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ABSTRACT 

 

The safety of infrastructure facilities is the primary objective of any civil engineering design. 

A large section of underground pipelines in the UK are classified as structurally deficient and 

functionally obsolete. Due to low visibility, condition assessment and rehabilitation of 

underground pipelines are frequently neglected until a catastrophic failure occurs. Providing 

an acceptable level of service and overcoming the practical difficulties, the concerned 

industry has to plan how to operate, maintain and renew (repair or replace) the pipeline 

systems under the budget constraints. This research is focused on estimating pipe reliability 

and deciding when and how interventions are needed to prevent unexpected failures of 

flexible underground metal pipelines subject to externally applied loadings and pipe material 

corrosion during the whole service life at the optimal cost. The time-dependent reliability due 

to corrosion induced excessive deflection, buckling, wall thrust and bending has been 

estimated. First, Hassofer-Lind and Rackwitz-Fiessler (HL-RF) algorithm and Monte Carlo 

Simulation (MCS) have been used to estimate the reliability. Then Subset Simulation (SS) 

method is developed to enhance the applicability, especially for small failure probability 

prediction. Accuracy prediction method, Receiver Operating Characteristic (ROC) curve has 

been introduced in this research to assess the accuracy of pipeline reliability analysis. Then 

the study has been extended to determine the intervention year for maintenance and identify 

the most appropriate renewal solution by optimising the risk of failure and life cycle cost, 

including carbon dioxide emissions mitigation cost, using Genetic Algorithm (GA). 

Optimisation technique, SS has also been developed for risk-cost optimisation of 

underground pipelines. Examples are presented to validate the proposed methods with a view 

to prevent unexpected failure of pipes by prioritising maintenance based on failure severity 

and system reliability. The proposed reliability estimation and risk-cost optimisation 

approach can be utilised to form a maintenance strategy and to avoid unexpected failure of 

pipeline networks during service life. 
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1.1 BACKGROUND  

Underground pipelines are one of the complex infrastructure systems that have significant 

impact on economic, environmental and social aspects of all modern life. Municipalities are 

under increasing pressure to adopt proactive and optimised renewal strategies to reduce the 

risks, cost and to maintain an acceptable level of performance and service (Halfawy et al, 

2008). Huge amount of buried pipelines in the UK and other parts of the world are 

categorised as structurally deficient and functionally out-dated.  To sustainable management 

of these pipes pose a wide range of difficulties due to deterioration and/or aging of pipes, 

requirements to comply with environment and limited renewal budgets. According to WRc 

(2001), maintenance and renewal of these pipes are required hundreds of billions of pounds 

that cannot be accommodated by water and wastewater agencies. The magnitude of the 

problem poses great technological and economic challenges, specifically which pipe should 

be given high priority for maintenance and what is the optimal maintenance strategy, i.e., 

identify the most effective management strategy. According to Nafi and Kleiner (2010), 

buried pipeline networks constitute a class of safety-critical infrastructure systems that 

should be analysed vigorously as their failure can have catastrophic consequences, including 

multiple fatalities and injuries, complete loss of services and considerable socio-economic 

impacts. Neglecting regular maintenance of these pipelines adds to life cycle costs and 

liabilities, and in extreme cases, causes stoppage or reduction of vital services (Abraham et 

al, 1998).   

 

Underground pipelines are widely used for transportation of fluid (water, sewer, oil and gas 

etc.) from one place to another. To convey the fluid from one place to another, in many 

instances, these are placed under runways, railways or roadways. Consequently, pipelines 

are encountered different internal and external loadings (e.g., overburden soil, traffic loads, 

fluid pressures etc.), different soil conditions (soil density, soil moisture, etc.) and various 

temperatures during the operation. Therefore, underground pipelines are required to resist 

the influence of the overlying surface load as well as the effect of internal fluid pressure. 

Apart from loadings, another major problem for the metal pipes is corrosion. When the pipe 

is not capable to resist it-self from the internal or external loadings and/or impairment of 

corrosion then the pipe breaks or becomes out of service. It is note that the pipes 

deterioration is varied with respect to loadings and buried environments. In practice, the 

effects of external soil and traffic loadings in vertical direction of the pipe length are 

2 
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generally considered in the pipeline design. The internal fluid pressures along the length of 

the pipe are neglected in many cases. Like internal fluid pressure, the external loadings 

along the longitudinal direction of pipes are also considered insignificant, especially if the 

pipes are not placed very close to the ground surface (Ahammed and Melchers, 1997). On 

the basis of these assumptions, it is often assumed that buried pipeline cross-sections remain 

in a state of plane strain. 

 

Buried pipes can be broadly classified as flexible or rigid, depending on how it performs 

during installation and operation. All types of underground pipes, whether flexible (steel, 

ductile iron, PVC, HDPE etc.) or rigid (reinforced concrete, vitrified clay, cast iron, asbestos 

cement etc.), rely on the backfill properties to transfer the loads into the bedding. As a 

result, all pipes should be installed as designed to perform as expected. However, only 

flexible buried metal pipes (e.g., steel, ductile iron pipes etc.) are considered in the current 

research. Pipe structures are collapsed when the applied stress exceeds the limiting or 

ultimate strength of the pipe wall material. Therefore, solid knowledge related to failure 

modes and consequence of failure is a key issue in the pipeline structure design. Different 

failures modes can be found for buried pipelines due to loadings and aggressive 

environments as shown in Figure 1.1 (Salem and Najafi, 2008). A vital failure criterion of 

flexible buried metal pipeline systems is localised or overall reduction in pipe wall thickness 

due to corrosion. The size of the resulting thickness undermines the pipe resistance capacity 

which in turn reduces the factor of safety of the pipe. The reduction of pipe strength which 

influences the pipe failure most are pipe leaking, blockage, excessive deflection, buckling, 

wall thrust or stress, bending stress and bending strain, etc. (Tee et al, 2013a).  

 

Corrosion is a continuous and time-variant process and may be uniform or nearly uniform in 

nature or localised, e.g., pitting or crevice corrosion. Furthermore, corrosion may act either 

internally or externally or both on the surface of pipe wall which influences the other modes 

of failure, such as deflection, buckling, bending, etc. The major type of corrosion on the 

iron-based pipes is corrosion pit. When corrosion pit depth is increased with time, the 

magnitude of deflection, buckling, wall thrust and bending (stress and strain) are also 

increased. Evidently, the effect of the failure due to corrosion induced excessive deflection, 

buckling, wall thrust and bending are practically significant in the structural analysis of a 

flexible buried metal pipeline design. However, sometimes extra pipe wall thickness or 

Chapter 1: Introduction 
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external coatings or linings are provided to protect from the destructive effects of corrosion. 

But this practice is not always found totally effective, particularly where pipe sections are 

joined together (Ahammed and Melchers, 1997). Sometimes, coatings are damaged during 

installation. Moreover, different researcher (ASCE, 2001; Rajani and Makar, 2000; Berardi 

et al, 2008) show that how much extra wall thickness is needed for effective corrosion 

protection for a given design lifetime, is still a big concern to buried pipeline designers. 

These coatings significantly increase the total pipe installation cost as well as the life cycle 

cost.  

 

 

 

Figure 1.1: Modes of failure of a flexible buried metal pipe (Salem and Najafi, 2008)  

 

Due to increasing fear of failure risk and requirements to comply with environments and 

accounting regulations within limited budgets, the reliability based sustainable management 

strategy is very useful to overcome these complications. A complicated approach to 

scheduling pipe maintenance is to determine individual pipes that are approaching unsafe 

condition and repair or replace these before fail. This type of approach requires a robust 

methodology to determine the remaining safe service life of each pipe segment within the 

distribution network system. The long-term planning of the renewal of underground pipe 

distribution networks requires the ability to predict system reliability as well as assess the 

economic impact. To estimate the reliability and associated cost management, attention 

should be given on the types of pipes, ages, environments and loading conditions on the 
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applicable pipes. Pipe materials are varied from country to country or even city to city.  The 

mechanical properties (i.e., elasticity of modulus, Poisson’s ratio etc.) of different pipe 

materials are different and their modes of failure also different, even for same failure criteria 

within same environments and loading conditions. For example, the magnitude of steel pipes 

failure due to buckling is significantly different from ductile iron pipes (ASCE, 2001). It is 

also worth noting that corrosion rate of different materials are not same, such as steel pipes 

are different from those of the ductile iron and cast iron pipes (as corrosion empirical 

parameters k and n or a, b and c are different) (Watkins and Anderson, 2000).  Similarly, 

different age and loading conditions also affects pipe service life. For these reasons, with 

respect to pipe materials, location and loading conditions, development of a systematic and 

an effective approach is required for ensuring adequate reliability and optimising the 

maintenance strategy.   

 

 

 

Figure 1.2:  A typical pipe failure due to external loadings 

 

In the past, various researchers and organisations recognised the importance and the 

applicability of the reliability estimation of flexible buried pipeline systems. The 

development of reliability analysis in pipeline systems is receiving considerable attention 

nowadays and the guidelines on the targeted reliability indices have been suggested recently 

(Babu and Srivastava, 2010). Complex models in reliability and risk analysis often involve 

uncertain input parameters which can be determined using the reliability based optimum 

management methods with varying degrees of accuracy. These uncertain parameters are best 

explained by random variables with known or assumed probability distributions in the 
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optimum management process. The output of such a reliability analysis is therefore also a 

random variable with measurable uncertainties.  

 

Due to corrosion induced failure modes are time variant process, the safety or serviceability 

margin and the corresponding reliability of pipeline is decreased (or failure probability is 

increased) with respect to time. Since the life of an underground metal pipeline is related to 

corrosion deterioration and the developed stresses, the available design equations for pipeline 

as well as wall thickness loss due to corrosion can be modified for the purpose of establishing 

a probabilistic functional relationship between loads, corrosion, related soil and pipe 

materials. In the probabilistic approach, some input parameters are treated as continuous 

random variables and the performance of the structure resulting from different failure criteria 

is expressed in a probabilistic pipeline framework, i.e. either probability of failure or in terms 

of reliability index. The key component of this approach is to estimate the probability of 

failure to predict the expected safe service life with optimum cost.  

 

This research is focused on estimating pipe reliability and deciding when and how 

interventions are needed to prevent unexpected failures of flexible underground metal 

pipelines subject to externally applied loadings and pipe material corrosion during the whole 

service life at the minimal cost. The reliability with respect to time due to corrosion induced 

excessive deflection, buckling, wall thrust and bending has been estimated. Methods of 

probabilistic reliability analysis, such as, First Order Reliability Method (FORM), Second-

Order Reliability Method (SORM), Point Estimate Method (PEM), Monte Carlo simulation 

(MCS), Path Enumeration (PE), Hasofer-Lind and Rackwitz-Fiessler algorithm (HLRF) and 

State Enumeration (SE) etc., are available in literature (Baecher and Christian, 2003). Due to 

randomness of the failure modes, probabilistic reliability methods, HL-RF algorithm and 

MCS are applied to predict the reliability of pipelines due to above mentioned time-

dependent multiple failure cases in this research. Newly developed, Subset Simulation (SS) 

has been applied in pipeline reliability analysis to enhance the applicability. Then Receiver 

Operating Characteristic (ROC) curve has been introduced in reliability analysis for 

underground pipeline network due to these failure modes. The ROC curve provides a 

performance assessment for pipe failure state functions of reliability prediction. 
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The main challenges of pipe reliability based management strategy are to ensure that life 

cycle costs are reduced while achieving required performance and reliability. Currently, 

various methodologies are using in this field, such as Genetic Algorithm (GA), Fuzzy Set 

Method (FSM), Ant Colony Optimisation Approach (ACOA), Shuffled Frog Leaping 

Algorithm (SFLA), Linear Programming (LP) and Dynamic Programming (DP), etc. (Afshar 

and Marino, 2005). It is commonly believed that there is no available solution techniques 

which can provide 100% guarantee to minimise the total risk, cost and project duration with 

respect to available resources. However, Genetic algorithm (GA) has been applied in the 

current management process, as GA has gained popularity as a powerful evolutionary and 

robust optimisation technique and increasingly used in solving difficult engineering 

distribution network design problems. GA has proven to be successful in finding the near 

optimal solutions and it can handle discrete pipe elements (Afshar and Marino, 2005; Tolson 

et al, 2004). Then SS optimisation process has been developed in the current research to 

make the optimisation process more robust and to verify the outcomes of the GA. 

 

The proposed practice of pipe management strategy is based on flexible underground 

pipelines risk and cost where life cycle cost (LCC) of the network has been used as an 

objective function. The LCC represents the present value of all costs incurred throughout the 

life cycle of a pipe structure, including the costs of design, construction, maintenance, repair, 

replacement, demolition and costs of failure (Newton and Vanier, 2006). In addition, CO2 

emissions mitigation cost also been included in LCC management process. This management 

system mainly depends on a reliability performance prediction model and an effective 

optimisation algorithm or technique. An optimum life cycle cost is assessed based on pipe 

reliability. Then a pipe renewal time and renewal strategy is suggested. The prioritisation of 

this renewal strategy is predicted based on the conventional pipe condition ratings systems 

(condition index) of pipe elements. Then priority index is predicted based on the pipes 

condition and ages. This approach is a quite fundamental for the long-term and short-term 

analysis of hundreds or thousands of pipes in a network. 
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The proposed management aims to improve the overall performance of the pipeline network 

through the conflicting objectives, such as minimisation of risk of failure, minimisation of 

life cycle cost and maximisation of service life. This strategy is also called multi-objective 

optimisation technique. Multi-objective optimisation techniques provide a practical tool for 

optimal prioritisation for management of the asset.  

 

 

1.2 RESEARCH AIMS AND OBJECTIVES 

Numerous obstacles have faced by water and wastewater industry during placing or 

maintenance the flexible underground metal pipelines over time. The most common 

obstacles are found as pipe material deterioration due to corrosion as well as deflection, 

buckling, wall thrust and bending behaviour due to external loadings. Providing an 

acceptable level of service and overcoming these critical difficulties, the concerned industry 

has to plan how to operate and manage the system under the budget constraints.  

To overcome the aforementioned complications, the aims of this research are as follows: 

 

 To develop a probabilistic approach to measure the time-dependent reliability for 

flexible underground pipelines.  

 To develop a rational method for risk and cost optimisation process for the flexible 

buried metal pipeline distribution network based on reliability. 

 

The objectives of this research can be presented as follows: 

 

(a) To analyse and develop rational methods for reliability prediction of flexible underground 

metal pipelines due to corrosion induced deflection, buckling, wall thrust and bending.  

(b) To investigate the correlation among failure modes and influencing parameters and to 

examine the behaviour of pipeline due to effects of various uncertain parameters, such as 

pipe thickness, diameter, soil height, etc. 

(c) To assess the accuracy of the pipeline reliability analysis for pipe failure conditions due to 

corrosion induced deflection, buckling, wall thrust and bending. 
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(d) To develop the reliability based risk-cost optimisation process for pipeline network using 

life cycle cost, including carbon dioxide emissions mitigation cost. 

(e)  To predict the optimum risk as well as cost with renewal time and renewal 

methodologies in the decision making process. 

 

1.3 RESEARCH METHODOLOGIES 

This research firstly investigated how flexible buried metal pipeline deteriorate and how to 

incorporate with the effect of corrosion as a time dependent process. Existing and new 

reliability prediction methods are employed for multiple failures, namely, corrosion induced 

deflection, buckling, wall thrust and bending. The correlations among failure modes and 

between some random variables are estimated. The parametric and sensitivity analyses for 

different influencing parameters have been conducted over service life of the pipeline. New 

reliability accuracy prediction method has been introduced in pipeline reliability due to 

these multiple failure criteria. Then life cycle costs are estimated, including carbon dioxide 

emissions mitigation cost for pipeline network. Finally, existing and new reliability based 

optimisation processes are applied in the risk-cost management of flexible underground 

metal pipelines.  

 

The following methodologies are used to achieve the objectives of this research: 

 

Objective (a) 

To achieve objective (a), a comprehensive literature survey has been carried out on the 

subject to acquire in-depth knowledge of the design procedure of flexible buried metal pipes 

and behaviour under corrosion and various loading conditions. Structural reliability analysis 

and failure assessment of buried pipes cannot be achieved without extensive knowledge about 

loading, design principles and failure modes. Available current research on the design 

principles, corrosion process, failure mechanism, service life prediction methods for buried 

pipes has been reviewed. Recently published design manuals and codes of practice are 

referenced for this purposes, for example, ASCE (2001), BS EN (1997), BS 9295 (2010), 

Moser and Folkman (2008),  Watkins and Anderson (2000), Ahammed and Melchers (1997), 

Gabriel (2011), Moser and Folman (2008), etc. The multi-failure criteria, namely, deflection, 
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buckling, wall thrust and bending (stress and strain) are modified to time dependent failure 

phenomenon to interact with corrosion for flexible metal pipes, such as steel and ductile iron 

pipes. Then limit state functions and probability of failure are predicted based on the 

modified formulas for these failure modes.  

 

Probabilistic theory has been employed to develop analytical models for deterioration and 

reliability analysis of pipeline systems. For this purpose, HL-RF and MCS techniques are 

used. Then SS has been developed to analysis the reliability of buried pipeline systems which 

is very efficient method compared to HL-RF and MCS. All these methods have been 

conducted in MATLAB software. An in-depth probability theory and numerical studies  are 

carried out and different published papers are used as references, such as Melcher (1999), 

Sadiq et al (2004), Au and Beck (2001), Ahammed and Melchers (1994), Au and Beck 

(2003), Au et al (2007), ASCE(2001), AWWA (1999), Haldar and Mahadevan (2000), 

Cameron (2005), etc.  

 

Objective (b) 

To accomplish objective (b), a comprehensive literature review and mathematical analysis are 

carried out to understand the mechanism of above failure criteria interaction or correlation 

using MCS method and the approximate moments for general functions in the MATLAB 

environment. First, the correlation among failure modes are estimated, then correlation 

between random variables, such as soil density and soil modulus as well as loading and pipe 

stiffness with known correlation coefficients (0 – 0.9)  in different failure modes have been 

assessed with varying time of 0, 25, 50, 75 and 100 years. Parametric and sensitivity analysis 

are conducted for different parameters to assess the effect of different random variables, such 

as soil density, soil height, pipe diameter, pipe wall thickness, corrosion empirical 

parameters, etc. Published works, such as Rajani and Kleiner (2001), Zhao et al (2011), 

Melchers (1999), Ahammed and Melchers (1997), Rao (2003), Babu and Rao (2005), Babu 

and Srivastava (2010), Riha and Manteufel (2001), etc., are used as a reference in the 

analysis.  
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Objective (c) 

To predict the accuracy of pipeline reliability analysis, Receiver Operating Characteristic 

(ROC) curve has been employed, where classical (or empirical) and Nonparametric 

Predictive Inference (NPI) technique are used for describing the performance of the analysis. 

Due to lack of real case data, the Monte Carlo simulation has been used to generate 100 pipe 

sample data for every failure case assuming 10%, 20% and 30% failure and non-failure 

condition data are incorrect in this study. MCS is applied in MATLAB software. All 

calculations of ROC curve prediction are performed in R software.  A wide-ranging of 

literature reviews have been conducted and recent published works are analysed, such as 

Coolen-Maturi et al (2012), Coolen-Maturi et al (2011), Devon et al (2010), Arian et al 

(1998), Zhou et al (2002), Coolen (1996) and Indrayan (2012), Hill (1968), etc. 

 

Objective (d) 

To achieve objective (d), a comprehensive literature review, such as Ambrose et al (2008), 

AWWA (1999), Ahammed and Melchers (1994), Hinow et al (2008),  Halfawy et al (2008), 

Barbosa et al (1989), Newton and Vanier (2006), etc., have been conducted and the most 

adoptable and time dependent methods are applied for life cycle cost (LCC) prediction. The 

life cycle cost, including carbon emissions mitigation cost has been analysed and estimated 

for pipe service life. Existing GA is developed for this purpose, where LCC is used as an 

objective function which includes cost and risk (failure probability). Then new SS 

optimisation algorithm is developed to optimise the risk and consequence of cost due to 

failure over life cycle of pipes. Finally, both results obtained from GA and SS are compared. 

These optimisation methods are conducted in MATLAB software. 

 

Objective (e) 

To accomplish objective (e), the LCC has been used as an objective function in management 

process. The capital cost, maintenance cost, failure cost, carbon emissions mitigation cost and 

failure probability are used in LCC to optimise risk and cost of the flexible buried metal 

pipeline system. The study has been extended to determine intervention year for maintenance 

and identify the most appropriate renewal solution by minimising the risk of failure and 

whole life cycle cost. Renewal methodologies are estimated using condition index (CI) and 

11 

Chapter 1: Introduction 



Reliability Estimation and Risk-Cost Optimisation of Underground Pipelines 

 

1 
 

priority index (PI). A good number of published papers are referenced in the process, such as 

Newton and Vanier (2006), Moneim (2011), Wirahadikusumah and Abraham (2003), 

Woodhouse (1999), McDonald and Zhao (2001), Halfawy et al (2008), Mohr (2003), Nafi et 

al (2008), Hinow et al (2008), Halfawy et al (2008), Sarma and Hojjat (2002), etc. 

 

 

1.4  RESEARCH CONTRIBUTIONS 
 

This research is concerned with estimating the reliability and risk-cost optimisation for 

deciding when and how interventions are needed to prevent unexpected failures of flexible 

buried metal pipelines, subject to corrosion and externally applied loadings conditions during 

the service life at optimal cost. 

 

The contributions of this research can be briefly described as follows: 

 

1. The available failure modes of deflection, buckling, wall thrust and bending are 

modified to time dependent failure phenomenon to interact with corrosion for flexible 

metal pipes, such as steel and ductile iron pipes. The structural reliability analysis for 

buried pipeline has been analysed according to the modified formulas for every failure 

mode using HL-RF algorithm and then it has been verified by MCS. The results show 

that there is a good agreement with both methods.  

 

2. The correlations among the time-dependent failure modes, namely, corrosion induced 

deflection, buckling, wall thrust and bending have been predicted which are not 

available in literature. The effects of influencing random variables, such as soil 

density and soil modulus or loading and pipe stiffness with known correlation 

coefficients have also been analysed with varying time. 

3. New reliability prediction method, Subset Simulation (SS) has been developed for 

buried pipeline reliability analysis to overcome the difficulties of the existing HL-RF 

and MCS methods. HL-RF is inefficient when many random variables are involved 

and/or failure probabilities are low. Likewise, MCS needs a high number of samples 

to simulate which is a time consuming procedure.  In the current application of MCS, 

the order of 10
6
 samples is needed to obtain accurate estimates of small probabilities 
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of failure where the study showed that the SS is quicker method compared to MCS 

and 500 samples are enough to produce a good result. 

 

4. Receiver Operating Characteristic (ROC) curve has been introduced in application for 

reliability analysis for underground pipeline network due to corrosion induced 

deflection, buckling, wall thrust and bending. The ROC curve plays an important role 

in many areas such as signal detection, radiology, machine learning, data mining and 

credit scoring, etc. However, no such works have been found on buried pipeline 

reliability analysis due to above failure modes in literature. The ROC curve provides a 

model performance assessment for pipe failure state in reliability prediction. 

 

5. Optimisation method, GA has been developed in pipe reliability based risk-cost 

optimisation process to determine the intervention year for maintenance and identify 

the most appropriate renewal solution by minimising the risk of failure and whole life 

cycle cost. Then SS optimisation approach has been developed in risk-cost 

optimisation process to make the proposed approach more robust. GA is a 

computationally expensive traditional algorithm. In addition, there is no absolute 

assurance that a GA will find a global optimum. In contrast, SS is capable to perform 

optimisation efficiently with a shorter time. SS is a relatively new method and has not 

yet been applied in pipe maintenance optimisation.  

 

These developed methodologies can be used as a rational tool for decision makers with 

regard to strengthening and rehabilitation of existing and new pipelines. Precise prediction of 

reliability (probability of failure) and reliability based management of pipeline system can 

help structural engineers and asset managers to obtain a cost-effective strategy in the 

controlling of the pipeline system. The output of this research will permit infrastructure 

managers and construction professionals to:  

 

a)  Predict reliability of buried pipeline systems by a rational and reliable time 

dependent analysis.   

b)  Examine the influence of design parameters and random variables by sensitivity 

and parametric analysis techniques. 
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c)  Assess the risk of failure and cost in the developed management strategies that will 

reduce or keep the failure risk and cost at an acceptable level. 

 

1.5 THESIS STRUCTURE 

 

The structure of the whole thesis can be presented as follows:  

 

CHAPTER ONE – Introduction: This Chapter describes the background of the research, 

introduces the aims and objectives, methodologies, research contributions and structure of the 

thesis. 

CHAPTER TWO – Literature Review: This Chapter can be broadly classified into two 

parts: (1) Literature reviews for reliability of buried pipes, and (2) Literature reviews for risk-

cost optimisation process for underground pipeline network. A comprehensive literature 

reviews have been undertaken to acquire knowledge of the underground pipeline design 

process, corrosion mechanism involved, pipe service life prediction, methods of reliability 

analysis, pipeline risk and failure cost, carbon emission cost, challenges, risk-cost 

optimisation processes and renewal techniques for buried pipeline system.  

 

CHAPTER THREE – Structural reliability analysis using HL-RF and MCS methods: 

The basic structural reliability on pipeline systems have been studied, where the flexible 

metal pipe failure due to corrosion induced deflection, buckling, wall thrust and bending are 

presented using HL-RF and MCS methods. Correlations among different failure modes as 

well as random variables have also been discussed. A numerical example has been presented 

to validate the concept of pipe failure probability and correlation for the failure modes. At the 

end, parametric studies and sensitivity analysis have been conducted to scrutinise the 

behaviour of pipeline due to effects of various uncertain parameters. 

 

CHAPTER FOUR – Structural reliability analysis using Subset Simulation: The Subset 

Simulation (SS) has been developed for estimate the reliability of underground flexible metal 

pipeline due to corrosion induced deflection, buckling, wall thrust and bending. The 

application of SS method is verified by direct MCS method to scrutinise the robustness and 
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effectiveness of SS method. A real case study has also been conducted to verify the 

methodology and checked with MCS and HL-RF.  

 

CHAPTER FIVE – Application of Receiver Operating Characteristic (ROC) curve for 

pipeline reliability analysis: In this Chapter, ROC curve has been introduced for reliability 

analysis for underground pipeline network due to multi-failure modes, namely, corrosion 

induced deflection, buckling, wall thrust and bending stress. A numerical example has been 

presented to validate the concept of ROC curve in pipe reliability analysis for different failure 

modes with different percentages of inaccurate data. 

 

CHAPTER SIX – Risk-Cost optimisation using Genetic Algorithm: The life cycle cost 

has been discussed which included installation, maintenance and failure risk cost. Risk-Cost 

optimisation technique, genetic algorithm (GA) has been studied for flexible underground 

metal pipeline network. Then the study has been extended to estimate the optimum life cycle 

cost with renewal time and newel methodologies based on pipe reliability. 

 

CHAPTER SEVEN – Risk-Cost optimisation using Subset Simulation: Risk and cost 

have been optimised for underground pipeline network using Subset Simulation process in 

this Chapter. A numerical example has been used to estimate the optimum life cycle cost with 

renewal time and renewal methods. Then the results of the SS process are compared with GA 

to validate the process.  

 

CHAPTER EIGHT – Conclusions and Recommendations: Concluding remarks on the 

research are made. Recommendations are outlined to address the future research work 

relating to reliability analysis for buried flexible metal pipes and the reliability based risk-cost 

optimisation process.  
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2.1 RELIABILITY OF BURIED PIPELINES 

 

2.1.1 Consequence of pipe failures  

A major portion of the underground water and wastewater infrastructure in Europe is rapidly 

approaching the end of its useful service life and therefore, large scale construction works 

will need to be undertaken for rehabilitating or renewing these vital infrastructure assets 

(Pritla et al, 2012). The failure modes of buried pipes may include the loss of serviceability, 

loss of functionality and possibly the partial or total collapse. Magnitude of failure modes is 

different among pipelines and varies with life cycle (Fares and Zayed, 2008). Though the loss 

of serviceability and the loss of functionality are normally not life-threatening, but involve 

significant cumulative costs. Davies et al (2001) pointed out that OFWAT, the water services 

regulation authority in England and Wales, spent a huge amount of money every year on 

buried pipeline replacement in the UK. According to CPSA (Concrete pipeline systems 

association) (2008), OFWAT estimated that replacing or renovating the UK’s 309,000 km 

sewerage and drainage network required about £200 billion. A survey estimated that the 

United States will be required US $77 billion for upgrading water distribution and 

transmission systems by 2017. In Canada, CWWA (Canadian Water and Wastewater 

Association) estimated that CAN $11.5 billion will be required for water main upgrading by 

2013 (Kleiner et al, 2001). The consequences of failure are multiple and may include loss of 

life, injury, excessive maintenance costs, user costs, environmental impacts etc. and it is clear 

that some of these consequences are incommensurable and cannot be evaluated in monetary 

terms (Lounis, 2006). The pipe deterioration of both water treatment facilities and the 

distribution system can pose a significant health threat to end-users. More than 25% of 

waterborne diseases outbreak in the United States each year from failure of the water 

distribution system (Lin et al, 2001).  

