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ABSTRACT 26 

Lyophilized wafers comprising sodium alginate (SA) and gelatin (GE) (0/100, 75/25, 27 

50/50, 25/75, 0/100 SA/GE respectively) with silver sulfadiazine (SSD, 0.1% w/w) have 28 

been developed for potential application on infected chronic wounds. Polymer-drug 29 

interactions and physical form were characterized by Fourier transform infrared 30 

spectroscopy (FTIR) and X-ray diffraction (XRD) respectively, while morphological 31 

structure was examined using scanning electron microscopy (SEM). Functional 32 

characteristics [(mechanical hardness and adhesion using texture analyzer, and swelling 33 

capacity)] of blank wafers were determined as performed in order to select the optimal 34 

formulations for drug loading. Finally, the in vitro drug dissolution properties of two 35 

selected drug loaded wafers were investigated. There was an increase in hardness and a 36 

decrease in mucoadhesion with increasing GE content. FTIR showed hydrogen bonding 37 

and electrostatic interaction between carboxyl of SA and amide of GE but no interaction 38 

between the polymers and drug was observed, with XRD showing that SSD remained 39 

crystalline during gel formulation and freeze-drying. The results suggest that 75/25 40 

SA/GE formulations are the ideal formulations due to their uniformity and optimal 41 

mucoadhesivity and hydration. The drug loaded wafers showed controlled release of SSD 42 

over a 7 hour period which is expected to reduce bacterial load within infected wounds. 43 

 44 
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 46 

 47 

 48 

 49 

 50 



3 
 

1. Introduction 51 

In recent years, natural biopolymers such as alginate, collagen and chitosan have been 52 

studied because of their importance in formulation of different dressings for healing of 53 

burns and other types of wounds. This is due to several favorable characteristics including 54 

biocompatibility, biodegradability and some structural similarities with human tissues, as 55 

well as their implication in the repair of damaged tissues and consequently skin and tissue 56 

regeneration [1,2,3].  57 

 58 

Alginate is an anionic polysaccharide, extracted from brown algae (Phaeophyceae) or 59 

obtained by bacterial biosynthesis from Azotobacter and Pseudomonas spp. It is 60 

composed of (1,4)-linked β-D-mannuronate (M) and α-L-guluronate (G) residues linked 61 

in homopolymeric blocks (---MMM--- or ---GGG---) or random blocks (---MGMG---). 62 

Depending on the block content, length and distribution in the polymeric chain, alginates 63 

possess different physical, chemical and gelling properties [4]. Alginate dressings are 64 

characterized by the formation of a gel due to the exchange between the ions present in 65 

the dressing and wound exudate [5]. This gel creates a moist environment that promotes 66 

healing and facilities easy removal [6]. This together with its high tissue compatibility, 67 

low toxicity and good mucoadhesive properties allow alginates to be used as biomaterials 68 

for wound dressings [7]. The impact of cross-linker cations such as Na+, Ca2+, Cu2+ or 69 

Zn2+ in modifying dressings’ functional wound healing characteristics such as tensile 70 

strength and hydration has been reported [8]. However, with time, hydrated alginate can 71 

lose the cation cross-linkers, resulting in gel degradation. Therefore, it has been 72 

recommended to combine alginates with other biopolymers such as gelatin or chitosan in 73 

a single formulation [9]. 74 
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Gelatin is a denatured protein from the triple helix of collagen. In solution, the chains are 75 

converted from random spirals at moderate temperature to helices once the temperature 76 

decreases below ambient, thus behaving as a gel [10]. Ideal characteristics such as 77 

biodegradability, ease of processing and its antigenic activity in physiological 78 

environments have resulted in the wide use of gelatin in biomedical applications. It also 79 

provides hemostasis and facilitates cell adhesion and proliferation during wound healing 80 

[11]. However, poor mechanical properties and low thermal stability have been described 81 

as some of the disadvantages of this biomaterial which can be improved by cross-linking 82 

and / or combining with other polymers [12]. Balakrishna and co-workers developed a 83 

hydrogel dressing based on the beneficial properties of oxidized alginate, gelatin and 84 

borax with the purpose of making a potential dressing that maintains a moist wound 85 

environment [13]. It has also been reported that oxidized alginate could be successfully 86 

utilized to stabilize gelatin films and therefore improve their mechanical properties [14]. 87 

