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1 Introduction 21 
It is expected that controllable loads and energy storage devices will be integrated in distribution networks of the 22 

future, in addition to distributed generation, thus increasing network complexity [1], [2]. Combined Heat and Power 23 
(CHP) generation technologies are also expected to form part of this generation mix [2], [3]. All these resources can be 24 
described as Distributed Energy Resources (DER). 25 

CHP generators can utilise a number of different energy carriers as input fuels, such as natural gas or hydrogen. 26 
These carriers are delivered through different networks, which influence the overall efficiency and characteristics of a 27 
local energy system, including electricity networks. It has been proposed in [4], [5] and [6] that these energy carriers 28 
should be included in the design and planning phases of an energy system. In [6], an infrastructure planning tool was 29 
proposed for the design of energy systems in which heat and electricity carriers are coupled. Combined network 30 
analysis methodologies have also been developed [7]. In [8], a tool for integrating economic dispatch and optimal 31 
power flows of electricity and gas at the Grid Supply Points of Great Britain has been presented. Electric vehicles can 32 
also play a role as mobile resources in multiple energy carrier systems, and this has been discussed in [9] and [10]. 33 

It is necessary to evolve traditional electricity, gas and other energy systems to more flexible, integrated energy 34 
systems [11], referred to as multiple energy carrier, or multi-carrier systems. The points of interaction between 35 
different energy carriers have been described as “energy hubs” [5], [12], which present an integrated approach for 36 
optimizing systems with multiple energy carriers, such as electricity, hydrogen, or natural gas networks [13]. Devices 37 
are incorporated in an energy hub with the purpose of converting from one carrier to another, e.g. a CHP unit 38 
converting natural gas to electricity and heat. Storage elements such as batteries or thermal storage may also be 39 
considered. The energy carrier inputs to the energy hub are optimised and controlled in order to supply a given set of 40 
energy carrier loads / outputs, thus achieving whole-system optimization [12], [14]. In (1), the backward coupling 41 
matrix (Dnm) which links the inputs (Pm) with the outputs (Ln) is shown, as this is a formality that is used in Section 2.2. 42 
The elements of the Dnm matrix are constructed using the conversion efficiencies of individual devices in the energy 43 
hub [12]. Matrix dimensions are 𝑀 × 1, 𝑁 × 1 and 𝑀 × 𝑁, for Pm, Ln and Dnm respectively. 44 
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A dispatch factor ν is defined, which indicates the percentage of any given input that is being used by any given hub 48 
element in matrix Dnm [12]. For example, in (1), if 𝑑𝛼𝛼 = 𝜈1 × 𝜂1 and 𝑑𝛼𝜉 = 𝜈2 × 𝜂2, then 𝜈1 + 𝜈2 = 1 where 𝜈1 and 49 

𝜈2 are dispatch factors of conversion devices in the energy hub and 𝜂1 and 𝜂2 their conversion efficiencies. Therefore, 50 
(1) can be used to calculate the total energy inputs (Pm) required to satisfy a desired energy output [12]. Optimisation51 
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methods are used to minimise the total energy inputs (Pm) by varying the dispatch factors of the individual devices in 1 
the energy hub and consequently in the Dnm matrix. The problem is normally linear, but can become non-linear if 2 
generator part-load conversion efficiencies are taken into account, as their curves are non-linear.  3 

Multi-agent systems (MAS) comprise multiple individual intelligent agents, e.g. installed on a controller of a DER. 4 
MAS are classified as a distributed control architecture and have been proposed as a promising technology for 5 
addressing control and co-ordination issues in the power industry, including DER [15], [16]. In addition, MAS have 6 
been proposed for controlling CHP unit clusters [17] and for co-ordinating electric vehicle charging [18],[19],[20],[21]. 7 

1.1 Related work 8 
The concept presented in this paper combines the multiple energy carrier modelling approach of energy hubs, with 9 

the distributed control approach of multi-agent systems. The two concepts are inherently linked by the fact that they 10 
are both applicable mostly to distributed energy generation, i.e. local and small rather than central and large power 11 
plants. This link is thoroughly analysed in [22] and [23]. The comprehensive review of optimisation methods in multi-12 
generation systems done in [22] reveals that a wide variety of centralised optimisation algorithms have been used. 13 
That includes traditional methods such as linear programming [24] and Lagrangian multipliers [25], as well as artificial 14 
intelligence (AI) algorithms such as evolutionary [26] and genetic algorithms [27]. Robust Optimization (RO) 15 
techniques have also been proposed in [28]. 16 

On the other hand, a wider conceptual view of the use of multi-agent systems in a market-like structure with 17 
multiple layers has been proposed in [29]. Agent-based implementations are by definition market oriented, provided 18 
that they use cooperative or competitive negotiation and coordination techniques, and normally use market-like 19 
structures to reach an optimal or near-optimal solution [29], [30]. Such market-oriented approaches have also been 20 
developed by the authors in previous work [18],[19],[20],[21]. The key design considerations for agent-based 21 
implementations most frequently encountered in the aforementioned literature are: 22 

(a) The need for a commercial interface, which enables access to markets (e.g. power, ancillary services) [18], [19], 23 
[20], [21], [29], [31], [32], [33]. 24 

(b) The need for a technically-oriented supervisory structure, which is responsible for ensuring that the operation 25 
of the controlled/optimised resources adheres to technical limits of the infrastructure (e.g. voltage statutory 26 
limits, transformer ratings) [18], [19], [20], [21], [31]. 27 

(c) Agents typically possess cognitive abilities, such as complex communication and negotiation algorithms [15], 28 
[16], [29]. The responsive characteristics are very important in real-time power system operation, where time 29 
is often insufficient for high-level cognitive functions or communication (e.g. responding to faults). 30 

(d) Hierarchical systems generally resemble the structure of power systems in terms of voltage levels, hence can 31 
be considered more suitable than their centralised or distributed counterparts [18], [19], [20], [21], [29], [31]. 32 

(e) The need to address or compensate for planning errors, including operation forecasts [21], [33], [34]. 33 
The combined use of multi-agent systems and energy hubs was implied in [9] and [35], where the focus was on 34 

electric vehicles, as well as [36], where an agent-based optimal power flow (OPF) solution was proposed for multiple 35 
energy carriers. The use of an agent-based algorithm for economic dispatch of power systems with wind penetration 36 
has been proposed in [37]. 37 

1.2 Main contribution of the paper 38 
This paper extends the current state of the art, as shown in the literature review, by proposing an integrated 39 

technical and market-enabled approach to the control of multiple energy carrier systems, using an agent-based 40 
implementation. The main contribution of this paper is the validation of a novel control methodology for controlling 41 
multiple energy carriers with multi-agent systems. This methodology was initially described in [10] and its unique 42 
contribution is that it enables interaction of the energy hubs with external markets for procuring energy carriers. An 43 
additional contribution of this methodology is that it can cater for forecast inaccuracies, by facilitating an internal 44 
collaborative balancing mechanism, thus preventing deviations from procurement contracts that may lead to 45 
monetary penalties. An implementation of the methodology is presented, as well as case studies, which verify its 46 
validity. The case studies include simulations as well as experimental work. 47 

