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Abstract In this paper we present a decomposition algorithm for maximizing a linear

function over a submodular polyhedron intersected with a box. Apart from this con-

tribution to submodular optimization, our results extend the toolkit available in deter-

ministic machine scheduling with controllable processing times. We demonstrate how

this method can be applied to developing fast algorithms for minimizing total com-

pression cost for preemptive schedules on parallel machines with respect to given

release dates and a common deadline. Obtained scheduling algorithms are faster and

easier to justify than those previously known in the scheduling literature.
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1 Introduction

In scheduling with controllable processing times, the actual durations of the jobs

are not fixed in advance, but have to be chosen from a given interval. This area of

scheduling has been active since the 1980s, see surveys [16] and [22].

Normally, for a scheduling model with controllable processing times two types of

decisions are required: (1) each job has to be assigned its actual processing time, and (2)

a schedule has to be found that provides a required level of quality. There is a penalty

for assigning shorter actual processing times, since the reduction in processing time

is usually associated with an additional effort, e.g., allocation of additional resources

or improving processing conditions. The quality of the resulting schedule is measured

with respect to the cost of assigning the actual processing times that guarantee a certain

scheduling performance.

As established in [23,24], there is a close link between scheduling with controllable

processing times and linear programming problems with submodular constraints. This

allows us to use the achievements of submodular optimization [4,21] for design and

justification of scheduling algorithms. On the other hand, formulation of scheduling

problems in terms of submodular optimization leads to the necessity of studying novel

models with submodular constraints. Our papers [25,27] can be viewed as convincing

examples of such a positive mutual influence of scheduling and submodular optimiza-

tion.

This paper, which builds up on [26], makes another contribution towards the devel-

opment of solution procedures for problems of submodular optimization and their

applications to scheduling models. We present a decomposition algorithm for maxi-

mizing a linear function over a submodular polyhedron intersected with a box. Apart

from this contribution to submodular optimization, our results extend the toolkit avail-

able in deterministic machine scheduling. We demonstrate how this method can be

applied to several scheduling problems, in which it is required to minimize the total

penalty for choosing actual processing times, also known as total compression cost.

The jobs have to be processed with preemption on several parallel machines, so that

no job is processed after a common deadline. The jobs may have different release

dates.

The paper is organized as follows. Section 2 gives a survey of the relevant results

on scheduling with controllable processing times. In Sect. 3 we reformulate three

scheduling problems in terms of linear programming problems over a submodular

polyhedron intersected with a box. Section 4 outlines a recursive decomposition algo-

rithm for solving maximization linear programming problems with submodular con-

straints. The applications of the developed decomposition algorithm to scheduling

with controllable processing times are presented in Sect. 5. The concluding remarks

are contained in Sect. 6.

2 Scheduling with controllable processing times: a review

In this section, we give a brief overview of the known results on the preemptive schedul-

ing problems with controllable processing times to minimize the total compression
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Decomposition algorithms for submodular optimization and scheduling 497

cost for schedules that are feasible with respect to given release dates and a common

deadline.

Formally, in the model under consideration the jobs of set N = {1, 2, . . . , n} have

to be processed on parallel machines M1, M2, . . . , Mm , where m ≥ 2. For each job

j ∈ N , its processing time p( j) is not given in advance but has to be chosen by the

decision-maker from a given interval
[

p( j), p( j)
]
. That selection process can be seen

as either compressing (also known as crashing) the longest processing time p( j) down

to p( j), or decompressing the shortest processing time p( j) up to p( j). In the former

case, the value x( j) = p( j) − p( j) is called the compression amount of job j , while

in the latter case z( j) = p( j) − p( j) is called the decompression amount of job j .

Compression may decrease the completion time of each job j but incurs additional

cost w( j)x( j), where w( j) is a given non-negative unit compression cost. The total

cost associated with a choice of the actual processing times is represented by the linear

function W =
∑

j∈N w( j)x( j).

Each job j ∈ N is given a release date r( j), before which it is not available, and

a common deadline d, by which its processing must be completed. In the processing

of any job, preemption is allowed, so that the processing can be interrupted on any

machine at any time and resumed later, possibly on another machine. It is not allowed

to process a job on more than one machine at a time, and a machine processes at most

one job at a time.

Given a schedule, let C( j) denote the completion time of job j , i.e., the time at

which the last portion of job j is finished on the corresponding machine. A schedule

is called feasible if the processing of a job j ∈ N takes place in the time interval

[r( j), d].

We distinguish between the identical parallel machines and the uniform parallel

machines. In the former case, the machines have the same speed, so that for a job j

with an actual processing time p( j) the total length of the time intervals in which

this job is processed in a feasible schedule is equal to p( j). If the machines are

uniform, then it is assumed that machine Mh has speed sh, 1 ≤ h ≤ m. Without loss

of generality, throughout this paper we assume that the machines are numbered in

non-increasing order of their speeds, i.e.,

s1 ≥ s2 ≥ · · · ≥ sm . (1)

For some schedule, denote the total time during which a job j ∈ N is processed on

machine Mh, 1 ≤ h ≤ m, by qh( j). Taking into account the speed of the machine, we

call the quantity shqh( j) the processing amount of job j on machine Mh . It follows

that

p( j) =

m∑

h=1

shqh( j).

In all scheduling problems studied in this paper, we need to determine the values

of actual processing times and find the corresponding feasible preemptive schedule

so that all jobs complete before the deadline and total compression cost is minimized.

Adapting standard notation for scheduling problems by Lawler et al. [11], we denote
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problems of this type by α|r( j), p( j) = p( j) − x( j), C( j) ≤ d, pmtn|W . Here, in

the first field α we write “P” in the case of m ≥ 2 identical machines and “Q ” in

the case of m ≥ 2 uniform machines. In the middle field, the item “r( j)” implies

that the jobs have individual release dates; this parameter is omitted if the release

dates are equal. We write “p( j) = p( j) − x( j)” to indicate that the processing

times are controllable and x( j) is the compression amount to be found. The condition

“C( j) ≤ d” reflects the fact that in a feasible schedule the common deadline should

be respected. The abbreviation “pmtn” is used to point out that preemption is allowed.

Finally, in the third field we write the objective function to be minimized, which is

the total compression cost W =
∑

j∈N w( j)x( j). Scheduling problems with control-

lable processing times have received considerable attention since the 1980s, see, e.g.,

surveys by Nowicki and Zdrzałka [16] and by Shabtay and Steiner [22].

If the processing times p( j), j ∈ N , are fixed then the corresponding coun-

terpart of problem α|r( j), p( j) = p( j) − x( j), C( j) ≤ d, pmtn|W is denoted

by α|r( j), pmtn|Cmax. In the latter problem it is required to find a preemptive

schedule that for the corresponding settings minimizes the makespan Cmax =

max {C( j)| j ∈ N }.

In the scheduling literature, there are several interpretations and formulations of

scheduling models that are related to those with controllable processing times. Below

we give a short overview of them, indicating the points of distinction and similarity

with our definition of the model.

Janiak and Kovalyov [8] argue that the processing times are resource-dependent,

so that the more units of a single additional resource is given to a job, the more it

can be compressed. In their model, a job j ∈ N has a ‘normal’ processing time

b( j) (no resource given), and its actual processing time becomes p( j) = b( j) −

a( j)u( j), provided that u( j) units of the resource are allocated to the job, where a( j)

is interpreted as a compression rate. The amount of the resource to be allocated to a job

is limited by 0 ≤ u( j) ≤ τ( j), where τ( j) is a known job-dependent upper bound.

The cost of using one unit of the resource for compressing job j is denoted by v( j), and

it is required to minimize the total cost of resource consumption. This interpretation

of the controllable processing times is essentially equivalent to that adopted in this

paper, which can be seen by setting

p( j) = b( j), p( j) = b( j) − a( j)τ ( j), x( j) = a( j)u( j),

w( j) = v( j)/a( j), j ∈ N .

A very similar model for scheduling with controllable processing times is due

to Chen [2], later studied by McCormick [13]. For example, McCormick [13] gives

algorithms for finding a preemptive schedule for parallel machines that is feasible with

respect to arbitrary release dates and deadlines. The actual processing time of a job is

determined by p( j) = max {b( j) − a( j)λ( j), 0} and the objective is to minimize the

function
∑

j∈N λ( j). This is also similar to our interpretation due to

p( j) = b( j), p( j) = 0, x( j) = a( j)λ( j), w( j) = 1/a( j), j ∈ N .
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Another range of scheduling models relevant to our study belongs to the area of

imprecise computation; see [12] for a recent review. In computing systems that support

imprecise computation, some computations (image processing programs, implemen-

tations of heuristic algorithms) can be run partially, producing less precise results. In

our notation, a task with processing requirement p( j) can be split into a mandatory part

which takes p ( j) time, and an optional part that may take up to p( j)− p( j) additional

time units. To produce a result of reasonable quality, the mandatory part must be com-

pleted in full, while an optional part improves the accuracy of the solution. If instead of

an ideal computation time p( j) a task is executed for p( j) = p( j) − x( j) time units,

then computation is imprecise and x( j) corresponds to the error of computation. Typ-

ically, the problems of imprecise computation are those of finding a deadline feasible

preemptive schedule either on a single machine or on parallel machines. A popular

objective function is
∑

w( j)x( j), which is interpreted here as the total weighted error.

It is surprising that until very recently, the similarity between the models with con-

trollable processing times and those of imprecise computation have not been noticed.

Even the most recent survey by Shabtay and Steiner [22] makes no mention of the

imprecise computation research.

Scheduling problems with controllable processing times can serve as mathemat-

ical models in make-or-buy decision-making; see, e.g., Shakhlevich et al. [25]. In

manufacturing, it is often the case that either the existing production capabilities are

insufficient to fulfill all orders internally in time or the cost of work-in-process of an

order exceeds a desirable amount. Such an order can be partly subcontracted. Subcon-

tracting incurs additional cost but that can be either compensated by quoting realistic

deadlines for all jobs or balanced by a reduction in internal production expenses. The

make-or-buy decisions should be taken to determine which part of each order is man-

ufactured internally and which is subcontracted. Under this interpretation, the orders

are the jobs and for each order j ∈ N , the value of p( j) is interpreted as the process-

ing requirement, provided that the order is manufactured internally in full, while p( j)

is a given mandatory limit on the internal production. Further, p( j) = p( j) − x( j)

is the chosen actual time for internal manufacturing, where x( j) shows how much

of the order is subcontracted and w( j)x( j) is the cost of this subcontracting. Thus,

the problem is to minimize the total subcontracting cost and find a deadline-feasible

schedule for internally manufactured orders.

It is obvious that for scheduling problems with controllable processing times, min-

imizing the total compression cost W is equivalent to maximizing either the total

decompression cost
∑

w( j)z( j) or total weighted processing time
∑

w( j)p( j). Most

of the problems relevant to this study have been solved using a greedy approach. One

way of implementing this approach is to start with a (possibly, infeasible) schedule

in which all jobs are fully decompressed to their longest processing times p( j), scan

the jobs in non-decreasing order of their weights w( j) and compress each job by

the smallest possible amount that guarantees a feasible processing of a job. Another

approach, which is in some sense dual to the one described above, is to start with a fea-

sible schedule in which all jobs are fully compressed to their smallest processing times

p( j), scan the jobs in non-increasing order of their weights w( j) and decompress each

job by the largest possible amount.
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Despite the similarity of these approaches, in early papers on this topic each prob-

lem is considered separately and a justification of the greedy approach is often lengthy

and developed from the first principles. However, as established by later studies, the

greedy nature of the solution approaches is due to the fact that many scheduling

problems with controllable processing times can be reformulated in terms of linear

programming problems over special regions such as submodular polyhedra, (general-

ized) polymatroids, base polyhedra, etc. See Sect. 3 for definitions and main concepts

of submodular optimization.

Nemhauser and Wolsey [15] were among the first who noticed that scheduling with

controllable processing times could be handled by methods of submodular optimiza-

tion; see, e.g., Example 6 (Sect. 6 of Chapter III.3) of the book [15]. A systematic

development of a general framework for solving scheduling problems with control-

lable processing times via submodular methods has been initiated by Shakhlevich and

Strusevich [23,24] and further advanced by Shakhlevich et al. [25]. This paper makes

another contribution in this direction.

Below we review the known results on the problems to be considered in this paper.

Two aspects of the resulting algorithms are important: (1) finding the actual processing

times and therefore the optimal value of the function, and (2) finding the corresponding

optimal schedule. The second aspect is related to traditional scheduling to minimize

the makespan with fixed processing times.

Zero release dates, common deadline The results for the models under these condi-

tions are summarized in the second and third columns of Table 1. If the machines

are identical, then solving problem P|pmtn|Cmax with fixed processing times can

be done by a linear-time algorithm that is due to McNaughton [14]. As shown by

Jansen and Mastrolilli [9], problem P|p( j) = p( j) − x( j), pmtn, C( j) ≤ d|W

reduces to a continuous generalized knapsack problem and can be solved in O(n)

time. Shakhlevich and Strusevich [23] consider the bicriteria problem P|p( j) =

p( j) − x( j), pmtn| (Cmax, W ) , in which makespan Cmax and the total compression

cost W =
∑

w( j)x( j) have to be minimized simultaneously, in the Pareto sense; the

running time of their algorithm is O(n log n).

