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Summary
With the expansion of next-generation sequencing technology and advanced bioinformatics,

there has been a rapid growth of genome sequencing projects. However, while this technology

enables the rapid and cost-effective assembly of draft genomes, the quality of these assemblies

usually falls short of gold standard genome assemblies produced using the more traditional BAC

by BAC and Sanger sequencing approaches. Assembly validation is often performed by the

physical anchoring of genetically mapped markers, but this is prone to errors and the resolution is

usually low, especially towards centromeric regions where recombination is limited. New

approaches are required to validate reference genome assemblies. The ability to isolate individual

chromosomes combined with next-generation sequencing permits the validation of genome

assemblies at the chromosome level. We demonstrate this approach by the assessment of the

recently published chickpea kabuli and desi genomes. While previous genetic analysis suggests

that these genomes should be very similar, a comparison of their chromosome sizes and

published assemblies highlights significant differences. Our chromosomal genomics analysis

highlights short defined regions that appear to have been misassembled in the kabuli genome

and identifies large-scale misassembly in the draft desi genome. The integration of chromosomal

genomics tools within genome sequencing projects has the potential to significantly improve the

construction and validation of genome assemblies. The approach could be applied both for new

genome assemblies as well as published assemblies, and complements currently applied genome

assembly strategies.

Introduction

Efforts to sequence and characterize crop genomes have been

boosted in recent years by unprecedented developments in

next-generation DNA sequencing (NGS). These technologies

have dramatically reduced the cost of generating genome

sequence data and present exciting new opportunities for crop

genetics and breeding (Edwards and Batley, 2010; Varshney

et al., 2009). NGS technologies, currently dominated by the

Illumina sequencing platforms, have seen a steady increase in

read length, data quality and data quantity since their intro-

duction less than a decade ago. The bioinformatics analysis of

this data has been a challenge (Batley and Edwards, 2009);

however, an increasing number of tools are now available to

interrogate and analyse these data (Lai et al., 2012b; Lee et al.,

2012; Marshall et al., 2010).

One consequence of the growth of genome sequencing

projects is a general decrease in accepted genome quality. The

aim of any genome sequencing project should be to produce a

genome that is fit for purpose, and often rough drafts are all that

are required to answer important biological questions. Basic

assemblies that produce the sequence of all genes, promoters

and low copy or unique regions are relatively inexpensive and

provide valuable biological insights, while more robust pseudo-

molecule assemblies have greater utility in the identification of

gene variation underlying traits, and for use in genomics-assisted

breeding (Duran et al., 2010; Varshney et al., 2005). However,

the production of valid pseudomolecules representing individual

chromosomes is the ultimate aim of many genome projects and

remains a significant challenge, even in the age of NGS (Imelfort

and Edwards, 2009).

Since the sequencing of the first plant genome, Arabidopsis

thaliana (Arabidopsis_Genome_Initiative, 2000), and the first crop

genome, rice (Yu et al., 2002), genome sequencing methods

have advanced significantly (Berkman et al., 2012a; Edwards and

Batley, 2010; Edwards and Wang, 2012; Edwards et al., 2013).
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Maize was the first large crop genome to be published (Schnable

et al., 2011), and maize genome resequencing has demonstrated

a huge diversity in the genome structure between different

varieties. Other less complex crop genomes have been

sequenced, including the 1.1 Gbp soybean genome (Schmutz

et al., 2010) and the 844 Mbp autotetraploid genome of potato

(Xu et al., 2011). The soybean genome was sequenced using a

whole-genome shotgun approach, while the relatively small

potato genome was resolved by sequencing a homozygous

doubled-monoploid potato clone using data from the Illumina

and Roche 454 platforms.