1.3 Structure of the paper 48 
The paper is arranged as follows. Section 2 describes the control approach; Section 3 presents the results of a 49 

simulated case study and Section 4 the results of an experimental study that validates the feasibility of the agents in 50 
real micro-CHP systems. Finally, the main conclusions and future work are discussed in Section 5. 51 

2 Multiple energy carrier optimization with intelligent agents 52 

2.1 Agent-based control structure design 53 
The proposed control structure includes a number of agents, with different roles. Agents are linked to each of the 54 

elements in the energy hub. These agents hold detailed information on the state and characteristics of the device they 55 



are linked to (e.g. a CHP generator agent has knowledge of CHP heat to power ratio, engine temperature, generator 1 
efficiency). 2 

A hierarchical aggregation structure has been 3 
proposed, to enable the scalable and modular 4 
aggregation of the energy hubs [10]. A commercial 5 
aggregation entity is assumed as the highest level of 6 
aggregation. This entity operates as a Virtual Power 7 
Plant aggregator, interacting with wholesale 8 
electricity, gas, ancillary services or emissions 9 
markets, as described in [21]. A diagram illustrating 10 
the architecture of the system is presented in Fig. 1. 11 
The agent-based control structure includes four 12 
different agent types, with the following functions: 13 

 Hub element agents: These represent micro-14 
generators, electric vehicles, energy storage 15 
devices, boilers, controllable loads, converters, 16 
reformers. They can forecast demand and 17 
control generation, having visibility of the real-18 
time parameters of their associated device for 19 
each of the relevant energy carriers. Such 20 
parameters include conversion efficiencies, heat to power ratio, availability and responsiveness. The parameters 21 
that a hub element agent has access to are given in Table 1. The Hub element agents are able to forecast 22 
stochastic parameters, such as wind speed, and adjust their limit, rating and efficiency values accordingly. 23 

 Hub agent: Optimises the energy carrier inputs in the energy hub, according to the parameters provided by the 24 
hub elements and user preferences and needs. The Hub agent optimisation objectives are further discussed in 25 
the following section. 26 

 Technical Aggregator (TA – Microgrid) agent: Validates that the optimised generation (Pm) and demand (Ln) 27 
forecasts from groups of Hub agents in the same local segment (e.g. electricity at the LV distribution transformer) 28 
are within technical constraints (e.g. power ratings, voltage levels, gas pressure). If they are not, a corrective 29 
action is requested, as described in Section 2.3 below. 30 

 Commercial Aggregator (CA – Virtual Power Plant) agent: Trades energy carriers and services in appropriate 31 
markets. If there is a variation from market contracts, it requests from the Hub agents to adjust specific energy 32 
carriers associated with generation (Pm) or demand (Ln) (e.g. more electricity, less gas). 33 

 34 
Table 1 – Parameters that Hub element agents were considered to have access to. 35 

Hub element Parameters 

Photovoltaic solar irradiation, cell temperature, module DC voltage / current, inverter AC voltage / current 
Wind turbine wind speed, rotor speed / torque, generator AC power output 

Fuel Cell 
cell temperature, fuel / oxygen / air flow rate, cell DC voltage / current, inverter AC output, 

CHP system input / output temperature, thermal power output 

Microturbine 
turbine rotational speed, fuel flow rate, shaft torque, generator power output, CHP system 

input / output temperature, thermal power output 
Energy storage battery State of Charge (SoC), State of Health (SoH), full-load and no-load voltage 

2.2 Energy carrier optimisation in an Energy Hub 36 
The Hub agent is responsible for optimizing the energy hub. Every time step that the optimisation is performed, 37 

the Hub agent collects data from all the hub element agents on conversion efficiency, input and output limits and 38 
resourcre forecasts for the next time step, where applicable. It then constructs the Pm, Ln and Dnm matrices and hosts 39 
the optimisation calculations. The optimiser needs to ensure that the load is satisfied, subject to the constraints 40 
imposed by the CA contracts and the TA technical limitations. The optimization outputs are the dispatch factors in 41 
matrix Dnm. The optimal dispatch factors are then sent to the hub element agents. A flowchart describing the energy 42 
hub optimization algorithm is presented in Fig. 2. The optimisation is performed by varying the power inputs and/or 43 
the dispatch factors. The objective function 𝐹𝑜𝑏𝑗  of the optimisation problem is given in (2) below, where 𝐶𝑜𝑏𝑗 44 

indicates a factor relating to the objective, as described in (a), (b) and (c) below: 45 

𝑚𝑖𝑛 𝐹𝑜𝑏𝑗 = 𝐶𝑜𝑏𝑗 ∑ 𝑃𝑚

𝑀

𝑚=1
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𝑀

𝑚=1
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Fig. 1.  Intelligent agent control architecture for energy hubs 



Three different objectives are considered in the 1 
optimization process: 2 

a) Minimize total energy input: Minimize total input 3 
energy consumption for the given loads, improving 4 
overall hub efficiency. In this case, 𝐶𝑜𝑏𝑗 = 1 at all 5 

times. 6 
b) Minimize total cost: Modify the objective function, to 7 

include the cost of each energy carrier. Each row of the 8 
product of LnDnm is multiplied with a cost factor 𝐶𝑜𝑏𝑗 9 

(e.g. £0.4 per m3 of natural gas). 10 
c) Minimize total output emissions: Similar to cost 11 

optimization, each row of the product of LnDnm is 12 
multiplied with an emission factor 𝐶𝑜𝑏𝑗 (e.g. 1.875 13 

kgCO2/m3 of natural gas). 14 
 15 
The formulation of the above optimisation problem in 16 

(2) is very similar to the agent-based objective of 17 
maximisation of social welfare, as described by (3), taken 18 
from [38], where 𝑠𝑤(𝜔) denotes the sum of utilities of 19 
each agent 𝑢𝑖 of a set of agents Ag, for outcome ω. In this 20 
case, ω is equivalent to the Hub element agent’s power 21 
input. 22 

𝑠𝑤(𝜔) = ∑ 𝑢𝑖(𝜔)

𝑖∈𝐴𝑔

 23 

 24 
Hence, by combining (2) and (3) and defining 𝐷𝑛𝑚𝑖 as 25 

the coupling matrix of the individual Hub element agents, 26 
the maximisation of the agent social welfare consists of 27 
minimising the objective function: 28 

𝑚𝑎𝑥[𝑠𝑤(𝜔)] = 𝑚𝑖𝑛 [𝐶𝑜𝑏𝑗 ∑ ( ∑ 𝐷𝑛𝑚𝑖

𝑖∈𝐴𝑔

) 𝐿𝑛

𝑀

𝑚=1

] 29 

 30 
Optimisation constraints include operational constraints (power ratings) of energy hub devices, energy storage 31 

capacity and external infrastructure constraints at the power input ports [10], [14]. The following constraints are 32 
common constraints which may be encountered in a realistic system: 33 

