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Abstract —The success of autonomic computing has led to its 

popular use in many application domains, leading to scenarios 

where multiple autonomic managers (AMs) coexist, but without 

adequate support for interoperability. This is evident, for example, 

in the increasing number of large datacentres with multiple 

managers which are independently designed. The increase in scale 

and size coupled with heterogeneity of services and platforms 

means that more AMs could be integrated to manage the arising 

complexity. This has led to the need for interoperability between 

AMs. Interoperability deals with how to manage multi-manager 

scenarios, to govern complex coexistence of managers and to 

arbitrate when conflicts arise. This paper presents an architecture-

based stigmergic interoperability solution. The solution presented 

in this paper is based on the Trustworthy Autonomic Architecture 

(TAArch) and uses stigmergy (the means of indirect 

communication via the operating environment) to achieve indirect 

coordination among coexisting agents. Usually, in stigmergy-based 

coordination, agents may be aware of the existence of other agents. 

In the approach presented here in, agents (autonomic managers) 

do not need to be aware of the existence of others. Their design 

assumes that they are operating in 'isolation' and they simply 

respond to changes in the environment. Experimental results with 

a datacentre multi-manager scenario are used to analyse the 

proposed approach.  
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I.  INTRODUCTION 

Autonomic Computing has progressively grown to become 

a mainstream concept. Many mechanisms and techniques have 

been successfully explored and this success has led to multi-

manager system scenarios where multiple AMs coexist and/or 

interact (directly or indirectly) within the same system. This is 

evident, for example, in the increasing availability of large 

datacentres with multiple [heterogeneous] managers which are 

independently designed [1, 2]. Coupled with heterogeneity of 

services and platforms, this leads to the possibility of integrating 

more AMs to achieve a particular goal, e.g., datacentre 

optimisation. This ultimately leads to conflicts ranging from 

cancellation or over-compensation effects at the simplest end of 

the spectrum, to system instability, and lack of predictability at 

the other end. There is therefore the need for interoperability 

between AMs, to facilitate multi-manager scenarios, govern 

complex interactions between managers and to arbitrate when 

conflicts arise. Although several works, e.g., [3-5] have 

identified interoperability as a key challenge for future 

autonomic systems, we do believe that the challenge is already 

imminent. 

The challenge of multi-manager interactions can be 

understandably enormous. This stems from the fact that, for 

example, components (including AMs) can be multi-vendor 

supplied: upgrades in one manager could trigger unexpected 

events; increasing scale can introduce bottlenecks; one manager 

may be unaware of the existence of another; and managers, 

though tested and perfected in isolation, may not have been 

wired at design to coexist with other managers. A typical 

conflict example is illustrated with a multi-manager datacentre 

scenario: consider a datacentre with two independent AMs 

working together (unaware of each other) to optimise the 

datacentre – a Performance Manager (PeM) optimises resource 

provisioning to maintain service level achievement. It does this 

by dynamically (re)allocating resources and maintaining a pool 

of idle servers to ensure high responsiveness to high priority 

applications. A Power Manager (PoM) seeks to optimise power 

usage (a major cost overheads of datacentres [6]) by shutting 

down servers that have been idle for a certain length of time. 

Each manager performs brilliantly in isolation, but by 

coexisting, the success of one manager defeats the goal of 

another; one seeks to shut down a server that another seeks to 

keep alive. The activities of one manager affect the costs of 

provisioning (e.g., delay, scheduling, and power consumption 

etc.) for another in one way or the other. 

This paper presents a stigmergic interoperability solution to 

multi-agent coordination. The proposed solution is architecture-

based as we posit that interoperability support should be 

designed in and integral at the architectural level, and not be 

treated as an add-on. The TAArch [7], which includes 

mechanisms and instrumentation to explicitly support 

interoperability and trustworthiness is used. Multi-manager 

coordination is achieved using stigmergy concepts. 

The Stigmergic Phenomenon [8] is achieving indirect 

coordination among coexisting agents by means of indirect 

communication via the environment. That is, using their 

environment for indirect communication, the agents are able to 

sense and adjust their actions and this way efficient coordination 

is achieved. So the stigmergic interoperability solution provides 

indirect coordination between AMs in a multi-manager scenario 

without the need for planning (or pre-knowledge of the 

existence of other AMs), control or direct communications 

between coexisting AMs. Section II discusses the proposed 

stigmergic solution while Section III provides a distinction 

between the proposed solution and those in related works. 

Section IV presents datacentre-based implementation and 

empirical analysis. Section V concludes the work. 



II. STIGMERGIC INTEROPERABILITY 

The stigmergic interoperability utilises the process of 

stigmergy to facilitate the coexistence of agents without 

individual agents necessarily being aware of the existence or 

wiring of each other. The basic principle is that a particular AM 

detects others by observing the effects of their management 

actions on its own operating environment and especially in 

terms of the control and use of resources. Agents are context-

aware and autonomically react to environmental changes by 

retuning their behaviour as appropriate. Environmental 

changes, e.g., unexpected fluctuation, data spikes, policy 

violation (or alteration), external adjustment of parameters, 

process conflict etc. are considered AgentActions, which are 

assumed, by all agents, to mean conflicting actions by another 

agent. AgentActions can also be caused by other factors that are 

considered ‘normal’ behavior (e.g., resource contention) of the 

system. As soon as AgentAction is detected, an agent starts 

retuning its behaviour until a steady state is reached. In this 

paper, AMs are agents that are designed using TAArch 

architecture. TAArch is centered around hierarchical control 

loops, with three main components, operating on different 

timescales (for short and longer term adaptations) allowing the 

AM to monitor its own performance, correctness, and effect on 

the controlled system. This enables it to detect any instability 

caused in the system. The three main components are; the 

AutonomicController (AC), which makes self-management 

(adaptation) decisions, the ValidationCheck (VC), which 

monitors performance and correctness of AC and the 

DependabilityCheck (DC), which monitors long term 

adaptation impact and effectiveness on system. AMs need to 

predict the effect on the system of their own management 

actions, and by detecting deviations from this can deduce the 

presence of another manager acting on the same resource set. 