Generating draft genome sequence assemblies of the simpler

crop genomes, such as pigeonpea, are feasible and almost

routine using whole-genome shotgun sequencing and Illumina

sequencing technology (Varshney et al., 2012). For complex

genomes such as bread wheat, the complexity and size of the

17 Gbp genome, comprising three homoeologous subgenomes,

necessitates alternative approaches to whole-genome de novo

sequencing. These include the isolation of individual chromo-

some arms using flow cytometry and a two-stage sequencing

approach which aims to initially generate draft shotgun

assemblies of individual isolated chromosome arms (Berkman

et al., 2011, 2012b, 2013; Hernandez et al., 2012), followed

by the sequencing of BAC tiling paths representing each of

these arms (Lai et al., 2012a). The highly complex canola

genome, which combines polyploidy with recent triplication in

the diploid progenitors, presents a significant challenge for

assembly. A public assembly of one diploid progenitor genome

was published in 2011 (Wang et al., 2011), while the second is

near completion (http://www.brassica.info/). An initial draft

genome for canola was produced in 2009, although this

remains proprietary and efforts are currently underway to

produce a public canola genome sequence (http://www.bras-

sica.info/).

Chickpea (Cicer arietinum) is the second most important grain

legume crop in the world, grown on about 12 million hectares in

Asia, Latin America and Australia. This crop is represented by two

main market types: large seeded kabuli and small seeded desi.

These two types share a common ancestry, with kabuli evolving

from desi in the Mediterranean basin, with subsequent selection

for traits such as flower colour and seed tannins (Jana and Singh,

1993; Maesen, 1972; Moreno and Cubero, 1978). Genome

assemblies have recently become available for both kabuli

(Varshney et al., 2013) and desi (Jain et al., 2013) types.

Surprisingly, these genome assemblies appear to be significantly

different. To resolve these differences, we have developed and

applied a chromosomal genomics approach for genome assembly

validation. Using flow cytometry, we isolated individual chromo-

somes of chickpea for the generation of Illumina NGS sequence

data. Mapping the resulting sequence reads from isolated kabuli

and desi chickpea chromosomes to the reference genome

assemblies allowed us to assess the quality of assembly of the

two published genome sequences.

Results and discussion

Estimation of nuclear genome size

Knowledge of genome size is critical to estimate the quality of a

genome sequence assembly. To estimate the genome size of both

desi and kabuli chickpea types, we used DNA flow cytometry,

which is currently considered the most reliable method (Dole�zel

and Barto�s, 2005). This analysis revealed that chickpea has a

medium-sized genome of less than 900 Mbp and that both types

of chickpea do not differ significantly in genome size (Table 1).

Our estimates are similar to the 1.9 pg DNA/2C (929 Mbp/1C)

reported by Bennett and Smith (Bennett and Smith, 1976),

greater than the kmer-based estimate of CDC Frontier (Varshney

et al., 2013), but significantly lower than the average 2C value of

3.41 pg DNA as predicted by Ohri and Pal (Ohri and Pal, 1991).

This difference may be attributed to different methods (Feulgen

microdensitometry was used in the older study) and to different

reference standards (Dole�zel and Barto�s, 2005). Nevertheless, it is

worth noting that Ohri and Pal (Ohri and Pal, 1991) did not

observe significant differences in genome size between kabuli

and desi.

Comparison of the published kabuli and desi chickpea
draft genomes

An initial comparison of assembly statistics for the two draft

chickpea genomes suggests differences in assembly quality. Both

draft genomes were assembled from NGS data. The kabuli

assembly was constructed mostly from Illumina data (Varshney

et al., 2013) supported by BAC-end sequences generated using

Sanger-based methods, while the desi assembly applied a hybrid

approach, combining Roche/454 and Illumina data. The kabuli

assembly captured 532 Mbp (60.3% of the estimated genome

size) in scaffolds greater than 1000 bp compared to 519 Mbp for

desi (59.8% of the estimated genome size) in scaffolds greater

than 200 bp. Thus, both assemblies represented similar genome

fractions. However, the desi genome assembly was far more

fragmented, with a total of 32 935 scaffolds greater than

1000 bp and an N50 of 106 Kbp, compared to 7163 scaffolds

and an N50 of 39 989 Kbp for kabuli (Table 2). The method

applied to place the scaffolds into pseudomolecules was similar

for both genomes, although genotyping by sequencing (GBS)

markers were included to validate the kabuli assembly.

