
DISEASES OF AQUATIC ORGANISMS

Dis Aquat Org

Vol. 109: 187–199, 2014

doi: 10.3354/dao02727
Published July 3

INTRODUCTION

Although viral pathogens and associated diseases

are less common in aquaculture than bacterial, para-

sitic and fungal diseases, some viruses cause major

economic losses resulting in high mortality and/or

morbidity rates in a very short period of time post-

infection (Crane & Hyatt 2011). In the late 1990s, a

highly contagious and virulent disease began to

cause significant mortality of common carp Cyprinus

carpio and its ornamental koi varieties C. carpio koi

worldwide (Bretzinger et al. 1999, Hedrick et al.

2000, Haenen et al. 2004, Pokorova et al. 2005). The

causative agent of the disease was cyprinid her-

pesvirus 3 (CyHV-3), also known as koi herpesvirus

(KHV) or carp interstitial nephritis and gill necrosis

virus (CNGV). CyHV-3, a member of the genus

 Cy pri  nivirus, family Alloherpesviridae, order Herpes -
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ABSTRACT: Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a highly virulent and

lethal disease of common carp Cyprinus carpio and its ornamental koi varieties. However, specific

knowledge about immune mechanisms behind the infection process is very limited. We aimed to

evaluate the effect of the CyHV-3 infection on the profile of 2 major components of the common

carp immune acute phase response: the C-reactive protein (CRP) and the complement system.

Common carp were infected with CyHV-3 by bath immersion. Fish were sampled before the

infection and at 6, 12, 24, 72, 120 and 336 h post-infection for serum and head kidney, liver, gill

and spleen tissues. CRP levels and complement activity were determined from the serum,

whereas CRP- and complement-related genes (crp1, crp2, c1rs, bf/c2, c3, masp2) expression pro-

files were analysed in the tissues by quantitative PCR. Both CRP levels and complement activity

increased significantly up to 10- and 3-fold, respectively, in the serum of infected fish during the

challenge. Analysis revealed distinct organ- and time-dependent expression profile patterns for

all selected genes. These results suggest that CRP and complement behave as acute phase reac-

tants to CyHV-3 infection in common carp with an organ- and time-dependent response.
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 virales (Davison et al. 2009), has a genome compris-

ing 295 kb, linear, double-stranded DNA predicted to

contain 155 potential protein-coding open reading

frames (ORFs) (Davison et al. 2013). The genome is

enclosed within an icosahedral capsid surrounded by

a tegument and a host-derived lipid envelope, which

contains virus glycoproteins (Michel et al. 2010). The

mode of entrance of the virion into a fish has been

demonstrated to occur primarily via the skin (Costes

et al. 2009, Raj et al. 2011) and the pharyngeal perio -

dontal mucosa (Fournier et al. 2012), although the

gills and the gut may also serve as other possible

infection routes (Dishon et al. 2005). The mortality

rate can be as high as 80 to 100% in susceptible pop-

ulations (Hedrick et al. 2000), with death occurring

6 to 7 d post exposure (Dixon et al. 2009, Rakus et al.

2009). External and internal disease symptoms have

been well characterised and include severe gill

lesions with the appearance of necrosis, bleeding

gills, sunken eyes, and pale skin patches (Pokorova

et al. 2005), as well as abnormal adhesions in the

body cavity and a mottled appearance of internal

organs (Hedrick et al. 2000, Goodwin 2003, Perel-

berg et al. 2003). Infection with CyHV-3 leads to

severe leucocytosis shortly after infection (Negen-

born 2009), and recent microarray and quantitative

(qPCR) analyses have shown up-regulation of several

immune-related genes indicating increased inflam-

mation, type I IFN and T cell responses (Rakus et al.

2012, Adamek et al. 2013). Furthermore, fish were

shown to develop protective antibodies to CyHV-3

after 40 d of exposure (Adkison et al. 2005). However,

some critical aspects of the carp innate immune

response against CyHV-3 such as the acute phase

proteins have not been extensively analysed and yet

may provide protection during the very first days

of infection when an adaptive immune response

against CyHV-3 may not be functional. For example,

Rakus et al. (2012) noted a potential role of classical

complement activation in the resistance of carp

against this virus.

The acute phase response (APR) is an important

constituent of the host’s innate immune defence in

response to injury, tissue trauma and pathogen inva-

sion. This systemic response consists of a series of

specific physiological reactions that involve meta-

bolic changes in the host (Bayne & Gerwick 2001).

Among the different plasma proteins mobilised dur-

ing an APR, the complement system and C-reactive

protein (CRP) play a significant role during bacterial

infections (MacCarthy et al. 2008, Dumrongphol et

al. 2009, Mohanty & Sahoo 2010, Pionnier et al.

2013). However, during viral infections, APRs are

usually lower (Gruys et al. 2005), and CRP serum lev-

els have often been exploited to discriminate be -

tween viral and bacterial infections (Costalonga et al.

2009). Nevertheless, when severe cellular destruc-

tion occurs as a result of virus spread through the

organism, a full APR can be observed (Gruys et al.

2005). CRP, an evolutionary conserved protein found

in the body fluids of both invertebrates and verte-

brates, is commonly associated with the APR (Pepys

et al. 1978) and has been proposed as a biomarker for

infection and/or health status in cultured carp (Ra -

mos & Smith 1978, MacCarthy et al. 2008). Interest-

ingly, recent studies performed in healthy carp or fish

infected with Aeromonas salmonicida also revealed a

widespread constitutive expression of CRP-related

genes with differential expression in the gut, liver

and head kidney, suggesting different biological

activities of the related isoforms (Falco et al. 2012,

Pionnier et al. 2013). Serum CRP levels increase by

up to 6-fold in common carp within 40 h of infection

with A. hydrophila (MacCarthy et al. 2008) and up to

18-fold within 2 to 4 d in channel catfish Ictalurus

punctatus exposed to turpentine (Szalai et al. 1994).

