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Abstract. Encouraging pedestrian activity is increasingly recognised as
beneficial for public health, the environment and the economy. As our
cities become more crowded, there is a need for urban planners to take
into account more explicitly pedestrian needs. The term that is now in
use is that a city should be ‘walkable’. For route planning, whereas much
attention has been given to shortest path, in distance or time, much
less attention has been paid to flow levels and the difficulties they pose
on the route. This paper considers problems posed by conflicting paths,
for example cross-traffic. We use network centrality measures to make a
first estimate of differing levels of conflict posed at the network nodes. We
take special note of the role of collective motion in determining network
usage. A small case study illustrates the method.

Keywords: walkability, network centrality, collective movement, con-
flict

1 Introduction

Encouraging pedestrian activity is increasingly recognised as beneficial for public
health, the environment and the economy. Walkability is the measure of how
friendly an environment is to walking [1] and has become an important dimension
in urban planning. A walkable city provides an accessible walking environment
that encourages more pedestrian activity, thus providing the benefits noted in
the first sentence.

As part of a walkability quality measure, existing research has developed
several methods that focus on crowding. Most methods are concerned with the
physical properties of pedestrian flows (speed and volume) and walking areas
(size). (See, for example, [2]). A certain level of crowding can make a street invit-
ing and lively. However, there is a level at which crowding leads to congestion
with conflicting motion creating an uncomfortable environment with poor walk-
ability [3]. When navigating an over-crowded environment, pedestrians need to
constantly change their trajectories and speed to avoid conflicting motion. This
can be stressful and can constrain walking [4, 5].

Our concern is to identify hot-spots where congestion or conflict provide
obstacles to pedestrian movement. Within this paper the pedestrian system of
walkways and intersections is modelled as an undirected graph, with walkways
as edges and intersections as nodes. A method is presented where each node is



assigned a resistance which indicates how much ‘energy’ a pedestrian might need
to navigate through that node. These resistances are then used to compute the
betweenness-centrality for each node to make a first estimate of differing levels of
conflict posed at the network nodes. Conflict at a node would occur when paths
cross and pedestrians have to navigate through potential collisions. We assume
that the amount of conflict at a node is proportional to the number of crossing
paths through the node. Figure 1 illustrates how a pedestrian environment could
be represented as a graph. The blue paths within (a) show the different paths
that a pedestrian may take through the node. The node is then expanded to a
hyper-node (b) to clearly show the crossing paths and, therefore, where conflict
will occur.
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Fig. 1. a) Pedestrian system represented as a graph with conflicting motion occurring
at the intersection. b) The intersection is expanded as a hyper-node (dotted circle) to
highlight the conflict

Analysing the common flows through the network is one way to identify
hotspots where conflict is more likely to occur. A collective is a group of indi-
viduals that for some reason we wish to refer to as a single entity [6]. When
considering the walkability of an area it is often more useful to consider the data
at the level of the collectives and not the level of the individuals. The evolving
collective behaviour within a large group of individuals is often what an analyst
requires [7]. Considering a large number of entities at the level of the collectives
instead of the level of the individuals can also be computationally more effi-
cient. Pedestrians can be grouped according to their travel purposes [8], origin
and destination points [9], or shared movement characteristics [6, 10]. This paper
compares the proposed method when considering random flows versus collective
motion of the network.

The paper continues in Section 2 by introducing related work on walkability,
network centrality and collective movement. Section 3 describes the proposed
method which is then applied in Section 4 to a network of popular pub crawls



through Greenwich, London. The results of the implementation are discussed
in Section 5. Future work is outlined in Section 6 and Section 7 concludes the
whole paper.

2 Related Work

This section reviews related work from three areas: walkability measurement,
focussing on congestion and conflicting movement, network centrality measures
and collective movement.