 88 

Metal antimicrobials have been used over the years to combat bacterial infection with 89 

silver being the most common metal based antimicrobial in medicated wound dressings. 90 

At an appropriate concentration, silver shows broad spectrum activity against fungal and 91 

bacteria cells including methicillin resistant Staphylococcus aureus (MRSA) and 92 

vancomycin resistant Enterococci (VRE) [15]. Different products have been developed 93 

with silver, such as foams (Contreet F®), hydrocolloids (Contreet H®), alginates (Anticoat 94 

absorbent®) and films (Arglaes®) with indications for burns and heavily colonized 95 

wounds [16,17]. However, these products are all single polymer matrix systems which 96 

do not always control drug release appropriately as well as exhibit optimal functional 97 

properties such as adhesion, swelling and mechanical strength. The use of composite 98 
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dressings, combining more than one polymer with enhanced physical-mechanical 99 

characteristics has gained recent interest [2,3]. 100 

 101 

The aim of this study therefore, was to formulate freeze-dried wafers from gels combining 102 

different ratios of sodium alginate (SA) and gelatin (GE) and loaded with silver 103 

sulphadiazine (SSD) for potential application to infected wounds. Different analytical 104 

techniques have been used to characterize the functional physico-chemical properties of 105 

the starting polymers and wafer formulations, including scanning electron microscopy 106 

(SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), as well 107 

as texture analysis (‘hardness’, and adhesion), swelling and in vitro drug dissolution 108 

studies. 109 

 110 

2. Experimental 111 

2.1. Materials 112 

Silver sulfadiazine [SSD, (batch number: 48118156)], Pluronic [F68, (batch number: 113 

020M0029)], calcium chloride (batch number: 1291383) and trismethylamine (batch 114 

number: 87203010) were obtained from Sigma-Aldrich (Steinnheim, Germany). Sodium 115 

alginate [SA, (batch number: 0804532)] and sodium chloride (batch number: 1095753), 116 

were purchased from Fisher Scientific (Leicestershire, UK). Gelatin [GE, (batch number: 117 

54008P03)] was obtained from Fluka Analytical (Steinheim, Germany). 118 

 119 

2.2. Preparation of gels and freeze-dried wafers 120 

Blank (BL) and SSD loaded (DL) gels were prepared with varying concentrations of SA 121 

and GE while keeping the amount of the other components (SSD and pluronic acid - F68) 122 

constant (Table 1). 123 
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The gels of SA and GE were prepared by dispersing the polymers and surfactant (F-68) 124 

in hot distilled water (50ºC) with continuous stirring until they were completely 125 

dissolved. For gels containing SSD, the drug was first dispersed into the vortex of hot 126 

surfactant solution (50ºC) before adding the different polymers (SA and GE). 7 g each of 127 

gel was transferred into 6 well plates (diameter 35 mm) and lyophilized using a Virtis 128 

Advantage XL 70 freeze dryer (Biopharma Process System, Winchester, UK) in 129 

automatic mode. The lyophilization procedure involved freezing the gels in a series of 130 

thermal ramps to -50°C over 7 hours (freezing phase), then heating during the primary 131 

drying phase to sublimate the ice under vacuum at -15°C (24 hours), followed by 132 

secondary heating at 20°C for 7 hours.  133 

 134 

2.3. Visual evaluation and scanning electron microscopy (SEM) 135 

The wafers were visually evaluated by capturing digital images of the different 136 

formulations. Further, the wafers were examined microscopically under low vacuum by 137 

a Jeol JSM-5310LV scanning microscope to obtain high-resolution surface information 138 

of their morphological structure. The samples were cut into small, thin pieces and placed 139 

on double-sided carbon tape on 15 mm aluminum stubs. Sample images were acquired at 140 

magnifications of ranging from x50 to x200.    141 

 142 

2.4. X-ray diffraction (XRD) 143 

A D8 Advance X-ray diffractometer (Bruker, Coventry, UK) equipped with Lynx Eye 144 

detector was employed to determine the crystalline or amorphous nature of the different 145 

pure starting materials and within the formulated wafers. The freeze-dried wafers were 146 

compressed using a pair of cover glasses to a size of 0.3 mm and introduced into the 147 