 

2.1.2 Causes of pipe failures 

According to Chughtai and Zayed (2008) lack of detailed knowledge on the condition of 

underground pipelines escalates vulnerability to catastrophic failures. Different pipelines are 

made from different materials for different pipeline projects and employed different failure 

mechanisms. Pipe material, diameter and age, with or without additional factors such as soil 

types and/or land use above the pipes have shown important influence on pipe failure 

(Berardi et al, 2008; Fenner et al, 2000). The underground pipes in European Union (EU) 
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mainly fail due to pipes age, material, length, diameter, type of soil and ground water 

conditions (Chughtai and Zayed, 2008). For buried pipelines subject to both internal and 

external loading, a vital failure criterion is the loss of structural strength which is influenced 

by localised or overall reduction in pipe wall thickness (Ahammed and Melchers, 1997).  

Factors affecting structural deterioration of buried pipelines are well defined by Rostum 

(2000) as shown in Table 2.1. 

 

Table 2.1: Factors affecting structural deterioration of buried pipelines (Rostum, 2000) 

Structural variables External/Environmental 

variables 

Internal variables Maintenance variables 

Location of pipe Soil type Passing material  

velocity 

Date of failure 

Diameter Loading Passing material  

quality 

Date of repair 

Length Ground condition Internal corrosion Location of failure 

Year of construction Direct stray current  Type of failure 

Pipe material Leakage rate  Previous failure history 

Joint method Other networks   

Internal protection Salt for de-icing of roads   

External protection Temperature   

Pressure class External corrosion   

Wall thickness    

Laying depth    

Bedding condition    

 

Ahammed and Melchers (1994) stated that loss of pipe wall thickness for metal pipes arises 

from pitting and/or crevice corrosion and the size of the resulting thickness undermines the 

pipe resistance capacity which in turn reduces the factor of safety of the whole distribution 

system. Besides, there are a number of age-related factors that can be linked directly to 

material properties. At the microscopic level, change in strength and stiffness are two aspects 

that can be associated with pipes long-term behaviour (Farshad, 2006). The performance of a 

buried pipeline depends upon its operational condition over time. In reality, a buried pipe’s 

mechanical strength begins to decrease as soon as it is installed, because of the environmental 
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conditions surrounding the pipe (Gabriel, 2011). The reduction of the strength of pipe which 

influences the pipe failure most are pipe leaking, blockage, deflection, buckling, wall thrust, 

bending stress and bending strain (ASCE (2001), AWWA (1999), BS EN 1295: 1-1997 

(2010), BS9295 (2010), Gabriel (2011) and Hancor (2009)).  

 

2.1.3 Buried pipes service life  

The service life analysis of buried pipes is not as straightforward and simple as many would 

expect (CPSA, 2008). The pipe service life of a network is typically determined by the 

performance parameter, i.e. the annual number of failures in a given section of pipe networks 

(Rostum, 2000). According to Rajani and Makar (2000), the pipe service life analysis 

depends largely on what has happened in the past and what is expected to happen in the 

future. However, the pipe failure models require detailed analysis of the failure data for all 

pipe assets and some require specific failure curves for each class (Rajani and Kleiner, 2004). 

If the concerned authority has a database of recorded failures, it can be used in the 

development of statistical failure models. However, sometimes databases on pipe failure 

statistics are often incomplete and/or limited and in many cases it is difficult to ascertain 

whether a failure resulted from a repair or replacement (if the pipe was replaced at the end of 

its economic life) (Rajani and Kleiner, 2004). 

  

The deterioration of a buried pipeline network with age has been well studied in the past. 

Knowing the age of a pipeline segment, the condition and how the pipe deteriorates over 

time, makes it possible to estimate the remaining service life of a specific pipe (Ahammed 

and Melchers, 1997). Shamir and Howard (1979) reviewed various methods used for 

predicting the deterioration in the structural capacity of pipes with age to estimate the service 

life. The service life of a buried pipe can be affected by any or all of the following factors: 

type of embedment soil, pipe size or diameter, pipe depth,  class (water, sewer, gas etc.), pipe 

material, level of maintenance, overburden and soil type (Ana et al, 2008; Wirahadikusumah 

et al, 2001). Depending upon the material and pipe diameter, the estimated service life can be 

range from 50 to 125 years (Newton and Vanier, 2006). Mailhot et al (2000) used data from a 

Quebec municipality (Canada), to simulate the deterioration of a buried pipeline network 

from a good to poor state; Wirahadikusumah et al (2003) modelled the deterioration of 

combined sewer pipe using data from the city of Indianapolis (USA); Ariaratnam et al (2001) 

used data from the city of Edmonton (Canada) to model buried pipeline deterioration, while 
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Micevski et al (2002) modelled the deterioration of storm buried pipe for the Newcastle city 

council (Australia) based on pipe materials and diameter. All four of the models have 

predicted the service life of the buried pipes is approximately 100 – 125 years. 

2.1.4 Pipe reliability estimation  

Pipe structural reliability analyses have been received greater attention in world, though 

predictions of small failure probabilities techniques are very few till now. In recent years, 

attention has been focused on reliability problems with complex system characteristics in 

high dimensions, i.e., with a large number of uncertain or random variables (Schueller and 

Pradlwarter, 2007). Prediction of small failure probabilities is one of the most important and 

challenging computational problems in reliability engineering (Zuev et al, 2012). In the past, 

different researchers and organisations recognised the importance and the applicability of 

probabilistic approach for reliability calculation in the buried pipeline systems. The 

development of reliability based design procedures is receiving considerable attention and the 

guidelines on the targeted reliability indices have been suggested in the present time (Babu 

and Srivastava, 2010). Methods of reliability analysis such as First Order Reliability Method 

(FORM), Second-Order Reliability Method (SORM), Point Estimate Method (PEM), Monte 

Carlo simulation (MCS), Path Enumeration (PE) and State Enumeration (SE) are available in 

literature (Baecher and Christian, 2003). However, many of the methods are inefficient when 

there is much number of random variables and failure probabilities are small. Moreover, 

some need a large number of samples which is a time consuming procedure. Advanced 

Monte Carlo methods, often called ‘variance reduction techniques’ have been developed over 

the years. In this respect, a promising and vigorous approach is Subset Simulation (SS) which 

is originally developed to solve the multidimensional problems of structural reliability 

analysis (Au and Beck, 2001; Au et al, 2007; Zio and Pedroni, 2008).  

 

 A detailed review of various performance measures used in pipeline distribution networks 

can be found in works done by Goulter et al (2000), Engelhardt et al (2000) and Jayaram and 

Srinivasan (2008). Complex models in reliability analysis often involve uncertain input 

parameters which can be determined with varying degrees of accuracy. According to Rajani 

and Kleiner (2004), these parameters are best explained by known or assumed random 

variables within the probability distributions. The output of such an analysis is, therefore also 

a random variable with measurable uncertainties. The reliability factors represent the 

combined influence of total variability and derivations of analytical formulations are often 
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difficult to quantify (Babu and Srivastava, 2010). According to Ahammed and Melchers 

(1997), since the life of the underground metal pipeline is related to the developed stresses 

(for external loadings) and to corrosion deterioration, the available expressions for pipeline 

stresses as well as pipeline thickness loss due to corrosion can be used for the purpose of 

establishing a probabilistic functional relationship between loads, corrosion and related soil 

and material random variables. The prediction of the reliability of the pipe structure 

throughout its life cycle is depends on probabilistic modelling of the load and strength of the 

system as well as the use of appropriate analytical or numerical structural reliability analysis 

methods (Estes and Frangopol, 2001). According to Au and Beck (2003), the probabilistic 

assessment of the engineering system performance may involve a significant number of 

uncertainties in system behaviour.  

 

The performance assessment of a buried pipeline distribution system can be defined in terms 

of the probability of failure or in terms of indices or substitute measures that are determined 

to reflect the operational requirements of the system serviceability (Jayaram and Srinivasan, 

2008). To implement probabilistic assessment for an engineering system, main difficulties 

arise from: (1) the relationship between the random variables, (2) too many random variables 

involved, (3) information about rare scenarios and (4) many interactive response variables in 

the description of performance criteria (Fetz and Tonon 2008). In a probabilistic approach, 

the input parameters are treated as continuous random variables and the performance of the 

structure resulting from different failure criteria is expressed in a probabilistic framework, 

i.e., either probability of failure, Pf or in terms of reliability index, ß (Babu and Rao, 2005).  

Babu and Rao (2005) further stated that the key component of the reliability methodology is 

to estimate the reliability index and the probability of failure to predict the expected safe 

service life of pipe with respect to the mechanical strength over time. To take care of 

different sources of uncertainties involved in the estimation of input strength and stiffness 

parameters of pipe as well as performance assessment of the buried pipes, a selection of 

appropriate value of factor of safety comes from past experiences and good engineering 

judgments (Babu et al, 2006). 

 

2.1.5 Accuracy of reliability prediction 

Measuring the accuracy of a reliability analysis is an effective approach to enhance the 

applicability and management process. Good methods for determining the threshold value for 
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a pipe failure state provide a useful guidance on selection of the reliability prediction methods 

and compare different analysis techniques. For example, Receiver Operating Characteristic 

(ROC) curve (Coolen-Maturi et al, 2012; Coolen-Maturi et al, 2011, Pepe, 2003, Hill, 1968, 

Coolen, 1996.) is such method which plays a vital role in many research areas, such as signal 

detection, radiology, machine learning, data mining and credit scoring.  ROC curve has been 

commonly used for describing the performance of medical tests for parametric and non-

parametric analysis. It is a statistical method yields ordinal or continuous data, tends to use 

concepts like sensitivity and specificity to express the accuracy of a reliability assessment.  

 

 

2.2 OPTIMISATION APPROACHES FOR UNDERGROUND PIPELINE 

MANAGEMENT 

 

2.2.1 Optimisation challenges 

Most of the engineering, maintenance and operating decisions are involved with some aspect 

of cost and risk trade-off. Lack of suitable information and complexity of the interaction of 

the involving parameters is a barrier of proper management (Woodhouse, 1999). Structural 

design methodologies for pipeline risk-cost optimisation systems are still in their infancy 

condition when compared to those components in bridges, buildings and other civil 

structures, though optimum design approaches for pipe structural systems are continuously 

evolving and improving (McDonald and Zhao, 2001). The challenges to the decision maker 

are to determine the most cost-effective plan in terms of what pipes in the network to 

rehabilitate, by which rehabilitation alternative and at what time in the planning horizon, 

subject to the constraints of service requirements (system reliability, service pressure, etc.,) 

(Kleiner et al, 2001). The optimisation processes are involved in cautious expenditure in 

order to achieve some hopes for reliability, performance or other benefits. Involving costs of 

the pipe structure may be known but it is often difficult to quantify the potential impact of 

risks, the efficiency or safety and longevity of pipe service life (Guice and Li, 1994).  

 

Finding the optimal strategy is difficult and the wrong maintenance strategy may result in 

excessive costs, risks or losses. The decision to repair or replace the underground pipes are 

typically based on performance indicators such as structural integrity, hydraulic efficiency, 

system reliability and type of fluid passing into them (Rajani and Makar, 2000). Rajani and 

Kleiner (2004) stated that the implementation of a quantitative risk-based maintenance 
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management is a very complex task due to the difficulties of assessing quantitatively the 

probability and the consequences of failure, especially for a large network of pipeline system.  

Many challenges have faced by water and wastewater industry for maintenance the 

underground pipeline networks, such as behaviour of pipe under hydrostatic pressure, poor 

design detailing and installation practices during placing the pipes, insufficient corrosion 

protection procedures, pipe material deterioration, scouring underneath the ground level, frost 

heave action and insufficient understanding of the product limitations (Tee et al, 2011). The 

long-term planning of the renewal of pipeline distribution network requires the ability to 

predict system reliability as well as assess the economic impact (Kleiner et al, 2001). 

 

 

2.2.2 Optimisation techniques  

Different approaches in optimisation have been implemented in the different buried pipe 

management systems ranging from simplified economic models to advanced Markovian 

decision processes (Lounis, 2006).  Given the importance and high consequences of failure of 

pipe network structures, a risk-based maintenance management methodology can be more 

effective and independent as it enables the optimisation of different types of structures and 

systems within a network by considering not only the probability of failure but also the 

consequences of failure (Rajani and Kleiner, 2004). During the current decade, considerable 

attention has been given to reliability of pipe distribution networks in conjunction with the 

optimisation to achieve maximum benefits with the minimum cost (Moneim, 2011). Kleiner 

et al (2004) dealt with the network renewal planning problem in which, both the structural 

and the hydraulic capacity deterioration of the network are considered for obtaining the 

optimal rehabilitation schedule. In fact, an optimum management strategy must ensure 

hydraulic performance after rehabilitation and to provide reliable service with minimum 

interruptions (Halfawy et al, 2008). 

 

According to Afshar and Marino (2005), many optimisation techniques have been developed 

and used for the optimal design of buried pipeline networks, such as Genetic Algorithms 

(GA), Ant Colony Optimisation algorithms (ACO) and Particle Swarm Optimisation 

Algorithms (PSO), etc. Some researchers, such as Berardi et al (2009), Rasekh et al (2010), 

Pan and Kao (2009), Abraham et al (1998), Stansbury et al (1999) and Li and Matthew 
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(1990) adopted heuristic approaches for the simplicity and used for buried pipeline network 

design problems with good solutions.  

 

Multi-objective optimisation approach is suitable for most of the civil engineering structures. 

Multi-objective optimisation approaches can be utilised effectively to formulate whole life 

costing models that can provide optimal trade-offs between economic, hydraulic, reliability 

and quality performance criteria (Engelhardt et al, 2000). Different costs are involved in 

buried pipeline distribution systems as shown by Woodroffe and Ariaratnam (2008) in Figure 

2.1. Walters et al (1999) stated that conventional optimisation techniques are poorly suited to 

handle the problem of choosing optimal network improvements and hence used a Structured 

Messy Genetic Algorithm (SMGA) to arrive at the trade-off between capital cost and benefit 

for the pipeline rehabilitation problem. Walters et al (1999) solved the network rehabilitation 

problem measuring the improvement in network performance on rehabilitation using a 

benefit function which was computed as a weighted average of hydraulic benefit, physical 

integrity benefit, flexibility benefit and quality benefit. According to Jayaram and Srinivasan 

(2008), an initial estimate of the optimal age at which a pipe needs to be replaced can be 

obtained solely on the basis of the structural costs and this age is termed as the minimum cost 

replacement time. Following this, the evaluation and selection of the rehabilitation 

alternatives can be predicted on the basis of both structural and hydraulic conditions in a 

staged manner.  

 

Engelhardt et al (2002) developed a whole life costing framework for determining the long-

term maintenance expenditure requirements for pipeline networks, considering the factors 

such as demand projections, leakage and changes in hydraulic capacity, customer 

interruptions and water quality through interconnected modules. Moreover, Engelhardt et al 

(2002)  established a rigorous framework to estimate the costs arising from the operation, 

maintenance and management of a pipe distribution network, including operational costs, 

capital expenditure (cost of replacement), public costs (social and environmental costs) and 

costs associated with leakage and pipe bursts.  
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Figure 2.1: Cost identification for buried pipeline project (Woodroffe and Ariaratnam, 2008) 

 

Dandy and Engelhardt (2006) obtained the trade-off between cost and reliability measure 

using multi-objective GA for buried pipeline. This method involves the identification of the 

optimal pipe replacement schedule for an existing pipe network that minimises the cost and 

the expected number of customer interruptions due to pipe failure over the service life of the 

network. In this method, it is assumed that the pipes can be replaced at any pre-specified time 

step over a defined planning horizon, though the diameter of the pipes is considered to remain 

the same after replacement. Pan and Kao (2009) developed Genetic Algorithm and Quadratic 

programming (GA-QP) versions of hydraulic and topographical constrained problem for 

optimal design of Kaohsiung City, Taiwan underground pipeline network. The results 

showed considerable improvements in the convergence and quality of the solutions. Shamir 

and Howard (1979) indicated that the replacement age of the pipe is that at which pipe 

replacement would minimise the present value of the total cost (sum of the present values of 

replacement costs and repair costs) which was obtained by analytical process. Shamir and 

Howard (1979) predicted the pipe break growth rate where the expected pipe break repair 

cost was as an exponential function. In this process, break data are examined and used to 

forecast how the number of breaks in the existing pipe is going to change over time and 

estimated the number of breaks. By combining these forecasting with economic data for 

replacing the pipe and fixing a break, the optimal management strategy can be determined. 

 

Recently, Subset Simulation (SS) (Au and Beck, 2001; Au and Beck, 2003; Au et al, 2007; 

Song et al, 2009), which is originally a reliability analysis method, is used to solve 

constrained and unconstrained global optimisation problems by introducing artificial 

probabilistic assumptions on design variables. Finding the global optimum, involves 
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simulating the extreme events and also be considered as rare occasions in the design variable 

space. Furthermore, if stochastic algorithms are adopted, the objective function is evaluated 

at the random points in the design variable space. Based on the idea that an extreme event 

i.e., optimisation problem is a special case of a rare event in reliability problem (Li, 2011). 

 

The life-cycle assessment (LCA) tool has been applied in evaluating environmental effects to 

assess the environmental performances (carbon footprint) in risk-cost optimisation process. 

The life-cycle activities include extraction of raw materials, manufacturing the pipe used in 

the project, transporting pipe to the construction site, laying the pipe in the trench, operating 

and maintaining, dismantling and disposal or recycling the pipe. There are several LCA 

studies in the wastewater and drinking water infrastructure systems which have been found in 

literature. Emmerson et al (1995) used the LCA tool to evaluate the environmental effects of 

small scale sewage treatment works. Zhang and Wilson (2000) performed an LCA analysis 

for a large sewage treatment plant in Southeast Asia and reinforced the results by Emmerson 

et al (1995). Skipworth et al (2002) investigated the entire life-cycle costs for water 

distribution systems in the UK. Vidal et al (2002) also used LCA for understanding the 

environmental consequences for wastewater treatment plant. Filion (2004) developed a LCA 

model to quantify the energy consumption of a water distribution system in New York 

tunnels and to compare life-cycle energy for different pipe replacement schedules.  

 

 

2.2.3 Risk assessment of buried pipes  

Assessing the risk of failure is essential for prioritising pipelines for renewal as well as for 

inspection scheduling and performance monitoring (Rahman and Vanier, 2004). Existing 

approaches, such as WRc (2001) typically categorised the renewal process based on pipes 

criticality. However, there is no standard risk assessment or rating scheme for quantitatively 

assesse the risk (Chughtai and Zayed, 2011). The risk assessment typically is performed in a 

subjective and heuristic manner. Halfawy et al (2008) stated a risk index that ranges between 

5, most critical and 1, least critical where risk index of 1 would be equivalent to a risk 

category C manuals, while an index of 5 would be equivalent to a risk category A, as in WRc 

(2001). The risk index is calculated by multiplying two components representing the 

consequence and likelihood of failure. Chughtai and Zayed (2008) used a ‘risk factor’, which 

is also measured on a 1–5 scale, linguistically ‘acceptable’ to ‘critical’ to reflect the relative 
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criticality or consequence of failure of a buried pipeline, instead of using a monetary value. 

Risk factor can be used as a risk assessment criterion of pipeline system as also suggested by 

Halfawy et al (2008). According to Halfawy et al (2008), the risk factor is calculated as a 

weighted average of the criticality level perceived for user defined criticality criteria. The 

criteria may include all or a subset of factors such as passing liquid type, function, diameter, 

depth, soil, site seismicity, land use, road classification, traffic volume, proximity to critical 

assets and overall socio-economic impact.  

 

 

2.2.4 Renewal of buried pipes  

Buried pipes have certain priority levels to select the further renewal planning process. The 

decision to repair or replace current pipe is typically based on performance indicators such as 

structural integrity, hydraulic efficiency and system reliability (Rajani & Makar, 2000). The 

buried pipeline renewal planning process remains fundamentally heuristic and subjective in 

nature and is still largely considered as much an art as it is science (Halfawy et al, 2008). As 

the network ages, since, the hydraulic capacity of the network decreases, renewal 

(replacement and/or cleaning and lining of pipes) would be necessary to restore the hydraulic 

capacity of the underground pipeline network (Sharp and Walski, 1988).  Like risk index, 

WRc (Water Research Centre, UK), use the ‘priority index’ to determine the emergency of 

pipe management. A ‘priority index’ is defined for each pipe to indicate the level of urgency 

for intervention. The priority index range A – F is used to indicating the urgency of renewal, 

where index A, immediate intervention is needed and index F, no action is required (WRc, 

2001). Similar to WRc (2001), McDonald and Zhao (2001) proposed the rating system 1 – 5   

which can be customised to assess the priority index for a group or a particular pipe in the 

network, given its condition and risk indexes. Shamir and Howard (1979) developed an 

analytical approach to solve the pipe replacement problem based on pipe breaks per year. 

Abraham et al (1998) used the condition improvement approach in terms of extension of the 

service life for pipeline renewal, for example, shotcrete extends the service life by 20 years, 

and while cured in place pipe extends the pipe service life by 50 years.  

 

A number of options are used for underground pipeline renewal actions, namely replacement, 

duplication, relining, cleaning, cleaning and lining and other techniques such as detection 

techniques and pressure reduction schemes (Jayaram and Srinivasan, 2008). Dandy and 
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Engelhardt (2006) stated that most commonly chosen options are replacement and cleaning 

and lining. However, if the hydraulic capacity deterioration is not considered of the network 

management then the pipe rehabilitation option remains cleaning and lining of the pipes only. 

Halfawy et al (2008) grouped the renewal methods into four main categories: replacement 

(conventional open-cut or trenchless methods with same or larger diameter), structural, semi 

structural and non-structural lining methods. Each renewal category includes a number of 

renewal options. For example, structural liners are designed to carry the hydrostatic, soil and 

live loads and expected to be independent i.e., bonding with original pipelines is not required. 

Semi structural liners are designed to withstand hydrostatic pressure or perform as a 

composite with the existing pipelines and could be designed as interactive or independent 

(Halfawy et al, 2008). Semi structural liners are typically for pressured pipes, not used for 

gravity pipelines. On the other hand, non-structural liners are mainly used for gravity 

pipelines, mainly to improve flow, resist corrosion, or to seal minor cracks in pipelines 

(Heavens, 1997).  

 

 

2.3 LIMITATIONS OF THE CURRENT STATE OF WORKS 

 

In the Sections 2.1 to 2.2, the previous works on reliability analysis and risk-cost optimisation 

for underground pipelines are reviewed. The comprehensive literature review revealed the 

areas lacking in knowledge in the flexible underground flexible metal pipes. In this section 

the gaps that have been found in reliability analysis and risk-cost optimisation are as follows: 

 

2.3.1 Limitations in buried pipelines’ reliability  

Most of the works found in literature on flexible buried metal pipes are based on pipe 

installation time. For example, Babu and Rao (2005), conducted reliability analyse on 

flexible buried pipe (steel pipe) in terms of two failure modes, namely, deflection and 

buckling; Babu et al (2006) analysed underground steel pipe reliability due to deflection, 

buckling and wall thrust; ASCE (2001) and Gabriel (2011) predicted the underground 

flexible pipe (steel and corrugated polyethylene pipe, respectively) failure due to four failure 

criteria, namely, deflection, buckling, wall thrust and pipe bending. These analyses were 

based on pipe installation time only, i.e., non-time dependent. However, no such work has 

been found for flexible buried metal pipelines in the literature which is time-dependent. In 

reality, underground pipeline failure is a continuous process. In general, the strength of buried 
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metal pipe decreases due to corrosion, fatigue and overloading which then lead to pipe failure 

by excessive deflection, buckling, wall thrust and bending. As a result, the safety or 

serviceability margin and the corresponding reliability index is decreased (or failure 

probability is increased) with respect to time. Therefore, an intensive reliability analysis for 

corrosion induced time-dependent multi-failure events, namely, deflection, buckling, wall 

thrust and bending for flexible buried metal pipelines is required. 

 

Another limitation in the current state of the art of reliability analysis of flexible buried metal 

pipes which was found in literature review is the lack of the research on the correlation 

among time-dependent multi failure modes and other influencing random variables. Since the 

life of an underground metal pipeline is related to corrosion deterioration and the developed 

stresses, the  design equations as well as pipe wall thickness loss due to corrosion can be used 

for the purpose of establishing a probabilistic functional relationship between loads, 

corrosion, related soil and material random variables. The literature survey showed that 

effectiveness and contributions of these variables on service life of pipelines have not been 

intensively studied by the researchers. This lack of knowledge necessitates an extensive 

correlation, sensitivity and parametric analysis on reliability of flexible buried pipelines. 

 

Methods of reliability analysis for pipeline, such as FORM, SORM, PEM, MCS, PE and SE 

etc., are available in literature. Many of the methods are inefficient when there is much 

number of random variables and failure probabilities are small. Moreover, some need a large 

number of samples which are time consuming procedure. In this respect, a promising and 

robust reliability approach  is needed to solve the multidimensional problems of structural 

reliability analysis, especially for small failure probabilities prediction. 

 

Classical reliability theory and methodologies rarely consider the actual state of a pipe system 

and therefore, these are not capable to reflect the dynamics of runtime systems and failure 

processes. Conventional methods are typically useful in design and prediction of long term 

pipe behaviour. However these are not good enough in pipe reliability evaluation with good 

accuracy. Measuring the accuracy of a reliability analysis technique is an effective approach 

to enhancing its applicability and provides guidance on selection of reliability prediction 

methods. But in pipeline reliability field the accuracy prediction method is rare, although in 

many other research areas, such as signal detection, radiology, machine learning, and data 
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mining sectors already used the accuracy prediction techniques. Therefore, an accuracy 

prediction method  is needed to enhance the reliability analysis for buried pipeline network. 

Normally, ROC curve is useful in evaluating the discriminatory ability of an analysis, finding 

optimal cut-off point and comparing efficacy of two or more assessment or tests results. 

 

2.3.2 Limitations in Risk-Cost optimisation 

Reliability based risk-cost optimisation process for underground pipeline network provides  

the selection of rehabilitation methods have been studied extensively by many researchers 

(Berardi et al (2009), Rasekh et al (2010), Recio et al (2005), Pan and Kao (2009), Abraham 

et al (1998), Stansbury et al (1999) and Li and Matthew (1990)). These studies primarily 

focused on cost, duration and failure problems but not extensive studied on maintenance or 

future renewal time. Therefore an extensive analysis is required for estimation future renewal 

time prediction during pipe’s whole service life.  

 

In most cases, available optimisation methods, such as GA, ACO, PSO, etc., have been used 

as a strong numerical method for buried pipes risk-cost optimisation process. Many of these 

are very time consuming and not absolute guaranteed global optimum procedure. Therefore, a 

robust and less time consuming method should be implemented in the risk-cost optimisation 

processes for buried pipeline network within a shorter period.  

 

Most of the available previous studies dealt with the scheduling of pipeline rehabilitation and 

cost optimisation process which are based on current time only, not future scheduling. 

Therefore, intensive research needs to done  to solve the previous limitations by considering 

future scheduling rehabilitation methods in the buried pipeline management system which 

will provide when and how interventions are required to prevent unexpected collapse the 

pipes within budget constraints. The management aims to improve the overall performance of 

the pipeline network through the conflicting objectives, such as minimisation of risk of 

failure, minimisation of life cycle cost and maximisation of service life. Thus a municipality 

or an owner can be obtained a cost-effective strategy with respect to the available 

rehabilitation scheduling time and available budget for managing the buried pipeline system. 

 

 

30 

Chapter 2: Literature Review 



Reliability Estimation and Risk-Cost Optimisation of Underground Pipelines 

 

1 
 

2.4 SUMMARY 

At the first step of reliability analysis and risk-cost optimisation process, it is necessary to 

gain knowledge about the design principles and cost affecting factors for buried pipes service 

life. The previous studies for reliability analysis, failure risk and cost optimisation process of 

buried pipes are studied. The loads and stresses acting on buried pipes are reviewed in this 

Chapter. Then pipeline service life prediction and reliability methods are studied. The 

accuracy of the reliability analysis method, ROC curve has also been studied. The available 

literature on reliability based risk-cost optimisation methodologies and their applications are 

reviewed. Finally, literature review on buried pipes renewal techniques is conducted. All the 

literature reviews are accompanied to achieve the current research aim and objectives (refer 

to Chapter One). Therefore, all available literature reviews are based on specific field which 

are directly or indirectly are related to the underground flexible metal pipeline reliability and 

risk-cost optimisation process.  
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3.1 INTRODUCTION 
 

Structural reliability management of buried pipeline systems is one of the fundamental issues 

for the water and wastewater collection industry managers. When the residual ultimate 

strength of a buried pipeline is exceeded the limit, breakage becomes imminent and the 

overall reliability of the pipe distribution network is reduced. The behaviour of buried pipes 

is considerably influenced by uncertainties due to external loading, pipe materials and 

surrounding soil properties, etc. Many challenges have faced by water and wastewater 

industry during placing or maintenance the underground pipeline networks. The most 

common challenges are found as buckling, deflection, wall thrust and bending behaviour of 

pipe under hydrostatic pressure, poor design detailing and installation practices during 

placing the pipes, insufficient corrosion protection procedures, pipe material deterioration, 

scouring underneath the ground level, frost heave action and insufficient understanding of the 

product limitations (Tee et al, 2013a). The decision to repair or replace the current pipe is 

typically based on performance indicators such as structural integrity, hydraulic efficiency 

and system reliability (Rajani and Makar, 2000). Ahammed and Melchers (1994) stated that 

the pipe replacement or rehabilitation is typically determined by the performance parameter, 

i.e., the annual number of failure in a given section of pipe network. This approach depends 

largely on what has happened in the past and what is expected to happen in the future.  

