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Abstract: In this paper, an adaptive relaxation method and a discontinuity treatment of edges are 

proposed to improve the digital image denoising process by using the fourth-order partial differential 

equation (known as the YK model) first proposed by You and Kaveh. Since the YK model would 

generate some speckles into the denoised image, a relaxation method is incorporated into the model to 

reduce the formation of isolated speckles. An additional improvement is employed to handle the 

discontinuity on the edges of the image. In order to stop the iteration automatically, a control of the 

iteration is integrated into the denoising process. Numerical results demonstrate that such modifications 

not only make the denoised image look more natural, but also achieve a higher value of PSNR.  
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1. Introduction 

Image denosing, as one of the most important steps in image preprocesing, has drawn 

much research interest (see References [1]-[10] and the citations therein). Many 

researchers proposed a large number of methods to deal with the denoising problem. 

One of the most successful methods up to now is the BM3D model proposed in [9]. 

This model adopts a so-called block matching technique and provides a collaborative 

Wiener filtering to achieve excellent denosisng effect, However, this method requires 

prior information of the noisy image, i.e., the stand deviation of the noise, which is 

usually unknown when performing denoising tasks. Amongst many image denoising 

methods, the use of partial differential equations (PDEs) plays a significant role in the 

process due to its high efficiency wtihout any prior knowledge. In the literature, 

various models that make use of different PDEs were proposed, such as the isotropic 

model [11], the anisotropic model [12] and the total variational model ([8], [9]). These 

models are based on second order PDEs. A more comprehensive list of relevant scond 

order models can be found in [15]. One major weakness of using a second order PDE 

is the generation of a “block effect” [16] in the image. In order to overcome this 

weakness, You and Kaveh [17] utilized the Laplacian operator, instead of the 

gradient, of image intensity to establish a fourth order PDE which attracted much 
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attention. Since then fourth order PDEs are widely used for image denoising ([12]-

[15]) and other tasks of image processing ([16], [17]). Some recent methods include 

the fourth order dual method proposed by Chan[24], the fractional order anisotropic 

diffusion in [25] and others ([26]-[29]). Apart from the above, some research using 

high-order PDEs for image processing was carried out in ([30]-[32]). Due to its 

complex numerical implementation and enormous computation, it has not been very 

widely used in real applications. 

Although the model proposed by You and Kaveh had a significant success in image 

processing, it has its intrinsic problems. On one hand, it would bring in isolated white 

and black speckles to the denoised image. On the other hand, the method does not 

involve an automatic stopping device in the iteration process and thus users have to 

choose a maximum number of iterations empirically. Therefore the quality of the 

denoising cannot be fully controlled. In essence, different numbers of iterations may 

lead to different results. Consequently, developing a proper control of iterations is a 

useful and crucial way to achieve an automatic denoising process.  

In this paper, in order to address the problems of the YK model, an adaptive 

relaxation method is introduced to relieve the effect of isolated speckles and a 

discontinuity treatment of edges is adopted to sharpen the discontinuity on the edges 

of an image. Additionally, a control of the iterative process is employed in the 

numerical experiments to make the denoising process automatic. With these 

modifications, the result is superior to that obtained by the YK model. 

This paper is organized as follows. In Sect. 2, the YK model is investigated and the 

reasons for isolated speckles are analysed. As a consequence of this analysis, the 

adaptive relaxation method and edge discontinuity treatment are then described with 

the automatic control of iterations explained in Sect. 3. Numerical tests are given in 

Sect. 4 and conclusions are drawn in Sect. 5. 

2.The Fourth-Order PDE Model (YK Model) 

In the past decade, many researchers proposed various fourth-order PDEs for image 

denoising. There are some benefits in using fourth-order PDEs. First, the fourth-order 

PDEs can suppress oscillation at high frequency more effectively than the second-

order PDEs due to that the evolution of second order PDEs becomes weak in the high 

frequency areas. Second, for four-orde PDEs, there is of flexibility in employing 
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different functional behaviours in the formulation. In this section, an overview of the 

YK model is given and the shortcomings of this model are analysed and discussed.   

