
Stigmergic Interoperability for Autonomic Systems:
Managing Complex Interactions in Multi-Manager Scenarios

Thaddeus Eze

Computer Science Department

University of Chester, Cheshire, United Kingdom

t.eze@chester.ac.uk

Richard Anthony
Computing and Information Systems Department

University of Greenwich, London, United Kingdom

R.J.Anthony@gre.ac.uk

Abstract —The success of autonomic computing has led to its

popular use in many application domains, leading to scenarios

where multiple autonomic managers (AMs) coexist, but without

adequate support for interoperability. This is evident, for example,

in the increasing number of large datacentres with multiple

managers which are independently designed. The increase in scale

and size coupled with heterogeneity of services and platforms

means that more AMs could be integrated to manage the arising

complexity. This has led to the need for interoperability between

AMs. Interoperability deals with how to manage multi-manager

scenarios, to govern complex coexistence of managers and to

arbitrate when conflicts arise. This paper presents an architecture-

based stigmergic interoperability solution. The solution presented

in this paper is based on the Trustworthy Autonomic Architecture

(TAArch) and uses stigmergy (the means of indirect

communication via the operating environment) to achieve indirect

coordination among coexisting agents. Usually, in stigmergy-based

coordination, agents may be aware of the existence of other agents.

In the approach presented here in, agents (autonomic managers)

do not need to be aware of the existence of others. Their design

assumes that they are operating in 'isolation' and they simply

respond to changes in the environment. Experimental results with

a datacentre multi-manager scenario are used to analyse the

proposed approach.

Keywords – interoperability; stigmergy; autonomic system; multi-

agent system; trustworthy architecture; trustability; validation;

datacentre; dependability; stability; autonomic architecture

I. INTRODUCTION

Autonomic Computing has progressively grown to become

a mainstream concept. Many mechanisms and techniques have

been successfully explored and this success has led to multi-

manager system scenarios where multiple AMs coexist and/or

interact (directly or indirectly) within the same system. This is

evident, for example, in the increasing availability of large

datacentres with multiple [heterogeneous] managers which are

independently designed [1, 2]. Coupled with heterogeneity of

services and platforms, this leads to the possibility of integrating

more AMs to achieve a particular goal, e.g., datacentre

optimisation. This ultimately leads to conflicts ranging from

cancellation or over-compensation effects at the simplest end of

the spectrum, to system instability, and lack of predictability at

the other end. There is therefore the need for interoperability

between AMs, to facilitate multi-manager scenarios, govern

complex interactions between managers and to arbitrate when

conflicts arise. Although several works, e.g., [3-5] have

identified interoperability as a key challenge for future

autonomic systems, we do believe that the challenge is already

imminent.

The challenge of multi-manager interactions can be

understandably enormous. This stems from the fact that, for

example, components (including AMs) can be multi-vendor

supplied: upgrades in one manager could trigger unexpected

events; increasing scale can introduce bottlenecks; one manager

may be unaware of the existence of another; and managers,

though tested and perfected in isolation, may not have been

wired at design to coexist with other managers. A typical

conflict example is illustrated with a multi-manager datacentre

scenario: consider a datacentre with two independent AMs

working together (unaware of each other) to optimise the

datacentre – a Performance Manager (PeM) optimises resource

provisioning to maintain service level achievement. It does this

by dynamically (re)allocating resources and maintaining a pool

of idle servers to ensure high responsiveness to high priority

applications. A Power Manager (PoM) seeks to optimise power

usage (a major cost overheads of datacentres [6]) by shutting

down servers that have been idle for a certain length of time.

Each manager performs brilliantly in isolation, but by

coexisting, the success of one manager defeats the goal of

another; one seeks to shut down a server that another seeks to

keep alive. The activities of one manager affect the costs of

provisioning (e.g., delay, scheduling, and power consumption

etc.) for another in one way or the other.

This paper presents a stigmergic interoperability solution to

multi-agent coordination. The proposed solution is architecture-

based as we posit that interoperability support should be

designed in and integral at the architectural level, and not be

treated as an add-on. The TAArch [7], which includes

mechanisms and instrumentation to explicitly support

interoperability and trustworthiness is used. Multi-manager

coordination is achieved using stigmergy concepts.

The Stigmergic Phenomenon [8] is achieving indirect

coordination among coexisting agents by means of indirect

communication via the environment. That is, using their

environment for indirect communication, the agents are able to

sense and adjust their actions and this way efficient coordination

is achieved. So the stigmergic interoperability solution provides

indirect coordination between AMs in a multi-manager scenario

without the need for planning (or pre-knowledge of the

existence of other AMs), control or direct communications

between coexisting AMs. Section II discusses the proposed

stigmergic solution while Section III provides a distinction

between the proposed solution and those in related works.

Section IV presents datacentre-based implementation and

empirical analysis. Section V concludes the work.

II. STIGMERGIC INTEROPERABILITY

The stigmergic interoperability utilises the process of

stigmergy to facilitate the coexistence of agents without

individual agents necessarily being aware of the existence or

wiring of each other. The basic principle is that a particular AM

detects others by observing the effects of their management

actions on its own operating environment and especially in

terms of the control and use of resources. Agents are context-

aware and autonomically react to environmental changes by

retuning their behaviour as appropriate. Environmental

changes, e.g., unexpected fluctuation, data spikes, policy

violation (or alteration), external adjustment of parameters,

process conflict etc. are considered AgentActions, which are

assumed, by all agents, to mean conflicting actions by another

agent. AgentActions can also be caused by other factors that are

considered ‘normal’ behavior (e.g., resource contention) of the

system. As soon as AgentAction is detected, an agent starts

retuning its behaviour until a steady state is reached. In this

paper, AMs are agents that are designed using TAArch

architecture. TAArch is centered around hierarchical control

loops, with three main components, operating on different

timescales (for short and longer term adaptations) allowing the

AM to monitor its own performance, correctness, and effect on

the controlled system. This enables it to detect any instability

caused in the system. The three main components are; the

AutonomicController (AC), which makes self-management

(adaptation) decisions, the ValidationCheck (VC), which

monitors performance and correctness of AC and the

DependabilityCheck (DC), which monitors long term

adaptation impact and effectiveness on system. AMs need to

predict the effect on the system of their own management

actions, and by detecting deviations from this can deduce the

presence of another manager acting on the same resource set.

See [7] for more details of TAArch.

In the proposed interoperability approach, Trend Analysis

(TA) logic is implemented in the DC component to enable the

AM to automatically detect conflicts and using Dead-Zone (DZ)

logic, the AM is able to regulate its behaviour as appropriate.