Complement, another essential component of the fish

APR, is a cascade comprised of numerous mem-

brane-bound and soluble proteins leading to the for-

mation of a membrane attack complex which des -

troys the pathogen (Nakao et al. 2011). Complement

activation through the classical and/or alternative

pathways is commonly evaluated in the serum of

infected fish. Recent studies have concentrated on

complement-related genes in fish during bacterial

(Dumrongphol et al. 2009, Mohanty & Sahoo 2010),

viral (Yasuike et al. 2007, Encinas et al. 2010, Rakus

et al. 2012) or parasitic (Gonzalez et al. 2007, For-

lenza et al. 2009) infections. These investigations

have revealed extra-hepatic expression of comple-

ment components and suggest an important role of

complement in the regulation of local immune res -

ponses (Forlenza et al. 2009, Nakao et al. 2011).

The aim of the present study was to determine the

association between the APR proteins of common

carp and viral infection. Building upon the prelimi-

nary investigations of Rakus et al. (2012) on carp

complement activation, we report the role of the APR

in common carp during a CyHV-3 infection. The

expression profile of 2 carp CRP-like genes (crp1 and

crp2), recently described by Falco et al. (2012), and

several carp complement component genes (c1rs,

bf/c2, c3 and masp2), described by Forlenza et al.

(2009), were analysed in the liver, head kidney,

spleen and gill of CyHV-3- or sham-infected carp as

markers of the APR.
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MATERIALS AND METHODS

Experimental animals

Common carp Cyprinus carpio from the Polish K

line (Białowa̧s et al. 2008) were kept at 21 ± 1°C in

UV treated re-circulating systems under a 12:12 h

light: dark cycle at the Institute of Ichthyobiology and

Aquaculture in Golysz, Poland. Fish were fed daily

with commercial carp pellets (Aller Aqua) at 3 to 5%

body weight. Carp (n = 70) with an average weight of

120 g were transported to the Laboratory of Fish Dis-

ease, National Veterinary Research Institute, Pulawy,

Poland, and allowed to acclimatise in 800 l tanks at

21 ± 1°C for 4 wk. Feeding was carried out with com-

mercial carp pellets at 3% body weight per day.

Virus preparation

CyHV-3 was prepared as described by Rakus et

al. (2012). Briefly, Cyprinus carpio brain (CCB)

cells (Neukirch et al. 1999), cultured in minimum

essential medium, were inoculated with CyHV-3

virus isolated in the Laboratory of Fish Disease,

National Veterinary Research Institute in Pulawy,

Poland, from infected common carp in 2005 (pas-

sage no. 4). The medium from infected cells, which

included the virus, was harvested and used for fish

infection. The virus suspension titre, given as

tissue culture  infective dose (TCID50 ml−1), was

determined by the method of Reed & Muench

(1938) at 8 × 104 TCID50 ml−1.

CyHV-3 challenge and fish sampling

Carp used within this trial were from the same

cohort as described by Rakus et al. (2012). Carp (n =

35) were infected with CyHV-3 by bath immersion

challenge. Fish were bathed for 1 h at 22°C in small

plastic containers containing 15 l of aquarium water

and the virus suspension (320 TCID50 ml−1 in the final

volume of water). In addition, 35 carp were sham-

infected following the same protocol with the differ-

ence that medium was harvested from uninfected

CCB cultures. Control and infected fish were

returned to their respective tanks, and 5 carp from

both groups were sampled at 6, 12, 24, 72, 120 and

336 h post-infection (hpi). Five additional fish from

the control group were sampled for time point 0, i.e.

just before the exposure to the virus. Carp were

lethally anaesthetized by submersion in 0.5 g l−1 tri-

caine (Sigma); blood was obtained from the caudal

vein, allowed to clot overnight at 4°C, centrifuged

(2500 × g, 10 min at 4°C) and the serum stored at

−80°C. Liver, head kidney, spleen and gills were

removed at 24, 72, 120 and 336 hpi and stored in

RNAlater (Qiagen) at −80°C. Tissues were selected

for the following reasons: the liver as the main pro-

duction site for CRP, the head kidney and the spleen

as primary immune organs, and the gills as one of the

organs prone to infection. Samples (organs and

serum) were sent on ice to Keele University (UK) for

further analysis.

Quantification of free-phase carp 

CRP (cCRP) in serum

Free-phase CRP from carp serum (cCRP) was

quan tified (MacCarthy et al. 2008, Pionnier et al.

2013) with a competitive enzyme-linked immunosor-

bent assay (ELISA) using CRP extracted and purified

from healthy carp serum with a 2-step affinity chro-

matography procedure (Cartwright et al. 2004, Mac-

Carthy et al. 2008). Briefly, high-density lipoprotein

complexes containing apolipoprotein A-I, a major

contaminant in the affinity isolation of carp CRP

(Cartwright et al. 2004) were removed from the

serum before the collection of purified free-phase

cCRP which was stored at 4°C in a calcium buffer

(10 mM CaCl2, 50 mM Tris base, 15 mM NaCl2, pH 8)

until required.