 34 

 Carrier supply limitations, where 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 is the minimum / maximum power input that the infrastructure 35 
can support. This can be due to e.g. transformer ratings for electricity, or gas network minimum pressure limits. 36 
The lower limit may be zero or negative, depending on the approach to reverse power flow, i.e. whether the 37 
reverse power flow can be considered as a negative input or as an output. The calculation of this constraint can 38 
also come from a power flow analysis of the external electricity network, as in [14]. 39 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑚 ≤ 𝑃𝑚𝑎𝑥       (5) 40 

 Hub element equipment limitations, such as minimum / maximum generation output 𝐺𝑚𝑖𝑛𝑛 and 𝐺𝑚𝑎𝑥𝑛, for 41 
carrier 𝑛 and element 𝑖. This is typically defined by power output ratings of the conversion equipment for each 42 
carrier. In the case of energy storage, 𝐺𝑚𝑖𝑛𝑛 could extend to negative values. 43 

𝐺𝑚𝑖𝑛𝑛 ≤ 𝐿𝑛
𝑖 ≤ 𝐺𝑚𝑎𝑥𝑛      (6) 44 

 Dispatch factor complementarity, for the same energy carrier n, since the amount of energy carrier input that is 45 
fed to each element 𝑖 is defined proportionally to the dispatch factors. 46 

𝜈1
𝑛 + 𝜈2

𝑛 + ⋯ + 𝜈𝑖
𝑛 = 1      (7) 47 

 Closed system constraint, which dictates that the inputs matrix Pm must equal the outputs matrix Ln multiplied 48 
with the coupling matrix Dnm. This is effectively the same as equation (1). 49 

𝑃𝑚 = 𝐷𝑛𝑚𝐿𝑛       (8) 50 

Start 

Hub agent records / discovers number of 
element agents and updates database  

Hub agent requests from element agents the 
following: (i) efficiencies, (ii) types of energy 

inputs / outputs and (iii) device ratings 

Hub agent constructs backward 
coupling matrix (Dnm) 

Hub agent performs 
optimization of Pm matrix 

Hub agent sends final dispatch factors (ν) to 
element agents and final Pm matrix to CA and TA 

agents 
Fig. 2.  Energy hub optimization algorithm 

Wait [time 
interval] 

Hub agent modifies demand 
(Method 1) or dispatch factors 

(Method 2), or trades with 
other Hub agents (Method 3) 

Modification request 
received from CA/TA? Yes 

No 

Hub agent sends optimal Pm 
matrix to CA and TA agents 

Hub element agents perform 
forecasts for stochastic parameters 

and inform Hub agent 

(4) 

(3) 



Fig. 3. UML diagram of the multi-agent system interactions 

2.3 Agent-based multiple energy hub interaction 1 
The optimization algorithm is processed for as long as the system remains operational, at pre-defined time 2 

intervals (in this paper half-hour intervals are used, in accordance with market contracts in the UK wholesale market). 3 
At each time interval, the objective function for the next time interval is optimized, as seen in [8], [10] and [31]. A 4 
major concern is the potential for forecast errors, which carries the risk of mismatch between calculated optimal 5 
dispatch of energy hub elements and available energy carrier inputs procured by the Commercial Aggregator agent. 6 
This is what the proposed multi-agent system intends to solve, by facilitating a collaborative balancing mechanism. A 7 
Unified Modelling Language (UML) diagram of the interaction between the different agents is shown in Fig. 3. Once 8 
the optimal energy hub inputs are calculated for a time-step/interval, then the Hub agent informs the Commercial 9 
and Technical Aggregator agents of its calculated Pm matrix. If a mismatch is found due to energy availability or if 10 
technical constraint violations are foreseen, the CA or TA agents respectively calculate the difference (shortfall or 11 
excess) and inform the affected Hub agents. The Hub agents then take one or more of the following actions. The 12 
decision on the choice of method is based on the nature of the mismatch. This is further discussed in Section 3.4.  13 

a) Method 1: Modify demand (Ln) characteristics of the energy hubs by means of controllable loads. 14 

b) Method 2: Modify the dispatch factors of the hub elements away from the optimal position, changing the input 15 
characteristics (Pm). 16 

c) Method 3: Trade energy carriers between them (e.g. 1 kWh electricity, 1m3 natural gas), if possible, to maintain 17 
the hub optimal positions. 18 

d) Reject a CA modification request, initiating a compensation process, where the CA either negotiates an alternative 19 
contract, or receives a penalty from the market. Requests from the TA cannot be rejected, due to technical 20 
constraints.  21 



Fig. 4. UML diagram of the Hub agent bidding mechanism 

2.4 Co-ordination mechanism 1 
The mechanism for co-ordinating 2 

multiple energy hubs in Method 3 is a first-3 
price sealed-bid auction [38]. This is the 4 
simplest form of auction, involving just 5 
one round of bidding. The Hub agent that 6 
wants to trade energy carriers (initiator) 7 
sends out a call for proposals. Then, any 8 
other Hub agent which is interested in 9 
trading (responder) submits a bid and the 10 
initiator agent allocates the traded energy 11 
carrier to the highest bidder. Fig. 4 shows 12 
the UML diagram of this interaction.  13 

2.5 Comparison with other 14 
methodologies 15 

The proposed methodology is aimed at 16 
improving certain weaknesses of 17 
traditional centralised optimisation 18 
methodologies, hence indicators such as 19 
optimality or computational time or 20 
efficiency are not appropriate to use in the 21 
comparison. However, an attempt is made 22 
in Table 2 to compare these indicators, as 23 
well as the functionality of the proposed 24 
methodology against centralised linear 25 
optimisation. The functionality benefits by 26 
the proposed methodology match those of 27 
multi-agent systems in general, as these 28 
have been described in [16]. 29 

 30 

 Table 2 – Functionality of proposed methodology against traditional centralised optimisation. 31 

Functionality indicator Proposed methodology Centralised linear optimisation 

Computational time 
Uncertain – depends on agent interaction, affected 

by communication delays, not limited by system size 
Fast – but limited by size of 

system 
Optimality Near-optimal Optimal 

Scalability Unlimited 
Limited by computational 

capacity 

Visibility Complete, down to the equipment level 
Limited to high-level 

parameters 

Forecast error tolerance Can compensate through Methods 1 / 2 / 3 
None – optimisation algorithm 

must be repeated 
 32 

3 Simulated case study 33 

3.1 Motivation 34 
The nature of the proposed methodology involves a large number of energy resources, such as distributed 35 

generators, energy storage devices and electric vehicles. Multi-agent systems such as the proposed system are 36 
scalable [16], so could range from a handful to thousands of resources. Hence, it is not practical to attempt a full-scale 37 
experimental verification, since that would require a large-scale field trial to be meaningful. Instead, a simulated case 38 
study was built, in order to test the functionality of the control system implementation. 39 

