
55

TuneGraph, an online visual tool for exploring melodic similarity

Abstract

This paper presents TuneGraph, an online visual tool for

exploring melodic similarity. The underlying data comes from

a large index of online music, all transcribed in abc notation,

and TuneGraph uses a melodic similarity metric to derive a

proximity graph representing similarities within the index. A

weak, non-essential edges. From this a local graph is extracted

for each vertex, aimed at indicating close variants of, and

similar melodies to, the underlying tune represented by the

vertex. Finally an interactive user interface displays each local

graph on that tune’s webpage, allowing the user to explore

melodically similar tunes.

Keywords

cultural informatics; music similarity; force- directed

placement; search visualisation

Introduction

-Background-

 Abc notation is a text-based music notation system

popular for transcribing, publishing and sharing folk music,

particularly online. Similar systems have been around for

a long time but abc notation was formalised (and named)

by the author in 1993 (Walshaw, 1993). Since its inception

he has maintained a website, now at abcnotation.com,

with links to resources such as tutorials, software and tune

collections.

Chris Walshaw
Department of Computing & Information Systems University of Greenwich

London SE10 9LS, UK c.walshaw@gre.ac.uk

 1) Tune search engine

enhanced with an online tune search engine, the basis of

which is a robot which regularly crawls known sites for abc

then stored in a database which backs the search engine

front end. Users of the tune search are able to view, listen

to and download the staff notation, MIDI representation and

abc code for each tune, and the site currently attracts around

half a million visitors a year.

 2) Breadth

 The aim of the tune search is to index all abc notated

transcriptions from across the web. However there are a

number of reasons why it is unable to do this completely:

 • Unknown sources: the robot indexer is seeded

from around 350 known URLs (some of which

are no longer active), but it does not search the

entire web.

 • HTML based transcriptions: in the main, the

(.abc, or sometimes .txt). However, there are a

number of sites where the abc code is embedded

directly into a webpage. Mostly these tend to be

small collections (especially if the abc code has

to be manually inserted into the HTML code)

and are ignored by the robot (although there are

3 larger collections which are included by parsing

end tags).

 • J avaScript links: for a small number of sites the

 Starting with an initial database of 36,000 tunes

in 2009 the search engine has expanded to cover around

450,000 abc transcriptions at the time of writing (November

2014). Most of these are folk tunes and songs from

Western Europe and North America, although two massive

multiplayer online role- playing games, Lord of the Rings

Online and Starbound, have adopted abc for their in-game

music system resulting in a number of dedicated websites

with mixed collections of rock, pop, jazz and, sometimes,

folk melodies which contribute ~37,000 transcriptions to

the search engine.

 3) Duplicates & variants

 Although each tune comes from a distinct URL,

there are many duplicates and closely related tune variants

contained within the database.

 From a search engine point of view, there is little

point in presenting users with dozens of identical results

and so an important part of the pre-indexing clean-up

involves identifying and, where appropriate, merging exact

duplicates (such as those copied from one website to another

– see section II) within the index.

 On the other hand tune variants are an important

part of folk music’s aural tradition which can occur for

a number of reasons (see section III) and distinct, but

closely related versions of the same tune can be of interest

to researchers and musicians alike. However they are not

always easy to identify by eye from a large number of

search results.

-Aims-

 This paper discusses work which aims to address

the question of how to present closely related search results

to the users of a search engine. It is based on a graphical

user interface developed as part of the abc notation tune

search but the ideas are generic and should, in principle, be

applicable to other datasets where the difference between

any pair of items in the dataset can be expressed numerically

(i.e. with a similarity measure).

 The remainder of this paper is organised as follows:

 • Section II discusses duplication and indicates

search results.

 • The bulk of the work is presented in Section

III which describes the development and

implementation of TuneGraph, to facilitate the

exploration of tune variants by users of the search

engine.

 • Finally Section IV presents some conclusions and

future work.

Eliminating duplication

 Duplication occurs widely within the abc corpus

for a number of observable reasons:

 • Compilations: particularly in the past, certain

enthusiasts have published compilations of all the

the web.

 • Selections: some sites, usually those containing

repertoires (perhaps that of a band or an open

session), publish a selection of tunes gathered

from other sites.

 • Ease-of-access: a number of sites publish

collection.

 As indicated above there is little point in presenting

users of the search engine with duplicate results and so the

pre- indexing clean-up involves identifying and merging

duplicates within the index. However, it is not necessarily

clear which level of duplication to remove.