See [7] for more details of TAArch.  

In the proposed interoperability approach, Trend Analysis 

(TA) logic is implemented in the DC component to enable the 

AM to automatically detect conflicts and using Dead-Zone (DZ) 

logic, the AM is able to regulate its behaviour as appropriate. 

DZ logic is a mechanism to prevent AMs from unnecessary, 

inefficient and ineffective control brevity when the system is 

sufficiently close to its target state. It provides a natural and 

powerful framework for achieving dependable self-

management in autonomic systems by enabling AMs to adapt 

only when it is safe and efficient to do so, within a defined 

safety margin [16].  

Fig. 1 is a multi-manager datacentre example: it comprises 

a pool of resources Si (live servers), a pool of shutdown servers 

Ši (ready to be powered and restored to Si as need be), a list of 

applications Aj, a pool of services Ṳ (a combination of 

applications and their provisioning servers), and two autonomic 

managers AM1 (performance manager PeM) and AM2 (a 

power manager PoM) that optimise the entire datacentre. Aj and 

Si are, respectively, a collection of applications supported (as 

services) by the datacentre and a collection of servers available 

to the manager for provisioning available services according to 

requests. As service requests arrive, PeM dynamically 

populates Ṳ to service the requests following the scheduling 

algorithm discussed in Section IV (A). Ṳ is defined by: 

 

 

 

 

 

Where Aj: (Sj1 … Sji) means that (Sj1 … Sji) servers are 

currently allocated to Application Aj and j is the number of 

application entries into Ṳ. Servers are retrieved and redeployed 

across applications. All the servers i in Si are up and running 

(constantly available as desired by PeM) waiting for 

(re)deployment. The primary performance goal of PeM is to 

minimise oscillation and maximise stability and efficiency 

(including just-in-time service delivery) while the secondary 

performance goal is to maximise throughput. The goal of PoM, 

on the other hand, is to optimize power consumption. This task 

is simply achieved by shutting down any server that has been 

idle for a threshold time T. As a result, the actions of PoM can 

negate the goal of PeM causing conflict in the system. 

To manage interoperability between PeM and PoM, Fig. 1 

shows the communications and control within the components 

of the AMs. The managers take performance decisions which 

are then validated by their respective VC (VCpom and VCpem) 

for correctness. VC ensures continuous self-validation of the 

AM’s behaviour and configuration against the AM’s goals and 

also reflects on the quality of the AM’s adaptation behaviour. A 

control feedback (CF) is generated if validation fails and with 

this feedback, the manager adjusts its decisions. The DC takes 

a longer-term validation oversight of the managers’ behaviour 

and either allows a manager to carry on with its actions (if the 

check passes) or generates a recalibration feedback (RF) 

otherwise. DC contains other subcomponents (K), to achieve 

e.g., interoperability, stability etc. The stability subcomponent 

is usually configured using DZ logic. The interoperability 

subcomponent, in this case example, is configured using TA 

logic (which identifies patterns within streams of information) 

with a combined effect of exponential smoothing technique. 

The details of the logic usage are explained in Section IV. Note 

that the designer of the manager can define as many DC 

subcomponents as necessary. 

   (1) 

       A1: (S11, S12, S13, …, S1i) 

       A2: (S21, S22, S23, …, S2i) 

           …   …    …   …  …  … 

        Aj:  (Sj1, Sj2, Sj3, …, Sji) 

 

Ṳ   = 



The interoperability component learns and keeps track of the 

system’s state following the historical decisions of the manager. 

If after a number of decision instances the manager senses a 

conflict with its decisions (based on expected versus actual 

system state), another RF is generated to retune the manager’s 

decisions. For example, if after time T, PoM senses that the 

same set of servers it has shut down have repeatedly been 

restarted without it powering them, it concludes that another 

operation (probably a human, another AM, etc.) is not ‘happy’ 

with PoM’s decisions. So, PoM’s DC generates a RF with an 

appropriate tuning parameter value (β) to throttle the size of T 

as shown in (2). By sensing the effects of its actions and 

dynamically throttling T within an acceptable boundary, PoM is 

able to coexist with any other AM with conflicting actions. 

Similarly, PeM can retune its behaviour, for example, if it 

senses that the set of servers it tries to keep running are 

constantly switched off. However, there are boundaries within 

which each AM’s cleverness is limited, e.g., the size of T has a 

maximum limit. Notice that the two managers do not need to 

know any details or even the existence of each other. In real life, 

this is typical of two staff that share an office space but work at 

different times. If each returns on their next respective shift and 

finds the office rearranged, they will each adjust in their 

arrangement of the office until an accepted compromise 

structure is reached. This can be achieved without them ever 

meeting. DC provides extra capacity for a manager to 

dynamically throttle its behaviour to suit the goal of the system. 

This is in line with the stigmergic approach that enables 

coexisting AMs to achieve indirect coordination by means of 

indirect communication via the environment. That is, 

communicating indirectly using their environment, the AMs are 

able to sense the effects of each other’s actions and adjust their 

own actions and thereby avoid conflict. So the stigmergic 

interoperability solution provides indirect coordination between 

AMs in a multi-manager scenario without the need for planning 

(or pre-knowledge of the existence of other AMs), control or 

direct communications between coexisting AMs. This provides 

efficient collaboration (as against competition) between 

coexisting AMs.  
 

      Tn = (Tn-1 * β)            (2) 

 

There are costs associated with the operations of a 

datacentre. These costs are affected in one way or the other by 

the actions of the managers. These and many other metrics are 

used to analyse the proposed solution in Section IV. 

III. BACKGROUND 

‘Multi-agent systems’ is a generic term referring to systems 

consisting of different sub-systems (e.g., AMs, agents) that 

cooperate (interact) with each other in order to achieve a 

common goal. The idea of a system with several components 

working together towards a common goal has been applied to 

an increasing number of domains including distributed systems, 

autonomic computing, supply chain, networks of networks and 

so on. Multi-agent coordination deals with the way the sub-

systems interact with each other in the process of working 

together to achieve the common goal, and many techniques 

have been proposed. A detailed survey of multi-agent systems 

is presented in [9]. Multi-manager scenario, as described in this 

paper, is a situation requiring the cooperation of different AMs 

in the same system and this cooperation is referred to as 

interoperability. There are potential problems as a result of 

conflict-of-interest when these managers coexist. There is a 

growing concern that the lack of support for interoperability will 

become a barrier to progress for future systems. Several multi-

agent coordination techniques have been proposed in the multi-

agent systems community.  