 

A complicated approach to scheduling of pipelines maintenance is to determine individual 

pipe that is approaching unsafe condition and repair or replace before it fails. This approach 

requires a robust methodology to determine the remaining safe service life of each pipe 

segment within the distribution network system. In reality, a buried pipes mechanical strength 

begins to decrease as soon as it is installed because of the environmental conditions 

surrounding the pipe. Due to their low visibility and lack of proper information regarding 

underground pipes condition, assessment and maintenance are frequently neglected until a 

disastrous failure occurs. The long-term planning of the renewal of underground pipe 

distribution networks requires the ability to predict system reliability as well as assess the 

economic impact (Tee and Li, 2011). 

 

For buried metal pipelines subject to both corrosion and external loadings, a vital failure 

criterion is the loss of structural strength which is influenced by localised or overall reduction 

in pipe wall thickness (Ahammed and Melchers, 1997). The pipe wall thickness reduction 
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weakens the pipe resistance capacity which in turn reduces the reliability of the whole 

distribution system. For a given component of a system and a given failure mode, the load 

effect and strength are time-dependent and present considerable uncertainty in mean values as 

well as in the levels of scatter which increase with time (Rajani and Kleiner, 2004). In 

general, the strength decreases due to corrosion, fatigue and overloading and these affects the 

pipe reliability. As a result, the safety or serviceability margin and the corresponding 

reliability index decrease with time to time.   

 

Due to uncertainty associated with the rate of failure and location, a probabilistic approach is 

required for the analysis of pipeline reliability. A probabilistic approach provides a 

quantitative measure of safety as well as provides both qualitative and quantitative 

information about the effects of various uncertain parameters on the safety measure 

estimation (Babu and Srivastava, 2010). In this approach, the input parameters are treated as 

continuous random variables and the different failure criteria are expressed in a probabilistic 

manner, i.e. either probability of failure or in terms of reliability index. The workable or safe 

service life of a buried pipe structure then can be defined as the time at which the reliability 

index or failure probability reaches a minimum acceptable level. This minimum probability 

of failure or reliability index value depends on the loadings on pipe, pipe element properties, 

backfill and system of failure. Complex models in risk and reliability analysis often involve 

uncertain input parameters which can be determined using these methods with varying 

degrees of accuracy. These parameters are best explained by random variables with known or 

assumed probability distributions. The output of such a reliability analysis is therefore also a 

random variable with measurable uncertainties (Babu and Rao, 2005).  

 

Gabriel (2011), Babu et al (2006), Babu and Rao (2005) and ASCE (2001) conducted 

reliability analyse on flexible buried pipes in terms of deflection, buckling, wall thrust and 

pipe bending. These analyses were based on pipe installation time only, i.e., non-time 

dependent. But in reality, underground pipeline failure is a continuous and time-variant 

process. Hence the practical motivation of this analysis is to investigate how the effect of 

corrosion corporate with these different failure modes with respect to time. Since the life of a 

flexible underground metal pipeline is related to corrosion deterioration and the developed 

stresses, the available design equations for pipeline can be modified for the purpose of 

establishing a probabilistic functional relationship between loads, corrosion, related soil and 
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material random variables. Based on these conventions, this Chapter focuses on the reliability 

analysis of the flexible buried metal pipes, conducted in the light of the aforementioned 

points and has the following objectives: 

 

a) To predict the probability of failure of flexible buried metal pipe system for different 

failure criteria, namely, corrosion induced excessive deflection, buckling, wall thrust and 

pipe bending, based on modified design equations. 

 

b) To estimate the correlation among above failure modes as well analyse the influencing 

random variables, such as soil density and soil modulus or loading and pipe stiffness with 

known correlation coefficients in different failure modes with varying time. 

 

c) To perform a parametric and sensitivity analysis for different factors, such as corrosion 

empirical constants, pipe diameter, thickness, soil height, etc., to determine the impact of 

different influencing variables on the reliability of pipeline structure system with respect 

to pipe service life. 

 

The contents of this Chapter are structured as follows. Formulation for pipe failures is 

discussed in Section 3.2, where corrosion on flexible buried metal pipes, loading conditions 

and dominating failure modes, namely, deflection, buckling, wall thrust and bending are 

discussed. In Section 3.3, the probabilistic reliability analysis and two reliability prediction 

methods, HL-RF and MCS are presented. The system failure and correlation prediction 

procedures are discussed in Section 3.4. A numerical example is presented for reliability 

analysis in Section 3.5. In Section 3.6, results and discussion are presented, where failure 

probability, correlations among failure modes and asses the influencing random variables 

with respect to known correlation over service life, some parametric studies and sensitivity 

analysis are conducted. Finally, some concluding remarks are made on basis of outcomes in 

this study in Section 3.7. 

 

3.2 FORMULATION FOR PIPE FAILURES 
                                                    

3.2.1 Corrosion of flexible buried metal pipes  

Buried pipes are normally made of plastic, concrete or metal, e.g. steel, galvanised steel, 

ductile iron, cast iron or copper. Plastic and non-reinforced concrete pipes tend to be resistant 
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to corrosion. On the other hand, reinforced concrete and metal pipes are susceptible to 

corrosion. Under certain environmental conditions, flexible buried metal pipes, such as steel, 

ductile iron, etc., can become corroded based on the properties of the pipe, the soil 

surrounding the pipe wall, water or waste properties and stray electric currents (Rajani and 

Makar, 2000). The predominant deterioration mechanism on the iron-based pipes is corrosion 

pit. Corrosion pit is a continuous and variable process. It reduces the thickness and 

mechanical strength of the pipe wall with time. This process eventually leads to breakage of 

the pipeline system. Corrosion pits have a variety of shapes with characteristic depths, 

diameters (or widths) and lengths.  

 

The corrosion rate of in-service buried metal pipes is believed to be higher in the beginning 

and then slow down over time as corrosion appears to be a self-inhibiting process (Sadiq et 

al, 2004). Furthermore, due to the variation of service environment, it is rare that the 

corrosion occurs uniformly along the pipe but more likely in the form of a random pit. A 

number of models for corrosion of metal pipes have been proposed to estimate the depth of 

corrosion pit (Sheikh et al, 1990; Kucera and Mattsson, 1987; Ahammed and Melchers, 1997; 

Rajani et al, 2000; Sadiq et al, 2004). For example, Sheikh et al (1990) suggested a linear 

model in corrosion growth for predicting the strength of metal pipes. Later, Rajani et al 

(2000) proposed a two-phase corrosion model, where the first phase is a rapid exponential 

growth and the second phase is a slow linear pit growth.  

 

Kucera and Mattsson (1987) first proposed a widely accepted model, a power law Eq. to 

measure the corrosion pit depth ( TD ) for atmospheric corrosion which can be expressed as 

follows:  

   

where k is multiplying constant, n is exponential constant, determined from experiments 

and/or field data and can be used as an approximate value only. T is exposure time. This 

model should be seen as an engineering model rather than corrosion science. In many 

circumstances, it may be possible to use past experience to derive estimates for the constants 

in Eq. (3.1), but somewhat more effort would be necessary to estimate a constant corrosion 

rate as conventionally used (Ahammed and Melchers, 1997).  

n

T kTD 
(3.1) 
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Rajani et al (2000) proposed a two-phase modified corrosion model to accommodate the self-

inhibiting process as follows:  

 (3.2) 

                                                                                                     

where a, b and c are constant parameters. In the first phase, the initial rate of pipe thickness 

loss is high due to the porous surface and having poor protective properties. As corrosion 

proceeds, the protective properties of its products (generally iron oxides) improve, thus 

reducing the corrosion rate over time. Subsequently, prediction of pit depth in the first 15 – 

20 years of pipe life should be considered highly uncertain when Eq. (3.2) is used.  

 

External corrosion is most common form of metal pipe deterioration due to impact of 

surrounding environmental conditions and metal properties. On the other hand, internal 

corrosion is not as common as external. The available evidence suggests that internal 

corrosion is less likely to occur under fluid flow conditions. On the other hand, localised 

corrosion (external) at the outer surface of the pipeline is more likely occurred (Ahammed 

and Melchers, 1994).  

 

 

Figure 3.1:   Internal and external corrosion rate for iron pipes (Marshall, 2001) 

 

An example of field data regarding the rate of internal and external corrosion for a buried iron 

pipe is illustrated in Figure 3.1 (Marshall, 2001), which shows that external corrosion rate is 

higher than internal corrosion rate. Figure 3.1 also shows that corrosion rate is higher at early 

age of pipe and then gradually slows down over time. Figure 3.2 also shows the severity of 

external corrosion compare to internal corrosion.  

)1( cT

T ebaTD 
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    (a)                                            (b) 

Figure 3.2:   Typical buried pipe corrosion, (a) External corrosion and (b) Internal corrosion 

(EPA, 2005) 

 

Thin walled plain pipes are considered with 10/ tD , where t is the thickness of the pipe 

wall and D is mean diameter in this Chapter. According to Watkins and Anderson (2000) the 

moment of inertia of pipe wall per unit length and cross-sectional area of pipe wall per unit 

length of a thin walled plain pipe can be expressed as below Eqs. (3.3) and (3.4) respectively: 

                   (3.3) 

 

tAs                                                                                                                                    (3.4) 

 

For simplification, the corrosion pit depth is considered as uniform around the entire 

circumference of the pipe. For a plain pipe, due to reduction of wall thickness given by Eq. 

(3.1) or (3.2), the moment of inertia of pipe wall per unit length, I and the cross-sectional area 

of pipe wall per unit length, As can be modified as below Eqs. (3.5) and (3.6) (Khan et al, 

2013; Tee et al, 2013a): 

 

Moment of inertia,   

  

                                                                                                              (3.5) 

Cross-sectional area,  

Ts DtA                                                                                                                             (3.6)   

 

12/3tI 

12/)( 3

TDtI 
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Eqs. (3.1) – (3.6) show that DT, I and As are time dependent variables. The corrosion 

parameters a, b, c, or k and n are highly uncertain and are typically determined from 

regression analysis on observed and experimental data obtained for specific soil and 

environmental conditions (Sadiq et al, 2004). When there is little or no information on which 

is the base a choice for corrosion constant parameters, then known values from other 

situations might be used, with judicious selection of means and variances (Ahammed and 

Melchers, 1994). Corrosion constant parameters are measured according to the experiments 

or field data to predict the pit depth. For different environmental conditions the corrosion pit 

depths are different even for the same material. For example, buried ductile iron pipes exhibit 

different corrosion pit depth with respect to clay soil, submerged silty sand and highly 

granular soil. For estimation of corrosion constant parameters, all the given pit depth values 

for different environmental conditions in the given time interval are plotted. A regression 

analysis is performed to get an upper and lower range of pit depth values with mean and 

standard deviation. Then applying Eq. (3.1) or (3.2), the empirical constants (a, b and c or k 

and n) are measured. A typical regression analysis curve is shown in Figure 3.3.  

 

 

Figure 3.3: A typical regression curve for estimation of corrosion constant parameters 

 

To determine the corrosion constant parameters the following procedures are follows: 

 

1. Predict the corrosion pit depth at different particular years (say 10, 20, 30,… years) 

for different locations. 

2. Draw a regression line (best fitting line) for different years of pit depths.  

3. Select any two points (for Eq.3.1) or three points (for Eq. 3.2) on the best fitting line 

(Figure 3.3). 
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4. Solve the Eq. 3.1 or 3.2 based on the points and calculate k and n or a, b & c values.  

 

It is noted that this approach is applicable to unprotected pipelines, i.e. pipelines without 

painting, bituminous coating/lining or cathodic protection. However, this analysis also has 

applicability for protected pipelines once the protection has been damaged or breached 

significantly by some mechanical means or through ageing (Ahammed and Melchers, 1994). 

 

 

3.2.2 Loadings and failure modes of flexible pipes 

All pipelines are designed to withstand against the various external and internal loadings 

which are expected to be experienced during construction and operation. The external 

loadings include loads due to the backfill, surface surcharge or traffic and self-weight of the 

pipe. According to Najafi and Gokhale (2005), anything that puts a pressure on the outside of 

a pipe is considered an external load. The internal loadings include water weight and fluid 

pressure (if different from atmospheric). 

 

Figure 3.4: Pipe and backfill interaction of flexible and rigid pipes (Gabriel, 2011)  

 

Buried pipes can be broadly classified as flexible or rigid based on the behaviour and 

performance during installation and operation. When loads are applied on flexible pipe, the 

loads are transferred and carried by the backfill. On the other hand, when loads are applied to 

rigid pipe, the loads are transferred through the pipe wall into the bedding. Figure 3.4 shows a 

typical pipe and backfill interaction and the corresponding load transfer for flexible and rigid 
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pipes (Gabriel, 2011). All types of pipes whether flexible or rigid, rely on the backfill 

properties to transfer the loads into the bedding. For this reason, proper backfill is very 

important in allowing this load to transfer properly. In many situations, a properly installed 

flexible pipe can be buried much deeper than a similarly installed rigid pipe because of the 

flexible pipe and backfill interactions. A rigid pipe is often stronger than the backfill material 

and thus it support the whole earth loads itself. On the other hand, a flexible pipe is not as 

strong as the surrounding backfill and this mobilises the backfill envelope to carry the earth 

load (Figure 3.4). The flexible pipe and backfill interaction is so effective at maximising the 

structural characteristics of the pipe that it allows the pipe to be installed in very deep 

installations, many times exceeding allowable design pipe cover (Gabriel, 2011).  

 

Flexible and rigid pipe respond to loadings in a different ways and therefore, the failure 

principles and service life cycle also different. Figure 3.5 illustrates the differences between 

flexible and rigid pipe responses to loadings based on 21 years of observation (Rahman, 

2010), which shows that loadings on rigid pipe (concrete pipe) are higher than on flexible 

pipe (steel pipe) with varying time.  

 

Figure 3.5: Pipe response to loadings for flexible and rigid pipes in 21 years study (Rahman, 

2010) 

How much load a pipe can sustain depends on the relative height of cover, the nature of the 

backfill material and soil, the geometry of the trench installation and the relative stiffness of 

the pipe to the backfill (Cameron, 2005). Marston load theory, as cited by Moser and Folman 
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(2008), recognises that the amount of load taken by a pipe is affected by the relative 

movement or settlement among the pipe material, backfill and the natural soil.  

 

Due to external and internal loadings, pipe structural failure is occurred when the applied 

stress exceeds the limiting or ultimate strength of the pipe wall material. The failure modes 

can be significantly different for flexible and rigid pipes due to pipe behaviour and respond to 

loadings as shown in Figures 3.4 and 3.5. The knowledge related to failure modes and 

integrity management for flexible pipes have developed continuously over the decades. For a 

flexible buried metal pipe structure, the numbers of potential failure modes are very high for 

all systems failure definitions. This is true in spite of the simplifications imposed by 

assumptions such as having a finite number of failure elements at given points of the 

structure and only considering the proportional loadings. It is therefore, important to have a 

method by which the most critical failure modes can be identified. The critical failure modes 

are those contributing significantly to the reliability of the system at the chosen level. 

However, this study is concerned with knowledge for flexible buried metal pipes failure 

criteria only. In this Chapter, the dominating failure modes of flexible pipes are characterised 

by limit states as follows: 

 

a) Excessive deflection (Serviceability);  

b) Actual buckling pressure greater than the critical or allowable buckling pressure 

(Ultimate); 

c) Actual wall thrust greater than critical or allowable wall thrust (Ultimate); 

d) Actual bending stress and strain greater than the allowable stress and strain (Ultimate). 

 

The above dominating failure modes are discussed as follows: 

 

3.2.2.1 Excessive deflection 

A buried pipe tends to deflect under the effects of earth and live loads. The performance of a 

flexible pipe in respect to ability to support the load is typically assessed by measuring the 

deflection from its initial shape. Deflection is quantified in terms of the ratio of the horizontal 

increase in diameter (or vertical decrease in diameter) to the original pipe diameter (Figure 

3.6). Rigid pipe is sometimes classified as pipe that cannot deflect more than 2% of internal 

diameter without significant structural distress, such as cracking (Hancor, 2009). Flexible 
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pipe takes advantages of its ability to move, or deflect under loads without structural damage. 

The critical or allowable deflection, cry  for flexible pipe can be estimated up to 5% – 7% of 

inside diameter of pipe (Gabriel, 2011). 

 

 
Figure 3.6: A typical flexible pipe deflection 

 

 According to BS EN 1295:1-1997 (2010) and BS 9295 (2010), the actual deflection, y  can 

be calculated as below Eq. (3.7) after substituting by Eq. (3.5) (Tee et al, 2013a): 

 

 

 

  

 

     (3.7) 

 

  

where Kb is deflection coefficient, LD  is deflection lag factor, D is mean diameter = Di + 2c, 

Di is inside diameter and c is distance from inside diameter to neutral axis, E is modulus of 

elasticity of pipe material, I is moment of inertia per unit length and 'E  is modulus of soil 

reaction =
)21)(1(

)1(

ss

ssEk








, where Es is modulus of soil, k  is a numerical value depends on 

poison’s ration, s . The deflection coefficient reflects the degree of support provided by the 

soil which is based on the type of installation. The loads acting on the pipe are governed by 

the term scL PWD  , where cW is soil load and sP  is live load. The soil load and live load can 

be calculated as follows: 
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Soil load,  HW sc                               (3.8) 

 

Live load,  
21LL

IW
P

fs

s                               (3.9) 

  

where s  is unit weight of the soil, H is height of soil on the top of pipe, sW  is traffic load, 

fI  is impact factor = 1.1 for 0.6 m < H < 0.9 m, or 1 for H   0.9 m, 1L  is load width parallel 

to direction of travel = 0.253 + 1.75H and 2L is load width perpendicular to direction of travel 

= 0.51 + 1.75H for 0.6 m < H < 0.76 m, or (13.31 + 1.75H)/8 for H   0.76 m (Sarplast, 

2008). 

 

3.2.2.2 Buckling 

External loadings from soil pressure or external hydrostatic pressure can cause inward 

deformation known as wall buckling. If the soil and surface loads are excessive, the pipe 

cross-section could buckle (Figure 3.7). Buckling is a premature failure in which the pipe is 

not able to maintain its initial circular shape when the tangential compressive stress reaches a 

limit value and the pipe distorts unstably in buckling. Wall buckling can occur due to 

insufficient pipe stiffness. The more flexible the pipe, the more unstable the wall structure 

will be in resisting wall buckling. Pipe encased in soil may buckle due to excessive loads and 

deformations. 

 
Figure 3.7: A typical flexible pipe buckling 

 

The two buckling forms are usually found, called general (global) buckling and local 

buckling (Berti et al, 1998). Global buckling is a load response mode due to compressive 
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effective axial force but not a failure mode. Pipe is safe from buckle globally whereas local 

buckling is an important limit state. The total load or the actual buckling pressure must be 

less than the critical buckling pressure for the safety of the structure. The actual buckling 

(local) pressure for flexible pipe, p can be calculated as follows (AWWA, 1999):  

 

Swwsw PHRp                                                                                                            (3.10) 

  

where wR  is water buoyancy factor = 1 – 0.33 ( wH /H), w  is unit weight of water, wH  is 

height of groundwater above the pipe and sP  is live load as calculated in Eq. (3.9).  

 

The critical buckling (local) pressure crp  can be calculated as follows (AWWA, 1999): 
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where  S fb  is design safety factor for buckling  

= 2.5 for H/D ≥ 2 or 3.0 for H/D < 2       (ASCE, 2001; Moser and Folman, 2008) 

 

'B  is empirical coefficient of elastic support,                               

  (ASCE, 2001) 

  

 

3.2.2.3 Wall thrust 

Wall thrust or wall crushing is characterised by localised yielding when the in-wall stress 

reaches the yield stress of the pipe material. If the buried depth is not enough then the pipe 

wall can crush due to earth and surface loading. Buried depth should be sufficient to avoid 

the crushing of the side wall (Figure 3.8). Thrust or stress on the pipe wall is the total load on 

the pipe wall including soil loads, traffic loads and hydrostatic loads.  

 

(3.11) 

)41/(1 213.0 He
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Figure 3.8: A typical flexible pipe wall thrust or stress 

 

If only dead load is involved during the installation, the long-term material properties are 

considered throughout the calculation of wall thrust analysis. However, if both dead loads 

and live loads are present (typically any vehicular load with 2.4 m of cover or less), two wall 

thrust analyses are required (Gabriel, 2011) as follows:  

 

(a) Accounts both dead load and live load and employs the short term material properties 

throughout the procedure;  

(b) Accounts only dead load and employs the long-term material properties throughout 

the process.  

Then, the more conservative limit state function value is used for wall thrust analysis. Note 

that some flexible pipes have both short-term and long-term material properties (elasticity of 

modulus), where short-term value is higher than long-term value, such as, polyethylene pipe 

and therefore, two wall thrust analyses are applicable but some have no such classification, 

for example, ductile iron pipes, steel pipes etc. and for these cases, only above option a) is 

considered for analysis, where short-term and long-term properties are the same. 

 

The critical and actual wall thrust can be estimated by applying Eq. (3.12) and Eq. (3.13), 

respectively (Gabriel, 2011). The allowable or critical thrust must be equal to or greater than 

the actual thrust in order to remain structurally stable. 

 

The critical wall thrust can be calculated as Eq. (3.12) after modifying by Eq. (3.6) (Tee et al, 

2013a): 

 

 pTypsycr DtFAFT  )(                                                                                              (3.12)                                      
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where yF  is the minimum tensile strength of pipe, DT is the corrosion pit depth, sA  is cross-

sectional area of pipe wall per unit length and p  is capacity modification factor for pipe.  

 

The actual wall thrust (Ta) can be estimated as Eq. (3.13) (Gabriel, 2011): 

 

)2/)(67.15.1(3.1 0DPCPWT wLsAa                                                                                (3.13)                          

 

where 0D is the outside diameter and LC  is live load distribution coefficient = the lesser of    

)/( 0DLw or 1.0 and wL  is live load distribution width. The loads acting on the pipe considered 

in wall thrust analysis are soil arch load, AW , live load, sP and hydrostatic pressure wP . The 

soil arch load and hydrostatic pressure can be calculated as follows: 

 AFspA VPW                                          (3.14) 

 

       (3.15) 

        

where spP  is geostatic load = ))(1011.0( 0

7 DHs

 , VAF is vertical arching factor = 0.76-

0.71(( hS  - 1.17)/( hS  + 2.92)), hS  is hoop stiffness factor = sss EARM / , s  is soil capacity 

modification factor, sM  is secant constrained soil modulus, R is effective radius of pipe = 

cDi 2/ . 

 

3.2.2.4 Pipe bending  

Under the effect of earth and surface loads, the through-wall bending is found in the buried 

flexible pipes (Figure 3.9). The moment curvature relationship provides information 

necessary for pipe design against failure due to bending. If a pipe is part of a carrying 

structure, the elastic limit may be an obvious choice as the design limit. A pipe subjected to 

increasing pure bending will fail as a result of increased ovalisation of the cross section and 

reduced slope in the stress-strain curve (Tee et al, 2013). Up to a certain level of ovalisation, 

the decrease in moment of inertia will be counterbalanced by increased pipe wall stresses due 

to strain hardening (ignoring soil reaction). When the loss in moment of inertia can no longer 

be compensated for by the strain hardening, the moment capacity has been reached and 

www HP 
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catastrophic cross sectional collapse will occur if additional bending is applied (Hauch and 

Bai, 1999).  

 

For the safety of the pipe, the bending stress should not exceed the tensile strength of the pipe 

material and the longitudinal bending strain should not exceed the allowable strain ( cr ) limit 

of pipe materials. Typically, the longitudinal allowable bending strain limit for flexible pipes 

is 0.15% to 2% (Kashani and Young, 2005; Mohr, 2003).  

 

Figure 3.9: A typical flexible pipe bending 

The allowable bending stress, cr  is the long term tensile strength of the pipe material. 

Therefore, checking the bending stress and strain is important to ensure that these are within 

material capability. Actual bending stress, b
 
and bending strain, b  

can be calculated as 

following Eqs. (3.16) and (3.17) respectively (Gabriel, 2011) 

 

Actual bending stress, 

 

 

    

 

Actual bending strain,  
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where fD  is shape factor, 0y  is distance from centroid of pipe wall to the furthest surface of 

the pipe. fS is the safety factor for bending. y is pipe deflection which can be calculated as 

shown in Eq. (3.7).  

Note that in the pipe failure modes analysis, k and n or a, b and c, t, Kb, s , E, Es, Ps and H are 

considered as random variables.  

 

3.3 PROBABILISTIC RELIABILITY ANALYSIS 

Methods for estimating structural reliability using probability ideas are well established. 

Methods of reliability analysis such as First Order Reliability Method (FORM), Second-

Order Reliability Method (SORM), Point Estimate Method (PEM), Monte Carlo simulation 

(MCS), Path Enumeration (PE), Hasofer-Lind and Rackwitz-Fiessler algorithm (HL-RF) and 

State Enumeration (SE) and so on are available in literature (Tee and Khan, 2013). However, 

Hasofer-Lind and Rackwitz-Fiessler algorithm and Monte Carlo simulation are used in this 

study for estimating structural reliability of underground flexible metal pipes. Pipe failure can 

be defined in relation to different possible mechanisms as mentioned in Section 3.2.  

 

In the assessment of reliability, normally some measures are used in terms of capacity or 

resistance and the demand of the system, such as central factor of safety (CFS), safety margin 

(SM) and reliability index (β) etc. These measures are related to the probability of failure (Pf) 

of the system (Babu and Rao, 2005). SM is the difference between expected capacity and 

expected demand. In the reliability prediction, SM < 0 corresponds to a failure condition, 

whereas SM > 0 represents a safe condition and SM = 0 is the limit state boundary. The SM 

for the failure modes are defined as follows to examine the performance of pipe reliability in 

this study: 

 

ycrySM   (for deflection) 

acr ppSM   (for buckling) 

acr TTSM   (for wall thrust)
  

bcrSM    (for bending stress) 

bcrSM    (for bending strain) 
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Failure can be defined in relation to different possible failure modes, commonly referred as 

limit states. Reliability is considered to be the probability that these limits will not exceeded 

and is equal to the probability of survival. Each of the limit state function variables is 

attributed to a probability density function that presents its statistical properties. The limit 

state functions for the failure modes are defined as follows: 

 

ycryXZ )(  (for deflection) 

acr ppXZ )(  (for buckling) 

acr TTXZ )(  (for wall thrust) 

bcrXZ  )(  (for bending stress) 

bcrXZ  )(  (for bending strain) 

 

where cry , crp , crT , cr  and cr  are critical pipe deflection, buckling, wall thrust, bending 

stress and bending strain respectively, whereas y , ap , aT , b  and b  are actual pipe 

deflection, buckling, wall thrust, bending stress and bending strain, respectively. 

 

Like SM, limit state function, Z(X) < 0 represents the failure state, Z(X) > 0 indicates a safe 

state, and the limit state boundary which separates the safety and failure domains, exits at 

Z(X) = 0. A general illustration of a reliability problem is shown in Figure 3.10 (Phoon, 

2008). 

 

Figure 3.10:  General reliability problem (Phoon, 2008)  
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The probability of failure, )( fp  for each limit state function can be evaluated by Eq. (3.18) 

as below: 

 

         (3.18a) 

 

Or )}
3

exp(1/{1


fp    (Barbosa, 1989)                                                                   (3.18b) 

 

where   = the cumulative standard normal distribution function,   is known as the safety 

index or reliability index, a rational assessment of safety on the basis of the coefficients of 

variation of parameters and the correlation among variables. Eq. (3.18) is used for each limit 

state function to calculate the probability of failure of due to each failure mode. Eq. (3.18) 

implies that when    increases, the probability of failure decreases and vice versa.  A general 

guideline for reliability index and the corresponding probability of failure is suggested by 

United States Army Corps of Engineers (USACE 1997) (Phoon, 2008) as shown in Figure 

3.11. 

 

Note that, SM and Z(X) are formulated using standard design equations for buried pipes 

including safety factors for different failure modes except deflection. These factors are used 

in design to ensure some reliability level and should not be included in a probabilistic 

analysis. Therefore, in reliability prediction these factors of safety are not considered. 