 To discuss this topic further it is helpful to consider

the structure of an abc tune transcription (see 0).

 Each tune consists of a tune header (including a

reference number) and the tune body.

 The header contains descriptive meta-data mostly,

though not exclusively, with no musical information.

Typically this includes the title and composer (where known),

and amongst other data may also include information

about where the tune was sourced (book, recording, etc.),

who transcribed it, historical notes and anecdotes and

instrumentation details (particularly for multi-voice music).

 The tune body contains the music, and may also

contain song lyrics.

 With this structure in mind, duplication can be

 • Electronic: the duplicates are electronically

Fig. 1. An example abc transcription.

57

identical (the exact same string of characters)

– i.e. the tune headers and bodies are identical

(although in practice this is relaxed somewhat

by ignoring the reference number and any

whitespace).

 • Musical: the duplicates are musically identical

(including song lyrics) although they may contain

different meta-data in the tune header – i.e. the

tune bodies are identical.

 • Melodic: neglecting any song lyrics, grace notes,

of each duplicate is identical – i.e. the primary

melodies are identical.

 • Incipit: when transposed to the same key, the

few bars of the tune.

 In fact, and as might be expected, analysis reveals

that there are no substantive differences between the musical

and melodic duplicate categories and numerically there is

only a 4% increase in duplication in the latter as compared

with the former (Walshaw, 2014).

 The other categories are substantially different,

however, with 42.7% electronic duplication, 58.1% melodic

duplication and 70.4% incipit duplication. (Here, the

percentage duplication refers to the percentage of the corpus

which can be excluded, leaving one representative example

of a duplicated tune, without reducing its diversity.)

 Whilst this indicates a very substantial amount

of duplication within the corpus, when melodic duplicates

were excluded (in a previous study, Walshaw, 2014) it gave

400,160 under consideration), even when all of the meta-

data, decorations and lyrics are stripped away.

 The remainder of this paper considers only

electronic duplicates and discusses ways to allow users

to explore musical, melodic and incipit duplicates as tune

variants.

 At the time of writing of the 449,845 transcriptions

in the database, 240,902 are electronic duplicates. Of

potentially copyright. Since the abcnotation website does

not display copyright tunes (unless the copyright holder has

given their explicit permission) these are also excluded from

the TuneGraph results, leaving a total of 168,764 under

consideration.

B. Informationarchitecture

 This section discusses how the data is organized

and, in particular, how the search engine distinguishes

between duplicates, which are not presented in standard

search results, and tune variants, which are.

information architecture is as follows.

 1) Duplicates

 One possibility would be to completely remove

duplicates from the database. However, this would mean

particular source website they will miss all the duplicates

offered by that site. It also gives a misleading impression of

the contribution from each site.

 Instead tunes are categorised into primary and

secondary sources. Thus a cluster of n duplicates would

contain 1 primary representative and n – 1 secondary.

Using this categorisation, standard search results only

include primary tunes, but when a user clicks through from

the search results to a tune page (each tune in the database

has its own page), a list of secondary sources for that tune is

also included (since some tunes can have many secondary

sources this list is restricted to a maximum of 10 randomised

entries).

59

particular source website (for example, the search query

term “site:www.example.com/folder” would restrict the

search results to tunes from http://www.example.com/

folder/ and any subfolders) then both primary and secondary

tunes are listed in the search results.

 The scheme (not discussed here) for categorising

sources into primary and secondary is based on their

originating URL and the author’s somewhat subjective view

 2) Tune variants

 Tune variants are an important part of folk music’s

aural tradition which can occur for a number of reasons,

including:

 • Transmission: folk music is an aural tradition – a

tune may be misheard or misremembered when it

is passed on

 • Improvisation: many traditions have an

improvisatory aspect

 • Innovation: musicians may devise their own

versions of a tune

 As a result of these and other reasons the same tune

may have developed differently in different geographical

locations over a period of time.

 These may be of interest to researchers and

musicians alike. However they are not always easy to

identify by eye from a large number of search results.

 It is not obvious how close variants should be

presented and one possibility might be to show, somehow, a

representation of variants on search results pages.

 However, it was felt that this would clutter the

results too much and so instead each tune page shows a

representative group of variants in a small(ish) interactive

graphic, the TuneGraph viewer (see section III.B) on the

right hand side of the page (see Fig. 2).

 The following section discusses how the variants

are derived and the user interface for the graphic.