2.1 Walkability measurement

The term walkability originates from the transportation literature and has been
used widely within urban planning, transportation and public health research
to assess how environmental factors affect pedestrian walking behaviour [11–14].
The concept of walkability is defined as the quality of the walking environment
perceived by pedestrians who live, shop and visit there [15, 16], or as “the mea-
sure of the extent to which the public realm provides for movement and other
activity on foot in ways that are both efficient and enjoyable” [17, p.4]. The
operational definitions of walkability are provided at both macro and micro level,
and are referenced to several components that can be observed and quantified
(or qualified) on different spatial scales [16]. On a macro-level (or neighbourhood
level), the walkability measure is usually based upon the assessment of street pat-
tern, land use diversity and housing density: A connected and accessible street
pattern contributes to better walkability; increased land use diversity and hous-
ing density reduce the trip distance to amenities and increase pedestrian safety
[12, 14]. Frank et al. [11] proposed a walkability index including four components:
net residential density, retail floor area ratio, intersection density and land use
mix. The walkability value is then calculated based on the values of these four
components. On a micro-level (street or pedestrian level), walkability is mea-
sured by developing and scoring multiple environmental indicators related to a
local route. The Pedestrian Environmental Factor index defines and quantifies
walkability by scoring the four indicators as ease of crossing, sidewalk continuity,
local street characteristics and topography [18]. The pedestrian Level-of-Service
(LOS) quantifies walkability by relating it to pedestrian facilities with regard
to pedestrian flow [2]. Other indices quantifying walkability on the micro-level
include the Transit Friendliness Factor [19], the Walking Suitability Assessment
[20] and the Irvine-Minnesota Inventory [21, 22].

Besides the above-mentioned quantitative methods, qualitative measures re-
lating to subjective pedestrian perception have also been used to define and
measure walkability. For example, Ewing and Handy [23] pointed out that using
physical components only to measure walkability may not provide details relating
to the walking experience in a particular environment. Ewing and Handy qual-
ified walkability based on the ratings from a panel of urban design experts and



then concluded five perceptual elements that determined walkability as image-
ability, visual enclosure, human scale, transparency, and complexity [23]. This
approach was further developed to operationalise eight subjective perceptual
qualities as imageability, enclosure, human scale, transparency, complexity, leg-
ibility, linkage and coherence in the context of commercial streets [24].

In general, pedestrians prefer to avoid contact with others except when over-
crowding cannot be avoided. Existing studies of urban design and pedestrian
behaviour proposed several approaches on defining and measuring crowding.
LOS defined different levels to measure the quality of pedestrian flows based
on both volumes and sidewalk or crosswalk area [2]. Pedestrian Comfort Levels
classified the level of comfort on the basis of the level of crowding experienced on
the street, and the pedestrian crowding was measured in pedestrians per metre
of clear footway width per minute [25]. Gehl [26] concluded that 13 people per
meter per minute of footway was the maximum at which a comfortable level of
quality can be delivered for footpath. Behavioural experiments involved personal
space preferences into account and proposed the concept of minimum personal
occupancy in dealing conflicting movement [4]. Other human aspects included
attaining normal walking speeds to avoid conflicts with other pedestrians [4]. Ex-
isting research also pointed out that conflicting movements frequently happened
in areas such as bus stops, tube exits, shopping centres and crossings [25].

2.2 Collective movement

When trying to improve an urban area it is important to try to satisfy as many
people as possible and, therefore, you need to identify the needs of the ‘collective
population’ [27]. Identifying areas or locations of common interest is a common
goal in movement pattern analysis [28]. The locations of interest could be origin
and destination points [9] or those that are frequently visited [27]. Analysing ori-
gin and destination points within travel behaviour can help identify the need for
new facilities, such as bus stops. Groups that share similar movement patterns
could also be of interest. Such information could be obtained from a spatiotem-
poral dataset via clustering, aggregation and similarity calculations [28].

Focusing on general trends and collectives can be computationally more ef-
ficient especially when dealing with increasingly large datasets. Andrienko and
Andrienko [9] use data aggregation to visually analyse traffic data within Milan.
Collective movement is defined as a function that relates the set of moving enti-
ties over the set of possible time moments and positions in space. The data can
be viewed in two ways: trajectory-oriented view and traffic-oriented view. The
former view groups the trajectories and the latter considers the possible ‘traffic
situations’. The view adopted will depend on the goals of the analyst. Aggrega-
tion methods are suggested that group the trajectories according to origin and
destination points, the points visited on a journey and the similarity of routes.
This approach was taken further by Wang et al. [29] in an analysis of Eulerian
and Lagrangian perspectives on motion.

