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Abstract 

 

Aluminium and magnesium based metal matrix nano-

composites (MMNC) with ceramic nano-reinforcements 

promise low weight with high durability and superior 

strength, desirable properties in aerospace, automobile and 

other applications. However, nano-particle agglomerations 

lead to adverse effects on final properties: large-size 

clusters no longer act as dislocation anchors, but instead 

become defects; the resulting particle distribution will be 

uneven, leading to inconsistent properties. To prevent 

agglomeration and to break up clusters, ultrasonic 

processing is used via an immersed sonotrode, or 

alternatively via electromagnetic vibration. A study of the 

interaction forces holding the nano-particles together shows 

that the choice of adhesion model significantly affects 

estimates of break-up force and that simple Stokes drag due 

to stirring is insufficient to break up the clusters. The 

complex interaction of flow and co-joint particles under a 

high frequency external fields (ultrasonic, electromagnetic) 

is addressed in detail using a discrete-element method 

(DEM) code to demonstrate the effect of these fields on de-

agglomeration. 

 

Introduction 

 

Metal matrix composites (MMC) form a class of advanced 

materials typically based on light metals such as Al and Mg 

and ceramic reinforcements including but not limited to 

Al2O3, AlN, SiC etc. Combining the light weight and 

ductility of Al and Mg with high strength and high modulus 

of ceramic materials makes MMC desirable for 

applications in aerospace and automotive industries. A 

good review of the development of MMCs is given in [1]. 

Metal matrix nano-composites (MMNC) is a recently 

developed subclass of MMCs based on nano-particle 

reinforcements.  

Recent papers showed a clear increase in aluminum 

Young’s modulus (by up to 100%) and in hardness (by up 

to 50%) with the addition of carbon nanoparticles [2]. 

Another study indicated a slight enhancement in Brinell 

hardness of aluminum, magnesium and copper based 

MMNCs with Al2O3 and AlN nanoparticles [3]. The study 

suggested that a better dispersion of nanoparticles is 

needed. Other researchers also report agglomerations of 

nanoparticles made visible using high-definition scanning 

electron microscopy (SEM) [4]. The effect of uneven 

distribution of NPs on the final properties of MMNCs is 

explained by the fact that large-size clusters no longer act 

as dislocation anchors, but instead become defects, leading 

to inconsistent properties.  

The agglomeration of particles in MMNCs is related to the 

fact that nano-sized inclusions have a larger ratio of surface 

area to the volume than e.g. micro-sized particles. This 

causes surface forces such as van der Waals interaction and 

adhesive contact to dominate over the volume forces such 

as e.g. inertia or elastic repulsion in the case of nano-

particles. 

Various mechanisms of detachment of adhered particles 

have been reported in the literature [5], which includes 

turbulent flow. It is expected that drag and shear forces in 

turbulent flow can improve separation of the particles and 

thus contribute to de-agglomeration. However, the drag 

force alone is not sufficient to de-agglomerate the nano-

particles. This can be qualitatively illustrated by comparing 

the Stokes equation for the drag force with the force 

required to break two spherical particles apart, known as 

the pull off force, given by e.g. Bradley [11]:  

6𝜋𝜇𝑓𝑅𝑣𝑓 = 4𝜋𝑅𝛾𝑠𝑙 ,                        (1) 

where μf and vf are the velocity and dynamic viscosity of 

the melt and γsl is the solid-liquid interfacial energy. For the 

case of aluminum melt the dynamic viscosity is μf=0.0013 

Pa·s. Assuming the interfacial energy γsl =0.2-2.0 J/m2, 

equation (1) yields vf =100-1000 m/s. Such fluid velocity 

values can be locally achieved as a result of the collapse of 

cavitation bubbles induced by ultrasonic field. Indeed, 

applying an electro-magnetic stirring in combination with 

ultrasonic vibrations was found beneficial for nano-particle 

dispersion in metal melt [2-8].  

This paper concerns the investigation of forces causing the 

agglomeration of nano-particles and the conditions favoring 

breaking up of these agglomerations. A numerical model 

has been developed that simulates the behavior of the 

cluster of nano-particles under various conditions. The 

collisions of the particles are treated individually as 

opposed to the kinetic theory of granular flow used in e.g. 

[7]. It is proposed to investigate the behavior of NPs in 

metal melts subjected to electro-magnetic [8] and other 

external fields using a coupled CFD-DEM model similar to 

that developed by Goniva et al [9] and Hager et al [10]. 

Whilst a fully coupled CFD-DEM solver is under 

development, this paper presents results obtained at the 

scale of a single nano-particle cluster subjected to forces 

equivalent to those caused by ultrasonic cavitation. 

 

Review of contact theories with adhesion 

 

Bradley [11] first described the van der Waals force acting 

between two rigid spheres in contact and calculated the pull 

off force as Pc=4R, where γ is interfacial energy of the 

contacting materials 1 and R is the radius of the sphere.   

                                                 
1   The formulae for the pull off force of adhered particles 

are often used with the notation Δ which is the work of 

adhesion. For spheres of the same material Δ ≈ /2, 

therefore Pc=2 ΔR 



Derjaguin [12] pointed out that elastic deformations of the 

spheres need to be accounted for as well as the adhesive 

interactions. He presented the first attempt to consider the 

problem of adhesion between elastic spheres: calculating 

the deformed shape of the spheres using Hertzian contact 

theory, he evaluated the work of adhesion assuming only 

the pair-wise interactions of the closest surface elements. 

