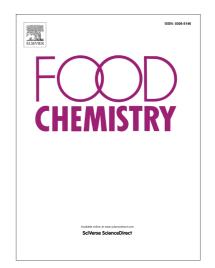
Accepted Manuscript

Consumer acceptance and sensory profiling of reengineered kitoza products

Ana I.E. Pintado, Maria J.P. Monteiro, Régine Talon, Sabine Leroy, Valérie Scislowski, Geneviève Fliedel, Danielle Rakoto, Isabelle Maraval, Ana I.A. Costa, Ana P. Silva, Dominique Pallet, Keith Tomlins, Manuela M.E. Pintado


PII: S0308-8146(15)01337-0

DOI: http://dx.doi.org/10.1016/j.foodchem.2015.08.128

Reference: FOCH 18076

To appear in: Food Chemistry

Received Date: 5 May 2015 Revised Date: 12 August 2015 Accepted Date: 17 August 2015

Please cite this article as: Pintado, A.I.E., Monteiro, M.J.P., Talon, R., Leroy, S., Scislowski, V., Fliedel, G., Rakoto, D., Maraval, I., Costa, A.I.A., Silva, A.P., Pallet, D., Tomlins, K., Pintado, M.M.E., Consumer acceptance and sensory profiling of reengineered kitoza products, *Food Chemistry* (2015), doi: http://dx.doi.org/10.1016/j.foodchem.2015.08.128

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 2 3 4	CONSUMER ACCEPTANCE AND SENSORY PROFILING OF REENGINEERED KITOZA PRODUCTS
5 6	
7	Ana I. E. Pintado ^a , Maria J P. Monteiro ^a , Régine Talon ^b , Sabine Leroy ^b , Valérie
8	Scislowski ^c , Geneviève Fliedel ^d , Danielle Rakoto ^e , Isabelle Maraval ^d , Ana I. A. Costa ^{a,f} ,
9	Ana P. Silva ^a , Dominique Pallet ^d , Keith Tomlins ^g and Manuela M. E. Pintado ^{a*}
10	
11	
12	^a CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola
13	Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto
14	Lobão Vital, Apartado 2511, 4202-Porto
15	^b INRA, UR454 Microbiologie, 63122 Saint-Genès Champanelle, France
16	^c ADIV, Institut technique Agro-Industriel des filières viandes, 10 Rue Jacqueline
17	Auriol, 63039 Clermont-Ferrand, France
18	^d CIRAD, UMR Qualisud, TA B 95-16, 73 Rue Jean-François Breton, 34398
19	Montpellier Cedex 5, France
20	^e UT - Antananarivo University, Madagascar
21	^f CUBE - Católica Lisbon School of Business and Economics, Palma de Cima, 1649-023
22	Lisboa, Portugal.
23	^g Natural Resources Institute, University of Greenwich, Central Avenue, Chatham
24	Maritime, Kent, ME7 3RU, United Kingdom
25	
26	Running title –
27 28	*To whom correspondence should be addressed
29	Tel: +351 22 55 80094
30	Fax: +351 22 50 90351
31	E-mail address: mpintado@porto.ucp.pt
32	
33	
34	This manuscript has been submitted for publication in <i>Food Chemistry</i>
35	It is not to be reproduced or cited without the written permission of the authors

37	Abstract
38	
39	Kitoza refers to a traditional way of preparing beef and pork in Madagascar. However,
40	in order to improve some drawbacks previous identified, the product was submitted to a
41	reengineering process. The acceptance and sensory profiling of improved Kitoza
42	products among Portuguese consumers was investigated. A local smoked loin sausage
43	was selected as basis for comparison. Firstly, a Focus Group study was performed to
44	identify sensory descriptors for Kitoza products and explore product perception.
45	Subsequently, a Flash Profile and a consumer sensory acceptance study were conducted.
46	Flash Profile's results showed that beef- and pork-based Kitoza products investigated
47	differed considerably in all sensory dimensions. The Portuguese sausage was
48	characterized as having a more intense and lasting after taste, as well as displaying a
49	higher degree of (meat) doneness. The acceptance study yielded higher overall liking
50	ratings for pork- than for beef-based Kitoza, although the Portuguese sausage remained
51	the most appreciated product.
52	
53	Keywords: Kitoza, smoked/dried meat, beef, pork, Madagascar, sensory profile,
54	consumer test.
55	
56	
57	
58	
59	
60	
61	

1. Introduction

-	2
n	1

62

64 Kitoza is a traditional product of Madagascar made from lean beef or pork meat. It was 65 consumed for a long time ago by royalty and the wealthy has been popularized in this country over time. It is nowadays highly appreciated by Malagasy people of different 66 social classes and also by foreigners, being mainly eaten with rice in soups at either 67 breakfast or dinner times. 68 69 Kitoza is mainly prepared from meat from the hump of Malagasy zebus or Zebus, 70 71 although pork meat can be also used. It is locally sold in many different forms: raw in 72 butcheries, cooked in street eateries, dried and smoked in supermarkets. Kitoza is traditionally prepared by trimming and slicing the meat into approximately 2– 73 74 4 cm thick and 20 to 50 cm long strips, which are then uniformly salted. Depending on 75 the preference, spices such as garlic, pepper and ginger may also be added to enhance 76 the taste and tenderize the meat. The strips are then threaded onto a cord and hung over fire (a fireplace or barbecue), in order to smoke for at least 24 h. In butcheries, Kitoza is 77 hung on a cord and then air dried at room temperature. 78 79 Meat preservation processes are based on slowing down or inhibiting different microbiological, enzymatic and chemical alteration processes (Sciences et Societé, 80 81 UNESCO, 1986; Touzi & Merzaia-Blama, 2008). Most meat-based products are obtained through a combination of meat preservation processes such as drying, salting, 82 83 smoking, frying or fermentation which are inexpensive process and widely used in these countries (Kalilou, 1997, Yacouba, 2010). 84 Applying meat preservation conditions in these countries is a very difficult task, due to 85 a lack of adequate cold storage infrastructure, and especially, owing to climate and 86 87 environmental conditions that precipitate the rapid degradation of this product. In

- Madagascar, due to the highly perishable nature of meat, this type of foodstuff is often 88 89 dried and/or smoked because the preservation process is easy and economically viable. There are two main advantages related to processing meat through drying: 90 91 1) To reduce the water activity in the processed product, thereby inhibiting the 92 development of microorganisms and the rate of enzymatic reactions; 2) To reduce the weight and volume of the final product, thus facilitating its 93 94 preservation during transport and storage (Yacouba, 2010). 95 Although being widely consumed in several African countries, traditional Kitoza 96 production does not meet EU food safety requirements and cannot be exported to Europe. However, Kitoza has a high organoleptic potential and its production could be 97 improved to meet international standards. 98 In the framework of an FP7 project - AFTER "African Food Tradition rEvisited by 99 Research", a reengineering process based on the reorganization of traditional one was 100 conducted to develop Kitoza products adapted to the European market with regard to 101 their safety as well as consumer acceptability. To this end, two studies were done. A 102 consumer study was held to investigate acceptance and drivers of preference and choice 103 among Portuguese consumers in the EU, in which overall liking, intensity of sensory 104 105 attributes in relation to participants' ideal level, price and placement were evaluated 106 (Gaze et al., 2015). A complementary study on sensory characterization of the products by means of a sensory descriptive study performed with experienced panellists using the 107
 - overcame some of the constraints of time and resources of conventional descriptive