Many types of collective can be considered in pedestrian movement [30].
These phenomena often arise due to the interactions and behaviour characteris-



tics of the pedestrians, particularly self-organisation. Schadschneider et. al [30]
use a cellular automaton (CA) to simulate these interactions to obtain the ob-
served collectives. Four types of collective phenomenon are considered: jamming,
lane formation, oscillations and panic. Jamming occurs when a blockage is en-
countered by pedestrians due to a lack of space or contradictory flow. Counter-
flows can result in the formation of lanes and observed self-organisation. When
there is a blockage and an individual manages to make their way through, it
becomes easier for other individuals to follow them. This continues until some-
one makes their way through in the opposite direction. This repeated pattern is
what the term oscillation refers to. Panics occur where the movement is counter-
intuitive as a result of some situation (e.g., the wish for faster motion actually
results in a slower moving crowd).

Andrienko and Andrienko [7] refer to two types of collective behaviour that
an analyst may wish to focus on: Momentary Collective Behaviour (MCB) and
Dynamic Collective Behaviour (DCB). The former focuses on a set of entities
at a particular moment of time; the latter on multiple entities over a given tem-
poral period. Four categories are identified that could influence the movement
of entities including the activities and properties of the moving entities (e.g.,
how they move). Different patterns are specified that may be of interest and
relevance to analysing DCB one of which is co-location in space (i.e., when the
paths followed by the observed entities contains at least some of the same posi-
tions). The positions visited can be further analysed according to any variation
occurring in the order of the locations visited. This movement pattern could be
of relevance to a network, and identifying hotspots of conflict, if each node was
considered as a location of interest.

2.3 Network centrality

Freeman [31], proposed a collection of centrality measures that indicate degrees
to which nodes have significance in a network. Let G be a graph, where N is the
number of nodes and E is the number of edges. The betweenness centrality of a
node ofG gives a measure of how much the node is an intermediate point on paths
in G. To be more precise, the betweenness centrality of node n is proportional
to the number of shortest paths in G that pass through n. Formally:

Bn =
1

(N − 1)(N − 2)

αn

βn

where Bn is the betweenness centrality of node n, αn is the number of shortest
paths between any two nodes (except n) in the graph passing through n, and βn
is the number of shortest paths between any two nodes (except n) in the graph.

There is a body of research that has applied betweenness and other central-
ity measures to networks of urban streets. Varoudis et al., [32] evaluated the
angular betweenness measure of space syntax of urban streets implemented by
two different methods, Tasos and depthmapX. The depthmapX method is based
on the cognitive-search-agent with pedestrian walking constraints. The Tasos



method is based on mathematical shortest path without the pedestrian walk-
ing constraints used by the depthmapX method. The evaluation showed that
these two methods offered similar results in terms of pedestrian movement but
he Tasos method was more computationally efficient.

Kazerani and Winter identified in [33] the issues (e.g., no travel behaviour
and temporal constraints) of using betweenness centrality in predicting traffic
flow in reality and suggest some minor amendments to the classic centrality
measure. The paper proposed a modified betweenness centrality method, which
reflected locations of origins and destinations of recorded trips. Compared to
the classic method, the proposed method was better in predicting “actual traffic
counts over given time intervals” [33, p. 8].

Crucitti et al., [34, 35] studied centrality in urban streets for 18 different
world cities and developed a comparative analysis of different centrality mea-
sures of urban streets. The centrality measures were based on a new approach
called multiple centrality assessment (MCA) developed by Porta et al., for the
centrality analysis in geographic systems [36]. MCA was based on primal graphs,
a set of centrality indices as well as a fully metric computation of distances. The
results of Crucitti’s study indicated that the centrality measures with the four
indices (closeness, betweenness, straightness and information) allowed extended
visualisation and characterisation of city structures.