 

Figure 3.11: USACE (1997) guidelines for reliability index and probability of failure 

 

)(]0)([  XZPPf
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3.3.1 Hasofer-Lind and Rackwitz-Fiessler (HL-RF) algorithm 

 

The primary benefit of HL-RF is believed to lie in accuracy comparable with other rigorous 

techniques, such as MCS and FORM. HL-RF requires significantly less computational effort 

than MCS. Another benefit to HL-RF is that it evaluates a limit state function at a point 

known as design point or most probable point nixi ,....,2,1,*  instead of mean value as used in 

FORM. The design point is a point on the failure surface, Z = 0. Since this design point is 

generally not known a priori, an iteration technique must be used to solve for reliability index 

(Section 3.3.1.1). Pipe reliability can be estimated using HL-RF algorithm where all the 

variables should be normally distributed. For non-normally distributed variable, Rackwitz-

Fiessler (RF) algorithm is applied to transform it to a normally distributed variable. 

Mathematically RF techniques can be expressed as below (Haldar and Mahadevan, 2000) 

 

 (3.19) 

                                                                                                

(3.20) 

 

where Fx(x) = Cumulative Distributed Function (CDF), fx(x) = Probability Density Function 

(PDF), Φ is the CDF for the standard normal distribution and  is the PDF for the standard 

normal distribution, e

x  is the equivalent normal mean and e

x is the equivalent standard 

deviation. Eq. (3.19) simply requires the cumulative probabilities to be equal at *x  and Eq. 

(3.20) is obtained by differentiating both sides of first Eq. (3.19) with respect to *x . By 

manipulating Eqs. (3.19) and (3.20), the expressions e

x  and e

x  can be obtained as follows 

(Haldar and Mahadevan, 2000; Li and Kim, 2006) 
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To evaluate the relative contribution of each random variable in the limit state function Z(X), 

sensitivity coefficient 2

ix can be calculated as follows: 

 

 

 

(3.23) 

 

 

 

3.3.1.1 Procedure 

 

The procedure of HL-RF algorithm can be described briefly as follows: 
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The procedure of HL-RF algorithm (Cont.) 

 

 

 

 

 Go step 3 

 

 

 

 

 

 

  

 

 

 

 Figure 3.12: Flow chart for HL- RF algorithm 

 

 

 

3.3.2 Monte Carlo simulation 

 

A reliability problem is normally formulated using a failure function, ),,,( 21 nXXXZ  , 

where nXXX ,,, 21  are random variables. Violation of the limit state is defined by the 

condition, 0),,,( 21 nXXXZ   and the probability of failure, Pf, is expressed by the 

following expression:  

 

  (3.24) 

 

The Monte Carlo simulation method allows the determination of an estimate of the 

probability of failure, given by 

 

 

  (3.25) 

 

 

where ),.......,( 21 nXXXI is a function defined by 
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Compute an updated value for β using the conditions that 

limit state equation must be satisfied at the new design 

point. 

Calculate the failure probability Pf using Eq. (3.18). 

β satisfied? 

Yes 
No 
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According to Eq. (3.25), N independent sets of values nXXX ,,, 21   are generated based on 

the probability distribution of each random variable and the failure function is computed for 

each sample. Using MCS, an estimate of the probability of structural failure is estimated as 

follows 

N

N
p H

f   

where HN  is the total number of cases where failure has occurred. 

 

 

3.4 SYSTEM FAILURE AND CORRELATION 

Practically, a structure is composed by many elements and every element is consisted of 

many limit sates for its different behaviour, such as bending action, shear, buckling, axial 

stress, deflection, etc. Such a composition is referred to a ‘structural system’. Individual 

structural components and subsystems have different service life ranges that do not 

necessarily coincide with one another. Reliability evaluation of structural systems describes 

how the individual limit states interact on each other and how the overall reliability can be 

estimated. All individual failure modes are combined in a series or parallel system. In a series 

system, also called a weakest link system, any one element exceeds limit state constitutes 

failure of the system. All components of a parallel system, also called a redundant system, 

must be failed for a system failure. Combining parallel and series subsystems can make 

composite systems which is called complex system. The basic of series, parallel and complex 

systems are shown in Figure 3.13. 
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       Figure 3.13: System definitions 

Underground pipeline structures may contain multiple failure events or modes in which any 

of the modes can lead to a system failure. The failure modes may be correlated due to 

common random variables between the failure events. In many cases, the events are assumed 

independent and the system failure is evaluated neglecting the correlations between the 

events. However, neglecting correlation between different failure events may lead to gross 

error over predicting the underground pipeline reliability (Cherubini, 2000). As the 

occurrence of either failure mode can constitute its failure. Therefore, a series system is more 

appropriate for the assessment of pipe failure prediction.  

 

Two types of correlation are found in structural system, (a) positive correlation, and (b) 

negative correlation. When value of one variable increases or decreases then other one also 

increases or decreases is called positive correlation. For example, the higher the soil density, 

the higher is the soil modulus. Similarly, loadings on pipe and failure modes are also 

positively correlated. On the other hand, when value of one variable is increased, then other 

one is decreased and vice versa is called negative correlation. For example, pipe stiffness and 

loadings are negatively correlated. If load is increased, the pipe stiffness is decreased. 

 

Correlation coefficients or simply correlations are used to measure how strong a relationship 

is between two variables. Harr (1987) indicated that correlation (ρ) ranging from -1 to +1 
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between various random parameters influences reliability assessment. The higher the 

correlation coefficient, the higher is the reliability. The correlation between random variables 

can be measured based on covariance (COV). COV provides a measure of strength of the 

correlation between two or more sets of random variants. For example, the COV for two 

random variants X and Y, each with sample size N, can be defined explicitly by Eq. (3.27) as 

follows (Melchers, 1999): 

  

                                                                                (3.27) 

Eq. (3.27) can be written out explicitly as below: 

 

 

or 

 

 

 (3.28) 

  

where ),( yxfXY is the joint probability density function of X and Y. 

 

For uncorrelated variables, the covariance is zero. However, if the variables are correlated in 

some way, then their covariance will be non-zero. After estimation of COV, the correlation of 

coefficient  , can be calculated as below Eq. (3.29a) (Melchers, 1999): 

 

(3.29a) 

 

 

 

Alternatively, the correlation coefficient between two variables can be determined using Eq. 

(3.29b) without calculating COV as follows: 
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where X and Y  are respective means for X and Y and X and Y  are standard deviations 

of variables X and  Y, respectively. XY = correlation coefficient between variables X and Y.  

 

However, sometimes, the mean and variance of general functions are found difficult to 

perform the integrations as required in Eq. (3.28). To overcome this problem, a useful 

approach is to calculate the approximate moments by expanding the function 

),....,,( 21 nXXXYY   in a Taylor series about the point defined by the vector of the 

means ),.....,,(
21 nxxx  . By truncating the series at linear terms, the first-order mean and 

variance can be estimated as below (Melchers, 1999): 

 

 (3.30) 
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
 .  If the Xi are independent, then 0),( ji XXCOV  for i ≠ j 

and )var(),( iji XXXCOV   for i = j.  

 

If common random variables are present among the failure modes, then each failure mode is 

itself a random variable, and the failure modes should correlate with each other. The 

probability of failure for a series system can be estimated after predicting the correlation, ρ, 

between the different failures modes as suggested by Riha and Manteufel (2001) in Eqs. 

(3.32) as follows: 
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where )( iFP  is the probability of failure due to i
th

  failure mode of pipe and m is the number 

of failure modes considered in the system. 

 

 

3.5 NUMERICAL EXAMPLE 

 

An underground steel pipe with a mean diameter of 1.21 m and initial wall thickness of 21.0 

mm under a roadway subjected to heavy traffic loading conditions is taken as a numerical 

example. Calculations are presented for the case of a typical pipe section, as shown in Figure 

3.14. Numerical values are based on practice and have been obtained from the literature 

(Ahammed and Melchers, 1997; Sadiq et al, 2004; Babu and Rao, 2005). The pipe is thin 

walled circular (plain) pipe and buried in a trench of 2 m width and 3.75 m depth over ground 

water table. The backfill material has a unit weight of 18.0 kN/m
3
 and soil modulus of 10

3
 

kPa. The buried pipe is considered under a heavy traffic condition where the wheel load is 80 

kPa. Other parameters are listed in Table 3.1. There are 9 random variables where the mean 

and coefficient of variation are listed in Table 3.2. The random variables are deflection 

coefficient (Kb), soil density (backfill) (γs), elasticity of pipe material (E), height of soil above 

pipe (H), pipe wall thickness (t), multiplying constant (k), exponential constant (n), live load 

(wheel load) (Ps) and soil modulus (Es).  

 

According to the references by Babu and Rao (2005) and Riha and Manteufel  (2001) most of 

the random variables in Table 3.2 are normally distributed as these variables are found 

symmetric around their mean. However, the deflection coefficient (Kb) accounts for the 

bedding support which varies with the bedding angle and this variable’s logarithm is found 

normally distributed.  
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Table 3.1:  Parameter values of worked example 

Symbol description Value 

Buoyancy factor, Rw 1.00 

Trench width, Bd 2.00 m 

Outside pipe diameter, Do 1.231 m 

Inside pipe diameter, Di 1.189 m 

Shape factor, Df 4.0 

Deflection lag factor, DL 1 

Capacity modification factor for soil, φs 0.90 

Capacity modification factor for pipe,
p  1.00 

Minimum tensile strength of pipe, Fy 400 MPa 

Live load distribution coefficient, LC  1 

Poisson’s ratio, s  0.3 

k value 1.5 

Allowable strain, cr  
0.2% 

Correlation coefficient between γ and Es 0  to 0.90 

Correlation coefficient between Ps and E -0.9  to 0  

 

 

Table 3.2: Statistical properties of random variables  

Material properties Mean (μ) Cov (%) Distribution 

Elastic modulus of pipe, E 210×10
6
 kPa 1.0 Normal 

Backfill soil modulus, Es 10
3
 kPa 5.0 Normal 

Unit weight of soil, s 18.0kN/m
3
 2.5 Normal 

Wheel load (Live load), Ps 80.0 kPa 10.0 Normal 

Deflection coefficient, Kb 0.11 1.0 Lognormal 

Multiplying constant, k 2.0 10.0 Normal 

Exponential constant, n 0.3 5.0 Normal 

Thickness of pipe, t 0.021 m 1.0 Normal 

Height of the backfill, H 3.75 m 1.0 Normal 

Cov = Coefficient of variation. 
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Figure 3.14: Geometrical details of the flexible buried pipe section (not to scale) 

 

 

Thus Rackwitz-Fiessler algorithm has been applied to transform its distribution from log-

normal to normal in this study. The pipe is subjected to corrosion and its corrosion rate is 

modelled using Eq. (3.1). As a conservative case, assuming the change of pipe surface due to 

corrosion is uniform over the entire surface area.  Ahammed and Melchers (1997) predicted 

the corrosion constants k and n values by fitting the power law Eq. (3.1) to the various sets of 

underground corrosion data given by Schwerdtfeger (1971), applying the regression analysis. 

The obtained k and n constant parameters are used in this example as shown in Table 3.2. The 

geometrical parameters, such as pipe diameter (inside and outside diameter), pipe wall 

thickness t, and corrosion constant parameters (k and n) contain uncertainties and highly 

dependent on workmanship and quality control after the ditch construction and pipe 

installation process.  

 

3.6 RESULTS AND DISCUSSION 

 

The reliability analysis has been performed based on the above example in this Section. The 

failure probability, correlations among failure modes and between influencing random 

variables with respect to service life, some parametric studies and sensitivity analysis for 

every failure mode are conducted. The results and discussion on the analysis are presented as 

follows: 

 

3.6.1 Probability of failure 

In the case of buried pipes, the assessment of probability of failure on year basis is useful 

which enables to calculate the safe serviceable life. The probabilities of failure, Pf for 

corrosion induced excessive deflection, buckling, wall thrust and bending with respect to time 
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have been estimated using the material properties and random variables which are presented 

in Tables 3.1 and 3.2 using MATLAB software. First, the probability of failure due to 

corrosion induced deflection is calculated using HL-RF algorithm and MCS (with 10
6
 

samples) as shown in Figure 3.15.  

 

Next, the failure probability for limit states due to corrosion induced buckling, excessive wall 

thrust and bending is predicted using both above mentioned methods. The results from both 

methods are in reasonable agreement as shown in Figures 3.15 – 3.18 for every failure case. 

The results show that excessive bending stress is the most critical failure mode whereas 

buckling has the lowest probability of failure (Figure 3.15) during the whole service life of 

the pipe. Considering the failure probability of 0.1 (10%) as a threshold level for the safe 

service life (Babu and Srivastava, 2010; Phoon, 2008), the study illustrates that the safe 

service life in the worst case scenario is about 50 years. 

 

Figure 3.15: Probability of failure for limit state due to corrosion induced deflection using 

MCS and HL-RF 

 
Figure 3.16: Probability of failure for limit state due to corrosion induced buckling using 

MCS and HL-RF 
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Figure 3.17: Probability of failure for limit state due to corrosion induced wall thrust using 

MCS and HL-RF 

 

 
 

Figure 3.18: Probability of failure for limit state due to corrosion induced bending using MCS 

and HL-RF 

 

 

 

3.6.2 Correlations and failure probability of series system  

 

Every failure mode is a product of some random variables, hence every failure mode itself is 

a random variable (refer to Section 3.2). Therefore, according to the example data, the 

correlation among time-dependent failure modes, namely, corrosion induced deflection, 

buckling, wall thrust and bending have been estimated using Eq. (3.29b) in this study. The 

failure system is considered as a series system. Then the probability of system failure has 

been estimated based on the correlation among failure modes. The pipe failure modes 

correlation and probability of failure in series system are performed by MCS method, using 

63 

Chapter 3: Structural reliability analysis using HL-RF and MCS methods 



Reliability Estimation and Risk-Cost Optimisation of Underground Pipelines 

 

1 
 

MATLAB software.  In different years, the magnitude of deflection, buckling, wall thrust and 

bending (stress or strain) are used as a value of X and Y. For example, in determination of 

correlation between corrosion induced pipe deflection and buckling, the every year’s 

deflection values are considered as X and the corresponding buckling values are considered 

as Y and then using Eq. (3.29b), the correlation coefficient is predicted. Similar approach is 

applied for correlation between deflection and wall thrust; deflection and bending; bending 

and buckling; buckling and wall thrust; and wall thrust and bending. The study shows that the 

failure modes are positively correlated and ranging within 0 to +1.  The correlation 

coefficients between different failure modes are computed and summarised in Table 3.3. The 

study shows that all the failure modes are strongly and positively correlated where the failure 

modes might happen concurrently within a buried pipeline system. 

 

Table 3.3: Correlation among failure modes 

 Deflection Buckling Wall thrust Bending 

Deflection 1 0.999 0.9995 0.9999 

Buckling 0.999 1 0.9999 0.9996 

Wall thrust 0.9995 0.9995 1 0.9998 

Bending 0.9999 0.9996 0.9998 1 

 

The study shows that the correlations among failure modes are not time-dependent, i.e., the 

correlation for 10, 50, 100 and 200 years of pipe service life have the same correlation 

between different failures modes.  

 

 
 

Figure 3.19: Probability of failure bounds in series system  
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Based on the above correlation analysis between the failure modes, failure probability of the 

series system, Pf has been estimated using Eq. (3.32a) (0 < ρ < 1) as shown in Figure 3.18. 

The expected value of Pf for series system is determined between upper and lower bounds of 

failure probability curve. The study shows that the probability of failure at beginning of pipe 

service life are very small (nearly zero) and remains unchanged until 40 years of service life, 

and then gradually increases as time increases. After 50 years, the values of Pf increases to 

about 10% and then it drastically rises, while at 150 years of life time it becomes almost 

100% (Figure 3.19). 

 

3.6.3 Correlations between two random variables 

 

The study shows that soil modulus, soil density, loading and pipe stiffness are the significant 

controlling variables for the above mentioned failure modes (Tee et al, 2013a). Therefore, 

correlations analyses between only these variables are performed in this study. Soil density 

and soil modulus are positively correlated, whereas pipe stiffness and loadings are negatively 

correlated as discussed earlier. The correlation analysis between these random variables 

during pipe installation and pipe operation are presented as follows: 

 

3.6.3.1 Correlation during pipe installation 

  

At installation time (T = 0), no corrosion is initiated and this is attributed to the fact that 

corrosion does not cause any problem to new pipes and therefore reliability index is very high 

at this time. The reliability indices and corresponding Cov have been estimated for all the 

failure modes with the following cases of correlations between random variables: 

 

(a) Soil modulus and soil density with positive correlations 0, +0.25, +0.50, +0.75 and +0.90. 

(b) Loadings and pipe stiffness with correlations of –0.9, –0.75, –0.5, –0.25 and 0.  

 

Figure 3.20 shows that the reliability indexes are reduced with increasing Cov of variable 

parameters for all the four failure modes due to corrosion induced deflection, buckling, wall 

thrust and bending stress. The analysis shows that among the failure modes, the lowest 

reliability index β (highest probability of failure) is occurred when the pipe fails due to 

corrosion-induced wall thrust whereas pipe failure due to corrosion induced deflection 

exhibits a higher reliability index (lower failure probability) for uncorrelated variable 

condition at time T = 0.  
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Figure 3.20: Reliability index versus Cov for different pipe failure criteria when variables are 

uncorrelated at installation time 

 

Table 3.4: Reliability indices for different Cov of corrosion induced wall thrust with positive 

correlation between soil density and soil modulus at installation time 

Covw β at ρ = 0 Covw β at ρ =  

0.25 

Covw β at ρ = 

0.50 

Covw β at ρ = 

0.75 

Covw β at ρ = 

0.9 

4.260661 8.77267 4.260656 8.772681 4.260656 8.772691 4.260646 8.772701 4.260643 8.772707 

8.521322 4.386335 8.521312 4.38634 8.521312 4.386345 8.521293 4.386351 8.521287 4.386354 

12.78198 2.924223 12.78197 2.924227 12.78197 2.92423 12.78194 2.924234 12.78193 2.924236 

17.04264 2.193168 17.04262 2.19317 17.04262 2.193173 17.04259 2.193175 17.04257 2.193177 

21.30331 1.754534 21.30328 1.754536 21.30328 1.754538 21.30323 1.75454 21.30322 1.754541 

25.56397 1.462112 25.56394 1.462113 25.56394 1.462115 25.56388 1.462117 25.56386 1.462118 

Covw = Coefficient of variation for wall thrust 

 

Table 3.5: Reliability indices for different Cov of corrosion induced bending stress with 

negative correlation between loading and pipe stiffness at installation time 

Covb β at ρ = 

0 

Covb β at ρ =   

- 0.25 

Covb β at ρ =  

- 0.50 

Covb β at ρ =  

- 0.75 

Covb β at ρ =  

- 0.9 

13.19015 3.730409 13.14095 3.721876 13.09156 3.707782 13.04199 3.693847 13.01216 3.680069 

13.47991 3.697109 13.38345 3.680549 13.2863 3.653438 13.18843 3.626916 13.12936 3.600965 

13.94946 3.612035 13.80945 3.588938 13.668 3.551409 13.52508 3.515032 13.43859 3.479752 

14.58146 3.485346 14.40267 3.457742 14.22163 3.413158 14.03826 3.370255 13.92707 3.32893 

15.35586 3.329997 15.14347 3.299954 14.92806 3.251639 14.7095 3.205386 14.57679 3.161052 

16.25231 3.158698 16.01138 3.127961 15.76677 3.078668 15.51831 3.031635 15.3673 2.986694 

Covb = Coefficient of variation for bending stress 
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Table 3.4 shows that reliability index is higher at lower Cov for wall thrust and the value 

gradually decreases with increasing Cov of the variables. In the case of bending stress (Table 

3.5), β values almost remain constant or differ slightly with increasing Cov of random 

variables (E, Es, Ps and γs). It is observed that the reliability indexes and corresponding Cov 

differ slightly with changing the correlation for both positive correlation (wall thrust) and 

negative correlation (bending stress) cases at pipe installation time as shown in Table 3.4 and 

Table 3.5, respectively. Due to very small changes in reliability index, only correlations of 

+0.9, 0 and –0.9 are shown in Figure 3.21 to examine the relationship between reliability 

index and corresponding Cov at T = 0 for wall thrust failure criteria. 

 

Figure 3.21: Reliability index versus Cov for wall thrust with correlations between soil 

density and modulus (+0.9), loading and pipe stiffness (–0.9) and uncorrelated condition at 

installation time 

  

The analysis shows that for positive correlations between soil density and soil modulus, the 

lowest reliability for corrosion induced wall thrust is found when correlation is zero, i.e., in 

uncorrelated condition and the highest reliability indices are found when correlation is +0.9 

(Table 3.4) which shows a good agreement with Babu and Rao (2005). In contrast, for 

negative correlations between loading and pipe stiffness, the highest reliability for corrosion 

induced bending stress is found when correlation is 0, and the lowest pipe reliability when 

correlation is –0.90 (Table 3.5). It can be postulated that the pipe failure is greatly influenced 

by soil density, soil modulus, loading acting on pipe and pipe stiffness. Overall, the 

corresponding Cov for positive correlation are higher than those for negative correlation due 

to corrosion induced deflection, buckling, wall thrust and bending stress.  
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3.6.3.2 Correlation during operation  

Time dependent reliability index and corresponding Cov for both positive and negative 

correlation cases have been predicted at different stages in the life cycle of the buried pipe 

(25, 50, 75 and 100 years of service life). The investigation indicates that pipe service life 

from installation time to 40 years, the probability of failure is insignificant for both lower and 

upper bounds as shown in Figure 3.18. Therefore, correlation analysis is performed at 25 

years of service life as a representative of insignificant probability of failure. Then 50, 75 and 

100 years of pipe service life are considered for different levels of probability of failure. The 

reliability index and corresponding Cov for pipe service life at 25, 50, 75 and 100 years for 

pipe failure due to corrosion induced bending stress are shown in Figures 3.22 – 3.24. Based 

on the previous analysis, three different cases are considered: when variables are 

uncorrelated, correlation between soil density and soil modulus is +0.9 and correlation 

between loading and pipe stiffness is – 0.9.   

 

Figure 3.22: Reliability index versus Cov for bending stress when variables are uncorrelated 

at different stages in the life cycle 

 

 

 

 

 

 

68 

Chapter 3: Structural reliability analysis using HL-RF and MCS methods 



Reliability Estimation and Risk-Cost Optimisation of Underground Pipelines 

 

1 
 

 

 

Figure 3.23: Reliability index versus Cov for bending stress with positive correlation between 

soil density and soil modulus (+0.9) at different stages in the life cycle 

 

 

Figure 3.24: Reliability index versus Cov for bending stress with negative correlation 

between loading and pipe stiffness (–0.9) at different stages in the life cycle 

 

Figures 3.22 – 3.24 show that with increasing pipe service life time, reliability index for pipe 

failure due to corrosion induced bending stress is decreased (or probability of failure is 

increased) for all the three cases (uncorrelated, positive correlation and negative correlation). 

As pipe wall thickness reduces with time due to corrosion, the pipe reliability is moderately 

changed from 25 to 50 years of pipe service life. It can be seen from Figures 3.22 – 3.24 that 
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the Cov for corrosion induced bending stress are increased, and the corresponding reliability 

indices are significantly reduced during 25 to 50 years of pipe service time. The change in 

Cov is found larger when the variables are uncorrelated, and loading and pipe stiffness are 

negatively correlated (–0.90) compared to when soil density and soil modulus are positively 

correlated (+0.90). The pipe reliability index continuously reduces and the Cov progressively 

increases when the pipe goes through different stages of service life. The reliability analysis 

at 100 years shows that the index has become negative which indicates that the pipe failure 

probability is more than 0.5. This can be easily proved by using Eq. (3.18).  

 

 

Figure 3.25: Reliability analysis versus Cov for different pipe failure criteria with negative 

correlation between loading and pipe stiffness (–0.9) at 100 years of service life 

 

As the effect of negative correlation between loading and pipe stiffness is the most 

significant, the results for reliability analysis at 100 years of service life are shown in Figure 

3.25 for different pipe failure criteria for different Cov. As shown in Figure 3.21, the 

dominating failure mode is wall thrust when no corrosion is occurred at T = 0. However, as 

pipe ages the dominating failure mode is changed to bending stress because corrosion has 

more influence on bending stress than those of wall thrust. The reliability index for pipe 

failure due to corrosion induced bending stress and deflection is negative and the others are 

still in positive state at 100 years of service life as illustrated in Figure 3.25. The Cov is 

higher for corrosion induced buckling failure which is about 38% – 40% and wall thrust is 

about 30% – 37%.  
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Table 3.6: Reliability indices with corresponding Cov for different pipe failure criteria with 

zero correlation between loading and pipe stiffness at 100 years of service life  

Covd 
β  for 

deflection Covbu 
β  for 

buckling Covw 
β  for wall 

thrust Covb 

β  for 

bending 

stress 

19.51132 -0.14352 39.08781 0.761146 30.21229 0.363306 19.6805 -0.4697 

23.49558 -0.11918 39.8687 0.746238 32.01172 0.342884 23.74511 -0.3893 

27.7912 -0.10076 40.85078 0.728298 34.18638 0.321073 28.12062 -0.32872 

32.27408 -0.08676 42.01994 0.708034 36.66957 0.29933 32.68239 -0.28284 

 

 

Table 3.7: Reliability indices with corresponding Cov for different pipe failure criteria with 

negative correlation between loading and pipe stiffness (-0.9) at 100 years of service life  

Covd 
β  for 

deflection Covbu 
β  for 

buckling Covw 
β  for wall 

thrust Covb 
β  for bending 

stress 

18.27962 -0.15319 38.84623 0.76588 30.21223 0.363307 18.4601 -0.50075 

21.66315 -0.12926 39.4467 0.754221 32.01161 0.342885 21.93353 -0.42145 

25.3585 -0.11043 40.20556 0.739986 34.18622 0.321074 25.71909 -0.35942 

29.2477 -0.09574 41.11404 0.723634 36.66936 0.299332 29.69765 -0.31127 

 

The reliability index and the corresponding Cov are changed with varying time. Both the 

reliability indices for corrosion induced buckling and wall thrust are still positive at 100 years 

of service life whereas the reliability indices become negative values for wall thrust and 

bending stress where the reliability index for wall thrust is close to zero. In addition, the 

reliability index and the corresponding Cov for pipe failure due to corrosion induced wall 

thrust remains almost the same when the correlation is changed from 0 to -0.9 at 100 years of 

service life as shown in Table 3.6 and Table 3.7. On the other hand, the reliability index is 

decreased for deflection and bending stress whereas the reliability index is increased for 

buckling towards more negative correlation between loading and pipe stiffness. Therefore, it 

is evident that changes in soil, loading and pipe properties influence the characterisation of 

pipe performance for different failure criteria, but in terms of percentages, the assessment is 

not consistent with respect to time.  
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From the results of the studied cases, it can be stated that the variability of soil, loading acting 

on pipe and pipe stiffness are significant parameters affecting the reliability of buried pipe 

failure system. The results suggest that flexible pipe failure due to deflection is the least 

vulnerable and wall thrust is the most dominating failure criteria at the beginning of pipe 

service life. However, during pipe operation at different stages of service life, corrosion 

induced buckling is the least susceptible and bending stress is the most controlling failure 

mode. The study also shows that during installation, the overall probability of failure due to 

corrosion induced wall thrust is lower (i.e. higher reliability) when soil modulus and soil 

density are positively correlated whereas the failure probability due to corrosion induced 

bending stress is higher when loading and pipe stiffness are negatively correlated.  

 

3.6.4 Parametric study 

To analyse the effect of the design variables on the probability of failure of the underground 

flexible pipeline system, a parametric study has been carried out. The effect of changing the 

wall thickness, pipe diameter and backfill height on the probability of failure has been shown 

in Figure 3.26, Figures 3.27 – 3.30 and Figures 3.31 – 3.34, respectively. The numerical 

investigation of the example pipeline shows that there is a very significant long-term 

contribution of the pipe thickness, diameter and soil height to structural reliability and 

deterioration process which are described as below:  

 

3.6.4.1 Pipe wall thickness 

The original thickness of the pipe is 21 mm but the range of the x-axis of the Figure 3.26 

(pipe wall thickness) is plotted from 16 mm because pipe failure does not commence 

(probability of failure is almost equal to zero) in the beginning of the pipe lessening process 

for all the corrosion induced failure criteria until the residual thickness reaches 15.5 mm. On 

the other hands, the pipe totally fails (probability of failure is almost equal to one) when the 

residual thickness reaches 12 mm for all the failure criteria except the failure due to buckling 

as shown Figure 3.26.  
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Figure 3.26: Probability of failure for limit states versus wall thickness 

 

The result shows that in the case of failure due to buckling, the pipe needs more thickness 

reduction to fail than others. In this case, the range is from 14.5 mm to 10.5 mm. Therefore, it 

can be concluded that buckling is the least susceptible whereas the excessive bending stress is 

the most susceptible due to reduction of the pipe wall thickness. The research shows that 

probabilities of failure drastically change due to pipe thickness reduction of 4.5 to 5.0 mm 

and become zero to one. Based on results, it can be assumed that due to ductility behaviour of 

steel material, the failure probability increase within a short reduction of pipe wall thickness. 

