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ABSTRACT 

This paper investigates the construction of proximity 

graphs in order to allow users to explore similarities in 

melodic datasets. A key part of this investigation is the 

use of a multilevel framework for measuring similarity in 

symbolic musical representations. The basis of the 

framework is straightforward: initially each tune is nor-

malised and then recursively coarsened, typically by re-

moving weaker off-beats, until the tune is reduced to a 

skeleton representation with just one note per bar. Melod-

ic matching can then take place at every level: the multi-

level matching implemented here uses recursive variants 

of local alignment algorithms, but in principle a variety of 

similarity measures could be used. The multilevel frame-

work is also exploited with the use of early termination 

heuristics at coarser levels, both to reduce computational 

complexity and, potentially, to enhance the matching 

qualitatively. The results of the matching algorithm are 

then used to construct proximity graphs which are dis-

played as part of an online interface for users to explore 

melodic similarities within a corpus of tunes. 

1. INTRODUCTION 

1.1 Background 

This paper presents an investigation into constructing 

proximity graphs using a multilevel melodic similarity 

metric. The resulting graphs are displayed as part of an 

online interface for users to identify related tunes, in par-

ticular, those found within the abc notation music corpus. 

Abc notation is a text-based music notation system 

popular for transcribing, publishing and sharing music, 

particularly online. It was formalised and named by the 

author in 1993 and since its inception he has maintained a 

website, now at abcnotation.com, with links to resources 

such as tutorials, software and tune collections. 

In 2009 the functionality of the site was significantly 

improved with an online tune search engine which cur-

rently indexes over 500,000 abc transcriptions, mostly 

folk and traditional music, from across the web. Users of 

the tune search are able to view, listen to and download 

the staff notation, MusicXML, MIDI representation and 

abc code for each tune, and the site currently attracts 

around half a million visitors a year. 

In 2014 the search was enhanced with the introduction 

of TuneGraph, an online visual tool for exploring melodic 

similarity, [1]. TuneGraph uses a similarity measure to 

derive a proximity graph representing similarities within 

the abc notation corpus backing the search engine. From 

this a local graph is extracted for each vertex, aimed at 

indicating close variants of the underlying tune represent-

ed by the vertex. Finally an interactive user interface dis-

plays each local graph on that tune’s webpage, allowing 

the user to explore melodic similarities.  

A typical page display, is shown in Fig. 1, with the 

tune in standard notation, the MIDI player, the abc nota-

tion and the TuneGraph of close variants (top right). One 

of the close variants has been selected by the user (the 

vertex is enlarged) and is displayed below by the 

TuneGraph viewer (bottom right).  

Figure 1. An example of a tune page. 

A problem with the initial version of TuneGraph is that 

the similarity measure used to assess the proximity of 

variants is based on the incipit only (first three bars, ne-

glecting any anacrusis). Of course not all closely related 

incipits result from closely related tunes, so this paper 

considers a different similarity measure which uses a 

multilevel representation of each tune in its entirety.  

The introduction of this new representation has led to 

an investigation into the construction process for these 

graphs and a much better understanding of the parameters 

involved. That investigation is presented here. 

1.2 Organisation 

The rest of the paper is organised as follows. The multi-

level paradigm is not (yet!) accepted as a valuable tool in 

the symbolic music analysis toolkit so section 2 presents 

a rationale. In section 3 the multilevel matching imple-

mentation, and its use in the construction of the proximity 

graphs, is discussed: this includes two recursive variants 

of local alignment algorithms and a similarity measure 

adapted to handle their globalised nature. Experimenta-

tion and results follow in section 4 and finally, in section 

5, conclusions are presented. 
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Figure 2. Two tune variants for Speed the Plough. 

2. MULTILEVEL MATCHING: RATIONALE 

Fig. 2 shows two versions of the first 4 bars of Speed the 

Plough, a tune well-known across the British Isles (at the 

time of writing the abcnotation.com tune search has  277 

tunes with a title which includes the phrase “Speed the 

Plough”, of which 157 are exact electronic duplicates. 

The first version in Fig. 1 is drawn from an English col-

lection and the second, with the title “God Speed the 

Plough”, from an Irish collection. Clearly these tunes are 

related but with distinct differences, particularly in the 

second and fourth bars. 

It is typical in tunes like this that the emphasis is 

placed on the odd numbered notes, and in particular the 

first note of each beam. The strongest notes of the bar are 

thus 1 and 5, followed by 3 and 7. 

To capture this emphasis when matching tune variants 

it might be possible to use some sort of similarity metric 

which weights stress (so that matching 1
st
 notes carry 

more importance than, say, 2
nd

 notes, e.g. [2]). However, 

in this paper the approach is to build a multilevel (hierar-

chical) representation of the tunes. 

Figure 3. Multilevel coarsening of Speed the Plough 

Figure 4. Multilevel coarsening of God Speed the Plough 

Figs. 3 & 4 show multilevel coarsened versions of the 

original tunes, where the weakest notes are recursively 

replaced by removing them and extending the length of 

the previous note by doubling it.  