3.2 System description and input data 40 
The studied system is a microgrid, based on the system described in [3]. The microgrid includes a total electrical 41 

generation capacity of 63kW, comprised of the distributed generation (DG) units in Table 3, as well as 20 households. 42 
Two optimisation targets were considered in separate case studies: (i) cost reduction and (ii) CO2 emissions reduction. 43 
The carrier inputs considered are (i) renewable energy in the form of wind or solar energy, (ii) grid electricity and (iii) 44 
natural gas. The output carriers considered were (i) electricity and (ii) heat. A large boiler was considered as a backup 45 



heat source and the electricity grid as a backup 1 
electricity source. The boiler and CHP units were fed 2 
by natural gas and the electricity output was linked to 3 
the input through a transformer. Fig. 5 shows the 4 
energy hub structure considered. Two identical energy 5 
hubs were included in the model.  6 

The cost was taken as £0.1558 per kWh for grid 7 
electricity and £0.05013 per kWh for natural gas [39]. 8 
Emission factors were taken as 430 gCO2/kWh for grid 9 
electricity and 184 gCO2/kWh for natural gas [40]. 10 
Daily half-hour electrical load profiles from [41] were 11 
used and thermal load profiles from [42]. The 12 
electrical load profiles were scaled to the maximum 13 
electrical load of 116.4 kVA at a power factor of 0.85, 14 
as in [3]. The thermal load profiles were scaled to 8 15 
kW per household [42], for 22 units (20 households 16 
and 2 service areas) [3]. Natural gas is supplied to the 17 
fuel cell, the microturbine and the boiler. Electricity is 18 
fed to a transformer, while renewable energy (wind 19 
and solar) is input to the wind turbine and 20 
photovoltaic. JADE (Java Agent Development 21 
Framework) was used to model the MAS. Optimisation of the energy hub was performed for each of 48 half-hour 22 
steps using the open-source JOM (Java Optimization Modeler) package [43]. 23 

 24 
Table 3 – Energy Hub elements, their efficiency and power characteristics [3], [40]. 25 

Hub element 
Electrical 

efficiency (%) 
Thermal 

efficiency (%) 
Electrical 

output (kW) 
Thermal 

output (kW) 

Photovoltaic 15 - 10 - 
Wind turbine 40 - 13 - 

Fuel Cell 40.4 56.6 10 14 
Microturbine 25.9 67.34 30 78 
Large boiler - 90 - 3072 

Grid transformer 98 - 500 - 
 26 

3.3 Simulation results – impact of optimisation 27 
Simulations were performed, testing the optimization of the system against (a) minimized cost and (b) minimized 28 

emissions. Additional simulations were performed to record the cost and emissions when the test system was not 29 
controlled / optimized, as a base case. It was assumed that the photovoltaic, wind turbine and fuel cell would 30 
constantly run at 100% of their output capacity. The microturbine would also run at full capacity, unless the load was 31 
not enough to absorb the output power (no ability to feed power to the grid). The grid and the boiler would supply 32 
any additional electrical or thermal load respectively. The load was considered the same in all cases (see Section 3.2). 33 
This base-case scenario is consistent with the fit-and-forget approach currently in place in the generation industry. 34 

Fig. 6 illustrates the impact that the optimisation has had on the cost (in £/kWh) and emissions (in gCO2/kWh) of 35 
one of the energy hubs, by comparing the optimised with the non-optimised results. The average reduction 36 
throughout the day was found to be 6.42% in cost and 14.10% in emissions. 37 

   38 
    (a)        (b) 39 

Fig. 6. Optimised against non-optimised cost (a) and emissions (b) per kWh of energy hub inputs every half-hour 40 
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As can be seen from Fig. 7 below, the optimized profile of power inputs in one energy hub shows much reduced 1 
(21.8% on average) primary power consumption for feeding the same load, when compared to the non-optimized 2 
input profile. The graphs are cumulative, thus showing the total primary power input to the energy hub. An important 3 
factor is that the non-optimized operation of CHP generator(s) leads to heat being dissipated, which would otherwise 4 
be useful for feeding the thermal loads. 5 

 6 
         (a)        (b) 7 

Fig. 7. Breakdown of (a) non-optimized and (b) cost-optimized energy hub primary power inputs every half-hour 8 

3.4 Simulation results – effectiveness of balancing methods 9 
A sensitivity analysis was performed to evaluate the effectiveness of the balancing methods. Deviation requests 10 

were initiated by the Commercial Aggregator agent, based on typical forecasting errors. An average load forecasting 11 
error of 3.455% is reported in [44]. For the studied system, this equates to 3.42 kW for electricity and 6.08 kW for gas. 12 
Hour-ahead forecast errors of up to 12.851% have also been reported in [45], which would translate to 12.71 kW for 13 
electricity and 22.62 kW for gas. Simulations were performed assuming a deviation request on each of the time-steps 14 
(every half-hour), to evaluate the times of the day when the proposed system would be more effective. The 15 
parameters that were varied in the sensitivity analysis are as follows: 16 

 Magnitude of deviation, i.e. 3.42 kW or 12.71 kW for electricity and 6.08 kW or 22.62 kW for gas 17 

 Direction of deviation, i.e. negative or positive (e.g. – 3.42 kW, + 22.62 kW) and all combinations 18 

 If one or two energy hubs were affected. 19 

It was assumed that if all three methods failed to take care of the deviation request, then the Commercial 20 
Aggregator would have to resort to the external balancing markets. Balancing costs were estimated at 0.003 £/kWh 21 
[46]. Fig. 8 presents a comparison between using the proposed system to internally balance deviations and going 22 
straight to the balancing market. Table 4 presents the average cost per kWh of the cases presented in Fig. 8. 23 

   24 
         (a)        (b) 25 

Fig. 8. Cost comparison between using the proposed system and resorting to external balancing markets for 26 
deviations of (a) +3.42 kW electricity and +6.08 kW gas and (b) +12.71 kW electricity and +22.62 kW gas 27 

 28 
Table 4 – Comparison of average kWh cost between the proposed Methods and the external balancing market. The 29 

+12.71 kWelectricity / +22.62 kWgas case only accounts for time-steps 10 – 43, where the Methods were used 30 