 

3.6.4.2 Pipe diameter 

The probability of failure has been estimated for pipe diameter of 1.16 m, 1.20 m and 1.24 m 

using all the four different failure criteria. The results are shown in Figures 3.27 – 3.30 for all 

failure modes. The buckling and wall thrust show the largest effect due to changes in pipe 

diameter. In fact, the results show that the larger diameter pipes have a higher failure rate 

than the smaller ones i.e. the service life of pipe decreases as pipe diameter increases. The 

obtained results are in a good agreement with the results of the previous studies. A number of 

authors have investigated the relationship between buried pipe size and its structural 

reliability. Involving large buried pipe samples with length of 180 km, O’Reilly et al (1989) 

noticed that the incidence of longitudinal cracks increased with diameter and also observed 

that fractures were much more common in larger size of pipes. O’Reilly et al. (1989) also 

observed that when all defects were considered, the pipes with middle ranges of diameters 
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(300 – 700 mm) showed more defects than those with smaller sizes. Larger pipes are more at 

risk to structural damage due to their bulk and weight making them more difficult to lie 

accurately (Davis et al, 2001). Similarly, this analysis also shows that the highest failure 

probability is due to excessive bending stress and the lowest is due to buckling. 

 
Figure 3.27: Probability of failure for different pipe diameters due to corrosion induced 

deflection 

 

 

 
 

Figure 3.28: Probability of failure for different pipe diameters due to corrosion induced 

buckling 
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Figure 3.29: Probability of failure for different pipe diameters due to corrosion induced wall 

thrust 

 

 
 

Figure 3.30: Probability of failure for different pipe diameters due to corrosion induced 

bending  

 

 

3.6.4.3 Soil height 

Like pipe diameter, backfill height also affects the pipe failure rate. The probability of failure 

for every 250 mm change of soil height has been estimated, i.e., soil height of 3.25 m, 3.50 m 

and 3.75 m using the above mentioned failure criteria. The results for all failure cases are 

shown in Figures 3.31 – 3.34. The failure case due to excessive deflection and wall thrust 

show the largest effect due to changes in soil height. This makes sense because soil height 
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has the most influence on wall thrust compare to others. With increasing the backfill height, 

this will increase soil pressure or overburden pressure and further reduce the service life of 

the pipe. Thus, failure rate increases with increasing the soil height above the pipe invert. 

This leads to the same conclusion given by Davis et al (2001) in investigating the effect of 

soil depth on sewer structural condition and reliability. 

 
Figure 3.31: Probability of failure for different backfill heights due to corrosion induced 

deflection 

 

 
Figure 3.32: Probability of failure for different backfill heights due to corrosion induced 

buckling 
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Figure 3.33: Probability of failure for different backfill heights due to corrosion induced wall 

thrust 

 

 
Figure 3.34: Probability of failure for different backfill heights due to corrosion induced 

bending  

 

 

3.6.5 Sensitivity analysis 

In addition to the parametric studies above, sensitivity analysis has also been carried out to 

evaluate the relative contribution of each random variable (listed in Table 3.2) in the four 

limit state functions using Eq. (3.23) in MATLAB software. The analysis shows that soil 

(backfill) density (), soil modulus (Es), wheel load (Ps), multiplying constant (k), exponential 

constant (n) and pipe thickness (t) are among larger contributors and on the other hand, 

elastic modulus of pipe material (E), deflection coefficient (Kb)  and soil height above pipe 
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invert (H)  have minor contribution to the pipes reliability.  

 

At the early stage of the pipe service life, the impact of  multiplying constant has average 

10% contribution for pipe failure due to corrosion induced deflection, wall thrust and bending 

and sharply increase to 35% about 25 years of the pipe life and then this contribution slightly 

decreases over time. In this case, multiplying constant has 5% impact for corrosion induced 

buckling failure at the beginning and 25% about 25 years of pipes service life.  The 

sensitivity of the exponential constants in Eq. (3.1) have zero impact and increases 

significantly with the pipe age for all the four failure criteria as shown in Figure 3.35. This is 

attributed to the fact that corrosion does not cause any problem to new pipes but mainly the 

root cause of failure and collapse for aging and external loadings on pipes. The sensitivity 

analysis also shows that soil modulus has zero impact on the failure due to excessive wall 

thrust as shown in Figure 3.37, because it does not appear in Eqs. (3.12) and (3.13). In 

contrast, soil density, live load and backfill have the largest impact on the corrosion induced 

wall thrust failure as shown in Figures 3.38, 3.39 and 3.42, respectively. The soil modulus, 

live load and thickness of the pipe have the major contribution and the soil density, pipe 

elasticity modulus, soil height have the insignificant impact on the corrosion induced 

buckling failure (Figures 3.37 – 3.42).  

 
Figure 3.35: Sensitivity of multiplying constant for limit states during pipe service life 
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Figure 3.36: Sensitivity of exponential constant for limit states during pipe service life 

 

 
          

Figure 3.37:  Sensitivity of soil modulus for limit states during pipe service life 
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Figure 3.38: Sensitivity of soil density for limit states during pipe service life 

 

 

 
           

Figure 3.39: Sensitivity of live load for limit states during pipe service life 
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Figure 3.40: Sensitivity of pipe wall thickness for ultimate limit states during pipe service life 

 

 
Figure 3.41: Sensitivity of pipe elastic modulus for limit states during pipe service life 
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Figure 3.42: Sensitivity of backfill height for limit states during pipe service life 

 

 

Figure 3.43: Sensitivity of deflection coefficient for limit states during pipe service life 

 

The sensitivity analysis shows that failure due to corrosion induced deflection and bending, 

soil density, live load and pipe thickness have the more influence than the pipe elasticity 

modulus and backfill height with respect to time. Deflection coefficient has no impact on 

buckling and wall thrust failure as it is not applicable (not seen in Eqs. 3.10 – 3.13) for 

buckling and wall thrust. Only it influences the deflection and bending and the effect is very 

low (Figure 3.43). 

 

82 

Chapter 3: Structural reliability analysis using HL-RF and MCS methods 



Reliability Estimation and Risk-Cost Optimisation of Underground Pipelines 

 

1 
 

3.7 SUMMARY 

A reliability analysis of flexible underground metal pipeline has been presented in this 

Chapter using HL-RF algorithm and Monte Carlo simulation due to corrosion induced 

deflection, buckling, wall thrust and bending. The results suggested that excessive bending is 

the most critical failure mode whereas buckling is the least susceptible during the whole 

service life of the pipe. Correlation among the failure modes are predicted in this study. The 

results show that these failure modes are strongly correlated (≈1). Correlation between 

random variables, namely, soil density and soil modulus as well as loading and pipe stiffness 

with known correlation coefficients in different failure modes have been assessed with 

varying time. The study shows that the probability of failure due to corrosion induced wall 

thrust is lower when soil modulus and soil density are positively correlated whereas it is 

higher when loading and pipe stiffness are negatively correlated due to corrosion induced 

bending stress. In addition, parametric study and sensitivity analysis have been performed to 

analyse the effect of the design variables on the reliability of the flexible underground metal 

pipeline system. The parametric analysis shows that behaviour of buried pipes is considerably 

influenced by uncertainties due to external loads, corrosion parameters, and surrounding soil 

properties. The sensitivity analysis reveals that among all random variables in reliability 

prediction, the relative contribution of the corrosion parameters, such as multiplying constant, 

k and exponential constant, n are highly remarkable. Note that the results and observations 

are valid within the considered distributions of random variables. The proposed approach can 

significantly help decision makers in the assessment of safety and performance of buried 

pipelines.  
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4.1 INTRODUCTION 

 

Structural reliability algorithms have been received greater attention over the world, though 

prediction techniques of small failure probabilities are very few till now. In recent years, 

attention has been focused on reliability problems with complex system characteristics in 

high dimensions, i.e., with a large number of uncertain or random variables (Schueller and 

Pradlwarter, 2007). Prediction of small failure probabilities is one of the most important and 

challenging computational problems in reliability engineering (Zuev et al, 2012). The 

probabilistic assessment of engineering systems may involve a significant number of 

uncertainties in their behaviour. To implement probabilistic assessment for an engineering 

system, main difficulties arise from: (1) the relationship between the random variables, (2) 

too many random variables involved, (3) information about rare scenarios and (4) many 

interactive response variables in the description of performance criteria (Tee et al, 2013b).  

 

Like other engineering systems, reliability analysis of buried pipeline systems are 

characterised by a large number of degrees of freedom, time-varying and response dependent 

nonlinear behaviour. In the presence of uncertainty, the performance of an underground 

pipeline can be quantified in terms of ‘performance margin’ with respect to specified design 

objectives. In reliability engineering, ‘performance margin’ is denoted as reliability index, 

probability of failure, safety margin, etc. Failure events in pipe reliability analysis can be 

formulated as exceedance of a critical response variable over a specified threshold level. By 

predicting pipeline reliability, the safe service life can be estimated with a view to prevent 

unexpected failure of underground pipelines by prioritising maintenance based on failure 

severity and system reliability (Tee and Li, 2011; Khan et al, 2013). 

 

There is no general algorithm available to estimate the reliability of a buried pipeline system. 

The pipeline reliability is usually given by an integral over a high dimensional uncertain 

parameter space. Methods of reliability analysis such as FORM, SORM, PEM, MCS, PDEM, 

etc. are available in literature (Babu and Srivastava, 2010; Tee et al, 2011; Fang et al, 2013a, 

2013b). In this context, a robust uncertainty propagation method whose applicability is 

insensitive to complexity nature of the problem is most desirable. Many methods are 

inefficient when there are a large number of random variables and/or failure probabilities are 

small. Moreover, some methods need a large number of samples which is time-consuming.  
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Advanced Monte Carlo methods, often called ‘variance reduction techniques’ have been 

developed over the years. In this respect, a promising and robust approach is Subset 

Simulation (SS) which is originally developed to solve the multidimensional problems of 

engineering structural reliability analysis (Au and Beck 2001; Au et al, 2007; Tee et al, 

2014a). A structural system fails when the applied load or stress level exceeds the capacity or 

resistance. SS is well suited for quantitative analysis of functional failure systems, where the 

failures are specified in terms of one or more safety variables, e.g., temperatures, pressures, 

flow rates, etc. In the SS approach, the functional failure probability is expressed as a product 

of conditional probabilities of adaptive chosen intermediate events. The problem of 

evaluating small probabilities of functional failures is thus tackled by performing a sequence 

of simulations of more frequent events in their conditional probability spaces; then the 

necessary conditional samples are generated through successive Markov Chain Monte Carlo 

(MCMC) simulations in a way to gradually populate the intermediate conditional regions 

until the final functional failure region is reached (Zio and Pedroni, 2008). The SS can 

provide better resolution for low failure probability level with efficient investigating of rare 

failure events which are commonly encountered in pipeline engineering applications. In SS 

method, random samples leading to progressive failure are generated efficiently and they are 

used for computing probabilistic performance measured by statistical variables. It gains its 

efficiency for small probability prediction as a product of a sequence of intermediate events 

with larger conditional probabilities.  

 

Many researchers, such as Au and Beck (2001), Au et al (2007), Ching et al (2005), Song et 

al (2009) and Zhao et al (2011) have used SS in reliability analysis of engineering structures, 

such as bridges and buildings. This Chapter focuses on application of SS for computing time-

dependent reliability of flexible buried metal pipelines. Failure probabilities for corrosion 

induced multi-failure events, namely deflection, buckling, wall thrust and bending have been 

predicted in this study. Firstly, the SS is applied for estimating the failure probabilities for 

each failure case individually and then due to multi-failure modes, an upper and lower 

bounds of failure probabilities are predicted as a series system. Besides that, coefficients of 

variation (Covs) and a sensitivity analysis of pipe failure due to corrosion induced deflection, 

as an example of failure event, have also been assessed to illustrate the robustness and 

effectiveness of SS method. The application of SS method is verified with respect to the 

standard MCS. 
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The contents of this Chapter are structured as follows. The basic equations, methodology and 

advantages of SS are discussed in Section 4.2. In Section 4.3, a numerical example is 

presented to validate the methodology and to scrutinise the effectives of SS. Results and 

discussion are presented in Section 4.3.1. A real case study has also been presented in this 

study in Section 4.4 and results are presented in Section 4.5. At the end concluding remarks 

are made in Section 4.6.  

 

  

4.2 RELIABILITY PREDICTION  

 

4.2.1 Basic Equations for Subset Simulation 

 

Subset Simulation is an adaptive stochastic simulation procedure for efficiently computing a 

small failure probability. For simplification, F is denoted as the failure event as well as its 

corresponding failure region in the uncertain parameter space. Given a failure event F, let
 

FFFFF m  ........321 . If the failure of a system is defined as an exceedance of one 

uncertain demand Y over a given capacity y, that is )( yYF  , then a sequence of 

decreasing failure events can simply be defined as }{ ii yYF   where 

0< yyyyy m  321  and i= 1, 2, 3,...,m where m is the number of conditional 

events. In this study, Y is the actual value of structural performance such as corrosion-induced 

deflection, buckling, wall thrust or bending stress whereas y represents the allowable or 

critical limit for the considered failure modes. A conceptual illustration of the SS method is 

presented in Figure 4.1 for a two-dimensional case (Song et al, 2009).  
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Figure 4.1: Illustration of failure events in SS method  

 

The probability of failure (Pf) can be calculated based on the above sequence of failure 

domains (or subsets) which enables computation of Pf as a product of conditional 

probabilities )( 1FP  and )|( 1 ii FFP   as follows (Schueller and Pradlwarter, 2007; Phoon, 

2008). 

 

 

 

 

When )( 1FP  is denoted by 1P  and )|( 1ii FFP  for mi ,....3,2  is denoted by iP , Eq. (4.1) 

expresses the failure probability as a product of conditional probabilities 1P  and 

),...,3,2( miPi  . In the first step, it is natural to compute conditional failure probabilities 

based on an estimator similar to Eq. (4.2), which requires simulation of samples according to 

the conditional distribution θ that lies in iF  (Au and Beck, 2001). The probability 1P  can be 

determined by application of the direct MCS simulation as shown in Eq. (4.2). 

 

 (4.2) 

(4.1) 










1-

1i

i11

112211-

)|()(

)()|()......|()|()(

m

i

mmmmmf

FFPFP

FPFFPFFPFFPFPP





1

1

1

)1(

1

1 )(
1

N

k

kFI
N

P 

88 

Chapter 4: Structural reliability analysis using Subset Simulation 



Reliability Estimation and Risk-Cost Optimisation of Underground Pipelines 

 

1 
 

where ),......,3,2,1( 1

)1( Nkk   are independent and identically distributed samples simulated 

according to probability density function (PDF) q. )( )1(

1 kFI   is an indicator function, when   

1

)1( Fk  , )( )1(

1 kFI  =1, otherwise 0.  

The conditional distribution of   lies in Fi, that is )(/)()()|( i iF FPIqFq
i
  . Computing 

the conditional probabilities, Markov Chain Monte Carlo (MCMC) simulation provides a 

powerful method for generating conditional samples on the failure region (Au and Beck, 

2001; Au and Beck, 2003). With the application of the MCMC simulation by the modified 

Metropolis-Hastings algorithm, samples can be generated as follows. 

 

 

 

where ),....,3,2;,......,3,2,1()( miNk i

i

k   are independent and identically distributed 

conditional samples. )( )(i

kFi
I   is an indicator function which is equal to 1 when i

i

k F)( , 

otherwise 0.  

 

Based on Eqs. (4.2) and (4.3), Eq. (4.1) can be rewritten as follows 

 

(4.4) 

 

 

On the basis of reliability analysis using SS, the failure probability Pf can be transformed into 

a set of conditional failure probabilities Pi (i =1, 2, 3,…,m). Based on Eq. (4.4), the partial 

derivative of the failure probability with respect to distributional parameter α (the mean μ or 

the standard deviation σ) of normal random variables can be obtained, which is so-called 

reliability sensitivity as shown in Eq. (4.5) (Song et al, 2009). 
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Reliability sensitivity analysis can reflect the significance of the distributional parameter with 

respect to the failure probability. According to sample means, reliability sensitivity of Eq. 

(4.5) for each variable can be obtained using Eqs. (4.6) and (4.7) as follows (Song et al, 2009; 

Tee et al, 2014a). 
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4.2.2 Methodology 

 

Subset Simulation expresses the failure probability as a product of larger conditional failure 

probabilities for a sequence of intermediate failure events, thereby converting a rare event 

simulation problem into a sequence of more frequent ones (Au et al, 2007). During the 

simulation process, the conditional samples are generated from specially designed Markov 

chains (MC), so that they gradually populate each intermediate failure region until they reach 

the final target failure region (Au and Beck, 2001).
 
In this study, the intermediate threshold 

values are chosen adaptively in such a way that the estimated conditional probabilities are 

equal to a fixed value which is 1.00 p  (Au and Beck, 2001; Au and Beck, 2003; Zio and 

Pedroni, 2008). 
 

 

Procedure of SS algorithm for adaptively generating samples corresponding to specified 

target probabilities can be summarised as flow diagram as shown follows: 
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Figure 4.2: Flow diagram for SS method 

 

 

4.2.3 Advantages of Subset Simulation  

 

Estimating small failure probabilities to precisely assess the risk involved in a system remains 

quite a challenging task in structural reliability engineering. FORM, SORM or PEM are 

suitable solutions to estimate reliability of large-scale systems (Tee et al, 2013b). Due to their 
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inherent assumptions, these methodologies are sometimes lead to incorrect results which are 

involved with multiple design points and/or non-smooth failure domains. On the other hand, 

MCS is a traditional simulation algorithm to compute failure probabilities in structural 

systems, which in spite of being robust to solve the problem; it becomes computationally 

expensive where small failure probabilities to be calculated, since it requires a large number 

of evaluations of the system to achieve a suitable accuracy.  

 

SS requires much less samples to achieve a given accuracy. It can be used to obtain 

conditional samples in each simulation level to compute efficiently the probabilities related to 

rare events in reliability problems with complex system characteristics and with a large 

number of uncertain or random variables in failure events. Choosing the intermediate failure 

events ),...,3,2,1( miFi   appropriately, the conditional probabilities involved in Eq. (4.1) can 

be made sufficiently by subset simulation process (Ching et al, 2005). For example, 

probability of failure 410fP  is too small for efficient estimation by direct Monte Carlo 

simulation. However, the conditional probabilities, which are the order of 0.1, can be 

evaluated efficiently by simulation because the failure events are more frequent as supported 

by the results in Figure 4.8. The problem of simulating the rare events in the original 

probability space is thus replaced by a sequence of simulations of more frequent events in the 

conditional probability spaces. 

 

4.3 NUMERICAL EXAMPLE 
 

The time-dependent structural reliability for an underground flexible metal pipe has been 

predicted in this example, where pipe failure probability, sensitivity and Cov analysis are 

conducted by applying SS and MCS. Calculations are presented for a buried steel pipe under 

a heavy roadway subject to corrosion and external loadings. A typical pipe section is shown 

in Figure 3.13 (Chapter Three). Numerical values are based on industrial practice and have 

been obtained from the literature (Ahammed and Melchers, 1997; Sadiq et al, 2004). The 

materials properties and parameters are listed in Table 3.1. There are 9 random variables 

where the means and Covs are listed in Table 3.2.  
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The pipe corrosion rate is modelled using Eq. (3.1).  Assuming the change of pipe surface 

due to corrosion is uniform over the entire surface area. It is assumed that the pipe is thin-

walled circular (plain) and placed above ground water level, i.e. Hw = 0. According to the 

references by Babu and Rao (2005) and Riha and Manteufel (2001), most of the random 

variables in Table 3.2 are normally distributed as these variables are found symmetric around 

their mean. However, the deflection coefficient (Kb) accounts for the bedding support which 

varies with the bedding angle and this variable’s logarithm is found normally distributed. 

 

4.3.1 RESULTS AND DISCUSSION 
 

In the case of buried pipes, the assessment of Pf on yearly basis is useful because it enables 

calculation of reliability over time using the MATLAB software. The Pf  for corrosion 

induced excessive deflection, buckling, wall thrust and bending stress with respect to time 

have been estimated using SS and MCS with material properties and random variables 

presented in Tables 3.1 and 3.2. In SS, the Pf is predicted as a sum of the sub failure events 

within each failure mode. The simple but pivotal idea behind SS is that a small failure 

probability can be expressed as a product of larger conditional failure probabilities for some 

intermediate failure events, suggesting the possibility of converting a problem involving rare 

events simulation into a sequence of problems involving more frequent events. SS is applied 

in this study with a conditional failure probability at each level equal to 1.00 p . The total 

number of samples, N used in MCS is 10
6
 for all the failure modes whereas SS needs 500 

samples to achieve the similar accuracy of the results. The results presented in Figures 4.3 to 

4.8 are in log scale of Pf to scrutinise the effectiveness of SS method in the region of small 

failure probability (< 0.1). 
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Figure 4.3: Probability of failure due to corrosion induced deflection using SS and MCS 

 

Figure 4.4: Probability of failure due to corrosion induced buckling using SS and MCS  

 

Figure 4.5: Probability of failure due corrosion induced wall thrust using SS and MCS 

N = 500 
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Figure 4.6: Probability of failure due corrosion induced bending stress or strain using SS and 

MCS 

 

As shown in Figures 4.3 to 4.6, the results reveal that corrosion-induced excessive bending 

stress is the most critical failure event whereas buckling has the lowest Pf during the whole 

service life of the pipe. Considering the failure probability of 0.1 (10%) as a threshold level 

for the safe service life (Babu and Srivastava, 2010; Phoon, 2008), the study illustrates that 

the safe service life in the worst case scenario is about 50 years.   

 

 

Figure 4.7: Probability of failure in series system due to corrosion induced multi-failure 

modes using SS and MCS 
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Pipeline contains multiple failure events in which any of the modes can lead to a system 

failure. The failure modes are correlated due to common random variables between the 

failure events. Therefore, a series system is considered for pipe failures prediction. The 

correlation coefficients between different failure modes show that all the failure modes are 

strongly correlated positively, i.e., where the failure modes might happen concurrently within 

a buried pipeline system (Tee and Khan, 2014). Thus, applying the theory of systems 

reliability, the probability of failure for a series system, Pf can be estimated by Eq. (3.32a) 

(Fetz and Tonon, 2008).   

 

The expected value of Pf for series system is determined in-between upper and lower bounds 

and the results are shown in Figure 4.7. The number of conditional levels is chosen to cover 

the required response level whose failure probability is estimated. The results show that the Pf 

values using MCS and SS have a good agreement over the pipe service life. 

 

Figure 4.8: Cov of pipe failure probability due to corrosion induced deflection for 50-year of 

service life  

 

Nevertheless, one of the advantages of SS over MCS is that SS is able to estimate small 

failure probability more efficiently which is demonstrated in Figure 4.8. In this analysis, the 

sample average values and Covs of failure probabilities are calculated using 50 independent 

runs. Coefficients of variation of failure probabilities due to corrosion induced deflection for 
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50-year of service life is plotted in Figure 4.8 for both SS and MCS. The results show that 

Covs achieved by SS and MCS are approximately the same in the large probability region. 

The values of Cov for SS and MCS coincide at Pf = 0.1, since according to the SS procedure 

with 1.00 p , this probability is computed based on an initial MCS. The study shows that the 

Covs are increased with decreasing failure probabilities because it is more difficult to 

estimate smaller failure probability, which is the main concern of SS. The value of Cov 

estimated using SS are always less than that using MCS and the difference is larger when the 

failure probability is getting smaller as shown in Figure 4.8. Thus, it is inefficient to use 

ordinary MCS when the failure probabilities are small. SS is robust and more accurate and 

efficient compared to MCS in the prediction of small failure probabilities. 

 

The improvement in accuracy also comes with considerable saving in computational time 

mainly due to smaller samples involved. The computational speed is measured in terms of 

Central Processing Unit (CPU) time on a 1.6-GHz Pentium IV personal computer. The study 

illustrates that SS (with 500 samples) needs 5–6 minutes to obtain the results whereas MCS 

(with 10
6
 samples) spends 15–17 minutes to achieve the similar results. Therefore, on the 

same computer, the saving in computational time of SS is about 67% as compared to MCS, 

which indicates the supremacy and accurateness of the proposed SS method. The 

computational time for MCS is generally higher than SS due to the high number of samples 

needed. 

 

 

Figure 4.9: Sensitivity of multiplying constant (k) for corrosion induced deflection during 

pipe service life using SS and MCS 
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Figure 4.10: Sensitivity of exponential constant (n) for corrosion induced deflection during 

pipe service life using SS and MCS 

 

Finally, two sensitivity analyses based on sample means are selected to evaluate the relative 

contribution of each random variable in pipe reliability estimation throughout the service life 

by applying Eqs. (4.5 – 4.7) and the results are shown in Figures 4.9 and 4.10. Note that for 

simplication, the Cov and sensitivity analyses have been presented only for failure due to 

corrosion induced deflection. Corrosion constants (multiplying constant, k and exponential 

constant, n) in Eq. (3.1) are considered as the dominant influencing parameters in pipe 

reliability (Tee et al, 2013a; Tee et al, 2014a). The study shows that, at the early stage of pipe 

service life, multiplying constant (k) and exponential constant (n) have a negligible effect on 

pipe reliability but the effect increases significantly with the pipe age as shown in Figures 4.9 

and 4.10. The similar trend has been found for other failure criteria, i.e., buckling, wall thrust 

and bending stress. This is attributed to the fact that corrosion does not cause any problem to 

new pipes but is mainly the root cause of failure and collapse for aging pipes. 

 

4.4  REAL CASE STUDY 

The proposed approach has been applied for time dependent reliability analysis for a real case 

buried pipeline in Bergenfield, New Jersey, United States. New Jersey is a state in the North-

eastern and Middle Atlantic regions of the United States. It is bordered on the north and east 

by New York State, on the southeast and south by the Atlantic Ocean, on the west by 
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Pennsylvania, and on the southwest by Delaware. The pipeline was a schedule 40 steel 

natural gas service line. The outside diameter was 4.24 cm and the inside diameter was 3.52 

cm. The operating pressure was 79.3 kPa.  

 

This pipeline was initially buried under asphalt pavement at an average depth of 0.838 m and 

extended from the gas main along the street to a three-story brick apartment building. Other 

data needed in the failure analysis that follows are the material properties of the steel 

pipeline. These properties include its tensile behaviour, on the basis of true stress of 483 

MPa. Other parameters are listed in Table 4.1.  There are 6 random variables where the mean 

and coefficient of variation are listed in Table 4.2. All the variables listed in Table 4.2 are 

normally distributed. 

  

Table 4.1:  Parameter values for real case study 

Symbol description Value 

Buoyancy factor, Rw 1.00 

Outside diameter of pipe, Do 0.0424m 

Inside diameter of pipe, Di 0.0352 m 

Pipe length, (L) 7.32 m 

Deflection lag factor, DL 1 

Shape factor, Df 4.0 

Deflection coefficient, Kb 0.11 

Capacity modification factor for soil, φs  0.90 

Capacity modification factor for pipe, 
p  1.00 

Initial thickness of pipe, t 0.0036 m 

Elastic modulus of pipe, E 207×10
6
 kPa 

Tensile strength of pipe, Fy 483 MPa 

Allowable Strain, cr 0.2% 
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 Table 4.2: Statistical properties of random variables for real case study 

Material properties Mean (μ) Cov (%) 

Backfill soil modulus, Es 2×10
3
 kPa 5 

Unit weight of soil, s 23.5 kN/m
3
 10 

Live load, Ps 79.3 kPa 10 

Multiplying constant, k 0.8 10 

Exponential constant, n 0.5 5 

Height of the backfill, H 0.838 m 15 

 

The available data are collected from the National Transportation Safety Board (NTSB) and 

the U.S. Department of Transportation approached the National Institute of Standards and 

Technology (NIST) (NBS became NIST in 1988) (Ricker, 2010). In this case, the corrosion 

empirical constants, k and n are predicted based on available NIST studies conducted in 

between 1922 to 1940 and relevance to pipeline management in New Jersey, USA.  Values 

for the basic data in the current study are presented in Tables 4.1 and 4.2.  

 

Due to limitation of available real data, some numerical values are assumed, namely, 

buoyancy factor, deflection lag factor, and capacity modification factor for soil and pipe. 

These assumed parameter values are commonly used in buried pipeline industry. Due to 

randomness of the variables, the coefficients of variation are assumed based on engineering 

practice in real field (Ahammed and Melchers, 1997; Watkins and Anderson, 2000).  The 

pipe is thin walled circular (plain) pipe and placed above ground water table. 

