trustworthiness is a non-negotiable priority for computing

systems. For autonomic systems, the primary concern is not

how a system operates to achieve a result but how dependable

is that result from the user’s perspective. For complete

reliance on autonomic computing systems, the human user

will need a level of trust and confidence that these systems

will satisfy specified requirements and will not fail. It is not

sufficient that systems are performing within requirement

boundaries, outputs must also be seen to be reliable and

dependable. This is necessary for self-managing systems in

order to mitigate the threat of losing control and confidence

[34]. We posit that such capabilities need to be built in as

integral part of the autonomic architecture and not treated as

add-ons.

0

0.2

0.4

0.6

0.8

1

1.2

1 51 101 151 201 251 301 351

simulation time [s]

sla

sysAC

sysVC

sysDC

299

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The traditional MAPE-based autonomic architecture as

originally presented in [2] has been widely accepted and

autonomic research efforts are predominantly based on this

architecture’s control loop. We must admit that a good

research success has been achieved using the MAPE-based

architecture. However, we suppose, like others, e.g., [7][10],

that this architecture is vague and thus cannot lead to the full

goal of autonomic computing. For example, the MAPE-based

architecture does not explicitly and integrally support run-

time self-validation, which is a prerequisite for

trustworthiness.

REFERENCES

[1] T. Eze, R. Anthony, C. Walshaw, and A. Soper, “A New

Architecture for Trustworthy Autonomic Systems," in

Proceedings of the Fourth International Conference on

Emerging Network Intelligence: (EMERGING) 2012, pp. 62-

68 Barcelona, Spain.

[2] IBM Autonomic Computing White Paper, An architectural

blueprint for autonomic computing, 3rd edition, June 2005.

Available via http://www-

03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%2

0Paper%20V7.pdf last viewed 18th December 2013.

[3] M. Huebscher and J. McCann, “A survey of autonomic

computing—degrees, models, and applications,” ACM

Computer Survey (CSUR), Volume 40, Issue 3, August 2008,

Article 7.

[4] C. Reich, K. Bubendorfer, and R. Buyya, “An autonomic peer-

to-peer architecture for hosting stateful web services”, in

Proceedings of the Eighth IEEE International Symposium on

Cluster Computing and the Grid (CCGRID), pp. 250-257,

2008.

[5] P. de Grandis and G. Valetto, “Elicitation and utilization of

utility functions for the self-assessment of autonomic

applications,” in Proceedings of the sixth International

Conference on Autonomic Computing (ICAC), 2009,

Barcelona, Spain.

[6] C. Dorn, D. Schall, and S. Dustdar, “A model and algorithm

for self-adaptation in service-oriented systems,” in

Proceedings of the seventh IEEE European Conference on

Web Services (ECOWS), 2009, pp. 161 – 170, Eindhoven,

The Netherlands.

[7] H. Shuaib, R. Anthony, and M. Pelc, “A Framework for

Certifying Autonomic Computing Systems”, in Proceedings

of the Seventh International Conference on Autonomic and

Autonomous Systems: (ICAS) 2011, Venice, Italy.

[8] T. Eze, R. Anthony, C. Walshaw, and A. Soper, “Autonomic

Computing in the First Decade: Trends and Direction,” in

Proceedings of the Eighth International Conference on

Autonomic and Autonomous Systems (ICAS) 2012, St.

Maarten, Netherlands Antilles.

[9] J. Kephart and D. Chess, “The Vision of Autonomic

Computing," Computer, vol. 36, no. 1, pp. 41-50, 2003.

[10] A. Diniz, V. Torres, and C. José, “A Self-adaptive Process

that Incorporates a Self-test Activity,” Monografias em

Ciência da Computação, number 32/09, 2009, Rio – Brazil.

[11] H. Chan, A. Segal, B. Arnold, and I. Whalley, “How Can We

Trust an Autonomic System to Make the Best Decision?” in

Proceedings of the second International Conference on

Autonomic Computing (ICAC), 2005, Seattle, USA.