Architecture based multi-agent coordination has been 

demonstrated before. In [10], a multi-agent coordination in 

multi-robot system, based on genetic programming (GP), is 

discussed. To coordinate a coorperative task between robots, 

Liu and Iba [10] propose an approach called Evolutionary 

Subsumption, which applies GP to Brooks’ subsumption 

architecture [11]. Results show that this approach is more 

efficient in emergence of multi-robots complex behaviors 

compared to other (e.g., direct GP and artificial neural network) 

approaches. This supports the idea of our solution which is 

achieving interoperability-by-design – interoperability support 

designed in and integral at the architectural level. 

Natural systems such as social insects which utilise 

stigmergy show remarkable flexibility, robustness and self-

organisation. These characteristics are sort after in modern 

systems. Researchers have demonstrated this in multi-agent 

systems. O’Reilly and Ehlers [12] have demonstrated the 

utilisation of stigmergy by software agents to interact with each 

other and to collectively solve certain tasks. They presented a 

methodology of mimicking stigmergy into a software system 

and argue that many software projects are deemed failures due 

to the inability of the software systems to adapt to changing 

business environments. A multi-agent stigmergic coordination 

in manufacturing control system has been presented in [13]. 

Coordination among the agents in the manufacturing control 

system is a direct reflection of the pheromone-based stigmergy 

in ant colonies. In this approach, the control system consists of 

agents (e.g., resource, product and order) that distribute 

pheromones (e.g., agents’ connections, location and general 

information) within the environment (e.g., cyber world) in 

which they reside. According to the authours, sharing such 

global information on a collective environment reduces design 

cycle, products’ time-to-market, order lead times and also 

facilitates flexibility in manufacturing control systems. 

However, just as in similar approaches, the agents are logically 

(and in some approaches, physically) connected together, which 

in actual sense, indicates that the agents are aware of the 

existence of others. This is different from our approach in which 

the agents (AMs) do not need to be aware of the existence of 

other agents. The AMs’ design assumes that they are operating 

in ‘isolation’ and simply respond to changes in the environment 

(as a result of AgentAction). See the office share example in 

Section II. Our goal is to facilitate correct behavior when the 

‘isolation’ assumption is broken. TA logic, for example, enables 

AMs to easily infer the presence of other AMs by the kind (or 

nature) of environmental changes experienced. In this approach, 

an external adjustment of some parameters in a system (e.g., by 

a human user), whether correctly or erroneously applied, is 

considered an AgentAction by other agents. One sophistication 

of the stigmergic interoperability approach is that, no matter the 



conflict or disturbance, AMs are designed to react (e.g., self-

retuning) within the boundaries of the system’s stated goals. 

This is because the AMs are designed using TAArch. 

Reference [14] presents a clear demonstration of the need 

for interoperability mechanisms. In [14], two independently-

developed AMs were implemented: the first dealt with 

application resource management (specifically CPU usage 

optimisation) and the second, a power manager, dealt with 

modulating the operating frequency of the CPU to ensure that 

the power cap was not exceeded. It was shown that without a 

means to collaboratively interact, both managers throttled and 

sped up the CPU without recourse to one another, thereby 

failing to achieve their intended optimisations and potentially 

destabilising the system. This is a case of direct conflict, our 

solution deals with both direct and indirect conflicts. Direct 

conflicts occur where AMs attempt to manage the same explicit 

resource while indirect conflicts arise when AMs control 

different resources, but the management effects of one have an 

undesirable impact on the management function of the other 

[15]. This latter type of conflict, in our opinion, is the most 

frequent and problematic, as there are such a wide variety of 

unpredictable ways in which such conflicts can occur. 

Reference [15] evaluates the nature and scope of the 

interoperability challenges for autonomic systems, identifies 

requirements for a universal solution and propose a service-

based approach to interoperability to handle both direct and 

indirect conflicts in a multi-manager scenario. In this approach, 

an Interoperability Service (IS) interacts with AMs through a 

dedicated interface and is able to detect possible conflicts of 

management interests. New AMs register their capabilities and 

requirements (in terms of the kind of services they provide and 

what aspects of the system they intend to manage) with the IS 

and the IS grants management rights only if no other AM in its 

database is managing the same aspect of the system to which 

management right is requested. In this way, the IS manages all 

interoperability activities by granting or withholding 

management rights to different AMs as appropriate. One 

challenge with this approach is that if a new AM is more capable 

of managing (e.g., in terms of efficiency) an aspect of the system 

that an existing AM is already managing, the new AM will be 

denied management rights.  

Interface based approaches inhibit scalability because they 

require reconfiguring of interfaces each time a new AM is 

added. Conversely, in our approach AMs do not need recoding 

each time a new AM is added. They autonomically retune 

(modulate) their behaviour as soon as they sense process 

conflicts. 

The research community has made valuable progress 

towards multi-manager interoperability but this progress has not 

yet led to a standardised approach. Although the current state of 

research represents a significant step, an equally significant 

issue is that they do not tackle the problem of unintended or 

unexpected interactions that can occur when independently 

developed AMs co-exist. Further from that, and more 

realistically, AMs may not necessarily need to know about the 

existence of others as they are designed in isolation (probably 

by different vendors) and operate differently (for different 

goals) without recourse to one another. So, to have close-

coupled interoperability (i.e., where specific actions in one AM 

react to, or complement those of another), the source code and 

detailed functional specifications of each AM must be available 

to all AMs. This is near impossible, and where it is possible 

requires a rewiring (or recoding) of each AM whenever a new 

AM is added. Hence, this work looks to the autonomic 

architecture to provide a dynamic solution. This work posits that 

to avoid introducing further complexity whilst solving the 

interoperability problem, the autonomic architecture should 

envision (and provide for) interoperability support from scratch. 