Flash Profile method (FP). FP is part of the faster and more flexible novel

methodologies for sensory characterization that have been developed in the last years, to

108

109

- analyses (Cruz et al., 2013; Kim, Jombart, Valentin, & Kim, 2013; Valentin, Chollet,
- Lelièvre, & Abdi, 2012; Varela & Ares, 2012). Not requiring specific training of

113	panellists, FP was suggested by Dairou and Sieffermann (2002), for sensory description
114	of food products according to their most salient sensory attributes. Since then it has
115	been applied to describe many different foods including fruit products and beverages,
116	having been proved to be as satisfactory as conventional profiling in many applications,
117	using either trained or semi-trained panellist or consumer panels (Delarue, 2014;
118	Delarue & Sieffermann, 2004; Moussaoui & Varela, 2010; Valentin, Chollet, Lelièvre,
119	& Abdi, 2012; Varela & Ares, 2012). In view of this, the main objective of this study
120	was to investigate the acceptance and sensory profiling of improved Kitoza products
121	among Portuguese consumers.
122	
123	2. Materials and methods
124	
125	2.1. Samples
126	
127	The Kitoza samples (beef and pork) for sensory and consumer tests were prepared using
128	French meat (due to restrictions to export meat from Madagascar).
129	These samples were obtained through a reengineering process of the Kitoza products by
130	Institut technique Agro-Industriel des filières viandes (ADIV) platform (CE approved)
131	in France under support of traditional knowledge of Madagascar; according to an
132	improved protocol developed in the framework of an international collaborative FP7
133	project funded by European Union "African Food Tradition rEvisited by Research"
134	(AFTER).
135	The optimization approach resulted in the final protocol (Figure 1). At the food
136	processing facilities in CIRAD, Montpellier, France, the meat was cut in strips (2 cm x
137	30 cm). Then pork meat was seasoned with NaCl (18 g/kg), NaNO $_2$ (0.11g/kg), KNO $_3$
138	(0.15 g/kg), garlic (4 g/kg), four spices mix (pepper, cloves, nutmeg, cinnamon, 2 g/kg)

139	and inoculated with the bioprotective cultures (B-LC-77, CHR HANSEN) composed of
140	a mixture of Pediococcus acidilactici and Staphylococcus carnosus. It is specially
141	developed for application in meat products to secure the formation of curing flavour and
142	stable colour and to inhibit Listeria monocytogenes. Our preliminary data showed the
143	interest of the application of these bioprotective cultures on these kinds of products
144	(data not shown). The product was then smoked and dried at 60 °C, 0% of hygrometry
145	during 95 min. Beef meat was seasoned with NaCl (18 g/kg), ginger powder (5 g/kg),
146	sunflower oil (41g/kg) and inoculated with the bioprotective cultures (B-LC-77). The
147	product was then smoked and dried at 60 °C, 0% of hygrometry during 65 min.
148	The Kitoza meat samples were vacuum packaged and shipped to Portugal under
149	refrigerated (4°C) conditions for the Portuguese sensory and consumer's tests. In
150	parallel microbial analyses were carried out.
151	Since Kitoza is an unknown product for Portuguese consumers, a local smoked loin
152	sausage was selected as basis for comparison. This sausage loin smoked sausage is a
153	commercial product sold by Primor (Portugal). The product is made from pork and is
154	marketed in vacuum packages (350 g) in refrigerated conditions (0 °C-5 °C) and a shelf
155	life of 90 days.
156	The Kitoza meat samples processed and smoked loin sausage are represented in Figure
157	2: (1) Kitoza beef (KB), (2) Kitoza pork (KP) and (3) Traditional Portuguese smoked
158	loin sausage (PS). The three different samples were used for Portuguese sensory and
159	consumer's tests. Samples were served to the panellists at room temperature in the form
160	of thin slices of approximately 0.5 to 1 cm thickness, without further preparation. Good
161	hygiene practice was followed.

2.2.Microbial an	nalyses
------------------	---------

1	6	5

Kitoza manufactured samples (beef and pork) were evaluated in terms of food safety and hygiene of the process. Microbiological samples were taken and analysed on selective media according to the Standard methods of microbiological food analysis and the ISO (International Organization for Standardization) Standard (Table 1). The total counts were numerated on Plate Count Agar at 30°C for 72 h; yeasts and moulds on Yeast Glucose Chloramphenicol Agar at 25°C for 48 h; coagulase negative staphylococci on Manitol Salt Agar at 30°C for 48 h; and lactic acid bacteria on Man, Rogosa and Sharpe Agar at 30°C for 48-72 h under anaerobic conditions. The *Enterobacteriaceae* were numerated on Violet Red Bile Glucose Agar at 37°C for 24 h; *Staphylococcus aureus* and coagulase positive staphylococci on Baird-Parker Agar 37°C for 24-48 h. *Listeria monocytogenes* and *Salmonella* were detected after enrichment step according the ISO standard (Table 1).

2.3. Ethical assessment and consent

would remain anonymous.

These studies have been assessed and approved by the Natural Resources Institute (NRI) (Kent, United Kingdom) Ethics Committee. Informed consent was signed by sensory panellists and consumers who participated in this study.

Participants were informed prior to the study that their participation was entirely voluntary, that they could stop the interview at any point/time and that their responses

2.4. Flash Profile

1	90	

191	The sensory profiling study was conducted at the Escola Superior de Biotecnologia -
192	UCP, Porto in Portugal. To this end, samples of the three products were rated by 18
193	sensory panellists using Flash Profile (FP) (Dairou and Sieffermann, 2002). This is an
194	alternative sensory analysis technique, adapted from free-choice profiling, which is
195	employed to understand the sensory positioning of products (Garruti, Facundo, Lima &
196	Aquino, 2012). This technique combines vocabulary generation through free choice
197	profiling by individual panellists with attribute intensity ranking. FP is usually done in
198	two sessions or steps. In the first session/step panellists are asked to evaluate samples
199	comparatively in order to generate descriptors they consider appropriate to discriminate
200	between the samples. In the second, panellists rank all samples for each selected
201	attribute (Varela & Ares, 2012).
202	The panellists were recruited and selected in compliance with ISO Standard 8586:2012
203	(ISO, 2012a) and completed a 3-month training period on sensory evaluation. Training
204	focused on language development, improvement of discriminating ability,
205	memorization and rating intensities of selected attributes. Panel performance was
206	evaluated at the end in compliance with ISO 11132:2012 (ISO, 2012b).
207	Sessions were conducted in a sensory laboratory with controlled air temperature and
208	lightning. The facilities complied with the requirements of ISO 8589 (ISO, 2007) and
209	comprised a training room, dedicated kitchen and sensory booths with computerized
210	data collection.
211	In the beginning of the first session, the panellists were briefed about the FP procedure
212	and asked to evaluate the three samples in order to generate sensory descriptors to
213	differentiate among them. The records for attributes definition are represented in Table