The interaction energy per unit area between small 

elements of curved surfaces was assumed the same as for 

parallel planes which is known as the Derjaguin 

approximation.  

On the other hand, Johnson [13] made an attempt to solve 

the adhesive contact problem by combining the Hertzian 

spherical contact problem and the problem of a rigid flat-

ended punch. Johnson et al. [14] applied Derjaguin’s idea 

to equate the work done by the surface attractions against 

the work of deformation in the elastic spheres to Johnson’s 

[13] combined stress superposition. This resulted in the 

creation of the famous JKR (Johnson, Kendall, and 

Roberts)  theory of adhesive contact. According to them the 

attractive adhesion force is acting only over the contact 

area and significantly affects the shapes of the contacting 

spherical bodies. The pull off force calculated using JKR 

model is Pc=3R. The contact area is a circle with radius 

a, defined as follows: 

𝑎3 =
3𝑅

4𝐸
[𝑃 + 6𝜋𝛾𝑅 + √12𝑃𝜋𝛾𝑅 + 36𝜋2𝛾2𝑅2]  (2) 

where P is the applied normal load and E is the combined 

Young’s modulus. Hertzian theory evaluates the contact 

radius simply as a3=3PR/4E, therefore JKR theory is 

reduced to Hertzian if adhesion is neglected, i.e =0. 

Derjaguin et al [15] developed a contact theory (DMT – 

Derjaguin, Müller, Toporov) that combined Bradley’s 

adhesion force with Hertz elastic contact theory. The 

attractive intermolecular force is assumed applicable in the 

contact area as well as in the surrounding annulus zone. 

The resulting profile of the deformed spheres remains 

Hertzian and the pull off force is equal to the one derived 

by Bradley, Pc=4R. The contact radius is then given by 

𝑎3 =
3𝑅

4𝐸
[𝑃 + 4𝜋𝛾𝑅]                          (3) 

Qualitative analysis of both JKR and DMT models 

performed by Tabor [16] as well as more detailed analysis 

based on the Lennard-Jones potential conducted by Muller 

et al [17] showed that the contradiction between the models 

lies in the physical principles of adhesive contact assumed 

by the authors. Both Tabor and Muller concluded that the 

adhesive contact of larger, softer bodies with stronger 

surface interaction can be described by the JKR model, 

while the DMT model is applicable to the smaller, harder 

bodies with weaker surface interaction. A parameter μ2 was 

introduced to determine which model is more appropriate:  

𝜇 =
32

3𝜋
[

2𝑅𝛾2

𝜋𝐸2𝑧0
3]

1/3

,                           (4) 

where z0 is the equilibrium separation distance, typically 

0.16-0.4 nm. According to Muller if <1 then DMT is 

applicable whereas if >>1 it is JKR.  

                                                 
2 Parameter  introduced by Muller [17] is proportional to 

those suggested by Tabor [16] and Maugis [18]. 

Maugis [18] suggested a smooth transition model between 

JKR and DMT approaches which exploits the principles of 

fracture mechanics. Greenwood and Johnson [19] 

suggested an alternative model to Maugis based on a 

combination of two Hertzian profiles that also connect both 

the JKR and DMT models in one general theory. These two 

models use a parameter, which defines the area where the 

adhesion force is applicable. The necessity to evaluate this 

parameter at every time step during particle collision makes 

it impractical to use either Maugis [18] or Greenwood and 

Johnson [19] theories in a DEM solver. Therefore in the 

current paper the JKR and DMT models are implemented 

and the Müller parameter μ is used to determine which one 

is more applicable.  

 

Oblique loading with and without adhesion. 

 

Hertz theory is used in most of the cases of normal impact 

of spherical bodies. In the case of oblique impact of bodies, 

tangential contact forces must be incorporated. Mindlin and 

Deresiewicz [20] developed the main theory connecting 

normal and tangential forces with normal and tangential 

displacements. It is assumed that two elastic spheres in 

tangential contact experience a partial-slip, where the total 

force is a combination of elastic tangential force and sliding 

friction. Once the partial-slip tangential force exceeds the 

sliding friction force, the bodies slide relative to each other. 

The tangential force is then equivalent to the sliding 

friction force Fs=P, where  is the friction coefficient, P 

is the normal load. The distribution of contact traction is 

illustrated in Figure 1. 

 
Figure 1 Contact traction distribution of two contacting 

spherical bodies.  - indicates zone where elastic 

tangential force is applicable,  - indicates the micro-

slip area. 