2.1 An Overview of the YK Model 

In 2000, You and Kaveh [11] proposed a time-dependent fourth-order PDE for image 

noise removal which is given by  
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where ( , , )u x y t  is the grey-level function at scale t and 0u  is a noisy image. Ω is 

the image domain, ∂Ω  is the boundary of Ω and n is the unit vector orthogonal to 

the boundary. In this model, You and Kaveh adopted the coefficient ( )c ⋅ used in the 

anisotropic diffusion model, i.e.,  
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where K is a constant dependent on the image. 

The YK model uses a piecewise planar image to approximate an original pure image. 

From the aspect of human visualization, a piecewise planar image looks more natural 

than the step image which second order PDEs employed to estimate the original 

image. This is the reason why it the YK model can prevent the “block effect” which is 

otherwise widely seen in all second order PDE models. In order to understand how 

this model works, the one-dimensional PDE of the form shown in Eqn (1) is 

considered [20], i.e. 
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 Expanding the right-hand side of Eqn (3) leads to  
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where 2 2 2 2
1( ) 2 ''( ) 3 '( )s c s s c sΦ = +  and 2 2 2 2

2( ) 2 '( ) ( )s c s s c sΦ = + . The local 

behaviour of Eqn (4) depends on the signs of 1Φ  and 2Φ . If  
22

1 2
0

u

x

  ∂ Φ <  ∂  
, it 

leads to the second order part forward diffusion, otherwise to a second order part 

backward diffusion. Likewise, if 
22

2 2
0

u

x

  ∂ Φ >  ∂  
, Eqn(4) performs the fourth-order 

forward diffusion, whereas 
22

2 2
0

u

x

  ∂ Φ <  ∂  
 ensures a fourth order backward 

diffusion.  

Nevertheless, this model tends to leave the resulting images with isolated white and 

black speckles (See Fig. 1(b)). These speckles can be featured as the pixels which are 

either much lighter or much darker than their neighbouring pixels. You and Kaveh 

thought that the piecewise planar images have weaker masking capability than step 

images used in anisotropic diffusion [11]. More specific reasons of this problem are 

explained in [21]. To understand the reasons, a control process is applied on the black 

point (denoted as the central point) in Fig. 1(c) and its four neighbouring points. 

                  

      (a)                                (b)                          (c)  

Fig. 1 Isolated speckles in the denoised image obtained by YK model. (a) is the image with 10 dB 

Gaussian noise, (b) is the denoised image by the YK model and (c) is the Zoom-in of the square pixel 

shown in (b) 

The changes of values of intensity at the central point above its four neighbouring 

points are shown in Fig. 2. 

 

central point  



5 

 

Fig. 2 Change of intensity around isolated speckles. C, W, E, N, S denotes the central point and its 

four neighbouring points in Fig. 1(c). 

Fig. 2 exhibits the fact that the intensity of the central point increases markedly 

whereas the intensity of the neighbouring points either decreases (points on the north 

and south of the central point) or fluctuates slightly. As a result, the difference in pixel 

intensity between the central point and its neighbouring points becomes bigger and 

bigger as the iteration goes on. On the other hand, from Fig. 2, it should be noted that 

the value of the intensity of the central point exceeds 255 which is the extreme value 

when storing an image. Thus, if the image is stored at this current iteration, the point 

would be cast to black point. The same case applies to the white points. From the 

above discussion, the reasons of isolated speckles can be summarised as 

1) The intensity of some points is changing more quickly than their neighbouring 
points or they change in different ways, i.e., the intensity of the central point 
increases, whereas intensities of its neighbouring points decrease. 

2) The intensities of some points are not in the range [0, 255] for a grey-value 
image of an image used in computer vision. 