Tunegraph – exploring variants

The aim of TuneGraph is to facilitate user exploration of

tunes variants.

Given a corpus of melodies, the idea behind it is to calculate

the difference between each pair of melodies numerically

with a difference metric or similarity measure (e.g. Kelly,

2012; Stober, 2011; Typke, Wiering, & Veltkamp, 2005).

Next a proximity graph is formed by representing every tune

with a vertex and including (weighted) edges for every pair

of vertices which are “similar”. Finally, the resulting graph

can be visualised using standard graph layout techniques

such as force-directed placement, (e.g. Walshaw, 2003),

either applied

to the entire graph or just, as here, to a vertex and its

neighbours (i.e. a tune and similar melodies).

The concept is not dissimilar to a number of other software

systems which give a visual display of relationships between

tunes, often based on a graph (e.g. Langer, 2010; Orio &

Roda, 2009; Stober, 2011).

The TuneGraph software consists of two parts – TuneGraph

Builder (Section III.A), which analyses the corpus and

constructs the required graphs, and TuneGraph Viewer

(Section III.B), which provides the online and interactive

visualisation.

A. TuneGraphBuilder

 1) The similarity measure

 In the current implementation, each melody is

1/64th notes and then constructing a pitch vector (or pitch

contour) where each vector element stores the interval, in

of the melody (neglecting any anacrusis). Since everything

is calculated as an interval it is invariant under transposition.

The similarity measure or difference metric then calculates

the difference between two pitch vectors either using the

1-norm (i.e. the sum of the absolute values of the differences

between each pair of vector elements) or the 2-norm (i.e.

the square root of the sum of squared differences between

each pair of vector elements). The 1-norm difference metric

has long been available as part of the abc2mtex indexing

facilities (Walshaw, 1994), but experimentation suggests

that the 2-norm gives marginally better results (see below,

section (7)). If the pitch vectors have different lengths then

the sum can be calculated over the length of the shorter

vector (although see below – section (3)).

Similarity measures of this kind are well explored in the

Typke et al., 2005), and there may be other, more advanced

similarity measures that would work even better. However,

in principle any suitable metric can be used to build the

proximity graph, provided that it expresses the difference

between pairs of melodies with a single numerical value.

Indeed, even combinations of similarity measures could

be used by forming a weighted linear combination of their

values.

 2) Building the proximity graph

 The proximity graph is formed by representing

every tune with a vertex and including (weighted) edges for

every pair of vertices which are “similar” (i.e. every pair

where the numerical difference is below some threshold

value). However the question arises: what is a suitable

threshold and how should it be chosen?

Perhaps the simplest choice, and one which is well-known

threshold value which results in connected graph, i.e. a

graph in which a path exists between every pair of vertices.

Although computationally expensive, this can be done

relatively straightforwardly starting with an initial guess at

a suitable threshold and then either doubling or halving it

until a pair of bounding values are found, one of which is

too small (and does not result in a connected graph) and one

of which is large enough (and does give a connected graph).

Finally the minimal connecting threshold (minimal so as to

exclude unnecessary edges) can be found with a bisection

algorithm, bisecting the interval between upper and lower

bounds each iteration.

graphs with an enormous number of edges: the test code

ran out of memory as the number of edges approached

200,000,000 and the threshold under test had not, at that

point, yielded a connected graph.

 Further investigation revealed the basic problem:

the graph is potentially very dense in some regions,

with many similar melodies clustered together, whereas

elsewhere there are outlying melodies which are not

similar to any others. This means that in order to connect

the outliers, and hence the entire graph, the threshold has

to be so large that in the denser regions huge cliques are

generated.

 3) Segmentation by meter

 In order to reduce the density of the graph, one

successful approach tested was to segment the graph by

meter – i.e. so that tunes with different meters are never

connected. In fact a simple way to implement this is to

avoid connecting pitch vectors with different lengths. This

(i.e. those with the same bar length such as 2/2 and 4/4)

meaning that the strategy is blind to certain variations in

transcription preferences (although not universally as it will

fail to connect related melodies, such as Irish single jigs,

which are variously transcribed in 6/8 and 12/8, and French

3-time bourrées, which can be either 3/4 or 3/8).

 Each pitch vector length results in a subset of graph

vertices: in all, for the 168,764 tunes under consideration,

there were 137 subsets, ranging in size from 65,568 vertices

(for 2/2 and 4/4 tunes), down to 60 subsets containing just

one vertex. However, 99.46% of vertices are in a subset of

size 100 or more and 99.85% are in a subset of size 10 or

more.