Thornton and Yin [21] combined all the major cases of the 

loading/unloading conditions described by Mindlin & 

Deresievicz [20] and derived the following expression for 

the tangential stiffness during oblique loading:  

𝑘𝑡 = 8𝐺∗𝑎𝜃 ± 𝜂(1 − 𝜃)
Δ𝑃

Δ𝛿𝑡
                (5) 



where G* is the combined shear modulus, a is the contact 

radius,   is the friction coefficient, ΔP is the increment of 

the normal load, Δt is the increment of the tangential 

displacement and is a parameter defining the ratio of the 

elastic force to the micro slip friction force. The parameter 

depends on the loading history and is defined as follows: 

𝜃3 = 1 −
𝑇 + 𝜂Δ𝑃

𝜂𝑃
 

for loading  

𝜃3 = 1 −
𝑇∗ − 𝑇 + 2𝜂Δ𝑃

2𝜂𝑃
 

for unloading (6) 

𝜃3 = 1 −
𝑇 − 𝑇∗∗ + 2𝜂Δ𝑃

2𝜂𝑃
 

for reloading  

where T is current value of the tangential force and T* and 

T** are the load reversal points.  

Normal elastic stiffness is defined as kn=2E*a which 

follows from the Hertz theory; see [21] for details.  

Oblique Contact With JKR Adhesion. Savkoor and Briggs 

[22] extended the JKR contact theory to consider the effect 

of adhesion in the case of oblique loading. It was suggested 

that applying the tangential force reduces the potential 

energy by an amount of T/2. Adding this term to the JKR 

energy balance equation modified the contact radius (1) as:  

𝑎3 =
3𝑅

4𝐸
[𝑃 + 6𝜋𝛾𝑅 ± √12𝑃𝜋𝛾𝑅 + 36𝜋2𝛾2𝑅2 −

𝑇2𝐸

4𝐺
]   (7) 

It was concluded that in the presence of tangential force, 

the contacting spheres peel off each other thus reducing the 

contact area. The peeling process continues until T reaches 

the critical value of 

𝑇𝑐 = 4√(3𝑃𝜋𝛾𝑅 + 9𝜋2𝛾2𝑅2)G/E.           (8) 

For the normal load Thornton and Yin [21] have adopted 

the JKT theory. The stiffness is then evaluated as 

𝑘𝑛 = 2𝐸∗𝑎 [3 − 3 (
𝑎𝑐

𝑎
)

3

2
] / [3 − (

𝑎𝑐

𝑎
)

3

2
]            (9) 

where ac=9R is the JKR contact radius at the 

moment of separation (pull off radius). 

In the case of oblique loading Thornton and Yin [21] 

followed [22] in what concerns the peeling process. They 

however assumed that once the peeling process is 

complete, the contacting bodies operate in the partial slip 

regime as described before with the difference that the 

normal force P is replaced with P+6R.  

Oblique Contact With DMT Adhesion. In this paper it is 

suggested to combine the Thornton and Yin [21] partial slip 

no adhesion model with DMT adhesion. The DMT theory 

assumes that the deformed shapes of the contacting bodies 

remain within Hertzian elastic theory. Therefore a no-

adhesion model [21] was adopted where the normal force P 

is replaced with P+4R to account for the adhesion force.  

 

Modeling the breaking up of nano-particle 

agglomerates 

 

The authors developed a simulation of a nano-particle 

cluster subjected to various forces. Both normal and 

tangential contact forces were modeled based on [21] and 

JKR and DMT models of adhesion were adopted. 

Two-dimensional densely packed agglomerates of 36 and 

37 mono-sized spherical particles were considered as 

shown in Figure 2. For simplicity, all the forces were 

assumed acting in the X and Z direction only, and the 

problem was modeled in two dimensions. Mass, volume 

and surface area were however evaluated assuming that 

particles are spherical rather than circular. It is also 

assumed, that all the gaps between the particles are filled 

with metal melt, which despite no connecting channels are 

visible, is able to flow between the particles. 

Collapsing of Gas Bubbles. It is known from various 

sources that ultrasound has a beneficial effect on de-

agglomeration of the nano-particle clusters [2-6]. This is 

explained by the phenomenon of acoustic cavitation, which 

includes the formation, growth, pulsation and collapse of 

gas bubbles. These processes are accompanied by the 

creation of “hotspots” – zones of high temperature and 

pressure which explain the beneficial effect of ultrasonic 

vibrations on breaking the clusters and the dispersing of 

nano-particles [4].  

As a result of the implosive collapse of the bubbles high 

amplitude shockwaves are generated. In [6] authors 

compare the pressure peak occurring as a result of the 

collapse with the pressure required to separate two 

individual nano-particles held together by van der Waals 

and capillary forces. It is however expected that due to 

complex pair-wise contact interactions between the 

particles in a cluster, it is more difficult to de-agglomerate a 

cluster of particles rather than two individual particles. For 

this reason the behavior of a cluster of nano-particles 

subjected to the shockwave is investigated in this paper.  

 

Figure 2 (a) Cluster of 37 particles subjected to lateral 

velocity pulse Vx (b) Cluster of 36 particles subjected to 

the spherical velocity pulse Vr originating in the centre 

of the cluster. 



Lateral And Spherical Pulses. The behavior of the gas 

bubbles in the presence of the ultrasonic waves is a 

complex problem depending on multiple parameters, and is 

not studied in this paper. For simplicity it is assumed that 

the shockwave generated by the collapse of a gas bubble 

can be described as a rapidly decaying disturbance of the 

local velocity which takes form of a lateral pulse with an 

exponential time dependency. Expressing the shockwave as 

a velocity pulse allows the concentration of the particles to 

be taken into account using the Di Felice drag model. The 

details of the behavior of the gaseous-fluid interface during 

the bubble collapse are not studied in this paper; therefore 

the duration τ of the pulse is covering a wide range from 5 

ns to 5 μs in order to investigate a potential effect of the 

pulse duration. The magnitude of the pulse is defined by 

the maximum value v0 which in this paper is ranging from 

1-1000 m/s. In [6] authors estimated the cavitation pressure 

peak as 6·107 Pa if a bubble of initial size 100 μm 

collapses, and 1.5·1010 if initial size is 1 μm. Using 

Bernoulli’s equation, these peak pressure values can be 

correlated with the peak velocities of 225 m/s and 3575 m/s 

respectively. 