2.2 Implementation of the YK model 

Before introducing the relaxation method into the iterative processing of the YK 

model, the discretisation of the YK model is simply decribed below. 

Firstly, Eqn (1) can be rewritten as:  
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2 2( |)g c u u= ∇ ∇ .    

Suppose the size of image is Ih Jh× , where h means the grid size of 

discretizationdiscretisation,  t∆ is the temporal step size. The discretisation process 

can be applied as following steps. 

Step 1: Calculate 
2u∇ ,. 
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Step 2: Calculate function g, 
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Step 4: Calculate the iterative equation, 

1 2
, , , .n n n

i j i j i ju u t g+ = −∆ ∇  

Step 5: Go to Step 1 if the pre-assigned number of iteration is not completed. 

3. An improved Fourth-Order PDE Denoising Method 

3.1 An Adaptive Relaxation Method 

Relaxation methods are were established in numerical schemes in many areas 

involving the solutions of simultaneous equations and systems of inequalities 

resulting from discretisation schemes. Relaxation can be applied to any systems of 

linear or nonlinear equations to speed up an estimation to an exact solution. The basic 
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idea is to guess a solution and obtain an improved approximation such that the error is 

reduced until it is less than some specified tolerance [34]. 

In general, relaxation methods are used to control the variation of approximate 

solutions between consecutive iterations. As mentioned in Sect. 2, speckles appear in 

the numerical solution process because pixel intensities of some points are changing 

too fast. Therefore, it is reasonable to employ a relaxation method in the process of 

denoising when using the YK model. In this paper, an adaptive relaxation method is 

proposed to relieve the generation of speckles in the YK model. Since the isolated 

speckles are local extreme values, such as in a 3 byx 3 neighbourhood, an isolated-

point-detection scheme which is developed in Sec. 3.2 is added to the algorithm when 

relaxation method is applied. The adaptive relaxation method can be explained as 

follows. 

Suppose nu  is the iterative solution of the discrete approximation of Eqn (1) at time ݐ = ݊οݐ, where οݐ means the time step size of the iteration. For a point p∈Ω , 

max min and u u  are the maximum and minimum intensity values of a deleted 

neighbourhood of p  (i.e. neighbourhood of p  without p ). Let globalmaxu and 

globalminu  be the global maximum and minimum values of the image u. Then define 

0.9 globalmaxglobalmax = u⋅  and 1.1 globalminglobalmin = u⋅ . If [ , ]n
p max minu u u∉  or 

[ , ]n
pu globalmin globalmax∉ , then one has  

1(1 ( )) ( )n n n
p p pu n u n uλ λ−=− + ,                                            (5) 

Here here :[0, ] [0,1]λ +∞   is a monotonically non-decreasing function with regard 

to the number of iterationss, e.g., ( 0.01 )( ) 1 nn eλ −= − . If the intensity of the central 

point in a 3 byx 3 window changes significantly, it can be restrained by using Eqn (5) 

to avoid too rapid a variation, leading to divergence of the iterative scheme. The result 

obtained by the adaptive relaxation method for Fig. 1(a) is shown in Fig. 3(a). It can 

be seen from the result that the intensities along the edges are not continuous. This 

may be due to the local character of the relaxation method. Therefore, a discontinuity 

treatment for edges is needed which is proposed in Sect. 3.2. The aim of this treatment 

is to make the edges look more natural in an image following the denoising 

procedure. 
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(a)                                                          (b)  

Fig. 3 Results of using relaxation methods. (a) and (b) are the denoised images by the YK model 

without and with discontinunity treatment, respectively 

3.2 The Discontinuity Treatment 

To handle the discontinuity on the edges, the first step is to detect the discontinous 

pixel points along the edges. In the literature, the mask below is used to recognise the 

discontinuous points around the edges[23], 
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The response, R, of the mask applied at any point in an image is given by 

 

9

1
i i

i

R w u
=

=∑
,                                                       (6) 

where iu  is the intensity of the pixel at position i in the mask above and iw  is the 

weighted coefficient of the mask. Detection of the discontinuous points on which the 

mask is centered occurs if  

R T≥ .                                                            (7) 

Here T is a non-negative threshold. The underlying idea of this method is to make use 

of the intensity difference, which is determined by the threshold T, between an 

isolated point and its neighbouring points.  