Pairwise comparison of each of the pseudomolecules from the

two assemblies revealed numerous structural variations (Fig-

ure 1). These differences include both long and short regions

where the orientations of the sequence differed, for example the

region from 9.33 Mb to 24.96 Mb on kabuli pseudomolecule

Ca1 is inverted compared to the equivalent region on the desi

assembly. There were differences in the position of regions within

a pseudomolecule, for example the first half of desi pseudomol-

ecule Ca5 is inverted and matches the centre of kabuli pseudo-

molecule Ca5. Of particular interest, we observed several large

regions of similarity between unrelated pseudomolecules. These

include desi pseudomolecule Ca8 matching a region at the start

of kabuli pseudomolecule Ca7, while kabuli pseudomolecule Ca8

Table 1 Estimation of 2C DNA amounts and genome size in chickpea

Cultivar / Genotype Type

2C DNA amount

(pg)
Mean genome

size (Mbp/1C)Mean �SD

ICC 1882 desi 1.773 0.012 867

ICC 283 desi 1.741 0.009 851

ICC 8261 desi 1.793 0.009 877

ICC 4958* desi 1.775 0.008 868

CDC Frontier* kabuli 1.803 0.007 882

*Genotypes used for chromosome sorting and sequencing.

ª 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd, Plant Biotechnology Journal, 12, 778–786

Chickpea chromosomal genomics 779



matches the last third of desi pseudomolecule Ca3. A large

portion of kabuli pseudomolecule Ca6 matched the second half

of desi pseudomolecule Ca2. These differences suggest misas-

sembly of one or both draft genome assemblies.

Isolation and sequencing of chickpea chromosomes

To assess and validate the assembled pseudomolecules from the

two genome assemblies, we isolated and sequenced individual

chromosomes from both kabuli and desi varieties of chickpea and

mapped the resulting sequence reads to the published reference

assemblies. For shotgun sequencing, all chromosomes were flow

sorted from the sequenced reference kabuli ‘CDC Frontier’, with

chromosomes D and E sorted together as a group, while

chromosomes A, B and H were flow sorted from the sequenced

reference desi ‘ICC 4958’, (See Appendix 1 for details). DNA from

these isolated chromosomes was amplified to produce samples

suitable for sequencing using Illumina technology. All chromo-

some isolates could be sorted at high purity from both genotypes

as determined by microscopic observation.

Estimation of molecular sizes of chickpea chromosomes

We estimated the molecular size of individual chromosomes

based on relative chromosome lengths at mitotic metaphase. The

results indicate differences in size between desi and kabuli

chromosomes as large as 10 Mbp for chromosomes A and B and

as small as several hundred Kbp for chromosome F (Table 3).

Although the differences between the two types of chickpea may

be ascribed in part to differences in chromatin condensation, they

correspond well to differences between flow karyotypes of desi

and kabuli and differences in chromosome peak positions

(Figure 2). For example, chromosomes F and G of desi ‘ICC

4958’ differ by about 7 Mbp (7%), and their peaks cannot be

discriminated based on flow karyotype. In kabuli ‘CDC Frontier’,

the two chromosomes differ by about 10 Mbp (11%) and can be

discriminated.

Comparison of pseudomolecule assemblies

A much greater portion of the kabuli assembly could be placed

into pseudomolecules (347 247 Kbp) compared with desi

(124 386 Kbp). The length of each of the pseudomolecules for

kabuli was higher than for desi, and the pseudomolecules

represented 39.37% and 14.33% of the estimated genome size

in kabuli and desi, respectively (Table 2). Individual pseudomol-

ecules differed in size and their representation of their predicted

chromosome size (Table 4). Striking discrepancies were observed

for kabuli chromosomes A, B and H, whose pseudomolecules

represented on average only about 26% of their predicted size,

compared to an average 50%. The smaller than expected

pseudomolecule size of these three chromosomes could be

explained by the presence of satellite CaRep2 on chromosomes A

and B, satellite CaSat2 on chromosomes A and H, and the 45S

rDNA locus on chromosome A (Zatloukalov�a et al., 2011). These

highly repetitive regions are likely to collapse into shorter

representative regions during de Bruijn graph-based whole-

genome assembly.