 +3.42 kWelectricity / +6.08 kWgas  +12.71 kWelectricity / +22.62 kWgas 

Optimized – no deviation £0.0820 / kWh £0.0755 / kWh 
Deviation resolved with Methods £0.0916 / kWh (+11.6%) £0.1005 / kWh (+33.9%) 
Deviation resolved with external 

balancing market 
£0.1020 / kWh (+24.3%) £0.1272 / kWh (+70.0%) 
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In Fig. 9, a breakdown of the primary inputs is given, per hub element, for one of the energy hubs that was 1 
simulated. Fig. 9(a) shows the normal optimised profile of an energy hub, without any deviation requests, with the 2 
characteristics described in Section 3.2. Fig. 9(b) shows the same profile, when a large deviation request of +12.71 kW 3 
for electricity and +22.62 kW for gas is received at every time step and resolved by Method 2. It can be seen that the 4 
total power input is much higher and the dispatch of energy hub elements is different, as it is now constrained by the 5 
requested deviation. 6 

 7 

   8 
         (a)               (b) 9 

Fig. 9. Breakdown of the primary power input, for minimisation of energy hub inputs (a) without any modification 10 
requests (b) with large [+12.71 kW electricity / +22.62 kW gas] modification requests addressed by Method 2 11 

 12 

3.5 Discussion of simulated results 13 
The results shown in Fig. 6 and 7 prove that the developed system is able to optimise the operation of multiple 14 

generation units (CHP and renewable) with multiple energy carrier inputs within an energy hub, compared to a base 15 
case of non-optimised dispatch. Fig. 8 and Table 4 further show that the proposed system is more cost-effective in 16 
accommodating forecast errors than the existing balancing markets. In addition to the results presented in Sections 17 
3.3 and 3.4, findings from the sensitivity analysis that was performed include the following: 18 

a) Method 1 was not able to resolve requests involving positive deviations. However, when negative 19 
deviations occurred, the average overall deviation was reduced by up to 81.9%, leaving the remainder to 20 
be addressed by Method 2 or 3. 21 

b) In the case of deviation of +12.71 kW for electricity and +22.62 kW for gas for both Hubs, Method 2 was 22 
the only method which could resolve the deviation, but only in the peak periods. If such a deviation 23 
occurred during off-peak periods, the option to enter the external balancing market had to be chosen. This 24 
is apparent in Fig. 8(b), where the cost in the off-peak periods matches that of the external balancing 25 
market. This is most likely because during off-peak periods there would not be enough load to 26 
accommodate the additional requested consumption. 27 

c) In the case of deviation of +12.71 kW for electricity and +22.62 kW for gas for only one of the two Hubs, 28 
Method 3 resolved the deviation, but again only in the peak periods. Hub 1 was assumed to not be able to 29 
accommodate the deviation request, hence it traded with Hub 2. However, during off-peak periods Hub 2 30 
was also unable to accommodate any deviation, for the same reasons described in point (b) above. 31 

From the tests performed, it was observed that the distribution of the primary power input across the different 32 
energy hub elements is almost identical in both the cost and the emissions optimisation. The use of renewables is 33 
maximised in both cases, since the cost as well as emissions during their operation is assumed to be zero, given that 34 
life-cycle costs and emissions are not taken into account. Due to the power generation limitations of the local 35 
generators (CHP and renewables), grid electricity is used as a complementary resource, to fill in the gaps in electricity 36 
supply. Likewise, the backup boiler is operated only when the thermal load exceeds the capacity of the CHP units.   37 

There is a requirement to supply a fixed load, and the optimised profile has been fine-tuned to do that with the 38 
minimum primary power input. Hence, there is very little room to reduce the power input of any of the carriers. This 39 
was apparent during the simulations, since the optimiser could not converge even with relatively small power input 40 
reduction requests from the aggregator. Conversely, due to the presence of the grid backup supply and the large 41 
boiler, the margin to adhere to power input increase requests was quite large. Thus, it can be concluded that Method 42 
1 (using controllable loads to reduce load) must be used for reduction requests and Method 2 (modifying optimal 43 
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position) for increase requests. It was also seen that energy hubs can trade power inputs within their operating range 1 
using Method 3, being able to cover for each other’s mismatch. However, a Hub agent receiving a request to cover a 2 
mismatch on behalf of another agent also needs to use Methods 1 or 2, to be able to comply. 3 

The results in Table 4 also show that if the proposed system was used for dealing with forecast errors, the costs 4 
associated with balancing would be reduced by approximately 52%, independent of the magnitude of the forecast 5 
error. However, the overall cost of energy would be reduced by approximately 10% for the case of +3.42 kW 6 
electricity / +6.08 kW gas and 21% for the case of +12.71 kW electricity / +22.62 kW gas, compared to the overall 7 
energy cost when using the external balancing market. Hence, the savings that can be achieved by the proposed 8 
system are directly proportional to the occurring forecast error. 9 

A special case that may occur during the operation of the system is that the energy hubs may have conflicting 10 
objectives. If the aggregator requests all hubs to reduce e.g. their gas consumption, it is highly likely that some hubs 11 
will not be able to accommodate that request. Method 3 will be executed and through the internal trading 12 
mechanism the system will find the most appropriate way of sharing the requested reduction, with the least amount 13 
of overall mismatch. Hence, the energy that must be traded in the external balancing market is also minimised. This is 14 
realistically the best way of resolving such a scenario and is consistent with previous work by the authors and other 15 
researchers in the field of agent-based trading mechanisms [10], [15], [16], [17], [21], [29], [30], [32], [38]. 16 

4 Technical feasibility of agent-based controllers in real domestic micro-CHP applications 17 

4.1 Motivation 18 
The operation of the algorithm and multi-agent system was thoroughly tested in the previous sections. Distributed 19 

and agent-based systems do not rely on high-powered centralised data processing centres, but are aimed at utilising 20 
small-scale, low-powered, distributed computing and control hardware installed on local resources, much like the 21 
Internet of Things (IoT) paradigm. Hence, it is important to test if the developed system can be hosted in such 22 
hardware, especially since it involves optimisation, which can be computationally demanding. A schematic showing a 23 
breakdown of a typical installation of intelligent control equipment on DER is shown on the left side of Fig. 10. The 24 
communications systems feasibility has been proven by the authors in previous work involving an earlier version of 25 
the system, which had a much more intense communications burden [21]. It was shown that the agents can 26 
communicate effectively even through a dial-up internet connection. In this context, it was important to test further 27 
the interface of the agent platform with real multiple energy carrier conversion equipment (micro-CHP).  28 

 29 

4.2 Experimental setup description for testing the interface with micro-CHP equipment 30 
The feasibility of the interface was tested using a micro-CHP unit test rig, shown in Fig. 11.  The engine is a water 31 

cooled 4-stroke 2 cylinder Honda engine which produces 5.595 kW (7.5 hp), a size appropriate for domestic 32 
installations [3].  The engine is controlled by using a custom-made digital controller circuit-board interfaced with 33 
LabVIEW. The micro-CHP test rig was also retrofitted to include heat exchangers at the exhaust. The working fluid 34 
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used was tap water, extracting heat from the engine’s exhaust gases. A 1 
trial run was undertaken to estimate the efficiency of the micro-CHP 2 
system. Both the electrical and thermal efficiencies were found to be 3 
10%. Hence, thermal output was considered to be equal to the electrical 4 
output, 5.595 kWth. 5 