 The small subsets generally result from unusual

vector lengths, usually because of errors in the transcriptions

(i.e. extra notes or incorrect note lengths) and there was

often no close relation between the melodies, meaning that

a very high threshold would have to be used to connect that

subset. To avoid connecting very different transcriptions, for

each segment the edge threshold was, somewhat arbitrarily,

limited to the length of the pitch vector for that segment.

In most cases, this upper limit was never needed, but for

very small subsets it sometimes meant that no edges were

generated at all.

 4) Target median degree

 Even with segmentation by meter in place the

method can still generate graphs with huge numbers of

edges. However, there is no particular reason that the

graph needs to be connected so the idea of trying to build

a connected graph (or connected sub-graphs, one for

each pitch vector length) was abandoned as impractical.

Nevertheless, it is attractive as essentially parameter-free

and it does work for small collections of relatively closely

related tunes (for example, English morris tunes, where

there are many similar variants of the same melody).

 For the purposes of representing the entire corpus

as a (disconnected) proximity graph, this still leaves the

choice of a suitable edge threshold open. Rather than

picking a value out of the air, instead a target average degree

for the resulting graph is determined by experimentation.

With this average degree as a parameter the same bounding

and bisection method as above (section (2)) can be used to

 An important observation is that the small number

of vertices which have very many similar neighbours

generate a relatively large number of edges in the graph.

For example a cluster of, say, 100 very similar melodies

will form a (near) clique with up to 4,950 edges. This

degree. However, the median degree ignores these outlying

values and gave much more useful results empirically and

so the TuneGraph Builder uses the target median degree, D.

Considerable experimentation has been carried out with

a number of target median degree values with the aim of

that are small enough to be useful in search but which are

below, section (7)).

 Experimentation also revealed that, on its own, the

use of the target median degree to decide which edges to

include is far too crude.

 An alternative approach which proved much more

successful is to build a rich, and hence very dense graph

initially and then sparsify it by removing the weakest “non-

essential” edges. The advantage of this approach is that in

effect it provides a variable threshold for including edges: in

regions where the graph is dense, many edges are removed.

However, in areas where the graph is already sparse, edges

are retained even if they are weak, if they are deemed to be

essential.

turned out to be very simple but also extremely effective.

All the edges are added to a list and sorted primarily by

combined degree (if edge e is incident on vertices u and v

then the combined degree of e is the degree of u plus the

degree of v), largest to smallest, and then by weight, smallest

to largest. This roughly prioritises the densest regions and

within them, the weakest edges.

 To sparsify the graph the list is traversed and each

edge encountered is removed from the graph if both of its

61

For example, if S = 3 then an edge is removed if

both of its incident vertices have degree of 4 or more. Since

process this means that once a vertex is reduced to a degree

of S then no more of its edges can be removed.

6) Extracting local graphs

the TuneGraph Builder code extracts a local graph for each

non- isolated vertex (the local graph is what will ultimately

be displayed alongside the tune represented by that vertex).

One way to do this is simply to extract the vertex, plus all

its neighbours plus any edges between them. However, this

can lead to clique-like local graphs where edges are hard to

discern.

Instead, the local graph is built in layers: the seed

(layer 0) is the original vertex for which the local graph is

being built, layer 1 is any vertices neighbouring layer 0 and

layer 2 is any vertices (not already included) neighbouring

layer 1, etc. In order to maximise the clarity of the local

graph, it only includes edges between layers and excludes

edges between vertices in the same layer.

Fig. 3 shows some examples: Here (a) and (b) come

from local clique-like graphs with no immediate neighbours

(recall that edges between vertices in the same layer are not

included in the local graph so not all edges of the clique are

shown). The tree shown in (c) indicates a number of tunes

which are related but probably not immediate relations of

each other. The graphs in (d) and (e) are similar to (b) only

with some outlying tunes related to those in the clique.

Finally the graph in (f) shows a tune, with many variants, on

the edge of a tightly coupled clique.

If the local graphs are just built from layers 0

and 1, each will be star-like, as in Fig. 3(a) and Fig. 3(b),

yielding limited immediate visual information to the user

(other than the number of neighbours and the strength of the

relationships). Instead the builder code uses layers 0, 1 and

2, e.g. Fig. 3(c) to Fig. 3(f), to show some of the richness

Fig. 3. Some sample local graphs. of certain neighbourhoods. Here colours indicate the layers,

with layer 0 shown in crimson, layer 2 in light blue, and

layer 1 interpolated between the two of them.