Determination of CRP levels in the serum of ex -

perimental and control fish was carried out using a

competitive ELISA. Briefly, individual wells of a

high-binding capacity 96-well plate (Corning) were

coated with 0.2 µg of cCRP diluted in coating buffer

(15 mM sodium carbonate, 35 mM sodium bicarbon-

ate, pH 9.6) and incubated for 20 h at 4°C. Unbound

cCRP was removed by washing 3 times with a PBS-T

buffer (PBS with 0.2% Tween-20), and any remain-

ing binding sites were blocked by incubating at 37°C

for 30 min in PBS containing 5% of dried milk pow-

der (Marvel). Any excess of blocking agent was

removed by washing 3 times with PBS-T. Carp serum

(diluted 1:10 in PBS) was incubated with 160 µg µl−1

of rabbit anti-native cCRP IgG (produced by Cart -

wright et al. 2004) for 30 min at 20°C. A standard

curve was produced by replacing carp serum with

purified free phase cCRP serially diluted in PBS (0 to

0.5 µg ml−1). After incubation with either carp serum

or standards, 100 µl of the treated rabbit anti-cCRP

IgG solution was applied to the cCRP-coated wells

and incubated for 1 h at 37°C. Excess antibody was
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removed by washing 3 times with PBS-T, and 100 µl

of the secondary antibody, a goat anti-rabbit IgG per-

oxidase conjugate (Sigma, dilution 1:8000 in PBS),

was applied to the wells and incubated for 1 h at

37°C. After washing 5 more times with PBS-T, 100 µl

of o-phenylenediamine dihydrochloride (Sigma) were

added to each well. The plate was incubated for 1 h

at 37°C in the dark before adding 25 µl of 2.5 M HCl

to stop the enzymatic reaction. The optical density

(OD) of each sample was read at 492 nm (Labsystems

Multiskan MS plate reader). The cCRP concentration

of the individual serum samples was determined

with the GraphPad Prism v5 software by comparison

between the sample absorbance value and those

from the standard curve for which the free phase

cCRP concentration is known.

Alternative complement pathway activity 

assay in carp serum

Serum alternative complement pathway (ACP)

activity was analysed according to previously descri -

bed methods (Matsuyama et al. 1988, Yano et al.

1988, Yano 1996, Selvaraj et al. 2005, 2006) with

slight modifications as reported by Pionnier et al.

(2013). Briefly, sheep red blood cells (SRBC; TCS Bio-

sciences) were washed with 0.85% saline solution

and resuspended in gelatin veronal buffer (GVB;

0.1% gelatin, 250 mM NaCl, 50 mM barbitone,

40 mM sodium barbitone, 10 mM MgCl2, 2 mM

CaCl2; all from Sigma), and a standard working con-

centration of 8 × 106 SRBC ml−1 was prepared. Carp

serum was subjected to serial dilution (from 7% to

0.5%) and incubated for 1 h at 20°C (0.1 to 15 µl of

serum, 100 µl 10 mN EGTA-GVB, 100 µl SRBC). For

each dilution, a positive control reflecting 100%

haemolysis was also analysed (0.1 to 15 µl of serum,

100 µl distilled water, 100 µl SRBC), and a negative

control in which sera were subjected to heat inactiva-

tion (56°C for 30 min) was also included.

Samples were then subjected to centrifugation at

400 × g (5 min at 4°C) and kept on ice at 4°C in order

to stop the lytic reaction. Supernatant (200 µl) was

transferred to a 96-well plate, and the haemoglobin

release was measured by OD reading at 410 nm

(Labsystems Multiskan MS plate reader). The rate of

haemolysis was calculated for each serum dilution as

the OD value for the sample test divided by the OD

value for the positive control. Graphs were built with

GraphPad Prism v5 software by plotting the log(dilu-

tion) against the log(rate of haemolysis); the ACH50

(in ACH50 units ml−1), corresponding to the serum

dilution giving 50% SRBC haemolysis, was deter-

mined from the graph.

Quantification of CyHV-3 DNA

Virus DNA quantification was performed using

real-time TaqMan qPCR (Gilad et al. 2004). DNA was

isolated from 25 mg of liver, spleen and gill tissues af-

ter mechanical lysis by means of a QIAgen Tissuelyser

II (Qiagen) using the QIAamp DNA Mini Kit (Qiagen)

following the manufacturer’s instructions. After isola-

tion, the quantity of DNA obtained was evaluated

with a Nanodrop ND-1000 spectrophoto meter (Ther -

mo Scientific). Real-time TaqMan qPCR was per-

formed to amplify a fragment of the CyHV-3 ORF 89

and ORF 90 genes (Table 1) by the use of the KHV-

86F and KHV-163R primers and the KHV-109P probe

(Table 1). The PCR reaction mix contained 1× master

mix (Maxima Probe qPCR Kit, Fermentas), 800 nM of

each primer and 100 nM of fluorescent probe. The re-

action was performed using a Stratagene Mx 3005P

thermocycler (Agilent). In order to quantify virus

genome copies, a recombinant plasmid to be used as

standard was obtained by ligating a PCR product am-

plified with the primers KHV-86F and KHV-163R into

the pGEM−T Easy vector (Pro mega). The PCR was

performed using high fidelity polymerase (Advantage

2 PCR kit, Clontech), and the plasmids were propa-

gated in JM109 competent Escherichia coli (Promega).

Plasmids were isolated with the GeneJET™ Plasmid

Miniprep Kit (Fermentas), and a standard curve from

100 to 108 gene copies was prepared and used for

quantification of the copy numbers from each sample.

The results are presented as the total number of virus

copies per 250 ng of DNA.

Gene expression by real-time PCR

RNA isolation and cDNA synthesis

RNA was extracted and purified from head kidney,

liver, spleen and gill tissues using the RNeasy Mini

Kit (Qiagen) following the manufacturer’s instruc-

tions, and concentrations were determined by Nano -

drop 1000 (Thermo Scientific). RNA was diluted to a

standard concentration with diethyl pyrocarbonate

(DEPC)-treated water (Invitrogen) and DNase trea ted

(Promega) to remove any trace of remaining genomic

DNA. RNA was then transcribed to cDNA using

Moloney Murine Leukemia Virus (M-MuLV) Reverse

Transcriptase according to the manufacturer’s in-
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structions (Invitrogen). Briefly, 0.5 µg RNA was

added to 0.5 mM dNTPs, 5 mM MgCl2, 5× PCR Buffer

II, 1.25 µM random hexamers, 20 units of RNase in-

hibitor, DEPC-treated water and 25 units of M-MuLV

and incubated in a GeneAmp® PCR System 9700

thermal cycler (Applied Biosystems) using the follow-

ing program: 25°C for 10 min, 42°C for 30 min and

95°C for 5 min. cDNA samples were diluted (1:20) in

DEPC-treated water before being stored at −20°C.