At level 0, i.e. the original, the tunes are quantised to 

show every note as a sixteenth note, thus simplifying the 

coarsening process. In addition the triplet in bar 3 of 

“God Speed the Plough” is simplified by representing it 

as two eighth notes, the first and last notes of the triplet. 

To generate level 1, the 2nd, 4th, 6th and 8th notes are 

removed from each bar; for level 2, the original 3rd and 

7th notes (which are now the 2nd and 4th) are removed; 

for level 3, the original 5th note (now the 2nd) is re-

moved. As can be seen, as the coarsening progresses the 

two versions become increasingly similar and thus pro-

vide a good scope for melodic comparisons which ignore 

the finer details of the tunes. 

3. IMPLEMENTATION 

This section discusses in detail the construction of the 

proximity graphs. The implementation is mostly straight-

forward. Each tune is initially normalised & quantised 

(section 3.1) and then recursively coarsened down to a 

skeleton representation with just one note per bar (section 

3.2). Melodic matching can then take place at every level 

(section 3.3) using a melodic similarity measure. A prox-

imity graph is induced by the similarity measure (section 

3.4) which is then sparsified (section 3.5). Finally section 

3.6 discusses how the multilevel framework is used.

3.1 Normalisation 

As part of the normalisation process, each tune is cleaned 

of grace notes, chords and other ornaments. Generally 

most tunes under consideration from the abc corpus are 

single-voiced, [1], but if not, only the first voice is used 

for the matching. 

Next, each tune is quantised so that longer notes are 

replaced with repeated notes (e.g. a half note is replaced 

with 4 eighth notes); more details can be found in [1]. 

3.2 Coarsening 

The coarsening works by recursively removing “weaker” 

notes from each tune to give increasingly sparse represen-

tations of the melody. In the current implementation the 

coarsening strategy considers that the weaker notes are 

the off-beats or every other note and it is these which are 

removed (see Figs. 3 & 4). However, it should be stressed 

that the multilevel framework is not tied to a particular 

coarsening strategy and any algorithm that can be used 

(preferably recursively) to reduce the detail in the melody 

could be used in principle. For example, it should even be 

possible to use something as complex as a Schenkerian 

reduction, [3]; conversely many multilevel algorithms in 

other fields successfully use randomised coarsenings, [4]. 

Coarsening progresses until there is one note remain-

ing in each bar; it would be possible to take it further, 

coarsening down to one single note for a tune, but exper-

imentation suggests that the bar is a good place to stop. 

Exceptions to the “remove every other note” rule are 

handled with heuristics, typically for tunes in compound 

time. Thus for jigs in 6/8, 9/8 & 12/8, which are normally 
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written in triplets of eighth notes, the weakest notes are 

generally the second of each triplet. The same applies for 

waltzes, mazurkas and polskas in 3/4, so that for 3 quarter 

notes in a bar, the weakest is generally the second. The 

heuristics for dealing with these, and other less common 

time signatures, are discussed in [1]. 

3.3 Similarity Measure 

Once the multilevel representation is constructed a varie-

ty of methods could be used to compare tunes at each 

level. This is a strength of the multilevel paradigm which 

is not reliant on a particular local search strategy, [4]. 

In a recent comparison study Janssen et al., [5], sug-

gest that one of the best similarity measures for finding 

melodic segments in a corpus of folk songs is local 

alignment. Meanwhile in previous work the longest cur-

rent substring (LCSS) was used successfully within a 

multilevel context for melodic search, [6] (in fact, LCSS 

is just a special case of local alignment – see section 

3.3.2). Therefore, in this paper recursive versions of both 

local alignment and LCSS are compared (although unlike 

Janssen et al. local alignment is applied to intervals rather 

than pitches, making it transposition invariant). 

3.3.1 Local alignment (LA) 

Local alignment is a well-known technique originating 

from molecular biology. Given two strings it finds the 

optimal alignment for two sub-sequences of the originals. 

The algorithm does not require the aligned sub-sequences 

to match exactly and makes allowances for gaps and sub-

stitutions. For example the strings ***abcde** and 

*acfe**** (where the asterisks represent non-

matching entries) could potentially be aligned between a

and e with a gap at the b and the substitution of d for f. 

Gaps, otherwise known as insertions and deletions, and 

substitutions are penalised with weights. 

The algorithm is known as local alignment (LA) be-

cause, unlike the global alignment algorithms which pre-

ceded it, mismatching sub-strings from either side of the 

alignment are not penalised (i.e. in the example the string 

of non-matching entries, indicated by asterisks, could be 

arbitrarily long without changing the alignment score). 

To compute the optimal local alignment for two strings 

of length m & n, an (m+1) x (n+1) score matrix A is con-

structed with the top row and left hand column initialised 

to zero. The remainder of the matrix is then filled using  

���� �� � �	

��
����� � �� � � �� � ���� � ������� � � �� � ��	���� � �� �� � ��	��

���� � ��� � � ���	� !���������"#���� � ���$%&$�"�%�"'(�"#���� ) ��
where Wmatch, Wsubstitution and Wgap represent the weights 

for a matching or substituted entry or a gap in the aligned 

sequences. The implementation discussed here follows 

Janssen et al. and uses Wmatch = 1, Wsubstitution = –1 and 

Wgap = –0.5. 