sample holder. All the samples were scanned between 2 theta of 5º and 45º with a step 148 
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size of 0.02 and a scan speed of 0.4 s. The same process was repeated for SSD, SA, GE 149 

and F-68.  150 

 151 

2.5. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy  152 

FTIR spectra of wafers and the different starting materials were acquired on a FTIR 153 

spectrophotometer (Thermo Nicolet, Thermoscientific, UK) combined with ZnSe 154 

attenuated total reflectance (ATR) crystal accessory based on a previously reported 155 

method [18]. After the crystal area had been cleaned, the material was placed on the ATR 156 

crystal and pressed by a pressure clamp positioned over the crystal/sample area to allow 157 

optimal contact between the material and the ATR crystal. The spectra were collected at 158 

a resolution of 4 cm-1 over a range of 650 to 4000 cm-1. 159 

 160 

2.6. Swelling study 161 

This test determined the maximum hydration capacity of the wafers in simulated wound 162 

fluid (SWF). The SWF contained 0.02 M calcium chloride, 0.4 M sodium chloride and 163 

0.08 M tris methylamine in deionized water. To adjust the pH of the solution, 2 M of 164 

hydrochloric acid (HCl) was added until a pH of 7.5 was attained [19]. Samples (n=4) 165 

were initially weighed and immersed into 20 ml of SWF at 37ºC. The change in weight 166 

of the wafers was measured every 15 minutes up to 120 minutes to observe the swelling 167 

behavior. At each time point, the hydrated wafers were carefully removed, blotted and 168 

then reweighed. Calculation of the percentage swelling index Is (%) was determined using 169 

the following equation:               170 

Is (%) = (Ws – Wd / Wd) x 100 171 

Where Wd is weight of the wafer before hydration and Ws indicates weight of the wafers 172 

after hydration. 173 
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2.7. Texture analysis 174 

2.7.1. Mechanical hardness 175 

A TA HD plus Texture analyzer (Stable Micro Systems Ltd., Surrey, UK) was employed 176 

to select which formulations possessed optimal flexibility and determine how the drug 177 

content can affect mechanical ‘hardness’ (resistance to compressive deformation) and 178 

ease of recovery, compared with BL wafers [20]. Before compression, the probe height 179 

was properly calibrated. Four different samples of each wafer formulation were 180 

compressed with a 6 mm probe at five different locations, on both sides of the wafer to a 181 

penetration depth of 2 mm, at a speed of 1 mm/s, with a 10 mm return distance. 182 

 183 

2.7.2. In-vitro adhesion studies 184 

In vitro wound adhesion studies were performed on four wafers of each sample with a 185 

TA HD plus Texture analyzer (Stable Micro Systems, Surrey, UK) fitted with a 5 kg load 186 

cell. The wafer was attached to the upper arm of a 75 mm diameter probe on the texture 187 

analyzer machine using double sided adhesive tape. A 90 mm diameter Petri dish 188 

containing 20 g of gelatin solution (6.67% w/w) allowed to set; was equilibrated with 0.5 189 

ml of SWF (prepared above) to represent the wound surface as previously reported [3]. 190 

The experiment was performed by lowering the probe until the wafer made contact with 191 

the set gelatin gel surface for 60 seconds to provide optimal contact. The probe was set at 192 

a pre-test and test speeds of 0.5 mm/s and post-test speed of 1 mm/s applying a force of 193 

1 N. The peak adhesive force (PAF) required to break the adhesive bond between the 194 

wafer and the simulated wound surface was determined by the maximum force, the total 195 

work of adhesion (WOA) was obtained from the area under the force-distance curve 196 

(AUC), while cohesiveness which describes the flexibility of formulation was estimated 197 
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by the total distance (in mm) travelled by the probe before complete detachment of the 198 

wafer from the gelatin gel surface.  199 

 200 

2.8. In vitro drug dissolution studies 201 

In vitro drug dissolution studies were performed with a Franz diffusion cell across a wire 202 

mesh with SWF (pH 7.5) as dissolution media in the receptor compartment. The DL 203 

wafers (SA/GE 75/25 and 25/ 75) containing SSD was placed on the wire mesh. The 204 

temperature of the diffusion cell was maintained at 37±0.5°C by a circulating water jacket 205 

and the dissolution medium was constantly stirred throughout the experiments using 206 

magnetic beads on a magnetic stirrer. At predetermined time intervals, 0.5 mL aliquots 207 

of dissolution media were withdrawn and analyzed by HPLC (section 2.9 below) and 208 

replaced with the same amount of SWF to maintain a constant volume throughout. The 209 

release of SSD (µg) from the wafers was calculated and plotted against time. 210 

 211 

2.9 HPLC analysis 212 

This was performed using an Agilent 1200 HPLC equipped with an auto sampler 213 

(Agilent Technologies, Cheshire, UK,) and a Chemstation® software program. The 214 

stationary phase consisted of a C18 (250 x 4.6 mm, 10µm) column (HPLC Technology, 215 