The tests included linking LabVIEW to the JADE code and control the 6 
engine according to the multi-agent system decision-making process. The 7 
JADE code was receiving information from the instruments on the test rig 8 
and was feeding the decision-making set-points to the engine. This 9 
enabled the test of the control system with real feedback. A schematic of 10 
the system is shown on the right side of Fig. 10. 11 

A servomotor was used to control the throttle, the setpoint for which 12 
was given by the agent through LabVIEW. LabVIEW was also logging data 13 
such as engine speed and water temperature at the input and output of 14 
the exhaust heat exchanger and was passing those measurements to the 15 
CHP agent. Due to the lack of an electric motor, the engine was assumed 16 
to run in constant torque mode. Since the power of rotating machinery is 17 
given as the product of torque and angular speed (𝑃 = 𝜏 × 𝜔), the electrical output was taken to be proportional to 18 
the speed. The speed of the engine was determined by a Hall effect sensor and magnet arrangement on the shaft of 19 
the engine. The circuit-board had a frequency to voltage converter on board that took the pulses from the Hall effect 20 
sensor (on the shaft of the engine) and converted them to a voltage to be applied to the analogue input of the mbed 21 
microcontroller (see Fig. 10). The system was calibrated using a hand held optical tachometer. The speed of the 22 
engine was therefore proportional to the voltage applied to the analogue input of the mbed microcontroller. 23 

The experiments were performed using a mid-range consumer laptop (Intel i3) to run the MAS code and the 24 
LabVIEW interface, also functioning as a data-logger. Two energy hub agents were simulated, with each energy hub 25 
containing 6 energy resource agents. Including the test rig agent, 15 agents were simulated in total. The optimisation 26 
process was performed twice in every time-step, once for each of the two energy hubs. The time-step was considered 27 
to be a half-hour, but due to engine run time limitations, each half-hour was considered to last 30 seconds. Two tests 28 
were undertaken: 29 

 Test 1: A test with the measured efficiency (electrical = 10%, thermal = 10%). However, due to the very low 30 
efficiency of the engine rig, it was not being utilised by the optimiser and was constantly ran at the minimum. 31 
Hence, test (b) was also performed. 32 

 Test 2: A test considering the engine to have the efficiency of a typical microturbine, as defined in [40]              33 
(electrical = 25.9%, thermal = 67.34%). 34 

4.3 Experimental test results 35 
The results from the experimental study are presented in Fig. 12 – 14. In Fig. 12, a breakdown is given of primary 36 

power inputs to the energy hub that the test rig was considered to be part of. The diagrams are cumulative and the 37 
engine petrol input (in kW) is at the bottom. Fig. 12(a) shows the results from Test 1 and Fig. 12(b) the results from 38 
Test 2. It is observed that the engine input in Fig. 12(a) is constant, which is explained in the discussion section. 39 

 40 

  41 
(a)        (b) 42 

 43 
Fig. 12. Breakdown of the primary power input by resource for (a) Test 1 and (b) Test 2 44 
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Fig. 11.  The engine rig used in the tests 



The agreement of the fuel input setpoint given by the controller, with the actual fuel input recorded, is compared 1 
in Fig. 13. It can be seen that the deviation is small in Test 1, but larger in Test 2. This is because the fuel input was 2 
calculated using the electrical and thermal output measurements from the engine rig. Since in Test 2 the ratio of 3 
electrical and thermal output was different than the actual, an offset is observed. This can also be seen in Fig. 14. 4 

 5 

    6 
(a)        (b) 7 

Fig. 13. Optimised (setpoint) and actual fuel input to the engine for Test 1 (a) and Test 2 (b) 8 

In Fig. 14, the temperature range of the heat exchanger, as well as the calculated electrical and thermal output of 9 
the engine rig are shown for Test 1 in Fig. 14(a) and Test 2 in Fig. 14(b). It can be seen that during Test 1, the outputs 10 
are constant, at the minimum. This is due to the efficiency being comparatively very low, hence the multi-agent 11 
system operated the engine as low as possible to prevent the overall energy hub efficiency from dropping. This was 12 
the main reason that Test 2 was performed. During Test 2, the engine rig is utilised more, which is reflected in Fig. 13 
14(b). The observed deviation between the setpoint and the actual engine thermal output in Test 2 is due to the 14 
difference between the real and the assumed ratio of electrical and thermal efficiencies. Since the engine was 15 
operated as electrically-led, this deviation in the heat output was unavoidable. 16 

 17 

 18 

    19 

    20 
(a)        (b) 21 

Fig. 14. Water input and output temperature to the heat exchanger, as well as optimised and actual electricity and 22 
heat output of the engine for (a) Test 1 and (b) Test 2 23 
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4.4 Discussion of experimental results 1 
The results of the experimental study show that it is feasible to control real energy resources with the proposed 2 

MAS. The test rig controller and agent-hosting platform (laptop) would be replaced by a commercial purpose-built 3 
device, able to host the agent, communicate with the other agents and control the energy resource. From Fig. 12, Fig. 4 
13 and Fig. 14, it can be seen that the rig was utilised more when the efficiency was considered to be of a typical 5 
microturbine CHP, also reducing the overall primary power input, due to the reduced associated losses. 6 

The whole computational time on the computer was measured in the range of 2.06 – 2.68 seconds, to execute all 7 
Methods for the whole system (two energy hubs). Taking into account that time intervals were considered to be 30 8 
minutes apart, the tested methodology is not very computationally intensive. Hence, inexpensive platforms with 9 
lower computational power (e.g. micro-controllers, single-board computers) may be used to host the agents. The 10 
controller platforms must also be able to communicate with other agent-hosting platforms, e.g. through the internet, 11 
in order to facilitate interaction between the different agents. Previous work by the authors has shown that the 12 
developed system can operate even through unreliable internet connections [21]. 13 

5 Conclusions – Future Work 14 
This paper presented the validation of an approach for control and optimisation of groups of energy hubs, which 15 

contain distributed energy resources interacting with multiple energy carriers. The structure of a hierarchical multi-16 
agent system was described, which controls and coordinates the energy hubs, the energy hub elements, as well as 17 
two types of aggregators. The operational procedure of the multi-agent system has been described and its 18 
fundamental elements have been illustrated. 19 

Different layers and functionalities of coordination were described. The overarching control structure was defined 20 
as a Virtual Power Plant, capable of interacting with external markets. Energy hubs are also grouped through a 21 
technical aggregation layer. Each individual energy hub is responsible for optimising energy carrier input according to 22 
associated loads. Implementation of agent-based control on multiple energy carriers, in combination with the energy 23 
hubs concept, adds the flexibility, resilience and extensibility of multi-agent systems to the inclusivity of energy hubs. 24 