This algorithm was introduced by Smith & Waterman, 

[7]. In fact their original scheme is a little more computa-

tionally involved but the scheme above is widely used 

and is the variant tested by Janssen et al.  

To calculate the alignment score, and hence the quali-

tative similarity, the above scheme suffices. However to 

determine the aligned sub-sequences a traceback proce-

dure is required. The traceback is implemented by record-

ing a matrix of DIAG, UP or LEFT pointers for every en-

try of the score matrix indicating where the maximum 

value originated. If the maximum value is zero an END 

pointer is stored. 

The traceback starts at the pointer matrix entry corre-

sponding to the maximum score found and then tracks 

back through the pointers, terminating when it reaches an 

END. Diagonal moves indicate contiguous values in the 

two aligned sub-sequences whilst left or up moves indi-

cate gap in one of them. 

3.3.2  Longest Common SubString (LCSS) 

The longest common substring algorithm operates in a 

similar fashion to local alignment filling in an (m+1) x 

(n+1) matrix of alignment values. However, because 

there is no need to allow for gaps, no traceback is re-

quired: the position of the maximum score in the matrix 

indicates the end of the longest common substring and 

the value of this entry gives its length.  

In fact it is easy to see that, if the local alignment 

weights Wsubstitution and Wgap are sufficiently large, so that 

gaps and substitutions can never occur in an optimal 

alignment, then the LCSS algorithm is just a special case 

of local alignment. 

From here on, therefore, both algorithms, LA and 

LCSS, will be referred to collectively as local alignment, 

the main distinction between the two being that LCSS 

produces exact matching aligned substrings, is faster to 

compute and requires less memory (there is no need to 

use a full matrix and a memory efficient version exists 

which just repeatedly swaps a pair of arrays, one contain-

ing the row under calculation and one containing the pre-

vious row). Conversely, LA is more computationally 

complex and more memory intensive (if the traceback is 

required to identify the sub-sequences), but will generally 

match longer sub-sequences. Using Wmatch = 1, the simi-

larity measures or alignment scores that either algorithm 

produces represent the length of the sub-sequences 

aligned, although in the case of LA there may also be 

penalty weights for gaps and substitutions so that, for ex-

ample, the matching of abcde with acfe has a score of 

1 – ½ + 1 – 1 + 1 = 1½. 

3.3.3 Recursive local alignment = global alignment  

A problem with using LCSS, and to a lesser extent LA, is 

that they are local. For example, using LCSS, ab**ba

has exactly the same alignment score (of 2) when 

matched with **ab and with ab**ba, even though the 

latter seems a far better match. This is because the second 

match (ba) is not accounted for. 

This was less of an issue in the predecessor to this pa-

per, [1], where LCSS was used in a multilevel melodic 
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search algorithm, since search algorithms are typically 

trying to find the best matches of a short phrase in a da-

taset of complete melodies. However for matching it is 

crucial to distinguish between tunes which match well 

across their entire length and those which perhaps only 

match for a short segment. 

Interestingly Smith & Waterman touch on this in their 

original paper where they say “the pair of segments with 

the next best similarity is found by applying the traceback 

procedure to the second largest element of [the matrix] 

not associated with the first traceback”, [7]  

Unfortunately, just working from the existing matrix 

may lead to overlapping local alignments, but instead lo-

cal alignment may be applied recursively as follows: 

when applied to two strings, S1 and S2, local alignment 

splits both into three substrings S1 = L1 + A1 + R1 and 

S2 = L2 + A2 + R2, where A1 and A2 are the aligned 

substrings (exact matches for LCSS or potentially with 

gaps and substitutions for LA), L1 and L2 are the left 

hand side unmatched substrings and R1 and R2 are the 

right hand side unmatched substrings (where any of the 

these unmatched substrings may be of length 0). Thus, 

having found A1 & A2 and split S1 & S2, local align-

ment can then be applied to L1 & L2 and to R1 & R2.  

This procedure continues recursively, terminating 

when no alignment is found, or one or both lengths of the 

substrings being aligned are 0. For example, if the start of 

S1 is aligned with the end of S2 no further recursion is 

possible as the lengths of L1 and R2 are 0. 

This recursion effectively turns the local alignment al-

gorithms LCSS or LA into a globalised similarity meas-

ure, giving an alignment score along the length of both 

strings being compared. Henceforth these Recursive algo-

rithms will be referred to as RLCSS and RLA. 

3.3.4 Biased recursive local alignment 

An issue that became apparent when using recursive 

alignment, is that the algorithm makes no distinction be-

tween one long aligned sequence and several shorter 

ones. For example (using RLCSS) abcd**** has the 

same alignment score (of 4) when compared with 

abcd**** and with **a**b**c**d**, even though 

the former seems a good match and the matching with the 

latter is essentially noise. 