DZ logic is a mechanism to prevent AMs from unnecessary,

inefficient and ineffective control brevity when the system is

sufficiently close to its target state. It provides a natural and

powerful framework for achieving dependable self-

management in autonomic systems by enabling AMs to adapt

only when it is safe and efficient to do so, within a defined

safety margin [16].

Fig. 1 is a multi-manager datacentre example: it comprises

a pool of resources Si (live servers), a pool of shutdown servers

Ši (ready to be powered and restored to Si as need be), a list of

applications Aj, a pool of services Ṳ (a combination of

applications and their provisioning servers), and two autonomic

managers AM1 (performance manager PeM) and AM2 (a

power manager PoM) that optimise the entire datacentre. Aj and

Si are, respectively, a collection of applications supported (as

services) by the datacentre and a collection of servers available

to the manager for provisioning available services according to

requests. As service requests arrive, PeM dynamically

populates Ṳ to service the requests following the scheduling

algorithm discussed in Section IV (A). Ṳ is defined by:

Where Aj: (Sj1 … Sji) means that (Sj1 … Sji) servers are

currently allocated to Application Aj and j is the number of

application entries into Ṳ. Servers are retrieved and redeployed

across applications. All the servers i in Si are up and running

(constantly available as desired by PeM) waiting for

(re)deployment. The primary performance goal of PeM is to

minimise oscillation and maximise stability and efficiency

(including just-in-time service delivery) while the secondary

performance goal is to maximise throughput. The goal of PoM,

on the other hand, is to optimize power consumption. This task

is simply achieved by shutting down any server that has been

idle for a threshold time T. As a result, the actions of PoM can

negate the goal of PeM causing conflict in the system.

To manage interoperability between PeM and PoM, Fig. 1

shows the communications and control within the components

of the AMs. The managers take performance decisions which

are then validated by their respective VC (VCpom and VCpem)

for correctness. VC ensures continuous self-validation of the

AM’s behaviour and configuration against the AM’s goals and

also reflects on the quality of the AM’s adaptation behaviour. A

control feedback (CF) is generated if validation fails and with

this feedback, the manager adjusts its decisions. The DC takes

a longer-term validation oversight of the managers’ behaviour

and either allows a manager to carry on with its actions (if the

check passes) or generates a recalibration feedback (RF)

otherwise. DC contains other subcomponents (K), to achieve

e.g., interoperability, stability etc. The stability subcomponent

is usually configured using DZ logic. The interoperability

subcomponent, in this case example, is configured using TA

logic (which identifies patterns within streams of information)

with a combined effect of exponential smoothing technique.

The details of the logic usage are explained in Section IV. Note

that the designer of the manager can define as many DC

subcomponents as necessary.

 (1)

 A1: (S11, S12, S13, …, S1i)

 A2: (S21, S22, S23, …, S2i)

 … … … … … …

 Aj: (Sj1, Sj2, Sj3, …, Sji)

Ṳ =

The interoperability component learns and keeps track of the

system’s state following the historical decisions of the manager.

If after a number of decision instances the manager senses a

conflict with its decisions (based on expected versus actual

system state), another RF is generated to retune the manager’s

decisions. For example, if after time T, PoM senses that the

same set of servers it has shut down have repeatedly been

restarted without it powering them, it concludes that another

operation (probably a human, another AM, etc.) is not ‘happy’

with PoM’s decisions. So, PoM’s DC generates a RF with an

appropriate tuning parameter value (β) to throttle the size of T

as shown in (2). By sensing the effects of its actions and

dynamically throttling T within an acceptable boundary, PoM is

able to coexist with any other AM with conflicting actions.

Similarly, PeM can retune its behaviour, for example, if it

senses that the set of servers it tries to keep running are

constantly switched off. However, there are boundaries within

which each AM’s cleverness is limited, e.g., the size of T has a

maximum limit. Notice that the two managers do not need to

know any details or even the existence of each other. In real life,

this is typical of two staff that share an office space but work at

different times. If each returns on their next respective shift and

finds the office rearranged, they will each adjust in their

arrangement of the office until an accepted compromise

structure is reached. This can be achieved without them ever

meeting. DC provides extra capacity for a manager to

dynamically throttle its behaviour to suit the goal of the system.

This is in line with the stigmergic approach that enables

coexisting AMs to achieve indirect coordination by means of

indirect communication via the environment. That is,

communicating indirectly using their environment, the AMs are

able to sense the effects of each other’s actions and adjust their

own actions and thereby avoid conflict. So the stigmergic

interoperability solution provides indirect coordination between

AMs in a multi-manager scenario without the need for planning

(or pre-knowledge of the existence of other AMs), control or

direct communications between coexisting AMs. This provides

efficient collaboration (as against competition) between

coexisting AMs.

 Tn = (Tn-1 * β) (2)

There are costs associated with the operations of a

datacentre. These costs are affected in one way or the other by

the actions of the managers. These and many other metrics are

used to analyse the proposed solution in Section IV.

III. BACKGROUND

‘Multi-agent systems’ is a generic term referring to systems

consisting of different sub-systems (e.g., AMs, agents) that

cooperate (interact) with each other in order to achieve a

common goal. The idea of a system with several components

working together towards a common goal has been applied to

an increasing number of domains including distributed systems,

autonomic computing, supply chain, networks of networks and

so on. Multi-agent coordination deals with the way the sub-

systems interact with each other in the process of working

together to achieve the common goal, and many techniques

have been proposed. A detailed survey of multi-agent systems

is presented in [9]. Multi-manager scenario, as described in this

paper, is a situation requiring the cooperation of different AMs

in the same system and this cooperation is referred to as

interoperability. There are potential problems as a result of

conflict-of-interest when these managers coexist. There is a

growing concern that the lack of support for interoperability will

become a barrier to progress for future systems. Several multi-

agent coordination techniques have been proposed in the multi-

agent systems community.

Architecture based multi-agent coordination has been

demonstrated before. In [10], a multi-agent coordination in

multi-robot system, based on genetic programming (GP), is

discussed. To coordinate a coorperative task between robots,

Liu and Iba [10] propose an approach called Evolutionary

Subsumption, which applies GP to Brooks’ subsumption

architecture [11]. Results show that this approach is more

efficient in emergence of multi-robots complex behaviors

compared to other (e.g., direct GP and artificial neural network)

approaches. This supports the idea of our solution which is

achieving interoperability-by-design – interoperability support

designed in and integral at the architectural level.

