Table 1. Applied mathematical models to the drug release data

Model	Equation
Zero order kinetics	$Q_t = Q_0 + k_0 t$
First order kinetics	$ln(Q_{max}-Q_t)=lnQ_{max}-k_1t$
Higuchi	$Q_t = k_h t^{1/2}$
Korsmeyer-Peppas	$Q_t = kt^n$
Hixon-Crowell	$Q_{max}^{1/3}$ - $(Q_{max}-Q_t)^{1/3}=k_st$

where Q_t is the percentage of drug dissolved at time t, Q_0 is the percentage of drug dissolved at the beginning ($Q_0=0$), Q_{max} is the percentage of undissolved drug at the beginning ($Q_{max}=100\%$), k_o and k_1 are zero and first order release constants respectively, k_h is a Higuchi dissolution constant, k is a constant incorporating structural and geometric characteristics of the drug dosage form, k_s is a constant incorporating the surface-volume relation, n is a release exponent of Korsmeyer-Peppas model indicative of the drug release mechanism and t is time.