To address this, the similarity measure is biased to-

wards longer aligned sub-sequences by taking the 2-norm 

(square root of the sum of squares) of the alignment 

scores found by the recursive local alignment. In the 

above example this means that the biased recursive local 

alignment score is *+, � + when matching abcd****

with abcd****, whereas when matching with 

**a**b**c**d** it is *�, � �, � �, � �, � - . 

Space precludes detailed empirical evidence of the effect 

of this biasing but it made a huge difference to the accu-

racy of the matching in terms of removing false positives 

from the results (see also section 3.4 for typical impact). 

This biased recursive local alignment thus gives a 

measure, SXY, expressing the similarity two arrays of in-

tervals X and Y, each representing a tune. 

3.4 Constructing the fundamental proximity graph 

Neglecting the multilevel framework for now, this simi-

larity measure, SXY, induces a complete weighted graph 

on the dataset, where the edge weight between each pair 

of melodies is given by the similarity. Subsequently, 

when the graphs are displayed, edge thickness is shown 

in proportion to the weight with similar vertices joined by 

thick edges and dissimilar ones by thin edges. 

However, most edges in the graph will have very small 

weights as most melodies in the dataset are only similar 

to a few others. At this point, therefore, it makes sense to 

restrict the graph to include only edges for tunes which 

are reasonably close matches. This graph is referred to 

henceforth as the fundamental proximity graph (FPG). 

(The FPG has an analogue in search: rather than present-

ing the whole dataset, ordered by increasing distance, 

typically search results will be restricted to a subset of 

“reasonably similar” results with some cut-off after which 

more dissimilar results are not shown.) 

This restriction could be achieved in a variety of ways 

but here it is assessed by a fundamental matching 

threshold, T, and edges between melodies are only in-

cluded in the FPG if they match across at least some pro-

portion T of their length. More specifically an edge be-

tween vertices Vx and Vy is excluded if   

SXY < max(length(X), length(Y)) * T. 

As an aside, when calculating using this threshold it is 

also possible to use the minimum length but this results in 

very short tunes (such as fragments, included in the da-

taset as examples) matching with many other tunes and 

their corresponding vertices having very high degree. 

Typical values for T in the experiments are 1/2 (very 

restrictive, excludes almost all edges), 1/3, 1/4, 1/6 and 

1/8 (fairly inclusive, allows a lot of false positives). Note 

that there is no reason for this to be a simple fraction and 

T could just as easily be set to, say, 0.40 or 0.317; frac-

tions are simply used as they tend to be more expressive. 

Note it is not the intention in this paper to determine a 

definitive value for T (even if such a value exists). In an 

ideal world this would be a user chosen parameter and in 

principle it should be possible to set some range of val-

ues, e.g. T in the interval [0.125, 0.5], which the user 

could adjust according to their needs (provided that the 

lower value is not too small to make the calculation in-

tractable – if set to 0, every edge is included and the fun-

damental proximity graph is a complete graph).  

Note it is not the intention in this paper to determine a 

definitive value for T (even if such a value exists). In an 

ideal world this would be a user chosen parameter and in 

principle it should be possible to set some range of val-

ues, e.g. T in the interval [0.125, 0.5], which the user 

could adjust according to their needs (provided that the 

lower value is not too small to make the calculation in-

tractable – if set to 0, every edge is included and the fun-

damental proximity graph is a complete graph).  

The use of biased recursive local alignment does ob-

scure what these fractions imply exactly, as it is no longer 

a case of adding up all the recursively aligned scores. To 

analyse this further consider that a large proportion of 

melodies in the dataset are 32 bar tunes in an AABB for-
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mat. This is very typical in western European folk music 

and usually means that the tune is written as 16 bars, AB, 

with repeat markers at the end of each section. For a reel 

in common time this would be quantised as 8 eighth notes 

per bar or a total of 16 x 8 = 128 notes (strictly speaking 

127 intervals).  

So if T is set to 0.5 then, when using RLCSS, to be in-

cluded two tunes would need to match exactly across at 

least half the tune (8 bars or 64 notes). 

If T is set to 0.25 then they would need to match exact-

ly across one a quarter of the tune (4 bars or 32 notes). 

Alternatively, again with T set to 0.25, they could match 

across four segments, each two bars (16 notes) long (in 

this case SXY = *�., � �., � �., � �., � *���-+ �/-); in other words a total of 64 notes or half the tune.  

A similar analysis for T = 0.125 shows that the edge 

can be included if the tunes match exactly over at least: 

• a single 2 bar segment (16 notes or an eighth of 

the tune); or 

• four segments, each 1 bar long (so a total of 32 

notes or a quarter of the tune); or 

• sixteen segments, each ½ a bar long (so a total of 

64 notes, or half the tune). 

and obviously many other combinations are possible.  

This gives a sense of the impact of the biased recursive 

local alignment: the matching can occur over a single 

long phrase or several shorter phrases, but for the latter 

the total length of the matching substrings will be longer. 