In the case of uniform machines, the best known algorithm for solving problem

Q|pmtn|Cmax with fixed processing times is due to Gonzalez and Sahni [5]. For

problem Q|p( j) = p( j) − x( j), pmtn, C( j) ≤ d|W Nowicki and Zdrzałka [17]

show how to find the actual processing times in O(nm + n log n) time. Shakhlevich

and Strusevich [24] reduce the problem to maximizing a linear function over a gener-

alized polymatroid; they give an algorithm that requires the same running time as that

by Nowicki and Zdrzałka [17], but can be extended to solving a bicriteria problem

Q|p( j) = p( j) − x( j), pmtn| (Cmax, W ). The best running time for the bicrite-

ria problem is O(nm log m), which is achieved in [27] by submodular optimization

techniques.

Arbitrary release dates, common deadline The results for the models under these

conditions are summarized in the fourth and fifth columns of Table 1. These models are

symmetric to those with a common zero release date and arbitrary deadlines. Problem

P|r( j), pmtn|Cmax with fixed processing times on m identical parallel machines can
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Table 1 Summary of the results

Problem r( j) = 0 Arbitrary r( j)

α = P α = Q α = P α = Q

α|r( j), pmtn|Cmax O(n) O(m log m + n) O(n log n) O(nm + n log n)

[14] [5] [18] [19]

α|r( j), p( j) = p( j) − x( j),

pmtn, C( j) ≤ d|W

Previously known O(n) O(nm + n log n) O(n2 log m) O(n2m)

[9] [17,24] [27] [27]

This paper – O(min{n log n,

n+m log m log n})

O(n log n log m) O (nm log n)

Section 5.1 Section 5.2 Section 5.3

α|r( j), p( j)= p j −x( j),

pmtn| (Cmax, W )

O(n log n) O(nm log m) O
(

n2 log m
)

O
(

n2m
)

[23] [27] [27] [27]

be solved in O(n log n) time (or in O(n log m) time if the jobs are pre-sorted) as proved

by Sahni [18]. For the uniform machines, Sahni and Cho [19] give an algorithm for

problem Q|r( j), pmtn|Cmax that requires O(mn + n log n) time (or O(mn) time if

the jobs are pre-sorted).

Prior to our work on the links between submodular optimization and schedul-

ing with controllable processing times [27], no purpose-built algorithms have been

known for problems α|r( j), p( j) = p( j) − x( j), pmtn, C( j) ≤ d|W with

α ∈ {P, Q}. It is shown in [27] that the bicriteria problems αm|r( j), p( j) =

p( j) − x( j), pmtn| (Cmax, W ) can be solved in O
(
n2 log m

)
time and in O(n2m)

time for α = P and α = Q, respectively. Since a solution to a single criterion

problem αm|r( j), p( j) = p( j) − x( j), pmtn, C( j) ≤ d|W is contained among the

Pareto optimal solutions for the corresponding bicriteria problem αm|r( j), p( j) =

p( j) − x( j), pmtn| (Cmax, W ), the algorithms from [27] are quoted in Table 1 as the

best previously known for the single criterion problems with controllable processing

times.

The main purpose of this paper is to demonstrate that the single criterion scheduling

problems with controllable processing times to minimize the total compression cost

can be solved by faster algorithms that are based on reformulation of these problems

in terms of a linear programming problem over a submodular polyhedron intersected

with a box. For the latter generic problem, we develop a recursive decomposition

algorithm and show that for the scheduling applications it can be implemented in a

very efficient way.

3 Scheduling with controllable processing times: submodular reformulations

For completeness, we start this section with definitions related to submodular opti-

mization. Unless stated otherwise, we follow a comprehensive monograph on this topic

by Fujishige [4], see also [10,21]. In Sect. 3.1, we introduce a linear programming
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problem for which the set of constraints is a submodular polyhedron intersected with

a box. Being quite general, the problem represents a range of scheduling models with

controllable processing times. In Sect. 3.2 we give the details of the corresponding

reformulations.

3.1 Preliminaries on submodular polyhedra

For a positive integer n, let N = {1, 2, . . . , n} be a ground set, and let 2N denote

the family of all subsets of N . For a subset X ⊆ N , let R
X denote the set of

all vectors p with real components p( j), where j ∈ X . For two vectors p =

(p(1), p(2), . . . , p(n)) ∈ R
N and q = (q(1), q(2), . . . , q(n)) ∈ R

N , we write p ≤ q

if p( j) ≤ q( j) for each j ∈ N . Given a set X ⊆ R
N , a vector p ∈ X is called maximal

in X if there exists no vector q ∈ X such that p ≤ q and p �= q. For a vector p ∈ R
N ,

define p(X) =
∑

j∈X p( j) for every set X ∈ 2N .

A set function ϕ : 2N → R is called submodular if the inequality

ϕ(X) + ϕ(Y ) ≥ ϕ(X ∪ Y ) + ϕ(X ∩ Y )

holds for all sets X, Y ∈ 2N . For a submodular function ϕ defined on 2N such that

ϕ(∅) = 0, the pair (2N , ϕ) is called a submodular system on N , while ϕ is referred to

as the rank function of that system.

For a submodular system (2N , ϕ), define two polyhedra

P(ϕ) =
{

p ∈ R
N | p(X) ≤ ϕ(X), X ∈ 2N

}
, (2)

B(ϕ) =
{

p ∈ R
N | p ∈ P(ϕ), p(N ) = ϕ(N )

}
, (3)

called the submodular polyhedron and the base polyhedron, respectively, associated

with the submodular system. Notice that B(ϕ) represents the set of all maximal vectors

in P(ϕ).

The main problem that we consider in this section is as follows:

(LP): Maximize
∑

j∈N

w( j)p( j)

subject to p(X) ≤ ϕ(X), X ∈ 2N ,

p( j) ≤ p( j) ≤ p( j), j ∈ N ,

(4)

where ϕ : 2N → R is a submodular function with ϕ(∅) = 0, w ∈ R
N
+ is a nonnegative

weight vector, and p, p ∈ R
N are upper and lower bound vectors, respectively. This

problem serves as a mathematical model for many scheduling problems with control-

lable processing times. Problem (LP) can be classified as a problem of maximizing a

linear function over a submodular polyhedron intersected with a box.

In our previous work [25], we have demonstrated that Problem (LP) can be reduced

to optimization over a simpler structure, namely, over a base polyhedron. In fact, we
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have shown that a problem of maximizing a linear function over the intersection of

a submodular polyhedron and a box is equivalent to maximizing the same objective

function over a base polyhedron associated with another rank function.

Theorem 1 (cf. [25])

(i) Problem (LP) has a feasible solution if and only if p ∈ P(ϕ) and p ≤ p.

(ii) If Problem (LP) has a feasible solution, then the set of maximal feasible solutions

of Problem (LP) is a base polyhedron B(ϕ̃) associated with the submodular system

(2N , ϕ̃), where the rank function ϕ̃ : 2N → R is given by

ϕ̃(X) = min
Y∈2N

{
ϕ(Y ) + p(X\Y ) − p(Y\X)

}
. (5)

Notice that the computation of the value ϕ̃(X) for a given X ∈ 2N reduces to

minimization of a submodular function, which can be computed in polynomial time

by using any of the available algorithms for minimizing a submodular function [7,20].

However, the running time of known algorithms is fairly large. In many special cases

of Problem (LP), including its applications to scheduling problems with controllable

processing times, the value ϕ̃(X) can be computed more efficiently without using the

submodular function minimization, as shown later.

Throughout this paper, we assume that Problem (LP) has a feasible solution, which,

due to claim (i) of Theorem 1, is equivalent to the conditions p ∈ P(ϕ) and p ≤ p.

Claim (ii) of Theorem 1 implies that Problem (LP) reduces to the following problem:

Maximize
∑

j∈N

w( j)p( j)

subject to p ∈ B(ϕ̃),

(6)

where the rank function ϕ̃ : 2N → R is given by (5).

An advantage of the reduction of Problem (LP) to a problem of the form (6) is

that the solution vector can be obtained essentially in a closed form, as stated in the

theorem below.

Theorem 2 (cf. [4]) Let j1, j2, . . . , jn be an ordering of elements in N that satisfies

w( j1) ≥ w( j2) ≥ · · · ≥ w( jn). (7)

Then, vector p∗ ∈ R
N given by

p∗( jh) = ϕ̃({ j1, . . . , jh−1, jh}) − ϕ̃({ j1, . . . , jh−1}), h = 1, 2, . . . , n, (8)

is an optimal solution to the problem (6) [and also to the problem (4)].

This theorem immediately implies a simple algorithm for Problem (LP), which

computes an optimal solution p∗ by determining the value ϕ̃({ j1, j2, . . . , jh}) for
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each h = 1, 2, . . . , n. In this paper, instead, we use a different algorithm based on

decomposition approach to achieve better running times for special cases of Problem

(LP), as explained in Sect. 4.

3.2 Rank functions for scheduling applications

In this subsection, we follow [27] and present reformulations of three scheduling

problems on parallel machines with controllable processing times in terms of LP

problems defined over a submodular polyhedron intersected with a box of the form

(4). We assume that if the jobs have different release dates, they are numbered to

satisfy

r(1) ≤ r(2) ≤ · · · ≤ r(n). (9)

If the machines are uniform they are numbered in accordance with (1). We denote

S0 = 0, Sk = s1 + s2 + · · · + sk, 1 ≤ k ≤ m. (10)

Sk represents the total speed of k fastest machines; if the machines are identical, Sk = k

holds.

For each problem Q|p( j) = p( j) − x( j), C( j) ≤ d, pmtn|W, P|r( j), p( j) =

p( j) − x( j), C( j) ≤ d, pmtn|W and Q|r( j), p( j) = p( j) − x( j), C( j) ≤

d, pmtn|W , we need to find the actual processing times p( j) = p( j)− x( j), j ∈ N ,

such that all jobs can be completed by a common due date d and the total compression

cost W =
∑

j∈N w( j)x( j) is minimized. In what follows, we present LP formulations

of these problems with p( j), j ∈ N , being decision variables, and the objective func-

tion to be maximized being
∑

j∈N w( j)p( j) =
∑

j∈N w( j) (p( j) − x( j)). Since

each decision variable p( j) has a lower bound p( j) and an upper bound p( j), an LP

formulation includes the box constraints of the form p( j) ≤ p( j) ≤ p( j), j ∈ N .

The derivations of the rank functions for the models under consideration can be

justified by the conditions for the existence of a feasible schedule for a given common

deadline d formulated, e.g., in [1]. Informally, these conditions state that for a given

deadline d a feasible schedule exists if and only if

(i) for each k, 1 ≤ k ≤ m −1, k longest jobs can be processed on k fastest machines

by time d, and

(ii) all n jobs can be completed on all m machines by time d.

We refer to [27] where the rank functions for the relevant problems are presented

and discussed in more details. Below we present their definitions. In all scheduling

applications a meaningful interpretation of ϕ(X) is the largest capacity available for

processing the jobs of set X .

For example, problem Q|p( j) = p( j) − x( j), C( j) ≤ d, pmtn|W reduces to

Problem (LP) of the form (4) with the rank function

ϕ(X) = d Smin{|X |,m} =

{
d S|X |, if |X | ≤ m − 1,

d Sm, if |X | ≥ m.
(11)
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It is clear that the conditions p(X) ≤ ϕ(X), X ∈ 2N , for the function ϕ(X) defined

by (11) correspond to the conditions (i) and (ii) above, provided that |X | ≤ m − 1 and

|X | ≥ m, respectively. As proved in [24], function ϕ is submodular.

We then consider problem Q|r( j), p( j) = p( j) − x( j), C( j) ≤ d, pmtn|W . For

a set of jobs X ⊆ N , we define ri (X) to be the i-th smallest release date in set X ∈

2N , 1 ≤ i ≤ |X |. Then, for a non-empty set X of jobs, the largest processing capacity

available on the fastest machine M1 is s1 (d − r1(X)), the total largest processing

capacity on two fastest machines M1 and M2 is s1 (d − r1(X)) + s2 (d − r2(X)), etc.

We deduce that

ϕ(X) =

{
d S|X | −

∑|X |
i=1 siri (X), if |X | ≤ m − 1,

d Sm −
∑m

i=1 siri (X), if |X | ≥ m.
(12)

It can be verified that this function is submodular.