2. At the end of the session, descriptors were compiled along with the correspondent

215	anchors, synonyms discarded. The pooled attribute list of 23 descriptors is presented in
216	Table 3. In the second session, panellists were instructed to choose whichever
217	descriptors they would consider more adequate (from the pooled list or others) and to
218	rank the intensities in all samples using a continuous graphical scale (0 to 10). These
219	were allowed and panellists could re-taste the samples as much as they liked (Lawless
220	& Heymann, 2010). Samples in both sessions were presented coded with random three
221	digit codes, water was provided for mouth rinsing.
222	
223 224	2.5. Focus groups
225	In order to gain insights on consumer's perception towards Kitoza meats, one small
226	focus group discussion was performed in Porto (Portugal) with nine recruited volunteers
227	(four men and five women) of different ages. The individuals were invited to taste the
228	two Kitoza products, and to give their impressions about them, main product attributes,
229	possible motivations to buy and to consume, the circumstances and locations for
230	consumption.
231	The focus group was led by an experienced moderator. A focus group script was
232	developed based on the proposed aims. The themes exploited in focus groups are
233	presented in Table 4.
234	
235	2.6. Consumer acceptance
236	
237	The study was conducted at Escola Superior de Biotecnologia (ESB) - Universidade
238	Católica Portuguesa (UCP). Participants were non-probabilistically recruited (Porto,
239	n=94) according to their willingness and availability to participate in the study. Their

240	ages ranged between 18 and 55 years old (average 29), 99% were European residents.
241	22% of participants consumed different types of charcuterie on a daily basis, 65% of
242	participants consumed these products at least once a week and 9% at least once a month,
243	4% of participants only consumed these products occasionally.
244	Questionnaires were administered using Qualtrics (Qualtrics, LLC), an online survey
245	software. Sample acceptability was assessed by overall liking, aspect, texture, flavour
246	ratings provided on a 9-point verbal hedonic scale. (1 = "dislike extremely, 5="neither
247	like nor dislike", 9 = "like extremely") (Jones, Peryam & Thurstone, 1955; Peryam &
248	Girardot, 1952; Peryam & Pilgrim, 1957; Gaze et al., 2015). Hierarchical cluster
249	analysis (Euclidean distances and Ward's agglomeration method) was subsequently
250	performed to identify groups of participants with dissimilar patterns of sample liking.
251	Sensory attributes - slice size, slice thickness, smoked flavour and condiment, relative
252	to participants' ideal level were measured by attribute ratings provided on a 7-point just-
253	about-right scale [1-3 too weak (TW), 4 just-about-right (JAR), 5-7 too strong (TS)].
254	The just-about-right (JAR) scale combines assessment of attribute intensity and hedonic
255	evaluation, providing information on how consumers feel about a product and how
256	much a sample deviates from an ideal point (just-about-right) (Gacula, Rutenbeck,
257	Pollack, Ressurection, & Moskowitz, 2007; Morais, Morais, Cruz, & Bolini, 2014;
258	Paixão, Rodrigues, Esmerino, Cruz , & Bolini, 2014; Esmerino, Cruz, Pereira,
259	Rodrigues, Faria, & Bolini, 2013; Popper, 2014).
260	To evaluate the potential impact of the geographic origin of Kitoza on consumer
261	demand, the survey contained a question asking participants how much they were
262	willing to pay for the Kitoza products they had just sampled. Half of the participants
263	were informed about the Malagasy origin of the recipe while the other half were not.
264	The surveys containing the two versions of this question were randomly distributed

265	among participants. Finally, the survey also included questions about the
266	appropriateness of eating/buying situations for the sampled Kitoza products.
267	
268	2.7 Statistical analysis
269	
270	XLSTAT software (Addinsoft SARL, France) was used to carry out the statistical
271	analyses. The significance of statistical tests was evaluated at p<0.05, unless otherwise
272	mentioned.
273	The FP results were analysed using General Procrustes Analysis (GPA) a multivariate
274	statistical technique. GPA reduces the scale usage effects by detecting and minimizing
275	individual differences and delivers a consensus configuration and allows the
276	comparison of the proximity between terms that are used by different assessors to
277	describe the test samples (Næs, Brockhoff & Tomic, 2010; Hernández-Carrión, Varela,
278	Hernando, Fiszman, & Quiles, 2014; Rodrigues & Teixeira, 2013; Santos et al., 2013)
279	Analysis of Variance (ANOVA) was performed on within-clusters' overall liking
280	ratings (aspect, texture and taste) for the three samples, considering participants and
281	samples as sources of variation. Within-cluster mean sample ratings were calculated and
282	significant differences between them tested post-hoc using Tukey's HSD (Honest
283	Significant Difference) tests. Pair-wise Pearson correlations between samples' overall
284	liking ratings were then computed to assess their degree of association.
285	Hierarchical cluster analysis (Euclidean distances and complete Ward's agglomeration
286	method) was subsequently performed to identify groups of participants with dissimilar
287	patterns of sample liking. The frequency of intensity ratings (TW/TL, JAR, TS/TL) for
288	each of the four sensory attributes evaluated by participants was determined for each

sample, and the corresponding proportions calculated.

290 3. Results and discussion

3.1 Microbial evaluation

First the results highlighted the absence of pathogenic bacteria such as *Salmonella* and *Listeria monocytogenes* and the count of *Staphylococcus aureus* was below to the detection level in the two Kitoza samples (Table 1). Yeasts and moulds and *Enterobacteriaceae* were enumerated at low level attesting of the hygienic quality of the meat products. The count of the lactic acid bacteria and coagulase negative staphylococci were approximately 7 and 6 log CFU/g, respectively. As expected, these counts are in accordance with the inoculation level of the bioprotective cultures.

3.2 Flash profile

Flash profile was chosen as a satisfactory method to describe the sensory profile as an alternative to the use of the Quantitative Descriptive Analysis (QDA), since QDA involves several sessions to generate the descriptors and extensive training with the panel working with the references. Moreover, we had short time between the arrival of samples from France and their shelf life. However, we are aware that this method did not generate data with the same degree of reliability (Cadena, Cruz, Netto, Castro, Faria, & Bolini, 2013), but possess enough discrimination capacity for these samples. The results of GPA performed on the FP evaluation of the three samples are presented in Figure 3. The first two dimensions of the GPA analysis accounted for by 76.5% and 23.5% of the variance respectively.

