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TuneGraph, an online visual tool for exploring melodic similarity

Abstract

This paper presents TuneGraph, an online visual tool for 

exploring melodic similarity. The underlying data comes from 

a large index of online music, all transcribed in abc notation, 

and TuneGraph uses a melodic similarity metric to derive a 

proximity graph representing similarities within the index. A 

weak, non-essential edges. From this a local graph is extracted 

for each vertex, aimed at indicating close variants of, and 

similar melodies to, the underlying tune represented by the 

vertex. Finally an interactive user interface displays each local 

graph on that tune’s webpage, allowing the user to explore 

melodically similar tunes.
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Introduction

-Background-

 Abc notation is a text-based music notation system 

popular for transcribing, publishing and sharing folk music, 

particularly online. Similar systems have been around for 

a long time but abc notation was formalised (and named) 

by the author in 1993 (Walshaw, 1993). Since its inception 

he has maintained a website, now at abcnotation.com, 

with links to resources such as tutorials, software and tune 

collections.
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 1) Tune search engine

enhanced with an online tune search engine, the basis of 

which is a robot which regularly crawls known sites for abc 

then stored in a database which backs the search engine 

front end. Users of the tune search are able to view, listen 

to and download the staff notation, MIDI representation and 

abc code for each tune, and the site currently attracts around 

half a million visitors a year.

 2) Breadth

 The aim of the tune search is to index all abc notated 

transcriptions from across the web. However there are a 

number of reasons why it is unable to do this completely:

 •  Unknown sources: the robot indexer is seeded 

from around 350 known URLs (some of which 

are no longer active), but it does not search the 

entire web.

 •  HTML based transcriptions: in the main, the 

(.abc, or sometimes .txt). However, there are a 

number of sites where the abc code is embedded 

directly into a webpage. Mostly these tend to be 

small collections (especially if the abc code has 

to be manually inserted into the HTML code) 

and are ignored by the robot (although there are 

3 larger collections which are included by parsing 

end tags).

 • J avaScript links: for a small number of sites the 



 Starting with an initial database of 36,000 tunes 

in 2009 the search engine has expanded to cover around 

450,000 abc transcriptions at the time of writing (November 

2014). Most of these are folk tunes and songs from 

Western Europe and North America, although two massive 

multiplayer online role- playing games, Lord of the Rings 

Online and Starbound, have adopted abc for their in-game 

music system resulting in a number of dedicated websites 

with mixed collections of rock, pop, jazz and, sometimes, 

folk melodies which contribute ~37,000 transcriptions to 

the search engine.

 3) Duplicates & variants

 Although each tune comes from a distinct URL, 

there are many duplicates and closely related tune variants 

contained within the database.

 From a search engine point of view, there is little 

point in presenting users with dozens of identical results 

and so an important part of the pre-indexing clean-up 

involves identifying and, where appropriate, merging exact 

duplicates (such as those copied from one website to another 

– see section II) within the index.

 On the other hand tune variants are an important 

part of folk music’s aural tradition which can occur for 

a number of reasons (see section III) and distinct, but 

closely related versions of the same tune can be of interest 

to researchers and musicians alike. However they are not 

always easy to identify by eye from a large number of 

search results.

-Aims-

 This paper discusses work which aims to address 

the question of how to present closely related search results 

to the users of a search engine. It is based on a graphical 

user interface developed as part of the abc notation tune 

search but the ideas are generic and should, in principle, be 

applicable to other datasets where the difference between 

any pair of items in the dataset can be expressed numerically 

(i.e. with a similarity measure).

 The remainder of this paper is organised as follows:

 •  Section II discusses duplication and indicates 

search results.

 •   The bulk of the work is presented in Section 

III which describes the development and 

implementation of TuneGraph, to facilitate the 

exploration of tune variants by users of the search 

engine.

 •  Finally Section IV presents some conclusions and 

future work.

Eliminating duplication

 Duplication occurs widely within the abc corpus 

for a number of observable reasons:

 •  Compilations: particularly in the past, certain 

enthusiasts have published compilations of all the 

the web.

 •  Selections: some sites, usually those containing 

repertoires (perhaps that of a band or an open 

session), publish a selection of tunes gathered 

from other sites.

 •  Ease-of-access: a number of sites publish 

collection.