Using RLA the picture is more difficult to analyse: for 

any pair of tunes, the aligned sub-sequences will typically 

be longer than RLCSS (because of the inclusion of gaps 

and substitutions) but similarity scores will be lower, be-

cause of the penalties. In practice, it seems possible to use 

higher values of T (e.g. 1/2, 1/3 and 1/4) to generate the 

fundamental proximity graph (see section 4.1.1). 

3.5 Constructing proximity graphs for users 

In fact the fundamental proximity graph is never actually 

constructed, although a sparsified version is. Ultimately 

the aim is to create a local proximity graph for each tune 

showing the closest matching variants. There are practical 

restrictions on the sizes of graphs that can be easily dis-

played by the website and assimilated by the user,  lead-

ing the earlier work on TuneGraph to focus on the 

size/density of the local graphs and to favour those with 

no more than 40 vertices, [1].  

The use of the FPG does help a great deal towards that 

end but, as will be seen (later, in Table 1), for some set-

tings of T, it can still result in some vertices with a large 

number of neighbours (vertex degree) and consequently 

some very large local graphs. 

To reduce some of these (and simplify the construction 

algorithm as compared with the previous TuneGraph pa-

per which uses iterative bisection), each vertex is com-

pared with every other vertex and only a fixed number of 

the closest neighbours which also pass the matching 

threshold are used to create edges in the sparsified prox-

imity graph (SPG). The parameter controlling this is D, 

the maximum included degree, so that each vertex adds 

a maximum of D edges into the graph. 

For many vertices there will be no neighbours which 

pass the matching threshold (i.e. no sufficiently similar 

tunes) but some will end up with significantly higher de-

gree than D (since, although a vertex V may only match 

with a maximum of D neighbours, many other vertices 

could match with V). Therefore a further sparsification 

step takes place (as described in [1]) traversing the list of 

SPG edges (sorted in decreasing order by combined de-

gree of the incident vertices) and removing any edge if 

both of its incident vertices have degree greater than a 

pre-specified minimum sparsification degree, S.  

The previous TuneGraph paper focussed heavily on 

the choice of D and S putting the emphasis on the 

size/density of the local graphs probably at the expense of 

the data that they contain: potentially the local graphs can 

be made very rich in structure by matching tunes that are 

not very similar. Here, instead, by ensuring that the edges 

of the sparsified proximity graph are a subset of those 

from the fundamental proximity graph, the aim is to cre-

ate local graphs that are both visually manageable (by 

sparsifying those which are not) and which do not contain 

a lot of spurious edges representing dissimilar tunes. 

Therefore, although considerable experimentation has 

been carried out with D and S (especially since the intro-

duction of the simplified sparsification algorithm), none 

of that experimentation is presented here and for all the 

results they are set to D = 6 and S = 4. 

Finally note that the construction of the SPG is essen-

tially a post-processing cleanup operation which aims to 

eliminate any vertices of high degree so that the graphs 

are easy for users to assimilate and understand. In fact, 

experimentation in section 4.1.1 shows that for the more 

restrictive settings of T the FPG could be used in place of 

the SPG with no cleanup necessary (for example for RLA 

with T = 1/2 the maximum degree of vertices in the SPG 

is 37 and for RLCSS with T = 1/4 it is just 16). 

3.6 Using the multilevel framework 

It should be clear by now that constructing the sparsified / 

fundamental proximity graph is a vast computation. Even 

for the small test dataset used in the experiments with N 

= ~5,000 tunes, it potentially involves ~12,500,000 pair-

wise comparisons, i.e. ½ N(N-1) and, if every tune were 

16 bars long (128 eighth notes), each comparison in-

volves filling in a 128 x 128 matrix (16,384). So in total 

3,200,000,000 calculations and that is without using re-

cursion for the local alignment, which could easily double 

the total. For the full dataset, which currently has N = 

~187,000 tunes, the complexity is astronomical. 

As previously, [1], a straightforward way to cut this 

down pragmatically is to segment the dataset according to 

meter, so that tunes are only compared with others in the 

same meter. In the small test dataset the largest group 

(which dominates the calculation) then contains ~1,500 

tunes in 6/8 resulting in 1,125,000 pairwise comparisons. 

For the full dataset the largest group contains ~56,000 

tunes in 4/4 which is close to being intractable, but fortu-

nately the multilevel framework can assist here by com-

puting similarity scores at all levels of the multilevel rep-

resentation, coarse to fine. 
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At first sight this might seem to increase the computa-

tional complexity but the interval arrays are much smaller 

at the coarsest level than the original. For a typical 16 bar 

score of a 32 bar tune the arrays will be 16 entries long at 

the coarsest level rather than the 128 in the original. If the 

coarse level matching can detect that a pair of tunes does 

not match, that edge can be excluded from the SPG at the 

cost of filling in a 16 x 16 matrix (256 entries) as opposed 

to the 128 x 128 matrix (16,384 entries), a 64-fold saving. 