Real-time RT-PCR of APR-related genes

Real time reverse transcription (RT)-PCR assays were

performed using the ABI PRISM® 7000 Sequence De-

tector System (Applied Biosystems). A volume of

cDNA corresponding to 10 ng of RNA was added to a

final concentration of 900 nM of each primer (Table 1)

and 1× Power SYBR Green PCR Master Mix (Applied

Biosystems) in a final volume of 20 µl. Complement

component genes were selected based upon on their

functional role and their position in the complement

pathways, i.e. c1rs for the classical, bf/c2 for the classi-

cal and alternative, masp2 for the lectin and c3 for its

central role in the complement cascade (Gonzalez et

al. 2007). Thermal cycling conditions were 2 min at

50°C and 10 min at 95°C, followed by 40 cycles of 15 s

at 95°C and 1 min at 60°C. A melting curve was cre-

ated for each run and checked to ensure the amplifi-

cation of a single product. Results were analysed ac-

cording to the 2−∆∆Ct method (Livak & Schmittgen

2001) and normalised against the expression of the

40S ribosomal protein S11 reference gene (Huttenhuis

et al. 2006). The results are presented as x-fold

change in relation to the control treatment.

Real-time RT-qPCR for CyHV-3 capsid 

triplex protein

Virus replication was detected based upon mRNA

expression of the CyHV-3 capsid triplex protein

(CTP) using a plasmid-based quantification RT-qPCR

assay as described by Adamek et al. (2012, 2013). A

standard plasmid containing the CTP gene was

 constructed using the method described above for

the virus genome plasmid and the primers listed in

Table 1. A standard curve ranging from 102 to

107 gene copies was prepared and used to quantify

the copy number of the gene transcripts in each sam-

ple. qPCR assays for each sample were performed

using a StepOnePlus thermal cycler (Applied Biosys-

tems). Each reaction contained cDNA corresponding

to a volume of 10 ng of RNA, 200 nM of each primer

191

Gene Gene function Oligo Sequence (5’–3’) GenBank Source

type acc. no.

KHV-86F Quantification of Forward GAC GCC GGA GAC CTT GTG AF411803 Gilad et al. 

KHV-163R CyHV-3 DNA Reverse CGG GTT CTT ATT TTT GTC CTT GTT (2004)

KHV-109P Probe FAM-CTT CCT CTG CTC GGC GAG 

CAC G-BHQ1

ORF72 CyHV-3 capsid Forward GCT TTC TCG ACA CGG AAT GG DQ177346 Adamek et 

triplex protein Reverse GGT TGG CCT CTG TGG ACT TG al. (2012)

40S Housekeeping Forward CCG TGG GTG ACA TCG TTA CA AB012087 Huttenhuis et 

gene Reverse TCA GGA CAT TGA ACC TCA CTG TCT al. (2006)

crp1 CRP response Forward AGC AAT GCA ACA TTT TTC CGT C JQ010977 Falco et al. 

Reverse ACT TGC GTC AAA GCC ACC CAC (2012)

crp2 CRP response Forward GAT GCT GCA GCA TTT TTC AGT C JQ010978 Falco et al. 

Reverse CTC CGC ATC AAA GTT GCT CAA AT (2012)

c1rs Classical comple- Forward CAA GCC CAT CTT GGC TCC TGG AB042609 Forlenza et 

ment pathway Reverse GTC CAG ATC AAG CGG GGA CGT al. (2009)

bf/c2 Classical and alter- Forward CGG TCA TGG GAA AAA GCA AB047361 Forlenza et 

native comple- TTG AGA al. (2009)

ment pathways Reverse GAT ATC TTT AGC ATT TGT CGC AG

c3 Central component Forward GGT TAT CAA GGG GAG TTG AGC TAT AB016215 Forlenza et 

of the complement Reverse TGC TGC TTT GGG TGG ATG GGT al. (2009)

system; marker of 

the 3 pathways

masp2 MB-lectine comple- Forward CAA GCT GTC CAA GGT GAT TG AB234294 Forlenza et 

ment pathway Reverse AGC AGT GAG GAC CCA GTT GT al. (2009)

Table 1. Oligonucleotides used in this study. CyHV-3: cyprinid herpesvirus 3; CRP: C-reactive protein
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(Table 1), 1× Power SYBR Green PCR Master Mix in

a total volume of 20 µl. Samples were analysed using

the following thermal profile: polymerase activation

at 50°C for 2 min, initial denaturation at 95°C for

10 min, 40 cycles of denaturation at 95°C for 30 s,

annealing at 60°C for 30 s and elongation at 72°C for

30 s (Adamek et al. 2013). The expression levels of

the CyHV-3 CTP gene are presented as the gene

copy number normalised for 1 × 105 copies of the

gene encoding for the 40S ribosomal protein S11

(normalised copy number) using the following equa-

tion: Normalised copy number = mRNA copy number

of the CyHV-3 CTP gene / (mRNA copy number of

40S ribosomal protein S11 /1×105).

Confirmation of positive results was performed by

comparison against a melting curve generated dur-

ing each PCR run.

Statistical analysis

All data are given as means ± SEM of 4 or 5 inde-

pendent individuals. Statistical analysis was carried

out using GraphPad Prism v5 and PASW Statistics 18

software. Data were tested for normality and homo -

scedasticity prior to further analysis. A 2-way analy-

sis of variance (ANOVA) and post hoc Bonferroni

multiple comparisons test were performed on serum

cCRP levels and complement activity to determine

significant differences between the infected and the

control groups. Gene expression data were nor-

malised using a log-transformation prior to a 2-way

ANOVA and subsequent Bonferroni post hoc test

analysis. In order to investigate whether serum cCRP

levels and serum complement ACP activity were

 correlated, Pearson correlation analyses were per-

formed. Additional post hoc Pearson correlation ana -

lyses were performed to investigate whether varia-

tions observed in serum levels or activities were

correlated to specific related gene expression. Signi -

ficance was defined as p ≤ 0.05.