Based on the MCA centrality analysis, Porta’s group used the northern Ital-
ian city Bologna as study area to investigate “how much higher street centrality
statistically determines a higher presence of activities (shops and services)” [37].
The result highlighted a strong correlation between street centrality (particu-
larly betweenness centrality) and locations of shops and services at the neigh-
bourhood scale. Following the same MCA method, Produit’s Master thesis [38,
p. 96] reports a new GIS tool that is able to create three indexes of network
density estimation of activities, network density of edges with population made
from centralities and diversity of activities along the network. The centrality
indexes (closeness, betweenness and straightness) were computed at both global
and local level to characterise the shape of network.

While most centrality studies focused on degree, closeness, betweenness and
eigenvector measures to determine who occupied critical positions in the net-
work, a rarely answered question was about the correlation of the four centrality
measures [39]. Valente et al., empirically examined the correlation among the
four centrality measures and found that they were strongly correlated. Their
study also revealed the association of network properties such as density and
reciprocity to the correlation of different centrality measures.

3 Method

There are problems with directly applying centrality measures to congestion
and conflict in urban flow. Firstly, existing methods take little or no account
of spatial and temporal variation in flows in the network. For example, direct
application of the betweenness centrality measure to indicate those nodes which



are more likely to be congested would require the assumption that flows are
uniform in the network and that no one path is more used than another. Our work
will generalise betweenness centrality to account for preferred paths followed by
collective motion against a background of random noise in network flow.

The second problem is that no account is taken of conflict at nodes where
paths cross and so pedestrians must negotiate through potential collisions. We
make a simplifying assumption that the amount of conflict at a node is dependent
upon the number of crossing paths through that node.

3.1 Rotation graph and crossing paths

In order to generalise previous constructions, it is necessary to take into account
the embedding of graph G in Euclidean space. We assume that G is embedded in
a surface and that each node is specified by a pair of coordinates. The embedding
gives us information not only about the positions of nodes but also the positions
and orientations of the edges. If we consider a single node n of G, then those
edges that are incident with n are incident in a unique rotational cycle about n.
This is shown by the example in figure 2, where the five edges e1, e2, . . . , e5 are
incident with n in the specific cyclic order (e1, e2, e5, e4, e3). If graph G has the
property that each of its nodes is equipped with a rotation cycle of edges around
it, then the graph is termed a rotation graph [40, p. 741].

e1

n

e2

e3

e4

e5

Fig. 2. Cycle of edges e1, e2, . . . , e5 around node n

Because the pedestrian network is modelled here as a graph embedded in
Euclidean space, it is automatically a rotation graph. We can use the extra
information provided by the cycles to give a better approximation of the energy
required to traverse a path on the route taking into account conflicts due to
crossing paths.

For example, consider again figure 2. In travelling through the node along
edges e1 e5, say, the traveller would potentially have to cross the paths of pedes-
trians on routes e2− e3 and e2− e4. (This is not taking into account direction of
travel). Depending on the volume of traffic on the latter two routes, our traveller
will meet more or less amounts of conflict. So, assuming we know the amounts



of flow on the different paths, we can calculate the amount of resistance that
each node on the path might add to the journey. We use this resistance to mod-
ify the travel distance between nodes to get a more accurate assessment of the
betweenness coefficients.

In the general case, where a node has arbitrary degree. If the route through
the node passes through edges e and f , then the number of crossing paths is i∗ j
where i and j are the number of edges strictly between e and f in the cycle of
edges, counting clockwise and anti-clockwise, respectively.

3.2 Generalising betweenness

As has been said, the betweenness centrality measure of a graph was originally
conceived as a purely topological measure, not taking account of the graph em-
bedding. However, as it involves shortest path computations, it is easy to extend
to the case where path is defined between nodes using Euclidean distances along
edges. Our contribution is to take into account node resistance to a path result-
ing paths that cross the path of interest. In the extreme case, we can neglect edge
lengths and focus entirely on node resistances. As a very simple example, con-
sider the network shown in figure 3. Suppose we wish to calculate the path length
AD. Then we need to take into account the crossing flows φFC , φEC , φFB , φEB .
Just how much these cross-currents should contribute to the path length depends
on the flow quantities and the level of disruption they course. However, once this
has been calibrated, we can perform a Dijkstra-type computation for shortest
paths, and from this calculate the betweenness centrality measures for nodes.
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Fig. 3. Small network example

It is then interesting to compare the betweenness measures in three cases:

1. The traditional case with edge lengths calculated from geographic distances
between nodes;

2. The case where edge lengths are ignored but node resistances determine path
lengths. This leads to two sub-cases:



(a) A random collection of flows is assumed through the network so all cross-
ings are assumed to impart equal resistance

(b) Flows through the network arise from collectives passing through it. In
this case, crossings are weighted by the flows through them.