After detecting the discontinuous points on the edges, in order to restore better values 

of the pixels at such points, the types of edges where these points are located need to 

be examined. For simplicity, only four simple types of edges are to be taken into 

consideration, including horizontal edges, vertical edges, and inclined edges oriented 

at 45º and -45º directions. The corresponding masks are shown as below [23]: 
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    (a)                        (b)                      (c)                        (d) 

Fig. 4 Edge detector detective masks corresponding to the horizontal, vertical, 45° and -45° directions  

Four different masks are proposed here to restore the discontinuous pixel points on 

edges defined in the above modes respectively (See Fig. 5). Here the weighted 

coefficients are chosen such that the central point takes the most weight and then the 

points along the edge which the central point locates at. Other points take the same 

but the least weight. For example, if a discontinuous pixel point is located on a 

horizontal edge, then the template to be used is as in Fig. 5(a). The result of using the 

relaxation method together with the discontinuity treatment is shown in Fig. 3(b). 
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(a)                   (b)                     (c)                     (d)  

Fig. 5 Discontinuous point restored masks corresponding to the horizonal, vertical, 45° and -45̊  

directions   

3.3 A Control of Iteration 

In numerical analysis, the L2-norm is often used to control the convergence, that is 

[36],  

                      
2

1 1 2
, ,

,

( )n n n n
i j i jL

i j

u u u u ε− −

∈Ω

− = − <∑ , 

where Ω is the problem domain and ε  is the tolerance usually set as 10-4. However, 

this norm is not usually employed in image processing. In the literature, most papers 

simply set the number of iterations as an input ([4], [11], [12], etc.), and some papers 

proposed different criteria according to their specific models [37], [38]). Therefore, it 

is sensible to find a certain quantity to control the number of iteration. As mentioned 

in Sect. 2, with the iteration proceeding, the asymptotic value of 2u∇  lies close to 

zero, as t →∞ , which means 2u∇  could be used to terminate the iteration. In this 

paper, the average value of 2u∇  over all pixels is proposed to control the iteration 

process. 
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In order to investigate the features of Î , the relationship between Î  and the number 

of iteration is studied using the YK model. Here the image in Fig. 1(a) and two other 

benchmarking images in Fig. 7 are used for testing. 

 
                       (a)                                           (b)  

Fig. 6 Profiles of Î  and PSNR with regard to the number of iteration 

   
                      (a)                                            (b)  

Fig. 7 Two benchmarking images with 10dB Gaussian noise. (a) Lena, (b) Camera 

Fig. 6(a) shows that after certain number of iterations, the value of Î  becomes 

constant. Furthermore, by comparing Fig. 6(a) and Fig. 6(b), it is easily obtained that 

when the values of PSNR reach their peak, values of Î  tend to become constant. 

Therefore, it is reasonable to assume that when the value of ̂I  is nearly constant, the 

value of PSNR is most likely to be high. Based on this analysis, the following 

condition is proposed to control the iteration: 
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1ˆn̂ nI I ε−− < .                                                       (9) 

Here ε  is a tolerance which can be chosen for different applications.  