That is to say, the autonomic architecture should provide 

mechanisms to facilitate the co-existance of, and 

interoperability between, multiple AMs. 

IV. IMPLEMENTATION AND EMPIRICAL ANALYSIS 

This Section presents experimental analysis of the proposed 

interoperability solution using a datacenter resource request and 

allocation management scenario. The datacentre scenario used 

is the same as the one outlined in Section II. The essence of this 

analysis is not to investigate datacentres per-se but to examine 

the performance effects of the proposed interoperability 

solution in a multi-manager datacentre scenario using easy-to-

assess examples. The analysis will investigate the performance 

of the multi-manager datacentre scenario with and without 

interoperability solution. 

It is important, however, to point out that the proposed 

interoperability solution works well in a closed-world model but 

has some limitations in an open-world model and so may not be 

relied on to reach convergence. Convergence defines a point at 

which system is stable and has reached a steady state. In a closed 

system, there are a definite number of actors (in this case AMs) 

that influence the environment and the individual actions of 

each AM can be tracked as a trend. In this way, it is possible for 

each AM to detect persistent actions that conflict with its actions 

and be able to readjust behaviour. However, in an open system, 

there are indefinite number of actors that can influence the 

environment. An actor in this model can be a third party that 

interferes with the system and this interference could be a one-

off instance or several instances from different actors. For 

example, the office share scenario in Section II is a closed-world 

model but it becomes an open-world model if a third party (say, 

different office cleaners) randomly contributes to the office 

(re)arrangement. So, there are certain specific situations where 

it would not reach convergence in an opens system, however, in 

the general case it could, especially where a new AM 

component is added to the system and remains for sufficient 

time for the initial disturbance to disperse. 

A. Scheduling and Resource Allocation 

Several scheduling algorithms that optimise the 

performance of datacentres have been proposed e.g., [17-18]. 

Our work, on the other hand, does not propose any new 

scheduling algorithm. It uses a simple resource allocation 

technique to model the behavior of AMs within the datacenter, 

and measures their performance in terms of the effectiveness of 

resource request and allocation management. 

In the simulation, service (application) requests arrive and 

are queued. If there are enough resources to service a particular 

request then it is serviced otherwise it remains in the queue (or 

may eventually be dropped). The AM checks for resource 



availability and deploys server(s) according to the capacity of 

the request. The capacities of application requests and servers 

are defined by the units million instructions per second (MIPS). 

In this paper, ‘capacity’ is stated in terms of MIPS, i.e., the 

extent of its processing requirement. When a server is deployed, 

it is placed in a queue for a time defined by the variable 

ProvisioningTime. This queue simulates the time (delay) it takes 

to load or configure a server with necessary application. Recall 

from Equation (1) that any server can be (re)configured for 

different applications and so servers are not pre-configured. 

Servers are then ‘Provisioned’ after spending ProvisioningTime 

in the queue. The provisioning pool is populated on demand, as 

requests arrive. As a result of the lag between provisioning time 

and the rate of request arrival or some unforeseen process 

disruptions, some provisioned servers do overshoot the total 

resource needed for the application, and are thereby left 

redundant in the queue. As requests are fully serviced 

(completed), servers are released into the server pool and 

redeployed. Note that service level achievement (SLA) is 

calculated based on accepted requests and not rejected or 

dropped requests. The essence of the request queue is to allow 

the AM to accept requests only when it has enough resources to 

service them. So the AM could reject or drop the requests based 

on ‘insufficient resources’, i.e., RequestedCapacity > 

AvailableCapacity. This process is continuous and the AM 

manages the system to the level of its sophistication.  

B. Experimental Design and Metrics 

The experimental scenario is designed and implemented 

using the TAArch application (built in C#) which is available 

on request. The experiment simulates two instances of a 

datacenter scenario with each having two AMs – PeM and PoM 

optimising resource allocation and power management 

respectively. In the first instance, represented as 

DatacentreNoInt, the AMs co-exist without any form of 

interoperability solution. This means that both AMs perform 

their tasks within the boundaries of their individual autonomic 

framework without recourse to one another. In this case, PeM 

and PoM are represented as PeM_NoInt and PoM_NoInt 

respectively. In the second instance, DatacentreInt, the AMs co-

exist with the proposed stigmergic interoperability solution. 

This means that both AMs, while performing their tasks within 

the boundaries of their individual autonomic framework, are 

sensitive to external interference. Here, external interference is 

also defined as an AgentAction; any action or effect that alters 

the AM’s expected system state. In this case, PeM and PoM are 

represented by PeM_Int and PoM_Int respectively. 

Note that this work investigates the performance of a multi-

manager datacentre with (DatacentreInt) and without 

(DatacentreNoInt) interoperability solution. The scope of the 

experiment focuses on the performance of datacentre AMs in 

resource request and allocation management activities under 

varying workloads. Although some workload parameters are 

sourced from experimental results of other research [19, 20], the 

designed experiments allow for the tailoring of all parameters 

according to user preferences. Simulations are designed to 

model several options of real datacentre scenarios. So, 

depending on what aspect is being investigated, the user can 

vary the workloads according to specific requirements. The 

result of every simulation analysis is relative to workload and 

the specific application configuration.  

 

Performance Metrics: 

The performance metrics are specifically chosen to reflect 

the impact of the interoperability solution in a multi-manager 

datacentre. 

 

SLA: Service level achievement is the ratio of provided service 

to requested service. It measures the system’s level of success 

in meeting request needs. Note that requests and services are not 

time bound, so the time it takes to complete a request does not 

count in this regard. The metric is defined as: 
 

𝑆𝐿𝐴 =  {
(i): 𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚⁄

(ii): 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦⁄
    (3) 

 

Where ProvisionedCapacity is the total deployed server 

capacity (excluding those in queue and including those already 

reclaimed back to the pool) and RequestedCapacity is the total 

capacity of requests (including completed requests). 