In the next section we work through a case study showing how these con-
structions can be applied to a specific instance.

4 Movement Data Analysis

Two datasets have been used to demonstrate the proposed method both of which
relate to pubs in Greenwich. Although neither dataset records the known move-
ments of multiple individuals, we can demonstrate how the method could be
used to identify conflict at nodes and show why collective movement should be
considered.

4.1 The Case Study

A dataset containing the locations of 28 pubs within Greenwich has been used
to produce the pedestrian network. The underlying road network has been used
to form the network shown in figure 4. Two pubs are considered connected if it
is possible to travel from one to the other without coming across a third. Each
node, depicted by a red circle, represents a pub and each edge, depicted by a
black line, a connection between them.

Fig. 4. The network of 28 pubs in Greenwich overlaid on a Google map



Known pub crawls within Greenwich have been identified to model the col-
lective movement within the network (figure 5). A pub crawl typically involves a
group of individuals visiting a collection of pubs and having a specified number
of beverages in each of them. Although unrealistic, it is assumed that collectives
do not spend a significant amount of time at each pub and pass quickly through
them. This allows the idea of pedestrians passing through nodes to be simulated
and the need to navigate conflict. Ten pub crawls have been identified to model
10 collectives moving around the network. Dijkstra’s algorithm has been used to
calculate the shortest path between two consecutive pubs on a particular crawl
that are not joined via an edge in the network.

Fig. 5. The 10 pub crawls within Greenwich overlaid on a Google map

4.2 Implementation

The method has been implemented using Matlab. The program reads in two .csv
files: one that stores the locations of each pub, recorded by their longitude and
latitude values; and, one that records the order of pubs visited on each of the
10 pub crawls. The edges of the network are identified manually using a map of
the underlying road network and stored using an adjacency matrix. If there is
an edge connecting nodes ni and nj a 1 is placed in position (i, j) of the matrix,
otherwise the value will be 0. A second adjacency matrix is computed that stores
the geographic distance between each pair of connected nodes. For each node all
possible paths that run through it are identified and, for each path, the number
of cross flows calculated. The cross-flow values are combined to produce a value
for the node’s overall resistance.

When only considering geographic distance to calculate shortest path each
edge is weighted with the distance between the two pubs that it connects. The



weighting on each edge, when only considering resistance, is the combined value
of the resistance contributed by the two nodes that it connects. For example,
in figure 2, assuming a random collection of flows so all crossings impart equal
resistance, the node would have a resistance of 10. Since the node connects five
edges the node would contribute a resistance of two to each of the five edges.
The remaining weight of the edges would be the relevant resistance value from
the other node that it connects. When considering collective motion on the net-
work the node resistance is recalculated. Instead of considering all possible paths
through a node only the paths that are used by the collectives are considered.

A second method has been adopted to distribute the node resistance between
the edges when considering collective motion. This method distributes the node
resistance proportionally between connecting edges according to usage. For ex-
ample, figure 6 shows the usage of the collectives on the edges passing through
a node (node A) within the network. Ten collectives pass through the node but
the edges are not used equally. The node has a resistance value of two. Propor-
tionally distributing this value amongst the connected edges would contribute a
resistance value of 0.6 to edges φAC , φAD and φAE ; φAB would gain a resistance
value of 0.1. The remaining weighting of the edges would come from the other
node that they connect. This second distribution method has been included for
comparison to see the affect that it has.

Fig. 6. An example of a node on the path of 10 collectives

Once the weights for each edge have been obtained, either using geographic
distance or node resistance, the betweenness centrality of each node is calcu-
lated. For each of the 28 nodes in the network, an implementation of Dijkstra’s
algorithm is used to identify the number of shortest paths between each pair of
nodes, excluding the current node being considering (n), that pass through the
node. The values are normalised by dividing by the possible number of shortest
paths between two nodes in the network (not considering the current node n).