RESULTS

Course of infection

CyHV-3 DNA was detected as early as 24 hpi in the

spleen (Fig. 1) and then in all analysed tissues from

72 hpi. The highest virus loads for each organ were

recorded at 120 hpi with 9187, 61 766, and 435 252

copies per 250 ng of DNA isolated from liver, spleen

and gill tissues, respectively. Although significant

differences were not noted between organs at 24, 72

and 120 hpi, the viral loads were significantly higher

in the gills compared to the liver (p < 0.05) at 336 hpi

(432 789 and 418 copies, respectively). Viral DNA

was not detected in control fish.

The presence of CyHV-3 CTP mRNA expression

was first seen at 72 hpi in the spleen in infected fish

(Table 2). The highest expression levels were re cor -

ded in all tissues at 120 hpi (150 normalised copies in

the gills, 210 normalised copies in the head kidney,

260 normalised copies the liver and 1270 normalised

copies in the spleen). Virus replication also occurred

at 336 hpi in the head kidney. Viral mRNA was not

found to be expressed in control fish.

Serum acute phase proteins profiles

Serum cCRP levels (Fig. 2A) were significantly dif-

ferent between control and infected groups (F =

192
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Fig. 1. Cyprinus carpio. Cyprinid herpesvirus 3 (CyHV-3)

load in the spleen (white bars), liver (gray bars) and gill

(black bars) tissues of carp measured by TaqMan qPCR. Data

are means + SEM genome copies for 250 ng of isolated DNA

for n = 5 fish per time point. *Significant difference (p ≤ 0.05)

Time Normalised copy number in tissue

(hpi) Liver Head kidney Spleen Gill

24 No Ct No Ct No Ct No Ct

72 No Ct No Ct 3.3 ± 2 No Ct

120 147.2 ± 83 210.6 ± 95 1267 ± 370 147.2 ± 83

336 No Ct 29.6 ± 26 No Ct No Ct

Table 2. Cyprinus carpio. Cyprinid herpesvirus 3 (CyHV-3)

capsid triplex protein (CTP) mRNA expression in the liver,

head kidney, spleen and gills measured at 24, 72, 120 and

336 h post infection (hpi). Data are mean copy numbers

(± SEM, n = 5) of the CyHV-3 CTP gene normalised against

100 000 copies of 40S ribosomal protein S11. No Ct: CyHV-3 

CTP mRNA was not detected
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629.6, df = 1, p < 0.0001), over time since treatment

(F = 30.7, df = 6, p < 0.0001), and also when time/

treatment interactions were considered (F = 31.0, df =

6, p < 0.0001). A Bonferroni post hoc analysis re vea -

led that serum cCRP levels were significantly higher

in the infected fish compared to control fish during

the whole duration of the challenge. Indeed, whilst

cCRP levels in control fish were constantly below

10 µg ml−1, cCRP levels in infected carp were already

significantly increased by 6 hpi (27.8 µg ml−1, p ≤

0.05) and reached a plateau from 24 hpi (87.6 µg ml−1,

p ≤ 0.001) until 120 hpi (95 µg ml−1, p ≤ 0.001) after

which a decrease occurred at 336 hpi (25.9 µg ml−1,

p ≤ 0.05).

Serum ACP activity (Fig. 2B) was abolished by heat

inactivation and was also significantly different be -

tween control and infected groups (F = 59.9, df = 1,

p < 0.0001). Although the duration of infection did

not appear to have an effect (F = 2.0, df = 6, p =

0.0864), the time/treatment interaction was signifi-

cantly affected (F = 2.7, df = 6, p = 0.0316). A Bonfer-

roni post hoc analysis revealed that the serum ACP

activity was significantly higher in infected fish at

72 hpi (3060 ACH50 units ml−1, p ≤ 0.001) and 120 hpi

(2658 ACH50 units ml−1, p ≤ 0.001) whilst the ACP

activity in control fish remained stable at these sam-

pling points (approximately 500 ACH50 units ml−1). It

is interesting to note that, as with serum cCRP levels,

serum ACP activity increased in infected fish from

6 hpi onwards and reached a plateau between 72 and

120 hpi before it finally decreased at the end of the

challenge (336 hpi).

Pearson correlation statistical analyses revealed

that CRP levels and complement activity were not

correlated in control fish but were significantly posi-

tively correlated in infected fish (r = 0.6996, p <

0.0001), indicating complement ACP activity and

CRP levels both increasing at the same time in those

carp.

CRP- and complement-related gene 

expression profiles

The constitutive expression levels of CRP (crp1

and crp2) and complement (c1rs, bf/c2, c3 and

masp2) genes in the control group (Table 3) clearly

indicated that all of the analysed genes were syn-

thesised in the liver. Except for crp2 and bf/c2, the

threshold cycle (Ct) values were lower in the liver

compared to the other tissues. It is interesting to

note, however, that extra-hepatic expression was

also clearly noticeable for bf/c2 in the head kidney,

spleen and gill tissues, suggesting a wide expres-

sion of this bf/c2 gene.

In the liver (Fig. 3A), all genes except crp1 were

up-regulated in response to CyHV-3 infection (F =

7.2−30, df = 1, p ≤ 0.0117). Time also significantly

affected the expression of all genes analysed (F =

4.6−11.7, df = 3, p ≤ 0.0086), except for masp2 (F = 2.7,

df = 3, p = 0.0647).