Simulated and experimental case studies were performed. The simulated case studies have proven that 25 
optimisation methods can be used to reduce the cost and/or emissions associated with energy hub operation. In 26 
addition, it was shown that energy hubs can participate in energy-related markets while adhering to technical 27 
constraints. The proposed system has been found to reduce the cost of energy supply from the energy hub 28 
components by 6.42% and the emissions by 14.10%. In addition, the cost of balancing a mismatch is reduced by more 29 
than 50%, bringing final energy cost reductions. Hence, if such a system is scaled up to creating localised energy 30 
communities with millions of consumers, it would bring significant cost reductions, to the level of tens of £ millions. 31 
The next step in this research is to evaluate these costs through extending the sensitivity analysis of Section 3.4 with a 32 
realistic market participation case study, as this was beyond the remit of this paper. 33 

Finally, the experimental case study provided further evidence, in addition to the work done in [21], that the 34 
mechanism to realise this functionality can be implemented on generic, cost-effective equipment, such as a personal 35 
computer and/or an inexpensive controller. The next step would be to develop a purpose-built controller that can also 36 
host the agent. 37 

6 Acknowledgements 38 
Part of the work presented in this paper was supported by the Interreg IVA Channel programme 2007-2013 and 39 

the European Regional Development Fund (ERDF), through the project “Ecotec 21”, with project no. 4160. 40 

7 References 41 
[1] T. S. Ustun, C. Ozansoy, A. Zayegh, (2011), “Recent developments in microgrids and example cases around the 42 

world—A review”, Renewable and Sustainable Energy Reviews, Vol. 15, No. 8, pp. 4030-4041 43 
[2] N.W.A. Lidula, A.D. Rajapakse, (2011), “Microgrids research: A review of experimental microgrids and test 44 

systems”, Renewable and Sustainable Energy Reviews, Vol. 15, No. 1, pp. 186-202 45 
[3] S. Papathanassiou, N. Hatziargyriou and K. Strunz, (2005), “A benchmark low voltage microgrid network”, 46 

CIGRE Symposium, Athens, 13-16 April 2005 47 
[4] M. Chaudry, N. Jenkins, M. Qadrdan, J. Wu, (2014), “Combined gas and electricity network expansion 48 

planning”, Applied Energy, Vol. 113, January 2014, pp. 1171-1187 49 
[5] M. Geidl, G. Koeppel, P. Favre-Perrod, B. Klockl, G. Andersson,  K. Frohlich, (2007), “Energy hubs for the 50 

future”, IEEE Power and Energy Magazine, Vol. 5, No. 1, pp.24-30, Jan.-Feb. 2007 51 
[6] M.T. Rees, J. Wu, B. Awad, J. Ekanayake, N. Jenkins, (2011), “A total energy approach to integrated community 52 

infrastructure design”, 2011 IEEE Power and Energy Society General Meeting, 24-29 July 2011 53 
[7] X. Liu, J. Wu, N. Jenkins, A. Bagdanavicius, (2015), “Combined analysis of electricity and heat networks”, 54 

Applied Energy (in press), http://dx.doi.org/10.1016/j.apenergy.2015.01.102 55 



[8] M. Chaudry, N. Jenkins, G. Strbac, (2008), “Multi-time period combined gas and electricity network 1 
optimization”, Electric Power Systems Research, Vol. 78, No. 7, July 2008, pp. 1265-1279 2 

[9] M.D. Galus, G. Andersson, (2008), “Demand Management of Grid Connected Plug-In Hybrid Electric Vehicles 3 
(PHEV)”, IEEE Energy 2030 Conference (ENERGY 2008), 17-18 Nov. 2008 4 

[10] S. Skarvelis-Kazakos, P. Papadopoulos, I. Grau Unda, (2014) “Agent-based control of multiple energy carriers 5 
and energy hubs”, 5th IEEE PES International Conference and Exhibition on Innovative Smart Grid 6 
Technologies (ISGT Europe 2014), Istanbul, 12-15 October 2014 7 

[11] P. Favre-Perrod, M. Geidl, B. Klockl, G. Koeppel, (2005), “A vision of future energy networks”, 2005 IEEE Power 8 
Engineering Society Inaugural Conference and Exposition in Africa, 11-15 July 2005 9 

[12] M. Geidl, G. Andersson, (2005), “A modeling and optimization approach for multiple energy carrier power 10 
flow”, 2005 IEEE Russia Power Tech, 27-30 June 2005 11 

[13] K. Orehounig, R. Evins, V. Dorer, (2015), “Integration of decentralized energy systems in neighbourhoods using 12 
the energy hub approach”, Applied Energy, Vol. 154, 15 September 2015, pp. 277-289 13 

[14] M. Geidl, G. Andersson, (2007), “Optimal Power Flow of Multiple Energy Carriers”, IEEE Transactions on Power 14 
Systems, Vol. 22, No.1, pp.145-155 15 

[15] A.L. Dimeas and N.D. Hatziargyriou, (2005), “Operation of a Multiagent System for Microgrid Control” IEEE 16 
Transactions on Power Systems, Vol. 20, No. 3, pp.1447-1455 17 

[16] S.D.J. McArthur, E.M. Davidson, V.M. Catterson, A.L. Dimeas, N.D. Hatziargyriou, F. Ponci and T. Funabashi, 18 
(2007), “Multi-Agent Systems for Power Engineering Applications—Part I: Concepts, Approaches, and 19 
Technical Challenges,” IEEE Transactions on Power Systems, Vol. 22, No. 4, pp.1743-1752 20 

[17] K.H. van Dam, M. Houwing, Z. Lukszo, I. Bouwmans, (2008), “Agent-based control of distributed electricity 21 
generation with micro combined heat and power—Cross-sectoral learning for process and infrastructure 22 
engineers”, Computers & Chemical Engineering, Vol. 32, No. 1–2, January 2008, pp. 205-217 23 

[18] I. Grau Unda, P. Papadopoulos, S. Skarvelis-Kazakos, L. M. Cipcigan, N. Jenkins, E. Zabala, (2014), 24 
“Management of Electric Vehicle battery charging in distribution networks with Multi-Agent Systems”, Electric 25 
Power Systems Research, Vol. 110, pp. 172–179 26 

[19] A. F. Raab, M. Ferdowsi,  E. Karfopoulos, I. Grau Unda, S. Skarvelis-Kazakos, P. Papadopoulos, E. Abbasi, L.M. 27 
Cipcigan, N. Jenkins, N. Hatziargyriou, and K. Strunz, (2011), “Virtual Power Plant Control Concepts with 28 
Electric Vehicles”, 16th International Conference on Intelligent System Applications to Power Systems (ISAP), 29 
25-28 Sept. 2011, Crete, Greece 30 

[20] P. Papadopoulos, N. Jenkins, L.M. Cipcigan, I. Grau, E. Zabala, (2013), “Coordination of the Charging of Electric 31 
Vehicles Using a Multi-Agent System”, IEEE Transactions on Smart Grid, Vol.4, No.4, pp.1802-1809 32 