To that end the multilevel similarity calculation uses 

level matching threshold, T
l
, and the multilevel match-

ing is terminated at any level if 

S
l
XY < max(length(X

l
), length(Y

l
)) * T

l

where X
l
/ Y

l
 are the interval arrays for tunes X and Y at 

level l of the multilevel representation and S
l
XY is the bi-

ased recursive local alignment measured between them. 

Obviously some matches which should actually be in-

cluded in the FPG may be filtered out at a coarse level 

(i.e. those comparisons which fail the level matching 

threshold at one or more levels but pass the fundamental 

matching threshold). Therefore the level matching 

threshold, T
l
, needs to be used with caution and should be 

more conservative than T (obviously there is no point 

making T
l
 larger than T as it would then take precedence 

at the finest level). Section 4.1.2 conducts some experi-

ments into how these parameters interact. 

This approach is referred to as multilevel filtering 

(MLF): the multilevel similarity scores, S
l
XY, are com-

puted and (as timings show in section 4.1.2) are used ex-

tensively to filter out dissimilar matches. However, the 

S
l
XY are discarded for l > 0 (i.e. all but the finest level) 

and the similarity between a pair of tunes is just the score, 

SXY (= S
0

XY), from the original representation. 

Another way to use the multilevel framework, along-

side the filtering, is to sum the similarity scores, S
l
XY, at 

each level to give a multilevel similarity score, Σl S
l
XY, 

and to use this when weighting edges. This approach was 

used successfully for searching the dataset, [6], and is re-

ferred to here as multilevel weighting (MLW). No em-

pirical evidence is presented here that this approach is 

successful – it is rather a matter of opinion as to whether 

the multilevel representation is a meaningful reduction of 

the tune (although the effective use of the technique in 

search results, [6], and the success of the multilevel filter-

ing in section 4.1.2 suggest that it may be). 

Finally, if the multilevel representations are not used 

the matching framework is referred to as single level 

(SL). 

4. EXPERIMENTATION 

4.1 Results – Test Dataset 

The initial experimentation uses a small subset of the full 

abc corpus consisting of the 5,638 abc transcriptions tak-

en from the Village Music Project
1
, a collection of Eng-

lish social dance music mostly transcribed from hand-

written manuscript books in museums and library ar-

chives. Of these 30 are removed due to implementation 

limitations (see [1]) leaving 5,608. 

                                                           
1
 See http://village-music-project.org.uk/  

4.1.1 Fundamental Proximity Graph 

The first experiments are to determine the characteristics 

of the fundamental proximity graph (FPG). Recall from 

section 3.4 that the FPG only includes edges between two 

vertices (tunes), VX and VY, if the similarity score for the 

interval arrays which represent them, X and Y, is greater 

than some fraction, T, of the length the larger array. 

Local    

alignment 

Matching 

Threshold, 

T 

Non-

isolated 

vertices 

Degree 

Avg. Max. 

RLA 

1/4 3,907 63.89 738 

1/3 3,206 18.49 441 

1/2 1,923 1.06 37 

RLCSS 

1/8 4,436 17.26 253 

1/6 2,812 1.8 23 

1/4 1,800 0.86 16 

Table 1. Characteristics of the fundamental proximity 

graph for the test dataset. 

Table 1 shows the results for different values of T and 

both local alignment algorithms, RLA and RLCSS, in 

terms of the number of non-isolated vertices (those with 

at least one edge), and the average and maximum degree. 

Obviously the smaller the value of T, the more edges are 

included and so the more dense the graph (i.e. the higher 

the average degree). As mentioned in section 3.4, ideally 

the user would be allowed to control the value of T to de-

termine dynamically the restrictiveness of matching and 

consequently the size/shape of the local graphs. 

No direct comparison between RLA and RLCSS is 

possible but one feature that is immediately apparent 

from the table is that they induce somewhat different 

structures on the dataset. Compare, for example, RLA 

with T = 1/3 against RLCSS with T = 1/8: both have sim-

ilar average degree values (18.49 versus 17.26) and hence 

a similar number of edges but RLA has fewer non-

isolated vertices (3,206 versus 4,436) and consequently a 

much higher maximum degree (441 versus 253). The 

same features can be observed for RLA with T = 1/2 as 

compared with RLCSS with T = 1/4 (both have an aver-

age degree close to 1). 

This proves nothing but does suggest that at a specific 

graph density, RLCSS connects up more of the vertices. 