In this paper a possibility is also investigated that the 

agglomerates of nano-particles contain gas bubbles inside, 

originating due to poor wettability of the nano-particles and 

the specifics of the manufacturing process. In the case of 

collapsing of a bubble inside of the agglomerate a spherical 

shockwave is considered radiating from the centre of the 

cluster. A lateral pulse is shown by the Vx field in Figure 

2a, whereas a spherical pulse is shown by the Vr field in 

Figure 2b. Note that in both lateral and spherical cases, the 

pulse is assumed propagating through the liquid metal in 

the gaps between the particles. The pulse is transferred to 

the particles via the drag force according to Di Felice [24] 

drag model based on the volume fraction of the fluid. 

Viscous Drag. The momentum of the fluid is transferred on 

the particles via the drag force. Di Felice’s [24] theory is 

used to account for the effect of presence of other particles 

on the drag force. This theory is based on the size and 

relative velocity of the particles, properties of the fluid and 

the volume fraction of the fluid in the gaps between the 

particles. The resulting drag force acting on a particle of 

radius Rp is given as follows [9]: 

𝐹𝑑 =
1

2
𝜌𝑓(𝑣𝑓 − 𝑣𝑝)|𝑣𝑓 − 𝑣𝑝|C𝑑𝜋𝑅𝑝

2𝛼𝑓
2−𝜒

Cd = (0.63 +
4.8

Rep
)

2

𝑅𝑒𝑝 =
𝜌𝑓

𝜇𝑓
𝛼𝑓𝑅𝑝|𝑣𝑓 − 𝑣𝑝| 

χ = 3.7 − 0.65e−0.5(1.5−log10 Rep)
2

       (10) 

Where vf, vp are the velocities of the fluid and the particle, 

f is the void fraction value, Cd is the drag coefficient, Rep 

is the particle Reynolds number, μf and ρf are dynamic 

viscosity and density of the fluid, and χ is empirical 

function. Empirical relationships for Cd and χ were 

established to fit a wide range of particle Reynolds 

numbers. The void fraction value f is typically evaluated 

based on the density of particles in a mesh cell (see e.g. 

[9,10]). In the present model however the mesh is not 

defined, therefore the void fraction is evaluated based on 

the cubic cell 10Rp×10Rp×10Rp centered at the particle 

center.  

Interfacial Energy. The interfacial energy γ of the 

contacting particles can be evaluated from the van der 

Waals attraction force acting between two parallel flat 

surfaces separated by an equilibrium distance z0 : 

𝛾 =
𝐴

24𝜋𝑧0
2                               (11) 

where A is the Hamaker constant of the material. If 

particles are interacting in a medium, then Hamaker 

constant must be modified according to the rule:  

𝐴121 = (√𝐴1 − √𝐴2)
2
                  (12) 

where A1 and A2 are the properties of the particles and the 

medium respectively [25]. The average separation distance 

z0 for contacting solids with close packed atomic structure 

can be evaluated as σ/2.5, where σ is the interatomic 

distance. The typical value of σ=4 Å yields z0=0.165 nm 

(see [25], page 277). Equations (11, 12) can be used to 

compute the interfacial energy for most solids and liquids.  

This theory is however not applicable to the system that 

involves liquid metals or other highly conducting fluids due 

to short-range non-additive electron exchange interaction. 

For this reason the interfacial energy values for nano-

particles in metal melts are taken from experimental values 

reported in the literature [27-31]. If surface energy values 

for both the particle γsv and melt γlv are known, then the 

contact angle ω is used to evaluate the interfacial energy γsl 

according to the Young’s equation: 

𝛾𝑠𝑙 = 𝛾𝑠𝑣 − 𝛾𝑙𝑣𝑐𝑜𝑠𝜔 

The values of surface and interfacial energy depend on 

many factors, such as temperature, atmosphere, purity of 

the substances, time and measurement technique, which 

explains inconsistency in the experimental data available in 

the literature. The main goal of the present study is the 

development of the DEM based model describing the 

behavior of the particle cluster in the metal melt subjected 

to various external forces, and accurate evaluation of the 

interfacial energy are out of the scope of the present 

research. The values used in the paper and their sources are 

provided in Table 1.  