[21] S. Skarvelis-Kazakos, E. Rikos, E. Kolentini, L.M. Cipcigan, N. Jenkins, (2013), “Implementing agent-based 33 
emissions trading for controlling Virtual Power Plant emissions”, Electric Power Systems Research, Vol. 102, 34 
pp. 1-7, September 2013 35 

[22] G. Chicco, P. Mancarella, (2009), “Distributed multi-generation: A comprehensive view”, Renewable and 36 
Sustainable Energy Reviews, Vol. 13, No. 3, April 2009, pp. 535-551 37 

[23] P. Mancarella, (2014), “MES (multi-energy systems): An overview of concepts and evaluation models”, Energy, 38 
Vol. 65, pp. 1-17, February 2014 39 

[24] X.Q. Kong, R.Z. Wang, X.H. Huang, (2007), “Energy optimization model for a, CCHP system with available gas 40 
turbines”, Appl Therm Eng, 25:377–91 41 

[25] K. Hemmes, J.L. Zachariah-Wolff, M. Geidl, G. Andersson, (2007), “Towards multisource, multi-product energy 42 
systems”, Int J Hydrogen Energy, 32:1332–8 43 

[26] M. Burer, K. Tanaka, D. Favrat, K. Yamada, (2003), “Multi-criteria optimization of a district cogeneration plant 44 
integrating a solid oxide fuel cell-gas turbine combined cycle, heat pumps and chillers”, Energy, 28(6):497–518 45 

[27] H. Li, R. Nalim, P.A. Haldi, (2006), “Thermal-economic optimization of a distributed multi-generation energy 46 
system—a case study of Beijing”, Appl Therm Eng, 26(7):709–19 47 

[28] A. Parisio, C. Del Vecchio & A. Vaccaro, (2012), “A robust optimization approach to energy hub management”, 48 
International Journal of Electrical Power & Energy Systems, 42(1), 98-104 49 

[29] A.L. Dimeas and N.D. Hatziargyriou, (2007), “Agent based control of Virtual Power Plants,” International 50 
Conference on Intelligent Systems Applications to Power Systems (ISAP) 2007, 5-8 November 2007 51 

[30] W. Ketter, J. Collins, P.P. Reddy, C.M. Flath & M.D. Weerdt, (2011), “The power trading agent competition”, 52 
ERIM Report Series Reference No. ERS-2011-027-LIS 53 

[31] S. Skarvelis-Kazakos, P. Papadopoulos, I. Grau, A. Gerber, L.M. Cipcigan, N. Jenkins and L. Carradore, (2010), 54 
“Carbon Optimized Virtual Power Plant with Electric Vehicles”, 45th Universities Power Engineering 55 
Conference (UPEC), Cardiff, 31 August – 3 September 2010 56 

[32] D. Pudjianto, C. Ramsay and G. Strbac, (2007), “Virtual power plant and system integration of distributed 57 



energy resources”, IET Renewable Power Generation, Vol. 1, No. 1, pp. 10–16 1 
[33] I. Lopez-Rodriguez, M. Hernandez-Tejera, (2015), “Infrastructure based on supernodes and software agents 2 

for the implementation of energy markets in demand-response programs”, Applied Energy, Vol. 158, pp. 1-11 3 
[34] E. Kuznetsova, Y. Li, C. Ruiz, E. Zio, (2014), “An integrated framework of agent-based modelling and robust 4 

optimization for microgrid energy management”, Applied Energy, Vol. 129, pp. 70-88 5 
[35] M.D. Galus, G. Andersson, (2009), “Integration of Plug-In Hybrid Electric Vehicles into energy networks”, 2009 6 

IEEE Bucharest PowerTech, June 28 2009-July 2 2009 7 
[36] T. Krause, G. Andersson, K. Fröhlich, & A. Vaccaro, (2011), “Multiple-energy carriers: modeling of production, 8 

delivery, and consumption”, Proceedings of the IEEE, 99(1), 15-27 9 
[37] M. Moeini-Aghtaie, P. Dehghanian, M. Fotuhi-Firuzabad, A. Abbaspour, (2014), “Multiagent Genetic Algorithm: 10 

An Online Probabilistic View on Economic Dispatch of Energy Hubs Constrained by Wind Availability”, IEEE 11 
Transactions on Sustainable Energy, Vol. 5, No.2, pp.699-708, April 2014 12 

[38] M. Wooldridge, (2009), “An introduction to multiagent systems”, John Wiley & Sons 13 
[39] L. Vincent, J. Marvin, H. Lucas, (2015), “Quarterly Energy Prices: June 2015”, National Statistics – Department 14 

of Energy & Climate Change, https://www.gov.uk/government/organisations/department-of-energy-15 
climatechange/about/statistics (last visited 01 September 2015) 16 

[40] S. Skarvelis-Kazakos, L.M. Cipcigan and N. Jenkins, (2009), “Micro-Generation For 2050: Emissions 17 
Performances Of Micro-Generation Sources During Operation”, Pollack Periodica, Vol.4, No.2, pp.89-99 18 

[41] DTI Centre for Distributed Generation and Sustainable Electrical Energy, United Kingdom Generic Distribution 19 
System (UKGDS), http://www.sedg.ac.uk (last visited 01 September 2015) 20 

[42] S. Abu-Sharkh, R.J. Arnold, J. Kohler, R. Li, T. Markvart, J.N. Ross, K. Steemers, P. Wilson and R. Yao, (2006) 21 
“Can microgrids make a major contribution to UK energy supply?”, Renewable and Sustainable Energy 22 
Reviews, Vol. 10, No. 2, pp. 78-127 23 

[43] P. Pavon Mariño, “JOM (Java Optimization Modeler)”, http://www.net2plan.com/jom/index.php (last visited 24 
01 September 2015) 25 

[44] A. Marinescu, C. Harris, I. Dusparic, S. Clarke, V. Cahill, (2013), “Residential electrical demand forecasting in 26 
very small scale: An evaluation of forecasting methods”, 2013 2nd International Workshop on Software 27 
Engineering Challenges for the Smart Grid (SE4SG), pp.25-32, 18 May 2013 28 

[45] J. Llanos, D. Saez, R. Palma-Behnke, A. Nunez, G. Jimenez-Estevez, (2012), “Load profile generator and load 29 
forecasting for a renewable based microgrid using Self Organizing Maps and neural networks”, The 2012 30 
International Joint Conference on Neural Networks (IJCNN), 10-15 June 2012 31 

[46] National Audit Office, (2014), “Electricity Balancing Services”, Briefing for the House of Commons Energy and 32 
Climate Change Select Committee, May 2014 33 

https://www.gov.uk/government/organisations/department-of-energy-climatechange/about/statistics
https://www.gov.uk/government/organisations/department-of-energy-climatechange/about/statistics
http://www.sedg.ac.uk/
http://www.net2plan.com/jom/index.php