[12] J. Hall and L. Rapanotti, “Assurance-driven design in

Problem Oriented Engineering,” in International Journal On

Advances in Intelligent Systems (IntSys), volume 2, number

1, 2009, pp. 26-37.

[13] S. Kikuchi, S. Tsuchiya, M. Adachi, and T. Katsuyama,

“Constraint Verification for Concurrent System Management

Workflows Sharing Resources,” in Proceedings of the third

International Conference on Autonomic and Autonomous

Systems (ICAS), 2007, Athens, Greece.

[14] X. Li, H. Kang, P. Harrington, and J. Thomas, “Autonomic

and trusted computing paradigms,” in Lecture Notes in

Computer Science, Volume 4158, 2006, pp. 143-152.

[15] S. Anderson, M. Hartswood, R. Procter, M. Rouncefield, R.

Slack, J. Soutter, and A. Voss, “Making Autonomic

Computing Systems Accountable,” in Proceedings of the

fourteenth International Workshop on Database and Expert

Systems Applications (DEXA), 2003

[16] R. Anthony, “Policy-based autonomic computing with

integral support for self-stabilisation,” International Journal

of Autonomic Computing, Vol. 1, No. 1, 2009, pp. 1–33.

[17] R. Anthony, “Policy-centric Integration and Dynamic

Composition of Autonomic Computing Techniques,” in

Proceedings of the fourth International Conference on

Autonomic Computing (ICAC), 2007, Florida, USA.

[18] J. Heo and T. Abdelzaher, “AdaptGuard: Guarding Adaptive

Systems from Instability,” in Proceedings of the sixth

International Conference on Autonomic Computing (ICAC),

2009, Barcelona, Spain.

[19] J. Hawthorne, R. Anthony, and M. Petridis, “Improving the

Development Process for Teleo-Reactive Programming

Through Advanced Composition,” in Proceedings of the

Seventh International Conference on Autonomic and

Autonomous Systems (ICAS) 2011, Venice, Italy.

[20] D. Richards, M. Taylor, and P. Busch, “Expertise

Recommendation: A triangulated approach,” in International

Journal On Advances in Intelligent Systems (IntSys), volume

2, number 1, 2009, pp. 12-25.

[21] T. King, A. Ramirez, R. Cruz, and P. Clarke, “An Integrated

Self-Testing Framework for Autonomic Computing

Systems,” Journal of computers, vol. 2, no. 9, 2007, pp. 37-

49.

[22] T. Eze, R. Anthony, C Walshaw, and A. Soper, “A

Methodology for Evaluating Complex Interactions between

Multiple Autonomic Managers”, in Proceedings of the Ninth

International Conference on Autonomic and Autonomous

Systems (ICAS), 2013, Lisbon, Portugal.

[23] H. Li and S. Venugopal, “Using Reinforcement Learning for

Controlling an Elastic Web Application Hosting Platform,”

in Proceedings of the eighth International Conference on

Autonomic Computing (ICAC), 2011, Karlsruhe, Germany.

[24] T. Yu, R. Lai, M. Lin and B. Kao, “A Fuzzy Constraint-

Directed Autonomous Learning to Support Agent

Negotiation,” in Proceedings of the third International

Conference on Autonomic and Autonomous Systems (ICAS),

2007, Athens, Greece.

[25] R. Das, J. Kephart, J. Lenchner, and H. Hamann, “Utility-

function-driven energy-efficient cooling in data centers," in

Proceeding of the Seventh International Conference on

Autonomic Computing (ICAC), 2010, New York, USA.

[26] I. Goiri, J. Fit´o, F. Juli`a, R. Nou, J. Berral, J. Guitart and J.

Torres, “Multifaceted Resource Management for Dealing

with Heterogeneous Workloads in Virtualized Data

Centers,” in Proceedings of Eleventh IEEE/ACM

300

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Conference on Grid Computing (GRID), 2010,

Brussels, Belgium.