Finally the previous work on TuneGraph, [1], suggest-

ed that, subjectively, the ideal size for the local graphs 

displayed to users is a maximum of ~40 vertices with a 

preferred size of ~20. Local graphs typically include two 

levels of separation so if the average degree of vertices is 

20, say, there could potentially be 20 x 20 = 400 vertices 

in the average local graph. On the other hand, in reality 

many vertices in the local graphs are connected (for ex-

ample, if a vertex of degree 20 is part of a clique then its 

20 neighbours will all be connected to each other and so 

its local graph will only contain 21 vertices). However, 

this does suggest that the minimum values for the match-

ing threshold should be no less that T = 1/3 for RLA and 

no less than T = 1/8 for RLCSS, so that the average de-

gree does not rise above 20. 
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At the opposite end of the scale, the maximum values 

for T should not be so large that the FPG contains no 

edges. If the average degree is around 1 and there are 

around 2,000 non-isolated vertices then the average de-

gree of non-isolated vertices is ~5,000 x 1 / 2,000 = ~2.5 

(more accurately 2.79 for RLA with T = 1/2 and 2.42 for 

RLCSS with T = 1/4), leading to average local graphs 

with 5 – 10 vertices. 

In summary, this suggests that a reasonable range of 

values of T for the user to control is [0.333, 0.5] for RLA 

and [0.125, 0.25] for RLCSS. 

4.1.2 Multilevel filtering 

For small or medium sized datasets, such as the test da-

taset, computational complexity is not a major issue. 

However, for the entire corpus it is not practical to run 

the graph construction process in full, hence the devel-

opment of the multilevel filtering scheme which aims to 

filter out dissimilar tunes at coarse representations (when 

the interval arrays are much shorter and the local align-

ment much faster). The downside is that the multilevel 

scheme may mistakenly filter out similar tunes. 

Tables 2 and 3 explore this with filtering results for the 

RLA and RLCSS algorithms and for various combina-

tions of T   and T
l
. For the single level (SL) variants no 

filtering takes place but, as discussed in section 3.6, for 

the multilevel filtering variants (MLF), the larger the val-

ue of T
l
 the more edges will be filtered at coarse levels. 

Most of these edges would not be included in the funda-

mental proximity graph (FPG) as the underlying tunes are 

too dissimilar and so the multilevel filtering speeds up the 

matching. However, as T
l
 increases towards T the ten-

dency is for it to filter out more FPG edges in error. The 

aim therefore is to find a suitable value of T
l
 which min-

imises both the runtime and the percentage of FPG edges 

filtered (although the filtered FPG edges are likely to 

arise from the weakest matches and might subsequently 

be removed anyway during sparsification). 

  

T Tl
#edges 

in FPG 

#edges in 

FPG fil-

tered 

%age 

filtered ru
n

ti
m

e 

(s
) 

SL 

1/3 

n/a 

51,854 

n/a   1,188 

MLF 1/16 1,734 3.34% 1,415 

MLF 1/12 13,451 25.94% 714 

MLF 1/8 35,293 68.06% 235 

MLF 1/6 47,790 92.16% 84 

SL 

1/2 

n/a 

2,970 

n/a   1,001 

MLF 1/8 294 9.90% 229 

MLF 1/6 597 20.10% 75 

MLF 1/4 687 23.13% 52 

MLF 1/2 1,347 45.35% 50 

Table 2. Filtering results for the RLA algorithm. 

T Tl
#edges 

in FPG 

#edges in 

FPG fil-

tered 

%age 

filtered ru
n

ti
m

e 

(s
) 

SL 

1/8 

n/a 

48,405 

n/a   900 

MLF 1/16 913 1.89% 740 

MLF 1/12 7,119 14.71% 316 

MLF 1/8 26,593 54.94% 94 

SL 

1/6 

n/a 

5,039 

n/a   880 

MLF 1/12 153 3.04% 328 

MLF 1/8 269 5.34% 96 

MLF 1/6 1,304 25.88% 35 

SL 

1/4 

n/a 

2,410 

n/a   842 

MLF 1/8 4 0.17% 90 

MLF 1/6 8 0.33% 33 

MLF 1/4 90 3.73% 25 

Table 3. Filtering results for the RLCSS algorithm. 

Taking the data as a whole first of all, it can be seen 

that when the FPG is sparse the filtering is more success-

ful. For example, for RLA with T = T
l
 = 1/2, the maxi-

mum filtration is 45.35% as compared with 92.16% when 

T = T
l
 = 1/3. Similarly for RLCSS with T = T

l
 = 1/4 the 

maximum filtration is just 3.73% as compared with 

54.94% when T = T
l
 = 1/8. 

Comparing RLA with RLCSS, however, it is clear that 

RLCSS is much more successful at not filtering out FPG 

edges although it may still filter a lot (say more than 

10%) if the FPG is not particularly sparse and T
l
 is close 

to T (for example when T = T
l
 = 1/8 or T = T

l
 = 1/4).  

It is possible to reduce filtering for RLA down to less 

than 10% but only for the smallest values of T
l
, specifi-

cally T
l
 = 1/16 for T = 1/3 and T

l
 = 1/8 for T = 1/2. This 

is not so useful as the multilevel filtering doesn’t improve 

the runtime so much: for example MLF actually increases 

the runtime from 1,188 seconds to 1,415 for T
l
 = 1/16 and 

T = 1/3. The runtime results are better for T
l
 = 1/8 for T = 

1/2 and MLF is over 4 times faster than SL (229 seconds 

as compared with 1,001) with 9.90% filtering – however, 

this is at the upper end of the range suggested above for T. 