Table 1 Interfacial energy for particles in Al melt 

 γsv, J/m2 γlv, J/m2 ω° γsl, J/m2 

SiC 1.8 [27] 0.88 [29] 156 [28] 2.6 [27] 

Al2O3 1.3 [31] 0.88 [29] 160 [30] 2.13 

SiC4 n/a n/a n/a 0.9 [27] 

Al2O3/SiC5 n/a n/a n/a 0.2 

Brownian Motion. Brownian motion is modeled as random 

velocity fluctuations vb added to the current velocity value 

of each particle in both X and Z directions. The maximum 

value of these fluctuations is evaluated by equating the 

Brownian potential energy with average kinetic energy of 

the particle:  

〈
𝑚𝑣𝑏

2

2
〉 =

𝑘𝑇

2
⟹ |𝑣𝑏| ≈ √

𝑘𝑇

𝑚
= √

3𝑘𝑇

4𝜌𝑝𝜋𝑅𝑝
3       (13) 

                                                 
3Computed using Young’s equation  
4 Oxidized SiC 
5 Hypothetical interfacial energy value used for illustrations 

purposes; elastic properties of Al2O3 and SiC are used 



where T is the temperature of the melt, k=1.38×1023 is the 

Boltzmann constant, ρp and Rp are the particle density and 

radius. For Al2O3 and SiC particles in Al (melting point 

T≈660°C) the average vb value is given in Table 2. It is 

clear from Table 2 that Brownian motion is significant for 

particles of radius below 100nm. 

Table 2 Velocity fluctuation estimates due to Brownian 

motion for Al2O3 and SiC particles of various sizes 

 
Size (nm) Size(μm) 

 Vb(cm/s) 10 50 100 0.5 1 5 

Al2O3 89.9 8.0 2.8 0.3 0.1 0.0 

SiC 98.6 8.8 3.1 0.3 0.1 0.0 

Test Cases. A series of simulation experiments were 

conducted using Al2O3 and SiC particles in Al melt 

subjected to the velocity pulse caused by the gas bubble 

collapse. Sizes of the particles were 10-1000 nm. The 

maximum value and the duration of the pulse ranged from 

1-1000 m/s and 5-5000 ns respectively. Three models of 

contact were used, namely JKR, DMT and no adhesion.  

Agglomeration Rate. In order to assess the efficiency of the 

de-agglomeration process, weights are assigned to all pairs 

of particles according to the distance between them. The 

agglomeration rate value is then defined as average of these 

weights:  

𝐴𝐺𝑅 =
2 ∑ ∑ 𝑊(𝑑𝑖𝑗)𝑛

𝑗=𝑖+1
𝑛
𝑖=1

𝑛(𝑛 − 1)
 

Where n is the number of particles, i,j=1..n are the particle 

indices, dij is the distance between i-th and j-th particles 

and W is the weighting function. Weights are evaluated in 

such a way that the particles which are in contact or close 

to each other and therefore are likely to re-agglomerate, 

contribute the most to the total sum. Weights are provided 

in Table 3. The agglomeration rate of the group of particles 

after the treatment is then scaled by the agglomeration rate 

of the initial cluster shown in Figure 2 so that AGR=1 

means no effect of the treatment and AGR=0 means 

complete de-agglomeration (i.e. all the pair-wise distances 

between the particles are >5R). As demonstrated at the 

results section, agglomeration rate is a good indicator of the 

global de-agglomeration. 

Table 3 Weights used for evaluating the agglomeration 

rate based on pair-wise distances between the particles 

Distance <2R 2R-3R 3R-4R 4R-5R >5R 

Weight 1 0.5 0.25 0.1 0 

In addition to the agglomeration rate, the number of sub 

clusters of particles formed after the incidence of the pulse 

is counted. Considering the initial cluster of 36 (for 

spherical pulse) or 37 (for lateral pulse) particles, the 

number of sub clusters equal to 1 means no de-

agglomeration, while 36 (37) sub clusters indicate that all 

the particles are isolated which means total de-

agglomeration. 

 

Results and discussion 

 

The Effect Of The Contact Model. Figure 3 shows the 

agglomeration rate values after the incidence of the velocity 

pulse. The pulse duration is 50 ns, and SiC particles with 

γsl=0.2 J/m2 and radius 50 nm are considered. Figure 4 

illustrates the corresponding positions of the particles. Here 

and henceforth the particles belonging to the same sub-

cluster are colored and numbered for convenience. 

Individual particles are colored red and have unique 

numbers. As expected, the no adhesion model predicts 

better de-agglomeration, i.e. larger number of isolated 

particles (Figure 4) and lower agglomeration rate (Figure 

3). The agglomeration rate values predicted using DMT are 

higher than those given by JKR. This is explained by the 

higher pull off force given by the DMT model. Despite the 

fact that for the amplitudes of 1 and 10 m/s DMT predicts 

visually better de-agglomeration, the agglomeration rate 

values indicate that particles are more densely packed and 

therefore are less likely to be separated. It can be visually 

observed in Figure 4 that particles tend to form chains of 

particles in the JKR case and more compact sub-clusters 

when the DMT model is used. This can be explained by the 

JKR assumption that bodies do not separate as soon as the 

pull off force is exceeded, but stretch while maintaining 

contact. This extends the separation process and allows 

particles to re-agglomerate. The analysis of the adhesion 

models clearly demonstrates that choice of the model may 

significantly affect the prediction of de-agglomeration. 

Adhesion models were compared in the case of lateral 

pulse as well, which is not shown in the paper. The 

agglomeration rate values follow the same trend, however 

the difference in the structure of sub-clusters is not 

observed. This is explained by the dominating motion 

along the X axis as a response to the propagation of the 

lateral pulse. 