314	A good discrimination between the three products was observed. KB was described as
315	having a darker colour tone (doneness) on the outside, but a rawer aspect inside, as well
316	as an intense meat flavour. KB contrasted with PS in terms of the attributes saltiness,
317	moisture, cooking texture, spices, and succulence. These were all relatively stronger for
318	KB and weaker for PS, while aftertaste intensity and duration were stronger for PS than
319	KB. KP main attributes were a more intense smoked odour and flavour, sweet and
320	spiced odour, with a more fibrous and elastic texture, than the other two samples.
321	
322	3.3. Focus groups
323	
324	The participants observed both Kitoza samples and made some considerations as respect
325	that sensory attributes. The main reactions on Kitoza products by the Portuguese
326	consumers who participated in focus groups were as follows:
327	- KP was defined as aromatic, sweet taste and similar to a traditional Portuguese
328	smoked loin sausage.
329	- KB was defined as smoked odor, undercooked meat, poor consistency, very
330	smooth and floury.
331	- Overall agreed that the samples had different textures. KP much drier and KB
332	with more moisture content and undercooked meat aspect.
333	- The majority considered the products belonging to the category of smoked meat
334	sausages food and dry meat. With respect to KP, they considered that it had
335	similarities with traditional Portuguese products (like "salpicão", but without the
336	tripe, or smoked loin sausage), the sweetest and much less salty than similar
337	Portuguese products and with a spicy taste (curry, coconut, cinnamon).
338	Participants considered the KB to be quite different and could not identify in the

339		national markets similar smoked products; however they indicated some
340		similarities with roast beef.
341	-	Concerning the occasion of consumption, they showed that they would consume
342		only on special occasions, as for example before the dinner with delicacies or
343		how as a snack in a party.
344	-	They consume KP "just like" or probably used in duck rice or mixed with pasta.
345		They probably consume KB only cooked (maybe grilled). For the purchase of
346		these products, KP would be the product they buy most easily because it had a
347		more appealing aspect, while the KB did not have a very attractive appearance.
348		However, the way they are marketed could influence the purchase. The type of
349		market that considered ideal for the sale of these products was the delicatessens,
350		gourmet shops or supermarkets.
351	-	They considered that would it would be useful to have knowledge about the
352		origin of the products; they would buy this product more readily if in the label
353		was written "product manufactured in Europe - according to the traditional recipe
354		of Madagascar".
355	-	Even though they have not considered very attractive products, in short they
356		considered that KP was similar to some traditional Portuguese products, and it
357		was more familiar, tastier and more artificial. They rated "just like" this product.
358	6	KB was considered different from traditional Portuguese products since the
359		Portuguese's people do not customarily consume meat products produced from
360		beef meat. They highlighted the unattractive aspect, but nevertheless this product
361		ended up generating more curiosity. They described the product with floury and
362		friable texture and they would consume this type of product cooked.

364	3.4.Consumer study
365	
366	3.4.1 Overall liking scores
367	
368	The overall acceptability of all samples significantly differed between the three samples
369	at a significant level of $p \le 0.01$ (one-way ANOVA) (Table 5).
370	On average, all samples were positively appreciated since the mean scores of overall
371	liking were above 5.5. PS was the most preferred product (7.223±0.135) followed by
372	KP (6.319 ± 0.166) and KB (5.606 ± 0.229) , which obtained the lowest mean rating.
373	
374	3.4.2 Hierarchical cluster analysis
375	
376	The hierarchical cluster analysis (Ward method) identified three groups of consumers
377	with different overall liking patterns as depicted in Figures 4: Cluster 1 (C1) - Kitoza
378	beef dislikers (41%), Cluster 2 (C2) - Overall likers (43%) and (Cluster 3) C3 - Kitoza
379	pork dislikers (16%) (Figure 5). Kitoza pork was liked by 84% of participants (clusters
380	C1 and C2), whereas Kitoza beef was liked by 59% of participants (clusters C2 and C3).
381	Consumer acceptance was positive for all samples, but differed significantly between
382	them (p $<$ 0.05). Mean overall liking ratings showed that PS was better appreciated than
383	KP and KB.
384	Positive significant correlations were observed between overall liking and acceptance of
385	sensory attributes, aspect, texture and flavour by consumers (Table 5). Correlations
386	between sensory attributes were also similar for the different clusters.
387	

388	3.4.3 Evaluation of intensity of sensory attributes relatively to participants'
389	ideal level
390	
391	Figure 6 shows the frequencies of intensity ratings, measured on a 5-point JAR scale,
392	for each Kitoza sample and Traditional Portuguese smoked loin sausage and sensory
393	attributes evaluated.
394	A preponderance of JAR (Just-About-Right) ratings was observed for PS for the four
395	attributes evaluated, with their frequencies ranging from 53.2% to 86.2%. This is well in
396	line with overall liking results, which showed that PS was the preferred sample for
397	Portuguese consumers.
398	For KP, TW/TL (Too weak/Too little) ratings dominated the smoked flavour and slice
399	size. For condiments and slice thickness the frequencies of JAR ratings were 35.1% and
400	51.1%, however condiments obtained similar ratings for TW/TL, JAR and TS/TL (Too
401	strong/Too large), with values of 34.0, 35.1 and 30.9%, respectively.
402	For KB, with TW/TL ratings being preponderant for most attributes except for slice
403	thickness; slices size obtained 67.0% for TW/TL ratings, which shows that most
404	participants preferred larger slices. This result is also in line with the overall taste
405	results, which showed that KB was the least preferred sample.
406	The results of the JAR highlighted that KB and KP should have larger slices size and
407	stronger smoked flavour.
408	
409	3.4.4. Willingness to pay and product placement
410	
411	Information about Malagasy traditional origin of Kitoza products had a positive impact
412	on participants' willingness to pay, both for KP and KB (Figure 7). On average,

413	participants stated they were willing to pay a significant higher price pay for KB and KF
414	(respectively 3.3 € and 3.2 € for 100g of product) than when they were not informed
415	about the origin of the products (2.2 € for 100g of both products). These results could
416	be related to the unusual and exotic character associated with tradition Malagasy
417	traditional origin.
418	Figure 8, shows the results concerning tasting occasions of KB and KP. The results
419	were similar for both Kitoza products, being the main consumption preference as
420	appetizer for KB (33%) and KP (30%) and as snack, KB (32%) and KP (29%).
421	These results show the trend of consumer's preference in terms of tasting which
422	resembles to the form of consumption of traditional Portuguese charcuterie products.
423	In relation to product placement participants considered the supermarket charcuteries
424	sections the more appropriate place to sell Kitoza products (Kitoza beef (32%) and
425	Kitoza pork (37%)), followed by supermarket gourmet sections (Kitoza beef (22%) and
426	Kitoza pork (21%)). Similar results were obtained for both Kitoza samples (Figure 9).
427	Tasting occasions and product placement for Kitoze products resembles the same trends
428	of traditional Portuguese charcuterie products.
429	These results suggest that because the participants were unfamiliar with this kind of
430	products, they chose market for the sale of Kitoza that were the similar market where
431	similar Portuguese products would be vended, namely supermarkets charcuteries
432	sections. The gourmet shops were other major choices probably because consumers
433	consider these products to be exotic or delicatessen.
434	
435	
136	