AvailableCapacity is ProvisionedCapacity minus 

ReclaimedCapacity while RunningCapacity is the total capacity 

of requests (excluding completed requests). There are two 

definitions for SLA (3): (i) is more of a whole picture 

consideration, considering the entire capacity activities of the 

system while (ii), which is used in our experiment, takes a real 

time view of the system, tracking to the minute details of the 

system with delay, completed requests and reclaimed server 

effects all considered. The reference value for SLA is 1: values 

above 1 indicate overprovisioning while values under 1 indicate 

shortfall.  

 

PowerCoefficient: This represents the average server power 

consumption. That is, the average power a server consumes at 

any point in time for being active (switched on and running). 

This is measured in kilowatt (kW). According to [19, 20], on 

average, individual servers consume about 3.195 MWh worth 

of power. This value is scaled and PowerCoefficient is pegged 

at 3195 kWh in the simulations. This is indicative of real 

systems although actual values can vary significantly owing to 

a lot of factors (e.g., cooling, processor, machine type etc.). 

TAArch Application allows for the tailoring of all parameters 

according to user preferences. The usage of this variable is 

limited to investigating the impact of interoperability actions in 

terms of power consumption. 

 

PowerConsumption (PC): This metric represents the 

aggregated power consumption per unit time for all idle servers, 

i.e., servers that are running but not yet deployed. It is important 

to consider these servers as they can as well be switched and 

powered only when needed. Although this could impact on 

SLA, the tradeoff in power savings may be worthwhile, and is 

one of the dynamic aspects of such a system. So if we assume 

that each server, on average, consumes PowerCoefficient 

kilowatts worth of power per second, then PC is calculated as: 

 
                 𝑃𝐶 = 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗ #𝐼𝑑𝑙𝑒𝑆𝑒𝑟𝑣𝑒𝑟𝑠                        (4) 

 



PC is calculated at every time interval defined by 

RequestRate. Individual AM PC is different from the general 

PC. For general PC, number of idle servers will be the total of 

server count in Si and Ši pools while for individual AM (Int or 

NoInt) PC number of idle servers will be the total of server count 

in Si pool: 
 

𝑃𝐶 = 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
∗ (𝑆𝑒𝑟𝑣𝑒𝑟. 𝐶𝑜𝑢𝑛𝑡 + 𝑆ℎ𝑢𝑡𝑆𝑒𝑟𝑣𝑒𝑟. 𝐶𝑜𝑢𝑛𝑡); 

𝑃𝐶𝐼𝑛𝑡 = 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗ 𝑆𝑒𝑟𝑣𝑒𝑟. 𝐶𝑜𝑢𝑛𝑡; 
𝑃𝐶𝑁𝑜𝐼𝑛𝑡 = 𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗ 𝑆𝑒𝑟𝑣𝑒𝑟. 𝐶𝑜𝑢𝑛𝑡; 

 

Note that as a result of individual operations of the 

autonomic managers, Server.Count for DatacentreNoInt will 

usually be different from that of DatacentreInt. 

 

PowerSavings (PS): PS is calculated as the difference between 

general power consumption and individual AM power 

consumption: 
 

𝑃𝑆 = 𝑃𝐶 − 𝑃𝐶(𝐼𝑛𝑡 𝑜𝑟 𝑁𝑜𝐼𝑛𝑡)

 

So, e.g., the PS for DatacentreNoInt will be calculated as: 

 

𝑃𝑆𝑁𝑜𝐼𝑛𝑡 = 𝑃𝐶 − 𝑃𝐶𝑁𝑜𝐼𝑛𝑡 

 

As PoM intends to optimise power usage, which also entails 

saving power, the PS metric will be useful to analyse the impact 

of the manager’s power management capability. 

 

Instability: Instability is the number of servers moved per 

second between pools in the datacentre. Moving servers around 

frequently is inefficient and increases provisioning overheads. 

The cost effect can be enormous in terms of cooling, power, and 

scheduling costs etc. Instability in terms of irregular and high 

rate of server movement from one pool to another is a costly, 

unsafe (due to the introduction of variable delays) and 

undesirable occurrence in datacentres. This is a potential 

situation when you have two AMs optimising the same 

datacentre as in the case example here. 

C. Autonomic Manager Logic 

AM logic details their individual control logic employed in 

order to achieve each one’s performance goal. This explains the 

logical composition of each AM. There are two instances of 

each AM (PeM_Int and PeM_NoInt), i.e., with and without 

interoperability solution. 
 

 Performance Manager (PeM) 

PeM is directly responsible for dealing with application 

resource requests and allocation management. The AM receives 

requests and allocates resources according to the scheduling 

algorithm defined earlier. The first instance of this AM 

(PeM_NoInt) has no inbuilt interoperability solution. 
 

- PeM_NoInt 

As requests arrive, the AM checks for resource availability 

and deploys server(s) according to the capacity of the request. 

The server is placed in the provisioning pool which is constantly 

populated as requests arrive. The AM calculates an 

exponentially smoothed mean of the capacity of arriving 

requests in order to forecast the next expected request MIPS, 

i.e., it is used to predict requests: 

 
smoothedAvgCapacityPeM_NoInt = (smoothingConstant * 

avgAppCapacity) + ((1 - smoothingConstant) * oldMean);  
 

With this forecast information, the AM constantly checks to 

ensure that the difference between the predicted MIPS and the 

available MIPS (idle server capacity ready for deployment) is 

not less than the equivalent of two servers. And if it is, the AM 

quickly checks and restores servers from the shutdown server 

pool (Ši). Procedure 1 is the algorithm that drives the server 

restoration process in the PeM_NoInt AM. 

 

 

This check ensures that, where possible, the AM maintains 

at least the capacity equivalent of two servers readily available 

for deployment (i.e., at least enough resources for current 

request and the next expected request). Checks are carried out 

at an interval defined by the PeM_NoIntTuningParam 

parameter. This ensures that the AM does not wait until the 

critical point before acting. So at every interval, the AM checks 

and restores servers on the Ši pool. 
 

