*1 *2 2 3 Atom 1 4 1 1.83 m 1.81 m 2.89 m 2.89 dt (13.7, 3.6) 2.33 dt (13.6, 3.7) 2.33 dt (13.5, 3.5) 1.12 m 1.19 m 1.13 m 1.21 m 1.32 m 1.42 m 2 1.99 m, 1.49 m 1.88 m, 1.50 m 1.94 m, 1.49 m 1.82 m, 1.48 m 1.85 *m*, 1.45 *m* 1.72 m, 1.31 m 3 3.98 br m 3.93 dd (11.6, 5.3) 3.91 br m 3.98 br m 3.93 *dd* (11.8, 5.4) 3.92 dd (11.8, 5.3) 5 1.79 m 1.76 m 1.83 m 1.78 m 1.83 m 1.87 m 6 4.43 br m 4.38 *dd* (3.8, 2.1) 4.37 dd (3.6, 2.0) 4.31 dd (3.7, 2.0) 4.32 dd (3.8, 2.0) 4.34 dd (3.8, 1.9) 7 5.30 d (3.9) 5.17 d (3.8) 5.12 d (3.7) 5.15 d (3.8) 5.19 d (3.8) 5.26 d (3.6) 9 1.56 m 2.16 d (11.3) 1.60 m 1.65 m 1.68 m 2.01 d (11.3) 11 1.74 m, 1.57 m 1.77 m, 1.60 m 4.30 m 4.20 m 5.48 *dt* (11.0, 5.3) 5.76 dt (10.8, 5.5) 12 1.51 m (2H) 1.55 m (2H) 1.81 m, 1.59 m 1.77 m, 1.69 m 1.79 m, 1.64 m 1.85 m, 1.77 m 13 1.53 m 1.59 m 1.67 m 1.75 m 1.81 m 1.69 m 15 1.64 *m*, 1.04 *m* 1.55 m, 1.02 m 1.55 m, 1.04 m 1.45 m, 1.06 m 1.56 m, 1.03 m 1.61 m, 1.06 m 16 1.22 m, 1.09 m 1.13 m (2H) 1.23 m, 1.11 m 1.16 m (2H) 1.17 m, 1.13 m 1.19 m, 1.14 m 17 0.98 m 1.04 m 0.97 m 1.03 m 1.05 m 1.07 m 19 1.53 m, 1.07 m 1.55 m, 1.11 m 1.54 m, 1.09 m 1.55 m, 1.14 m 1.50 m, 1.14 m 1.50 m, 1.16 m 20 1.83 m, 1.44 m 1.84 *m*, 1.45 *m* 1.85 *m*, 1.46 *m* 1.86 m, 1.47 m 1.85 *m*, 1.47 *m* 1.83 m, 1.46 m 21 2.20 m 2.21 m 2.21 m 2.22 m 2.22 m 2.23 m 23 5.36 br m 5.34 br m 5.40 br m 5.39 dd (3.7, 1.8) 5.41 m 5.40 m 5.20 br m 5.20 br m 5.22 br m 5.21 m 5.22 m 5.19 m 25-Me 1.06 s 1.10 s 1.05 s 1.27 s 1.24 s 1.11 s 26-Me 1.62 s 1.67 s 1.65 s 1.69 s 1.75 s 1.81 s 27-Me 1.07 s 1.08 s 1.09 s 1.09 s 1.12 s 1.18 s 28-Me 0.68 s 0.71 s 0.70 s 0.74 s 0.72 s 0.73 s 29 4.64 dd (2.5, 1.3) 4.64 4.65 dd (2.5, 1.4) 4.64 dd (2.5, 1.4) 4.64 dd (2.4, 1.4) 4.65 dd (2.4, 1.4) 4.62 *dm* (2.5) 4.60 4.62 *dm* (2.5) 4.59 dm (2.5) 4.60 m 4.60 m 30-Me 1.65 s 1.64 br dd (1.4, 0.6) 1.63 br dd (1.4, 0.6) 1.63 s 1.64 s 1.64 s 7-0-(4-OHBz) 7.97 d (8.8) 7.93 d (8.9) 7.95 d (8.8) 7.92 d (8.8) 7.93 d (8.8) 7.94 d (8.8) 2,6 3,5 6.89 *d* (8.8) 6.85 *d* (8.9) 6.88 d (8.8) 6.84 d (8.8) 6.85 d (8.8) 6.86 d (8.8) 11-OAc 2.03 s Me 11-0-(4-OHBz) 2,6 7.89 d (8.8) 3.5 6.85 d (8.8)