Problem P|r( j), p( j) = p( j) − x( j), C( j) ≤ d, pmtn|W is a special case of

problem Q|r( j), p( j) = p( j) − x( j), C( j) ≤ d, pmtn|W , where s1 = s2 = · · · =

sm = 1. Hence, the corresponding rank function ϕ can be simplified as

ϕ(X) =

{
d|X | −

∑|X |
i=1 ri (X), if |X | ≤ m − 1,

dm −
∑m

i=1 ri (X), if |X | ≥ m.
(13)

4 Decomposition of LP problems with submodular constraints

In this section, we describe a decomposition algorithm for solving LP problems defined

over a submodular polyhedron intersected with a box. In Sect. 4.1, we demonstrate

that the linear programming problem under study can be recursively decomposed into

subproblems of a smaller dimension, with some components of a solution vector fixed

to one of their bounds. We provide an outline of an efficient recursive decomposi-

tion procedure in Sect. 4.2 and analyze its time complexity in Sect. 4.3. In Sect. 5

we present implementation details of the recursive decomposition procedure for the

relevant scheduling models with controllable processing times.

4.1 Fundamental idea for decomposition

In this section, we show an important property, which makes the foundation of our

decomposition algorithm for Problem (LP) of the form (4).

The lemma below demonstrates that some components of an optimal solution can

be fixed either at their upper or lower bounds, while for some components their sum

is fixed. Given a subset N̂ of N , we say that N̂ is a heavy-element subset of N with

respect to the weight vector w if it satisfies the condition

min
j∈N̂

w( j) ≥ max
j∈N\N̂

w( j).

For completeness, we also regard the empty set as a heavy-element subset of N .
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Given Problem (LP), in accordance with (5) define a set Y∗ ⊆ N such that the

equality

ϕ̃(X) = ϕ(Y∗) + p(X\Y∗) − p(Y∗\X) (14)

holds for a set X ⊆ N . Because of its special role, in the remainder of this paper we

call Y∗ an instrumental set for set X .

Lemma 1 Let N̂ ⊆ N be a heavy-element subset of N with respect to w, and Y∗ ⊆ N

be an instrumental set for set N̂ . Then, there exists an optimal solution p∗ of Problem

(LP) such that

(a) p∗(Y∗) = ϕ(Y∗), (b) p∗( j) = p( j), j ∈ N̂\Y∗, (c) p∗( j) = p( j), j ∈ Y∗\N̂ .

Proof Since N̂ is a heavy-element subset, there exists an ordering j1, j2, . . . , jn of

elements in N that satisfies (7) and N̂ = { j1, j2, . . . , jk}, where k = |N̂ |. Theorems 1

and 2 guarantee that the solution p∗ given by (8) is optimal. In particular, this implies

p∗(N̂ ) = ϕ̃( j1) +

k∑

i=2

(ϕ̃({ j1, j2, . . . , ji }) − ϕ̃({ j1, j2, . . . , ji−1}))

= ϕ̃({ j1, j2, . . . , jk}) = ϕ̃(N̂ ).

Since p∗ is a feasible solution of Problem (LP), the following conditions simultane-

ously hold:

p∗(Y∗) ≤ ϕ(Y∗), p∗( j) ≤ p( j), j ∈ N̂\Y∗, −p∗( j) ≤ −p( j), j ∈ Y∗\N̂ .

(15)

On the other hand, due to the choice of set Y∗ we have

p∗(N̂ ) = ϕ̃(N̂ ) = ϕ(Y∗) + p(N̂\Y∗) − p
(

Y∗\N̂
)

,

which implies that each inequality of (15) must hold as equality, and that is equivalent

to the properties (a), (b), and (c) in the lemma. ⊓⊔

In what follows, we use two fundamental operations on a submodular system(
2N , ϕ

)
, as defined in [4, Section 3.1]. For a set A ∈ 2N , define a set function

ϕA : 2A → R by

ϕA(X) = ϕ(X), X ∈ 2A.

Then, (2A, ϕA) is a submodular system on A and it is called a restriction of (2N , ϕ)

to A. On the other hand, for a set A ∈ 2N define a set function ϕA : 2N\A → R by

ϕA(X) = ϕ(X ∪ A) − ϕ(A), X ∈ 2N\A.
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Then, (2N\A, ϕA) is a submodular system on N\A and it is called a contraction of

(2N , ϕ) by A.

For an arbitrary set A ∈ 2N , Problem (LP) can be decomposed into two subproblems

of a similar structure by performing restriction of
(
2N , ϕ

)
to A and contraction of(

2N , ϕ
)

by A, respectively. These problems can be written as follows: for restriction

as

(LP1) : Maximize
∑

j∈A

w( j)p( j)

subject to p(X) ≤ ϕA(X) = ϕ(X), X ∈ 2A,

p( j) ≤ p( j) ≤ p( j), j ∈ A,

and for contraction as

(LP2) : Maximize
∑

j∈N\A

w( j)p( j)

subject to p(X) ≤ ϕA(X) = ϕ(X ∪ A) − ϕ(A), X ∈ 2N\A,

p( j) ≤ p( j) ≤ p( j), j ∈ N\A.

We show that an optimal solution of the original Problem (LP) can be easily restored

from the optimal solutions of these two subproblems. For every subset A ⊆ N and

vectors p1 ∈ R
A and p2 ∈ R

N\A, the direct sum p1 ⊕p2 ∈ R
N of p1 and p2 is defined

by

(p1 ⊕ p2)( j) =

{
p1( j), if j ∈ A,

p2( j), if j ∈ N\A.

Lemma 2 Let A ∈ 2N , and suppose that q(A) = ϕ(A) holds for some optimal

solution q ∈ R
N of Problem (LP). Then,

(i) Each of problems (LP1) and (LP2) has a feasible solution.

(ii) If a vector p1 ∈ R
A is an optimal solution of Problem (LP1) and a vector p2 ∈

R
N\A is an optimal solution of Problem (LP2), then the direct sum p∗ = p1⊕p2 ∈

R
N of p1 and p2 is an optimal solution of Problem (LP).

Proof The proof below is similar to that for Lemma 3.1 in [4]. We define vectors

q1 ∈ R
A and q2 ∈ R

N\A by

q1( j) = q( j), j ∈ A, q2( j) = q( j), j ∈ N\A.

To prove (i), it suffices to show that q1 and q2 are feasible solutions of Problems (LP1)

and (LP2), respectively. Since q is a feasible solution of Problem (LP), we have

q(X) ≤ ϕ(X), X ∈ 2N , (16)

p( j) ≤ q( j) ≤ p( j), j ∈ N . (17)
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Then, (16) and (17) imply that q1 ∈ R
A is a feasible solution of Problem (LP1). It

follows from (16) and the equality q(A) = ϕ(A) that

q(X) = q(X ∪ A) − q(A) ≤ ϕ(X ∪ A) − ϕ(A), X ∈ 2N\A,

which, together with (17), implies that q2 ∈ R
N\A is a feasible solution of Problem

(LP2). This concludes the proof of (i).

To prove (ii), we first show that p∗ is a feasible solution of Problem (LP). Since p1

and p2 are feasible solutions of Problem (LP1) and Problem (LP2), respectively, we

have

p∗(X) ≤ ϕ(X), X ∈ 2A, (18)

p∗(X) ≤ ϕ(X ∪ A) − ϕ(A), X ∈ 2N\A, (19)

p( j) ≤ p∗( j) ≤ p( j), j ∈ N . (20)

For any X ∈ 2N , we derive

p∗(X) = p∗(X ∩ A) + p∗(X\A)

≤ ϕ(X ∩ A) + ϕ((X\A) ∪ A) − ϕ(A)

= ϕ(X ∩ A) + ϕ(X ∪ A) − ϕ(A)

≤ ϕ(X),

where the first inequality is by (18) and (19), and the second by the submodularity of

ϕ. This inequality and (20) show that the vector p∗ is a feasible solution of (LP).

To show optimality of p∗, notice that by optimality of p1 and p2 we have

∑

j∈A

w( j)p1( j) ≥
∑

j∈A

w( j)q1( j),
∑

j∈N\A

w( j)p2( j) ≥
∑

j∈N\A

w( j)q2( j),

and due to the definition of p∗ we obtain

∑

j∈N

w( j)p∗( j) =
∑

j∈A

w( j)p1( j) +
∑

j∈N\A

w( j)p2( j)

≥
∑

j∈A

w( j)q1( j) +
∑

j∈N\A

w( j)q2( j) =
∑

j∈N

w( j)q( j),

so that, p∗ is an optimal solution of (LP). ⊓⊔

From Lemmas 1 and 2, we obtain the following property, which is used recursively

in our decomposition algorithm.

Theorem 3 Let N̂ ⊆ N be a heavy-element subset of N with respect to w, and Y∗ be

an instrumental set for set N̂ . Let p1 ∈ R
Y ∗

and p2 ∈ R
N\Y ∗

be optimal solutions of

the linear programs (LPR) and (LPC), respectively, where (LPR) and (LPC) are given

as
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(LPR) : Maximize
∑

j∈Y∗

w( j)p( j)

subject to p(X) ≤ ϕ(X), X ∈ 2Y∗ ,

p( j) ≤ p( j) ≤ p( j), j ∈ Y∗ ∩ N̂ ,

p( j) = p( j), j ∈ Y∗\N̂

(LPC) : Maximize
∑

j∈N\Y∗

w( j)p( j)

subject to p(X) ≤ ϕ(X ∪ Y∗) − ϕ(Y∗), X ∈ 2N\Y∗ ,

p( j) ≤ p( j) ≤ p( j), j ∈ (N\Y∗) \
(

N̂\Y∗

)
,

p( j) = p( j), j ∈ N̂\Y∗.

Then, the vector p∗ ∈ R
N given by the direct sum p∗ = p1 ⊕p2 is an optimal solution

of (LP).

Notice that Problem (LPR) is obtained from Problem (LP) as a result of restriction

to Y∗ and the values of components p( j), j ∈ Y∗\N̂ , are fixed to their lower bounds

in accordance with Property (c) of Lemma 1. Similarly, Problem (LPC) is obtained

from Problem (LP) as a result of contraction by Y∗ and the values of components

p( j), j ∈ N̂\Y∗, are fixed to their upper bounds in accordance with Property (b) of

Lemma 1.

4.2 Recursive decomposition procedure

In this subsection, we describe how the original Problem (LP) can be decomposed

recursively based on Theorem 3, until we obtain a collection of trivially solvable

problems with no non-fixed variables. In each stage of this process, the current LP

problem is decomposed into two subproblems, each with a reduced set of variables,

while some of the original variables receive fixed values and stay fixed until the end.

Remark 1 The definition of a heavy-element set can be revised to take into account

the fact that some variables may become fixed during the solution process. The fixed

variables make a fixed contribution into the objective function, so that the values of

their weights become irrelevant for further consideration and can therefore be made,

e.g., zero. This means that a heavy-element set can be selected not among all variables

of set N but only among the non-fixed variables. Formally, if the set N of jobs is

known to be partitioned as N = Q ∪ F , where the variables of set Q are non-fixed

and those of set F are fixed, then Q̂ ⊆ Q is a heavy-element subset with respect to

the weight vector w if it satisfies the condition

min
j∈Q̂

w( j) ≥ max
j∈Q\Q̂

w( j).
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Notice that for this refined definition of a heavy-element subset, Lemma 1 and Theo-

rem 3 can be appropriately adjusted.

In each stage of the recursive procedure, we need to solve a subproblem that can

be written in the following generic form:

LP(H, F, K , l, u) Maximize
∑

j∈H

w( j)p( j)

subject to p(X) ≤ ϕH
K (X) = ϕ(X ∪ K )−ϕ(K ), X ∈ 2H ,

l( j) ≤ p( j) ≤ u( j), j ∈ H\F,

p( j) = u( j) = l( j), j ∈ F,

(21)

where

– H ⊆ N is the index set of components of vector p;

– F ⊆ H is the index set of fixed components, i.e., l( j) = u( j) holds for each

j ∈ F ;

– K ⊆ N\H is the set that defines the rank function ϕH
K : 2H → R such that

ϕH
K (X) = ϕ(X ∪ K ) − ϕ(K ), X ∈ 2H ;

– l = (l( j) | j ∈ H) and u = (u( j) | j ∈ H) are respectively the vectors of the

lower and upper bounds on variables p( j), j ∈ H . For j ∈ N , each of l( j) and

u( j) either takes the value of p( j) or that of p( j) from the original Problem (LP).

Notice that l( j) = u ( j) for each j ∈ F .

Throughout this paper, we assume that each Problem LP(H, F, K , l, u) is feasible.

This is guaranteed by Lemma 2 if the initial Problem (LP) is feasible.

The original Problem (LP) is represented as Problem LP(N ,∅,∅, p, p). For j ∈ H ,

we say that the variable p( j) is a non-fixed variable if l( j) < u( j) holds, and a fixed

variable if l( j) = u( j) holds. If all the variables in Problem LP(H, F, K , l, u) are

fixed, i.e., l( j) = u( j) holds for all j ∈ H , then an optimal solution is uniquely

determined by the vector u ∈ R
H .