437	4. Conclusions
438	
439	Sensory evaluation resulted in 23 attributes to describe the sensory characteristics of the
440	meat samples. Among the main results we can highlight that the sensory evaluation of
441	meat samples revealed different sensory profiles. The major differences found were that
442	KB was more related to thickness, meat flavour and colour tone aspect attributes and
443	had a more intense meat flavour. KP showed more intense sweet odour, spices and
444	smoked odour. On the other hand, PS was related to after taste duration and intensity
445	sensory attributes.
446	Between the two Kitoza samples, KP was the most appreciated, although the PS used
447	for comparison in this study was the most appreciated overall, as expected. It is
448	hypothesized that these results are due to the fact that Kitoza products are unknown for
449	most Portuguese consumers and that most of dried and cured meat products are made of
450	pork meat in Portugal.
451	The appropriateness of spicy flavour, smoked flavour and slice size evaluated showed
452	that most consumers would prefer larger product slices, while in the case of Traditional
432	
453	Portuguese smoked loin sausage although it was presented in small pieces, as it is a
454	more familiar product the slices size was considered JAR by 86.2% of participants.
455	The impact of Madagascar traditional origin of the recipe evaluated showed a positive
456	effect on product preference, since a significant increase was observed in the average
457	price the consumers stated they were willing to pay, both for Kitoza beef and Kitoza
458	pork, because participants associated with these products exotic products, valuing them.
459	Moreover, the employment of overall liking assessments and JAR technique and
460	uncovered important drivers for further sensory optimization of the Kitoza samples

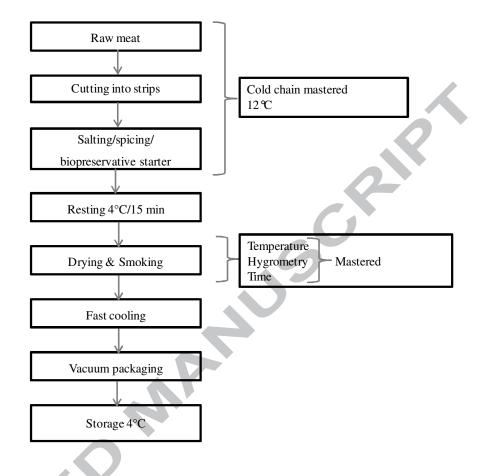
improved through reengineering processes.

462	Although the Kitoza products are unfamiliar to most of the Portuguese consumers, the
463	results of this study revealed that improved Kitoza products have the potential to be
464	well accepted and to be promoted and introduced in Portugal and other European
465	markets. This also has the potential to contribute to improved incomes and livelihoods
466	for people living in Madagascar.
467	
468	Acknowledgement
469	
470	This publication is resulting from a research project funded by the European Union
471	(FP7 245-025) called African Food Revisited by Research (AFTER - http://www.after-
472	fp7.eu/), with additional financial support and FCT (Fundação para a Ciência e a
473	Tecnologia) - PEst OE/EQB/LA0016/2013. The views expressed are not necessarily
474	those of the European Union.
475	
476	References
477	
478	Cadena, R. S., Cruz, A. G., Netto, R. R., Castro W. F., Faria, J. A. F, & Bolini, H.
479	M. A (2013). Sensory profile and physicochemical characteristics of mango
480	nectar sweetened with high intensity sweeteners throughout storage time. Food
481	Research International, 54, 1670–1679.
482	
483	Cruz, A. G., Cadena, R. S., Castro, W. F., Esmerino, E. A., Rodrigues, J. B., Gaze,
484	L., & Bolini, H. M. A. (2013). Consumer perception of probiotic yogurt:
485	Performance of check all that apply (CATA), projective mapping, sorting and
486	intensity scale. Food Research International, 54, 601-610.

487	
488	Dairou, V., & Sieffermann, J.M. (2002). A comparison of 14 jams characterized
489	by conventional profile and a quick original method, the flash profile. Journal
490	of Food Science, 67, 826-834.
491	
492	Delarue, J. (2014). Flash Profile Novel techniques in sensory characterization and
493	consumer profiling (pp. 175-202). Boca Raton, USA: CRC Press
494	
495	Delarue, J., & Sieffermann, J. M. (2004). Sensory mapping using Flash profile.
496	Comparison with a conventional descriptive method for the evaluation of the
497	flavour of fruit dairy products. Food Quality and Preference, 15, 383-392.
498	
499	Esmerino, E. A., Cruz, A. G., Pereira, E. P. R, Rodrigues, J. B., Faria, J. A. F., &
500	Bolini, H. M. A. (2013). The influence of sweeteners in probiotic Petit Suisse
501	cheese in concentrations equivalent to that of sucrose. Journal of dairy science
502	96: 5512-5521.
503	
504	Gacula, M., Rutenbeck, S., Pollack, L., Ressurection, A.V, & Moskowitz. H. R
505	(2007). The just about right intensity scale: Functional analysis and relation to
506	hedonic. Journal of Sensory Studies, 22:194–211.
507	
508	Gaze, L. V., Oliveira, B. R., Ferrao, L. L, Granato, D., Cavalcanti, R. N., Conte
509	Júnior, C. A., Cruz, A. G., & Freitas, M. Q. (2015). Preference mapping of
510	dulce de leche commercialized in Brazilian markets. Journal of Dairy Science
511	98, 1443-1454.

512	
513	Garruti, D. S, Facundo, H. V. V., Lima, J. R. & Aquino, A. C (2012). Sensory
514	Evaluation in Fruit Product Development. In: Fabiano A. N. Fernandes; Sueli
515	Rodrigues. (Org.). Advances in Fruit Processing Technologies. Boca Raton:
516	CRC, p. 415-440.
517	
518	Hernández-Carrión, M., Varela, P., Hernando, I., Fiszman, S. M., & Quiles, A.
519	Persimmon milkshakes with enhanced functionality: Understanding consumers'
520	perception of the concept and sensory experience of a functional food. LWT -
521	Food Science and Technology (in press). doi: 10.1016/j.lwt.2014.10.063.
522	
523	ISO (1987). ISO 7954 Microbiology General guidance for enumeration of
524	yeasts and moulds Colony count technique at 25 degrees C: International
525	Organization for Standardization.
526	
527	ISO (1996). ISO 11290-1 Microbiology of food and animal feeding stuffs
528	Horizontal method for the detection and enumeration of Listeria
529	monocytogenes Part 1: Detection method: International Organization for
530	Standardization.
531	
532	ISO (1999). ISO 6888-1 Microbiology of food and animal feeding stuffs -
533	Horizontal method for the enumeration of coagulase-positive staphylococci