4. Numerical Tests 

4.1 Algorithm Description 

Suppose the size of image is Ih Jh× , where h  means the grid size of discretization, 
t∆  is the temporal step size. Standard finite difference notation for the discretisation 

is used in the description of the algorithm. The improved algorithm can be described 
as below: 

1. Initial noisy image 0u , Set : 0n = and 0ˆ : 0I = ; 

2. Calculate 2 nu∇  and ( )2 2 2 2( )n n ng c u u∇ =∇ ∇ ∇ ; 

3. Calculate 1 2n n nu u t g+ = −∆ ∇ ; 

4. If [ ]max min,nu u u∉  or [ ],nu globalmax globalmin∉ , ( )1 11 ( ) ( )n n nu n u n uλ λ+ +=− + ; 

5.calculate 1ˆnI + , If 1ˆn̂ nI I ε+ − ≥ , goto 6, else goto 7; 

6. update : 1n n= + , goto 2; 

7. Use the discontinuity treatment in Sect. 3.2 to restore the discontinuous points on 

the edges.  

Remarks: 

a: The discretised form of the Laplacian is computed as below: 

1, 1, , 1 , 1 ,2
, 2

4n n n n n
i j i j i j i j i jn

i j

u u u u u
u

h
+ − + −+ + + −

∇ = ; 

b: The symmetric condition is used along the boundary: 

1, 0, 1, ,

, 1 ,0 , 1 ,

,     0,1,2, .

,      0,1,2, .

n n n n
j j I j I j

n n n n
i i i J i J

u u u u j J

u u u u i I

− +

− +

= = =

= = =




 

c: max min  u and u  are the local maximum and minimum values of a 3 by 3 

neighbourhood of the current point;  

d: globalmax and globalmin are the 90% of global maximum and minimum values in 

the current image; 

e: ( 0.01 )( ) 1 nn eλ −= − ; 
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f:  In Eqn (9), 310ε −= ; 

g: the mask used in Eqn (6) is  

1 1 1

1   8  1

1 1 1

− − − 
 − − 
 − − −   

h:  Eqn (7) is modified as _  or _R global max R global min> <  and the values of 

globalmax and globalmin are the same as those in Remark c;  

4.2 Numerical Experiments 

In this experiment, the fourth-order PDE model for image denoising proposed by You 

and Kaveh (YK model) and the fourth-order PDE model with the relaxation method 

and the discontinuity treatment (AYK)  are tested.  

To make the results more obvious, several images with different simple edges are 

designed to test the performance of the AYK  model when coming across the 

discontinuity at the edges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

   

   

   

          (a)                           (b                           (c)  

Fig. 8 A set of experiments by using the YK model and the proposed model. Column (a): Three test 

images with 10 dB Gaussian noise, Column (b): The corresponding denoised images by the YK model, 

Column (c): The corresponding denoised images by the proposedAYK  model. 

From Fig. 8, it can be seen that no matter what kind of edges are present, the YK 

model cannot handle them well and the isolated speckles exist both in the flat area 

near the edges and on the edges. Especially for the circle image, after processing 

processed by the YK model, although the noise in the flat area is removed, there are 

many speckles generated around the circles. However, the resulting images in Fig. 

8(c) shows that the AYK model not only removes noise efficiently, but also succeeds 

in avoiding the speckles and preserves edges better than the YK model. 

In order to verify the validity of the proposed model, experiments including two 

groups of 1-D signals and 2-D images shown in Fig. 7 are conducted in the following 

section. The WYK model proposed in [29] is used for comparison.  

For the 1-D signal demonstration, in order to compare the similarity between the 

denoised signal and the original signal quantitatively, the L1-norm defined as below is 

employed in this paper,  ݎݎݎܧ = (ݔ)݂| െ  , ݔ݀|(ݔ)݃
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where f(x) and g(x) means the original and denoised signals. The two groups of 1-D 

signals experiments are shown in Fig. 9 with the corresponding error measurement in 

Table 1. 

   
                (a)                                           (b) 

 
                    (c)                                      (d)  

 
                (e)                                         (f) 



15 

 
                (g)                                        (h) 

 
                 (i)                                            (j) 

Fig. 9 1-D signal demonstration. The first column includesare the original signal a, its corresponding 

noisy signal, the denoised signals by the YK model, the WYK model, and the AYK model, 

respectively. The second column are is the original signal b and the denoised results. 

