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Supplementary Fig. S1. Flight activity in a female noctuid moth, Lacanobia oleracea. (a) 

An example of a displacement time-series showing intermittency. (b) Rank frequency 

distribution of pause durations longer than 10 s (solid-line) together with the best-fit power-

law (dashed-line) and the best-fit stretched exponential (dotted-line). The maximum 

likelihood estimate for the power-law exponent is 05.055.1 ±=Pµ . (c) Rank  frequency 

distribution of flight lengths longer than 1 m (solid-line) together with the best-fit power-law 

(dashed-line) and the best-fit exponential (dotted-line). The maximum likelihood estimate for 

the power-law exponent is 05.053.1 ±=Fµ . (d) Power-spectrum of the displacement time-

series data.  



 
Supplementary Fig. S2. Random examples of flight activities of British noctuid moths. 

Rank frequency distributions of pause durations longer than 10 s (solid-line) and flight 

lengths together with the best-fit power-law (dashed-line) and the best-fit stretched 

exponential (dotted-line). In all cases the power-law provides the best fit to the data. The 

maximum likelihood estimates for the power-law exponents for the pauses are 1.34, 1.41 and 

1.74, and for the flight lengths are 1.67, 1.76 and 1.31. 

 



 

Supplementary Fig. S3. Analysis of pooled data for all individual British noctuid moths 

flown that exhibited intermittent flight patterns. (a) Rank frequency distribution of pause 

durations longer than 10 s (solid-line) together with the best-fit power-law (dashed-line) and 

the best-fit exponential (dotted-line). The maximum likelihood estimate for the power-law 

exponent is 05.053.1 ±=Pµ . (b) Rank frequency distribution of flight distances longer than 1 

m (solid-line) together with the best-fit power-law (dashed-line) and the best-fit stretched 

exponential (dotted-line). The maximum likelihood estimate for the power-law exponent 

is 10.038.1 ±=Fµ . (c) First significant digit distribution (histogram) for the pause durations 

together with the theoretical expectations (●) for the best-fit power-law and the best-fit 

exponentials (o). (d) First significant digit distribution (histogram) for the flight distances 

together with the theoretical expectations for the best-fit power-laws (●) and the best-fit 

exponentials (o). 



 

Alternative candidate explanations for the movement pattern data 

An alternative explanation for the pause distribution can be found in Barabási’s (1) model of 

bursts and heavy tails in human dynamics. In this model, an agent operates with a priority list 

of L tasks. Each task on the list has a randomly assigned priority.  At each time step the agent 

selects the highest-priority task from the list and executes it. That task is then removed from 

the list and a new task is added to the list and given a random priority. In accordance with 

empirical evidence for email traffic, the model of Barabási (1) predicts that the times that 

tasks spend on the list are heavy tailed with the power-law exponent close to 1. But a power-

law exponent close to 3/2 is attained if the rate at which new tasks are added to the priority 

list outstrips the rate at which tasks are executed, in accordance with the letter 

correspondence patterns of Darwin and Einstein (2). The universal law describing human 

waiting durations also describes the daily behaviors of mice and rats in simple, unchanging 

arenas with food and water (3–5). It is thus conceivable that the scale-free intermittent 

motions seen in desert locusts, some noctuid moth species, the European honeybee and D. 

melanogaster results from these animals attempting to resolve a tension between competing 

and conflicting activities (6, 7). However, this cannot account for the simultaneous 

occurrence of scale-free pauses and scale-free movement bouts, as the duration of the 

movement bouts are, in accordance with observations (3–5) predicted to be scale-specific 

rather scale-free (6).  Similarly, the general framework of Proekt et al. (5) for understanding 

how scale invariance may arise in spontaneous animal behaviors provides a candidate 

explanation for scale-free behaviors in general but cannot account for the ubiquity of a 

specific scale-free behavior without resorting to fine tuning, as the scaling exponent is free to 

take on a broad range of values. This shortcoming is also evident in the explanation of the 

results of Martin et al. (8). These authors suggest that the null movement patterns of 

Drosophila reflect neuronal activity of a ‘central pattern generator’ and reported that blocking 



of synapses established by neurons of the Drosophila ellipsoid-body, a substructure of the 

central complex in the brain, leads to a loss of the fractal properties in the pause structure.  

 

Recent studies have provided seemingly compelling evidence that a diverse range of 

marine predators, honeybees, bacteria (E. coli) and T-cells in mice have Lévy movement 

patterns and in most of these cases they have been attributed to the execution of innate, 

evolved optimal searching strategies (9–13), suggesting convergent evolution across taxa. 

These findings support the Lévy flight foraging hypothesis which posits that “Since Lévy 

flights and walks can optimize search efficiencies, therefore natural selection should have led 

to adaptations for Lévy flight foraging” (14). The strategy is advantageous when locations of 

search targets are unknown because proximity cues are either absent or short-ranged (14, 15). 