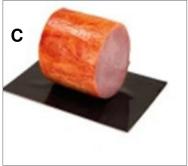
534	(Staphylococcus aureus and other species) Part 1: Technique using Baird-
535	Parker Agar Medium: International Organization for Standardization.
536	
537	ISO (2002). ISO 6579 Microbiology of food and animal feeding stuffs
538	Horizontal method for the detection of Salmonella spp.: International
539	Organization for Standardization.
540	
541	ISO (2003). ISO 4833 Microbiology of food and animal feeding stuffs
542	Horizontal method for the enumeration of microorganisms Colony-count
543	technique at 30 degrees C: International Organization for Standardization.
544	
545	ISO (2004). ISO 21528-2 Microbiology of food and animal feeding stuffs
546	Horizontal methods for the detection and enumeration of Enterobacteriaceae
547	Part 2: Colony-count method. International Organization for Standardization.
548	
549	ISO (2007). ISO 8589 Sensory analysis. General guidance for the design of test
550	rooms: International Organization for Standardization.
551	6
552	ISO (2012a). ISO 8586 Sensory analysis. General guidelines for the selection,
553	training and monitoring of selected assessors and expert sensory assessors:
554	International Organization for Standardization.
555	


556	ISO (2012b). ISO 11132 Sensory analysis. Methodology. Guidelines for
557	monitoring the performance of a quantitative sensory panel: International
558	Organization for Standardization.
559	
560	Jones, L. V., Peryam, D. R., & Thurstone, L. L. (1955). Development of a scale
561	for measuring soldiers' food preferences. Journal of Food Science, 20(5), 512-
562	520.
563	
564	Kalilou, S. (1997). Transformation traditionnelle de la viande en kilichi au Niger,
565	optimisation des procédés, PhD thesis, Montpellier, France, 137.
566	
567	Kim, YK., Jombart, L., Valentin, D., & Kim, KO. (2013). A cross-cultural
568	study using Napping®: Do Korean and French consumers perceive various
569	green tea products differently? Food Research International, 53, 534-542.
570	
571	Lawless, H.T., & Heymann, H. (2010). Flash Profiling. In: Sensory Evaluation of
572	Food, (2sd ed.) pp. 252-253. NY, USA: Springer. ISSN 1572-0330; ISBN 978-
573	1-4419-6487-8 e-ISBN 978-1-4419-6488-5.
574	
575	Molet, L. (1982). Le feu domestique et la cuisine chez les merina (Madagascar),
576	vol IX, pp. 49-66.
577	
578	Morais, E. C., Morais, A. R., Cruz, A. G., & Bolini, H. M. A. (2014).
579	Development of chocolate dairy dessert with addition of prebiotics and

580	replacement of sucrose with different high-intensity sweeteners. Journal of
581	Dairy Science, 97, 2600-2609.
582	
583	Moussaoui, K. A., & Varela, P. (2010). Exploring consumer product profiling
584	techniques and their linkage to a quantitative descriptive analysis. Food Quality
585	and Preference, 21, 1088-1099.
586	
587	Næs, T., Brockhoff, P. B., & Tomic, O. (2010). Quality Control of Sensory Profile
588	Data Statistics for Sensory and Consumer Science (pp. 11-38): John Wiley &
589	Sons, Ltd.
590	
591	Paixão, J. A., Rodrigues, J. B., Esmerino, E. A. Cruz, A. G. & Bolini, H. M. A.
592	(2014). Influence of temperature and fat content on ideal sucrose concentration,
593	sweetening power, and sweetness equivalence of different sweeteners in
594	chocolate milk beverage. Journal of Dairy Science, 97, 7344-7353.
595	
596	Peryam, D. R., & Girardot, N. F. (1952). Advanced taste-test method. Food
597	Engineering, 24, 58-61.
598	
599	Peryam, D. R., & Pilgrim, F. J. (1957). Hedonic scale method of measuring food
600	preferences. Food Technology, 11, 9-14.
601	

602	Popper, R. (2014). Use of Just-About-Right scales in consumer research. In P.
603	Varela & G. Ares (Eds.), Novel Techniques in Sensory Characterization and
604	Consumer Profiling (pp. 137-155). Boca Raton: CRC Press
605	
606	Raharolahy L. (2004). «Le boeuf dans la societé traditionnelle malgache» [article
607	online]. Makay Nature. [Consulted: October 22nd 2010].
608	file://localhost/ <http ::www.makaynature.org:wp-content:uploads:2010:07:le-<="" td=""></http>
609	boeuf-dans-la societetraditionnelle-malgache.pdf>.
610	
611	Rodrigues, S., & Teixeira, A. (2013). Use of generalized Procrustes analysis (GPA)
612	to test the effects of sex and carcass weight on sensory quality evaluations of
613	Terrincho lamb meat. Meat science, 93, 485-488.
614	
615	Santos, B. A, Pollonio, M.A.R, Cruz, A.G, Messias, V.C, Monteiro, R.A, Oliveira,
616	T.L.C, Faria, J.A.F, Freitas, M.Q., Bolini, H.M.A. (2013). Ultra-flash profile and
617	projective mapping for describing sensory attributes of prebiotic mortadellas.
618	Food Research International, 54, 1705-1711.
619	
620	Sciences et Société (1986). 'La Recherche Scientifique et l'Agriculture de
621	Demain', <i>UNESCO document</i> , Impact: Paris, N°142, Vol. 36, N°2.
622	
623	Touzi, A. & Merzaia-Blama A. (2008). La conservation des denrées agro
624	alimentaires par séchage dans les régions sahariennes, Revue des Energies
625	Renouvelables SMSTS'08, Alger.pp. 267–272.
626	

627	Valentin, D., Chollet, S., Lelièvre, M., & Abdi, H. (2012). Quick and dirty but still
628	pretty good: a review of new descriptive methods in food science. International
629	Journal of Food Science & Technology, 47, 1563-1578.
630	
631	Varela, P., & Ares, G. (2012). Sensory profiling, the blurred line between sensory
632	and consumer science. A review of novel methods for product characterization.
633	Food Research International, 48, 893-908.
634	
635	Yacouba, I. (2010). Analyse des techniques traditionnelles de transformation de la
636	viande en Kilichi dans la commune urbaine de Madaoua (Rep. du Niger), pp.
637	51.
638	
639	
640	