Consider a general case that Problem LP(H, F, K , l, u) of the form (21) contains

at least one non-fixed variable, i.e., |H\F | > 0. We define a function ϕ̃H
K : 2H → R

by

ϕ̃H
K (X) = min

Y∈2H
{ϕH

K (Y ) + u(X\Y ) − l(Y\X)}. (22)

By Theorem 1 (ii), the set of maximal feasible solutions of Problem LP(H, F, K , l, u)

is given as a base polyhedron B(ϕ̃H
K ) associated with the function ϕ̃H

K . Therefore, if

|H\F | = 1 and H\F = { j ′}, then an optimal solution p∗ ∈ R
H is given by

p∗( j) =

{
ϕ̃H

K ({ j ′}), j = j ′,

u( j), j ∈ F,
(23)
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Suppose that |H\F | ≥ 2. Then, we call a procedure Procedure Decomp(H, F, K ,

l, u) explained below. Let Ĥ ⊆ H\F be a heavy-element subset of H with respect to

the vector (w( j) | j ∈ H), and Y∗ ⊆ H be an instrumental set for set Ĥ , i.e.,

ϕ̃H
K (Ĥ) = ϕH

K (Y∗) + u
(

Ĥ\Y∗

)
− l(Y∗\Ĥ). (24)

Theorem 3, when applied to Problem LP(H, F, K , l, u), implies that the problem

is decomposed into the two subproblems

Maximize
∑

j∈Y∗

w( j)p( j)

subject to p(X) ≤ ϕ
Y∗
K (X) = ϕ(X ∪ K ) − ϕ(K ), X ∈ 2Y∗ ,

l( j) ≤ p( j) ≤ l( j), j ∈ Y∗\Ĥ ,

l( j) ≤ p( j) ≤ u( j), j ∈ Y∗ ∩ Ĥ ,

and

Maximize
∑

j∈H\Y∗

w( j)p( j)

subject to p(X) ≤ ϕ
H\Y∗

K∪Y∗
(X) = ϕ(X ∪ K ∪ Y∗)−ϕ(K ∪ Y∗), X ∈ 2H\Y∗ ,

u( j) ≤ p( j) ≤ u( j), j ∈ Ĥ\Y∗,

l( j) ≤ p( j) ≤ u( j), j ∈ (H\Y∗) \(Ĥ\Y∗).

The first of these subproblems corresponds to Problem (LPR), and in that problem

the values of components p( j), j ∈ Y∗\Ĥ , are fixed to their lower bounds. The

second subproblem corresponds to Problem (LPC), and in that problem the values of

components p( j), j ∈ Ĥ\Y∗, are fixed to their upper bounds.

We denote these subproblems by Problem LP(Y∗, F1, K , l1, u1) and Prob-

lem LP(H\Y∗, F2, K ∪ Y∗, l2, u2), respectively, where the vectors l1, u1 ∈ R
Y∗ and

l2, u2 ∈ R
H\Y∗ , and the updated sets of fixed variables F1 and F2 are given by

l1( j) = l( j), j ∈ Y∗,

u1( j) =

{
l( j), j ∈ Y∗\Ĥ ,

u( j), j ∈ Y∗ ∩ Ĥ ,

F1 = Y∗\Ĥ ,

(25)

l2( j) =

{
u( j), j ∈ Ĥ\Y∗,

l( j), j ∈ H\(Y∗ ∪ Ĥ),

u2( j) = u( j), j ∈ H\Y∗,

F2 = (Ĥ ∪ (H ∩ F))\Y∗.

(26)
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Notice that Problem LP(Y∗, F1, K , l1, u1) inherits the set of fixed variables Y∗ ∩ F

from the problem of a higher level, and additionally the variables of set Y∗\Ĥ become

fixed. However, since Ĥ contains only non-fixed variables, we deduce that Y∗\Ĥ ⊇

Y∗ ∩ F , so that the complete description of the set F1 of fixed variables in Problem

LP(Y∗, F1, K , l1, u1) is given by Y∗\Ĥ .

Problem LP(H\Y∗, F2, K ∪Y∗, l2, u2) inherits the set of fixed variables (H\Y∗)∩F

from the problem of a higher level, and additionally the variables of set Ĥ\Y∗ become

fixed. These two sets are disjoint. Thus, the complete description of the set F2 of fixed

variables in Problem LP(H\Y∗, F2, K , l2, u2) is given by (Ĥ ∪ (H ∩ F))\Y∗.

Without going into implementation details, we now give a formal description

of the recursive procedure, that takes Remark 1 into account. For the current

Problem LP(H, F, K , l, u), we compute optimal solutions p1 ∈ R
Y∗ and p2 ∈

R
H\Y∗ of the two subproblems by calling procedures Decomp(Y∗, F1, K , l1, u1) and

Decomp(H\Y∗, F2, K ∪Y∗, l2, u2). By Theorem 3, the direct sum p∗ = p1 ⊕p2 is an

optimal solution of Problem LP(H, F, K , l, u), which is the output of the procedure

Decomp(H, F, K , l, u).

Procedure Decomp(H, F, K , l, u)

Step 1. If |H\F | = 0, then output the vector p∗ = u ∈ R
H and return.

If |H\F | = 1 and H\F = { j ′}, then compute the value ϕ̃H
K ({ j ′}), and output the

vector p∗ given by (23) and return.

Step 2. Select a heavy-element subset Ĥ of H\F with respect to w, and determine

an instrumental set Y∗ ⊆ H for set Ĥ satisfying (24).

Step 3. Define the vectors l1, u1 ∈ RY∗ and set F1 by (25).

Call Procedure Decomp(Y∗, F1, K , l1, u1) to obtain an optimal solution p1 ∈ R
Y∗

of Problem LP(Y∗, F1, K , l1, u1).

Step 4. Define the vectors l2, u2 ∈ RH\Y∗ and set F2 by (26).

Call Procedure Decomp(H\Y∗, F2, K ∪ Y∗, l2, u2) to obtain an optimal solution

p2 ∈ R
H\Y∗ of Problem LP(H\Y∗, F2, K ∪ Y∗, l2, u2).

Step 5. Output the direct sum p∗ = p1 ⊕ p2 ∈ R
H and return.

Recall that the original Problem (LP) is solved by calling Procedure

Decomp(N ,∅,∅, p, p). Its actual running time depends on the choice of a heavy-

element subset Ĥ in Step 2 and on the time complexity of finding an instrumental set Y∗.

4.3 Analysis of time complexity

We analyze the time complexity of Procedure Decomp. To reduce the depth of recur-

sion of the procedure, it makes sense to perform decomposition in such a way that the

number of non-fixed variables in each of the two emerging subproblems is roughly a

half of the number of non-fixed variables in the current Problem LP(H, F, K , l, u).

Lemma 3 If at each level of recursion of Procedure Decomp for Problem

LP(H, F, K , l, u) with |H\F | > 1 a heavy-element subset Ĥ ⊆ H\F in Step 2

is chosen to contain ⌈|H\F |/2⌉ non-fixed variables, then the number of non-fixed
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variables in each of the two subproblems that emerge as a result of decomposition is

either ⌈|H\F |/2⌉ or ⌊|H\F |/2⌋.

Proof For Problem LP(H, F, K , l, u), let g = |H\F | denote the number of the non-

fixed variables. In Step 2 Procedure Decomp(H, F, K , l, u) selects a heavy-element

subset Ĥ ⊂ H\F that contains ⌈g/2⌉ non-fixed variables, i.e., |Ĥ | = ⌈g/2⌉. Then,

the number of the non-fixed variables in Problem LP(Y∗, F1, K , l1, u1) considered in

Step 3 satisfies |Y∗ ∩ Ĥ | ≤ ⌈g/2⌉.

Due to (26), the number of non-fixed variables in Problem LP(H\Y∗, F2, K ∪

Y∗, l2, u2) considered in Step 4 satisfies

|H\(Ĥ ∪ F ∪ Y∗)| ≤ |H\Ĥ | =
⌊g

2

⌋
.

⊓⊔

This lemma implies that the overall depth of recursion of Procedure Decomp applied

to Problem LP(N ,∅,∅, p, p) is O(log n).

Let us analyze the running time of Procedure Decomp applied to Problem

LP(H, F, K , l, u). We denote by TLP(h, g) the time complexity of Procedure

Decomp(H, F, K , l, u), where h = |H | and g = |H\F |. Let TY∗(h) denote the

running time for computing the value ϕ̃H
K (Ĥ) for a given set Ĥ ⊆ H and finding an

instrumental set Y∗ that minimizes the right-hand side of the Eq. (22). In Steps 3 and 4,

Procedure Decomp splits Problem LP(H, F, K , l, u) into two subproblems: one with

h1 variables among which there exist g1 ≤ min{h1, ⌈g/2⌉} non-fixed variables, and the

other one with h2 = h − h1 variables, among which there exist g2 ≤ min{h2, ⌊g/2⌋}

non-fixed variables. Let TSplit (h) denote the time complexity of such a decomposition,

i.e., for setting up the instances of the two subproblems. A required heavy-element set

can be found in O(h) time by using a linear-time median-finding algorithm. Then, we

obtain a recursive equation:

TLP(h, g) =

⎧
⎪⎨
⎪⎩

O(1), if g = 0,

TY∗(h), if g = 1,

TY∗(h) + TSplit(h) + TLP(h1, g1) + TLP(h2, g2), if g > 1.

By solving the recursive equation under an assumption that both functions TY∗(h) and

TSplit (h) are non-decreasing and convex, we obtain

TLP(n, n) = O(
(
TY∗(n) + TSplit (n)

)
log n).

Thus, the findings of this section can be summarized as the following statement.

Theorem 4 Problem (LP) can be solved by Procedure Decomp in O((TY∗(n) +

TSplit(n)) log n) time.

In the forthcoming discussion of three scheduling applications of the results of

this section, we pay special attention to designing fast algorithms that could find the
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required set Y∗ in all levels of the recursive Procedure Decomp. We develop fast

algorithms that compute the value ϕ̃(Ĥ) and find a set Y∗ in accordance with its

definition; see Sect. 5.

4.4 Comparison with decomposition algorithm for maximizing a concave separable

function

In this subsection, we refer to our decomposition algorithm for Problem (LP) defined

over a submodular polyhedron intersected with a box as Algorithm SSS-Decomp.

Below, we compare that algorithm with a known decomposition algorithm that is

applicable for maximizing a separable concave function over a submodular polyhe-

dron; see [3], [4, Sect. 8.2] and [6].

Consider the problem of maximizing a separable concave function over a submod-

ular polyhedron:

(SCFM) Maximize
∑

j∈N

f j (p( j))

subject to p(X) ≤ ϕ(X), X ∈ 2N ,

where f j : R → R is a univariate concave function for j ∈ N and ϕ : 2N → R is a

submodular function with ϕ(∅) = 0.

The decomposition algorithm for Problem (SCFM) was first proposed by

Fujishige [3] for the special case where each f j is quadratic and ϕ is a polyma-

troid rank function. Groenevelt [6] then generalized the decomposition algorithm for

the case where each f j is a general concave function and ϕ is a polymatroid rank

function. Later, it was pointed out by Fujishige [4, Sect. 8.2] that the decomposition

algorithm in [6] can be further generalized to the case where ϕ is a general submodular

function. We refer to that algorithm as Algorithm FG-Decomp.

For simplicity of presentation, in the description of Algorithm FG-Decomp we

assume that each f j is monotone increasing; the general case with non-monotone f j

can be dealt with by an appropriate modification of the algorithm; see [6].

Algorithm FG-Decomp

Step 1. Find an optimal solution q ∈ R
N of the following “relaxed” problem with a

single constraint:

Maximize
∑

j∈N

f j (p( j))

subject to p(N ) ≤ ϕ(N ).

Note: since f j is monotone it follows that q(N ) = ϕ(N ).

Step 2. Find a maximal vector q′ ∈ R
N satisfying the following condition:

q ′(X) ≤ ϕ(X), X ∈ 2N , q ′( j) ≤ q( j), j ∈ N .

Step 3. Find a (unique) maximal set Y∗ ⊆ N such that ϕ(Y∗) = q ′(Y∗).
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Step 4. If Y∗ = N , then output the vector q′ and stop. Otherwise, go to Step 5.

Step 5. Find an optimal solution p1 ∈ R
Y ∗

of the following problem:

Maximize
∑

j∈Y∗

f j (p( j))

subject to p(X) ≤ ϕ(X),X ∈ 2Y∗ .

Step 6. Find an optimal solution p2 ∈ R
N\Y ∗

of the following problem:

Maximize
∑

j∈N\Y∗

f j (p( j))

subject to p(X) ≤ ϕ(X ∪ Y∗) − ϕ(Y∗), X ∈ 2N\Y∗ .

Step 7. Output the direct sum p∗ = p1 ⊕ p2 ∈ R
N and stop.

Notice that for the set Y∗ chosen in Step 3, there exists some optimal solution p∗

of Problem (SCFM) such that ϕ(Y∗) = p∗(Y∗); see [4, Sect. 8.2], [6].