From this demonstration, it can be seen that all three fourth order PDE models can 

remove the noise from the signal, although some details are lost, more or less. By 

comparing the results, one can observe that, for signal a, the performance of these 

three models are almost the same. For signal b, the AYK model provides the best 

result, whether whatever in the flat area (ݐ א [0,50], small oscillation in the YK 

model) or in the noisy area (ݐ א [51,100], small oscillation in the YK and WYK 

models). In such a case, the AYK model performs better than the YK and WYK 

models. The error measurement shown in Table 1. can also draw the same conclusion. 
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Table 1 Error measurement for Fig. 9  

                  Signal 

             Error 

Model 

a b 

Noisy signal 25.64 243.15 

Y-K model 24.59 140.44 

WYK model 23.22 134.35 

AYK model 23.61 97.15 

 

The 2-D image demonstration uses the two benchmarking images, Lena and Camera 

to test the performance amongst the three models mentioned above. The error 

measurement used for 2-D image experiments is PSNR which is defined as below. 

[ ]
10

2

1 1

255 255
10 log ,

1
( , ) ( , )

W H

i j

PSNR
I i j u i j

W H = =

 
 ×

= ⋅  
 −

× ∑ ∑
 

where W and H are the width and height of an image investigated, respectively. 

( , )I i j  and ( , )u i j  are the grey values corresponding the original pure image and the 

restored image. 

   

                    (a)                                                 (b)  
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               (c)                                        (d) 

   

              (e)                                          (f)  

Fig. 10 Denoised results. (a) and (b) are the results by the YK model, (c) and (d) are the results by the 

WYK model, (e) and (f) are the results by the AYK model. 

The value of the threshold K in three models above is chosen as 10 and the time step

0.25t∆ = . As seen in Fig. 10, the AYK model can play a good role in removing noise 

and the isolated speckles produced by the YK model are diminished. From the results 

given by the Y-K model, one can see that although noise is removed, some isolated 

speckles are brought in. The WYK model, on one hand, performs noise removal and 

keeps more details than the Y-K model. On the other hand, it still leads to isolated 

speckles. However, it relieves this symptom to some extent. The AYK model not only 

removes noise from the image, but also avoids isolated speckles successfully. 

Comparing with the results given by the WYK model, it leads to more details lost. In 
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the following section more objective information is provided to compare the two 

algorithms.  
Fig. 11 provides the PSNR comparison amongst three models, which shows that the 

WYK and AYK models present better PSNR values than Y-K model and in the long 

term, the AYK model degrades the image more slowly than the WYK and Y-K 

model. 
 

 

                       (a)                                             (b)  

Fig. 11 The variation of PSNR, (a) with the image Lena, (b) with the image Camera 

From these two graphs, at the beginning of the process, the values of PSNR almost 

overlap since the value of Ȝ is small at first. After that, the performance of the 

proposed method is much better than that of the YK model. The value of PSNR 

remains higher and also requires a fewer number of iterations to yield a higher value 

of PSNR. 
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Figure 7.6 shows the three models applied to the benchmark images, Lena and 

Camera.  

 

5. Conclusion 

In this paper, an adaptive relaxation method and a discontinuity treatment are 

proposed to improve the performance of the YK model. With such modifications, on 

one hand, not only the noise from an image may be removed more efficiently, but also 

it preserves the YK model’s favourable properties, e.g, the reduction of staircasing 

effect presenting in the second order PDE models. On the other hand, the isolated 

speckles brought in by the YK model vanish. In addition, the proposed method can 

preserve more details of the original image and protect the edges well which is one of 

the main purposes of image denoising. Finally a stopping control of the iterative 

process is proposed to make the algorithm automatic, which may be generalised to 

other PDE models for image denoising. 