641	
642	
643	
644	Figure 1 – The diagram of reengineered process of Kitoza in Europe.
645	
646	
647	
648	
649	
650	
651	
652	
653	
654	
655	
656	
657	
658	
659	
660	
661	
662	Figure 7 – Mean prices that consumers stated they were willing to pay for 100g of Kitoza beef (KB) and
663	Kitoza pork (KP), with and without information about the recipe (Malagasy traditional origin). Error bars
664	represent the confidence interval of the mean (p=0.95).
665	
666	Figure 8 - Preferred ways of consuming Kitoza beef (KB) and Kitoza pork (KP).
667	
668	Figure 9 - Shops that Portuguese consumers considered appropriate for the sale of Kitoza beef (KB) and
669	Kitoza pork (KP).
670	
671	
672	
673	
674	
675	
676	
677	<u> </u>
678	

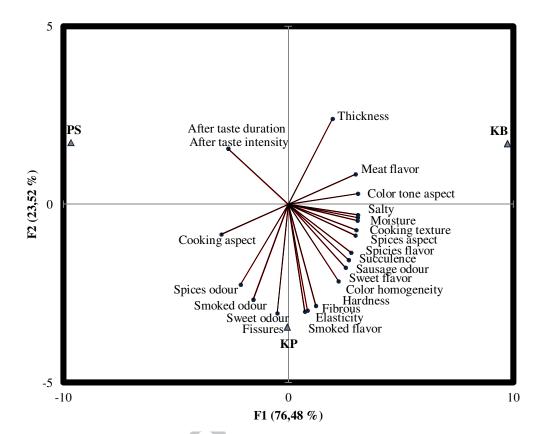

Figure 2:

Figure 3:

Figure 4:

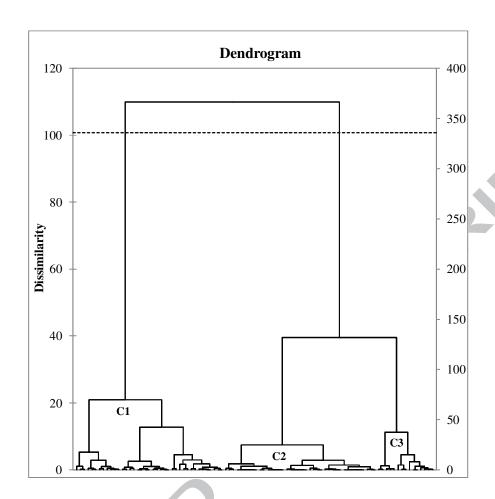
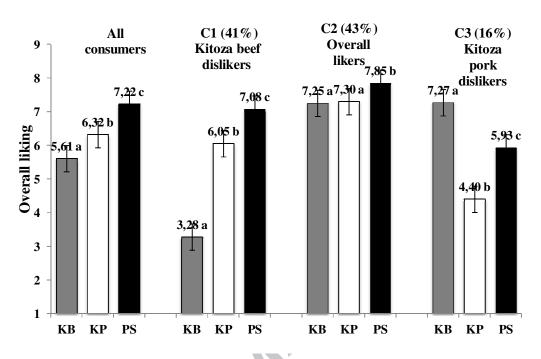



Figure 5:

*Error bars represent the confidence interval of the mean (p = 0.95). Different superscripts within a cluster indicate significant differences according Tukey's HSD (p \leq 0.05).

Figure 6:

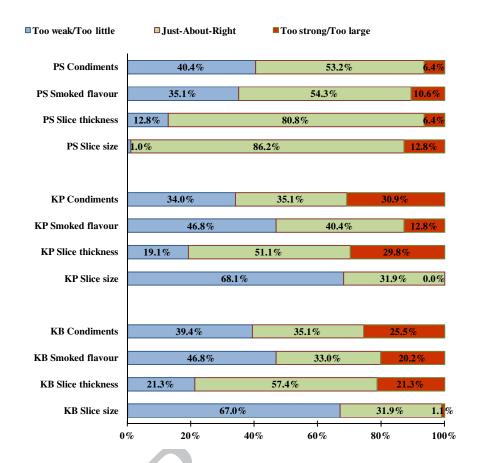
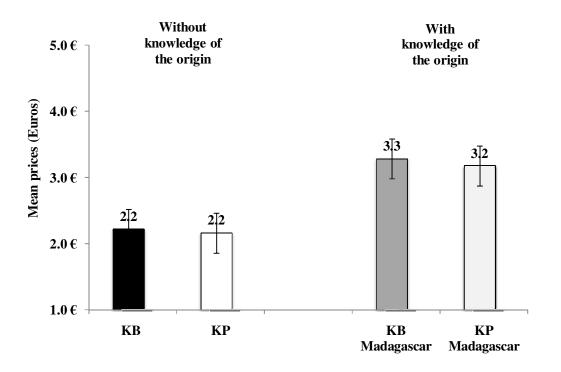
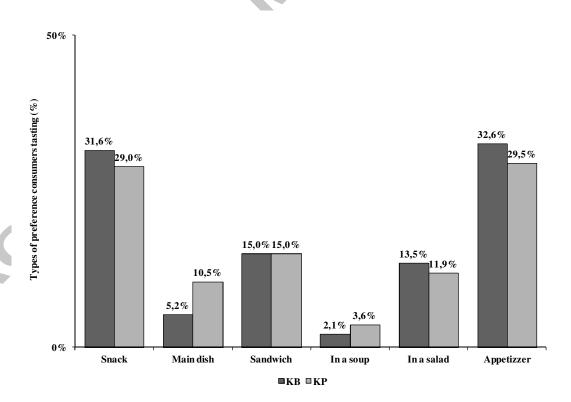
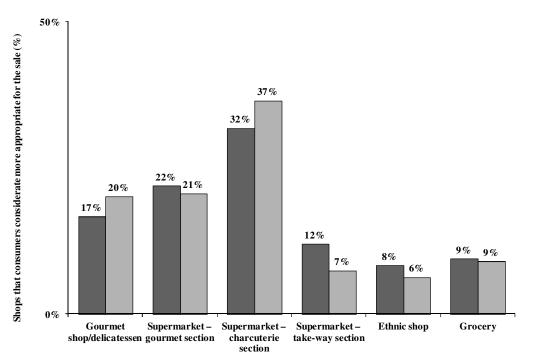
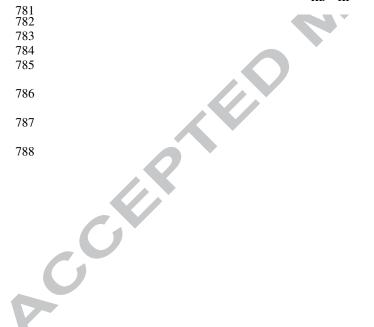


Figure 7:


Figure 8:


Figure 9:

779

780

■KB ■KP

Tables and captions:

Table 1 - Microorganisms analysed in the Kitoza manufactured with pork or beef.