It is easy to see that Problem (LP) can be reduced to Problem (SCFM) by setting

the functions f j as

f j (α) =

⎧
⎪⎨
⎪⎩

w( j)p( j) + M(α − p( j)), if α < p( j);

w( j)α, if p( j) ≤ α ≤ p( j);

w( j)p( j) − M(α − p( j)), if α > p( j)

(27)

with a sufficiently large positive number M . Thus, Algorithm FG-Decomp (appro-

priately adjusted to deal with non-monotone functions f j ) can be applied to solving

Problem (LP).

For Problem (LP), Algorithm FG-Decomp is quite similar to Algorithm SSS-

Decomp. Indeed, both algorithms recursively find a set Y∗ and decompose a problem

into two subproblems by using restriction to Y∗ and contraction by Y∗.

The difference of the two decomposition algorithms is in the selection rule of a set

Y∗. In fact, a numerical example can be provided that demonstrates that for the same

instance of Problem (LP) the two decomposition algorithms may find different sets

Y∗ in the same iteration.

In addition, Algorithm SSS-Decomp fixes some variables in the subproblems so

that the number of non-fixed variables in each subproblem is at most the half of

the non-fixed variables in the original problem; this is an important feature of our

algorithm which is not enjoyed by Algorithm FG-Decomp. This difference affects the

efficiency of the two decomposition algorithms; indeed, for Problem (LP) the height

of the decomposition tree can be Θ(n) if Algorithm FG-Decomp is used, while it is

O(log n) in our Algorithm SSS-Decomp.

Thus, despite certain similarity between the two decomposition algorithms, our

algorithm cannot be seen as a straightforward adaptation of Algorithm FG-Decomp

designed for solving problems of non-linear optimization with submodular constraints

to a less general problem of linear programming.
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On the other hand, assume that the feasible region for Problem (SCFM) is addi-

tionally restricted by imposing the box constraints, similar to those used in Problem

(LP). Theorem 1 can be used to reduce the resulting problem to Problem (SCFM) with

a feasible region being the base polyhedron with a modified rank function. Although

the obtained problem can be solved by Algorithm FG-Decomp, this approach is com-

putationally inefficient, since it requires multiple calls to a procedure for minimizing

a submodular function. It is more efficient not to rely on Theorem 1, but to handle the

additional box constraints by adapting the objective function, similarly to (27), and

then to use Algorithm FG-Decomp.

5 Application to parallel machine scheduling problems

In this section, we show how the decomposition algorithm based on Procedure Decomp

can be adapted for solving problems with parallel machines efficiently. Before con-

sidering implementation details that are individual for each scheduling problem under

consideration, we start this section with a discussion that addresses the matters that

are common to all three problems.

Recall that each scheduling problem we study in this paper can be formulated as

Problem (LP) of the form (4) with an appropriate rank function. Thus, each of these

problems can be solved by the decomposition algorithm described in Sect. 4.2 applied

to Problem LP(N ,∅,∅, l, u), where l = p and u = p.

For an initial Problem LP(N ,∅,∅, l, u), we assume that the following preprocessing

is done before calling Procedure Decomp(N ,∅,∅, l, u):

1. If required, the jobs are numbered in non-decreasing order of their release dates

in accordance with (9).

2. If required, the machines are numbered in non-increasing order of their speeds in

accordance with (1), and the partial sums Sv are computed for all v, 0 ≤ v ≤ m,

by (10).

3. The lists (l( j) | j ∈ N ) and (u( j) | j ∈ N ) are formed and their elements are

sorted in non-decreasing order.

The required preprocessing takes O(n log n) time.

To adapt the generic Procedure Decomp to solving a particular schedul-

ing problem, we only need to provide the implementation details for Procedure

Decomp(H, F, K , l, u) that emerges at a certain level of recursion. To be precise,

we need to explain how to compute for each particular problem the function ϕ̃H
K (X)

for a chosen set X ∈ 2H and how to find for a current heavy-element set an instru-

mental set Y∗ defined by (22), which determines the pair of problems into which the

current problem is decomposed.

Given Problem LP(H, F, K , l, u) of the form (21) define h = |H | and k = |K |.

Recall that K , H ⊆ N are sets with K ∩ H = ∅. For v = 0, 1, . . . , h, define

Hv = {Y ⊆ H | |H | = v} (28)
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Introduce

ĥ = min {h, m − k − 1} . (29)

Since ϕH
K (Y ) = ϕ(Y ∪ K ) − ϕ(K ) for Y ∈ 2H , it follows that for a given set

X ⊆ H the function ϕ̃H
K : 2H → R can be computed as follows:

ϕ̃H
K (X) = min

Y∈2H

{
ϕH

K (Y ) + u(X\Y ) − l(Y\X)
}

= u(X) − ϕ(K ) + min
Y∈2H

{ϕ(Y ∪ K ) − u(Y ∩ X) − l(Y\X)}

= u(X) − ϕ(K ) + min
Y∈2H

{ϕ(Y ∪ K ) − λ(Y )}, (30)

where ϕ is the initial rank function associated with the scheduling problem under

consideration, and

λ( j) =

{
u( j), if j ∈ X,

l( j), if j ∈ H\X.
(31)

Notice that if the minimum in the left-hand side of (30) is achieved for Y = Y∗,

then Y∗ is an instrumental set for set X .

5.1 Uniform machines, equal release dates

In this subsection, we show that problem Q|p( j) = p( j)−x( j), C( j) ≤ d, pmtn|W

can be solved in O(n log n) time by the decomposition algorithm. To achieve this, we

consider Problem LP(H, F, K , l, u) that arises at some level of recursion of Proce-

dure Decomp and present a procedure for computing the function ϕ̃H
K : 2H → R

given by (22). We show that for an arbitrary set X ⊆ H the value ϕ̃H
K (X) can be

computed in O(h) time. For a heavy-element set Ĥ ⊆ H\F , finding a set Y∗ that is

instrumental for set Ĥ also requires O(h) time.

Recall that for problem Q|p( j) = p( j) − x( j), C( j) ≤ d, pmtn|W the rank

function ϕ : 2N → R is defined by (11), i.e.,

ϕ(X) = d Smin{m,|X |}, X ∈ 2N .

This, together with (30), implies

ϕ̃H
K (X) = u(X) − d Smin{m,k} + min

Y∈2H

{
d Smin{m,|Y |+k} − λ(Y )

}
. (32)

The computation of the minimum in the last term in (32) is done differently for the

sets Y ⊆ H with |Y | ≤ ĥ and with |Y | > ĥ, where ĥ is defined by (29), provided that

the corresponding sets exist. With Hv, 0 ≤ v ≤ h, defined by (28), introduce
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Φ ′ =

{
min

0≤v≤ĥ

{
d Sv+k − max

Y∈Hv

λ(Y )
}
, if m > k,

+∞, if m ≤ k,
(33)

and

Φ ′′ =

{
d Sm − max{λ(Y ) | Y ∈ 2H , |Y | > ĥ}, if h > m − k − 1,

+∞, if h ≤ m − k − 1.
(34)

Then, we can rewrite the last term in (32) as

min
Y∈2H

{d Smin{m,|Y |+k} − λ(Y )} = min
{
Φ ′, Φ ′′

}
.

Notice that Φ ′ = +∞ corresponds to the case that the set Y ∈ Hv does not exist for

0 ≤ v ≤ ĥ (this happens if m ≤ k or equivalently ĥ < 0); Φ ′′ = +∞ corresponds to

the case that the set Y ∈ Hv does not exist for v > ĥ (this happens if h ≤ m − k − 1

or equivalently ĥ = h).

Assume m > k, and let λv be the v-th largest value in the list (λ( j) | j ∈ H) for

v = 1, 2, . . . , ĥ. It follows that

Φ ′ = min
0≤v≤ĥ

{
d Sv+k −

v∑

i=1

λi

}
. (35)

We then assume h > m − k − 1. Since λ( j) ≥ 0 for j ∈ H , the maximum in the

right-hand side of the top line of (34) is achieved for Y = H , i.e.,

Φ ′′ = d Sm − λ(H). (36)

Below we describe the procedure that uses Eqs. (35) and (36) for computing the

values Φ ′ and Φ ′′. Since the procedure will be used as a subroutine within the recursive

Procedure Decomp, here we present it for computing ϕ̃H
K (X) with X being a heavy-

element set Ĥ . Besides, its output contains set Y∗, an instrumental set for set Ĥ .

Procedure CompQr0

Input: Problem LP(H, F, K , l, u), a heavy-element set Ĥ ⊆ H\F , the values of

h, k and ĥ defined by (29), and the list (λ( j) | j ∈ H) computed by (31) with respect

to X = Ĥ .

Output: the value of function ϕ̃H
K (X) and an instrumental set Y∗ for set X = Ĥ .

Step 1. If k ≥ m, then set Φ ′ := +∞ and go to Step 3.

Step 2. Do the following:

Step 2-1. For v = 1, 2, . . . , ĥ, compute the v-th largest value λv among the num-

bers λ( j), j ∈ H .

Step 2-2. Compute the value Φ ′ by using (35). If Φ ′ = d Sv+k −
∑v

i=1 λi for some

v, 0 ≤ v ≤ ĥ, then define Y ′ to be the set of jobs in H that correspond to the

values λ1, λ2, . . . , λv .
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Step 3. If h + k < m, then set Φ ′′ := +∞; otherwise, set Φ ′′ := d Sm − λ(H) and

Y ′′ = H .

Step 4. Compute the value ϕ̃H
K (X) = u(X) − d Smin{m,k} + min

{
Φ ′, Φ ′′

}
, applied to

X = Ĥ . If Φ ′ < Φ ′′, define Y∗ := Y ′; otherwise, define Y∗ := Y ′′.

Let us analyze the time complexity of Procedure CompQr0. In Step 2, the values

λ1, λ2, . . . , λĥ
can be found in O(h) time by using the list (λ( j) | j ∈ H), so that

the value Φ ′ and set Y ′ can be computed in O(h) time. It is easy to see that Φ ′′ and

Y ′′ can be obtained in O(h) time as well. Hence, the value ϕ̃H
K (X) and set Y∗ can be

found in O(h) time.

Theorem 5 Problem Q|p( j) = p( j) − x( j), C( j) ≤ d, pmtn|W can be solved

either in O(n log n) time or in O(n + m log m log n) time.

Proof Here, we only present the proof of the running time O(n log n), that is derived

if in each level of recursion of Procedure Decomp we use Procedure CompQr0; the

proof of the running time O(n + m log m log n) is given in “Appendix”.

As proved above, Procedure CompQr0 applied to Problem LP(H, F, K , l, u) takes

O(h) time. In terms of Theorem 4 on the running time of Procedure Decomp, this

implies that TY∗(h) = O(h).

In the analysis of the time complexity of Procedure CompQr0, we assume that

certain information is given as part of the input. This assumption can be satisfied by

an appropriate preprocessing. In particular, when we decompose a problem with a set

of job H at a certain level of recursion into two subproblems, we may create the sorted

lists (u( j) | j ∈ H) and (l( j) | j ∈ H). This can be done in O(h) time, since the

sorted lists (u( j) | j ∈ N ) and (l( j) | j ∈ N ) are available as a result of the initial

preprocessing. Thus, we have that TSplit(h) = O(h). Hence, the theorem follows from

Theorem 4. ⊓⊔

5.2 Identical machines, different release dates

In this subsection, we show that problem P|r( j), p( j) = p( j) − x( j), C( j) ≤

d, pmtn|W can be solved in O(n log m log n) time by the decomposition algorithm.

To achieve this, we consider Problem LP(H, F, K , l, u) that arises at some level of

recursion of Procedure Decomp and present a procedure for computing the function

ϕ̃H
K : 2H → R given by (22). We show that for an arbitrary set X ⊆ H the value

ϕ̃H
K (X) can be computed in O(h log m) time. For a heavy-element set Ĥ ⊆ H\F ,

finding a set Y∗ that is instrumental for set Ĥ also requires O(h log m) time.

Recall that for problem P|r( j), p( j) = p( j)− x( j), C( j) ≤ d, pmtn|W the rank

function ϕ : 2N → R is defined by (13), i.e.,

ϕ(X) = d · min{m, |X |} −

min{m,|X |}∑

i=1

ri (X), X ∈ 2N ,
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where ri (X) denotes the i-th smallest release dates among the jobs of set X.

This, together with (30), implies that

ϕ̃H
K (X) = u(X) −

⎛
⎝d · min{m, k} −

min{m,k}∑

i=1

ri (K )

⎞
⎠

+ min
Y∈2H

{
d · min{m, |Y | + k}

−

min{m,|Y |+k}∑

i=1

ri (Y ∪ K ) − λ(Y )

}
, (37)

where λ( j), j ∈ H, are given by (31).