Finally, the graph edges are all weighted in inverse proportion

to the difference between the two tunes that they connect.

Since graph edge weights are indicated in the online tool by

their thickness this conveys helpful information to the user

by showing the more closely related tunes with thicker lines

between them (and also affects how the graph is laid out by

force directed placement).

 7) Experimentation and parameter selection

desirable in the visualisations provided for users, but

experience with suggests that the local graphs should be

small enough not to overwhelm the user, but rich enough

to convey some useful information. In particular the aim

was to limit the maximum local graph size but maximise the

average size.

 Experimentation was carried out with a number of

different parameter settings but it is not at all easy to decide

which are the best parameter settings to use and therefore a

simple scoring system was employed.

 Based on (subjective) analysis of many example

graphs, the following principles were established:

 • graphs with 20 or fewer vertices are the most easy

to assimilate and use; above 40 or so vertices

they start to become over-crowded and as they

approach 100 vertices they are virtually unusable

(at least in the space allowed for them on the web

page);

 • star graphs, e.g. Fig. 3(a) and Fig. 3(b), are less

interesting than layered graphs, e.g. Fig. 3(c) to

Fig. 3(f).

 With these in mind the following scoring system

was implemented:

 1 point for each star graph with up to 40 vertices

 0 points for each star graph with 41-60 vertices -1

point for each star graph with 61+ vertices

 2 points for each layered graph with up to 20

vertices 1 point for each layered graph with 21-40

vertices

 0 points for each layered graph with 41-60 vertices

 -1 point for each layered graph with 61-80 vertices

-2 points for each layered graph with 81+ vertices

 The two most crucial parameters were found to

suitable proximity threshold for adding edges) and S, the

limit when removing edges). These are interdependent:

D determines the richness of the overall graph whilst S

determines how many of the weaker edges are removed.

 Of the two S is the cruder control. If S = 1 then all

of the local graphs end up as star graphs (and so the overall

score is considerably reduced). However, as S is increased

local graphs increases accordingly and the overall score is

negatively impacted by increasing numbers of large local

graphs regardless of which value for D is chosen.

 Thus, and perhaps surprisingly, the best value for S

is 2. 0shows some example results giving the overall score

for selected values of S and D. For S = 2, where the best

scores were obtained, the very best choice of D was 28, but

in fact there are several scores close by and all values of D

between 24 and 32 (not all shown in the table) yield scores

over 229,000. Even when D = 45, the score is still over

227,000.

 As S increases the scores drop off rapidly,

particularly as D increases. 0illustrates the reasons why by

taking a closer look at the graphs produced for D = 28 and

different values of S. In each case, 145,594 local graphs

are produced and the table then breaks them down into

categories by size and by type, star and layered.

 Perhaps the best way to view this is by looking

graphs here are layered but nearly 15,000 of them are above

40 in size, contributing nothing or even negative points to

the score. When S is decreased to 3 around 9,000 of these

are reduced in size and end up either as smaller star graphs

(~5,000) or smaller layered graphs (~4,000).

 When S is reduced to 2 a further 6,000 large

layered graphs are removed, probably becoming smaller

star graphs.

 Even more importantly the decrease of S transfers

a large number of layered graphs from the 21 – 40 category

into the 1 – 20 category, doubling the score for them.

 Finally, as mentioned above, there are no layered

graphs produced when S = 1 so that even though the number

of graphs in the 1 – 20 category is the highest of all 4 S

values, the total is lower as the scoring system favours

layered graphs. A large number of other tests were carried

out, not presented here. However from these the following

 • Difference norm: ||.||2 – see section (1)

 • Segmentation by meter: true – see section (3)

 • Edge threshold limit: pitch vector length – see

section (3)

 • Target median degree: 28 – see section (4)

(5)

 In all experiments, regardless of parameter settings,

there were a residue of isolated vertices, usually because

there are no closely related melodies in the corpus or, less

commonly, because there are no other transcriptions with

the same pitch length. Eliminating these isolated vertices

63

145,594 vertices.

edges, maximum vertex degree of 2,060 and an average

to 204,639 edges, with a maximum degree of 77 and an

algorithm.

subsets (many with as few as 2 vertices) as compared with

5,616 connected subsets in the latter. However, a connected

graph was not an aim of the process (particularly since the

graph is already segmented by meter).