 As indicated above there is little point in presenting 

users of the search engine with duplicate results and so the 

pre- indexing clean-up involves identifying and merging 

duplicates within the index. However, it is not necessarily 

clear which level of duplication to remove.

 To discuss this topic further it is helpful to consider 

the structure of an abc tune transcription (see 0).

 Each tune consists of a tune header (including a 

reference number) and the tune body.

 The header contains descriptive meta-data mostly, 

though not exclusively, with no musical information. 

Typically this includes the title and composer (where known), 

and amongst other data may also include information 

about where the tune was sourced (book, recording, etc.), 

who transcribed it, historical notes and anecdotes and 

instrumentation details (particularly for multi-voice music).

 The tune body contains the music, and may also 

contain song lyrics.

 With this structure in mind, duplication can be 

 •  Electronic: the duplicates are electronically 

Fig. 1. An example abc transcription.
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identical (the exact same string of characters) 

– i.e. the tune headers and bodies are identical 

(although in practice this is relaxed somewhat 

by ignoring the reference number and any 

whitespace).

 •  Musical: the duplicates are musically identical 

(including song lyrics) although they may contain 

different meta-data in the tune header – i.e. the 

tune bodies are identical.

 •  Melodic: neglecting any song lyrics, grace notes, 

of each duplicate is identical – i.e. the primary 

melodies are identical.

 •  Incipit: when transposed to the same key, the 

few bars of the tune.

 In fact, and as might be expected, analysis reveals 

that there are no substantive differences between the musical 

and melodic duplicate categories and numerically there is 

only a 4% increase in duplication in the latter as compared 

with the former (Walshaw, 2014).

 The other categories are substantially different, 

however, with 42.7% electronic duplication, 58.1% melodic 

duplication and 70.4% incipit duplication. (Here, the 

percentage duplication refers to the percentage of the corpus 

which can be excluded, leaving one representative example 

of a duplicated tune, without reducing its diversity.)

 Whilst this indicates a very substantial amount 

of duplication within the corpus, when melodic duplicates 

were excluded (in a previous study, Walshaw, 2014) it gave 

400,160 under consideration), even when all of the meta-

data, decorations and lyrics are stripped away.

 The remainder of this paper considers only 

electronic duplicates and discusses ways to allow users 

to explore musical, melodic and incipit duplicates as tune 

variants.



 At the time of writing of the 449,845 transcriptions 

in the database, 240,902 are electronic duplicates. Of 

potentially copyright. Since the abcnotation website does 

not display copyright tunes (unless the copyright holder has 

given their explicit permission) these are also excluded from 

the TuneGraph results, leaving a total of 168,764 under 

consideration.

B. Informationarchitecture

 This section discusses how the data is organized 

and, in particular, how the search engine distinguishes 

between duplicates, which are not presented in standard 

search results, and tune variants, which are.

information architecture is as follows.

 1) Duplicates

 One possibility would be to completely remove 

duplicates from the database. However, this would mean 

particular source website they will miss all the duplicates 

offered by that site. It also gives a misleading impression of 

the contribution from each site.

 Instead tunes are categorised into primary and 

secondary sources. Thus a cluster of n duplicates would 

contain 1 primary representative and n – 1 secondary.

Using this categorisation, standard search results only 

include primary tunes, but when a user clicks through from 

the search results to a tune page (each tune in the database 

has its own page), a list of secondary sources for that tune is 

also included (since some tunes can have many secondary 

sources this list is restricted to a maximum of 10 randomised 

entries).
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particular source website (for example, the search query 

term “site:www.example.com/folder” would restrict the 

search results to tunes from http://www.example.com/

folder/ and any subfolders) then both primary and secondary 

tunes are listed in the search results.

 The scheme (not discussed here) for categorising 

sources into primary and secondary is based on their 

originating URL and the author’s somewhat subjective view 

 2) Tune variants

 Tune variants are an important part of folk music’s 

aural tradition which can occur for a number of reasons, 

including:

 •  Transmission: folk music is an aural tradition – a 

tune may be misheard or misremembered when it 

is passed on

 •  Improvisation: many traditions have an 

improvisatory aspect

 •  Innovation: musicians may devise their own 

versions of a tune

 As a result of these and other reasons the same tune 

may have developed differently in different geographical 

locations over a period of time.

 These may be of interest to researchers and 

musicians alike. However they are not always easy to 

identify by eye from a large number of search results.