4.3 Results

Figures 7 to 10 show the results of applying the proposed method to the sample
dataset. In each figure a heat scale is used where red indicates the highest cen-
trality value and blue the lowest. The same scale has been used for each figure
to allow direct comparison of the results.

Figure 7 shows the betweenness centrality value for each node when only
considering the geographic distance to calculate shortest path length. Figure 8
shows the betweenness centrality values when using node resistance to calcu-
late shortest path length. A random collection of flows is assumed through the
network so all crossings impart equal resistance. Figures 9 and 10 show the be-
tweenness centrality of each node when considering collective motion using node
resistance to calculate shortest path length. Within figure 9 node resistance is
distributed equally amongst the connecting edges; figure 10 shows the results of
proportional distribution of node resistance.

Fig. 7. The betweenness centrality of each node shown with a heat scale (red indicates
the highest centrality value and blue the lowest) when edges are weighted according to
distance

5 Discussion

The application of the proposed method to a sample dataset has shown that
a different set of nodes within the network is identified as key (i.e., coloured
red) when considering resistance and collective motion compared with general,



Fig. 8. The betweenness centrality of each node shown with a heat scale (red indicates
the highest centrality value and blue the lowest) when edges are weighted according to
node resistance assuming all crossings impart equal resistance

Fig. 9. The betweenness centrality of each node shown with a heat scale (red indicates
the highest centrality value and blue the lowest) considering collective motion with
node resistance distributed equally amongst connecting edges



Fig. 10. The betweenness centrality of each node shown with a heat scale (red indicates
the highest centrality value and blue the lowest) considering collective motion with
proportionally distributed node resistance

random motion. This section discusses the results and aspects that have been
highlighted by the analysis for further consideration.

In figure 7, where geographic distance was used to calculate shortest path,
four nodes are shown in red and thirteen are in a shade of blue. The highlighted
nodes are, as expected, the ones central within the network. The majority of the
blue nodes lie on the outside edges of the network. When considering node resis-
tance with a random flow on the network, assuming all crossings impart equal
resistance, (figure 8) four nodes are again highlighted but these are not the same
as though highlighted when considering geographic distance alone. Some nodes
that were previously coloured yellow (mid-to high betweenness centrality mea-
sures) in figure 7 are now coloured blue. The nodes shown as having the highest
centrality measures within figure 8 can still be considered as quite central within
the network but not all outer edges have the lower centrality measures. Figures
9 and 10, where collective motion is considered, again show a different set of
highlighted nodes. By allowing the key paths (i.e., the collective movement) to
be considered, some of the nodes that were previously considered to be a point
where conflict is likely to occur are now seen to be of little concern in figure 9.
It is also possible to quickly identify the main hotspots where there is likely to
be conflict. Where the node resistances have been distributed equally between
connecting edges (figure 9), there are many more nodes highlighted blue (i.e.,
with low betweenness centrality measures). However, there are some nodes, pre-
viously considered of low importance, that are now coloured in red. The spread
of red nodes across the network is larger. Figure 10 shows what happens when



node resistance is spread proportionally amongst connecting edges. A smaller
number of nodes are highlighted as ones where conflict is likely to occur.

The dataset that we have used is only a sample and the numbers within
each collective have not been taken into consideration. Future work will need
to be undertaken to extend the method to take account of the flows within
the network. This information could then be used to consider a network where
an event is occurring such as a carnival, protest or major sporting event. In
addition to showing where walkability may be affected, emergency services and
event planners could also use the results of our method to identify where they
may focus their resources during the event.

The dataset does not include any temporal information. It is likely that flows
within the network will vary over time. Different collectives may only exist at spe-
cific times, which would affect the identified hotspots. For example, commuters
travel at peak times. The method should be extended to show the temporal vari-
ation in the betweenness values of each node. The dataset to which it is applied
also would need the necessary temporal information.

6 Future Work

Betweenness centrality is just one of several measures that might be used as an
indicator of importance of a node in a network. Application and consideration of
other measures, such as ‘information centrality’, are currently being investigated.
Two methods were used to distribute the node resistance around the connecting
edges. Both methods highlighted different sets of key nodes but further analysis
is required to see which is the most meaningful and efficient when used in a
larger network.