Table 1¹H NMR spectroscopic data (δ ¹H, J in Hz) for 1–4 in *CDCl₃ or MeOD

Atom	*1	1	2	3	4	5	*6	6	7
1	40.4	41.8	43.6	43.6	43.7	41.8	42.4	43.7	41.6
2	32.5	33.2	33.7	33.7	33.7	33.3	32.9	33.7	37.2
3	73.1	74.0	74.1	73.8	73.8	74.0	73.1	74.1	204.8
4	149.1	151.1	151.6	151.3	151.2	151.1	149.6	151.7	146.6
5	50.5	51.6	51.8	51.3	51.2	51.6	50.6	51.9	51.9
6	71.7	72.0	72.0	71.8	71.8	72.2	71.8	72.2	69.8
7	75.5	77.3	77.0	76.6	76.6	77.8	75.4	77.3	77.1
8	46.7	48.2	49.8	50.1	50.2	48.3	48.5	49.9	49.6
9	49.3	50.8	55.3	52.9	53.2	51.3	54.5	55.7	54.7
10	38.4	39.8	41.3	40.8	41.0	39.9	39.8	41.3	38.9
11	21.4	22.7	71.0	74.5	74.8	23.0	70.5	71.1	71.0
12	24.1	25.4	37.0	32.8	32.9	25.6	36.6	36.9	36.9
13	48.1	49.7	48.3	47.9	47.9	50.5	47.4	48.9	49.1
14	44.3	45.6	45.3	45.2	45.2	45.2	43.6	44.9	44.9
15	35.1	37.0	36.9	36.8	36.8	36.1	33.9	35.9	36.0
16	21.4	22.4	22.6	22.5	22.5	21.2	20.2	21.2	21.2
17	53.7	54.9	55.0	55.0	55.0	140.9	138.5	140.4	140.2
18	44.2	45.5	45.3	45.3	45.2	51.2	49.4	50.9	50.9
19	40.6	41.7	41.4	41.3	41.2	43.2	41.7	42.8	42.9
20	27.1	28.3	28.3	28.3	28.3	28.2	27.4	28.4	28.4
21	48.0	49.5	49.4	49.4	49.4	137.3	136.8	137.7	137.7
22	148.0	149.0	149.0	148.8	148.8	27.0	20.3	27.6	27.6
23 25 Ma	105.3	105.9	106.0	106.5	106.4	105.9	105.5	106.0	122.2
25-Me	10.1	10.7	10.7	10.9	17.0	10.7	10.2	10.7	10.5
20-Me	12.7	13.2	13.0	13.9	14.0	12.0	15.2	15.0	15.7
27-Me	17.5	17.9	16.5	16.5	16.5	10.0	13.7	10.2	10.1
28-IVIC 29	109.6	110.3	110.4	110.5	110.5	19. 4 22.3	21.8	22.3	22.2
2) 30-Me	102.0	19.8	19.9	19.9	19.9	22.5	21.0	22.5	21.2
	17.0	17.0	17.7	17.7	17.7	21.7	21.5	21.7	21.7
7 -0- (4-OHBz)	1 6 7 1	167.0	1 67 0	1.67.6	1 4 7 7	1.67.6	164.0	1.67.6	1 67 4
	165.1	167.8	167.8	167.6	167.7	167.6	164.9	167.6	167.4
	123.3	123.4	123.4	123.2	123.1	123.3	123.1	123.2	123.1
2,0	152.0	155.2	133.1	155.2	155.2	133.2	152.1	133.2	133.2
5,5	113.3	110.5	110.5	110.4	110.4	110.5	113.3	110.5	162.7
4	139.9	105.0	105.7	105.7	105.7	105.0	100.0	105.7	105.7
11-OAc									
СО				172.1					
Me				22.1					
11-0-(4-OHBz)									
CO					167.3				
1					123.1				
2,6					133.1				
3,5					116.4				
4					163.8				