UK). The mobile phase consisted of water: acetonitrile: phosphoric acid (90: 9.9: 0.1 % 216 

v/v), the flow rate of the mobile phase was maintained at 1.0 ml/min and detector 217 

wavelength at 254 nm and 20 µl volumes injected during each run. Standards from 1-218 

10µg/ml were used to plot a calibration curve for SSD (r2 = 0.998) and used to determine 219 

the drug loading efficiency (%) of SSD within the optimized formulations used for drug 220 

dissolution studies. 221 

 222 
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2.10. Statistical analysis 223 

To compare BL and DL wafers statistical data evaluation was performed using two tailed 224 

student t-test at 95% confidence interval (p-value < 0.05) as the minimal level of 225 

significance for ‘hardness’, swelling and adhesion data. 226 

 227 

3. Results  228 

3.1. Morphology of freeze-dried wafers 229 

Digital photographs of the different wafers formulated are shown in Fig. 1. It can be 230 

observed that wafers with higher ratios of SA/GE 100/0 (A and F) and 75/25 (B and G) 231 

possessed a smooth surface with a uniform texture as well as optimal balance between 232 

flexibility and toughness, making them suitable for easy application to wound sites. On 233 

the contrary, SA/GE 50/50 (C and H), 25/75 (D and I) and 0/100 (E and J) formulations 234 

were very sticky, making them difficult to remove without damaging the wafers. In 235 

addition, 0/100 SA/GE gels resulted in rigid wafers with a non-porous texture, which 236 

caused dramatic decrease in the thickness of the wafers, making them unsuitable for 237 

wound application. A rough appearance was observed for DL wafers with high 238 

concentration of GE (H and J) due to the formation of crystallized particles on the top the 239 

wafers. In addition to their rough appearance, there was an increase in brittleness with a 240 

consequent loss of flexibility which was deemed non-ideal.  241 

 242 

3.2 Scanning electron microscopy (SEM) 243 

The SEM results showed that all the formulations possessed a porous morphology, except 244 

in the case of 0/100 SA/GE formulations which were completely non-porous at the 245 

bottom and showed low porosity at the top, as is shown in Fig. 2A-B. Wafers with higher 246 

concentration of SA formed interconnecting polymeric networks with small, elongated, 247 
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and uniform pores (Fig. 2C) whilst wafers containing higher concentrations of GE also 248 

formed a polymeric network but with larger, non-uniform and circular shaped pores (Fig. 249 

2D). These results seem to confirm the visual observations made from the digital 250 

photographs in Fig. 1. Addition of the drug resulted in wafers with a crystalline 251 

appearance due to the deposition of the silver metal among the strands of the polymeric 252 

network (Fig. 2E-F). It can also be observed that while, BL 25/75 SA/GE (Fig. 2D) wafers 253 

possessed regular and circular shaped pores, the addition of the drug resulted in larger, 254 

irregular and hexagonal shaped pores with thinner strands. Such changes in 255 

microstructure are known to impact on other physical properties such as ‘hardness’ and 256 

hydration [3].  257 

 258 

3.2. X-ray diffraction (XRD) 259 

Fig. 3a shows the diffractograms of all the different components of the wafers. Both GE 260 

and SA possessed a completely amorphous structure, as shown by the low count numbers. 261 

The diffractograms of F-68 and SSD revealed typical crystalline peaks due to their 262 

ordered structure. XRD diffractograms of all the wafers (Fig. 3b and Fig. 3c) showed low 263 

intensity peaks at 19º and 23.5º that were attributed to the pluronic F-68. In addition, the 264 

small peaks at 13.5o and 21.5o for SA disappeared, and intensified at 19º and 23.5º with 265 

the addition of GE. In the case of DL wafers, the characteristic peaks of the silver at 8º, 266 