Similar to the walkability measure described in Section 2, resistance in a
particular walking environment can be measured in two ways. One is to use the
physical components of the walking space (e.g., capacities of intersections and
pathways) in addition to network flows to decide different levels of resistance.
The second approach is similar to Ewing and Handy’s work [23] in which qualifies
resistance based on subjective qualities to determine resistance from the human
perspective. This is an area for future work.

The graph used within the analysis is a simplification of the underlying road
network. Further analysis should be carried out that takes into account more
detail of the real-world network. Although based on real locations and common
paths, the dataset in this paper could be considered synthetic. Work has begun
in identifying a dataset that has the recorded movements of a large number of
pedestrians in a mapped environment. From this the collectives will be identified
using existing methods (e.g., those described in [28]).

7 Conclusion

This paper has presented research on issues arising from conflicting motion in
networks. Although many of the methods are generalisable to any transportation



system, we have focused on pedestrian networks. Conflict arises at network nodes
when paths cross, and a reasonable assumption made in this paper is that the
more potential for paths to cross, both in terms of the number of possible routes
through the node but also in terms of the amount of flow, the more potential for
conflict there arises. Collective motion has an important influence on network
flows. A key methodology adopted in this work is to use network centrality and,
in particular, betweenness centrality to estimate the nodes in the network with
the most potential for conflict. In traditional network centrality approaches, path
weights are measured by length, either spatial or temporal. A key contribution
here is to measure path weight by ‘resistances’ that conflicting paths induce.
This resistance is determined by flows along conflicting paths, which in turn is
determined by collective motions through the network.

In our case study of routes through pubs in Greenwich, the pubs were the
nodes and the network was the collection of possible paths from one pub to
the next. For the sake of this experiment, we took the extreme position of only
considering conflict in the weighting of paths, and so distances were neglected.
Betweenness centrality of the nodes was computed in two cases:

– Flow through the network was considered to be random.
– Flow through the network was determined by collective motion induced by

the pub crawls.

The results clearly demonstrated the expected results that collective motion
through a network strongly influenced the resistance of nodes to paths, and
hence altered which nodes became key, as measured by betweenness centrality.

Acknowledgements

This study was supported by the University of Greenwich Faculty of Archi-
tecture, Computing and Humanities Research & Enterprise Fund through the
project “Spatial Informatics for the Dynamic Smart City”.

References

1. City of Fort Collins, Colorado. (2011). Pedestrian Plan.
http://www.fcgov.com/transportationplanning/pedplan.php

2. Gallin, N. (2001). Quantifying pedestrian friendliness-guidelines for assessing pedes-
trian level of service. Road & Transport Research, 10(1), 47.

3. Karl Brierley (2013). The effects of pedestrian delay and overcrowding on our streets
& the rationale for shorter blocks and through blocks links. A report prepared for
the city of Melbourne.

4. Fruin, J. (1992). Designing for pedestrians. Public Transportation United States.
5. Handy, S. (2005). Critical assessment of the literature on the relationships among

transportation, land use, and physical activity. Transportation Research Board and
the Institute of Medicine Committee on Physical Activity, Health, Transportation,
and Land Use. Resource paper for TRB Special Report, 282.



6. Wood, Z. & Galton, A. (2009). A taxonomy of collective phenomena. Applied On-
tology, 4, (3-4), 267-292.

7. Andrienko, G. & Andrienko, N. (2007). Extracting Patterns of Individual Movement
Behaviour from a Massive Collection of Tracked Positions. Workshop on Behaviour
Modelling and Interpretation, Germany. B. Gottfried (Ed.), 1-16.

8. Spaccapietra, S., Parent, C., Damiani, L., de Macedo, J.A., Porto, F. & Vangenot, C.
(2008). A conceptual view on trajectories. Data Knowledge Engineering, 65, 126-146.

9. Andrienko, G. & Andrienko N. (2008). Spatio-temporal Aggregation for Visual Anal-
ysis of Movements. IEEE Symposium on Visual Analytics Science and Technology
(VAST 2008), Columbus, Ohio, USA. IEEE Computer Society Press, 51-58.
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