 It is not obvious how close variants should be 

presented and one possibility might be to show, somehow, a 

representation of variants on search results pages.

 However, it was felt that this would clutter the 

results too much and so instead each tune page shows a 

representative group of variants in a small(ish) interactive 

graphic, the TuneGraph viewer (see section III.B) on the 

right hand side of the page (see Fig. 2).

 The following section discusses how the variants 

are derived and the user interface for the graphic.

Tunegraph – exploring variants

The aim of TuneGraph is to facilitate user exploration of 

tunes variants.

Given a corpus of melodies, the idea behind it is to calculate 

the difference between each pair of melodies numerically 

with a difference metric or similarity measure (e.g. Kelly, 

2012; Stober, 2011; Typke, Wiering, & Veltkamp, 2005).

Next a proximity graph is formed by representing every tune 

with a vertex and including (weighted) edges for every pair 

of vertices which are “similar”. Finally, the resulting graph 

can be visualised using standard graph layout techniques 

such as force-directed placement, (e.g. Walshaw, 2003), 

either applied

to the entire graph or just, as here, to a vertex and its 

neighbours (i.e. a tune and similar melodies).

The concept is not dissimilar to a number of other software 

systems which give a visual display of relationships between 

tunes, often based on a graph (e.g. Langer, 2010; Orio & 

Roda, 2009; Stober, 2011).

The TuneGraph software consists of two parts – TuneGraph 

Builder (Section III.A), which analyses the corpus and 

constructs the required graphs, and TuneGraph Viewer 

(Section III.B), which provides the online and interactive 

visualisation.

A. TuneGraphBuilder

 1) The similarity measure

 In the current implementation, each melody is 

1/64th notes and then constructing a pitch vector (or pitch 

contour) where each vector element stores the interval, in 

of the melody (neglecting any anacrusis). Since everything 

is calculated as an interval it is invariant under transposition.

The similarity measure or difference metric then calculates 

the difference between two pitch vectors either using the 

1-norm (i.e. the sum of the absolute values of the differences 

between each pair of vector elements) or the 2-norm (i.e. 

the square root of the sum of squared differences between 

each pair of vector elements). The 1-norm difference metric 

has long been available as part of the abc2mtex indexing 

facilities (Walshaw, 1994), but experimentation suggests 

that the 2-norm gives marginally better results (see below, 

section (7)). If the pitch vectors have different lengths then 

the sum can be calculated over the length of the shorter 

vector (although see below – section (3)).

Similarity measures of this kind are well explored in the 

Typke et al., 2005), and there may be other, more advanced 

similarity measures that would work even better. However, 

in principle any suitable metric can be used to build the 

proximity graph, provided that it expresses the difference 

between pairs of melodies with a single numerical value. 

Indeed, even combinations of similarity measures could 

be used by forming a weighted linear combination of their 

values.

 2) Building the proximity graph

 The proximity graph is formed by representing 

every tune with a vertex and including (weighted) edges for 

every pair of vertices which are “similar” (i.e. every pair 

where the numerical difference is below some threshold 

value). However the question arises: what is a suitable 

threshold and how should it be chosen?

Perhaps the simplest choice, and one which is well-known 

threshold value which results in connected graph, i.e. a 

graph in which a path exists between every pair of vertices. 

Although computationally expensive, this can be done 

relatively straightforwardly starting with an initial guess at 



a suitable threshold and then either doubling or halving it 

until a pair of bounding values are found, one of which is 

too small (and does not result in a connected graph) and one 

of which is large enough (and does give a connected graph). 

Finally the minimal connecting threshold (minimal so as to 

exclude unnecessary edges) can be found with a bisection 

algorithm, bisecting the interval between upper and lower 

bounds each iteration.

graphs with an enormous number of edges: the test code 

ran out of memory as the number of edges approached 

200,000,000 and the threshold under test had not, at that 

point, yielded a connected graph.

 Further investigation revealed the basic problem: 

the graph is potentially very dense in some regions, 

with many similar melodies clustered together, whereas 

elsewhere there are outlying melodies which are not 

similar to any others. This means that in order to connect 

the outliers, and hence the entire graph, the threshold has 

to be so large that in the denser regions huge cliques are 

generated.