Natural systems such as social insects which utilise

stigmergy show remarkable flexibility, robustness and self-

organisation. These characteristics are sort after in modern

systems. Researchers have demonstrated this in multi-agent

systems. O’Reilly and Ehlers [12] have demonstrated the

utilisation of stigmergy by software agents to interact with each

other and to collectively solve certain tasks. They presented a

methodology of mimicking stigmergy into a software system

and argue that many software projects are deemed failures due

to the inability of the software systems to adapt to changing

business environments. A multi-agent stigmergic coordination

in manufacturing control system has been presented in [13].

Coordination among the agents in the manufacturing control

system is a direct reflection of the pheromone-based stigmergy

in ant colonies. In this approach, the control system consists of

agents (e.g., resource, product and order) that distribute

pheromones (e.g., agents’ connections, location and general

information) within the environment (e.g., cyber world) in

which they reside. According to the authours, sharing such

global information on a collective environment reduces design

cycle, products’ time-to-market, order lead times and also

facilitates flexibility in manufacturing control systems.

However, just as in similar approaches, the agents are logically

(and in some approaches, physically) connected together, which

in actual sense, indicates that the agents are aware of the

existence of others. This is different from our approach in which

the agents (AMs) do not need to be aware of the existence of

other agents. The AMs’ design assumes that they are operating

in ‘isolation’ and simply respond to changes in the environment

(as a result of AgentAction). See the office share example in

Section II. Our goal is to facilitate correct behavior when the

‘isolation’ assumption is broken. TA logic, for example, enables

AMs to easily infer the presence of other AMs by the kind (or

nature) of environmental changes experienced. In this approach,

an external adjustment of some parameters in a system (e.g., by

a human user), whether correctly or erroneously applied, is

considered an AgentAction by other agents. One sophistication

of the stigmergic interoperability approach is that, no matter the

conflict or disturbance, AMs are designed to react (e.g., self-

retuning) within the boundaries of the system’s stated goals.

This is because the AMs are designed using TAArch.

Reference [14] presents a clear demonstration of the need

for interoperability mechanisms. In [14], two independently-

developed AMs were implemented: the first dealt with

application resource management (specifically CPU usage

optimisation) and the second, a power manager, dealt with

modulating the operating frequency of the CPU to ensure that

the power cap was not exceeded. It was shown that without a

means to collaboratively interact, both managers throttled and

sped up the CPU without recourse to one another, thereby

failing to achieve their intended optimisations and potentially

destabilising the system. This is a case of direct conflict, our

solution deals with both direct and indirect conflicts. Direct

conflicts occur where AMs attempt to manage the same explicit

resource while indirect conflicts arise when AMs control

different resources, but the management effects of one have an

undesirable impact on the management function of the other

[15]. This latter type of conflict, in our opinion, is the most

frequent and problematic, as there are such a wide variety of

unpredictable ways in which such conflicts can occur.

Reference [15] evaluates the nature and scope of the

interoperability challenges for autonomic systems, identifies

requirements for a universal solution and propose a service-

based approach to interoperability to handle both direct and

indirect conflicts in a multi-manager scenario. In this approach,

an Interoperability Service (IS) interacts with AMs through a

dedicated interface and is able to detect possible conflicts of

management interests. New AMs register their capabilities and

requirements (in terms of the kind of services they provide and

what aspects of the system they intend to manage) with the IS

and the IS grants management rights only if no other AM in its

database is managing the same aspect of the system to which

management right is requested. In this way, the IS manages all

interoperability activities by granting or withholding

management rights to different AMs as appropriate. One

challenge with this approach is that if a new AM is more capable

of managing (e.g., in terms of efficiency) an aspect of the system

that an existing AM is already managing, the new AM will be

denied management rights.

Interface based approaches inhibit scalability because they

require reconfiguring of interfaces each time a new AM is

added. Conversely, in our approach AMs do not need recoding

each time a new AM is added. They autonomically retune

(modulate) their behaviour as soon as they sense process

conflicts.

The research community has made valuable progress

towards multi-manager interoperability but this progress has not

yet led to a standardised approach. Although the current state of

research represents a significant step, an equally significant

issue is that they do not tackle the problem of unintended or

unexpected interactions that can occur when independently

developed AMs co-exist. Further from that, and more

realistically, AMs may not necessarily need to know about the

existence of others as they are designed in isolation (probably

by different vendors) and operate differently (for different

goals) without recourse to one another. So, to have close-

coupled interoperability (i.e., where specific actions in one AM

react to, or complement those of another), the source code and

detailed functional specifications of each AM must be available

to all AMs. This is near impossible, and where it is possible

requires a rewiring (or recoding) of each AM whenever a new

AM is added. Hence, this work looks to the autonomic

architecture to provide a dynamic solution. This work posits that

to avoid introducing further complexity whilst solving the

interoperability problem, the autonomic architecture should

envision (and provide for) interoperability support from scratch.

That is to say, the autonomic architecture should provide

mechanisms to facilitate the co-existance of, and

interoperability between, multiple AMs.

IV. IMPLEMENTATION AND EMPIRICAL ANALYSIS

This Section presents experimental analysis of the proposed

interoperability solution using a datacenter resource request and

allocation management scenario. The datacentre scenario used

is the same as the one outlined in Section II. The essence of this

analysis is not to investigate datacentres per-se but to examine

the performance effects of the proposed interoperability

solution in a multi-manager datacentre scenario using easy-to-

assess examples. The analysis will investigate the performance

of the multi-manager datacentre scenario with and without

interoperability solution.

It is important, however, to point out that the proposed

interoperability solution works well in a closed-world model but

has some limitations in an open-world model and so may not be

relied on to reach convergence. Convergence defines a point at

which system is stable and has reached a steady state. In a closed

system, there are a definite number of actors (in this case AMs)

that influence the environment and the individual actions of

each AM can be tracked as a trend. In this way, it is possible for

each AM to detect persistent actions that conflict with its actions

and be able to readjust behaviour. However, in an open system,

there are indefinite number of actors that can influence the

environment. An actor in this model can be a third party that

interferes with the system and this interference could be a one-

off instance or several instances from different actors. For

example, the office share scenario in Section II is a closed-world

model but it becomes an open-world model if a third party (say,

different office cleaners) randomly contributes to the office

(re)arrangement. So, there are certain specific situations where

it would not reach convergence in an opens system, however, in

the general case it could, especially where a new AM

component is added to the system and remains for sufficient

time for the initial disturbance to disperse.

A. Scheduling and Resource Allocation

Several scheduling algorithms that optimise the

performance of datacentres have been proposed e.g., [17-18].