 

 

4.5 RESULTS FROM REAL CASE STUDY 

Three reliability analysis methods, Hasofer-Lind and Rackwitz-Fiessler algorithm, Subset 

Simulation (with 500 samples) and direct Monte Carlo Simulation (with 10
6
 samples) 

methods are applied to predict the probability of failure over time. The dominating failure 

criteria of flexible pipes are characterised by corrosion induced excessive deflection, 

buckling, excessive wall thrust and bending stress. The results of failure probabilities are 
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presented in Figures 4.11 – 4.14 for corrosion induced every failure mode for the above real 

case study. 

 

 

Figure 4.11: failure probability with respect to time due to corrosion induced deflection in 

case study 

 

Figure 4.12: failure probability with respect to time due to corrosion induced buckling in case 

study 
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Figure 4.13: failure probability with respect to time due to corrosion induced wall thrust in 

case study 

 

Figure 4.14: failure probability with respect to time due to corrosion induced bending stress 

in case study 

The calculations are performed using the failure mode Equations as discussed in Chapter 

Three. The results of the probability of failure are presented in Figure 4.11 to 4.14 to compare 

the results obtained from the three different methods. The results reveal that the probabilities 

of failure predicted by the three methods (HL-RF, SS and MCS) applying modified failure 

modes of corrosion induced deflection, buckling, wall thrust and bending stress are in a 

reasonable good agreement.  

 

The case study shows that corrosion induced excessive deflection is the most critical failure 

mode whereas wall thrust is the least susceptible failure mode over the whole service life of 

the pipe. Considering the failure probability of 0.1 (10%) as a threshold level for the safe 

service life (Tee et al, 2013a), the case study demonstrates that the safe service life in the 
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worst case scenario is about than 60 years with respect to available soil and pipe materials 

parameters.  

 

 

4.6 SUMMARY 

 
A Subset Simulation approach is proposed for time-dependent reliability estimation of buried 

pipeline system subject to corrosion induced failures modes. The results show that this 

method is robust to the choice of the intermediate failure events. One of the major 

complications to estimating small failure probabilities is to simulate rare events. SS resolves 

this by breaking the problem into the estimation of a sequence of larger conditional 

probabilities. It is found that the reliability analysis calculated by SS is in good agreement 

with that from MCS, while the efficiency of the SS method, which is indicated by the sample 

size and computational time, is higher than that of MCS. The study also shows that SS is 

robust and more accurate than MCS in small failure probability prediction based on Cov 

analysis. The analysis shows that behaviour of buried pipes is considerably influenced by 

uncertainties due to external loads, corrosion parameters, pipe materials and surrounding soil 

properties etc. where excessive bending is the most critical failure mode whereas buckling is 

the least susceptible during the whole service life of the pipe. At the end, a real case study on 

pipeline reliability analysis also been conducted where probability of failure with respect to 

time is predicted using HL-RF, MCS and SS methods. The results show that there is a good 

agreement among the applied methods. In real case study the most dominating failure mode 

is excessive deflection and least is wall thrust during the service life. This demonstrates that 

the pipes dominating failure mode is not constant and it depends on the random variables and 

properties of pipe materials, soil properties and pipe thickness, etc.   The estimation of failure 

probability can be utilised to form a maintenance strategy and to avoid unexpected failure of 

pipeline networks during service life.   
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RELIABILITY ANALYSIS 
 

 

 

 

104 

 



Reliability Estimation and Risk-Cost Optimisation of Underground Pipelines 

 

1 
 

5.1 INTRODUCTION 

Measuring the accuracy of a reliability analysis is an effective approach for enhancing the 

applicability and management process. Good methods for determining the threshold value for 

a pipe failure state provide a useful guidance on selection of the reliability prediction methods 

and compare different analysis techniques. Classical reliability theory and methodologies are 

rarely considered in the actual state of a system and therefore, these are not capable to reflect 

the dynamics of runtime systems and failure processes. Conventional methods are typically 

useful in design for long term or average behaviour predictions and comparative studies (Tee 

and Khan, 2013). But these are not good enough in the evaluation of the good accuracy in 

any crucial research and application areas, such as medicine, engineering construction, 

maintenance and data mining. Good accuracy provides useful guidance on selection of 

reliability assessment which has a direct impact on quality of care. One of the accuracy 

measurements of assessment methods is ‘Receiver Operating Characteristic (ROC) curve’ 

which is a statistical method applied for ordinal or continuous data, tends to use concepts like 

sensitivity and specificity to express the accuracy.  If an analysis results have only two 

values, such as yes or no, plus or minus, 1or 0 etc., then these are called binary data.  If the 

values are in a finite number of ordered, such as 1, 2, 3... or low, medium, large etc., are 

called ordinal data and if values are real data which are called continuous data. 

 

ROC curve has been commonly used for describing the performance of medical tests for 

parametric (data rely on particular distribution, such as mean and standard deviation) and 

non-parametric (not rely on data belonging to any particular distribution) analysis. The ROC 

curve has also been used in many other areas, such as signal detection, radiology, machine 

learning, data mining and credit scoring. The authors Debon et al (2010) and Arian et al 

(1998) conclude by identifying a knowledge gap and research possibilities, mainly relating to 

data collection and how to best use the existing data for the development and calibration of 

predictive deterioration models, risk assessment methods, etc. However, no such works have 

been found on buried pipeline reliability analysis in literature, where time dependent multi-

failure modes are considered. In this research, a ROC curve has been applied in buried 

flexible (steel) metal pipeline network where classical (or empirical) and Nonparametric 

Predictive Inference (NPI) technique are used for describing the performance of the reliability 

analysis for pipe failure due to corrosion induced deflection, buckling, wall thrust and 

bending stress. 
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In recent years, NPI has been developed as an alternative and frequent statistical framework 

method based on few modelling assumptions and considers one or more future observations 

instead of a population (Augustin and Coolen, 2004). It is a statistical method based on 

Hill’sassumption (Hill, 1968), which gives direct probabilities for a future observable random 

quantity, given observed values of related random quantities (Coolen-Maturi et al, 2011). NPI 

uses lower and upper probabilities for uncertainty quantification and has strong consistency 

properties within theory of interval probability (Augustin and Coolen 2004). From a statistics 

perspective, NPI is defined as a plot of analysis results as true positive fraction (TPF) or 

sensitivity along y coordinate versus false positive fraction (FPF) or its 1-specificity along x 

coordinate. Normally, ROC curve is useful in evaluating the discriminatory ability of an 

analysis, finding optimal cut-off point and comparing efficacy of two or more assessment or 

tests results.  

 

The multiple time-dependent failure conditions for underground flexible metal pipelines, 

namely, corrosion induced deflection, buckling, wall thrust and bending are considered in this 

study. The formulations for pipeline failure are presented in Chapter Three. The loss of 

structural strength is due to corrosion through reduction of pipe wall thickness which then 

leads to pipe failure. Pipe wall thickness is considered as a key random variable and Monte 

Carlo simulation has been applied to generate the thickness data based on pipe material and 

soil parameters. Due to lack of real case data, the Monte Carlo simulation has been applied to 

generate pipe thickness data for deflection, buckling, wall stress or thrust and bending stress, 

using Eqs. (3.7) to (3.15), based on pipe material and soil parameters in Table 3.1 and 3.2. In 

this analysis, 100 years of service life has been chosen for the study. However, any service 

life time can be chosen in this analysis. When the results of the actual value of the pipe 

condition (deflection, buckling, bending, etc.) are greater than threshold value or allowable 

limit, then this indicates failure condition and if the actual value is smaller than the allowable 

limit, then it indicates non-failure condition. However, in reality, pipelines may not follow 

the predicted pipe conditions which are estimated according to the applied formulas as 

mentioned in Chapter Three. Different researchers, such as Gustafson and Clancy (1999), 

Kettler  and Goulter (1985), Mailhot et al (2000) showed that there were 10% to 20% 

discrepancies in the actual and the estimated pipe conditions measured by available models 

(Cox’s proportional hazards model, Weibull and exponential distributions, etc.). Therefore, it 

is assumed that, these estimated data are not 100% accurate and there are up to 30% failure 
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and non-failure condition data are incorrect in this analysis (for worst case scenario). 

According to these considerations the aim of this Chapter can be summarised as follows: 

 

(a) To assess the accuracy of the buried pipeline reliability estimation for pipe condition 

data due to corrosion induced deflection, buckling, wall thrust and bending stress 

using ROC curve. 

 

(b) To identify the underground pipeline failure-prone situations, i.e. the threshold value 

for different failure modes. 

 

The contents of this Chapter are structured as follows. The basics of receiver operating 

characteristics (ROC) curve are studied in Section 5.2, where classical ROC and NPI for ROC 

curve are briefly discussed. In Section 5.3, a numerical example is considered for pipeline 

reliability accuracy prediction in ROC curve.  The results and discussion are presented for 

different failure modes in Section 5.4. Finally, conclusions are made on basis of outcomes in 

this study in Section 5.5. 

 

5.2 BASIC OF ROC CURVE 

ROC curves are two-dimensional graphs that visually depict the performance and 

performance trade-off of a classification model (Zhou et al, 2002). ROC curves are originally 

designed as a tool to distinguish between the actual results and analytical results. Sensitivity 

and specificity, which are defined as the number of true positive decisions (the number of 

actually positive cases) and the number of true negative decisions (the number of actually 

negative cases), respectively, constitute the basic measures of performance of ROC curve. A 

ROC curve displays the full picture of trade-off between the true positive fraction (TPF) or 

sensitivity and false positive fraction (FPF) or 1 – specificity across a series of cut-off points. 

Area under the curve is considered as an effective measure of inherent validity of an analysis 

or experimental result. It is a very powerful tool to measure the accuracy of analysis results 

and commonly used in medical field but currently ROC curves are also using in other fields, 

such as engineering and agricultures.   
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Figure 5.1: Basic of a typical ROC Curve (Arian et al, 1998) 

 

A ROC curve is applicable only for continuous data or at least ordinal data. A classification 

model classifies each instance into one of two classes; say a true and a false class. This rise to 

four possible classifications for each instance: (1) a true positive, (2) a true negative, (3) a 

false positive, and (4) a false negative. The classifications that lie along the major axis x and y 

of the curve are the 100% correct classifications, that is, the true positives and the true 

negatives, respectively (Figure 5.1). For a perfect model, only the true positive and true 

negative fields are filled out, the other fields would be zero. A number of regions of interest 

can be identified in a ROC graph. The ROC curve illustrates the relationship between TPF 

and FPF at all possible cut-off levels; therefore, it can be used to assess the performance of 

an analysis results independently with respect to the decision threshold. Area under ROC 

curve and the threshold value of the reliability assessment can be predicted from ROC curve 

which are main concerned in this study. Let Dc be a variable describing the pipeline 

condition, where Dc = 1 for pipe failure and Dc = 0 for non-failure condition. Suppose that Y 

is a continuous random quantity of a condition result and that large values of Y which are 

greater than threshold or allowable limit is a failure state. Using a threshold, for example c, 

the result is called positive if cY  , so it indicates the failure condition and if cY  , i.e., 

negative, pipe condition is non-fail condition, where ),( c . Obviously, an accurate 

assessment will have both sensitivity and specificity close to 1. Based on the above 
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conceptions, FPF, TPF and ROC curve can be estimated as below Eqs. (5.1) – (5.3) (Coolen-

Maturi et al, 2011) 

 

                                 (5.1) 

                                                                            

 (5.2) 

 

ROC = {(FPF(c), TPF(c), )},( c                                                            (5.3) 

 

Throughout this Chapter it is assumed that the two groups (failure and non-failure) are fully 

independent, i.e., no information about any aspect related to one group contains information 

about any aspect of the other group. If there are 1n conditions data from a failure group and 

0n data from non-failure group, then these can be denoted by 

},....,2,1,{ 1

1 niyi  and },....,2,1,{ 0

0 njy j  , respectively. For the classical (empirical) method, 

these observations per group are assumed to be realisations of random quantities that are 

identically distributed as Y
1
 and Y

0 
with corresponding survival functions ][)( 1

1 yYPyS   

and ][)( 0

0 yYPyS  .  According to Pepe (2003), the empirical estimator of the ROC can 

be estimated as below: 
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where 1{A} is the indicator function which is equal to1 if A is true and 0 else and where 1



S  

and 0



S  are the empirical survival functions for 1Y and 0Y , respectively. The empirical 

estimator of the ROC can also be written as below Eq. (5.7) 

)()0c( 0

0
| cSDYPFPF c 

)()1c( 1

1
| cSDYPTPF c 
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 (5.7) 

 

 

5.2.1 Area under ROC curve 

One of the very important factors of ROC curve analysis is the area under the ROC curve, 

denoted as AUC.  AUC can be estimated both parametrically and non-parametrically. The 

parametric estimation of AUC under the empirical ROC curve is the area under the curvature. 

On the other hand, the nonparametric estimation of the area under the empirical ROC curve is 

the summation of the areas of the trapezoids formed by connecting the points on the ROC 

curve. The nonparametric estimate of the area under the empirical ROC curve tends to 

underestimate AUC when discrete rating data are collected, whereas the parametric estimate 

of AUC has negligible bias except when extremely small case samples are employed. 

Therefore, for discrete rating data, the parametric method is preferred. For continuous or 

quasi-continuous data (e.g., a per cent confidence scale from 0% to 100%), the parametric 

and nonparametric estimates of AUC will have very similar values and the bias is negligible 

(Zhou et al, 2002). A useful way to estimate the area under the ROC curve, AUC, which can 

be expressed as below Eq. (5.8) (Coolen, 1996) 

 

dttROCAUC )(

1

0

                                                                                                            (5.8) 

According to Zhou et al (2002), the AUC is equal to the probability that the analysis results 

from a randomly selected pair of fail and non-fail group, as shown in Eq. (5.9) 

  

][ 01 YYPAUC                                                                                                               (5.9) 

 

The AUC measures the overall performance of the assessment. Higher AUC values indicate 

more accurate results, where AUC = 1 for perfect or ideal results and AUC = 0.5 for uninform 

results. So the AUC represents the analysis ability to correctly classify a randomly selected 

individual as being from either the failure group or the non-failure group. The empirical 

estimator of the AUC is the well-known Mann–Whitney U statistic can be presented as below 

Eq. (5.10) (Coolen-Maturi et al, 2011),  
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
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Sometimes, it may be of interest to use the area under ROC curve between two values of 

FPF, say 0t and 1t . This is known as the partial area under the ROC curve, called pAUC can 

be expressed as below Eq. (5.11) 

  


1
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t

dttROCtFPFtpAUCttpAUC                                                           (5.11) 

The pAUC can also be written as (Dodd and Pepe, 2003), 
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Note that Eq. (5.12) will also be used as partial area under the ROC curve to introduce NPI in 

the Section (5.2.3). The empirical estimator of pAUC (Dodd and Pepe, 2003) can be given by 

below Eq. (5.13) 
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The AUC value 0.50 to 0.75 is fair, 0.75 to 0.92 is good, 0.92 to 0.97 is very good and 0.97 to 

1.00 is considered as excellent result of an analysis (Huguet et al, 1994).  
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5.2.2 Optimum threshold value in ROC curve 

Another potential uses of the ROC curve is in optimising the threshold value of an 

assessment. The ROC curve comprises all possible combinations of sensitivity and specificity 

at all possible threshold values. This offers the opportunity to assess the optimal threshold 

value to be used in critical decision practice.  

 

                                                       

Figure 5.2:  A typical best cut-off or threshold value in the ROC curve (Indrayan, 2012) 

 

In practice, choosing an optimal threshold value based on ROC analysis is practicable only 

for continuous data. For continuous data, all operating points on the curve correspond to 

realistic threshold values are considered. Different criteria are used to find optimal threshold 

point from ROC curve, such as points on curve closest to the (0, 1) and Youden index (J) etc, 

(Indrayan, 2012) based on number of observed operating points (Figure 5.2). Most of the 

operating points on the ROC curve consist of sensitivity and specificity combinations that do 

not correspond to realistic threshold values. Naturally, one would identify the ‘optimal’ 

operating point as the point on the ROC curve that is closest to the ideal upper left-hand 

corner.  The optimal range of the operating point will thus, shift towards the lower left hand 

corner of the ROC graph. Ideally, such decisions should be made by linking the constructed 

ROC curve in explicit decision analysis. If NS  and pS  denote sensitivity and specificity 

respectively, the distance between the point (0, 1) and any point on the ROC curve can be 

predicted applying Eq. (5.14) as follows (Indrayan, 2012)  
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])1()1[( 22

pN SSd                                                                                                (5.14) 

 

where d is the distance from top point (0, 1) to any point on curve. To obtain the optimal cut-

off point, it is necessary to calculate this distance for each observed cut-off point and locate 

the point where distance is found minimum.  

 

The Youden index (J) is the point on the ROC curve which is farthest from line of equality. 

The main aim of Youden index is to maximise the difference between TPF ( NS ) and FPF 

)1( pS and little algebra yields ][ pN SSMaxJ  . The value of J can be located by doing a 

search of plausible value where sum of sensitivity and specificity is maximum value 

(Indrayan, 2012).  

 

 

5.2.3 NPI for ROC curve 

In NPI, the uncertainty is quantified by lower and upper probabilities for events of interest. In 

effect, the optimal lower and upper bounds for the ROC, AUC and pAUC can be derived. 

Suppose that }1,,....,2,1,{ 11

1  nniYi  are continuous and exchangeable random quantities 

from the failure group and }1,,....2,1,{ 00

1  nnjY j  are continuous and exchangeable random 

quantities from the non-failure group, where 1

11nY  and 0

10nY  are the next observations from 

the failure and non-failure groups following 1n  and 0n  observations, respectively. Let 

11

1 1
.... nyy   is the ordered observed values for the first 1n  pipes data from the failure group 

and 
11

0 0
.... nyy  the ordered observed values for the first 0n  pipes data from the non-failure 

group. For ease of notation, let  0

0

1

0 yy  and  

0

1

1

1 01 nn yy . Thus NPI can be used 

for reliability applications when the data represent failure and non-failure event which are 

non-negative. The NPI lower and upper survival functions for 1

11nY  and 01

10nY  can be 

determined as follows (Coolen-Maturi et al, 2012; Augustin and Coolen, 2004):  
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where 

P and 



P  are NPI lower and upper probabilities. As the ROC curve clearly depends 

monotonously on the survival functions, therefore, it is easily seen that the optimal bounds, 

which is defined to be the NPI lower and upper ROC curves areas are as follows (Coolen, 

1996): 
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Based on Eqs. (5.19) and (5.20) it is evident that the difference between upper and lower 

AUC can be expressed as follows (Coolen Maturi et al, 2012):  
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Eq. (5.21) indicates that it depends on the two sample sizes 0n and 1n  only. Similarly for the 

partial area under ROC curve can estimated using Eqs. (5.19) and (5.20) for any specific 

point of interest. 

 

5.3 NUMERICAL EXAMPLE 
 

The proposed ROC approach has been applied to a steel buried pipe under a heavy roadway 

subject to external loading and corrosion. Four underground pipeline failure modes, namely 

corrosion induced deflection, buckling, wall thrust and bending stress have been used to 
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illustrate the application of ROC curve in reliability accuracy estimation and failure threshold 

value prediction. The loss of structural strength is due to corrosion through reduction of pipe 

wall thickness which then leads to pipe failure. In this study, a 100-year of service life of the 

buried pipe has been chosen. Pipe wall thickness is considered as a classifier to distinguish 

between the failure and non-failure conditions. Due to lack of real data, 100 pipe wall 

thicknesses have been simulated at 100-year of service life using Monte Carlo method for 

each failure criterion based on soil and pipe material listed in Table 3.1 (Ahammed and 

Melchers, 1997; Sadiq et al, 2004; Babu et al, 2006).  

 

It is assumed that when actual pipe behaviour or pipe wall thickness exceeds the threshold 

value or allowable limit ( cY  ), the result is positive (D = 1), i.e. failure condition; and 

when cY  , the result is negative (D = 0), i.e. non-failure condition. However, there are 10% 

to 20% discrepancies in the actual and the estimated pipe conditions (Mailhot et al, 2000). 

Therefore, it is assumed that, the predictions of pipe failure and non-failure conditions are not 

100% accurate. The empirical and NPI lower and upper ROC curves have been applied for 

different failure modes with 10%, 20% and 30% inaccurate pipe reliability prediction. Tables 

5.1 to 5.4 show the pipe wall thickness with 10% inaccurate prediction for the case of 

corrosion induced deflection, buckling, wall thrust and bending stress, respectively.  

 

 

Table 5.1: Pipe wall thickness (m) with 10% inaccurate prediction for the case of deflection 

Failure group 

          

0.013711 0.013717 0.013638 0.01367 0.012256 0.013659 0.013754 0.013056 0.014336 0.013639 

0.013621 0.013749 0.013913 0.012942 0.013693 0.01367 0.01365 0.01395 0.013921 0.0138 

0.013989 0.01699 0.013639 0.012865 0.0138 0.01376 0.0139 0.01361 0.013821 0.013755 

0.013976 0.013431 0.014138 0.013709 0.013895 0.013147 0.013159 0.012774 0.012002 0.012245 

0.013983 0.013866 0.013934 0.017792 0.01386 0.016665 0.012867 0.01744 0.013876 0.016101 

          

Non-failure group 

          

0.011358 0.011579 0.0131 0.013198 0.013332 0.012482 0.012303 0.013431 0.012126 0.013077 

0.012755 0.013135 0.012934 0.011323 0.012859 0.012523 0.01289 0.013035 0.013332 0.013018 

0.012963 0.013181 0.013824 0.012724 0.012456 0.012408 0.012732 0.012675 0.014351 0.012753 

0.014237 0.013091 0.012728 0.011857 0.013177 0.013711 0.013231 0.013534 0.012028 0.014094 

0.013576 0.01348 0.013257 0.013538 0.014696 0.012475 0.013428 0.012847 0.012283 0.011654 
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Table 5.2: Pipe wall thickness (m) with 10% inaccurate prediction for the case of buckling 

Failure group 

0.016711 0.016717 0.016638 0.016621 0.016749 0.016913 0.012942 0.016693 0.01667 0.01665 

0.016989 0.01699 0.016639 0.012865 0.0168 0.01676 0.0169 0.01695 0.016921 0.0138 

0.016976 0.016431 0.016738 0.016709 0.013895 0.016847 0.016859 0.01661 0.013821 0.016755 

          

Non-failure group 

0.011358 0.011579 0.0131 0.013198 0.013332 0.012482 0.012303 0.013431 0.012126 0.013077 

0.012755 0.013135 0.012934 0.011323 0.012859 0.012523 0.01289 0.013035 0.013332 0.013018 

0.012963 0.013181 0.016824 0.012724 0.012456 0.012408 0.012732 0.012675 0.014351 0.012753 

0.014237 0.013091 0.012728 0.011857 0.013177 0.016711 0.013231 0.013534 0.012028 0.017094 

0.013576 0.01348 0.013257 0.013538 0.016696 0.012475 0.013428 0.012847 0.012283 0.011654 

0.01367 0.012256 0.013659 0.013754 0.013056 0.014336 0.013639 0.013983 0.013866 0.013934 

0.01744 0.013876 0.016101 0.013792 0.01386 0.013665 0.016867 0.012774 0.012002 0.012245 

          

 

 

Table 5.3: Pipe wall thickness (m) with 10% inaccurate prediction for the case of wall thrust 

Failure group 

0.013711 0.013717 0.013638 0.01367 0.012256 0.013659 0.013754 0.012056 0.014336 0.013639 

0.013621 0.013749 0.013913 0.012942 0.013693 0.01367 0.01365 0.01395 0.013921 0.0138 

0.013989 0.01699 0.013639 0.012865 0.0138 0.01376 0.0139 0.01361 0.013821 0.013755 

0.013976 0.013431 0.014138 0.013709 0.013895 0.013147 0.013159 0.012774 0.012002 0.012245 

0.013983 0.013866 0.013934 0.017792 0.01386 0.016665 0.012867 0.01744 0.013876 0.016101 

0.014237 0.013091 0.012728 0.011857 0.013177 0.013711 0.013231 0.013534 0.012028 0.014094 

0.013576 0.01348 0.013257 0.013538 0.014696 0.012475 0.013428 0.012847 0.012283 0.011654 

0.014351 0.013824         

          

Non-failure group 

0.011358 0.011579 0.0129 0.012198 0.013332 0.012482 0.012303 0.013431 0.012126 0.013077 

0.012755 0.013135 0.012934 0.011323 0.012859 0.012523 0.01289 0.012035 0.012332 0.013018 

0.012963 0.013181 0.012724 0.012456 0.012408 0.012732 0.012675 0.012753   
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Table 5.4: Pipe wall thickness (m) with 10% inaccurate prediction for the case of bending 

stress 

Failure group 

0.013711 0.013717 0.013638 0.01367 0.011256 0.013659 0.013754 0.011056 0.014336 0.013639 

0.013621 0.013749 0.013913 0.01142 0.013693 0.01367 0.01365 0.01395 0.013921 0.0138 

0.013989 0.01699 0.013639 0.01165 0.0138 0.01376 0.0139 0.01361 0.013821 0.013755 

0.013976 0.013431 0.014138 0.013709 0.01125 0.013147 0.013159 0.012774 0.012002 0.012245 

0.013983 0.013866 0.013934 0.017792 0.01386 0.016665 0.012867 0.01744 0.013876 0.016101 

0.014237 0.013091 0.012728 0.011857 0.013177 0.013711 0.013231 0.013534 0.012028 0.014094 

0.013576 0.01348 0.013257 0.013538 0.014696 0.012475 0.013428 0.012847 0.012283 0.011654 

0.012408 0.012732 0.012675 0.014351 0.012753 0.012963 0.013181 0.013035 0.013332  

          

Non-failure group 

0.011358 0.011579 0.0131 0.011198 0.013332 0.011482 0.011303 0.011431 0.011126 0.011077 

0.011755 0.011135 0.011934 0.011323 0.010859 0.011523 0.01189 0.013824 0.012724 0.012456 

          

 

 

5.4 RESULTS AND DISCUSSION 
 

The empirical ROC curves are applied for prediction of AUC and threshold value of pipe 

failure condition with 10%, 20% and 30% inaccurate reliability prediction for different 

corrosion induced pipe failure modes. The performance of the ROC curve analysis is 

computed in terms of the true positive and false positive rates. This traces the curve from left 

to right (maximum ranking to minimum ranking) in the ROC graph. That means that the left 

part of the curve represents the behaviour of the model under high decision thresholds 

(conservative) and the right part of the curve represents the behaviour of the model under 

lower decision thresholds.  

 

Empirical AUC, which is interpreted as the average value of sensitivity for all possible values 

of specificity, is a measure of the overall performance of the analysis for every failure case. 

The area under empirical ROC curve (AUC) is estimated using Eq. (18). AUC can take any 

value between 0 and 1, where a bigger value suggests the better overall performance of an 
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analysis with 95% confidence level. Figures 3 to 6 show that AUC is higher for the case of 

10% than that for 20% inaccurate prediction. Similarly, the case for 20% inaccurate 

prediction shows higher AUC than that for 30%. This indicates that the area under empirical 

ROC curve can be used to predict the reliability accuracy for different failure modes.  

 

Table 6 indicates that different failure modes have different AUC for the same percentage of 

inaccurate prediction due to randomness of the data. The analysis shows that if simulated 

inaccurate prediction is 10%, the accuracy of the results is still fair enough for all the failure 

modes (AUC > 0.75). However if it is more than 10%, the accuracy of the results falls below 

the acceptable value (AUC < 0.75) which is implemented in practice as suggested by Huguet 

et al (1994). 

 

The allowable limit and the corresponding threshold pipe wall thickness for each corrosion 

induced failure modes, namely deflection, buckling, wall thrust and bending stress can be 

calculated using pipeline design formula as discussed in Section 2. For example, in the case 

of corrosion induced deflection, the allowable limit of deflection is estimated as 5% of initial 

inside diameter of pipe. Then, the corresponding threshold pipe wall thickness is calculated 

using Eq. (3.7). Similarly, in the case of corrosion induced buckling, the allowable limit is 

estimated using Eq. (3.10) based on the assumption that the pipe fails when the actual 

buckling pressure is equal to the allowable buckling pressure and then the corresponding pipe 

wall thickness is calculated using Eq. (3.11). The same procedure is followed for other failure 

modes.  