The kabuli reference contains short defined
misassembled regions

Mapping each of the kabuli isolated chromosome sequence data

sets to the kabuli reference genome assembly demonstrated that

the majority of the reads matched to their respective pseudo-

molecule with the exception that chromosome F and G reads

map to pseudomolecules Ca2 and Ca1, respectively, the inverse

Table 2 A comparison of desi and kabuli reference genome assembly

statistics

Features

desi draft

genome

kabuli draft

genome

Total assembly size (Mb) 456 (52.5%*) 532 (60.3%**)

Number of scaffolds 32 935 7163

Minimum reported

scaffold length (bp)

1000 1000

Maximum scaffold length

(Kbp)

23 376 59 460

Average scaffold length (bp) 13 857 74 311

N50 length (Kb) 106 39 989

GC content (%) 25.6 30.8%

Genome captured

in pseudomolecule (Kbp)

124 386 (14.33%*) 347 247 (39.37%**)

Protein coding genes 27 571 28 269

Average gene length (bp) 3122 3055

Average coding sequence

length (bp)

962 1166

*Considering 1C = 868 Mbp (Table 1).

**Considering 1C = 882 Mbp (Table 1).

Figure 1 Dot plot matrix of a comparison of the

kabuli and desi and kabuli draft chromosome

assemblies.
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of the earlier assignments to genetic linkage experiments (Millan

et al., 2010; Thudi et al., 2011; Zatloukalov�a et al., 2011).

Inspection of the read mapping density (Figure 3) suggested that

chromosome F data included sequences specific for pseudo-

molecule G and vice versa. Chromosome C and the chromosome

D/E group also shared contamination, while chromosomes A, B

and H demonstrated a greater purity. The proportion of

contamination of chromosome isolates with other chromosomes

matched what was expected from the isolation method, with

contamination between chromosomes from adjacent flow-sorted

peaks.

In addition to the cross-mapping of reads due to chromosomal

contamination, we observed regions in the reference pseudo-

molecules where few reads mapped from the respective chro-

mosome sequence data (Figure 3). For example, a region from

40 141 642 to 40 436 753 bp on pseudomolecule Ca1 had very

few reads mapping from the corresponding isolated chromosome

G. Interestingly, this region had high mapped read coverage from

Table 3 Chickpea desi and kabuli chromosome nomenclature, their assignment to peak on flow karyotypes, linkage groups, corresponding

pseudomolecules and molecular chromosome sizes as determined cytologically

Cicer arietinum

Pseudomolecule

Relative chromosome length [%] Molecularchromosomesize [Mbp]*Desi ‘ICC 4958’ Kabuli ‘CDC Frontier’

Peak Chromosome Peak Chromosome Desi ‘4958’ Kabuli ‘Frontier’ Desi ‘4958’ Kabuli ‘Frontier’

I H I H Ca8 7.2 7.8 62.5 68.80

II G II G Ca1 9.9 9.4 85.93 82.91

F III F Ca2 10.7 10.5 92.88 92.61

III E IV E Ca4 11.5 11.1 99.82 97.90

IV D D Ca7 12.6 11.8 109.37 104.01

C V C Ca6 13.2 12.8 114.58 112.90

V B VI B Ca3 15.8 16.7 137.14 147.29

VI A VII A Ca5 19.0 19.8 164.92 174.64

*Calculated based on nuclear genome size and relative chromosome length.