Interestingly, post hoc analysis revealed that the

CyHV-3 infection caused several significant down-

regulations for the expression of crp1 at 24 hpi

(0.1-fold, p ≤ 0.01), 72 hpi (0.26-fold, p ≤ 0.01) and

120 hpi (0.12-fold, p ≤ 0.01) except for a significant

up-regulation at 336 hpi (2.3-fold, p ≤ 0.05). Although
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crp2 expression was also up-regulated (6.4-fold, p ≤

0.01) at 336 hpi, in contrast to crp1, there was also an

increase at 72 hpi (3.6-fold, p ≤ 0.05). In addition, a

pattern of significant up-regulations was also shown

for complement-related gene expression at 72 hpi,

i.e. 4.9-fold for c1rs (p ≤ 0.01), 8.2-fold for bf/c2 (p ≤

0.001), 5.8-fold for c3 (p ≤ 0.001) and 2.8-fold for

masp2 (p ≤ 0.05). Significant up-regulations were

also detected at 120 hpi for bf/c2 (8.1-fold, p ≤ 0.001)

and c3 (3.4-fold, p ≤ 0.01), and at 336 hpi for c1rs

(4.1-fold, p ≤ 0.05), and a significant down-regulation

was observed at 24 hpi for c1rs expression (0.12-fold,

p ≤ 0.05).

In contrast to the liver, viral infection significantly

affected the gene expression of c3, masp2 and crp1 in

the head kidney (Fig. 3B) (F = 5.8−8.7, df = 1, p ≤

0.022) but not the expression of c1rs, bf/c2 and crp2

(F = 1.3−3.37, df = 1, p ≥ 0.0756). With the exception

of c1rs and masp2 (F = 1.6, df = 3, p = 0.2047 and F =

2.3, df = 3, p = 0.0957, respectively), duration of infec-

tion significantly affected CRP- and complement-

related gene expression (F = 3.262−8.303, df = 3, p ≤

0.0341).

Post hoc analysis revealed a significant up-

 regulation of crp1 at 336 hpi in the head kidney

(6.3-fold, p ≤ 0.01) similar to the one observed in

the liver, although down-regulations were not de -

tected at the early sampling points. Interestingly,

crp2 expression was significantly affected by the

duration of the infection with up-regulation de -

tected at 24 hpi (1.8-fold, p ≤ 0.05) followed by

a subsequent down-regulation at 72 and 336 hpi

(0.33- and 0.25-fold, respectively, p ≤ 0.05). As

with the liver, a pattern of significant up-regulation

of complement-related gene expression was de -

tected in the head kidney at 72 hpi for bf/c2

(2.35-fold, p ≤ 0.001), c3 (25.74-fold, p ≤ 0.001) and

masp2 (5-fold, p ≤ 0.05). Finally, the fourth com-

plement-related gene analysed, c1rs,

was significantly up-regulated at

336 hpi (2.9-fold, p ≤ 0.05).

In the spleen (Fig. 3C), expression

of bf/c2, c3, crp1 and crp2 was signif-

icantly affected by CyHV-3 infection

(F = 6.5−29.6, df = 1, p ≤ 0.016) but not

the ex pression of c1rs and masp2 (F =

1.6, df = 1, p = 0.2183 and F = 0.01,

df = 1, p = 0.9201, respectively). As in

the liver and head kidney, expression

of the 2 CRP-related genes was sig-

nificantly affected by time (F = 3.5,

df = 3, p = 0.0275 for crp1 and F = 3.9,

df = 3, p = 0.0169 for crp2). However,

for the complement-related genes, duration of infec-

tion only affected the expression of bf/c2 (F = 7.9, df =

3, p = 0.0004).

Post hoc analysis revealed significant up-regula-

tions in CRP-related gene expression, i.e. up-regula-

tion of crp1 at 120 hpi (3.2-fold, p ≤ 0.01) and up-

 regulations of crp2 at 24 hpi (3.4-fold, p ≤ 0.01) and

336 hpi (3.3-fold, p ≤ 0.01). Regarding complement-

related genes, the expression profiles of c1rs and

masp2 were not significantly affected during the

duration of the challenge whilst the expression of

bf/c2 was substantially up-regulated at 72 hpi (12.4-

fold, p ≤ 0.001) and 120 hpi (8.5-fold, p ≤ 0.01) and up-

regulation was detected in c3 expression at 336 hpi

(8.2-fold, p ≤ 0.01).

Finally, in the gills (Fig. 3D), the expression of all

genes analysed was significantly affected by the viral

infection (F = 4.8 − 25, df = 1, p ≤ 0.0364), with the

exception of c3 (F = 1.6, df = 1, p = 0.2111). In contrast

to the head kidney and liver, the effect of duration of

infection was found to be significant only for bf/c2

(F = 4.6, df = 3, p = 0.0087) and crp2 (F = 9.3, df = 3, p =

0.0001) expression.

Interestingly, post hoc analysis revealed that crp1

expression was not affected by the infection in the

gills, but a pattern of up- and down-regulation of

crp2 expression was detected, i.e. up- regulation at

24 hpi (3.5-fold, p ≤ 0.001), then down-regulation

at 72 and 120 hpi (0.3-fold, p ≤ 0.01 and 0.36-fold,

p ≤ 0.05 respectively), and finally up-regulation at

336 hpi (2.7-fold, p ≤ 0.05). Regarding complement-

related genes, whilst the expression of c3 and masp2

were not significantly affected during the challenge

period, c1rs was significantly up-regulated at 120 hpi

(2.2-fold, p ≤ 0.05) and bf/c2 was significantly up-

 regulated at 24 hpi (3.1-fold, p ≤ 0.05), 72 hpi (7.8-

fold, p ≤ 0.05), 120 hpi (7.6-fold, p ≤ 0.01) and 336 hpi

(20.7-fold up-regulation, p ≤ 0.001).
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Gene Ct value in tissue