Let ĥ be defined by (29). Computation of the minimum in the last term in (37) is

done differently for sets Y ⊆ H with |Y | ≤ ĥ and |Y | > ĥ. With Hv, 0 ≤ v ≤ h,

defined by (28), introduce

Φ ′ =

⎧
⎪⎪⎨
⎪⎪⎩

min
0≤v≤ĥ

{
d · (v + k) − max

Y∈Hv

{
v+k∑

i=1

ri (Y ∪ K ) + λ(Y )

}}
, if m > k,

+∞, if m ≤ k,

(38)

and

Φ ′′ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dm − max

{
m∑

i=1

ri (Y ∪ K ) + λ(Y )

∣∣∣ Y ∈ 2H , |Y | > ĥ

}
,

if h > m − k − 1,

+∞, if h ≤ m − k − 1.

(39)

Similarly to Sect. 5.1, the values Φ ′ and Φ ′′ are responsible for computing the

minimum in the last term in (37) over the sets Y ⊆ H with |Y | ≤ ĥ and with |Y | > ĥ,

respectively, provided that the corresponding sets exist. Thus, (37) can be rewritten as

ϕ̃H
K (X) = u(X) −

⎛
⎝d · min{m, k} −

min{m,k}∑

i=1

ri (K )

⎞
⎠+ min

{
Φ ′, Φ ′′

}
. (40)

We now explain how to compute the values Φ ′ and Φ ′′. From the list (̃λ( j) |

j ∈ H), where

λ̃( j) = r( j) + λ( j), j ∈ H. (41)
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Suppose that m > k. Computing of Φ ′ can be done in a similar manner as in

Sect. 5.1. The top line of the formula (38) can be rewritten as

Φ ′ = min
0≤v≤ĥ

{
d · (v + k) − max

Y∈Hv

{
r(Y ) + r(K ) + λ(Y )

}}

= −r(K ) + min
0≤v≤ĥ

{
d · (v + k) − max

Y∈Hv

λ̃(Y )

}
.

For v, 1 ≤ v ≤ ĥ, let λ̃v be the v-th largest value among the numbers λ̃( j), j ∈ H .

Then, we have

Φ ′ = −r(K ) + min
0≤v≤ĥ

{
d · (v + k) −

v∑

i=1

λ̃i

}
. (42)

We now turn to computing the value Φ ′′. We may assume ĥ < h, i.e., h > m−k−1,

since otherwise Φ ′′ = +∞. For simplicity of the description, we assume, without loss

of generality, that the jobs of set H ∪ K are renumbered in such a way that

H ∪ K = {1, 2, . . . , h + k} , r(1) ≤ r(2) ≤ · · · ≤ r(h + k). (43)

For t = m, m + 1, . . . , h + k, introduce

K [t] = { j ∈ K | j ≤ t},

H
z[t] =

{
Y ∈ 2H | Y ⊆ {1, 2, . . . , t}, |Y | + |K [t]| = z

}
, |K [t]| ≤ z ≤ m. (44)

We define t̄ to be the minimum t with |K [t]| = m if k ≥ m; otherwise, let t̄ = h + k.

Note that t̄ ≥ m, and Hm[t] �= ∅ if m ≤ t ≤ t̄ .

The following lemma is useful for computing the value Φ ′′ efficiently.

Lemma 4 Let Y ′′ ∈ 2H be a set satisfying |Y ′′| > ĥ and

m∑

i=1

ri (Y
′′ ∪ K ) + λ(Y ′′) = max

{
m∑

i=1

ri (Y ∪ K ) + λ(Y )

∣∣∣∣ Y ∈ 2H , |Y | > ĥ

}
.

(45)

Let t∗ ∈ H ∪ K be a job such that m ≤ t∗ ≤ t̄ and the set { j ∈ Y ′′ ∪ K | j ≤ t∗}

contains exactly m elements. Define the sets Y ′′
1 = { j ∈ Y ′′ | j ≤ t∗} and Y ′′

2 = { j ∈

Y ′′ | j > t∗}. Then the following properties hold:

(i)

m∑

i=1

ri (Y
′′ ∪ K ) + λ(Y ′′) = λ̃(Y ′′

1 ) + r(K [t∗]) + λ(Y ′′
2 ),

(ii) Y ′′
1 ∈ H

m[t∗] and λ̃(Y ′′
1 ) = max{̃λ(Y ) | Y ∈ H

m[t∗]},

(iii) Y ′′
2 = { j ∈ H | j > t∗} .
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Proof First, notice that set Y ′′ ∪ K contains at least ĥ + 1 + k ≥ m jobs, so that

job t∗ exists and m ≤ t∗ ≤ h + k. Notice that job t∗ might belong to set H\Y ′′,

and that job t∗ is not necessarily unique. Indeed, if, e.g., job t∗ + 1 ∈ H\Y ′′, then

{ j ∈ Y ′′ ∪ K | j ≤ t∗} = { j ∈ Y ′′ ∪ K | j ≤ t∗ + 1}.

We need to show that there exists a t∗ that satisfies t∗ ≤ t̄ . To prove this, we only need

to consider the case that k ≥ m, since otherwise by definition t̄ = h + k. For k ≥ m,

let t∗ be the smallest value of t such that the equality |{ j ∈ Y ′′ ∪ K | j ≤ t}| = m

holds. Since |{ j ∈ K | j ≤ t∗}| ≤ m, we have t∗ ≤ t̄ by the definition of t̄ .

Take a t∗ that satisfies the lemma conditions. For an arbitrarily chosen set Z1 ∈

Hm[t∗], define set Z ∈ 2H as Z = Z1 ∪ Y ′′
2 . Notice that { j ∈ Z ∪ K | j ≤ t∗} =

Z1 ∪ K [t∗]. This implies

m∑

i=1

ri (Z ∪ K ) + λ(Z) = r(Z1) + r(K [t∗]) + λ(Z1) + λ(Y ′′
2 )

= λ̃(Z1) + r(K [t∗]) + λ(Y ′′
2 ). (46)

Since { j ∈ Y ′′ ∪ K | j ≤ t∗} = Y ′′
1 ∪ K [t∗] and |{ j ∈ Y ′′ ∪ K | j ≤ t∗}| = m, we

have Y ′′
1 ∈ Hm[t∗]. Applying (46) with Z1 = Y ′′

1 , we obtain

m∑

i=1

ri (Y
′′ ∪ K ) + λ(Y ′′) = λ̃(Y ′′

1 ) + r(K [t∗]) + λ(Y ′′
2 ),

i.e., property (i) holds.

Since the maximum in (45) is achieved for Y = Y ′′, the inequality

m∑

i=1

ri (Y
′′ ∪ K ) + λ(Y ′′) ≥

m∑

i=1

ri (Z ∪ K ) + λ(Z)

holds for any set Z = Z1 ∪ Y ′′
2 with Z1 ∈ Hm[t∗]. Then (46) and property (i) imply

that λ̃(Y ′′
1 ) ≥ λ̃(Z1). Hence, property (ii) holds.

Since λ( j) ≥ 0 for j ∈ H , we should include all jobs j ∈ H with j > t∗ into set

Y ′′
2 to achieve the maximum in (45), i.e., property (iii) holds. ⊓⊔

For each t, m ≤ t ≤ t̄ , define

η1[t] = max
Y∈Hm [t]

λ̃(Y ), ρ[t] = r(K [t]), η2[t] =
∑

j∈H, j>t

λ( j).

We see from Lemma 4 that

Φ ′′ = dm − max
m≤t≤t̄

{η1[t] + ρ[t] + η2[t]} (47)

holds. We now show how to compute the values η1[t], ρ[t], and η2[t] efficiently.
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For t = m, define

Qm = { j ∈ H | j ≤ m} . (48)

Notice that

max{̃λ(Y ) | Y ∈ H
m[m]} = max

{̃
λ(Y ) | Y ⊆ Qm, |Y | + |K [m]| = m

}
= λ̃(Qm).

Thus, we have

η1[m] = λ̃(Qm), ρ[m] = r(K [m]), η2[m] =
∑

j∈H, j>m

λ( j). (49)

Lemma 5 Let t be an integer with m < t ≤ t̄ .

(i) Given the values ρ[t − 1] and η2[t − 1], ρ[t] and η2[t] can be obtained as

ρ[t] =

{
ρ[t − 1], if t ∈ H,

ρ[t − 1] + r(t), if t ∈ K ,
η2[t] =

{
η2[t − 1] − λ(t), if t ∈ H,

η2[t − 1], if t ∈ K .

(50)

(ii) Given a set Q ∈ Hm[t − 1] with η1[t − 1] = λ̃(Q), the value η1[t − 1] and job

z ∈ Q such that λ̃(z) = min j∈Q λ̃( j), the value η1[t] can be obtained as

η1[t] =

⎧
⎪⎨
⎪⎩

η1[t − 1], if t ∈ H, λ̃(z) ≥ λ̃(t),

η1[t − 1] − λ̃(z) + λ̃(t), if t ∈ H, λ̃(z) < λ̃(t),

η1[t − 1] − λ̃(z), if t ∈ K .

(51)

Proof We have K [t] = K [t −1] if t ∈ H and K [t] = K [t −1]∪ {t} if t ∈ K . Hence,

the first equation in (50) follows. The second equation in (50) is immediate from the

definition of η2. The Eq. (51) follows from the observation that η1[t] is equal to the

sum of m − |K [t]| largest numbers in the list
(̃
λ( j) | j ∈ H, j ≤ t

)
. ⊓⊔

Below we describe the procedure that uses Eqs. (42) and (47) for computing the

values Φ ′ and Φ ′′. As in Sect. 5.1, the procedure outputs ϕ̃H
K (X) for X = Ĥ and an

instrumental set Y∗ for set Ĥ .

Procedure CompPrj

Input: Problem LP(H, F, K , l, u), a heavy-element set Ĥ ⊆ H\F , the values of

h, k and ĥ defined by (29), the lists (λ( j) | j ∈ H) and
(̃
λ( j) | j ∈ H

)
computed by

(31) with respect to X = Ĥ and by ( 41), and the non-decreasing lists (r( j) | j ∈ H)

and (r( j) | j ∈ K ).

Output: the value of function ϕ̃H
K (X) and an instrumental set Y∗ for set X = Ĥ .

Step 1. If k ≥ m, then set Φ ′ := +∞ and go to Step 3.
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Step 2. Do the following:

Step 2-1. For v = 1, 2, . . . , ĥ, find the v-th largest value λ̃v in the list(̃
λ( j) | j ∈ H

)
.

Step 2-2. Compute the value Φ ′ by using (42). If Φ ′ = −r(K ) + d · (v + k) −∑v
i=1 λ̃i for some v, 0 ≤ v ≤ ĥ, then define Y ′ to be the set of jobs in H that

correspond to the values λ̃1, λ̃2, . . . , λ̃v .

Step 3. If h + k < m then set Φ ′′ := +∞ and go to Step 5.

Step 4. Do the following:

Step 4-1. Find a non-decreasing list (r( j) | j ∈ H ∪ K ) and renumber the jobs

in H ∪ K so that they satisfy (43). Compute t̄ .

Step 4-2. Define ρ[m] and η2[m] in accordance with (49). For t = m + 1, m +

2, . . . , t̄ , compute ρ[t] and η2[t] by (50).

Step 4-3. Set Q := Qm , where Qm is given by (48) and define η1[m] by (49).

For t = m + 1, m + 2, . . . , t̄ do:

Find z ∈ Q such that λ̃(z) = min{̃λ( j) | j ∈ Q}.

Case 1: t ∈ H and λ̃(z) < λ̃(t) .

Set Q := (Q\{z}) ∪ {t} and η1[t] := η1[t − 1] − λ̃(z) + λ̃(t).

Case 2: t ∈ H and λ̃(z) ≥ λ̃(t).

Set η1[t] := η1[t − 1].

Case 3: t ∈ K .

Set Q := Q\{z} and η1[t] := η1[t − 1] − λ̃(z).

Step 4-4. Find the integer t∗ such that

η1[t∗] + ρ[t∗] + η2[t∗] = max
m≤t≤t̄

{η1[t] + ρ[t] + η2[t]}.

Compute the value Φ ′′ by using (47).

Step 4-5. Perform Step 4-3 again, breaking the loop after t exceeds t∗, i.e., after

the value η1[t∗] is computed. With the found set Q, define the sets Y ′′
1 :=

Q, Y ′′
2 := { j ∈ H | j > t∗} and Y ′′ := Y ′′

1 ∪ Y ′′
2 .

Step 5. Compute the value ϕ̃H
K (X) by (40) applied to X = Ĥ . If Φ ′ < Φ ′′, define

Y∗ := Y ′; otherwise, define Y∗ := Y ′′.

Now we analyze the running time of this procedure. In Steps 1 and 2 we compute

the value Φ ′ and find set Y ′. Step 1 can be done in constant time. Step 2-1 can be

done by selecting ĥ largest numbers in the list (̃λ( j) | j ∈ H) in O(h) time and then

sorting them in O(ĥ log ĥ) time. Since Step 2-2 can be done in O(k + ĥ) time, Step

2 requires O(k + h + ĥ log ĥ) = O(k + h log ĥ) = O(k + h log m) time in total.