(a) (b)

Figure 2 Histograms of relative fluorescence

intensity obtained after flow cytometric analysis of

DAPI-stained liquid suspensions of mitotic

metaphase chromosomes prepared from chickpea

desi ‘ICC 4958’ (a) and kabuli ‘CDC Frontier’ (b).

For chromosome assignment of peaks on flow

karyotypes, please see Table 3.

Table 4 Pseudomolecule size and percentage of predicted

chromosome size

Pseudomolecule

(chromosome) Desi (%) Kabuli (%)

Ca1 (G) 14 791 696 (15.9) 48 359 943 (52.2)

Ca2 (F) 17 304 114 (20.1) 36 634 854 (44.1)

Ca3 (B) 23 376 002 (17.0) 39 989 001 (27.1)

Ca4 (E) 22 093 647 (22.1) 49 191 682 (50.2)

Ca5 (A) 16 301 343 (9.8) 48 169 137 (27.5)

Ca6 (C) 11 482 212 (10) 59 463 898 (52.6)

Ca7 (D) 8 461 617 (7.7) 48 961 560 (47.0)

Ca8 (H) 10 574 966 (16.9) 16 477 302 (23.9)

Figure 3 Circos heat map of the kabuli reference pseudomolecules

demonstrating density of mapped Illumina paired sequence reads (red

colour) from isolated kabuli chromosomes G, F, B, (E,D), A, C and H.
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isolated chromosome C (Ca6). A similar pattern was observed for

other gaps across the pseudomolecules and suggests that there

are numerous small regions across the kabuli pseudomolecule

assembly which were misplaced. In total, we observed 46 regions

ranging in size from 57 to 1371 Kbp and representing

16 164 Kbp (3.0%) of the pseudomolecule assemblies that were

placed into the wrong pseudomolecule (Table 5). Pseudomole-

cule Ca8 appears to be the most accurate assembly with only a

single region of 341 Kbp which should be located on pseudo-

molecule Ca6 (Figure 4). In contrast, pseudomolecule Ca6

contains 11 blocks of sequence which should be relocated onto

other pseudomolecules.

Some misassembled regions appeared to be contigs misplaced

during the scaffolding process, while others appeared within

contigs suggesting chimeric contig assembly. Many of the

misassembled regions were also flanked by highly repetitive

retrotransposon sequences, although there was no clear corre-

lation between the presence of these sequences and the type of

misassembly.

An advantage of applying chromosomal genomics approaches

to identify genome misassembles is the exceptional resolution

provided by NGS read mapping. This resolution will greatly

facilitate the relocation of these regions into their correct

pseudomolecule. One of the limitations of this approach,

however, is the inability to identify intrachromosomal misassem-

bly or misassembles between chromosomes which cannot be

separated physically by flow sorting. In this case, chromosomes D

and E could only be isolated as a pool, and while we identified

several regions on these chromosomes which should be placed on

other chromosomes, we could not identify chromosome E (Ca4)

regions which were misplaced onto pseudomolecule Ca7 (D) and

vice versa.

Large-scale misassemblies in desi reference genome

To determine whether the differences between the two draft

genome sequences reflect true structural genome variation or

pseudomolecule misassembly, we isolated and sequenced chro-

mosomes A, B and H from desi type chickpea and mapped these

reads, together with the related kabuli chromosome-specific

reads to the desi reference pseudomolecules (Figure 5) as well as

the kabuli pseudomolecules (Figure S1). Sequence reads from

both desi and kabuli isolated chromosomes demonstrated almost

identical mapping patterns on the pseudomolecules suggesting

that the physical genomes, at least for these three chromosomes,

are highly similar between desi and kabuli. In contrast to the

results from mapping kabuli chromosome reads to the kabuli

pseudomolecules, we observed that the chromosome B (Ca3)

reads from kabuli and desi only matched the first portion of desi

pseudomolecule Ca3. Sequence reads from isolated chromosome

H (Ca8) preferably mapped to the remaining portion of pseudo-

molecule Ca3 and not to pseudomolecule Ca8. This analysis

suggested that the observed differences between the desi and

kabuli reference genome assemblies are not due to structural

genome differences but are due to misassembly of the desi

reference genome.