 

Figure 3 The effect of the adhesion model on de-

agglomeration. pulse, duration 50 ns, maximum velocity 

1-100 m/s, SiC particles, γsl=0.2 J/m2, radius 50 nm.  



 

Figure 4 The effect of the adhesion model on de-agglomeration. Spherical pulse, duration 50 ns, maximum velocity 1-50 

m/s, SiC particles, γsl=0.2 J/m2, radius 50 nm. Red filling and unique numbers indicate isolated particles, other colors and 

non-unique numbers indicate that particles form a sub-cluster. 

 
The Effect Of Impulse Duration And Amplitude. Figure 5 

shows the agglomeration rate for the case of spherical 

velocity pulse of maximum velocity values 1-1000 m/s and 

durations of 5-5000 ns. The DMT model of adhesion is 

used and 50 nm SiC particles with hypothetical value 

γsl=0.2 J/m2 are considered. Figure 7 illustrates the 

corresponding particle positions. The obvious tendency is 

that better de-agglomeration is achieved for higher 

maximum velocity values, which can be observed from 

both Figures 5 and 7. The effect of the duration of the 

impulse is expected to follow the same tendency, i.e. the 

pulse of highest duration is expected to be the most 

effective in de-agglomeration. This tendency is however 

broken by the pulses of 5 μs duration, making the 500 ns 

pulses the most effective. From this observation it can be 

concluded that not only the maximum value of the pulse 

affects the result but also the growth rate. The slow 

changing velocity in the case of 5 μs pulse does not create 

conditions for breaking the agglomerate.  

Another interesting effect of the duration of the pulse is the 

local separation of particles. Pulses of 5 ns and 50 ns 

durations overall give worse de-agglomeration than the 500 

ns one (higher agglomeration rate in Figure 5), however it 

is visually observed that the local separation of the particles 

is better, i.e. more particles are isolated. This can be 

confirmed by Figure 6, where the number of sub-clusters is 

shown. Considering a total of 36 particles initially, 36 sub-

clusters indicates that all the particles are isolated. 

For the pulses of amplitudes 50 m/s and 100 m/s, the 

durations of 5 ns and 50 ns are more effective in breaking 

the individual connections between the particles than the 

500 ns pulse, which in turn is more effective in overall de-

agglomeration. From this observation it can be concluded 

that shorter pulses can be more efficient for local de-

agglomeration, while longer pulses result in better global 

de-agglomeration.  

The local de-agglomeration can also be observed in a series 

of experiments based on lateral pulse of the maximum 

values 1-1000 m/s and duration 5-5000 ns using SiC 

particles of the same size 50 nm and interfacial energy 

γsl=0.2 J/m2. The number of sub clusters for this case is 

given in Figure 9 and the corresponding positions of 

particles in Figure 10. The longest pulse, 5 μs, is the least 

effective in all of the cases. This is explained by the fact 

that clusters of nano-particles respond to the lateral pulse 

by moving as a whole. Short impulses nevertheless are 

capable of breaking the local connections between the 

particles as shown by the 50 ns pulse in the cases of 50 m/s, 

500 m/s and 1000 m/s in Figure 9. It is suggested that the 

duration of the pulse optimal for local separation depends 

also on the size of the particles and the number of particles 

in the cluster. 



 
Figure 5 The effect of the pulse duration on de-

agglomeration: agglomeration rate. Spherical pulse, 

duration 5-5000 ns, maximum velocity 1-1000 m/s, SiC 

particles, γsl=0.2 J/m2, radius 50 nm, DMT model. 

  
Figure 6 The effect of the pulse duration on de-

agglomeration: number of sub-clusters. Spherical pulse, 

duration 5-5000 ns, maximum velocity 1-1000 m/s, SiC 

particles, γsl=0.2 J/m2, radius 50 nm, DMT model. 

 

Figure 7 The effect of the pulse duration on de-agglomeration. Spherical pulse, duration 5-5000 ns, maximum velocity 1-

500 m/s, SiC particles, γsl=0.2 J/m2, radius 50 nm, DMT model. Blank spaces indicate that all the particles are outside of 

the observed area. 

The Effect Of The Interfacial Energy. In this section the 

results are shown for SiC particles of radius 50 nm with 

various interfacial energy values as given by Table 1. 

Figures 11 and 12 show the agglomeration rate values and 

the number of sub-clustersm while Figure 13 illustrates the 

particle positions after the incidence of the spherical 

velocity pulse with maximum values of 1-1000 m/s and 

duration 5 ns. The DMT model is used. Two main trends 

can be observed in Figures 11 and 12 as well as visually 

confirmed in Figure 13. A clear reduction of the 

agglomeration rate can be observed with increasing the 

maximum velocity, as well as obvious improvement of de-

agglomeration for lower interfacial energy values.  

It can also be noted that higher interfacial energy causes the 

cluster to break into large pieces, whereas lower interfacial 

energy result in smaller sub-clusters as well as individual 

particles. This is illustrated by the bars corresponding to 

γsl=0.2 J/m2 in Figure 12 

. 
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Figure 8 The effect of the pulse duration on de-

agglomeration: agglomeration rate. Lateral pulse, 

duration 5-5000 ns, maximum velocity 1-1000 m/s, SiC 

particles, γsl=0.2 J/m2, radius 50 nm, DMT model. 