- PeM_Int 
The PeM_Int AM has an embedded interoperability solution 

based on the proposed interoperability solution (Fig. 1). In 

addition to all the functionalities of PeM_NoInt the PeM_Int 

AM performs further checks and retunes its behaviour. The AM 

tracks system state as it carries out checks at the specified 

interval defined by PeM_IntTuningParam. Each check is seen 

as an ‘observation’ instance and if on a periodic IntObserve 

observation the Ši pool is not empty (signaling that the pool is 

being populated as it is being emptied by PeM_Int), the AM 

adjusts its checks interval (by increasing 

PeM_IntTuningParam) to reduce the rate at which it empties 

the Ši pool (i.e., to be sympathetic to the other AM whose 

presence is implied, rather than to compete with it): 

 
if ((serviceRequestCountPeM_Int - PeM_IntRefPoint) == 

 PeM_IntTuningParam) 
  {  PeM_IntObservationCount += 1; 

PeM_IntRefPoint = serviceRequestCountPeM_Int; 
if (PeM_IntObservationCount == IntObserve)  

  {  PeM_IntObservationCount = 0; 
if (ShutServerCountInt != 0) //if Ši pool not empty 
{ PeM_IntTuningParam += IntParamCount; 

} ... }     ... } 
 

Procedure 1: Algorithm for checking and restoring servers 

 
  1: Calculate smoothedAvgCapacity  

  2: Calculate AvailableCapacity 

  3: Define a periodic Interval (PeM_NoIntTuningParam)  

  4: for every Interval 

  5:   if (AvailableCapacity – smoothedAvgCapacity) 

                                                            < (ServerCapacity * 2) 

    6:   restore servers 

  7: next 



Note: PeM_IntTuningParam parameter represents the initial time 

interval at which the PeM_Int AM checks to decide whether or not to 

power and restore servers that are down. Unlike 

PeM_NoIntTuningParam, it is dynamically adjusted by the PeM_Int 

AM. This parameter is measured in number of service requests. 

 

A further internal set of observation iterations could be 

carried out. The tuning parameter is further adjusted if condition 

persists (i.e., persisted interference) after each further 

observation of the initial interval of observations. So, what 

happens here is that the AM powers on servers (restores servers 

from Ši) and keeps checking that there are enough reserves for 

prompt deployment. PoM_Int continues to shut servers down, 

which causes instability in the system as both AMs counter each 

other’s actions. If PeM_Int senses that the restored servers are 

constantly put out-of-service, it relaxes its rate of re-powering 

the servers – this is because the whole essence is indirect 

collaboration rather than competition. In essence each AM has 

its own feedback loop but these are coupled indirectly by 

selected environmental parameters, facilitated by TAArch. If 

after a certain time (defined by the new check interval) the 

interference continues, the AM further relaxes the rate of its 

actions. This process is continuous, so adjustment is repeated 

until a stable condition is reached. This is demonstrated in detail 

in following experiments. 
 

 Power Manager (PoM) 

The power manager is directly responsible for power usage 

optimisation in the datacentre. The power optimisation method 

implemented by the AM is based on power conservation in 

which idle servers are shut down to conserve power. Other 

researchers have used different forms of power management. 

For example [21] discuses a power manager which optimises 

the power consumption of a server by adjusting its processor 

speed several times a second, and [22] discuses a power 

manager which is embedded in the firmware of a server and can 

use feedback control to precisely control the server’s power 

consumption. While these are processor-level power 

management, the PoM AM conserves power by shutting idle 

servers and repowering them as need arises. This is sufficient to 

create conflicts with PeM, which seeks to keep as many servers 

running as possible in order to have enough capacity reserve 

(and thus provides a suitable example on which to explore the 

stigmergic interoperability concepts). This form of power 

management technique is also used in [23] in which machines 

are turned on/off to conserve power. 

 

- PoM_NoInt 

Here, the AM checks and shuts down idle servers at a time 

interval defined by PoM_NoIntTuningParam. The idle servers 

are the same servers that PeM_NoInt considers as available 

resources. So in essence, when servers are shut down 

AvailableCapacity is depleted which in turn affects the 

performance of PeM_NoInt. So PoM_NoInt continues to check 

and shut down servers within a certain boundary. Procedure 2 is 

the algorithm that determines how PoM_NoInt checks and shuts 

down servers. 

 

 

 

So what this means is that PoM_NoInt will continue to shut 

down idle servers as long as the number of servers in the Si pool 

(available servers) is greater than one fifth of the total servers. 

(The DC component of PoM_NoInt is configured to stop 

shutting servers at (Si count = (server.sNumber / 5)) because if 

the AM continues shutting servers beyond this point it will drag 

the entire datacentre to the brink of unresponsiveness which 

ultimately leads to under-provisioning and inefficiency.) This 

process continues regardless of the actions of the PeM. 

PeM_NoInt may at this point be restoring the servers to increase 

AvailableCapacity and this ultimately leads to high rate of 

server movement in the datacentre. 
 

- PoM_Int 

On the other hand, the embedded interoperability solution 

enables PoM_Int to sense conflicts and then readjusts its 

behaviour. The same method as in PeM_Int is used here. For 

example, the AM keeps count of servers in the Ši pool 

(listViewShutServer.Items.Count) as it shuts and repowers 

servers and if on a periodic tenth check the server count does 

not match expected count (signifying AgentAction), the AM 

adjusts the tuning parameter: 

 
if ((serviceRequestCountPeM_Int - PoM_IntRefPoint) == 

 PoM_IntTunningParam) // 
{    PoM_IntObservationCount += 1; 

PoM_IntRefPoint = serviceRequestCountPeM_Int; 
if (PoM_IntObservationCount == 10) 

       { PoM_IntObservationCount = 0; 
    if (listViewShutServer.Items.Count < 

 PoM_IntCheckPoint) 
{// if on a 10th observation S_i.Count doesn't match 
 expected count 
   PoM_IntTunningParam += 1; //adjusting parameter  
}  } 

 //below is same as defined by Procedure 2 algorithm 
 int d = listViewServer.Items.Count; 
 if (d > (server.sNumber / 5)) // unsafe to shut servers 
 { listViewShutServer.Items.Add(listViewServer.Items[d-
1].Text); 
  listViewServer.Items.Remove(listViewServer.Items[d-1]); 
  PoM_IntCheckPoint = listViewShutServer.Items.Count;} } 
 

The AM keeps adjusting the tuning parameter 

(PoM_IntTuningParam) until it senses stability in the 

datacentre. The observation process operates continuously, so 

whenever a new conflict arises the adjustment behavior begins 

again, to find a new compromise. 
 