Our work, on the other hand, does not propose any new

scheduling algorithm. It uses a simple resource allocation

technique to model the behavior of AMs within the datacenter,

and measures their performance in terms of the effectiveness of

resource request and allocation management.

In the simulation, service (application) requests arrive and

are queued. If there are enough resources to service a particular

request then it is serviced otherwise it remains in the queue (or

may eventually be dropped). The AM checks for resource

availability and deploys server(s) according to the capacity of

the request. The capacities of application requests and servers

are defined by the units million instructions per second (MIPS).

In this paper, ‘capacity’ is stated in terms of MIPS, i.e., the

extent of its processing requirement. When a server is deployed,

it is placed in a queue for a time defined by the variable

ProvisioningTime. This queue simulates the time (delay) it takes

to load or configure a server with necessary application. Recall

from Equation (1) that any server can be (re)configured for

different applications and so servers are not pre-configured.

Servers are then ‘Provisioned’ after spending ProvisioningTime

in the queue. The provisioning pool is populated on demand, as

requests arrive. As a result of the lag between provisioning time

and the rate of request arrival or some unforeseen process

disruptions, some provisioned servers do overshoot the total

resource needed for the application, and are thereby left

redundant in the queue. As requests are fully serviced

(completed), servers are released into the server pool and

redeployed. Note that service level achievement (SLA) is

calculated based on accepted requests and not rejected or

dropped requests. The essence of the request queue is to allow

the AM to accept requests only when it has enough resources to

service them. So the AM could reject or drop the requests based

on ‘insufficient resources’, i.e., RequestedCapacity >

AvailableCapacity. This process is continuous and the AM

manages the system to the level of its sophistication.

B. Experimental Design and Metrics

The experimental scenario is designed and implemented

using the TAArch application (built in C#) which is available

on request. The experiment simulates two instances of a

datacenter scenario with each having two AMs – PeM and PoM

optimising resource allocation and power management

respectively. In the first instance, represented as

DatacentreNoInt, the AMs co-exist without any form of

interoperability solution. This means that both AMs perform

their tasks within the boundaries of their individual autonomic

framework without recourse to one another. In this case, PeM

and PoM are represented as PeM_NoInt and PoM_NoInt

respectively. In the second instance, DatacentreInt, the AMs co-

exist with the proposed stigmergic interoperability solution.

This means that both AMs, while performing their tasks within

the boundaries of their individual autonomic framework, are

sensitive to external interference. Here, external interference is

also defined as an AgentAction; any action or effect that alters

the AM’s expected system state. In this case, PeM and PoM are

represented by PeM_Int and PoM_Int respectively.

Note that this work investigates the performance of a multi-

manager datacentre with (DatacentreInt) and without

(DatacentreNoInt) interoperability solution. The scope of the

experiment focuses on the performance of datacentre AMs in

resource request and allocation management activities under

varying workloads. Although some workload parameters are

sourced from experimental results of other research [19, 20], the

designed experiments allow for the tailoring of all parameters

according to user preferences. Simulations are designed to

model several options of real datacentre scenarios. So,

depending on what aspect is being investigated, the user can

vary the workloads according to specific requirements. The

result of every simulation analysis is relative to workload and

the specific application configuration.

Performance Metrics:

The performance metrics are specifically chosen to reflect

the impact of the interoperability solution in a multi-manager

datacentre.

SLA: Service level achievement is the ratio of provided service

to requested service. It measures the system’s level of success

in meeting request needs. Note that requests and services are not

time bound, so the time it takes to complete a request does not

count in this regard. The metric is defined as:

𝑆𝐿𝐴 = {
(i): 𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚⁄

(ii): 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦⁄
 (3)

Where ProvisionedCapacity is the total deployed server

capacity (excluding those in queue and including those already

reclaimed back to the pool) and RequestedCapacity is the total

capacity of requests (including completed requests).

AvailableCapacity is ProvisionedCapacity minus

ReclaimedCapacity while RunningCapacity is the total capacity

of requests (excluding completed requests). There are two

definitions for SLA (3): (i) is more of a whole picture

consideration, considering the entire capacity activities of the

system while (ii), which is used in our experiment, takes a real

time view of the system, tracking to the minute details of the

system with delay, completed requests and reclaimed server

effects all considered. The reference value for SLA is 1: values

above 1 indicate overprovisioning while values under 1 indicate

shortfall.

PowerCoefficient: This represents the average server power

consumption. That is, the average power a server consumes at

any point in time for being active (switched on and running).

This is measured in kilowatt (kW). According to [19, 20], on

average, individual servers consume about 3.195 MWh worth

of power. This value is scaled and PowerCoefficient is pegged

at 3195 kWh in the simulations. This is indicative of real

systems although actual values can vary significantly owing to

a lot of factors (e.g., cooling, processor, machine type etc.).

TAArch Application allows for the tailoring of all parameters

according to user preferences. The usage of this variable is

limited to investigating the impact of interoperability actions in

terms of power consumption.

PowerConsumption (PC): This metric represents the

aggregated power consumption per unit time for all idle servers,

i.e., servers that are running but not yet deployed. It is important

to consider these servers as they can as well be switched and

powered only when needed. Although this could impact on

SLA, the tradeoff in power savings may be worthwhile, and is

one of the dynamic aspects of such a system. So if we assume

that each server, on average, consumes PowerCoefficient

kilowatts worth of power per second, then PC is calculated as:

 𝑃𝐶 = 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗ #𝐼𝑑𝑙𝑒𝑆𝑒𝑟𝑣𝑒𝑟𝑠 (4)

PC is calculated at every time interval defined by

RequestRate. Individual AM PC is different from the general

PC. For general PC, number of idle servers will be the total of

server count in Si and Ši pools while for individual AM (Int or

NoInt) PC number of idle servers will be the total of server count

in Si pool:

𝑃𝐶 = 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
∗ (𝑆𝑒𝑟𝑣𝑒𝑟. 𝐶𝑜𝑢𝑛𝑡 + 𝑆ℎ𝑢𝑡𝑆𝑒𝑟𝑣𝑒𝑟. 𝐶𝑜𝑢𝑛𝑡);

𝑃𝐶𝐼𝑛𝑡 = 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗ 𝑆𝑒𝑟𝑣𝑒𝑟. 𝐶𝑜𝑢𝑛𝑡;
𝑃𝐶𝑁𝑜𝐼𝑛𝑡 = 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗ 𝑆𝑒𝑟𝑣𝑒𝑟. 𝐶𝑜𝑢𝑛𝑡;

Note that as a result of individual operations of the

autonomic managers, Server.Count for DatacentreNoInt will

usually be different from that of DatacentreInt.