 3) Segmentation by meter

 In order to reduce the density of the graph, one 

successful approach tested was to segment the graph by 

meter – i.e. so that tunes with different meters are never 

connected. In fact a simple way to implement this is to 

avoid connecting pitch vectors with different lengths. This 

(i.e. those with the same bar length such as 2/2 and 4/4) 

meaning that the strategy is blind to certain variations in 

transcription preferences (although not universally as it will 

fail to connect related melodies, such as Irish single jigs, 

which are variously transcribed in 6/8 and 12/8, and French 

3-time bourrées, which can be either 3/4 or 3/8).

 Each pitch vector length results in a subset of graph 

vertices: in all, for the 168,764 tunes under consideration, 

there were 137 subsets, ranging in size from 65,568 vertices 

(for 2/2 and 4/4 tunes), down to 60 subsets containing just 

one vertex. However, 99.46% of vertices are in a subset of 

size 100 or more and 99.85% are in a subset of size 10 or 

more.

 The small subsets generally result from unusual 

vector lengths, usually because of errors in the transcriptions 

(i.e. extra notes or incorrect note lengths) and there was 

often no close relation between the melodies, meaning that 

a very high threshold would have to be used to connect that 

subset. To avoid connecting very different transcriptions, for 

each segment the edge threshold was, somewhat arbitrarily, 

limited to the length of the pitch vector for that segment. 

In most cases, this upper limit was never needed, but for 

very small subsets it sometimes meant that no edges were 

generated at all.

 4) Target median degree

 Even with segmentation by meter in place the 

method can still generate graphs with huge numbers of 

edges. However, there is no particular reason that the 

graph needs to be connected so the idea of trying to build 

a connected graph (or connected sub-graphs, one for 

each pitch vector length) was abandoned as impractical. 

Nevertheless, it is attractive as essentially parameter-free 

and it does work for small collections of relatively closely 

related tunes (for example, English morris tunes, where 

there are many similar variants of the same melody).

 For the purposes of representing the entire corpus 

as a (disconnected) proximity graph, this still leaves the 

choice of a suitable edge threshold open. Rather than 

picking a value out of the air, instead a target average degree 

for the resulting graph is determined by experimentation. 

With this average degree as a parameter the same bounding 

and bisection method as above (section (2)) can be used to 

 An important observation is that the small number 

of vertices which have very many similar neighbours 

generate a relatively large number of edges in the graph. 

For example a cluster of, say, 100 very similar melodies 

will form a (near) clique with up to 4,950 edges. This 

degree. However, the median degree ignores these outlying 

values and gave much more useful results empirically and 

so the TuneGraph Builder uses the target median degree, D.

Considerable experimentation has been carried out with 

a number of target median degree values with the aim of 

that are small enough to be useful in search but which are 

below, section (7)).

 Experimentation also revealed that, on its own, the 

use of the target median degree to decide which edges to 

include is far too crude.

 An alternative approach which proved much more 

successful is to build a rich, and hence very dense graph 

initially and then sparsify it by removing the weakest “non-

essential” edges. The advantage of this approach is that in 

effect it provides a variable threshold for including edges: in 

regions where the graph is dense, many edges are removed. 

However, in areas where the graph is already sparse, edges 

are retained even if they are weak, if they are deemed to be 

essential.

turned out to be very simple but also extremely effective. 

All the edges are added to a list and sorted primarily by 

combined degree (if edge e is incident on vertices u and v 

then the combined degree of e is the degree of u plus the 

degree of v), largest to smallest, and then by weight, smallest 

to largest. This roughly prioritises the densest regions and 

within them, the weakest edges.

 To sparsify the graph the list is traversed and each 

edge encountered is removed from the graph if both of its 
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For example, if S = 3 then an edge is removed if 

both of its incident vertices have degree of 4 or more. Since 

process this means that once a vertex is reduced to a degree 

of S then no more of its edges can be removed.

6) Extracting local graphs

the TuneGraph Builder code extracts a local graph for each 

non- isolated vertex (the local graph is what will ultimately 

be displayed alongside the tune represented by that vertex).

One way to do this is simply to extract the vertex, plus all 

its neighbours plus any edges between them. However, this 

can lead to clique-like local graphs where edges are hard to 

discern.

Instead, the local graph is built in layers: the seed 

(layer 0) is the original vertex for which the local graph is 

being built, layer 1 is any vertices neighbouring layer 0 and 

layer 2 is any vertices (not already included) neighbouring 

layer 1, etc. In order to maximise the clarity of the local 

graph, it only includes edges between layers and excludes 

edges between vertices in the same layer.