  
Figure 9 The effect of the pulse duration on de-

agglomeration: number of sub-clusters. Lateral pulse, 

duration 5-5000 ns, maximum velocity 1-1000 m/s, SiC 

particles, γsl=0.2 J/m2, radius 50 nm, DMT model. 

 

 
Figure 10 The effect of the pulse duration on de-agglomeration. Lateral pulse, duration 5-5000 ns, maximum velocity 10-

1000 m/s, SiC particles, γsl=0.2 J/m2, radius 50 nm, DMT model. 

. 

The Effect Of The Pulse Shape. Figures 14 and 15 show the 

comparison of the agglomeration rate values due to 

spherical and lateral pulses of 5 ns duration and the 

maximum velocity ranging from 1 to 1000 m/s. Al2O3 

particles of 50 nm radius are used. The interfacial energy 

values are γsl=0.2 J/m2 and 2.1 J/m2 respectively. Both 

figures indicate that spherical pulse is more effective for 

de-agglomeration than the lateral one. This is explained by 

the fact that clusters of nano-particles tend to move as a 

whole when subjected to the lateral pulse. The observation 

can be confirmed visually in Figures 16 and 17 for γsl=0.2 

and 2.1 J/m2 respectively. Comparing Figures 16 and 17 

also confirms the effect of the interfacial energy on de-

agglomeration: lower value γsl=0.2 J/m2 clearly 

demonstrates lower agglomeration rate which means better 

de-agglomeration of the particles. The tendency of the 

cluster with lower energy particles to break into smaller 

pieces or isolated particles, rather than larger pieces in the 

case of higher interfacial energy, can also be observe. It is 

also interesting to compare the lower row of Figure 16 with 

the top row of Figure 13, where the configuration 

parameters are the same, including the interfacial energy, 

and the only difference is the particle material. It can be 

seen that the figures are very similar, from which it can be 

concluded that elastic properties of the materials play less 

important role than the interfacial energy. 
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Figure 11 The effect of interfacial energy on de-

agglomeration: agglomeration rate. Spherical pulse, 

duration 5 ns, maximum velocity 1-1000 m/s, SiC 

particles, SiC particles, γsl=0.2, 0.9 and 2.6 J/m2, radius 

50 nm, DMT model. 

 
Figure 12 The effect of interfacial energy on de-

agglomeration: number of sub-clusters. Spherical pulse, 

duration 5 ns, maximum velocity 1-1000 m/s, SiC 

particles, γsl=0.2, 0.9 and 2.6 J/m2, radius 50 nm, DMT 

model. 

 
Figure 13 The effect of interfacial energy on de-agglomeration. Spherical pulse, duration 5 ns, maximum velocity 1-500 

m/s, SiC particles, γsl=0.2, 0.9 and 2.6 J/m2, radius 50 nm, DMT model. 

γsl, mJ/m2 γsl, mJ/m2 



.  

Figure 14 The effect of the pulse shape on de-

agglomeration: agglomeration rate. Spherical and 

lateral pulses, duration 5 ns, maximum velocity 1-1000 

m/s, Al2O3 particles, γsl=0.2 J/m2, radius 50 nm, DMT 

model.  

 
Figure 15 The effect of the pulse shape on de-

agglomeration: agglomeration rate. Spherical and 

lateral pulses, duration 5 ns, maximum velocity 1-1000 

m/s, Al2O3 particles, γsl=2.1 J/m2, radius 50 nm, DMT 

model. 

 

 

 
Figure 16 The effect of the pulse shape on de-agglomeration. Spherical and lateral pulses, duration 5 ns, maximum 

velocity 1-500 m/s, Al2O3 particles, γsl=0.2 J/m2 and radius 50 nm, DMT model.  

 
Figure 17 The effect of the pulse shape on de-agglomeration. Spherical and lateral pulses, duration 5 ns, maximum 

velocity 1-500 m/s, Al2O3 particles,  γsl=2.1 J/m2 and radius 50 nm, DMT model.  
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The Effect Of The Brownian Motion. In this section the 

effect of the Brownian motion on de-agglomeration is 

investigated. The effect of the Brownian motion on the 

particles of various sizes is estimated in Table 2. Figures 18 

and 19 compare the de-agglomeration due to spherical 

pulse including and excluding the effect of the Brownian 

motion. SiC particles of 10 nm radius, γsl=0.2 and 0.9 J/m2 

are used, spherical pulses of 5 ns duration and amplitudes 

1-100 m/s. Figure 18 illustrates the case of the higher 

interfacial energy, γsl=0.9 J/m2. It can be seen, that the 

Brownian motion has little or no effect on de-

agglomeration. Figure 19 illustrates that the lower 

interfacial energy allows the particles to re-agglomerate 

and form new clusters. The particle dispersion is not 

improved and even worsened by the Brownian motion in 

Figure 19 for the pulse amplitudes 1-10 m/s. Amplitudes of 

50 and 100 m/s however demonstrate significant effect of 

the Brownian motion on dispersion of the particles. It can 

be concluded therefore that the Brownian motion does not 

improve de-agglomeration and cannot break up clusters of 

nano-particles. If however clusters are broken by the 

velocity pulse, Brownian motion significantly enhances the 

separation of the particles. 