Interestingly, there were regions of the desi reference pseudo-

molecules where no reads mapped. We investigated these

regions further by mapping desi whole-genome sequence data

to the desi pseudomolecules (Figure 5). Surprisingly, again no

reads mapped to these regions. To assess whether these regions

reflect highly rearranged misassembled chickpea sequence data,

for example due to concatenation of reads from the Roche 454

sequencing platform used in the assembly of the draft desi

genome, we remapped the Illumina desi whole-genome data and

isolated chromosome data to the desi pseudomolecules at a low

stringency. This again failed to produce specific read mapping,

and we therefore concluded that these regions of the desi

reference pseudomolecules do not reflect the physical content of

the desi genome. Extraction of the sequence for these regions

Table 5 Positions and sizes of misassembled genome blocks on the

pseudomolecules of kabuli chickpea CDC Frontier, together with their

correct chromosome (pseudomolecule) location

Pseudo-

molecule Start End Length (bp)

Chromosome

(pseudomolecule)

Ca1 17 709 355 17 768 444 59 089 H (Ca8)

Ca1 39 419 875 39 639 265 219 390 F (Ca2)

Ca1 39 875 495 40 137 184 261 689 F (Ca2)

Ca1 40 141 642 40 436 753 295 111 C (Ca6)

Ca1 40 737 888 41 342 099 604 211 B (Ca3)

Ca2 1 1 370 632 1 370 631 B (Ca3)

Ca2 4 000 604 4 701 466 700 862 B (Ca3)

Ca2 5 875 970 5 981 305 105 335 G (Ca1)

Ca2 6 978 984 7 977 546 998 562 H (Ca8)

Ca2 8 329 465 8 839 803 510 338 D/E (Ca7/Ca4)

Ca2 9 713 165 10 056 176 343 011 A (Ca5)

Ca3 2 147 981 2 291 454 143 473 D/E (Ca7/Ca4)

Ca3 5 222 428 5 315 148 92 720 G (Ca1)

Ca3 5 817 530 5 985 956 168 426 D/E (Ca7/Ca4)

Ca3 16 652 391 16 736 790 84 399 C (Ca6)

Ca4 33 548 471 34 015 816 467 345 A (Ca5)

Ca4 39 258 943 40 092 009 833 066 A (Ca5)

Ca5 1 475 756 475 755 D/E (Ca7/Ca4)

Ca5 479 469 967 381 487 912 B (Ca3)

Ca5 1 056 592 1 302 990 246 398 D/E (Ca7/Ca4)

Ca5 1 443 073 1 575 871 132 798 B (Ca3)

Ca5 3 057 844 3 436 790 378 946 B (Ca3)

Ca5 4 300 510 4 897 203 596 693 B (Ca3)

Ca5 5 459 276 5 583 037 123 761 H (Ca8)

Ca5 14 570 063 14 984 575 414 512 H (Ca8)

Ca6 1 95 085 95 084 F (Ca2)

Ca6 1 273 532 1 471 783 198 251 F (Ca2)

Ca6 8 091 437 8 171 394 79 957 H (Ca8)

Ca6 10 834 481 11 048 871 214 390 F (Ca2)

Ca6 11 049 103 11 286 027 236 924 D/E (Ca7/Ca4)

Ca6 22 607 989 23 187 652 579 663 F (Ca2)

Ca6 23 191 730 23 605 994 414 264 A (Ca5)

Ca6 23 607 585 23 929 615 322 030 F (Ca2)

Ca6 29 686 973 30 164 801 477 828 H (Ca8)

Ca6 40 809 786 41 720 980 911 194 A (Ca5)

Ca6 50 526 024 51 189 107 663 083 F (Ca2)

Ca7 259 820 579 136 319 316 G (Ca1)

Ca7 10 581 321 10 638 294 56 973 G (Ca1)