	Method Reference	Pork* log CFU/g	Beef* log CFU/g
Total count 30 °C	ISO 4833	7.25 ± 0.05	7.04 ± 0.03
Coagulase negative staphylococci	-	6.63 ± 0.03	6.22 ± 0.08
Lactic acid bacteria	-	7.22 ± 0.08	7.18 ± 0.07
Yeast/mold	ISO 7954	2.26 ±0.01	2.43 ± 0.03
Enterobacteriaceae	ISO 21528-2	0.69 ± 0.08	1.74 ± 0.01
Staphylococcus aureus	ISO 6888-1	<2.0 log	<2.0 log
Listeria monocytogenes	ISO 11290-1	Absence (25g)	Absence (25g)
Salmonella	ISO 6579	Absence (25g)	Absence (25g)

^{*} mean value of replicates ± standard deviation

Table 2 - Form used in the 1st session of the Flash Profile to individually generate sensory descriptors for Kitoza samples (Kitoza beef and Kitoza pork) and traditional Portuguese smoked loin sausage.

	Sensory e	evaluatio	n of meat sampl	les	
	Panelist name			Date	
	Attribute		+Weak		+ Strong
External aspect		• • •			
Internal aspect		- - -			
Odour evaluation		· ·			
Texture		- - -			
Taste/Flavour		· ·			
Others sensations		· · ·			

Table 3 - Attributes form for meat samples used in the 2nd Flash Profile session in order to guide the panellists to individually generate sensory descriptors for Kitoza samples (Kitoza beef and Kitoza pork) and traditional Portuguese smoked loin sausage.

823

822

820821

Flash Profile

It is intended that the **SELECT** descriptors that in your opinion **BEST** differentiate at least two of the samples.

You can use the descriptors of this list or other you want.

The selection and number of descriptors to be used depends solely on YOUR PERSONAL OPINION.

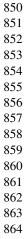
	Attributes	Scale		
	Color tone aspect	Light	Dark	
External aspect	Spices aspect	Without	Many	
	Color pink - Brown	Pink / salmon	Brown	
	Thickness	Absent	Thick	
	Cooking aspect	Crude	Baked	
Internal aspect	Visible fat	Absent	Much	
internal aspect	Color homogeneity	Heterogeneous	Homogeneous	
	Internal fissures	Absent	Many	
	Moisture	Dry	Moist	
	Spices odour	Absent	Strong	
	Smoked odour	Absent	Strong	
Odour evaluation	Fat	Absent	Strong	
Outur evaluation	Sausage odour	Absent	Strong	
	Dried meet	Absent	Strong	
	Sweet odour	Absent	Strong	
	Hardness	Soft/tender	Hard	
	Elasticity	Absent	Very elastic	
	Succulence	Dry	Very juice	
	Fibrous	Without fibers	Many fibers	
Texture	cooking texture	Crude	Well-done	
	Soft	Rugged	Very soft	
	Astringent	Absent	Strong	
	Floury	Absent	Strong	
	Granularity	Without granules	Many granules	
	Spices flavor	Absent	Strong	
	Salty	Weak	Strong	
	Smoked flavor	Absent	Strong	
Taste/Flavour	Sweet flavor	Absent	Strong	
	Monoglutamate	Absent	Strong	
	Sweet	Weak	Strong	
	Meat flavour	Absent	Strong	
After Taste	After tast intensity	Weak	Strong	
After Taste	After tast duration	Short	Long	

825 826 Tabl	e 4 – Themes on the focus groups script.
827	
828 829	Exploited topics of focus groups
830	A. Global sensory characterization
831	B. Attitude to buy
832	C. Consumption occasion
833	
834 835	D. Consumption Motives
836	E. Willingness to pay
837	F. Local to buy
838	G. Others possible usages of Kitoza
839	H. Influence of African Origin on preference
840 841	
842	
843	
844	

845846

Table 5 - Mean overall acceptability scores for the samples tested: Kitoza beef (KB),

Kitoza pork (KP) and Traditional Portuguese smoked loin sausage (PS).


848

847

Samples	Average		Groups	
PS	7.223±0.135	A		
KP	6.319±0.166		В	,
KB	5.606±0.229			C

849

* Means value of replicates \pm standard deviation with the same letter are not significantly different Tukey test (p<0.01).

Table 6 – Correlations between sensory attributes (aspect, texture and flavour) and acceptability of Kitoza samples and Traditional Portuguese smoked loin sausage. Kitoza beef (KB), Kitoza pork (KP) and Traditional Portuguese smoked loin sausage (PS).

Variables		KB			KP			PS					
		Overall liking	As pec	Text ure	Flav our	Overall liking	As pec	Text ure	Flav our	Overall liking	As pec	Tex tur e	Fla vou r
	Overall		0.7		0.91		0.0		0.13		0.2	0.1	0.0
	liking	1	32	0.745	5	0.174	97	0.196	8	0.012	13	29	83
					0.67		0.2		0.14		0.1	0.1	0.0
KB	Aspect	0.732	1	0.716	3	0.157	20	0.251	7	0.042	29	39	94
КD	Textur		0.7		0.70		0.1		0.19		0.1	0.1	0.1
	e	0.745	16	1	4	0.193	02	0.271	6	0.011	85	34	60
	Flavou		0.6				0.1		0.17		0.2	0.1	0.0
	r	0.915	73	0.704	1	0.192	21	0.182	0	0.036	04	28	74
	Overall		0.1		0.19		0.5		0.87		0.1	0.2	0.2
	liking	0.174	57	0.193	2	1	38	0.819	5	0.140	97	16	13
			0.2		0.12				0.50		0.2	0.1	0.1
KP	Aspect	0.097	20	0.102	1	0.538	1	0.586	1	0.191	21	78	73
171	Textur		0.2		0.18		0.5		0.79		0.2	0.2	0.2
	e	0.196	51	0.271	2	0.819	86	1	4	0.191	25	33	51
	Flavou		0.1		0.17		0.5				0.1	0.2	0.2
	r	0.138	47	0.196	0	0.875	01	0.794	1	0.142	43	41	04
	Overall		0.0		0.03		0.1		0.14		0.6	0.7	0.8
	liking	0.012	42	0.011	6	0.140	91	0.191	2	1	76	59	45
PS			0.1		0.20		0.2		0.14			0.6	0.6
	Aspect	0.213	29	0.185	4	0.197	21	0.225	3	0.676	1	39	53
	Textur		0.1		0.12		0.1		0.24		0.6		0.7
	e	0.129	39	0.134	8	0.216	78	0.233	1	0.759	39	1	32
	Flavou		0.0		0.07		0.1		0.20		0.6	0.7	
	r	0.083	94	0.160	4	0.213	73	0.251	4	0.845	53	32	1

Values in bold are different from 0 with a significance level alpha=0.05

876		
877 878 879	Highli	ights
880		
881	-	Sensory profiles showed differences between the two Kitoza samples.
882	-	Kitoza beef (KB) showed more intense meat flavour.
883	-	Kitoza pork (KP) showed more intense sweet odour, spices and smoked odour.
884	-	Between KB and KP samples, KP showed to be more appreciated.
885	-	Geographic origin of Kitoza had a positive effect on consumers' willingness to
886		pay.
887 888		