References 

1. Lee, J. S.: Digital Image Enhancement and Noise Filtering by Use of Local Statistics.  IEEE 

Trans. Pattern Anal. Mach. Intell., 2(2), 165-168 (1980) 

2. Coifman R. R., Donoho D. L.: Translation-invariant De-noising. Wavelet and Statistics, Springer 

Lecture Notes in Statistics, 103, 1995. 

3. Chang S. G., Yu, B., Vetterli M.: Image Denoising via Lossy Compression and Wavelet 

Thresholding. Proc. IEEE Int. Conf. Image Process., 1, 604-607 (1997) 

4. Gilboa G., Sochen N.,Y. Zeevi Y.: Forward-and-Backward Diffusion Processes for Adaptive 

Image Enhancement and Denoising. IEEE Trans. Image Process., 11(7), 689-703 (2002) 

5. Buades A., Coll B., Morel J.-M.: A non-local algorithm for image denoising. Computer vision and 

Pattern Recognition, 2, 60-65 (2005) 

6. Roth S. and Black M. J.: Fields of Experts: A Framework for Learning Image Priors. Computer 

vision and Pattern Recognition, 2, 860-867 (2005) 

7. Buades A., Coll B., Morel J. M.: Nonlocal Image and Movie Denoising. Int. J. Comput. Vis., 

76(2), 123-139 (2008) 

8. Rajan J., Kannan K., Kaimal M. R.: An Improved Hybrid Model for Molecular Image Denoising. 

J. Math. Imaging Vis., 31(1), 73-79 (2008) 

9. Dabov K., Foi A., Katkovnik V., Egiazarian K.: Image Denoising by sparse 3D Transform-domain 

Collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080-2095 (2007) 



20 

10. Burger H. C., Schuler C. J., Harmeling S.: Image Denoising: Can Plain Neural Networks Compete 

with BM3D? Computer Vision and Pattern Recognition, 2392-2399 (2012) 

11. Koenderink J.: The Structure of Images. Biological Cybernetics, 50(5), 363-370 (1984) 

12. Perona P., Malik J.: Scale-space and Edge Detection Using Anisotropic Diffusion. IEEE Trans. 

Pattern Anal. Mach. Intell., 12(7), 629-639 (1990) 

13. Rudin L., Osher S., Fatemi E.: Nonlinear Total Variation Based Noise Removal Algorithms. 

Physica D, 60(1-4), 259-268 (1992) 

14. Rudin L. I., Osher S.: Total Variation Based Image Restoration with Free Local Constraints. 1st 

IEEE Int. Conf. Image Process., 1, 31-35 (1994) 

15. Guidotti P.: A Backward-forward Regularisation of the Perona-Malik Equation. J. of Dierential 

Equation, 252(4), 3226-3244 (2012) 

16. You Y.-L., Xu W., Tannenbaum A., Kaveh M.: Behavioral Analysis of Anisotropic Diffusion in 

Image Processing. IEEE Trans. Image Process., 5(11), 1539-1553 (1996) 

17. You Y.-L., Kaveh M.: Fourth-order Partial Differential Equations for Noise Removal. IEEE Trans. 

Image Process., 9(10), 1723-1730 (2000)  

18. Lysaker M., Lundervold A., Tai X. C.: Noise Removal Using Fourth-order Partial Differential 

Equation with Applications to Medical Magnetic Resonance Images in Space and Time. IEEE 

Trans. Image Process., 12(12), 1579-1590 (2003)  

19. Luminita A.V., Osher. S.: Image Denoising and Decomposition with Total Variation Minimization 

and Oscillatory Functions. J. Math. Imaging Vis., 20(1-2), 7-18 (2004) 

20. Lysaker M., Tai X. C.: Iterative Image Restoration Combining Total Variation Minimization and a 

Second-Order Functional. Int. J. Comput. Vis., 66(1), 1-18 (2006) 

21. Li F., Shen C., Fan J., Shen C.: Image Restoration Combining a Total Variational Filter and a 

Fourth-order Filter. J. Vis. Commun. Image Represent., 18(4), 322-330 (2007) 

22. Holm R.: Image Inpainting Using Nonlinear Partial Differential Equations. Thesis in Applied 

Mathematics, University of Bergen. http://www.uib.no/People/nmaxt/thesis/randi.pdf  (2005). 