PowerSavings (PS): PS is calculated as the difference between

general power consumption and individual AM power

consumption:

𝑃𝑆 = 𝑃𝐶 − 𝑃𝐶(𝐼𝑛𝑡 𝑜𝑟 𝑁𝑜𝐼𝑛𝑡)

So, e.g., the PS for DatacentreNoInt will be calculated as:

𝑃𝑆𝑁𝑜𝐼𝑛𝑡 = 𝑃𝐶 − 𝑃𝐶𝑁𝑜𝐼𝑛𝑡

As PoM intends to optimise power usage, which also entails

saving power, the PS metric will be useful to analyse the impact

of the manager’s power management capability.

Instability: Instability is the number of servers moved per

second between pools in the datacentre. Moving servers around

frequently is inefficient and increases provisioning overheads.

The cost effect can be enormous in terms of cooling, power, and

scheduling costs etc. Instability in terms of irregular and high

rate of server movement from one pool to another is a costly,

unsafe (due to the introduction of variable delays) and

undesirable occurrence in datacentres. This is a potential

situation when you have two AMs optimising the same

datacentre as in the case example here.

C. Autonomic Manager Logic

AM logic details their individual control logic employed in

order to achieve each one’s performance goal. This explains the

logical composition of each AM. There are two instances of

each AM (PeM_Int and PeM_NoInt), i.e., with and without

interoperability solution.

 Performance Manager (PeM)

PeM is directly responsible for dealing with application

resource requests and allocation management. The AM receives

requests and allocates resources according to the scheduling

algorithm defined earlier. The first instance of this AM

(PeM_NoInt) has no inbuilt interoperability solution.

- PeM_NoInt

As requests arrive, the AM checks for resource availability

and deploys server(s) according to the capacity of the request.

The server is placed in the provisioning pool which is constantly

populated as requests arrive. The AM calculates an

exponentially smoothed mean of the capacity of arriving

requests in order to forecast the next expected request MIPS,

i.e., it is used to predict requests:

smoothedAvgCapacityPeM_NoInt = (smoothingConstant *

avgAppCapacity) + ((1 - smoothingConstant) * oldMean);

With this forecast information, the AM constantly checks to

ensure that the difference between the predicted MIPS and the

available MIPS (idle server capacity ready for deployment) is

not less than the equivalent of two servers. And if it is, the AM

quickly checks and restores servers from the shutdown server

pool (Ši). Procedure 1 is the algorithm that drives the server

restoration process in the PeM_NoInt AM.

This check ensures that, where possible, the AM maintains

at least the capacity equivalent of two servers readily available

for deployment (i.e., at least enough resources for current

request and the next expected request). Checks are carried out

at an interval defined by the PeM_NoIntTuningParam

parameter. This ensures that the AM does not wait until the

critical point before acting. So at every interval, the AM checks

and restores servers on the Ši pool.

- PeM_Int
The PeM_Int AM has an embedded interoperability solution

based on the proposed interoperability solution (Fig. 1). In

addition to all the functionalities of PeM_NoInt the PeM_Int

AM performs further checks and retunes its behaviour. The AM

tracks system state as it carries out checks at the specified

interval defined by PeM_IntTuningParam. Each check is seen

as an ‘observation’ instance and if on a periodic IntObserve

observation the Ši pool is not empty (signaling that the pool is

being populated as it is being emptied by PeM_Int), the AM

adjusts its checks interval (by increasing

PeM_IntTuningParam) to reduce the rate at which it empties

the Ši pool (i.e., to be sympathetic to the other AM whose

presence is implied, rather than to compete with it):

if ((serviceRequestCountPeM_Int - PeM_IntRefPoint) ==

 PeM_IntTuningParam)
 { PeM_IntObservationCount += 1;

PeM_IntRefPoint = serviceRequestCountPeM_Int;
if (PeM_IntObservationCount == IntObserve)

 { PeM_IntObservationCount = 0;
if (ShutServerCountInt != 0) //if Ši pool not empty
{ PeM_IntTuningParam += IntParamCount;

} ... } ... }

Procedure 1: Algorithm for checking and restoring servers

 1: Calculate smoothedAvgCapacity

 2: Calculate AvailableCapacity

 3: Define a periodic Interval (PeM_NoIntTuningParam)

 4: for every Interval

 5: if (AvailableCapacity – smoothedAvgCapacity)

 < (ServerCapacity * 2)

 6: restore servers

 7: next

Note: PeM_IntTuningParam parameter represents the initial time

interval at which the PeM_Int AM checks to decide whether or not to

power and restore servers that are down. Unlike

PeM_NoIntTuningParam, it is dynamically adjusted by the PeM_Int

AM. This parameter is measured in number of service requests.

A further internal set of observation iterations could be

carried out. The tuning parameter is further adjusted if condition

persists (i.e., persisted interference) after each further

observation of the initial interval of observations. So, what

happens here is that the AM powers on servers (restores servers

from Ši) and keeps checking that there are enough reserves for

prompt deployment. PoM_Int continues to shut servers down,

which causes instability in the system as both AMs counter each

other’s actions. If PeM_Int senses that the restored servers are

constantly put out-of-service, it relaxes its rate of re-powering

the servers – this is because the whole essence is indirect

collaboration rather than competition. In essence each AM has

its own feedback loop but these are coupled indirectly by

selected environmental parameters, facilitated by TAArch. If

after a certain time (defined by the new check interval) the

interference continues, the AM further relaxes the rate of its

actions. This process is continuous, so adjustment is repeated

until a stable condition is reached. This is demonstrated in detail

in following experiments.

 Power Manager (PoM)

The power manager is directly responsible for power usage

optimisation in the datacentre. The power optimisation method

implemented by the AM is based on power conservation in

which idle servers are shut down to conserve power. Other

researchers have used different forms of power management.

For example [21] discuses a power manager which optimises

the power consumption of a server by adjusting its processor

speed several times a second, and [22] discuses a power

manager which is embedded in the firmware of a server and can

use feedback control to precisely control the server’s power

consumption. While these are processor-level power

management, the PoM AM conserves power by shutting idle

servers and repowering them as need arises. This is sufficient to

create conflicts with PeM, which seeks to keep as many servers

running as possible in order to have enough capacity reserve

(and thus provides a suitable example on which to explore the

stigmergic interoperability concepts). This form of power

management technique is also used in [23] in which machines

are turned on/off to conserve power.