Ca7 19 431 822 19 639 120 207 298 H (Ca8)

Ca7 24 424 554 24 528 692 104 138 F (Ca2)

Ca7 31 258 312 31 438 623 180 311 B (Ca3)

Ca7 34 418 700 34 570 247 151 547 A (Ca5)

Ca7 37 738 053 37 860 082 122 029 G (Ca1)

Ca7 37 864 185 37 939 907 75 722 A (Ca5)

Ca7 44 316 766 44 615 144 298 378 A (Ca5)

Ca8 11 734 308 12 075 396 341 088 C (Ca6)
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and comparison with the swissprot gene database failed to

identify a significant number of genes (data not shown), again

suggesting that these regions are not true genome sequences.

Conclusions

The expansion of genome sequencing projects and variable

quality of published genomes highlights the need for additional

approaches to validate and finish high-quality genome assem-

blies. We have established and assessed a chromosomal

genomics approach to validate and compare reference genome

assemblies. Overall, the assembly quality of the kabuli genome is

high, with relatively few regions in the reference pseudomole-

cules which appear to have been misassembled into scaffolds on

the wrong pseudomolecule. The high-resolution identification of

these misplaced regions will aid their relocation on their correct

pseudomolecule and the production of an improved reference

genome assembly. Observed differences between the kabuli and

desi published reference sequences contrast with our previous

understanding of the similarity between the genomes. Our

chromosomal genomics analysis suggests that the physical

genomes of kabuli and desi chickpea types are in fact very

similar and the observed differences in the sequence assemblies

are due to major errors in the desi genome assembly, including

the misplacement of whole chromosomes, portions of chromo-

somes and the inclusion of a large portion of sequence assembly

which does not appear to be from the genome of chickpea. In

addition to validating and assessing the genomes of chickpea,

chromosomal genomics can be applied to validate and assist in

the accurate assembly of other genome references where

chromosomes can be isolated using flow sorting and thereby

provide more robust genome assemblies that can provide a

higher level of value for the many end-users of a particular

genome assembly.

Experimental procedures

Estimation of genome size

Nuclear genome size was estimated using flow cytometry accord-

ing to Dole�zel et al. (2007) (Dole�zel et al., 2007). Approximately

30 mg of young chickpea leaf and 10 mg of leaf of soybean

(Glycine max L. cv. Polanka, 2C = 2.5 pg DNA), which served as

internal standard (Dole�zel et al., 1994), were used for sample

preparation. Suspensions of cell nuclei were prepared by simulta-

neous chopping of leaf tissues of chickpea and soybean in a glass

Petri dish containing 500 lL Otto I solution (0.1 M citric acid, 0.5%

v/v Tween 20). Crude homogenate was filtered through a 50-lm
nylon mesh. Nuclei were then pelleted (300 g, 5 min) and

resuspended in 300 lL Otto I solution. After 30-min incubation

at room temperature, 900 lL Otto II solution (0.4 M Na2HPO4)

(Otto, 1990) supplemented with 50 lg/mL RNase and 50 lg/mL

propidium iodidewas added. Sampleswere analysed using a Partec

PAS flow cytometer (Partec GmbH, M€unster, Germany) equipped

with a 488-nm argon laser. At least 5000 nuclei were analysed per

sample. Three individuals were analysed for each chickpea acces-

sion, and each individual was measured three times on three

different days. Nuclear DNA content was then calculated from

individual measurements following the formula: 2C nuclear DNA

content [pg] = 2.5 9 G1 peak mean of chickpea / G1 peak mean

of soybean. Mean nuclear DNA content was then calculated for

each plant. Genome size (1C value) was then determined consid-

ering 1 pg DNA is equal to 0.9789109 bp (Dole�zel et al., 2003).