Accessed 07 February 2011 

23. Yi D., Lee S.: Fourth-order Partial Differential Equations for Image Enhancement. Appl. Math. 

Comput., 175(1), 430-440 (2006) 

24. Chan T. F., Esedoglu S., Park F.: A Fourth Order Dual Method for Staircase Reduction in Texture 

Extraction and Image Restoration Problems. UCLA CAM Report 05-28 (2005) 

25. Bai, J., Feng X.: Fractional-Order Anisotropic Diffusion for Image Denoising. IEEE Transactions 

on Image Processing, 16(10), 2492-2502 (2007) 

26. Hajiaboli M.R.: An Anisotropic Fourth-Order Partial Differential Equation for Noise Removal. Int 

J Comput Vis, DOI 10.1007/s11263-010-0330-1 (2009) 

27. Guidotti P., Longo K.: Two Enhanced Fourth Order Diffusion Models for Image Denoising. 

Journal of Mathematical Imaging and Vision, 40(2), 188-198 (2011) 

28. Wang Y., Xue H.: Applying Fourth-Order Partial Differential Equations and Contrast 

Enhancement to Fluorescence Microscopic Image Denoising. Knowledge Discovery and Data 

Mining Advances in Intelligient and Soft Computing, 135, 123-128 (2012) 

http://www.uib.no/People/nmaxt/thesis/randi.pdf


21 

29. Liu X. Y., Lai C. H., Pericleous K. A., Wang M. Q.: On a Modified Diffusion Model for Noise 

Removal. Journal of Algorithms and Computational Technology, 6(1) 35-58 (2012) 

30. Chan T.,  Marquina A, Mulet P.: High-order Total variation-based Image Restoration. SIAM J. 

Sci. Comput., 22(2), 503-516 (2000) 

31. Didas S., Weickert J.: Higher Order Variational Methods for Noise Removal in Signals and 

Images. Diploma thesis, Department of Mathematics, Saarland University. http://www.mia.uni-

saarland.de/didas/pub/diplom.pdf (2004). Accessed 07 February 2011 

32. Didas S., Weickert J., Burgeth B.: Stability and Local Feature Enhancement of Higher Order 

Nonlinear Diffusion Filtering. Pattern Recognit., 3663, 451-458 (2005) 

33. Lü L., Wang M., Lai C. H.: Image Denoise by Fourth-order PDE Based on the Changes of 

Laplaician. J. Algorithms Comput. Technol., 2(1), 99-110 (2008) 

34. Glowinski R.: Numerical Methods for Nonlinear Variational Problems. Springer (1984) 

35. Gonzelaz R. C., Woods R. E.: Digital Image Processing (2nd Edition). Addison-Wesley Longman 

Publishing co., Inc., Boston (1992) 

36. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P.: Numerical Recipes: The Art of 

Scientific Computing (3rd Edition). Cambridge University Press, Cambridge, UK (2007) 

37. Lin Z. and Shi Q.: An Anisotropic Diffusion PDE for Noise Reduction and Thin Edge 

Preservation. Proc. 10th Int. Conf. Image Anal. Process., 102-107 (1999) 

38. Joo K. and Kim S.: PDE-based Image Restoration: A Hybrid Model and Colour Image Denoising. 

IEEE Trans. Image Process., 15(5), 1163-1170 (2006) 

http://www.mia.uni-saarland.de/didas/pub/diplom.pdf
http://www.mia.uni-saarland.de/didas/pub/diplom.pdf