- PoM_NoInt

Here, the AM checks and shuts down idle servers at a time

interval defined by PoM_NoIntTuningParam. The idle servers

are the same servers that PeM_NoInt considers as available

resources. So in essence, when servers are shut down

AvailableCapacity is depleted which in turn affects the

performance of PeM_NoInt. So PoM_NoInt continues to check

and shut down servers within a certain boundary. Procedure 2 is

the algorithm that determines how PoM_NoInt checks and shuts

down servers.

So what this means is that PoM_NoInt will continue to shut

down idle servers as long as the number of servers in the Si pool

(available servers) is greater than one fifth of the total servers.

(The DC component of PoM_NoInt is configured to stop

shutting servers at (Si count = (server.sNumber / 5)) because if

the AM continues shutting servers beyond this point it will drag

the entire datacentre to the brink of unresponsiveness which

ultimately leads to under-provisioning and inefficiency.) This

process continues regardless of the actions of the PeM.

PeM_NoInt may at this point be restoring the servers to increase

AvailableCapacity and this ultimately leads to high rate of

server movement in the datacentre.

- PoM_Int

On the other hand, the embedded interoperability solution

enables PoM_Int to sense conflicts and then readjusts its

behaviour. The same method as in PeM_Int is used here. For

example, the AM keeps count of servers in the Ši pool

(listViewShutServer.Items.Count) as it shuts and repowers

servers and if on a periodic tenth check the server count does

not match expected count (signifying AgentAction), the AM

adjusts the tuning parameter:

if ((serviceRequestCountPeM_Int - PoM_IntRefPoint) ==

 PoM_IntTunningParam) //
{ PoM_IntObservationCount += 1;

PoM_IntRefPoint = serviceRequestCountPeM_Int;
if (PoM_IntObservationCount == 10)

 { PoM_IntObservationCount = 0;
 if (listViewShutServer.Items.Count <

 PoM_IntCheckPoint)
{// if on a 10th observation S_i.Count doesn't match
 expected count
 PoM_IntTunningParam += 1; //adjusting parameter
} }

 //below is same as defined by Procedure 2 algorithm
 int d = listViewServer.Items.Count;
 if (d > (server.sNumber / 5)) // unsafe to shut servers
 { listViewShutServer.Items.Add(listViewServer.Items[d-
1].Text);
 listViewServer.Items.Remove(listViewServer.Items[d-1]);
 PoM_IntCheckPoint = listViewShutServer.Items.Count;} }

The AM keeps adjusting the tuning parameter

(PoM_IntTuningParam) until it senses stability in the

datacentre. The observation process operates continuously, so

whenever a new conflict arises the adjustment behavior begins

again, to find a new compromise.

 Procedure 2: Algorithm for checking and shutting down servers

 1: int s = initial number of servers

 2: Define a periodic Interval (PoM_NoIntTuningParam)

 3: for every Interval

 4: int d = #AvailableServers //Servers.Count

 5: if (d > (s/5))

 6: Shut Sever[d-1]//shut the last server on Si pool

 7: Add Server[d-1] To Ši[]//add to Ši server pool

 8: next

D. Experimental scenario and results analyses

To analyse the performance effects of the proposed

interoperability solution on the datacentre case example, a

scenario of varying application capacity with inconsistent

request rate is used. This scenario replicates a situation where

there is resource contention (as a result of hugely varied request

capacities) and the possibility of abrupt and inefficient server

deployment (as a result of inconsistent request rate, e.g., burst

injection). This condition is perfect for testing the robustness of

the interoperability solution. The effect of resource contention

and irregular (sometimes erratic) request rate is usually rapid

and frequent movement of servers between the various pools

which the AMs will struggle to contend with. This is made

worse when there is conflict between the AMs, with one

restoring servers and another powering them down, which leads

to more server movement. The robustness of the interoperability

solution is tested by its level of sensitivity to this situation. This

simulation can be replicated using the TAArch Application.

Table I is a collection of the major parameters used in this

simulation.

TABLE I. SIMULATION PARAMETERS

Parameter Value

of servers 400

of applications 2

App capacity (MIPS)

App1 30000

App2 15000

Request rate (initial) 1 req/sec

Server capacity (MIPS) 40000

Internal

variables

RetrieveRate 5x

RequestRateParam 10

RetrieveRequestParam 0.2

BurstSize 2500ms

ServerProvisioningTime 3 (1.5 sec)

Managers (for NoInt and Int) PeM & PoM

DZConst (initial) 1.5

- RetrieveRate: Indicates rate at which requests are completed

once simulation for service request completion is initiated.

Value is relative to request rate – e.g., if value is 5, then it means

service request completion is five times slower than rate of

service request.

- RequestRateParam: A constant used to adjust the possible

range of request rate. The user of the TAArch Application can

set request rate according to preference but this preference may

not be accommodated within the available rate range. E.g., if the

least available rate is 1 request/second and the user wishes to

use 2 requests/second, the RequestRateParam parameter can be

used to extend the available range. A higher value increases the

range for a lower rate of request arrival.

- RetrieveRequestParam: Tuning parameter indicating when to

start shutting services (this simulates service request

completion) – at which point some running requests are closed

as completed. This value is measured as percentage of number

of servers in use and has been restricted to value between 0.1

and 0.3 (representing 10% to 30%) because experiments show

that it is the safest margin within which accurate results can be

guaranteed. The datacentre is not completely settled below

10%, that is, the data generated below this point is insufficient

for adequate analysis. Also, scenarios with few servers will

yield inaccurate results beyond 30% mark. The higher the value

of RetrieveRequestParam the earlier services start shutting

(‘shutting services’ simulates service request completion).

- Burtstsize: Indicates how long the user wants the burst

(injected disturbance) to last. This value is measured in

milliseconds. Burst is a disturbance introduced by the user to

cause disruption in the system. This alters the smooth running

of the system and AMs react to it differently. The nature of the

disruption is in the form of sudden spike or significant shift in

the rate of service request.

- ServerProvisioningTime: Indicates how long it takes to load

or configure a server with an application. This is relative to the

rate of request arrival – it is measured as half the rate of request

arrival e.g., the value of 3 will translate to 1.5 of rate of request

arrival.

- DZConst: The tuning parameter the AM uses to dynamically

adjust dead-zone width (DZWidth). This variable has a

significant effect on the system, and it was found

experimentally that the initial value should be set at 1.5. The

AM usually adjusts this value dynamically and there is also a

provision to manually adjust the value during run time.

 Results

The results are based on the average of ten simulation runs.