Liver Head kidney Spleen Gill

crp1 24.7 ± 0.3 34.2 ± 0.2*** 33.3 ± 0.1*** 35.4 ± 0.6***

crp2 35.6 ± 0.3 31.7 ± 0.4*** 34.5 ± 0.4 31 ± 0.4***

c1rs 23.5 ± 0.6 31.4 ± 0.3*** 30.8 ± 0.2*** 31.9 ± 0.2***

bf/c2 27.9 ± 0.5 24.5 ± 0.4*** 26.6 ± 0.3 30 ± 0.3**

c3 19.2 ± 0.3 35.6 ± 0.8*** 30.5 ± 0.2*** 32.3 ± 0.5***

masp2 24.4 ± 0.4 36.7 ± 0.3*** 37.3 ± 0.2*** 37.6 ± 0.4***

Table 3. Cyprinus carpio. Ct values of C-reactive protein (CRP; crp1 and crp2)

and complement (c1rs, bf/c2, c3 and masp2) gene expression levels from the

control group in the different tissues. Significant differences when comparing

the Ct values from the liver to those from the other organs are indicated as 

follows: **p ≤ 0.01, ***p ≤ 0.001. Data are means ± SEM (n = 5)
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DISCUSSION

The present study reveals that both CRP and com-

plement responses, monitored by either serum activity/

levels or gene expression in tissues, significantly

changed in common carp challenged with CyHV-3

by bath infection. Although a viral load was noted at

24 hpi, a significant increase in viral DNA occurred

after 72 hpi in all the tissues analysed (spleen, liver

and gills). In addition, significant increases in serum

CRP levels and complement activity were recorded

during the first 72 hpi in the infected carp, indicating
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a strong and rapid immune acute phase response in

these fish. Interestingly, although we noted the

absence of viral gene expression at 336 hpi, Adamek

et al. (2013) suggested that this may occur after this

period of infection.

The rapid and significant increase in serum cCRP

levels (from 6 hpi to a 10-fold increase in 72 h) has

revealed for the first time that CRP behaves as a

 positive acute phase reactant in common carp chal-

lenged with CyHV-3. This immediate response is re -

markable, since at this point, no pathological changes

were recorded. The promptly elevated levels of serum

cCRP that reach a maximum between 72 and 120 hpi

may be related to the systemic character of the infec-

tion and therefore could support the putative role of

cCRP in the induction of the leukocytosis as observed

by Negenborn (2009). In addition, the viral load and

replication as recorded in all tissues analysed at 72

and 120 hpi combined with previous results from

Rakus et al. (2012) and Adamek et al. (2013) indicate

that the virus spreads throughout the whole body,

reaching multiple organs within 72 h after pathogen

exposure. This leads to significant up-regulations in

the synthesis of several immune-related genes at

72 hpi, including genes involved in the regulation of

CRP expression (Szalai et al. 2000) such as IL-6, IL-

1α, IL-1β, TNF-α and C3 and C5a complement com-

ponents (Rakus et al. 2012). Furthermore, a signifi-

cant increase in the classical pathway complement

activity and in the expression of its related genes

(c1rs and bf/c2) at 120 hpi may contribute to cCRP

activation.

Interestingly, these elevated levels of serum cCRP

do not appear to be correlated with CRP-related gene

expression profiles when considering all tissues ana-

lysed, in particular the liver. Results revealed different

patterns in all tissues examined; for example, levels of

crp1 were decreased in liver, but were enhanced in

spleen and kidney. In contrast, crp2 gene expression

was reduced in head kidney but elevated in liver and

spleen. However, due to the substantial difference in

crp1 and crp2 Ct values in the liver of control fish (i.e.

a 1024-fold difference in ex pression), the amount of

CRP1 mRNA produced in infected fish was still signif-

icantly higher than the amount of CRP2 mRNA even if

there was a 0.12-fold reduction in crp1 and a 6-fold

up-regulation of crp2. Previous studies also suggested

that additional CRP-related genes might code for dif-

ferent common carp CRP isoforms (Falco et al. 2012,

Pionnier et al. 2013). As the rabbit anti-cCRP IgG used

to detect CRP levels in the carp serum reacts with na-

tive carp CRP, this could explain the differences ob-

served between cCRP serum levels and tissue-related

gene expression. In addition, the antibody used in this

study reacts with native carp CRP, but we do not

know yet if CRP is encoded predominantly by crp1 or

crp2. These results suggest an organ- and time-

 dependent response which could be due to different

biological and functional properties of the synthesised

proteins in the different tissues as hypothesised by

Falco et al. (2012). However, it is interesting to note

that crp1 and crp2 have been found to be expressed

constitutively in a mucosal site (gills) as well as in sys-

temic sites (spleen, head kidney and liver), thus con-

firming the widespread CRP expression in a range of

tissues in carp reported by Falco et al. (2012). The ob-

servation that CyHV-3 infection had a significant ef-

fect on cCRP-related gene expression in the gills may

be particularly noteworthy, as gills are severely af-

fected by the virus (Perelberg et al. 2003), and the

highest viral loads were detected in the gills. Despite

the fact that, in mammals, increasing serum CRP lev-

els are more characteristic of a bacterial infection

rather than a viral infection (Cray et al. 2009), prima-

rily mediated through the direct binding of CRP to

phosphocholine residues of bacterial C-polysaccha-

rides (Volanakis & Kaplan 1971), our results suggest

that the CRP response may also be of great importance

during viral infections in carp. In that case, CRP, as an

acute phase reactant, could play a role in the general

activation of other acute phase immune components

such as the complement system as observed, for ex-

ample, in mammals (Agra wal et al. 2001) and in the

late recognition and clearance of apoptotic, damaged

or necrotic cells (Hack et al. 1997). The former is in ac-

cordance with simul taneously enhanced mRNA levels

of apoptosis-inducing genes during the CyHV-3 in-

fection (J. J. Miest et al. unpubl.), which indicate in-

duced apoptosis at 120 hpi.