Conversely for RLCSS there are combinations of T 

and T
l
 which achieve significantly less than 10% filtering 

and where T
l
 is large enough to dramatically improve 

runtime. The best example is T = 1/6 and T
l
 = 1/8 where 

the MLF runtime is 96 seconds as compared with 880 for 

SL at the expense of only 5.34% filtering. Fortunately, 

this is in the middle of the range of values of T that might 

be appropriate for a user to control (i.e. [0.125, 0.25] – 

see above). Even at the bottom end of the range, T = 1/8 

= 0.125, it is possible to use T
l
 = 1/12 and achieve sub-

stantial time savings (316 seconds for MLF as compared 

with 900 for SL) with only 14.71% filtering. At the top 

end of the range, where the FPG is very sparse it is possi-

ble to use T = T
l
 = 1/4 and see a huge time saving (25 

seconds for MLF as compared with 842 for SL) at the ex-

pense of only 3.73% filtering. 
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It is not totally clear why multilevel filtering does not 

combine so well with RLA as it does with RLCSS but the 

likelihood is that the sub-sequences found by RLA at the 

coarse levels do not necessarily match those found at fin-

er levels. Conversely, provided the coarsening algorithm 

removes the same entries in both strings, then a longest 

common substring at a finer level will result in corre-

sponding longest common substrings at coarser levels 

(for example, if ****abcdefgh**** is coarsened to 

**aceg** and subsequently to *ae*). 

Note also that this is not an unknown occurrence when 

using the multilevel paradigm in other fields, [4]. Some-

times the more sophisticated local refinement algorithms 

interact less well with multilevel coarsening and in fact 

the best combination is often a smart coarsening algo-

rithm with a relatively simple local refinement scheme. 

4.1.3 Sample local graph results 

Table 4 shows the characteristics of the local graphs pro-

duced for three T / T
l
 configurations using the three dif-

ferent frameworks (SL, MLF & MLW) and RLCSS as 

the similarity measure. The characteristics are given in 

terms of the number of local graphs produced (essentially 

the number of non-isolated vertices for that value of T, 

potentially reduced by filtering and sparsification) plus 

average and maximum values for the number of vertices 

and edges in each local graph.  

There are not many conclusions that can be drawn 

from this table but it does indicate that for each value of 

T the characteristics are similar for all three frameworks 

(provided a suitable value of T
l
 is chosen). 

  T Tl #
g

ra
p
h

s #vertices #edges 

avg. max. avg. max. 

SL 

1/8 

n/a 4,436 13.5 32 13.9 36 

MLF 1/12 4,381 13.2 29 13.5 32 

MLW 1/12 4,381 12.6 26 12.9 32 

SL 

1/6 

n/a 2,812 6.0 20 6.4 26 

MLF 1/8 2,745 5.8 22 6.1 28 

MLW 1/8 2,745 5.8 22 6.2 28 

SL 

1/4 

n/a 1,800 4.0 15 4.1 26 

MLF 1/4 1,742 4.0 15 4.1 26 

MLW 1/4 1,742 4.0 13 4.0 24 

 Table 4. Local graph results for the RLCSS algorithm. 

4.2 Results – entire abc corpus 

The second data set is the entire abc corpus which cur-

rently consists of around 509,000 tunes from across the 

web. Of these 273,000 are exact electronic duplicates 

which are excluded and another 41,500 are potentially 

copyright and also ignored. A further 7,500 (3.8% of the 

remainder) are excluded because of implementation limi-

tations (see [1]), leaving a total of 186,847. 

Taking into account the various observations above, it 

seems that a good configuration is RLCSS as the local 

matching scheme with T = 1/6 and T
l
 = 1/8.  

Table 5 shows local graph characteristics for MLF and 

MLW both of which took around 24 hours to run. In con-

trast the runtime prediction for SL was 2 years! (Indeed if 

sparser local graphs are acceptable, the multilevel frame-

works take only around 8 hours for T = T
l
 = 1/4.) 

  #graphs 

#vertices #edges 

avg. max. avg. max. 

MLF 160,157 9.6 44 12.0 120 

MLW 160,157 9.3 40 11.6 116 

Table 5. Local graph results for the entire corpus. 

Again, not many conclusions can be draw from this ta-

ble other than the similar characteristics of MLF and 

MLW. However, the resulting local graphs for MLF can 

be explored at abcnotation.com. 

5. CONCLUSIONS 

This has paper presented an investigation into construct-

ing proximity graphs using a multilevel melodic similari-

ty metric. It also discussed the use of two recursive vari-

ants of local alignment algorithms (RLA & RLCSS) and 

a similarity measure adapted to handle their global nature. 

The results suggest that multilevel filtering, coupled 

with RLCSS, works well at building proximity graphs

from a corpus of tunes significantly speeding up the 

runtime without filtering out too many matches. 

Although further work remains to eliminate some of 

the minor limitations in the multilevel matching, the re-

sults can be explored at abcnotation.com. 
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