Fig. 3 shows some examples: Here (a) and (b) come 

from local clique-like graphs with no immediate neighbours 

(recall that edges between vertices in the same layer are not 

included in the local graph so not all edges of the clique are 

shown). The tree shown in (c) indicates a number of tunes 

which are related but probably not immediate relations of 

each other. The graphs in (d) and (e) are similar to (b) only 

with some outlying tunes related to those in the clique. 

Finally the graph in (f) shows a tune, with many variants, on 

the edge of a tightly coupled clique.

If the local graphs are just built from layers 0 

and 1, each will be star-like, as in Fig. 3(a) and Fig. 3(b), 

yielding limited immediate visual information to the user 

(other than the number of neighbours and the strength of the 

relationships). Instead the builder code uses layers 0, 1 and 

2, e.g. Fig. 3(c) to Fig. 3(f), to show some of the richness 

Fig. 3. Some sample local graphs. of certain neighbourhoods. Here colours indicate the layers, 

with layer 0 shown in crimson, layer 2 in light blue, and 

layer 1 interpolated between the two of them.

Finally, the graph edges are all weighted in inverse proportion 

to the difference between the two tunes that they connect. 

Since graph edge weights are indicated in the online tool by 

their thickness this conveys helpful information to the user 

by showing the more closely related tunes with thicker lines

between them (and also affects how the graph is laid out by 

force directed placement).

 7) Experimentation and parameter selection

desirable in the visualisations provided for users, but 

experience with suggests that the local graphs should be 

small enough not to overwhelm the user, but rich enough 

to convey some useful information. In particular the aim 

was to limit the maximum local graph size but maximise the 

average size.

 Experimentation was carried out with a number of 

different parameter settings but it is not at all easy to decide 

which are the best parameter settings to use and therefore a 

simple scoring system was employed.

 Based on (subjective) analysis of many example 

graphs, the following principles were established:

 •  graphs with 20 or fewer vertices are the most easy 

to assimilate and use; above 40 or so vertices 

they start to become over-crowded and as they 

approach 100 vertices they are virtually unusable 

(at least in the space allowed for them on the web 

page);

 •  star graphs, e.g. Fig. 3(a) and Fig. 3(b), are less 

interesting than layered graphs, e.g. Fig. 3(c) to 

Fig. 3(f).



 With these in mind the following scoring system 

was implemented:

 1 point for each star graph with up to 40 vertices

  0 points for each star graph with 41-60 vertices -1 

point for each star graph with 61+ vertices

  2 points for each layered graph with up to 20 

vertices 1 point for each layered graph with 21-40 

vertices

  0 points for each layered graph with 41-60 vertices

  -1 point for each layered graph with 61-80 vertices 

-2 points for each layered graph with 81+ vertices

 The two most crucial parameters were found to 

suitable proximity threshold for adding edges) and S, the 

limit when removing edges). These are interdependent: 

D determines the richness of the overall graph whilst S 

determines how many of the weaker edges are removed.

 Of the two S is the cruder control. If S = 1 then all 

of the local graphs end up as star graphs (and so the overall 

score is considerably reduced). However, as S is increased 

local graphs increases accordingly and the overall score is 

negatively impacted by increasing numbers of large local 

graphs regardless of which value for D is chosen.

 Thus, and perhaps surprisingly, the best value for S 

is 2. 0shows some example results giving the overall score 

for selected values of S and D. For S = 2, where the best 

scores were obtained, the very best choice of D was 28, but 

in fact there are several scores close by and all values of D 

between 24 and 32 (not all shown in the table) yield scores 

over 229,000. Even when D = 45, the score is still over 

227,000.

 As S increases the scores drop off rapidly, 

particularly as D increases. 0illustrates the reasons why by 

taking a closer look at the graphs produced for D = 28 and 

different values of S. In each case, 145,594 local graphs 

are produced and the table then breaks them down into 

categories by size and by type, star and layered.

 Perhaps the best way to view this is by looking 

graphs here are layered but nearly 15,000 of them are above 

40 in size, contributing nothing or even negative points to 

the score. When S is decreased to 3 around 9,000 of these 

are reduced in size and end up either as smaller star graphs 

(~5,000) or smaller layered graphs (~4,000).