CyHV-3 infection also induced a complement re-

sponse in carp, which was inactivated by heat treat-

ment, and resulted in a 6-fold increase in serum ACP

activity beginning at 6 hpi and reaching a maxi mum

of approximately 3000 ACH50 units ml−1 be tween 72

and 120 hpi. This is in accordance with the results ob-

tained for the ACP-related gene expression profiles

(i.e. bf/c2 and c3). Indeed, significant up-regulations

of bf/c2 were detected throughout the challenge in

the 4 tissues examined, with substantial up-regula-

tions occurring at 72 and 120 hpi, e.g. around 8-fold in

the liver and in the gills, and up to 12.4-fold in the

spleen. Such significant up-regulations of bf/c2 were

also found by Forlenza et al. (2009) in the hepatopan-

creas of common carp challenged with the parasite

Trypanoplasma borreli. The results of our study indi-

cate that CyHV-3 infection significantly induced the
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production of Bf/C2 in a variety of systemic sites, i.e.

spleen, liver and head kidney, but also at a possible

site of infection, i.e. gills, suggesting that the comple-

ment alternative pathway was stimulated in response

to the virus. However, the literature on the relation-

ship between complement-related gene expression

and virus infection in fish is inconsistent. Whilst some

studies have shown that neutralisation of some fish

viruses such as the infectious haematopoeitic necrosis

virus (IHNV) and the viral haemorrhagic septicaemia

virus (VHSV) are complement-independent in several

fish species (LaPatra 1996, Boshra et al. 2006), other

investigations have revealed that the hosts’ immune

responses could be complement-dependent (LaPatra

1996, Lorenzen & LaPatra 1999). According to Ellis

(2001), this could depend on the virus type, i.e. if the

virus possesses an envelope, the complement system

will be activated and if not, no changes would be de -

tected in complement response. As CyHV-3 possesses

an envelope, our results would support this theory.

The expression profile of the other complement-

 related gene analysed, viz. c3, which is also involved

in the ACP, revealed a significant up-regulation in the

head kidney, liver and spleen. The up-regulation of

the c3 gene detected in the head kidney (25-fold) and

in the liver (6-fold) at 72 hpi could be related to a need

for C3 production in order to maintain the complement

activity at a high level. Such c3 up-regulations in re-

sponse to virus infection in fish were also observed in

the Japanese flounder Paralichthys olivaceus chal-

lenged with VHSV (Byon et al. 2006) and in rainbow

trout Oncorhynchus mykiss challenged with IHNV

(Overturf & LaPatra 2006). Finally, up-regulation

(from 2- to 5-fold) of the genes encoding c1rs and

masp2 occurred in the head  kidney, liver and gills but

not in the spleen. This  suggests that the classical and

lectin complement pathways could have been stimu-

lated, potentially through CRP, although no significant

increase was detected in the serum complement clas-

sical pathway activity of those carp (Rakus et al. 2012).

The fact that the expression of these classical and

lectin pathway-related genes (c1rs and masp2, re-

spectively) were less affected than the expression of

the alternative pathway-related genes (bf/c2 and c3)

is in agreement with previous studies suggesting that

the alternative pathway has a greater role than the

classical or the lectin pathways in fish immune re-

sponse to viral and bacterial infections (Yano 1996,

 Ellis 2001, Boshra et al. 2006).

In carp, the acute phase response to CyHV-3 infec-

tion has also been found to be organ dependent. The

increase in CRP and complement responses could be

related to different tissue damages observed, for in-

stance, in the gills, kidney, spleen and liver of carp in-

fected by CyHV-3 (Perelberg et al. 2003). Our re sults

are in accordance with other studies performed on the

same individual fish, revealing that the ex pression of

several immune-related genes was affected in the

head kidney and spleen (Rakus et al. 2012), and that

the regulation of apoptosis-related genes was also or-

gan- and time-dependent (J. J. Miest et al. un publ.).

In our study, gene expression of CRP- and comple-

ment-related genes was especially affected at 72 and

120 hpi in the head kidney and liver. However, these

effects were less prominent in the gills and spleen.

These observations are supported by Pearson correla-

tion analyses, which revealed significant correlations

between serum cCRP levels and crp1 and crp2 gene

expression but only in the liver of infected fish (r =

0.28, p = 0.0007 and r = 0.48, p = 0.047, respectively).

Despite the fact that teleost complement components

and CRP have been found to be primarily expressed

in the liver (Boshra et al. 2006, Nakao et al. 2011), our

results are in accordance with those obtained in pre-

vious studies performed on common carp (Falco et al.

2012, Pionnier et al. 2013) and also in cod Gadus

morhua (Lange et al. 2004a) and halibut Hippoglossus

hippoglossus (Lange et al. 2004b), suggesting a wide-

spread tissue distribution of complement and CRP in

fish as observed in mammals (Sahu et al. 1998). Nev-

ertheless, statistical ana lyses revealed the greatest in-

fection and time effects in the liver, where the expres-

sion of 5 of the 6 genes analysed was significantly

affected by either the infection or the duration of the

infection, highlighting the importance of the liver in

acute phase reactant production in carp. Interestingly,

data analysis also revealed that the expression of

some CRP- and complement-related genes in the gill

tissue was significantly affected by the infection with,

for example, up to 20-fold up-regulation of bf/c2 and

both and up- and down-regulation in crp2. These re-

sults indicate that the gills may be an important mu-

cosal site involved in the carp immune APR as sug-

gested in previous studies (Perelberg et al. 2003,

Dishon et al. 2005).

In summary, an acute phase immune response has

been identified in common carp infected by CyHV-3

via a bath immersion route. This stimulation, i.e. in -

creased serum cCRP levels and ACP activity and up-

regulation of complement- and CRP-related genes

in analysed immune organs, has shown that these 2

innate protein systems, i.e. CRP and complement,

behave as typical acute phase reactants to a viral

infection in carp. Hence it could be possible to use

CRP and complement as immediate biomarkers to

detect infections in fish as it is used in humans.
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