10º were observed confirming the crystallinity as observed from the SEM results. Further, 267 

the intensities of these peaks were more intense in DL loaded 50/50 and 0/100 SA/GE 268 

wafers suggesting that GE contributes more to wafer crystallinity and therefore modifies 269 

the physical properties of SA wafers.  270 

 271 

 272 
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3.3. Fourier transform infrared (FTIR) spectroscopy  273 

The FTIR spectrum (Fig. 4a) of SA showed peaks around 1652 cm-1 and 1456 cm-1 274 

representing the asymmetric and symmetric stretching vibration respectively of the 275 

carboxylic acid. Other peaks were observed at 3270 cm-1 and 1116 cm-1, due to OH and 276 

C-O-C stretching vibration. On the other hand, GE spectrum revealed the presence of an 277 

amide I and II band for primary amide at 1648 cm-1 and 1540 cm-1, respectively. The 278 

amide I band is due to C=O stretching while the amide II band is attributed to NH bending 279 

vibration. It also exhibited C-O-C stretching at 1116 cm-1. The spectrum of SSD showed 280 

an intense and well defined peak at 1224 cm-1 characteristic of SO2 asymmetric stretching. 281 

Other peaks were observed for the SSD at 3384 cm-1, 1594 cm-1 and 1548 cm-1 which 282 

were assigned to NH stretching of phenyl and pyrimidine skeletons respectively.  283 

As shown in Fig. 4b, 100/0 SA/GE wafers showed an absorption band of the carboxyl 284 

group at 1600 cm-1 while this absorption band for 75/25, 50/50 and 25/75 SA/GE was 285 

observed at 1596 cm-1, 1644 cm-1 and 1646 cm-1, respectively. It can be also seen that the 286 

C-O-C stretching still remained with a peak of 1031 cm-1 approximately for all the 287 

formulations. The presence of the SO2 asymmetric stretching at 1232 cm-1from SSD was 288 

retained in all DL formulations without any shifts (Fig. 4c).  289 

 290 

3.4. Swelling studies 291 

Fig. 5 shows the percentage swelling index of BL and DL wafers. The results show 292 

maximum hydration within 90 minutes for all the BL formulations. BL formulations 293 

containing only SA possessed a relatively higher swelling capacity with a maximum of 294 

2299.79 ± 151.29%. On the other hand, increase in the content of GE caused a decrease 295 

in the swelling of the wafers, except for 75/25 SA/GE which showed a maximum value 296 

of 2210 ± 231.32% with statistically non-significant difference (p = 0.594). This change 297 
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in swelling with GE confirms the observations from XRD where GE appears to increase 298 

the crystalline nature of the wafers. No statistically significant differences were observed 299 

between BL and DL loaded wafers (p > 0.05) at the maximum swelling value, except for 300 

25/75 SA/GE. It also is interesting to note that the addition of SSD in this formulation 301 

(25/75 SA/GE) improved the hydration capacity with a maximum value in 15 minutes of 302 

1842.53 ± 295.57%, compared to 934.30 ± 114.33% for the BL wafers, which was a 303 

significant difference (p value = 0.02).  304 

 305 

3.5. Texture Analysis 306 

3.5.1. Mechanical characteristics 307 

Fig. 6 shows the differences in ‘hardness’ (resistance to compressive deformation) values 308 

between top and bottom of the BL and DL wafers when compressed at five different 309 

locations on both sides (n = 4). This difference could be due to the freeze-drying process 310 

where the polymer density might be higher at the bottom of the container, than at the top. 311 

This is possible because the shelf-type freeze-dryer used caused freezing to start from the 312 

bottom of the gel upwards. This could also explain the differences observed in 313 

morphology between the top and bottom of the wafers. However, this may require further 314 

investigation. In addition, the data suggests that the increase of GE resulted in an increase 315 

in the ‘hardness’ and hence decreased the flexibility of the wafers, which could affect 316 

swelling and mucoadhesion performance. Addition of SSD resulted in an increase in the 317 

peak resistance to compression due to the concentration of crystals, except in 25/75 318 

SA/GE where the silver appears to be lodged among the thinner walls of the polymeric 319 

network, resulting in a reduction of the hardness. Statistically significant differences (p < 320 