 

Besides that, empirical ROC can also be used to determine the optimum threshold value of 

pipe failure condition. The threshold pipe wall thickness values are predicted for the failure 

modes of deflection, buckling, wall thrust and bending stress. This methodology has allowed 

establishing a threshold at which a pipe can be considered in high-risk condition. The 

optimum threshold value for each failure criteria predicted from the empirical ROC curve is 

obtained from Eq. (5.10) and the results are shown in Table 5.5 for comparison with the 

values obtained from pipeline design formula. Both results are reasonably close in which the 

optimum threshold pipe wall thickness obtained from empirical ROC curve is more 

conservative. The results show that the corrosion induced bending stress is the most 

dominating failure mode whereas buckling is the least susceptible failure mode.  
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Figure 5.3: Empirical ROC curve for pipe failure due to corrosion induced deflection for 

different percentages of inaccurate prediction 

 
Figure 5.4: Empirical ROC curve for pipe failure due to corrosion induced buckling for 

different percentages of inaccurate prediction 
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Figure 5.5: Empirical ROC curves for pipe failure due to corrosion induced wall thrust for 

different percentages of inaccurate prediction 

 

 

 
 

Figure 5.6: Empirical ROC curves for pipe failure due to corrosion induced bending stress for 

different percentages of inaccurate prediction 
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 Table 5.5: Threshold values and area under empirical ROC curves 

 Failure modes 

Deflection Buckling Wall thrust Bending stress 

Allowable limit using pipeline design 

formula 0.0605 m 1023.8 kPa 5867 kPa 450000
 
kPa 

Threshold wall thickness using 

pipeline design formula 0.0137 m 0.0171 m 0.0136 m 0.0132 m 

Optimum threshold wall thickness 

from empirical ROC curve 0.01357 m 0.0166 m 0.013 m 0.0128 m 

Area under empirical 

ROC curve with 

inaccurate prediction  

10% 0.89 0.78 0.80 0.76 

20% 0.68 0.67 0.68 0.70 

30% 0.55 0.63 0.58 0.56 

 

Next, NPI ROC curves are applied to estimate the lower and upper bounds of AUC for all the 

failure modes and the results are shown in Figures 5.7 – 5.10 and Table 5.6 with different 

percentages of inaccurate prediction. The NPI lower and upper areas under the ROC curves 

are calculated from Eqs. (5.19) and (5.20), respectively. As shown in Tables 5.5 and 5.6, the 

area under the upper bound of NPI AUC is always larger than empirical AUC for all the 

failure modes. It is clear that with increasing the percentage of inaccurate prediction, the 

areas under the upper and lower bounds of NPI are decreased. Therefore, the accurateness of 

the reliability prediction is decreased as shown in Figures 5.7 to 5.10 and Table 5.6.  

 

The performance of a prediction analysis should be judged in the context of the situation to 

which the data is applied. It can be seen that AUC for NPI is given in terms of upper and 

lower limits instead of a single curve. In this way it provides an interval of accuracy 

prediction which is more reasonable compared to classical ROC. Alternatively, the partial 

area estimation, where only a portion of the entire ROC curve needs to be considered, can 

also be used to predict the accuracy of an analysis when a particular FPF is useful indicator. 
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Figure 5.7: NPI lower and upper ROC curves for pipe failure due to corrosion induced 

deflection for different percentages of inaccurate prediction 

 

Figure 5.8: NPI lower and upper ROC curves for pipe failure due to corrosion induced 

buckling for different percentages of inaccurate prediction 
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Figure 5.9: NPI lower and upper ROC curves for pipe failure due to corrosion induced wall 

thrust for different percentages of inaccurate prediction 

 

 

Figure 5.10: NPI lower and upper ROC curves for pipe failure due to corrosion induced 

bending stress for different percentages of inaccurate prediction 
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Table 5.6: Area under NPI ROC curves  

% of inaccurate 

prediction 
NPI Area 

Failure modes 

Deflection Buckling Wall thrust Bending stress 

10%  
AUC  

0.92 0.86 0.87 0.90 

AUC  0.88 0.81 0.78 0.87 

20%  

 

AUC  
0.73 0.70 0.71 0.72 

AUC  0.67 0.64 0.66 0.65 

30%  
AUC  

0.60 0.61 0.60 0.59 

AUC  0.54 0.58 0.56 0.54 

 

 

Similar to empirical and NPI upper and lower bound AUC, the partial ROC area estimation 

also can be used to predict the accuracy of an analysis when a particular FPF is useful 

indicator, then only a portion of the entire ROC curve needs to be considered as briefly 

discussed in Section 5.2.1. 

 

 

5.5 SUMMARY 

In this Chapter, ROC curve has been applied in reliability analysis for underground pipelines 

due to corrosion induced deflection, buckling, wall thrust and bending stress. The ROC curve 

provides a performance assessment model for reliability prediction of pipe failure state 

function. The analysis shows that ROC curve is a useful technique to predict the optimum 

threshold value and the accuracy of the results. The area under the curve provides an 

objective valuation for the accuracy of an analysis with combinations of sensitivity and 

specificity values. Thus two or more reliability prediction methods can also be compared 

using ROC curve. The results demonstrate that with increasing inaccurateness of reliability 

prediction, the areas of the ROC curves (both classical and NPI) are decreased. Choosing the 

optimal operating point on the ROC curve which involves both maintenance and financial 

issues, can be ideally implemented in a formal risk-cost management process of buried 

pipeline network.  
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6.1 INTRODUCTION 

The world is moving towards adopting more proactive and optimised approaches to manage 

underground pipeline systems in a more sustainable way. These approaches mostly aim to 

maximise the return on investment by optimising the allocated budgets. Return on investment 

of such systems comprises of higher asset performance, lower risk of failure and lower life 

cycle costs, based on the proper decisions. Such decisions can range from determining the 

optimal maintenance or inspection interval to evaluate a proposed design changes and 

deliberate expenditure in order to achieve the reliability, performance and other benefits. 

These decision elements are inherently conflicting, so an integrated multi-objective approach 

is needed to develop a careful plan to satisfy these criteria in a balanced and optimised 

manner. The concept that needs to clarify is the meaning of ‘optimum’. The word is often 

used in phrases such as the optimum maintenance strategy or the optimum performance. 

Woodhouse (2001) stated that in areas where there are conflicting interests, such as pressures 

to reduce costs at the same time as the desire to increase reliability or performance or safety, 

an optimum represents some sort of compromise between the demand and performance. It is 

quite impossible to achieve the ideals - zero costs and at the same time total 100% reliability 

or safety etc. Till now the managing plans are typically performed in a manual and subjective 

manner with limited or no software support (Halfawy et al, 2008). Different research show 

that the vast majority of existing underground pipeline systems focus primarily on managing 

day-to-day operational activities, such as issuing and tracking work orders, mapping and data 

management, logging service requests, cost estimating, etc. But the optimum long-term 

management planning for the pipeline network is very limited. This scarcity is mainly 

attributed to the lack of systematised, standardised and quantitative models, e.g., 

deterioration, risk, prioritisation and optimisation models as well as the lack of adequate 

reliable data to support the application of such models. Finding the optimal strategy is not 

easy and the wrong maintenance strategy may result in excessive risks, costs and losses. 

Optimisation models for pipeline maintenance methodologies are still in their infancy 

condition compared to those in bridges, buildings and other civil engineering structures, 

although optimum design approaches for pipe structural systems are continuously evolving 

and improving (McDonald and Zhao, 2001). 

 

To address these problems, several countries have developed or initiated the development of 

pipe management systems to optimise the inspection and maintenance of deteriorated pipe 
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structures. Different optimisation approaches have been implemented in the different buried 

pipe management systems ranging from simplified economic models to advanced Markovian 

decision processes (Lounis, 2006). In the last decade, the reliability based optimal design of 

buried pipe distribution systems problem studied by several researchers and resulted in the 

development of a number of reliability models and the application of optimisation techniques 

(Rahman and Vanier, 2004). But the design of these models is based on future predefined and 

perfectly known working conditions, a premise that directly impacts the optimisation process. 

The imposed scenario may perform badly if the reality turns out significantly different. In the 

context of a proactive attitude toward these risks, it is important to consider these aspects at 

the beginning of the design phase. Arranging these activities in a proper time scale is also a 

difficult task. Different pipeline project requires different timetable to complete. The shorter 

project duration may leads to higher direct costs. In contrast, longer project duration may 

leads to lower direct and indirect costs. In such situations, it is important to study the trade-

off between completion time, risk involved in each resource option and the cost of the 

project. Trade-off between these conflicting aspects of a project is a challenging job and such 

cases, planners are faced with numerous possible combinations for project delivery. If 

durations of the activities are crashed, the cost may show an increasing trend due to more 

resources being allocated for its rapid accomplishment (Tee et al, 2014b; Khan et al, 2013; 

Ambrose et al, 2008).  

 

To overcome the above drawbacks and difficulties of the existing methods, the current 

research proposes a new step-wise integrated approach in developing optimisation plan using 

Genetic Algorithm (GA) that would identify the most appropriate compromise of renewal 

solutions while simultaneously optimising the renewal costs, condition state and risk of 

failure of the underground pipeline network. Life cycle cost (LCC) of pipeline network has 

been used as an objective function in the procedure. The LCC of a pipeline structure includes 

the initial costs or capital cost, including costs of design and construction plus costs of 

utilities, maintenance cost and failure risk cost over the lifetime of the structure.  

 

Due to uncertainty associated with the rate of failure and behaviour of buried pipeline system, 

the probabilistic pipe reliability methodology has been applied in optimisation process. The 

approach has been applied for flexible buried metal pipeline system which is involved in 

corrosion induced failure modes of deflection, buckling, wall thrust or stress and bending as 

127 

Chapter 6: Risk-Cost optimisation using Genetic Algorithm 



Reliability Estimation and Risk-Cost Optimisation of Underground Pipelines 

 

1 
 

mentioned earlier in Chapter Three. According to Sarma and Hojjat (2002), a few researchers 

have presented probabilistic reliability models for life cycle risk and cost optimisation of 

buried pipeline structures. The propose management option has yield a performance 

according to the risk involved and cost of the activities through service life. The proposed 

maintenance strategy enables decision maker to decide when and how to renew the pipes (i.e. 

the most effective maintenance strategy, which could be replacement, structural, semi 

structural and non-structural lining methods) at the minimum cost (Tee et al, 2014c). 

 

The contents of this Chapter are structured as follows. A brief description on the optimisation 

algorithm, GA has been presented in Section 6.2. In Section 6.3, problem formulation for 

LCC is presented. The parameters of LCC including capital cost, maintenance cost and 

failure risk cost are discussed in Section 6.4. In Section 6.5, the renewal methods are 

presented where condition index, impact assessment and priority are discussed for buried 

pipeline network. A numerical example is conducted to validate the proposed risk-cost 

optimisation process in Section 6.6. The results and discussion are presented in Section 6.7 

where pipe reliability, renewal time and methodologies, renewal priority and some parametric 

studies are presented. Finally, some concluding remarks are made based on the outcomes of 

the study in Section 6.8. 

 

 

6.2 OPTIMISATION ALGORITHMS 

Many optimisation techniques have been developed and used for the optimal design and 

management of underground pipeline network, such as Genetic Algorithm (GA), 

Deterministic Dynamic Programming Optimisation (DDPO), Fuzzy Set Method (FSM), 

Linear Programming (LP) and Discrete Differential Dynamic Programming (DDDP), etc. 

Some researchers, such as Berardi et al (2009), Rasekh et al (2010), Pan and Kao (2009), 

Abraham et al (1998), Stansbury et al (1999) and Li & Matthew (1990) adopted experimental 

approaches for simplicity and used for buried pipe network design problems. As GA is a 

powerful evolutionary and robust optimisation technique and can solve difficult distribution 

network design problems, GA has been applied in the current underground pipeline risk and 

cost optimisation process. It is very effective in finding the near optimal solutions and 

discrete pipe elements. A brief description of GA can be presented as follows:  
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6.2.1 Genetic algorithm 

 

The genetic algorithm owes its credit to the claim of simulating the real world evolutionary 

process, engineered by nature. It is mainly applied in the optimisation of tasks, scheduling 

and project planning. Three basic GA operators, such as selection and mating, crossover and 

mutation are used in designed process to mimic the nature as closely as possible. The 

principal purpose of this algorithm is to program a character, property or variable using a 

sequence of codes. With the help of stochastic generations, GA can form a set of initial 

possible solutions using the codes, called population. From this initial population, the 

algorithm explores the solution space and creates a new set of solutions by means of the 

genetic operators of crossover and mutation and selects the best optimal solutions. The main 

components, namely, selection, crossover and mutation are briefly described as below (Nafi 

et al, 2008; Prasad et al, 2003): 

 

a) Selection: Selection is used to apply upon the population in a manner similar to that 

natural selection found in biological systems. Poorer performing individuals are 

disappeared or out of the process and the better are survived. Better individuals are 

then having greater chance of performing new fitter genes. 

 

b) Crossover: This operator allows solutions to exchange information in a way similar to 

that used by natural organism undergoing sexual reproduction. Information can be 

totally or partially changed by fixed point crossover (constant percentage crossover) 

or variable point crossover (non-constant percentage crossover). 

 

c) Mutation: Mutation is used to randomly change the value of single bits within 

individual strings. The importance of mutation operator is securing evolving of string 

that includes the global optimum as the mutation allows the population to "leapfrog" 

over the global optimum. 

 

With referring to accurate definition of each variable and objective function, GA has been 

applied in flexible underground metal pipeline network management approach. The problem 

is considered as an unconstraint problem. In this research, the optimal management strategy 

has been performed through risk-cost optimisation. The whole life cycle cost has been used 

as an objective function in optimisation process where optimum cost and time need to be 

estimated with respect to optimum risk. Different pipeline network intervention alternatives 
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and several environmental and physical variables (loading, corrosion, soil density and 

modulus, pipe material, length, diameter, soil height etc.) are used as the structural 

deterioration of pipes which are used in the statistical model. The concatenation of these 

design variables defines a renewal policy that takes into account a string of codes, called 

chromosomes. The problem is treated as a multi-objective problem characterised by a 

technical objective defined by a risk measure and an economic objective defined by a total 

life cycle cost. For this study, GA has been selected as an optimisation search technique in 

the LCC analysis because (a) GA has no mathematical limitations on the type and number of 

decision variables, formulations of objective function or the formulation of the constraints, 

which is an important factor considering the complexity for driving the optimisation trade-off 

process and (b) GA has been proven to be robust and powerful algorithm for arriving at the 

global optimum in the vicinity of the local optima. The design variables for the problem 

studied are the possible alternatives for interventions on the pipeline network.  

 

 

6.3 PROBLEM FORMULATION 
  

The implementation of a quantitative assessment and risk-based life cycle management is a 

very complex task due to the difficulties of assessing quantitatively the probability of failure 

and the consequences of failure, especially for a large network of pipe structures. For a given 

pipeline distribution network, huge number of solutions can be selected through a range of 

decision variables and in such cases, probabilistic methods are used instead of mathematical 

models to search for the best solution. Life cycle cost (LCC) of pipeline network has been 

used as an objective function in the procedure. The LCC of a pipeline structure includes the 

initial costs or capital cost, including costs of design and construction plus costs of utilities, 

maintenance cost and failure risk cost over the lifetime of the structure. While project level or 

short-term planning would require more accurate assessment of direct, indirect, social, 

environmental costs, network level. For long-term planning could be reasonably conducted 

using approximate total cost figures as those compiled or estimated from the literature.  

 

The total life cycle cost, LCCC  can be presented as follows (Khan et al, 2013; Hinow et al, 

2008; Sarma and Hojjat, 2002): 
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  (6.1) 

 

 

where CA = The capital cost; oC  = Operation cost; i = 1, 2, 3,..., T years. 

 

The operation cost, oC  can be calculated by Eq. (6.2) as below: 

 

 

  (6.2) 

 

 

where MC the maintenance cost and RC  is the failure risk cost. 

 

The failure risk cost, RC  is influenced by the failure cost, fC  and the failure probability as a 

series system, Pf (determined by Eqs. (3.32)), the failure risk cost can be estimated as 

follows: 

 

                                                                                                   (6.3) 

 

 

 

Therefore, based on Eqs. (6.2) and (6.3), Eq. (6.1) can be rewritten as below: 

 

 

The life cycle cost, 
 

 

                                                                          (6.4) 

 

The cost terms in the right-hand side of the Eq. (6.4) are the costs in the year they actually 

occur. The (1+r)
T
 factor is used to convert the cost into its present value discounted by the 

discount rate of r, for the T years period. The discount rate depends on the prevailing interest 

rate and the depreciation of the currency or inflation rate. This rate is not a constant term and 

may vary over the life of the pipeline structure. From an economical point of view, the ideal 

goal of risk and cost management of pipeline network should be minimising the total LCC of 

the network. In this study, the problem of identifying the optimal intervention year is 

transformed into minimisation of total LCC (Eq. (6.4)). A poor maintenance policy often 

leads to early failure. On the other hand, a conservative maintenance policy may result in 

excessive costs. Therefore, underground pipeline network will require rehabilitation or 

replacement several times during the system design life. 
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6.4 PARAMETERS ANALYSIS 

 

6.4.1 Life cycle cost 

 
Life-cycle cost is the total cost of structure during its lifetime. The life-cycle cost is an 

important issue in the engineering design, especially for managing the large engineering 

construction works. LCC for buried pipelines includes all associated cost in the service life of 

a pipeline structure. Economical design and management is main goal of LCC analysis. If the 

initial cost of a pipeline structure is low but the utilities and maintenance costs are high, then 

the structure may not be considered as an economical design. Only a small fraction of the 

papers published in the area of structural optimisation deal with cost optimisation of pipeline 

structures where the cost calculations include capital cost, maintenance cost and failure risk 

cost (Ambrose et al, 2008). LCC normally does not include of penalty payments to 

customers, traffic disruption and other costs that utilities may encounter when a pipe fails and 

these would need to be examined on a case by case based on local conditions. For a cost-

effective approach, the ideal goal of the risk and cost management of the buried pipe network 

should be minimising the total life cycle cost of the network at an optimal time. Different 

features of typical buried pipelines life cycle costs are presented as follows: 

 

 

6.4.1.1 Capital cost  

 

The capital cost normally includes material and installation costs for pipelines and is a vital 

part of the LCC. According to Vipulanandan and Pressari (2003), the capital cost model for 

an underground pipeline network can be developed by breaking down the cost of construction 

into below major component: 

 

a) Cost of pipe material;  

b) Cost of installation; 

c) Cost of manhole material and installation (in case of sewer); 

d) Cost of wastewater treatment plant (in case of treatment plant); and 

e) Pump station cost (in case of pressure pipeline). 
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6.4.1.2 Maintenance cost  

 

Maintenance cost is calculated for a buried pipeline by determining the future value of each 

cost occurrence of a maintenance activity (routine maintenance), discounting each to a 

present value and then summing up all the cost values. Maintenance cost is estimated on an 

annual basis. The life expectancy as well as maintenance cost depends on the type of material 

used in the pipe structure. Frequent changes in weather, cracks, shrinkage and corrosion may 

reduce the life of an underground pipe structure. Moreover, in an exposed soil conditions, the 

pipe joints may accumulate dirt and debris and if proper maintenance is not done, this may 

lead to failure and incur cost.  

 

Apart from aforementioned reasons, geographic location also influences the maintenance 

costs. For example, a place with abundance of skilled labour force costs less than a place 

where labour force is scarce.  The maintenance costs of structures in a difficult terrain are 

often expensive. Time is also an important matter in maintenance policy. If maintenance time 

is delayed, it may lead to excessive cost. On the other hand, a conservative maintenance 

policy (early maintenance) may save extra costs.  

 

 

6.4.1.3 Risk of failure cost 

 

A number of planning models are currently available to allow the future costs of pipeline 

failures for buried pipeline networks (Ambrose et al, 2008). However, these models are 

required detailed analysis of the failure data for all pipe assets and some required specific 

failure curves for each class (sewer, water, etc.). Ambrose et al (2008) stated that database on 

pipe failure statistics are often incomplete and/or limited and in many cases it is difficult to 

ascertain whether a failure resulted from the pipe replacement (if the pipe was replaced at the 

end of its economic life) or newly installed pipe. In the context of reliability engineering and 

risk management, the failure risk depends on the type of pipeline (steel, ductile iron, concrete 

pipes etc.). For underground pipelines, the consequence of failure cost is measured based on 

the consequences of failure rehabilitation or remediation costs, social and environmental 

costs multiplied by the probability of failure (Rajani and Kleiner, 2004). In other way, the 

risk of failure cost can be expressed as Eq. (6.5): 

 

Risk of failure cost = E (failure consequence) = f (probability of failure, failure costs)      (6.5)     
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The direct costs are those costs related to the failure cost paid either “out of pocket” by the 

utility or through the utility’s insurance carrier. Examples of common direct costs are as 

below (Peter et al, 2007): 

 

a) Landscaping/restoration costs;  

b) Attorney fees and other legal costs;  

c) Utility construction staff labours;  

d) Cost of repair materials taken from stock; and  

e) Claims paid by utility or utility’s insurance.  

 

Indirect costs, on the other hand, are costs not paid out of pocket by the utility authority or 

their insurance carrier. Indirect costs are paid, either in terms of actual expenditures by others 

or in terms of the value of lost wages and lost productivity of others.  Some common costs 

that are identified as indirect cost are as below (Peter et al, 2007): 

 

a) Value of people’s time delayed in traffic/detours;  

b) Lost production of commercial/industrial work;  

c) Cost of illness and injury; 

d) Cost of flooding damage to structures and cars;  

e) Damage to parallel utilities (not reimbursed by the utility authority);  

f) Cost of police, fire and emergency services (not reimbursed by the utility authority); 

and  

g) Damage to transportation systems (cost for damages to trains, subways, state roads / 

bridges and parking facilities, not reimbursed by the utility authority).  

 

Furthermore, indirect costs are classified as hard and soft indirect cost. Hard indirect costs are 

those costs which are sometimes paid by utilities, such as property damage (typically 

flooding damage), parallel utility damage, costs for emergency services and damage to public 

transportation systems, etc. Soft indirect costs are those costs which are never paid by water 

or wastewater, such as costs for traffic delays, water outage, lost productivity, reduced fire 

fighting capability, injury and illness (medical bills), etc.  

 

Typically, with respect to time, buried metal pipe components deteriorate and the probability 

of failure increase due to different loadings and corrosion. As long as the pipe continues to 
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age and deteriorate without renewal, the risk increases as well as cost. Like maintenance cost, 

the failure cost is also increased if pipe renewal is delayed. In some cases, the risk of failure 

cost of also likely to increase with respect to location. For example, when a pipe is located in 

a rapidly developing area, there is more chance to pipe fail than a less developed area.  

 

 

6.5 SELECTION OF RENEWAL METHODS 

 

The underground pipeline renewal technologies are growing rapidly and becoming more 

efficient and cost-effective for underground pipeline network. Different renewal methods 

exhibit different capabilities, limitations, costs and benefits. The particular characteristics of 

the buried pipes (e.g., material, diameter, etc.) and site conditions (e.g., soil, water table, 

traffic etc.), along with other operational, social and environmental factors determine the 

applicability of different renewal methods in a particular situation. Based on pipe and site 

conditions, Water Resource centre (WRc, 2001) presented a simple procedure for renewal of 

buried pipes for possibility of soil loss based on soil type and groundwater level; and renewal 

categories based on the condition index and the possibility of surrounding soil loss as shown 

in Table 6.1 and Table 6.2. In this research, the underground pipeline management strategy 

complements the aforementioned risk-cost optimisation by identifying applicable renewal 

categories based on the condition index and the possibility of surrounding soil loss. In any 

given scenario, some renewal methods are more applicable and cost effective than others and 

therefore, a systematic procedure for selecting feasible methods is needed.  

 

Table 6.1: Selection of renewal categories based on condition index and soil loss possibility 

Cond. Index 
Possibility of soil loss 

Low Medium High 

2 
Non-structural or semi- 

structural 

Non-structural or 

semi- structural 

Semi- structural, 

structural or replacement 

3 
Non-structural or semi- 

structural 

Semi- structural or 

structural 

Semi- structural, 

structural or replacement 

4 and 5 Structural or replacement 
Structural or 

replacement 
Structural or replacement 
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Table 6.2: Possibility of soil loss based on soil type and groundwater level  

 

Soil Type 

Groundwater level 

Below pipe Same line with pipe Above pipe 

Clay Low Medium High 

Gravels and low plasticity 

clay 
Low Medium High 

Silt and sand High High High 

 

 

The renewal methods are grouped into four main categories in this study: replacement, 

structural, semi structural and non-structural lining methods. Generally, replacement is 

normally recommended when the pipes are collapsed or out of work and cannot be repaired. 

If the pipe repair cost is high compare to a new pipe, also replacement is recommended 

instead of repair. Structural liners are defined to be capable of carrying hydrostatic, soil and 

live loads. Structural liners are expected to be independent i.e., bonding with original 

pipelines is not required. Semi structural liners are designed to withstand hydrostatic pressure 

or perform as a composite with the existing pipelines. Semi structural liners could be 

designed as interactive or independent and typically are not used for gravity pipelines 

(Halfawy et al, 2008). On the other hand, non-structural liners are used mainly for gravity 

pipelines system to improve flow, resist corrosion, or to seal minor cracks on pipe surface 

(Heavens, 1997). 

 

 

6.5.1 Condition index 

The maintenance strategy can be implemented by identifying applicable renewal categories 

based on the underground pipeline condition which is called condition index or mean 

structural pipe grade. The purpose of the condition index is to objectively rate or scale the 

current condition of buried pipes based on several physical, environmental, and operational 

factors, which provide the basic terminology and framework .The condition index (CI) can be 

calculated from the regression model (Newton and Vanier, 2006; Khan et al, 2013; Tee et al, 

2014b) as Eq. (6.6) (Figure 6.1): 

(6.6) 
10003.00003.0 2  TTCI
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Figure 6.1:  Underground pipeline deterioration models using MIIP dataset 

  

where T = age of the pipe (in year) which corresponds to the intervention year obtained from 

the risk-cost optimisation. The renewal methods are selected based on detailed analysis of 

possible defects, as indicated by the condition index and the possible scenarios of soil loss. 

For example, a pipe with condition index 3 and high possibility of soil loss will need 

replacement or the use of a structural liner to carry loads and stabilise deformation. At a 

minimum, a semi structural liner that can withstand hydrostatic pressure is required. 

 

6.5.2 Impact assessment  

The criterion used to renewal of pipes is the degree of impact of an underground pipeline 

failure. The impact assessment ranks the pipe segments in unit length in terms of six major 

factors, namely, location, embedment soil, pipe size, burial depth, functionality and seismic 

zone. The assessment generates a rank of impact for the underground pipeline system. The 

premise for an impact factor follows from the fact that not all pipe segments in a network 

have the same likelihood of failure or the same consequence of failure. 

 

Each of the six factors is assigned a degree of impact defined by low, medium or high. How 

each factor is assessed is explained below (McDonald and Zhao, 2001): 

 

1. Location: The impact based on pipe location is assessed on how the public and 

environment will be affected if failure occurs. The contributing aspects include land 
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use, traffic intensity, access for repair, location under or adjacent to critical 

establishments and environmental classifications. For example a segment of pipe 

within an airport perimeter or under 6 lanes of traffic or in a commercial area will 

have a high degree of impact (rating of 3). On the other hand, a pipe in an industrial 

park or under 1 or 2 lanes of traffic will have a low degree of impact (rating 1).  

 

2. Soil: Soil support is an integral component of the pipe-soil system. Void formation 

and loss of soil support resulting from fractures and open joints in the presence of 

sufficient hydrostatic head can contribute to premature pipe failures. The types of 

supporting material that pose the greatest threat are silts and sands (rating of 3), while 

medium to high plasticity clays have the lowest degree of impact (rating 1).  

 

3. Pipe size: The magnitude of repair work and the selection of rehabilitation methods 

are dependent on pipe size. If a failure occurs, the size of the pipe will have an impact 

on the amount of contamination to the surrounding environment. As a result, a pipe 

with a diameter (or vertical size) of less than 900 mm is given a low rating (1) while 

those with diameters greater than 1800 mm are given a high rating (3).  

 

4. Burial depth: The deeper a pipe is buried, the greater the degree of difficulty in 

accessing it for repair and inspection. The burial depth rating will be low (1) for pipe 

buried less than 3 m and high (3) for a burial depth greater than 10 m.  

 

5. Functionality: The function of the underground pipeline includes both the types of 

liquid carried and the location of the segment of the system. For example, the 

environmental consequences will be more severe for a sanitary underground pipeline 

failure than a storm underground pipeline failure. Also, the failure of a pipe segment 

entering the treatment plant will be more severe than that of a collector pipe. The 

rating for a high degree of impact is 3 (pipe entering/ exiting a treatment plant) and 1 

for a low degree of impact (collector pipe).  

 

6. Seismic zone: Areas prone to seismic activity based on velocity or acceleration are 

assigned a rating of 1 for a low seismic (zone velocity or acceleration between 0 and 

2), and 3 for a high seismic zone (zone velocity or acceleration between 5 and 6).  
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For all of the factors listed above, the medium degree of impact falls between the high and 

low extremes and is assigned a value of 1.5. A weighted impact factor (Iw) is used to combine 

the influence of each of the six factors described above for each pipe segment within the 

system as below Eq. (6.7) 

 

(6.7) 

 

where  fl = location factor, fs = embedment soil factor, fz = size factor, fd = burial depth factor, 

ff = underground pipeline function factor and fq = seismic factor. Although these factors do 

not change dramatically from year to year, periodic updating may be necessary. The failure 

impact rating can be assessed based on Table 6.3 (WRc, 2001). 