The effect of the particle size on de-agglomeration in the 

presence of Brownian motion is illustrated in Figure 20, 

where particles of sizes from 10 to 500 nm are used. The 

decreasing effect of the Brownian motion with increasing 

the particle size can be observed by comparing Figures 20 

and 21. It is clear that for particles of radius larger than 100 

nm there is no apparent effect of the Brownian motion, as 

predicted by Table 2. 

 

 
Figure 18 The effect of the Brownian motion on de-agglomeration. Spherical pulse, duration 5 ns, maximum velocity 1-

100 m/s, SiC particles, radius 10 nm, γsl=0.9  J/m2, DMT model. 

  
Figure 19 The effect of the Brownian motion on de-agglomeration. Spherical pulse, duration 5 ns, maximum velocity 1-

100 m/s, SiC particles, radius 10 nm, with  γsl=0.2  J/m2, DMT model. 



 
Figure 20 The effect of the particles size on de-agglomeration in the presence of the Brownian motion. Spherical pulse, 

duration 5 ns, maximum velocity 1-500 m/s, SiC particles, radius 10-500 nm, γsl=0.2  J/m2,  DMT model.  

 
Figure 21 The effect of the particles size on de-agglomeration without the Brownian motion. Spherical pulse, duration 5 

ns, maximum velocity 1-500 m/s, SiC particles, radius 10-500 nm, γsl=0.2  J/m2,  DMT model. 

 

 

 

 



The Effect Of The Particle Size. Apart from the Brownian 

motion which clearly depends on the particle size, other 

driving forces of de-agglomeration are affected as well. 

Higher surface area to volume ratio of smaller particles is 

expected to enhance the surface interaction forces. Di 

Felice drag force is proportional to the cross-section area of 

the particle and therefore larger particles are expected to 

experience higher drag than the smaller ones. In addition, 

the combined elastic and frictional forces between the 

particles during the oblique impact are affected by the 

contact area and thus by the particles size. For this reason 

the effect of the particle size on de-agglomeration is 

investigated in this section.  

Figure 22 shows the agglomeration rate after applying a 

spherical pulse of 5 ns duration to the cluster of SiC 

particles of 10-500 nm radii. Figure 23 shows the 

corresponding particle positions. In Figure 22 the cases of 

1, 10 and 50 m/s pulse amplitude demonstrate the clear 

tendency of the increasing agglomeration rate for 

increasing radii of the particles. The opposite tendency is 

observed for the cases of 500 m/s and 1000 m/s amplitude: 

the smaller particles show higher agglomeration rate, i.e. 

worse de-agglomeration. In Figure 23 it can be seen that 

smaller particles form large sub-clusters while larger 

particles form smaller sub-clusters or remain isolated. 

Pulses of amplitude below 100 m/s separate the sub-

clusters of smaller particles which results in low 

agglomeration rate values. Particles in the sub-clusters 

however remain agglomerated which prevents the 

agglomeration rate from decreasing further. Similar effect 

has been observed for lower and higher values of the 

interfacial energy in Figure 13.  

 
Figure 22 The effect of the particles size on de-

agglomeration: agglomeration rate. Spherical pulse, 

duration 5 ns, maximum velocity 1-100 m/s, SiC 

particles, radius 10-500 nm, with  γsl=0.9  J/m2,  DMT 

model. 

 

 
Figure 23 The effect of the particles size on de-agglomeration. Spherical pulse, duration 5 ns, maximum velocity 1-500 

m/s, SiC particles, radii 10-500 nm, DMT model.  

 

Size, nm 



 

Conclusions 

 

A DEM model was developed in order to study the 

behaviour of a nano-particle agglomerate in metal melt 

under various conditions. In particular, ultrasound 

processing is considered. It was shown that the high 

velocity pulses caused by the collapse of the gas bubbles 

during the ultrasonic treatment are capable of breaking up 

the agglomerates. The importance of the appropriate 

adhesive contact model was shown, and the Muller 

parameter is proposed to determine whether the DMT or 

JKR model should be used. It was illustrated that de-

agglomeration is highly dependent on the interfacial energy 

values, and that oxidized SiC particles are significantly 

easier to de-agglomerate than pure SiC. The effects of the 

duration and the maximum value of the velocity pulse were 

investigated. It was shown that short pulses are efficient in 

local separation, while longer pulses result in breaking up 

the clusters into large pieces. It is suggested that an optimal 

pulse duration depends on the size of the particles and the 

number of particles in a cluster. The spherical and lateral 

pulses were compared which demonstrated that the 

spherical pulses are more efficient for de-agglomeration 

than the lateral ones due to the tendency of the cluster to 

move as a whole if subjected to the lateral pulse.. The 

effect of the particle size has also been investigated. It was 

shown that clusters of smaller particles are easier to de-

agglomerate. Smaller particles however form large sub-

clusters and result in poor local separation despite showing 

effective global de-agglomeration. The effect of the 

Brownian motion on de-agglomeration of particles of 

various sizes was studied and it was concluded that only 

de-agglomeration of particles smaller than 100 nm is 

significantly affected by the Brownian motion. This 

detailed study of the particle-particle interaction forces 

under various conditions is expected to help optimizing the 

electro-magnetic stirring and the ultrasonic processing of 

the metal melt with added nano-particles. 
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