Molecular sizes of chickpea chromosomes

We determined the relative chromosome lengths in chickpea desi

‘ICC 4958’ and kabuli ‘CDC Frontier’. Mitotic metaphase plates

were prepared using synchronized root tip meristems (Vl�a�cilov�a

et al., 2002). Root tips were fixed in 3:1 fixative (absolute

ethanol: glacial acetic acid) for a week at 37°C and stained in 2%

acetocarmine solution. Chromosome preparations were made

according to Masoudi-Nejad et al. (Masoudi-Nejad et al., 2002).

Figure 4 Circos heat map plot of the kabuli reference pseudomolecules

demonstrating a high density of sequence reads (red colour) from kabuli

chromosome H mapping to pseudomolecule Ca8. A small region on

pseudomolecule Ca8 which lacks chromosome H reads is covered by

chromosome C reads.

Figure 5 Circos heat map plot of the desi reference pseudomolecules

demonstrating a high density of sequence reads (red colour) from kabuli

and desi (D=desi, K=kabuli) chromosomes B, A, H and whole-genome

sequence (WGS) reads of desi.
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The preparations were counterstained with 4’,6-diamidino-

2-phenylindole (DAPI) in Vectashield (Vector Laboratories, Burlin-

game) and observed under a fluorescence microscope (Olympus

AX70, Tokyo, Japan). Chromosome lengths were estimated using

the MicroImage software (Olympus) in 15 complete metaphase

plates in each genotype, and average values were determined for

each chromosome. Molecular chromosome sizes were deter-

mined considering relative chromosome lengths and 1C nuclear

genome sizes as shown in Table 3.

Flow cytometric chromosome sorting and sequencing

Actively growing roots were used for cell cycle synchronization

and preparation of liquid chromosome suspensions according to

Vl�a�cilov�a et al. (Vl�a�cilov�a et al., 2002). Chromosomes in suspen-

sion were stained with 2 lg/mL DAPI and sorted using a

FACSAria flow cytometer (BD Biosciences, San Jos�e). The

identification of the sorted chromosomes A and B was

performed using fluorescent in situ hybridization (FISH) following

the protocol of Vl�a�cilov�a et al. (Vl�a�cilov�a et al., 2002), using

tandem repeat probe CaSat1. The purity of the chromosome H

fraction was determined based on chromosome morphology

without a specific probe. The chromosomal fractions were sorted

with the following purities: A: 93.75% (88.8%), B: 93.50%

(91%) and H: 96% (92%) for desi (and kabuli), respectively. For

whole-genome amplification, aliquots of 100 000–180 000

chromosomes (corresponding to ~20 ng DNA) were sorted into

PCR tubes containing 10 lL of deionized water. Chromosomal

DNA was purified as described in �Simkov�a et al. (�Simkov�a et al.,

2008) using increased proteinase K concentration (300 ng/lL).
The purified DNA was amplified using the Illustra GenomiPhi V2

DNA amplification kit (GE Healthcare, New York).

A total of 1 lg of amplified DNA was used to prepare an

Illumina TruSeq DNA HT library for each isolated chromosome,

according to the manufacturer’s instructions, and sequenced on

the Illumina Hiseq2000 platform using standard protocols (Table

S1). Chromosomes D and E from kabuli were isolated and

sequenced as a group.

Desi and kabuli genome comparison

A pairwise comparison of all desi pseudomolecules with all kabuli

pseudomolecules (Figure 1) was produced using the synteny

block and anchor filtering algorithms in SyMap v4.0 (Soderlund

et al., 2011). SOAP2.21 was applied to map Illumina sequence

data to the draft reference genome assemblies. For high-

confidence mapping, only paired reads mapping uniquely to the

reference was considered. For low stringency mapping, single and

nonunique mappings were permitted. Circos v0.56 (Krzywinski

et al., 2009) was used to produce circular heatmaps using

modified reference genomes with all ‘N’ nucleotides removed.

Custom perl scripts soap2nc.pl and nc2circos.pl were used to

convert SOAP output to Circos format. The boundaries of

misassembled regions were determined manually by visual

examination of the BAM file of mapped reads.
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