In Steps 3 and 4 we compute the value Φ ′′ and find set Y ′′. Step 3 can be also

done in constant time. We assume that both (r( j) | j ∈ H) and (r( j) | j ∈ K ) are

given as sorted lists; this can be easily satisfied by appropriate preprocessing. Then,

Step 4-1 can be done in O(h + k) time by using merge sort. Step 4-2 can be done in

O(h + k) time. In Step 4-3, we implement Q as a heap for computational efficiency.

Initially Q = Qm consists of at most m elements, and to initialize the heap Q takes

O(h + m log m) time. The number of elements in the heap does not increase, so that

each iteration in Step 4-3 can be done in O(log m) time, which implies that Step 4-3

123



Decomposition algorithms for submodular optimization and scheduling 525

requires O((h + k) log m) time. Step 4-4 can be done in O(h + k) time. Step 4-5

is needed for finding the set Y ′′ and is implemented as a partial rerun of Step 4-3 in

O((h + k) log m) time.

Finally, we compute the value ϕ̃H
K (X) in Step 5. We may assume that the value

u(X) in Step 5 is given in advance. The value
∑min{m,k}

i=1 ri (K ) can be computed in

O(k) time, since a sorted list (r( j) | j ∈ K ) is available. Hence, Step 5 can be done in

O(k) time. In total, Procedure CompPrj requires O((h + k) log m) time. In particular,

the procedure runs in O(h log m) time if h ≥ k.

In the rest of this subsection, we show that a slightly modified version of Proce-

dure CompPrj can also be run in O(h log m) time for h < k.

First, consider the case that h ≥ m. Then, we have k > h ≥ m. Let Km be a set of

m jobs in K with m smallest release dates. It is easy to see that the jobs in K\Km do

not affect the values ri (K ) and ri (Y ∪ K ), i.e., it holds that

ri (K ) = ri (Km), ri (Y ∪ K ) = ri (Y ∪ Km), i = 1, 2, . . . , m, Y ∈ 2H .

It follows that in the formula (37) for ϕ̃H
K (X), the value in the right-hand side remains

the same even if we replace K and k with Km and m, respectively. Making the same

replacement in Procedure CompPrj, we deduce that it will run in O((h + m) log m) =

O(h log m) time, provided that set Km is given in advance.

We finally consider the case that h < m. From the discussion above, we may

assume that k ≤ m. For any Y ∈ 2H , the contribution of the release dates into

the right-hand side of (37) is equal to
∑k

i=1 ri (K ) −
∑min{m,|Y |+k}

i=1 ri (Y ∪ K ). Let

k′ = m − h and K ′ be the set of jobs in K with k′ smallest release dates among

r( j), j ∈ K . Since |Y | ≤ h < m, each of the values r( j), j ∈ K ′, contributes to the

sum
∑min{m,|Y |+k}

i=1 ri (Y ∪ K ). Hence, it follows that

k∑

i=1

ri (K ) −

min{m,|Y |+k}∑

i=1

ri (Y ∪ K ) =

k−k′∑

i=1

ri

(
K\K ′

)

−

min{m,|Y |+(k−k′)}∑

i=1

ri

(
Y ∪ (K\K ′)

)
.

Thus, in formula (37), the value in the right-hand side remains the same if we replace

K and k with K\K ′ and k − k′, respectively. Making the same replacement in Proce-

dure CompPrj, we deduce that it will run in O((h + k − k′) log m) time, provided that

the set K\K ′ is given in advance. Since k − k′ = k − (m − h) ≤ h holds for k ≤ m,

the running time of Procedure CompPrj is O(h log m).

We are now ready to prove the main statement regarding problem P|r( j), p( j) =

p( j) − x( j), C( j) ≤ d, pmtn|W .

Theorem 6 Problem P|r( j), p( j) = p( j)−x( j), C( j) ≤ d, pmtn|W can be solved

in O(n log m log n) time.
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Proof As proved above, Procedure CompPrj applied to Problem LP(H, F, K , l, u)

takes O(h log m) time. In terms of Theorem 4 on the running time of Proce-

dure Decomp, we have proved that TY∗(h) = O(h log m).

In the analysis of the time complexity of Procedure CompPrj, we assume that

certain information is given as part of the input. This assumption can be satisfied by

an appropriate preprocessing, when we decompose a problem at a certain level of

recursion into two subproblems, based on the found set Y∗. It is not hard to see that

this can be done in O(h log m) time, i.e., we have TSplit(h) = O(h log m). Hence, the

theorem follows from Theorem 4. ⊓⊔

5.3 Uniform machines, different release dates

In this subsection, we show that problem Q|r( j), p( j) = p( j) − x( j), C( j) ≤

d, pmtn|W can be solved in O(nm log n) time by the decomposition algorithm.

To achieve this, we consider Problem LP(H, F, K , l, u) that arises at some level of

recursion of Procedure Decomp and present a procedure for computing the function

ϕ̃H
K : 2H → R given by (22). We show that for an arbitrary set X ⊆ H the value

ϕ̃H
K (X) can be computed in O(hm) time. For a heavy-element set Ĥ ⊆ H\F , finding

a set Y∗ that is instrumental for set Ĥ also requires O(hm) time.

Recall that for problem Q|r( j), p( j) = p( j)− x( j), C( j) ≤ d, pmtn|W the rank

function ϕ : 2N → R is defined by (12), i.e.,

ϕ(X) = d Smin{m,|X |} −

min{m,|X |}∑

i=1

siri (X),

where ri (X) denotes the i-th smallest release dates among the jobs of set X . This,

together with (30), implies that

ϕ̃H
K (X) = u(X) −

(
d Smin{m,k} −

min{m,k}∑

i=1

siri (K )

)

+ min
Y∈2H

{(
d Smin{m,|Y |+k} −

min{m,|Y |+k}∑

i=1

siri (Y ∪ K )

)
− λ(Y )

}
, (52)

where λ( j), j ∈ H, are given by (31).

Let ĥ be defined by (29). Computation of the minimum in the last term in (52) is

done differently for sets Y ⊆ H with |Y | ≤ ĥ and |Y | > ĥ. With Hv, 0 ≤ v ≤ h,

defined by (28), introduce
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Φ ′ =

⎧
⎪⎨
⎪⎩

min
0≤v≤ĥ

{
d Sv+k − max

Y∈Hv

{
v+k∑

i=1

siri (Y ∪ K ) + λ(Y )

}}
, if m > k,

+∞, if m ≤ k,

(53)

and

Φ ′′ =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d Sm − max

{ m∑

i=1

siri (Y ∪ K ) + λ(Y )

∣∣∣∣ Y ∈ 2H , |Y | > ĥ

}
,

if h > m − k − 1,

+∞, if h ≤ m − k − 1.

(54)

Thus, (52) can be rewritten as

ϕ̃H
K (X) = u(X) −

⎛
⎝d Smin{m,k} −

min{m,k}∑

i=1

siri (K )

⎞
⎠+ min

{
Φ ′, Φ ′′

}
. (55)

We explain how to compute the values Φ ′ and Φ ′′. As in Sect. 5.2, for simplicity

of the description, we assume, without loss of generality, that the jobs are renumbered

so that (43) holds.

In order to compute Φ ′, for v and t such that 0 ≤ v ≤ ĥ and 1 ≤ t ≤ h + k, define

Hv[t] = {Y ∈ Hv | Y ⊆ {1, 2, . . . , t}} ,

ξv[t] = max
Y∈Hv[t]

{
v+k∑

i=1

siri (Y ∪ K ) + λ(Y )

}
,

(56)

where ξv[t] is set to −∞ if Hv[t] = ∅. Then, we have

Φ ′ = max
0≤v≤ĥ

{d Sv+k − ξv[h + k]} . (57)

Notice that all k jobs of set K and v jobs of set Y ∈ Hv[t] contribute into∑v+k
i=1 siri (Y ∪ K ). The required values ξv[t] can be computed by a dynamic pro-

gramming algorithm. Assume that for the current numbering of the jobs in H ∪ K ,

the jobs in set K get the numbers j1, j2, . . . , jk , so that r ( j1) ≤ · · · ≤ r ( jk).

For v = 0, notice that H0[t] = {∅}, so that in accordance with (56) we compute

ξ0 [t] =

k∑

i=1

sir( ji ), t = 1, . . . , h + k. (58)

If job 1 belongs to set H , then H1[1] = {{1}} ; otherwise H1[1] = ∅. Besides,

Hv[1] = ∅ for each v ≥ 2. Suppose that for some value of t, 1 ≤ t ≤ h + k, the sets

Hv[τ ] have been identified for all v and τ, 0 ≤ v ≤ ĥ, 1 ≤ τ ≤ t − 1. Then
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Hv[t] =

{
Hv[t − 1] ∪ {Y ∪ {t} | Y ∈ Hv−1[t − 1]} , if t ∈ H,

Hv[t − 1] if t ∈ K .
(59)

Given a job t ∈ H , let us determine the position of job t relative to the jobs of set

K . If r(t) > r ( jk), then define ℓt = k + 1; otherwise, set ℓt to be equal to ℓ such

that for job jℓ ∈ K we have that jℓ−1 < t < jℓ. The values of ℓt can be found for all

t ∈ H in O(h + k) time by scanning the sorted sequence of jobs of set H ∪ K .

For some t ∈ H and v, 1 ≤ v ≤ ĥ, assume that we have found the value

ξv−1[t − 1] =

v+k−1∑

i=1

siri

(
Ȳ ∪ K

)
+ λ(Ȳ ),

where Ȳ ∈ Hv−1[t − 1]. Take ℓ = ℓt .

If ℓ = k +1, then job t has the largest release date among the jobs of set Ȳ ∪ K ∪{t},

so that

ξv[t] = max {ξv[t − 1], ξv−1[t − 1] + sk+vr(t) + λ(t)}

= max {ξv[t − 1], ξv−1[t − 1] + sℓ+v−1r(t) + λ(t)} .

If ℓ ≤ k, then among jobs j ∈ Ȳ ∪ K such that j ≤ jℓ, there are v − 1 jobs

of set H and ℓ jobs of set K , i.e., job jℓ has the (ℓ + v − 1) −th smallest release

date in Ȳ ∪ K . We deduce that the total contribution of the jobs jℓ, jℓ+1, . . . , jk into∑v+k−1
i=1 siri

(
Ȳ ∪ K

)
is equal to

β (ℓ, v − 1) =

k∑

i=ℓ

sv+i−1r( ji ).

For computing ξv[t], we need to find a set Ȳ+ ∈ Hv[t] such that

ξv[t] =

v+k∑

i=1

siri

(
Ȳ+ ∪ K

)
+ λ(Ȳ+).

According to (59), if Ȳ+ is sought in set Hv[t−1], then ξv[t] = ξv[t−1]. Otherwise,

it is sought in the sets obtained from sets of Hv−1[t − 1] by including job t . In the

latter case, set Ȳ+ can be found based on set Ȳ and on those changes that are caused

by the insertion of job t . As a result of this insertion, job t has the (ℓ + v − 1)−th

smallest release date in Ȳ ∪ K ∪ {t}, so that it will contribute sℓ+v−1r(t) + λ(t) into

ξv[t]. Notice that all jobs of set K continue making contributions, since v < m − k.

The new joint contribution of jobs jℓ, jℓ+1, . . . , jk becomes

β (ℓ, v) =

k∑

i=ℓ

sv+ir( ji ).
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Therefore, we deduce:

ξv[t] = max {ξv[t−1], ξv−1[t−1] + β (ℓ, v) − β (ℓ, v−1) + sℓ+v−1r(t) + λ(t)} .

(60)

All required partial sums β (ℓ, v) can be found at the preprocessing stage by com-

puting

β (k + 1, v) = 0, v = 0, . . . , ĥ, (61)

followed by computing all β (ℓ, v) for v, 0 ≤ v ≤ ĥ and ℓ, ℓ = k − 1, k − 2, . . . , 1

by

β (ℓ, v) = β (ℓ + 1, v) + sv+ℓr( jℓ). (62)

Notice that for ℓ = k + 1 both β (ℓ, v) = β (ℓ, v − 1) = 0, so that the recursive

formula (60) is valid for ℓ = k + 1 as well.

Applying (60) for t, 1 ≤ t ≤ h +k, and v, 1 ≤ v ≤ m −k with the initial condition

(58), we may find all values ξv[t] needed for computing Φ ′ by (57).

We now consider the value Φ ′′. It is assumed that ĥ < h, i.e., h + k ≥ m. Suppose

that we know the set Y ′′ ∈ 2H such that |Y ′′| > ĥ and

m∑

i=1

siri (Y
′′ ∪ K ) + λ(Y ′′) = max

{
m∑

i=1

siri (Y ∪ K ) + λ(Y )

∣∣∣∣ Y ∈ 2H , |Y | > ĥ

}
.

(63)

Similarly to Sect. 5.2, for t, 1 ≤ t ≤ h + k, introduce sets K [t] and Hz[t] of

the form (44). Let t∗ ∈ H ∪ K be the job such that the set { j ∈ Y ′′ ∪ K | j ≤ t∗}

contains exactly m elements. Since the jobs are numbered in non-decreasing order of

the release dates, the set { j ∈ Y ′′ ∪ K | j ≤ t∗} contains the jobs in Y ′′ ∪ K with m

smallest release dates.