0.05) in ‘hardness’ between top and bottom were observed for all formulations except for 321 

75/25 SA/GE SSD (p = 0.78).  322 
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3.5.2. In-vitro adhesion studies 323 

Fig. 7 shows the peak adhesive force (PAF), the work of adhesion (WOA) and the 324 

cohesiveness that was required to detach the BL and DL wafers from the simulated wound 325 

surface. Results for the BL wafers showed that an increase in GE decreased the PAF and 326 

WOA which could be explained by the SA-GE interactions. DL wafers showed a decrease 327 

in the PAF and an increase in the WOA and cohesiveness compared with BL wafers. 328 

Although the difference in PAF and WOA was not statically significant (p > 0.05), all the 329 

different formulations exhibited significant differences for the cohesiveness (p < 0.05). It 330 

can be seen that DL loaded 25/75 SA/GE wafers possessed the highest cohesiveness (5.62 331 

 0.25mm) which could be attributed to the increase of the apparent pore size with the 332 

addition of the drug which is expected to result in rapid initial hydration and entanglement 333 

which are important for mucoadhesion.  334 

 335 

3.6 In vitro drug dissolution studies 336 

HPLC was used to assay the drug loading within the wafers and to determine the amounts 337 

of drug released with time during prior to dissolution study. The drug loading efficiency 338 

for 25/75 SA/GE and 75/25 SA/GE was 80% and 93% respectively and the difference 339 

here is largely due to the latter being more flexible and easier to remove from the mould 340 

with smaller loss of material. The drug dissolution profiles for optimized DL wafers (n = 341 

3) are shown in Fig. 8 showing controlled drug release over a 7 hour period. The 342 

formulations containing higher percentage of GE appear to release the drug more rapidly 343 

in the initial stages compared to the wafers containing higher proportions of SA though 344 

the differences do not appear marked based on the error bars.  345 

 346 

 347 
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4. Discussion 348 

SA is a common excipient that has been used in pharmaceutical formulations such as 349 

hydrogels and wafers, due to its structure. On the contrary, GE possesses certain 350 

disadvantages such as thermal instability and poor mechanical strength. However, some 351 

studies have reported that these limitations can be improved by combining with alginates 352 

[21,22]. The differences in pore size (SEM) between the BL and DL wafers have been 353 

reported to affect mechanical, hydration and adhesive properties of the different wafer 354 

formulations [20]. The changes in XRD patterns with increasing ratios of GE can be 355 

attributed to the interaction between GE and SA, where the GE alters the molecular 356 

packing of SA and produces an ordered structure with the formation of crystallites [21]. 357 

It appears from the FTIR data that the addition of GE caused a shift of the carboxyl peak 358 

towards a higher wave number, which indicated an interaction between the carboxyl 359 

group of SA and the amide group of GE. This is specifically a reaction between the 360 

positive charges from the amino groups of GE and the negative charges from the carboxyl 361 

group of SA [23]. Furthermore, these changes could also be related to the molecular 362 

interaction between SA and GE chains via hydrogen bonding and electrostatic attractions 363 

[24]. Such interactions can affect swelling and adhesion behavior of the wafers. The 364 

presence of the SO2 asymmetric stretching at 1232 cm-1from SSD was retained in all DL 365 

formulations without any shifts which was in agreement with the XRD results, where the 366 

crystalline form of the SSD was present in DL wafers, and confirms that there was no 367 

interaction between the drug and the polymers and that the drug maintained its original 368 

structure within the wafers. It has been reported that the effective bactericidal properties 369 

of SSD is caused by the slow interaction of silver ions with negatively charged proteins, 370 

RNA and DNA present in the pathogen cell wall [25]. 371 

 372 
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Alginate is a weak polyacid, with pKa values of 4.0 and 3.5 for 1,4 linked β-D-mannuronic 373 

acid units and 1,4 linked α-L-guluronic acid units, respectively. GE is a polymeric 374 

ampholyte with carboxyl (COOH) and amido (NH) groups consistent with its protein 375 

nature with an isoelectric point of pH 4.9. Under the SWF conditions (pH 7.5), both SA 376 

and GE exist as polyanions owing to the ionization of the carboxyl groups while the 377 

amido of GE remains un-ionized [26]. The higher swelling index for formulations 378 