Table 2¹³C NMR spectroscopic data for 1–7 in *CDCl3 or MeOD

Table 3 ¹H NMR spectroscopic data (δ ¹H, J in Hz) for **5–7** in *CDCl³ or MeOD

Atom	5	6 CDCl ₃	6 MeOD	7
1	1.82 <i>m</i>	2.90 dt (13.8, 4.0)	2.90 dt (13.6, 3.6)	3.18 <i>ddd</i> (13.6, 6.3, 3.9)
	1.16 <i>m</i>	1.20 <i>m</i>	1.22 <i>m</i>	1.58 m
2	1.89 <i>m</i> , 1.50 <i>m</i>	1.94 <i>m</i> , 1.50 <i>m</i>	1.82 <i>m</i> , 1.48 <i>m</i>	2.45 m (2H)
3	3.94 <i>dd</i> (11.7, 5.5)	3.98 dd (11.6, 5.5)	3.92 <i>dd</i> (11.8, 5.5)	
5	1.77 <i>m</i>	1.84 <i>br</i> s	1.80 <i>m</i>	2.45 m
6	4.37 dd (3.6, 2.0)	4.36 d (3.6, 2.0)	4.30 d (3.5, 2.0)	4.40 dd (3.6, 2.3)
7	5.17 d (3.6)	5.27 d (3.6)	5.13 <i>d</i> (3.5)	5.21 <i>d</i> (3.6)
9	1.60 <i>m</i>	1.69 <i>m</i>	1.72 <i>m</i>	1.83 d (10.7)
11	1.78 <i>m</i> , 1.56 <i>m</i>	4.25 dt (10.8, 4.8)	4.14 dt (10.5, 4.4)	4.19 <i>m</i>
12	1.47 m (2H)	1.77 <i>m</i> , 1.50 <i>m</i>	1.73 <i>m</i> , 1.57 <i>m</i>	1.75 <i>m</i> , 1.61 <i>m</i>
13	1.58 m	1.67 <i>m</i>	1.69 <i>m</i>	1.71 <i>m</i>
15	1.50 <i>m</i> , 1.22 <i>m</i>	1.36 <i>m</i> , 1.16 <i>m</i>	1.43 <i>m</i> , 1.18 <i>m</i>	1.46 <i>m</i> , 1.23 <i>m</i>
16	2.08 m, 1.85 m	2.09 m, 1.84 m	2.09 m, 1.87 m	2.10 m, 1.88 m
19	1.70 <i>m</i> , 1.35 <i>m</i>	1.69 <i>m</i> , 1.32 <i>m</i>	1.72 <i>m</i> , 1.39 <i>m</i>	1.73 <i>m</i> , 1.40 <i>m</i>
20	2.20 m, 2.13 m	2.20 m, 2.12 m	2.21 <i>m</i> , 2.16 <i>m</i>	2.23 m, 2.17 m
22	2.58 m	2.54 septet (6.9)	2.57 m	2.58 septet (6.9)
23	5.34 m	5.40 <i>m</i>	5.39 m	6.07 dd (2.5, 1.6)
	5.19 m	5.22 m	5.20 m	5.53 dd (2.5, 1.7)
25-Me	1.05 s	1.28 <i>s</i>	1.25 <i>s</i>	1.32 <i>s</i>
26-Me	1.60 s	1.59 <i>s</i>	1.62 <i>s</i>	1.64 <i>s</i>
27-Me	1.18 s	1.19 <i>s</i>	1.19 <i>s</i>	1.21 <i>s</i>
28-Me	0.86 s	0.84 <i>s</i>	0.89 <i>s</i>	0.89 <i>s</i>
29-Me	0.97 d (6.8)	0.95 d (6.9)	0.97 <i>d</i> (6.8)	0.97 <i>d</i> (6.8)
30-Me	0.88 <i>d</i> (6.8)	0.87 <i>d</i> (6.9)	0.88 <i>d</i> (6.8)	0.88 <i>d</i> (6.8)
7-0-(4-OHBz)				
2,6	7.94 d (8.8)	7.96 d (8.9)	7.92 d (8.8)	7.94 <i>d</i> (8.8)
3,5	6.85 <i>d</i> (8.8)	6.89 <i>d</i> (8.9)	6.85 <i>d</i> (8.8)	6.86 <i>d</i> (8.8)

Table 4. Analysis of variance (ANOVA) of the mean percent mortality and number of eggs laid per female when bruchids were exposed for six days to crude extracts, isolated *nor*-hopane compounds from *Zanha africana* root bark and compared with a rotenone positive control.

Treatment and concentration	Mean percent mortality ^a	Mean total number of eggs per female ^{<i>a</i>}		
1 10ppm	49.81 ^{b,c}	11.99 ^b		
1 100ppm	57.69 ^b	13.92 ^b		
1 1000ppm	87.91 ^a	7.97 ^b		
5 10ppm	52.73 ^{b,c}	12.72 ^b		
5 100ppm	55.17 ^{b,c}	9.16 ^b		
5 1000ppm	87.56 ^a	9.47 ^b		
Rotenone 10ppm	94.64 ^a	9.50 ^b		
Rotenone 100ppm	94.40 ^a	5.25 ^b		
Rotenone 1000ppm	97.22 ^a	5.29 ^b		
Chloroform 10% w/v	57.54 ^b	10.92 ^b		
Methanol 10% w/v	50.09 ^{b,c}	13.55 ^b		
Water 10% w/v	57.09 ^b	8.82 ^b		
solvent control	27.55 °	23.08 ^a		

^{*a*} Values in the same column followed by the same letter are not significantly different from each other at the 95% confidence interval using Tukey's post-hoc Honestly Significant Difference (HSD) test.