 When S is reduced to 2 a further 6,000 large 

layered graphs are removed, probably becoming smaller 

star graphs.

 Even more importantly the decrease of S transfers 

a large number of layered graphs from the 21 – 40 category 

into the 1 – 20 category, doubling the score for them.

 Finally, as mentioned above, there are no layered 

graphs produced when S = 1 so that even though the number 

of graphs in the 1 – 20 category is the highest of all 4 S 

values, the total is lower as the scoring system favours 

layered graphs. A large number of other tests were carried 

out, not presented here. However from these the following 

 • Difference norm: ||.||2 – see section (1)

 • Segmentation by meter: true – see section (3)

 •  Edge threshold limit: pitch vector length – see 

section (3)

 • Target median degree: 28 – see section (4)

(5)

 In all experiments, regardless of parameter settings, 

there were a residue of isolated vertices, usually because 

there are no closely related melodies in the corpus or, less 

commonly, because there are no other transcriptions with 

the same pitch length. Eliminating these isolated vertices 
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145,594 vertices.

edges, maximum vertex degree of 2,060 and an average 

to 204,639 edges, with a maximum degree of 77 and an 

algorithm.

subsets (many with as few as 2 vertices) as compared with 

5,616 connected subsets in the latter. However, a connected 

graph was not an aim of the process (particularly since the 

graph is already segmented by meter).

 From this global graph 145,594 local graphs 

were produced with an average size of 12.3 vertices. The 

maximum size was 80 vertices and 154 edges.

are just a snapshot taken at the time of writing (November 

version layered star presented previously (Walshaw, 2014) 

which gathers data for the tune search is run every month 

so too will the underlying graph and the number of local 

graphs produced. The choice of parameters is chosen with 

the current data in mind but it is likely that the highest 

scoring choice of target median degree, D, may change over 

time according to the underlying data.

 It is also likely that the scoring system will be 

assessed.

B. TuneGraphViewer

 The TuneGraph Viewer has been deployed on 

the abcnotation.com website since 1st September 2014 

and provides the an interactive user interface for viewing 

each local tune graph (on a webpage alongside the tune it 

corresponds to).

 The local graph is visualised as a dynamic layout 

using D3.js (Bostock, 2012), a JavaScript library for 

manipulating documents based on data, and employing the 

inbuilt force- directed placement features.

 It provides the following user interface:

 

positiondynamically via force directed placement 

and vertices can be dragged to rearrange the 

layout (other vertices then relocate accordingly).

 •  Vertex colour indicates the relationship to the root 

vertex (with layer 0 shown in crimson, layer 2 in 

light blue, and layer 1 interpolated between the 

two of them).

 •  Edge thickness indicates visually how closely 

related two vertices are (i.e. how similar their 

corresponding tunes are).

 •  Moving the mouse over a vertex reveals its name 

and displays the associated melody.

 •  Double clicking on a vertex (other than the root 

vertex) takes the user to the corresponding page 

(with its own tune graph).

 Fig. 2 shows an example webpage corresponding 

to the tune Black Jack (a well-known English tune). The 

tune is displayed on the left with the abc notation underneath 

and the local tune graph is shown on the right. When the 

user moves their mouse over one of the graph vertices, 

the interface enlarges the vertex and notation for the tune 

associated with that vertex appears below.

Conclusion

 This paper has presented TuneGraph, an online 

visual tool for exploring melodic similarity.

 It is based upon a large index of online music and 

uses a melodic similarity measure to derive a proximity 

graph representing similarities within the index.

by removing weak non-essential edges. From this a local 

graph is extracted for each vertex, indicating close variants 

and similar melodies of the underlying tune represented by 

the vertex. Finally an interactive user interface display each 

local graph is on that tune’s webpage, allowing the user to 

explore melodically similar tunes.

A. Futurework

 The main focus for future work is to enhance 

the capabilities of TuneGraph. In particular it is intended 

to explore some of the wide range of similarity measures 

that are available as a means to build the proximity graph. 

As was indicated in section III.A there may be other, more 

advanced similarity measures, or combinations of similarity 

measures, that would work better than the 2-norm of the 

difference between pitch vectors.

 Furthermore, at this point the similarity measure 

used to assess the proximity of variants is based on the 

at some point in the future it is intended to use a more 

discerning metric based on much larger portions of the tune 

(as not all closely related incipits are as a result of closely 

related tunes).
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