containing higher amounts of SA can be attributed to its anionic nature, which can 379 

produce anion-anion repulsive forces among the chains. This transfers mobility and 380 

therefore an extension in the polymeric network, which results in an increase in the degree 381 

of hydration [27,28]. In combination with FTIR results, we suggest that this reduction in 382 

swelling capacity could be attributed to higher interaction between SA and GE with the 383 

consequent reduction in availability of COO- ions to form H bonding and electrostatic 384 

interaction with the SWF. Wafers with no SA (0/100 SA/GE) showed the minimum 385 

hydration capacity due to their poor flexibility and possibly smaller pore sizes but the 386 

latter will, require confirmation with porositometry data. 387 

 388 

The increase in swelling capacity for DL 25/75 SA/GE wafers  could be associated with 389 

the formation of thinner and large pore strands showing deposition of silver on the walls, 390 

allowing a faster ingress of water and therefore increasing its hydration capacity. After 391 

15 minutes, this formulation formed a gelatinous mass which affected its stability and 392 

therefore started to disintegrate with resultant flattening of the swelling values. These 393 

results demonstrate that the SA/GE wafers have a high holding capacity for wound 394 

exudate and can subsequently be used for moderate to highly exuding wounds [19,29]. 395 

 396 
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Hardness and mucoadhesion studies were performed in order to select the optimal 397 

formulation. However, wafers containing GE without SA (0/100 SA/GE), were not 398 

included in the hardness and mucoadhesion experiments owing to their poor flexibility 399 

which made them difficult to handle. The hardness results along with SEM, confirmed 400 

that 75/25 SA/GE wafers possessed the most favorable properties for wound healing due 401 

to the integrity, flexibility, uniformity and easy handling properties. This is important as 402 

there is always the need to avoid hard and brittle dressings which can cause trauma and 403 

damage to newly formed skin cells on a healing wound surface [6]. 404 

 405 

Adhesion plays an important role in determining an ideal wound dressing as it improves 406 

the bioavailability of the drug by increasing the retention time at the wound site as well 407 

as reducing the need for frequent dressing change which can result in patient non-408 

compliance. Flexibility, presence of chemical groups, charge and hydration of the 409 

polymers, have been reported as factors that can affect the adhesion of any delivery 410 

system [30,31,32]. If polymer-polymer interactions are greater than the polymer-fluid 411 

interaction, there will be fewer possibilities for interaction between the free groups of the 412 

polymers and the ions present in SWF [33]. Moreover, as was observed from the swelling 413 

studies, the increase in GE, resulted in reduced availability of ionized groups (COO-) at 414 

alkaline pH, resulting in weaker H-bonding and ionic interactions with the SWF.  415 

Although 25/75 SA/GE wafer did not possess the highest swelling capacity, its larger 416 

pore sizes (SEM results) allowed a higher initial hydration at the beginning of the 417 

adhesion process between the surface of the wafer and the SWF. This makes the wafer 418 

sticky and more difficult to be fully separated from the wound surface, resulting in a 419 

higher distance of travel (cohesiveness) in mm. On the other hand, 75/25 SA/GE wafers 420 

exhibited the most optimal adhesion results possibly due to their high flexibility which 421 
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enhanced the possibilities of diffusion of the salts of the SWF within the polymer and 422 

therefore an improvement of the H-bonding and ionic interactions and optimal 423 

entanglement with the model wound surface. 424 

 425 

To ensure effective antibacterial action, it is important to ensure adequate initial release 426 

of loaded drug as well as sustained release over a reasonable period of time, ultimately 427 

resulting in rapid wound healing. The increased initial drug release in formulations 428 

containing higher amounts of GE, could be explained by the higher initial hydration and 429 

swelling, which therefore enhanced ultimate drug diffusion from the swollen gels. 430 