 From this global graph 145,594 local graphs

were produced with an average size of 12.3 vertices. The

maximum size was 80 vertices and 154 edges.

are just a snapshot taken at the time of writing (November

version layered star presented previously (Walshaw, 2014)

which gathers data for the tune search is run every month

so too will the underlying graph and the number of local

graphs produced. The choice of parameters is chosen with

the current data in mind but it is likely that the highest

scoring choice of target median degree, D, may change over

time according to the underlying data.

 It is also likely that the scoring system will be

assessed.

B. TuneGraphViewer

 The TuneGraph Viewer has been deployed on

the abcnotation.com website since 1st September 2014

and provides the an interactive user interface for viewing

each local tune graph (on a webpage alongside the tune it

corresponds to).

 The local graph is visualised as a dynamic layout

using D3.js (Bostock, 2012), a JavaScript library for

manipulating documents based on data, and employing the

inbuilt force- directed placement features.

 It provides the following user interface:

positiondynamically via force directed placement

and vertices can be dragged to rearrange the

layout (other vertices then relocate accordingly).

 • Vertex colour indicates the relationship to the root

vertex (with layer 0 shown in crimson, layer 2 in

light blue, and layer 1 interpolated between the

two of them).

 • Edge thickness indicates visually how closely

related two vertices are (i.e. how similar their

corresponding tunes are).

 • Moving the mouse over a vertex reveals its name

and displays the associated melody.

 • Double clicking on a vertex (other than the root

vertex) takes the user to the corresponding page

(with its own tune graph).

 Fig. 2 shows an example webpage corresponding

to the tune Black Jack (a well-known English tune). The

tune is displayed on the left with the abc notation underneath

and the local tune graph is shown on the right. When the

user moves their mouse over one of the graph vertices,

the interface enlarges the vertex and notation for the tune

associated with that vertex appears below.

Conclusion

 This paper has presented TuneGraph, an online

visual tool for exploring melodic similarity.

 It is based upon a large index of online music and

uses a melodic similarity measure to derive a proximity

graph representing similarities within the index.

by removing weak non-essential edges. From this a local

graph is extracted for each vertex, indicating close variants

and similar melodies of the underlying tune represented by

the vertex. Finally an interactive user interface display each

local graph is on that tune’s webpage, allowing the user to

explore melodically similar tunes.

A. Futurework

 The main focus for future work is to enhance

the capabilities of TuneGraph. In particular it is intended

to explore some of the wide range of similarity measures

that are available as a means to build the proximity graph.

As was indicated in section III.A there may be other, more

advanced similarity measures, or combinations of similarity

measures, that would work better than the 2-norm of the

difference between pitch vectors.

 Furthermore, at this point the similarity measure

used to assess the proximity of variants is based on the

at some point in the future it is intended to use a more

discerning metric based on much larger portions of the tune

(as not all closely related incipits are as a result of closely

related tunes).

References

1. Bostock, M. 2012. Data-Driven Documents (d3.js), a

visualization framework for internet browsers running

JavaScript. Retrieved May 15, 2014, from http://d3js.org/

2. Kelly, M. B. 2012. Evaluation of Melody Similarity Measures.

Queen’s University, Kingston, Ontario.

3. Langer, T. 2010. Music Information Retrieval & Visualization. In

Trends in Information Visualization, pp. 15–22.

4. Orio, N., & Roda, A. 2009. A Measure of Melodic Similarity

based on a Graph Representation of the Music Structure. Proc.

ISMIR, pp. 543–548.

5. Stober, S. 2011. Adaptive Distance Measures for Exploration and

Structuring of Music Collections, Section 2, 1–10.

6. Typke, R., Wiering, F., & Veltkamp, R. C. 2005. A survey

of music information retrieval systems. In Proc. ISMIR, pp.

153–160.

7. Walshaw, C. 1993. ABC2MTEX: An easy way of transcribing

folk and traditional music, Version 1.0. University of Greenwich,

London.

8. Walshaw, C. 1994. The ABC Indexing Guide Version 1.2.

University of Greenwich, London.

9. Walshaw, C. 2003. A Multilevel Algorithm for Force-Directed

Graph-Drawing. Journal of Graph Algorithms and Applications,

73, pp. 253–285.

10. Walshaw, C. 2014. A Statisical Analysis of the Abc Music

Notation Corpus. In A. HolzapfelEd., Folk Music Analysis,

Istanbul, pp. 2–9. Istanbul: Bogaziçi University.