Putting Y ′′
1 = { j ∈ Y ′′ | j ≤ t∗} ∈ Hm[t∗], we have

m∑

i=1

siri

(
Y ′′ ∪ K

)
=

m∑

i=1

siri

(
Y ′′

1 ∪ K [t∗]
)
.

Putting Y ′′
2 = Y ′′\Y ′′

1 = { j ∈ Y ′′ | j > t∗}, we have

m∑

i=1

siri (Y
′′ ∪ K ) + λ(Y ′′) =

m∑

i=1

siri (Y
′′
1 ∪ K [t∗]) + λ(Y ′′

1 ) + λ
(
Y ′′

2

)
.

Thus, we should include all jobs j ∈ H with j > t∗ into set Y ′′
2 to achieve the

maximum in (63), i.e., we may assume Y ′′
2 = { j ∈ H | j > t∗}. We also have
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m∑

i=1

siri (Y
′′
1 ∪ K ) + λ(Y ′′

1 ) = max
Y∈Hm [t∗]

{
m∑

i=1

siri (Y ∪ K [t∗]) + λ(Y )

}
.

For z and t, 1 ≤ z ≤ m, 1 ≤ t ≤ h + k, define

ζz[t] =

⎧
⎪⎨
⎪⎩

max
Y∈Hz [t]

{
z∑

i=1

siri (Y ∪ K [t]) + λ(Y )

}
, if z ≥ |K [t]| ,

−∞, otherwise.

(64)

Provided that these values are known, we can compute Φ ′′ by

Φ ′′ = d Sm − max
m≤t≤h+k

⎧
⎨
⎩ζm[t] +

∑

j∈H, j>t

λ( j)

⎫
⎬
⎭ . (65)

Notice that for a given t, t ≥ m, the term
∑

j∈H, j>t λ( j) is identical to η2[t]

used in Sect. 5.2 and for its computation we can use the formulae (50) with the initial

condition (49).

For convenience, define λ( j) = 0 for j ∈ K . The required values of ζz[t] can be

found recursively by

ζz[t] = max {ζz[t − 1], ζz−1[t − 1] + szr(t) + λ(t)} , 1 ≤ z ≤ m, 1 ≤ t ≤ h + k

(66)

with the initial conditions

ζ0[t] = 0, 0 ≤ t ≤ h + k; ζz[0] = −∞, 1 ≤ z ≤ m. (67)

To see why the recursion (66) works, notice that if in the expression for ζz[t] job

t ∈ H does not belong to set Y that delivers the maximum in (64), then ζz[t] = ζz[t−1].

Otherwise, job t ∈ H , as the job with the largest release date, will be matched with

the smallest multiplier sz and will make an additional contribution of λ(t), so that

ζz[t] = ζz−1[t − 1] + szr(t) + λ(t). The latter situation also occurs if t ∈ K , since in

this case t ∈ K [t].

Now we are ready to present the procedure that outputs ϕ̃H
K (X) for X = Ĥ and an

instrumental set Y∗ for set Ĥ .

Procedure CompQrj

Input: Problem LP(H, F, K , l, u), a heavy-element set Ĥ ⊆ H\F , the values

of h, k and ĥ defined by (29), the values λ( j), j ∈ H, computed by (31) with

respect to X = Ĥ , and the non-decreasing lists (r( j) | j ∈ H) and (r( j) | j ∈ K ) =

(r ( j1) , . . . , r ( jk)).

Output: the value of function ϕ̃H
K (X) and an instrumental set Y∗ for set X = Ĥ .

Step 1. If k ≥ m, then set Φ ′ := +∞ and go to Step 8.
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Step 2. Compute the values β (ℓ, v) by (61) and (62).

Step 3. For v = 0 compute the values of ξ0 [t] , t = 1, . . . , h + k, by (58).

Step 4. Take t = 1 and define ξv [1] = −∞, v = 2, . . . , ĥ. For v = 1, if job 1

belongs to set H , compute

ξ1 [1] = ξ0 [0] + β (1, 1) − β (1, 0) + s1r(1) + λ (1) ;

otherwise, i.e., if job 1 belongs to set K , define ξ1 [1] = −∞.

Step 5. For each t ∈ H find the value of ℓt .

Step 6. For v = 0, . . . , ĥ do

For t = 2, . . . , h + k do

If t ∈ H , then with ℓ = ℓt compute ξv[t] by (60);

otherwise, define ξv[t] := ξv[t − 1].

Step 7. Compute Φ ′ by (57). If Φ ′ = d Sv∗+k − ξv∗[t∗] for some v∗ and t∗, 0 ≤ v∗ ≤

ĥ, 1 ≤ t∗ ≤ h + k, then perform backtracking to determine the set Y ′ ∈ Hv∗[t∗]

such that ξv∗[t∗] =
∑v∗+k

i=1 siri (Y
′ ∪ K ) + λ(Y ′).

Step 8. If h + k < m, define Φ ′′ := +∞ and go to Step 12.

Step 9. Compute η2[m] by (49). For t ∈ H, t ≥ m, compute η2[t] by (50).

Step 10. For v = 1, . . . , m

For t = 1, . . . , h + k do

Compute all values ζv[t] by (66) with the initial conditions (67).

Step 11. Compute Φ ′′ by (65). If Φ ′′ = d Sm − ζm[t∗]−η2[t∗] for some t∗ ∈ H, m ≤

t∗, then perform backtracking to determine the set Y ′′
1 ∈ H[t∗] such that ζm[t∗] =∑m

i=1 siri (Y
′′
1 ∪ K [t∗]) + η2[t∗]. Define the sets Y ′′

2 := { j ∈ H | j > t∗} and

Y ′′ := Y ′′
1 ∪ Y ′′

2 .

Step 12. Compute the value ϕ̃H
K (X) by (55) applied to X = Ĥ . If Φ ′ < Φ ′′, define

Y∗ := Y ′; otherwise, define Y∗ := Y ′′.

The most time consuming parts of the procedure are the double loops is Steps 6

and 10, which require O
(

ĥ (h + k)

)
time and O(m(h + k)) time, respectively. Thus,

the overall time complexity of Procedure CompQrj is O(m(h + k)).

For h ≥ k, the time complexity becomes O(mh). We can show that the bound

O(mh) also applies to the case that h < k; this can be done by an approach similar to

that used in Sect. 5.2. Hence, the next theorem follows from Theorem 4.

Theorem 7 Problem Q|r( j), p( j) = p( j)−x( j), C( j) ≤ d, pmtn|W can be solved

in O(nm log n) time.

6 Conclusions

In this paper, we develop a decomposition recursive algorithm for maximizing a lin-

ear function over a submodular polyhedron intersected with a box. We illustrate the

power of our approach by adapting the algorithm to solving three scheduling prob-

lems with controllable processing times. In these problems, it is required to find
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a preemptive schedule that is feasible with respect to a given deadline and mini-

mizes total compression cost. The resulting algorithms run faster than previously

known.

We intend to extend this approach to other scheduling models with controllable

processing times, e.g., to a single machine with distinct release dates and deadlines. It

will be interesting to identify problems, including those outside the area of scheduling,

for which an adaptation of our approach is beneficial.

Although throughout the paper we assume that the processing times are real num-

bers from intervals
[

p( j), p( j)
]
, the formulated approach is applicable to the case

where the processing times may only take integer values in the interval. Indeed, if all

the input numbers, except for costs w( j), are given by integers, then the submodular

rank function takes integer values, and the optimal solution p( j), j ∈ N , found by

Procedure Decomp is integral.

Acknowledgments This research was supported by the EPSRC funded project EP/J019755/1 “Submod-

ular Optimisation Techniques for Scheduling with Controllable Parameters”. The first author was partially

supported by the Humboldt Research Fellowship of the Alexander von Humboldt Foundation and by Grant-

in-Aid of the Ministry of Education, Culture, Sports, Science and Technology of Japan, grants 24500002

and 25106503.

Open Access This article is distributed under the terms of the Creative Commons Attribution License

which permits any use, distribution, and reproduction in any medium, provided the original author(s) and

the source are credited.

Appendix: Towards the Proof of Theorem 5

We show that a modified version of the solution procedure for problem Q|p( j) =

p( j) − x( j), C( j) ≤ d, pmtn|W can be made run in O (n + m log m log n) time,

which is better than the previously proved time O (n log n), provided that n > m log m.

One of the reasons for the running time O(n log n) is that Procedure CompQr0 uses

the sorted lists U and L of length n each, created at the preprocessing stage. Another

reason is that in the previous implementation, for Problem LP(H, F, K , l, u) at each

level of recursion we have that TY∗(h) = TSplit(h) = O(h). Thus, to achieve the

overall running time of O (n + m log m log n) we should not use the sorted lists of

more than m elements, and try to reduce TY∗(h) and TSplit(h).

First, we show that for Problem LP(H, F, K , l, u) Procedure CompQr0 can be made

run in O (g + m log m) time, where as in Sect. 4.3, integer g denotes the number of

non-fixed variables in set H , i.e., g = |H\F |.

Before calling Procedure Decomp(N ,∅,∅, p, p), there is no need in creating

the sorted lists U and L . As part of the input of the modified Procedure Com-

pQr0 we use an unsorted list � of the values λ( j), j ∈ H\F , computed for the

non-fixed variables with respect to a chosen heavy-element set Ĥ . Additionally, the

input includes an unsorted list Z that contains min {|F | , m − 1} largest elements

λ( j) = l( j) = u( j), j ∈ F ; besides, we also keep the value λ(F).

In Step 2, in order to compute Φ ′ and Y ′ we need to find the values λ1, λ2, . . . , λ
ĥ
,

and their partial sums that are used in (35). It follows that
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v∑

i=1

λv = max
Y∈Hv

{λ(Y\F) + λ (F ∩ Y )} , v = 1, . . . , ĥ,

which implies that the values λ1, λ2, . . . , λ
ĥ

are the largest values in the merger of

the lists � and Z . In order to merge these lists in O(g + ĥ log ĥ) time, we find the

ĥ−th largest element and find the sorted sequence of ĥ largest elements in these two

lists. After that we compute the partial sums
∑v

i=1 λv, 1 ≤ v ≤ ĥ, in O(ĥ) time.

To compute Φ ′ and determine set Y ′, we perform Step 2-2, which takes O(ĥ) time.

Since ĥ < m, we deduce that Step 2 of Procedure CompQr0 can be made to run in

O(g + m log m) time.

In Step 3, we need to compute λ (H) which contributes to Φ ′′. Notice that λ(H) =

λ(H\F) + λ (F), where λ (F) is known as part of the input. Thus, Step 3 requires

O (g) time. In Step 4, to compute the rank function ϕ̃H
K (X) for X = Ĥ , we need

the value u(Ĥ), which can be found in O(g) time, since the heavy-element set Ĥ is

chosen from the non-fixed variables only.

Thus, in terms of Theorem 4, the described modifications imply that TY∗(h) =

O(g + m log m).

In accordance with Procedure Decomp, Problem LP(H, F, K , l, u) has to be

decomposed into two subproblems with respect to a found set Y∗, which is either

|Y∗| ≤ m − 1 or Y∗ = H . However, if either Y∗ = ∅ or Y∗ = H , then for one

of the two emerging subproblems the set of variables will be empty. Besides, if

|Y∗| < m, one of the subproblems will have at most m variables and can be recur-

sively solved in O(m log m) time by a straightforward application of the method

described in Sect. 5.1. Thus, in any case we are left with exactly one non-trivial

subproblem to be solved at each level of recursion. Let us show that the instance

of that subproblem together with the accompanying information can be derived in

O(g + m) time; in other words, that TSplit(h) = O(g + m). Without loss of gener-

ality, we assume that the parameters of the generated problem are defined by (26),

i.e., we deal with Problem LP
(

H\Y∗,
(

Ĥ ∪ F
)

\Y∗, K ∪ Y∗, l2, u2

)
. Recall that the

variables of set Ĥ\Y∗ become fixed and can be excluded from the list � in O(g)

time. We will also need O(g) time to update the sum of the processing times of the

fixed variables. To obtain a new list Z we add the values u( j), j ∈ Ĥ\Y∗, to the

old list Z , find the (m − 1)-th largest element in the resulting list and keep the ele-

ments that do not exceed that element. The new list Z will be found in O(g + m)

time.

As implied by Lemma 3, the heavy-element Ĥ is selected in such a way that the

number of non-fixed variables is reduced by half in each new level of recursion,

i.e., it is n in the initial level 0, at most n/2 in the next level 1, at most n/4 in

level 2, etc. Thus, the running time of the modified algorithm for solving problem

Q|p( j) = p( j) − x( j), C( j) ≤ d, pmtn|W is at most

log n∑

u=0

(
O(n/2u) + O(m log m)

)
= O(n + m log m log n).
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