    Procedure 2: Algorithm for checking and shutting down servers 

 
  1: int s = initial number of servers  

  2: Define a periodic Interval (PoM_NoIntTuningParam) 

  3: for every Interval  

  4:   int d = #AvailableServers //Servers.Count 

  5:  if (d > (s/5))  

  6:   Shut Sever[d-1]//shut the last server on Si pool 

     7:   Add Server[d-1] To Ši[]//add to Ši server pool 

    8: next 



D.  Experimental scenario and results analyses 

To analyse the performance effects of the proposed 

interoperability solution on the datacentre case example, a 

scenario of varying application capacity with inconsistent 

request rate is used. This scenario replicates a situation where 

there is resource contention (as a result of hugely varied request 

capacities) and the possibility of abrupt and inefficient server 

deployment (as a result of inconsistent request rate, e.g., burst 

injection). This condition is perfect for testing the robustness of 

the interoperability solution. The effect of resource contention 

and irregular (sometimes erratic) request rate is usually rapid 

and frequent movement of servers between the various pools 

which the AMs will struggle to contend with. This is made 

worse when there is conflict between the AMs, with one 

restoring servers and another powering them down, which leads 

to more server movement. The robustness of the interoperability 

solution is tested by its level of sensitivity to this situation. This 

simulation can be replicated using the TAArch Application. 

Table I is a collection of the major parameters used in this 

simulation.  
 

TABLE I. SIMULATION PARAMETERS 

Parameter Value 

# of servers 400 

# of applications 2 

 

App capacity (MIPS) 

App1 30000 

App2 15000 

Request rate (initial) 1 req/sec 

Server capacity (MIPS) 40000 

 

Internal 

variables 

RetrieveRate 5x 

RequestRateParam 10 

RetrieveRequestParam 0.2 

BurstSize 2500ms 

ServerProvisioningTime 3 (1.5 sec) 

Managers  (for NoInt and Int) PeM & PoM 

DZConst (initial) 1.5 
 

- RetrieveRate: Indicates rate at which requests are completed 

once simulation for service request completion is initiated. 

Value is relative to request rate – e.g., if value is 5, then it means 

service request completion is five times slower than rate of 

service request. 

- RequestRateParam: A constant used to adjust the possible 

range of request rate. The user of the TAArch Application can 

set request rate according to preference but this preference may 

not be accommodated within the available rate range. E.g., if the 

least available rate is 1 request/second and the user wishes to 

use 2 requests/second, the RequestRateParam parameter can be 

used to extend the available range. A higher value increases the 

range for a lower rate of request arrival. 

- RetrieveRequestParam: Tuning parameter indicating when to 

start shutting services (this simulates service request 

completion) – at which point some running requests are closed 

as completed. This value is measured as percentage of number 

of servers in use and has been restricted to value between 0.1 

and 0.3 (representing 10% to 30%) because experiments show 

that it is the safest margin within which accurate results can be 

guaranteed. The datacentre is not completely settled below 

10%, that is, the data generated below this point is insufficient 

for adequate analysis. Also, scenarios with few servers will 

yield inaccurate results beyond 30% mark. The higher the value 

of RetrieveRequestParam the earlier services start shutting 

(‘shutting services’ simulates service request completion). 

- Burtstsize: Indicates how long the user wants the burst 

(injected disturbance) to last. This value is measured in 

milliseconds. Burst is a disturbance introduced by the user to 

cause disruption in the system. This alters the smooth running 

of the system and AMs react to it differently. The nature of the 

disruption is in the form of sudden spike or significant shift in 

the rate of service request. 

- ServerProvisioningTime: Indicates how long it takes to load 

or configure a server with an application. This is relative to the 

rate of request arrival – it is measured as half the rate of request 

arrival e.g., the value of 3 will translate to 1.5 of rate of request 

arrival. 

- DZConst: The tuning parameter the AM uses to dynamically 

adjust dead-zone width (DZWidth). This variable has a 

significant effect on the system, and it was found 

experimentally that the initial value should be set at 1.5. The 

AM usually adjusts this value dynamically and there is also a 

provision to manually adjust the value during run time. 
 

 Results  

The results are based on the average of ten simulation runs. 

In every simulation run, there are 400 servers of 40000 MIPS 

capacity each to be shared amongst two applications (App1 and 

App2). This means there is a total of initial 16000000 MIPS to 

share between requests for App1 with 30000 MIPS and App2 

with 15000 MIPS. Table 2 shows a distribution of requests and 

services for ten simulation runs. 

 
TABLE II. HIGH LEVEL PERFORMANCE ANALYSIS OVER TEN 

SIMULATION RUNS 

Runs  unused server serviced 

request 

queued request deployed 

server 

Int NoInt Int NoInt Int NoInt Int NoInt 

1 0 0 585 610 116 91 439 439 

2 26 0 586 597 99 88 416 446 

3 0 0 635 639 105 101 464 453 

4 0 0 586 587 89 88 441 441 

5 0 0 600 615 112 97 445 427 

6 3 0 602 597 92 97 434 439 

7 0 0 629 660 145 114 442 443 

8 19 0 593 598 103 98 423 447 

9 23 0 603 614 104 93 409 444 

10 6 0 602 603 95 94 436 437 

avg 7.7 0 602.1 612 106 96.1 434.9 441.6 

 

Table II shows slight differences in performance 

optimisation between when interoperability solution is 

implemented (Int) and when it is not (NoInt). In terms of 

resource per service efficiency, for example, NoInt performed 

slightly better than Int with the ratio of 0.7216 : 0.7223. This is 

because of increased delay experienced in Int as a result of 

delayed (queued) requests following the burst. The tradeoff for 

Int, in this case, is an increased number of unused servers which 

means that more requests would be serviced in the long run. 