In every simulation run, there are 400 servers of 40000 MIPS

capacity each to be shared amongst two applications (App1 and

App2). This means there is a total of initial 16000000 MIPS to

share between requests for App1 with 30000 MIPS and App2

with 15000 MIPS. Table 2 shows a distribution of requests and

services for ten simulation runs.

TABLE II. HIGH LEVEL PERFORMANCE ANALYSIS OVER TEN

SIMULATION RUNS

Runs unused server serviced

request

queued request deployed

server

Int NoInt Int NoInt Int NoInt Int NoInt

1 0 0 585 610 116 91 439 439

2 26 0 586 597 99 88 416 446

3 0 0 635 639 105 101 464 453

4 0 0 586 587 89 88 441 441

5 0 0 600 615 112 97 445 427

6 3 0 602 597 92 97 434 439

7 0 0 629 660 145 114 442 443

8 19 0 593 598 103 98 423 447

9 23 0 603 614 104 93 409 444

10 6 0 602 603 95 94 436 437

avg 7.7 0 602.1 612 106 96.1 434.9 441.6

Table II shows slight differences in performance

optimisation between when interoperability solution is

implemented (Int) and when it is not (NoInt). In terms of

resource per service efficiency, for example, NoInt performed

slightly better than Int with the ratio of 0.7216 : 0.7223. This is

because of increased delay experienced in Int as a result of

delayed (queued) requests following the burst. The tradeoff for

Int, in this case, is an increased number of unused servers which

means that more requests would be serviced in the long run.

This relationship is reflected in the general performance

optimisation analysis (e.g., scheduling and costs, SLA etc.), in

which both Int and NoInt outperformed each other

intermittently. The SLA analysis (Fig. 2) corroborates this

position and also shows that both datacentres gradually

stabilised to optimal provisioning after a short time of under-

provisioning. The tradeoff for Int’s slight low SLA performance

is increased power savings as shown in Fig. 4. (Tradeoff

between SLA and power savings has been discussed in [23]).

However, there is significant performance difference in terms

of power optimization analyses. Recall that the actions of the

performance manager have enormous impact on the power

manager whereas the performance manager, to some extent,

mitigates the effects of the power manager’s actions.

Fig. 2. The analysis of both datacentres’ SLA and behaviour patterns

(ActionTrend). Burst was introduced at 200s. The reference point value for SLA
is 1 (indicating 100% – optimal provisioning): values above 1 indicate

overprovisioning while values under 1 indicate shortfall. For ActionTrend, the

level 0.5 was chosen arbitrarily as its numerical value is not significant – it is
just used to indicate behaviour patterns (in terms of tuning and retuning actions)

of AMs in both datacentres in the face of conflict. DatacentreInt achieved

steady state at 320s and conflicts stopped at about 520s. These are indicated by
the arrows.

Action trends in Fig. 2 reveal that DatacentreNoInt shows

high level of instability in terms of inefficient movement of

servers between logical pools in the datacentre. The behaviour

trend in NoInt remained constant from start to finish and only

experienced a minor jump when burst was injected. As shown,

a burst of service requests was injected into the system at 200s

and in both scenarios the datacentres recovered quite quickly.

Behaviour pattern in DatacentreInt (Int) reveals a level of

dynamic self-tuning of behaviour. As conflicts arise (coupled

with the underlying conditions of resource contention and

erratic requests), AMs of DatacentreInt retune their actions

until the system is stable and has reached a steady state. This

steady state is achieved from about 320s mark at which point

both AMs begin to efficiently coexist with minimal conflict. At

this point both AMs (PeM_Int and PoM_Int) have successfully

adjusted their actions to mitigate existing interferences and at

about 520s (when conflicts have stopped), AMs stopped

adjusting their behaviours.

Fig. 3. Instability analysis with burst injected at 200s

Again the instability analysis (Fig. 3) shows that the

proposed interoperability solution is still capable of

autonomically addressing conflicts between coexisting AMs in

complex situations. Despite the complex conditions of the

experimental scenario, there is still significant reduction in the

rate of server movement in DatacentreInt. Also, we can see that

the server movement in DatacentreInt tails off at about 520s

while it continues to significantly fluctuate in DatacentreNoInt.

The rate of instability increase is a resultant effect of the burst.

The movement of servers has some power cost implications as

analysed by Fig. 4. Results show that without any form of

interoperability control, as in DatacentreNoInt, PeM_NoInt,

under the underlying conditions, almost completely impedes the

actions of PoM_NoInt rendering its power management effect

almost negligible. However, in the case of interoperability

control, as in DatacentreInt, AMs are able to dynamically adjust

their actions so as to gradually reduce or remove conflicts. This

is why there is visibly clear difference in the power

consumption of both datacentres.

Fig. 4. Power savings analysis

Fig. 4 is a clear view of performances in terms of power

optimisation and the impact of the interoperability solution. The

sudden jump in power savings at 200s can be attributed to the

fact that when the burst was injected, AMs temporarily paused

the movement of servers and majority of requests are either

queued or dropped, reducing the number of servers being

deployed. The prevailing conditions of the scenario (resource

contention and irregular request rate) added another twist to the

conflicts experienced by the AMs. Under these conditions,

0

50

100

150

200

250

1 101 201 301 401 501 601 701

se
rv

er
s

m
o

ve
d

simulation time [s]

instability
Interoperability NoInteroperability

Burst

-2

0

2

4

6

8

10

1 51 101 151 201 251 301 351 401 451 501 551 601

kw
 (

p
o

w
er

 s
av

ed
)

simulation time [s]

power savings

Interoperability NoInteroperability

0.92

0.94

0.96

0.98

1

1.02

1 101 201 301 401 501 601 701

le
ve

lo
f

p
ro

vi
si

o
n

in
g

sla SLA_Int SLA_NoInt

0

0.5

1 101 201 301 401 501 601 701
simulation time [s]

action trendActionTrendInt ActionTrendNoInt

Burst injected

DatacentreNoInt struggled to achieve its goal as it experienced

significant drop in performance while DatacentreInt was more

robust in achieving its general performance goal.

The results above suggest that it is counterproductive to run

a multi-manager datacentre without any form of interoperability

solution. We have seen that conflicts between coexisting AMs

can defeat the AMs’ set goals and also lead to spiraling

overhead cost. This often leads to unsatisfactory results,

especially in complex operating conditions. Results, however,

have shown that the proposed interoperability solution is

sufficiently sophisticated to efficiently handle conflicts between

pairs of coexisting AMs and shows promising signs of yielding

satisfactory results under a wide range of operating

circumstances (assuming closed-systems). So, we conclude that

stigmergic interoperability is a promising approach to calm

instability arising from complex interactions in multi-manager

datacentres and other similarly complex autonomic systems.