Lévy movement patterns in these foragers are characterized by Lévy exponents (power-law 

exponents) of 2≈µ  (or equivalently by a Hurst parameter H~1 as in the case of little 

penguins (Eudyptula minor) (16)) and may result from interactions with their environments 

or be underpinned by neuronal activity (17). The null Lévy flight template is different as it is 

characterized by Lévy exponents of 2/3≈µ ; it is thereby discretely different from optimal 

intermittent searching (17, 18) as 2≈µ  is optimal for both non-destructive and destructive 

foragers (when searchers have no prior knowledge of the target distribution). Contrary to 

claims made previously (19), Lévy relocation patterns are not advantageous in intermittent 

searches when the mean target spacing is known (20).  Furthermore, the movements are 

interspersed by pauses, the durations of which are distributed with 3/2 power-law tails. Such 

pauses have been identified in the searching patterns of T-cells (13) but seem to be atypical as 

pauses have not been identified in other foragers with Lévy flight movement patterns.  

Nonetheless, identifying the mechanisms underpinning the null scale-free movement patterns 

may help us to understand how optimal Lévy flight behaviors evolved. The origins of these 

http://en.wikipedia.org/wiki/L%C3%A9vy_flight
http://en.wikipedia.org/wiki/L%C3%A9vy_flight


movement patterns are poorly understood and may, unlike the null Lévy template, be 

dependent upon external cues (17, and references therein). 

 

Despite being sub-optimal in random searches, Lévy flights with 2/3≈µ  could 

compensate effectively for the occasional occurrence of very long pauses when these pauses 

are necessary for determining the presence or absence of targets because the decision-making 

circuitry that triggers movement is noisy. This is because the number of steps (and so the 

number of pauses) in a Lévy flight search of a given overall length decreases as the Lévy 

exponent,µ , decreases. As a consequence Lévy flights with 2/3≈µ  (or, more generally 

with a Lévy exponent 2<µ ) can represent the best optimal movement pattern given the 

presence of scale-free pauses, as suggested by the study of Bologna et al. (21) and as 

demonstrated explicitly in the simulation data given in Supplementary Fig. S4 (below). In 

accordance with the study of Bologna et al. (21), total pause time distributions have a 3/2 

power-law tail when 2/31 << µ  and a 5/4 power-law tail when 32/3 << µ . The larger, 

3/2, power-law tails generates a shorter total pause time and this favors Lévy flight 

movements with 2/3<µ over those with 2/3>µ . But this in itself is not sufficient to single 

out Lévy flight movements with 2/3=µ as the optimal strategy, and so account for the 

observations. Nonetheless, it is possible that neuro-physiological processes can tune up for 

Lévy flight movements with 2/3=µ  (e.g., via the Sparre-Andersen theorem) but not for 

Lévy flight movements with 2/3<µ , making the former ( 2/3=µ ) the biologically 

accessible movement pattern that best compensates for the pauses.  It would be interesting to 

investigate whether, as suggested by Bologna et al. (21), there is a form of resonance between 

pauses and flights that is beneficial in some random search scenarios, contrary to Aesop’s 

prejudice that lethargy is always detrimental!  A resonance at 2/3=µ  coinciding with the 



observational data for desert locusts, noctuid moth species, European honeybees and D. 

melanogaster is not implausible given the changes in Lévy flight searching-like 

characteristics that occur with 2/3=µ (21, 22). Similarly, the Lévy exponent can be 

optimized for exploration so that the number of unique landing sites within a given time is 

maximized and best compensates for pauses but as with searching, the Lévy flights 

with 2/3=µ are not robustly optimal. The situation does not change significantly if it is 

assumed that free insects do not make unidirectional flights but instead make random scale-

finite flights as evidenced, for example, in laboratory studies of bumblebees (Bombus 

terrestris) (23).  In this case the 3/2 power-law distribution of flight durations together with 

the random flights results in 2=µ  landing patterns (17). In the absence of pauses, this is an 

optimal exploration strategy but otherwise it is a sub-optimal strategy (Supplementary Fig. 

S3). 



 

Supplementary Fig. S4. Searching efficiencies of Lévy flight movement patterns. Lévy 

flight patterns with 2<µ  can compensate for scale-free pauses (target detection times). The 

energetic cost of search is taken to be gtlE += where l is the total length of the search path 

and t is the total duration of the pauses in the search. The search efficiency is taken to 

be E/1=η . Searching is 1-dimensional and targets are regularly spaced a distance 

410=L arbitrary space units apart. Targets are detected when they come within the perceptual 

range of the searcher, a distance of one space unit. Each search begins in the immediate 

vicinity of a target. Simulation data is shown for 0=g  (●) (pauses have no energetic cost), 

0.1(♦) and 1.0 (■) and for (a) continuous searching during movements and for (b) searching 

only during pauses.  
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