This relationship is reflected in the general performance 



optimisation analysis (e.g., scheduling and costs, SLA etc.), in 

which both Int and NoInt outperformed each other 

intermittently. The SLA analysis (Fig. 2) corroborates this 

position and also shows that both datacentres gradually 

stabilised to optimal provisioning after a short time of under-

provisioning. The tradeoff for Int’s slight low SLA performance 

is increased power savings as shown in Fig. 4. (Tradeoff 

between SLA and power savings has been discussed in [23]). 

However, there is significant performance difference in terms 

of power optimization analyses. Recall that the actions of the 

performance manager have enormous impact on the power 

manager whereas the performance manager, to some extent, 

mitigates the effects of the power manager’s actions. 
 

Fig. 2. The analysis of both datacentres’ SLA and behaviour patterns 

(ActionTrend). Burst was introduced at 200s. The reference point value for SLA 
is 1 (indicating 100% – optimal provisioning): values above 1 indicate 

overprovisioning while values under 1 indicate shortfall. For ActionTrend, the 

level 0.5 was chosen arbitrarily as its numerical value is not significant – it is 
just used to indicate behaviour patterns (in terms of tuning and retuning actions) 

of AMs in both datacentres in the face of conflict. DatacentreInt achieved 

steady state at 320s and conflicts stopped at about 520s. These are indicated by 
the arrows. 

 

Action trends in Fig. 2 reveal that DatacentreNoInt shows 

high level of instability in terms of inefficient movement of 

servers between logical pools in the datacentre. The behaviour 

trend in NoInt remained constant from start to finish and only 

experienced a minor jump when burst was injected. As shown, 

a burst of service requests was injected into the system at 200s 

and in both scenarios the datacentres recovered quite quickly. 

Behaviour pattern in DatacentreInt (Int) reveals a level of 

dynamic self-tuning of behaviour. As conflicts arise (coupled 

with the underlying conditions of resource contention and 

erratic requests), AMs of DatacentreInt retune their actions 

until the system is stable and has reached a steady state. This 

steady state is achieved from about 320s mark at which point 

both AMs begin to efficiently coexist with minimal conflict. At 

this point both AMs (PeM_Int and PoM_Int) have successfully 

adjusted their actions to mitigate existing interferences and at 

about 520s (when conflicts have stopped), AMs stopped 

adjusting their behaviours. 
 

 
Fig. 3. Instability analysis with burst injected at 200s 

 

Again the instability analysis (Fig. 3) shows that the 

proposed interoperability solution is still capable of 

autonomically addressing conflicts between coexisting AMs in 

complex situations. Despite the complex conditions of the 

experimental scenario, there is still significant reduction in the 

rate of server movement in DatacentreInt. Also, we can see that 

the server movement in DatacentreInt tails off at about 520s 

while it continues to significantly fluctuate in DatacentreNoInt. 

The rate of instability increase is a resultant effect of the burst. 

The movement of servers has some power cost implications as 

analysed by Fig. 4. Results show that without any form of 

interoperability control, as in DatacentreNoInt, PeM_NoInt, 

under the underlying conditions, almost completely impedes the 

actions of PoM_NoInt rendering its power management effect 

almost negligible. However, in the case of interoperability 

control, as in DatacentreInt, AMs are able to dynamically adjust 

their actions so as to gradually reduce or remove conflicts. This 

is why there is visibly clear difference in the power 

consumption of both datacentres.  

 

 
Fig. 4. Power savings analysis 

 

Fig. 4 is a clear view of performances in terms of power 

optimisation and the impact of the interoperability solution. The 

sudden jump in power savings at 200s can be attributed to the 

fact that when the burst was injected, AMs temporarily paused 

the movement of servers and majority of requests are either 

queued or dropped, reducing the number of servers being 

deployed. The prevailing conditions of the scenario (resource 

contention and irregular request rate) added another twist to the 

conflicts experienced by the AMs. Under these conditions, 
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DatacentreNoInt struggled to achieve its goal as it experienced 

significant drop in performance while DatacentreInt was more 

robust in achieving its general performance goal. 

The results above suggest that it is counterproductive to run 

a multi-manager datacentre without any form of interoperability 

solution. We have seen that conflicts between coexisting AMs 

can defeat the AMs’ set goals and also lead to spiraling 

overhead cost. This often leads to unsatisfactory results, 

especially in complex operating conditions. Results, however, 

have shown that the proposed interoperability solution is 

sufficiently sophisticated to efficiently handle conflicts between 

pairs of coexisting AMs and shows promising signs of yielding 

satisfactory results under a wide range of operating 

circumstances (assuming closed-systems). So, we conclude that 

stigmergic interoperability is a promising approach to calm 

instability arising from complex interactions in multi-manager 

datacentres and other similarly complex autonomic systems. 

V. CONCLUSION  

The success of autonomic computing has inevitably led to 

situations where multiple autonomic managers (AMs) need to 

coexist and/or interact directly or indirectly within the same 

system. In this paper we have provided motivation for 

interoperability solutions for multi-manager autonomic 

systems. We have provided example scenarios where such 

solutions are needed and can be evaluated.  

We suggest that support for interoperability should be an 

integral part of the autonomic system. We have proposed a 

solution based on stigmergy, using environmental variables and 

architectural support to facilitate indirect interaction between 

the feedback loops of separate AMs, operating independently, 

without explicit knowledge of each other’s presence or 

operation. 

A stigmergic interoperability mechanism, which is based on 

our earlier published TAArch architecture, has been presented. 

We have shown how our approach to interoperability provides 

implicit automatic coordination between AMs in a multi-

manager scenario without the need for design-time or run-time 

planning or knowledge of the run-time AM population / mix. 

The approach provides efficient collaboration (as against 

competition) between coexisting AMs. The stigmergic 

interoperability solution builds on the Stigmergic Phenomenon. 

The AMs are designed to sense their environment and 

dynamically adjust (retune) their behaviour as soon as they 

notice process conflicts. The experimental analyses of multi-

manager datacentre scenarios show that the proposed stigmergic 

interoperability solution achieves over 42% performance 

improvement (see instability analysis in Fig. 3) in a complex 

(conflict prone) coexistence of AMs.  
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