V. CONCLUSION

The success of autonomic computing has inevitably led to

situations where multiple autonomic managers (AMs) need to

coexist and/or interact directly or indirectly within the same

system. In this paper we have provided motivation for

interoperability solutions for multi-manager autonomic

systems. We have provided example scenarios where such

solutions are needed and can be evaluated.

We suggest that support for interoperability should be an

integral part of the autonomic system. We have proposed a

solution based on stigmergy, using environmental variables and

architectural support to facilitate indirect interaction between

the feedback loops of separate AMs, operating independently,

without explicit knowledge of each other’s presence or

operation.

A stigmergic interoperability mechanism, which is based on

our earlier published TAArch architecture, has been presented.

We have shown how our approach to interoperability provides

implicit automatic coordination between AMs in a multi-

manager scenario without the need for design-time or run-time

planning or knowledge of the run-time AM population / mix.

The approach provides efficient collaboration (as against

competition) between coexisting AMs. The stigmergic

interoperability solution builds on the Stigmergic Phenomenon.

The AMs are designed to sense their environment and

dynamically adjust (retune) their behaviour as soon as they

notice process conflicts. The experimental analyses of multi-

manager datacentre scenarios show that the proposed stigmergic

interoperability solution achieves over 42% performance

improvement (see instability analysis in Fig. 3) in a complex

(conflict prone) coexistence of AMs.

REFERENCES

[1] R. Nou and J. Torres, “Heterogeneous QoS Resource Manager with

Prediction,” The Fifth International Conference on Autonomic and

Autonomous Systems (ICAS), Karlsruhe, Germany, 2009.
[2] V. Ramachandran, M. Gupta, M. Sethi, and S. Chowdhury, “Determining

Configuration Parameter Dependencies via Analysis of Configuration

Data from Multi-tiered Enterprise Applications,” The sixth International
Conference on Autonomic Computing (ICAC), Barcelona, Spain, 2009.

[3] C. Kennedy, “Decentralised metacognition in context-aware autonomic

systems: some key challenges,” The twenty fourth American Institute of

Aeronautics and Astronautics (AIAA) Workshop on Metacognition for

Robust Social Systems, Atlanta, Georgia, USA, 2010.

[4] M. Salehie and L. Tahvildari, “Autonomic computing: Emerging trends

and open problems,” The 2005 Workshop on the Design and Evolution

of Autonomic Application Software (DEAS), New York, USA, 2005.

[5] R. Quitadamo and F. Zambonelli, “Autonomic communication services:
a new challenge for software agents,” Journal of Autonomous Agents and

Multi-Agent Systems, Springer, 17 (3), pp. 457–475, 2008.

[6] G. Schulz, “The Green and Virtual Data Center,” CRC Press, 2009.
[7] T. Eze and R. Anthony, “Trustworthy Autonomic Architecture

(TAArch): Implementation and Empirical Investigation,” International

Journal on Advances in Intelligent Systems (IntSys), IARIA, 7 (1 & 2),
pp. 279 – 301, 2014.

[8] M. Dorigo, E. Bonabeau, and G. Theraulaz, “Ant algorithms and

stigmergy,” Future Generation Computer Systems, 16 (8), pp. 851-871,
2000

[9] P. Stone and M. Veloso, “Multiagent Systems: A Survey from a Machine

Learning Perspective,” In Autonomous Robots, Springer, 8 (3), pp. 345-
383, 2000.

[10] H. Liu and H. Iba, “Multi-agent Learning of Heterogeneous Robots by

Evolutionary Subsumption,” In Lecture Notes in Computer Science
(LNCS), Springer, 2724, pp. 1715-1728, 2003.

[11] R. Brooks, “Robust Layered Control System for a Mobile Robot,” IEEE

Journal of Robotics and Automation, 2 (1), pp. 14-23, 1986.
[12] G. O’Reilly, and E. Ehlers “Synthesizing Stigmergy for Multi Agent

Systems,” In Lecture Notes in Computer Science (LNCS), Springer,

4088, pp. 34-45, 2006.
[13] K. Hadeli, P. Valckenaers, M. Kollingbaum, and H. Brussel, “Multi-

agent Coordination and Control using Stigmergy,” In Lecture Notes in

Computer Science (LNCS), Springer, 2977, pp. 105-123, 2004.
[14] J. Kephart, H. Chan, R. Das, and D. Levine, “Coordinating multiple

autonomic managers to achieve specified power-performance tradeoffs,”

In Proceedings of the fourth International Conference on Autonomic
Computing (ICAC), Florida, USA, 2007.

[15] R. Anthony, M. Pelc, and H Shauib, “The Interoperability Challenge for

Autonomic Computing,” The third International Conference on
Emerging Network Intelligence (EMERGING), Lisbon, Portugal, 2011.

[16] T. Eze and R. Anthony, “Dead-Zone Logic in Autonomic Systems,”

IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS),
Linz, Austria, 2014.

[17] J. Perez, C. Germain-Renaud, B. Kegl, and C. Loomis, “Utility-based

Reinforcement Learning for Reactive Grids,” The fifth International
Conference on Autonomic Computing (ICAC), Illinois, USA, 2008.

[18] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “On the Use of

Fuzzy Modeling in Virtualized Data Center Management,” The fourth
International Conference on Autonomic Computing (ICAC), Florida,

USA, 2007.

[19] J. Berral, R. Gavalda, and J. Torres, ““Living in Barcelona” Li-BCN
Workload 2010,” Technical Report LiBCN10, Barcelona

Supercomputing Centre, Barcelona, Spain, 2010.

[20] M. Pretorius, M. Ghassemian, and C. Ierotheou, “An investigation into
energy efficiency of data centre virtualization,” International Conference

on P2P, Parallel, Grid, Cloud and Internet Computing, Fukuoka, Japan,
2010.

[21] V. Durani, “IBM BladeCenter Systems Up to 30 Percent More Energy

Efficient Than Comparable HP Blades,” IBM Press Release, Nov. 16,
2006.

[22] X. Wang, C. Lefurgy, and M. Ware, “Managing peak system-level power

with feedback control,” Research Report RC23835, IBM, 2005.

[23] J. Berral, I. Goiri, R. Nou, F. Julià, J. Guitart, R. Gavaldà, and J. Torres,

“Towards energy-aware scheduling in data centers using machine

learning,” The 1st International Conference on Energy-Efficient
Computing and Networking (e-Energy), New York, USA, 2010.