However, as observed in the swelling profiles, this was reversed with time, and the 431 

formulations with higher amounts of SA eventually released drug faster than the wafers 432 

containing higher amounts of GE. Overall, however, the total amount of drug released 433 

within 7 hours is higher than the reported MIC values of SSD [34] against common 434 

infection causative bacteria and expected to significantly reduce bacterial bio-burden as 435 

well as prevent re-infection during the period of application. This should in turn result in 436 

more rapid healing of infected wounds. However, this will need to be confirmed in an in 437 

vitro antibacterial study for both Gram positive and negative bacteria commonly found in 438 

infected wounds such as Escherichia coli, Staphylococcus aureus and Pseudomonas 439 

aeruginosa [3]. 440 

 441 

5. Conclusions 442 

Composite bio-polymeric lyophilized wafers comprising different ratios of SA and GE 443 

and loaded with SSD have been formulated and functionally characterized for potential 444 

wound healing application. XRD and FTIR results revealed polymer-polymer interaction 445 

between SA and GE, which affect swelling and mucoadhesion properties but there was 446 
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no interaction between the polymer and SSD, which maintained its crystalline structure 447 

within the wafers. The results show that BL 75/25 SA/GE wafers were uniform, flexible 448 

and stable with optimal hydration (swelling) and adhesivity which can be used for wound 449 

healing. However, 25/75 SA/GE formulations increased in swelling capacity with 450 

addition of SSD which implies a potential use in moderate to highly exuding wounds. 451 

The DL wafers (75/25 and 25/75 SA/GE) showed controlled release of SSD over a 7 hour 452 

period which is expected to reduce bacterial bio-burden in infected wounds.  453 

 454 
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Table 1: Composition of blank (BL) and drug loaded (DL) loaded gels with total polymer 570 

(SA and GE) content of 3 % w/w in each case. 571 

 572 

% ratio of SA/GE  SA (% w/w) GE (% w/w) F68 (% w/w) Drug (% w/w) 

BL 100/0 3.00 0.00 0.20 - 

BL 75/25 2.25 0.75 0.20 - 

BL 50/50 1.50 1.50 0.20 - 

BL 25/75 0.75 2.25 0.20 - 

BL 0/100 0.00 3.00 0.20 - 

DL 100/0 3.00 0.00 0.20 0.10 SSD 

DL 75/25 2.25 0.75 0.20 0.10SSD 

DL 50/50 1.50 1.50 0.20 0.10 SSD 

DL 25/75 0.75 2.25 0.20 0.10SSD 

DL 0/100 0.00 3.00 0.20 0.10 SSD 

 573 

 574 

 575 

 576 

 577 
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 580 

 581 
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Figure Legends 583 

Figure 1 Digital photographs of BL SA/GE wafers (A) 100/0, (B) 75/25, (C) 50/50, (D) 584 

25/75, (E) 0/100 and SSD loaded SA/GE wafers (F) 100/0, (G) 75/25, (H) 50/50, (I) 585 

25/75,  (J) 0/100. 586 

Figure 2 SEM images of wafers obtained by imaging (A) BL 0/100 SA/GE: bottom 587 

section, (B) blank 0/100 SA/GE top section with magnification of x50, (C) BL 75/25 588 

SA/GE: top section with magnification of x50 (D) BL 25/75 SA/GE top section, (E) DL 589 

25/75 SA/GE: top section with magnification x100, (F) DL 25/75 SA/GE: top section 590 

with magnification x200.  591 

Figure 3 XRD patterns of (a) the different starting material, (b) BL wafers and (c) DL 592 

wafers (ratios SA/GE) 593 

Figure 4 FTIR spectra of (a) the different starting components (SA, GE, F68, SSD); (b) 594 

BL wafers (ratios SA/GE) and (c) the DL wafers (ratios SA/GE).  595 

Figure 5 Swelling behavior of BL and SSD (DL) loaded wafers (ratios SA/GE). 596 

Figure 6 Hardness profiles for BL and DL (SSD) wafers (n = 4) compressed at five 597 

different locations on both sides of the formulation (ratios SA/GE). Statistically 598 

significant differences (p < 0.05) in ‘hardness’ between top and bottom were observed 599 

for all formulations except for 75/25 SA/GE SSD (p = 0.78). 600 

Figure 7 Mucoadhesion profiles showing peak force of adhesion (PAF), work of 601 

adhesion (WOA) and cohesiveness of BL and SSD loaded (DL) wafers containing 602 

varying ratios of SA/GE. The difference in PAF and WOA was not statically significant 603 

(p > 0.05), whilst all the different formulations exhibited significant differences for the 604 

cohesiveness (p < 0.05). 605 

Figure 8 In vitro drug dissolution profiles for SSD released from optimized drug loaded 606 

wafers containing different proportions of SA/GE. 607 
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