[27] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle,

“Managing Energy and Server Resources in Hosting

Centers,” ACM SIGOPS Operating Systems Review, vol. 35,

no. 5, pp. 103–116, 2001.
[28] J. Berral, R. Gavalda, and J. Torres, ““Living in Barcelona”

Li-BCN Workload 2010,” Technical Report LiBCN10, 2010,

Barcelona Supercomputing Centre, Barcelona, Spain.

[29] M. Pretorius, M. Ghassemian, and C. Ierotheou, “An

investigation into energy efficiency of data centre

virtualisation,” in Proceedings of International Conference

on P2P, Parallel, Grid, Cloud and Internet Computing,

2010, Fukuoka, Japan.

[30] M. Pretorius, M. Ghassemian, and C. Ierotheou,

“Virtualisation –Securing a Greener Tomorrow with

Yesteryear’s Technology,” in Proceeding of the Twelfth

IFIP/IEEE International Symposium on Integrated Network

Management (IM 2011), 2011, Dublin, Ireland.

[31] Computing Research Association, “Four Grand Challenges

in Trustworthy Computing,” in Proceedings of Second

Conferences on Grand Research Challenges in Computer

Science and Engineering, November 16–19, 2003.

[32] C. Mundie, P. Vries, P. Haynes, and M. Corwine,

“Trustworthy Computing: Microsoft White Paper,”

Microsoft Corporation, October 2002.

[33] F. Schneider, “Trust in Cyberspace,” Committee on

Information Systems Trustworthiness, National Academy

Press, 1998, Washington, D.C.

[34] L. Yang and J. Ma, Introduction to the Journal of Autonomic

and Trusted Computing. American Scientific Publishers

www.aspbs.com/joatc.html 26/08/13 last viewed 28/05/2014

301

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

APPENDIX A: TAArch Application

The simulations of this paper are performed using the TAArch

Application. To understand the workings of the application let us

consider Figure A, which is a screen shot of a basic resource

allocation simulation with 75 servers (x) and 4 applications (ix). The

user selects the number of servers and applications and this will

populate the Si and Aj pools respectively (labels x and ix). The

application supports two experiments (‘Normal Simulation’ and

‘Interoperability’, which is not covered here) as shown (iii) and in

this case the ‘Normal Simulation’ option is selected, which will

automatically check the PeM autonomic manager option (vi). Then

the actual manager is selected, which in this case is the

[AC+VC+DC] option representing all three managers. As shown

(vii) the DZWidth can be manually controlled by the user or

dynamically tuned by the system depending on which option is

selected. Before the simulation starts it is possible to set the internal

variables through (xiv) to user preferences. The possibility of

changing the internal variables is deactivated (as shown by xiv) as

soon as the simulation starts. Change of server capacity is also

deactivated (i) as soon as simulation starts. Meanwhile, application

size (i), which is an external variable, can be changed at any time in

the simulation. Once all parameters are set the simulation can be

started by clicking ‘Run Simulation’. For the purpose of this

example the shutdown server pool Ši is not used (xi) –it is only used

for the ‘Interoperability’ simulation.

Once the simulation starts, the manager starts populating the Ṳ

pool (xiii). The view of this pool shows current and live updates of

process status. ‘Available capacity’ shows running capacity available

to serve individual application request while ‘Run’g requests’ are the

total running individual request capacity. ‘Offset’ is the difference

between running request capacity and available capacity.

‘Server_ID’ shows the collection of servers currently providing

services for individual application request. Depending on the number

of servers in use, some of the allocated servers may no longer be

visible in the Ṳ pool but can be viewed from the respective

individual pool (xii). The provisioning servers, that is, servers that

are been configured in the queue can be viewed through (ii).

Individual results for the managers are displayed in (iv) and (v). Also

as stated, data displayed below (viii) and in (ii) are for AC (sysAC).

Although there is provision for live graphing of results through the

‘Show Graph’ button, complete result values can be exported to

Excel Sheet through the ‘Export Results’ button (vii).

iii
iv v

vi

vii

viii

ix

x
xi

xiii

xii

xiv

ii

i

Figure A: Simulation screen shot showing TAArch application front end.