 

Table 6.3: Failure impact rating  

Weighted impact factor, Iw Failure impact rating, Rimp 

1.00 

1.01 – 1.60 

1.61 – 2.20 

2.21 – 2.80 

>2.81 

1 

2 

3 

4 

5 

 

 

6.5.3 Prioritisation 

Once the weighted impact rating is determined for individual pipe segment, the impact 

assessment can then be used in a number of ways in the decision-making process. The impact 

ratings can be used in combination with the physical condition rating of a pipe to prioritise 

rehabilitation or replacement work and the future inspection frequencies (Table 6.4) (WRc, 

2001).  For instance, among the pipe segments with the same physical condition rating, those 

with higher impact ratings would be considered first for rehabilitation. Finally, in high 

seismic areas, those pipe segments surrounded by soils with high liquefaction potentials 

should be identified.  

 

 

 

)(16.02.0 qfdzslw ffffffI 
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Table 6.4: Renewal priority 

Structural 

condition index 

Implication Failure impact rating 

(Rimp) 

Renewal priority 

5 

 

Failed or failure 

imminent 
1 to 5 

Immediate 

 

4 
Very poor condition 

High structural risk 

5 

1 to 4 

Immediate 

High 

3 
Poor condition 

Moderate structural risk 

4 to 5 

1 to 3 

Medium 

Low 

2 
Fair condition 

Minimal structural risk 
1 to 5 Low 

1 or 0 
Good or excellent 

condition 
1 to 5 Not required 

 

 

 

6.6 NUMERICAL EXAMPLE 

 

An underground pipeline network under a heavy roadway subjected heavy load operating 

conditions, passed under commercial and residential areas is taken as a numerical example to 

validate the proposed risk-cost optimisation management strategy in this Chapter. The 

underground pipeline network consists of approximately 789 kilometres of sanitary flexible 

underground metal pipelines, constructed in 1940. The network consists of six segments of 

pipeline, termed as A to F (Table 6.5). The whole network constructed above the ground 

water table. As mentioned earlier, LCC includes all appropriate costs including initial 

construction costs, maintenance, repair and renewal costs, social costs and decommissioning 

costs as well as carbon dioxide emissions mitigation cost is used as an objective function. The 

analysis period under consideration should be long enough to cover the service life of the 

infrastructure system. All alternatives for maintenance and renewal should be considered. 

The essence of LCC is that one alternative may have a higher initial cost, but its costs over 

the asset’s life cycle may be lower than other alternatives.  
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 Table 6.5: Pipe materials and location properties 

Pipe 

section 
Material Location 

Embed 

soil 

Length 

(km) 

Mean 

diameter 

(mm) 

Thickness 

(mm) 

Soil 

height   

(m) 

Traffic 

load 

(kPa) 

A 

 
Steel Commercial Clay 155 500 8 2.0 100 

B 

 

Ductile 

iron 
Commercial Clay 96 600 8 2.0 100 

C 

 
Steel Residential Sand 112 600 9 2.1 100 

D 

 
Steel Residential Sand 223 480 7.5 2.5 90 

E 

 

Ductile 

iron 
Residential 

Sandy 

Gravel 
88 350 7 2.2 100 

F 

 

Ductile 

iron 
Commercial 

 

Sandy 

Gravel 
115 500 8 1.8 100 

 

 

 Table 6.6: Statistical properties of the materials and soils 

Symbol description Mean value  Coefficient of 

Variation % 

Distribution 

Buoyancy factor, Rw 1.00 - - 

Trench width, Bd 2.00 m - - 

Soil reaction modulus, E  4.04 MPa - - 

Shape factor for steel pipe 4.0 - - 

Shape factor for ductile iron pipe 4.4 - - 

Capacity modification factor for pipe, ϕp 1.00 - - 

Capacity modification factor for soil, φs 0.90 - - 

Tensile strength of pipe for Steel 450 MPa - - 

Tensile strength for Ductile Iron 330 MPa - - 

Poisson Ratio for steel pipe 0.3 - - 

Poisson ratio for ductile iron pipe 0.27 - - 

Elastic modulus of steel pipe 210 GPa 1.0 Normal 

Elastic modulus of DI pipe   170 GPa 1.0 Normal 

Soil modulus, Es 2×10
3
 kPa 5 Normal 

Unit weight of soil,  18.0kN/m
3
  2.5 Normal 

Traffic load (Live load), Ps Refer to Table 6.5 10.0 Normal 

Deflection coefficient, Kb 0.11 1.0 Lognormal 

Multiplying constant, k 2.0 10.0 Normal 

Exponential constant, n 0.3 5.0 Normal 

Thickness of pipe, t Refer to Table 6.5 1.0 Normal 
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The capital cost, maintenance cost and failure consequence cost are predicted or calibrated 

based on real case study on Municipal Infrastructure Investment Planning (MIIP) in Canada, 

(Rahman and Vanier, 2004), Melbourne water report (2012) and Davis et al (2008) report. 

The capital cost, maintenance cost and failure consequence cost (future values) are mentioned 

in Table 6.7 on the yearly basis. As discount rate is not currently available in the cost 

breakdown, a typical discount rate (UK) 5% is considered in this example. Two different 

typical flexible underground metal pipes, namely, steel and ductile iron (DI) have been used 

in the whole network. 

 

 

Table 6.7: Cost break down for pipe network (Future value) 

Pipe section Operation cost  Maintenance cost  Failure cost 

A £88050
 

£19100 £88.4m 

B £47800 £7960 £78.1m 

C £71300 £7920 £87.3m 

D £84030 £11200 £132m 

E £29040 £7920 £69.2m 

F £53200 £7108 £86.5m 

 

 

The statistical properties of materials are shown in Table 6.6. It is presumed that the whole 

underground pipeline network located in a high seismic vulnerable zone area. Table 6.7 

summarises the cost data (Future value) for the whole network sections (A – F). The pipes in 

the network are consisted of medium size steel and ductile iron pipes. The network is 

subjected to corrosion and its corrosion rate is modelled using Eq. (3.1). The underground 

pipeline material, location and soil parameters are listed in Table 6.5. There are 9 random 

variables (elastic modulus of pipe, soil modulus, soil density, live load, deflection coefficient, 

corrosion coefficients, pipe wall thickness and height of the backfill) where the mean and 

coefficient of variation are listed in Table 6.6. All of them are considered as a uniformly 

distributed, except the deflection coefficient which is log-normal distributed. After the pipe’s 

life cycle, the pipe is disposed, recycled, or abandoned.  
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6.7 RESULTS AND DISCUSSION 
 

The structural reliability of the underground pipeline network is first estimated and then the 

risk-cost optimisation is performed to predict the optimal maintenance or renewal time which 

takes into account the reliability analysis and life cycle cost. The probability of pipeline 

system failure (reliability) is predicted by MCS for every failure mode and then an upper and 

lower bound is predicted as a series system. Then the optimal time to repair or replace is 

estimated with respect to LCC using GA which is performed in MATLAB software. The 

proposed maintenance strategy enables decision maker to choose a feasible renewal method 

based on the calculated optimal renewal time. The results and discussion are presented as 

follows: 

 
 

 6.7.1 Pipe reliability 

 

The probabilities of failure due to corrosion induced deflection, buckling, wall thrust and 

bending with respect to time are estimated using MCS method based on the parameters and 

basic variables given in Tables 6.5 and 6.6. The occurrence of either failure mode of the pipe 

will constitute its failure. Therefore the probability of failure of the underground pipeline 

network is determined as a series system using Eq. (3.32a) and the results are shown in 

Figures 6.2 – 6.7. When the thickness of the pipe is reduced due to corrosion, the moment of 

inertia and the cross-sectional area of pipe wall are decreased with a resulting reduction in 

pipe strength as Eqs. (3.5) and (3.6), respectively. As all the random variables are considered 

as uniformly distributed, except the deflection coefficient which is log-normal distributed. 

Thus Rackwitz-Fiessler algorithm has been applied to transform its distribution from log-

normal to normal in this study. 
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Figure 6.2: Probability of failure for pipeline section A using MCS 

 

 

 
Figure 6.3:  Probability of failure for pipeline section B using MCS 

 

 
Figure 6.4: Probability of failure for pipeline section C using MCS 
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Figure 6.5: Probability of failure for pipeline section D using MCS 

 

 
 

Figure 6.6: Probability of failure for pipeline section E using MCS 

 

 
Figure 6.7: Probability of failure for pipeline section F using MCS 
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The study shows that on average the probability of pipe failure at the beginning is close to 

zero and it remains unchanged until about 45 years of service life, then it gradually changes 

as time increases and after 50 years, the probability of failure rises drastically. The upper 

bounds of the failure probability obtained from Figures 6.2 – 6.7 have been used for the 

subsequent risk-cost optimisation as a worst case scenario. 

 

 

6.7.3 Optimal cost and time 

As shown in Eq. (6.3), the failure risk cost is calculated by multiplying failure cost with the 

probability of system failure. Once the probability of system failure has been calculated, the 

optimal time to repair or replace and the associated life cycle cost are obtained from the risk-

cost optimisation using GA. In this example, the population size and the maximum number of 

generations were set to 100 and 150 respectively. The algorithm used a single point cross 

over with probability of 0.50. The mutation probability was set to 0.50 and the bit mutation 

probability was set to 0.01. GA used a tournament selection scheme, with tournament size of 

4.  Figures 6.8 – 6.13 show the convergence of total LCC obtained from risk-cost 

optimisation for different pipe sections, A – F. The optimal LCC cost is associated with the 

first maintenance.  

 

Next, the proposed maintenance strategy is extended to determine an applicable and feasible 

renewal method using Tables 6.1 and 6.2. The recorded database shows that the underground 

pipelines are built on clay, sand and sandy gravel type soil. In addition, all types of pipelines 

are above the groundwater level. Based on this information and according to Table 6.2, the 

possibility of soil loss for sanitary underground pipeline sections A and B is low, whereas for 

sections C to F, the possibility of surrounding soil loss is high. The condition index (CI) for  

is estimated using Eq. (6.6) as shown in Table 6.7 by substituting the identified optimal time 

to renew from the risk-cost optimisation process. Applicable renewal categories are then 

selected from Table 6.1 based on the underground pipeline CI and the possible scenario of 

soil loss. The sections A, B and C pipelines are required to renew using non-structural or 

semi-structural lining method based on the estimated CI and low possibility of soil loss. On 

the other hand, due to high possibility of soil loss and CI >2, the sections D and E pipelines 

are needed to renew using semi-structural or structural liners. Finally, due to high possibility 

of soil loss and CI>3, the section F should be renewed with structural liners or replacement. 
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Alternatively, replacement is also recommended for other sections if the repair cost becomes 

greater than the cost of replacing the pipes. 
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Figure 6.8: Life cycle cost for pipeline section A using GA 
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Figure 6.9: Life cycle cost for pipeline section B using GA 

 

147 

Chapter 6: Risk-Cost optimisation using Genetic Algorithm 



Reliability Estimation and Risk-Cost Optimisation of Underground Pipelines 

 

1 
 

0 50 100 150
0

2

4

6

8

10

12

14
x 10

9

Generation

L
if

e
 c

y
c
le

 c
o

s
t,

 £

Best: 1417588921.604; Mean: 1418845515.1778

 

 

Best fitness

Mean fitness

 
 

Figure 6.10: Life cycle cost for pipeline section C using GA 
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Figure 6.11: Life cycle cost for pipeline section D using GA 
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Figure 6.12: Life cycle cost for pipeline section E using GA 
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Figure 6.13: Life cycle cost for pipeline section F using GA 

 

 

6.7.4 Renewal priority selection 

The renewal approach is illustrated for the exampled underground pipeline which consists of 

steel pipes and ductile iron pipes. Based on the underground pipeline’s inventory information 

and alignment, an impact assessment has been carried out considering all six major impact 

factors as mentioned in Section 6.6.2. For example, an impact assessment for Section A can 

be shown as below Table 6.8.  
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Table 6.8: Impact assessment for pipe section A 

 

 

 

Table 6.4 summarises the renewal priority based on the structural condition index and failure 

impact ratings (Zhao et al, 2001). The renewal priority index (PI) is predicted based on pipe 

failure impact rating and structural CI as shown in Table 6.4. Applying the weighted formula 

Eq. (6.7), the degree of impact 1.88 is predicted for pipeline section A. Therefore, the 

corresponding failure impact rating is 3 (Table 6.3), which means that the impact on 

underground pipeline section A is moderate in terms of likelihood of failure and/or the 

severity of failure consequence. With respect to this impact rating with the structural 

condition index, the renewal priority can be selected in decision making process. According 

to Table 6.4, the pipe section A has low structural risk and therefore, low renewal priority 

need to be given as shown in Table 6.9. Once renewal is accompanied the pipe’s overall 

serviceability is increased (failure probability is reduced) due to repair or replace the pipe.    

 

 

 

 

 

 

 

 

 

Factor   
 

Degree of impact 
 

           Rationale 

       Location 
 

High (3) 
  

Commercial area 

       Embedment soil Medium (1.5) 
 

Clay 
 

       Size 
 

Low (1.0) 
 

Diameter < 900 mm 

       Burial depth Low (1.0) 
 

Ranges from <3 m 

       Function (sanitary) Medium (1.5) 
 

Sanitary pipeline 

       Seismic zone High (3) 
  

High seismic area 
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Table 6.9: Results of pipelines risk-cost optimisation using GA 

Pipe 

section 

Optimum 

Life cycle 

cost (£b) 

Renewal 

time 

(year) 

Structural 

Condition 

index (CI) 

Renewal 

priority 
Renewal methodology 

A 2.0 62 2.2 
Low, minimal 

structural risk 
Non-structural or semi-structural  

B 1.35 63 2.3 
Low, minimal 

structural risk 
Non-structural or semi-structural 

C 1.41 66 2.25 
Low, minimal 

structural risk 
Non-structural or semi-structural 

D 2.13 62 2.2 
Medium, poor 

condition 

Semi-structural, structural or 

replacement 

E 1.29 72 2.5 
Medium, poor 

condition 

Semi-structural, structural or 

replacement 

F 1.33 88 3.5 

Immediate, 

high structural 

risk 

Structural or replacement 

 

 

 

6.7.5 Parametric study 

 

A parametric study has been carried out to analyse the effects of different parameters on 

reliability and life cycle cost of the underground pipeline network. For example, if soil 

properties, such as soil modulus or soil density changes, this will affect probability of failure 

and hence reliability and life cycle cost of the pipeline network. As shown in Figure 6.14, the 

life cycle cost increases drastically when soil density is increased from 16 kPa to 20 kPa. The 

parametric study also demonstrates that with increasing soil height above pipeline decreases 

service life and increases life cycle cost of the pipeline network as illustrated in Figure 6.15 

for soil height from 3.0 m to 3.75 m. Figure 6.16 shows that when discount rate varies from 

5% to 7%, the whole life cycle cost also varies significantly. Similarly, other factors such as 

pipe dimension including pipe thickness and diameter, live load, etc. influence pipe failure 

probability and consequently affect its life cycle cost. Due to sudden increase the failure 

probability after 40 to 45 years (Figures 2 – 7) the life cycle cost is low until 40 years and 

then drastically increases (Figures 6.14 – 6.16).  
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From analysis of the different parameters of the pipeline materials, adjacent soil types, live 

load and discount rate influence the pipe reliability and cost in different ways. For example, if 

the soil type changes (soil modulus, soil height and soil density etc.) from location to 

location, the life cycle cost also varies with change of probability of failure due to change of 

soil types.  

 

 

 
Figure 6.14: Life cycle cost of whole pipeline network with different soil densities 

 

 

 

 
 

Figure 6.15: Life cycle cost of whole pipeline network with different soil heights 
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Figure 6.16: Life cycle cost of whole pipeline network with different discount rates 
 

 

 

 

6.8 SUMMARY 
 

This Chapter presents a novel integrated approach for systematising manages of flexible 

underground metal pipeline network. It follows that a rigorous decision process should find a 

balance between the risk of failure and the cost to mitigate it. The proposed management 

strategy also enables decision maker to select appropriate renewal methods based on the 

identified optimal time to renew, pipe condition index and the possibility of surrounding soil 

loss. A numerical example is presented to validate the proposed risk-cost management 

strategy with a view to prevent the unexpected failure of underground flexible metal pipes by 

prioritising the maintenance options based on the failure severity and structural reliability. 

The whole process has taken about 1 hour and 35 minutes in 1.6-GHz Pentium IV personal 

computer. In this process, the corrosion model Eq. 3.1 or 3.2 has been used as a simulation 

tool for obtaining pipe thickness reduction with respect to time to predict the reliability. If 

historical data and current pipe thickness are available, then the real data can be used instead 

of Eq. (3.1) or (3.2) in the proposed approach to estimate pipe reliability and determine 

management strategy. The proposed technique can help in making the appropriate decisions 

concerning the intervention to ensure the reliable and serviceable operation of the 

underground pipes. It is recommended that more field studies should be conducted in the 
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future to acquire the necessary data to increase reliability on the assumptions made in this 

research. This will, in turn, result in better asset and capital utilisation. 
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7.1 INTRODUCTION 

For the underground pipeline, the increased safety requirements and the goal of introducing 

effective optimisation is very challenging and it is difficult to have an algorithm that performs 

uniformly efficient for all problems. In this Chapter, Subset Simulation (SS) (Au and Beck, 

2001; Au and Beck, 2003; Au et al, 2007; Li, 2011), which is originally a reliability analysis 

method, is developed to solve underground pipeline risk-cost optimisation problems by 

introducing artificial probabilistic assumptions on design variables. The basic idea is to deal 

the optimisation problems in the context of reliability analysis. The objective function itself 

may have many local optima but its cumulative distribution function (CDF) has only one 

maximum value at its tail as a continuous function. It turns out the searching process of an 

optimisation problem equivalent to exploring the process of the tail distribution in a 

reliability problem.  

 

The reliability of a system is the probability to perform its required functions under stated 

conditions for a specified period of time. In engineering reliability analysis, it is calculated 

based on specified probabilistic modelling of the underlying uncertainties or random 

variables which is called stochastic algorithm (Li, 2011; Schueller and Pradlwarter, 2007). As 

failure is an exception rather than the rule in properly designed systems, therefore, an 

engineering reliability analysis involves a rare event simulation. Finding the global optimum, 

on the other hand, involves simulating the extreme events which also can be considered as 

rare occasions in the design variable space. If stochastic algorithms are adopted, the objective 

function is evaluated at the optimum random points in the design variable space. Based on 

this idea, an extreme event i.e., optimisation problem is a special case of a rare event in 

reliability problem (Khan et al, 2013; Li, 2011).  

 

It is commonly believed that there is no single universal method which is capable of solving 

all kinds of global optimisation problems efficiently because each method has its own 

definition and limitations. A common feature of most stochastic optimisation algorithms is 

that they are developed based on the observations of random phenomenon in nature. Hence, 

the random sampling and/or random manipulation play an important role in the implements 

of these algorithms. These random features provide the possibility of jumping out of local 

optimums. Various sophisticated numerical techniques based on gradient information have 

been well documented (Ravindran et al, 2006), but most of them are vulnerable to converge 
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into a local optimum due to nonlinear, multimodal or even discontinuous objective functions. 

Stochastic optimisation algorithms are commonly used for solving global and local 

optimisation problems. Many are based on probabilistic assumptions on the design variables 

and the objective function. Among stochastic optimisation algorithms, Simulated Annealing 

(SA) and Genetic Algorithm (GA) have been most successful (Spall, 2003). But these are 

computationally expensive traditional algorithm. In addition, there is no absolute assurance 

that these methods will find a global optimum. 

 

In the previous Chapter GA has been used in underground pipeline risk-cost optimisation 

process. To overcome the difficulties of GA as mentioned above, a stochastic optimisation 

algorithm, SS has been developed in this Chapter which found more robust and easy to 

implement for solving the nonlinear, multimodal optimisation problems.  SS is a relatively 

new method and has not yet been applied in pipe maintenance optimisation. This Chapter is 

devoted to extend the application of SS idea where an artificial reliability problem is 

constructed by randomising the design variables. Along the spirit of Subset Simulation, this 

artificial reliability problem is decomposed into a series of conditional probability problems. 

The modified Metropolis-Hastings algorithm (Au and Beck, 2001; Au et al, 2007) is 

implemented to generate efficiently the conditional solutions in each simulation level. An 

ascending sequence of the objective function values is chosen adaptively so that the estimated 

conditional probabilities are equal to the specified value. With increasing the sequence, the 

value of objective function is approaching to the global optimum.  

 

The contents of this Chapter are structured as follows. The basic of SS method is presented in 

Section 7.2, where the analogy between an optimisation problem and a reliability problem is 

interpreted. Then in Section 7.3, the procedure of Subset Simulation for optimisation and the 

modified Metropolis-Hastings algorithm are described. Several computational issues to 

improve the efficiency and robustness of SS for optimisation are discussed in Section 7.4. A 

numerical example is presented in Section 7.5 to validate the method. Results and discussion 

are presented in Section 7.6, where the effectiveness of SS for optimisation process is 

demonstrated and compared with the results obtained from GA. Finally, summary is given in 

the last Section 7.7. 
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7.2 BASIC OF SS OPTIMISATION 

 

The analogy between an optimisation problem and a reliability problem allows an 

optimisation problem to solve using SS method as shown in Figure 7.1. Many optimisation 

algorithms have its own probability density function (PDF) and cumulative distribution 

function (CDF). Let opth  be the global maximum of h, where optxx  . By the definition of the 

CDF, a CDF curve is monotonic, non-decreasing and right-continuous and its value at 

opthh  is unity. A reliability problem including classical and stochastic ones can be 

employed to perform as an optimisation algorithm (process). However, solving optimisation 

problems by reliability methods is still in infancy condition compared to other available 

methods, such as GA, FSM, ACOA, SFLA etc., due to lack of research and applications in 

practical problem (Li and Au, 2010). 

 

The basic difference between a reliability and optimisation problem analysis is that the aim of 

a reliability analysis is to evaluate the probability of an event, while the aim of an 

optimisation problem is to locate a point or region where the objective function is minimised 

or maximised, i.e. taking extreme values.  One can therefore treat the optimisation problem as 

to locating a rare event, because an extreme event is also a special case of a rare event. Based 

on these observations, an optimisation problem can be converted to a reliability problem, 

which makes it possible to using a reliability method to solve an optimisation problem. To 

view the optimisation problem in the framework of reliability analysis, the design variables 

are artificially considered to be random (Li and Au, 2010). This induces the objective 

function h  to PF (Figure 7.1). 

Consider a global optimisation problem given by  

Max )(xh , such that x  

where RRh n :  is a real valued function, x is the design variable vector and   is a 

closed and bounded set. The global maximum ),( optopt hx  as in Eq. (7.1) is the point such that 

 (7.1) 

 

)()( xhxhh optopt 
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In Eq. (7.1), only one variable x is involved, and h is a function of x. The optimisation 

problem is defined as finding the maximal value of h, i.e., max )(xh .  

 

Figure 7.1: Conversion between an optimisation problem and a reliability problem 

 

 If the design variable x to be random, a reliability problem can be defined to estimate the 

probability of h exceeding a given threshold 0h , therefore the failure probability can be 

estimated as Eq. (7.2) 

 ))(( optf hxhPP   (7.2) 

The reliability problem is often concerned a rare event simulation problem since a very small 

probability of failure is involved in practice. Geometrically, the region of 0hh   in a 

reliability problem is broader than the one of the maximum points in an optimisation 

problem. In other words, the region needed to be found in an optimisation problem is a 

reduced region in a reliability problem. The attention here is on the point or region where the 

objective function attains the largest value which can be a challenging problem when the 

objective function has many local optimums or when the dimension of the design variable 

space is large (Li, 2011). Recall that, the artificial reliability problem is not to compute the 

failure probability but to search for the corresponding point opth  of zero failure probability 

given by Eq. (7.2). After randomising the design variable, the objective function maps the 
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multi-dimensional design variable vector into a random variable h. This mapping also 

transforms all points that take the same value onto one point on the non-decreasing CDF 

curve of the randomised objective function h. Hence, the trend trapping in local optimums 

can be easily avoided (Li and Au, 2010).  

 

Based on aforementioned conventions, it is clear that an artificial reliability problem can be 

dealt with an optimisation problem in the framework of reliability analysis. Along the same 

spirit of Subset Simulation, it can generate samples (solutions) that progress toward the 

maximum in a more efficient way, simultaneously as the rare event region is gradually being 

populated.  

 

7.3 METHODOLOGY 

SS for optimisation problems exploits the entire design variable space to search for the global 

maximum of the objective function rather than to estimate a zero probability for an artificial 

reliability problem. The procedure of SS optimisation algorithm is presented as follows. 

 

First, select the distributional parameters for design variables. In the original optimisation 

problem each design variable as a random variable with an artificial probability density 

functions (PDF) )(xf . If there are n numbers of design variables denoted as 

,},......,,{ 21

T

nxxxx   then the corresponding PDFs of these design variables are denoted 

as )(),.....,(),( 2211 nn xfxfxf . Then the joint PDFs of all design parameters can be expressed 

as Eq. (7.3) (Au and Beck, 2003; Ching et al, 2005) 

 





n

i

ii xfxf
1

).()(   (7.3) 

 

Generate N independent and identically distributed samples },......,,{ 21 nxxx  by direct Monte 

Carlo simulation according to the artificial distributions. Each sample ),.....,2,1( nixi   has n 

components, i.e., },....,,{ )()2(

2

)1( n

iii xxxx  , where },...,2,1{)( njx j

i  are generated from 

),.....,2,1)(( njxf jj  . Calculate the constraint fitness function values (if any) and the 

objective function values of the samples and then sort them according to the double-criterion 
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ranking algorithm. Refer a Nx  as the best solution and 1x  as the worst. Select the 

distributional parameters for design variables. The modified Metropolis-Hastings algorithm 

(MMH) is employed for generating samples conditional on the intermediate event. In the 

each simulation level, a Markov chain can be generated with the same conditioning. Since the 

initial samples obey the conditional distribution, all these Markov chains are automatically in 

stationary state and samples in these Markov chains distribute according to the conditional 

distribution. If the number of samples in each level is a constant number, then the length of 

each Markov Chain will be 1/1 kp  (k = 2, . . .,m) where 1kp  is the level probability in the last 

simulation level and m is the total simulation levels. Evaluate and sort the objective function 

values of new generated samples. Then determine the )1( kpN  th percentile )1(, kpNkh  from 

the ascending sequence of },.....,1:{ , Nlh lk  so that the probability of the conditional event is 

satisfied, as shown in Eq. 7.4. (Li, 2011) 

 

})1)1(,1-kk |)(()|( kkpNk pFh
k

xhPFFP                                                                         (7.4) 

 

Again, these samples whose objective function values larger than )1(, kpNkh   are chosen to 

provide ‘seeds’ for the sampling operation in the next simulation level. The procedure is 

repeated until a stop criterion is met or the computational budget of the objective function 

evaluations is exhausted. Note that the total number of samples here is equal to 





m

k

k NpN
2

)1( . One important aspect required to address in details is how to generate the 

conditional samples in a simulation level. The Metropolis-Hastings algorithm (MH) is used to 

achieve this purpose. However, it has been reported by Au and Beck, (2001) that the MH 

algorithm does not work well if the dimension of the design variable is high, because a zero 

acceptance ratio for the next candidate state results to extremely frequent repeated samples in 

a Markov Chain. The modified Metropolis-Hastings algorithm (MMH) should be used for 

this case by generating the candidate state component by component so that the acceptance 

ration of individual component remains non-vanishing as the dimension increases (Au and 

Beck, 2001; Au and Beck, 2003). Another difference between the MH algorithm and the 

MMH algorithm is the dimension of the proposal PDF, which is employed to generate a 

candidate state for a Markov Chain. The MMH algorithm uses a group of one-dimensional 

proposal PDF instead of an n-dimensional proposal PDF.  
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Let nixf iii ,....,2,1),( |   to be a series of PDFs which depend on ix . In order to generate 

the next Markov Chain sample
Tn

kkkk xxxx },....,,{ )(

1

)2(

2

)1(

11   from the current sample 

Tn

kkkk xxxx },....,,{ )()2()1( conditional on an event jF , the MMH algorithm is presented as 

follows (Au and Beck, 2001): 

a) Generate a candidate state 
Tn

kkkk },.....,,{ )(

1

)2(

2

)1(

11    from the proposal PDFs. 

nixf iii ,....,2,1),( |    

For each component ni ,....,2,1  

(1) Generate a pre-candidate component 
)1(

1k from )( | iii xf 
 

 (2) Compute the acceptance ratio as Eq. (7.5): 

)()(

)()(

|

|
)(

1

)(

)(

1

)(

1

1 i

k

i

ki

i

ki

i

k

i

ki

i

kii

k
xfxf

xff
r











 



                                                                                                  (7.5) 

 (3) Set the ith component of 1k  according to Eq. (7.6) 











),1min(

))(,1min(
)(

1

)(

11

1 i

k

i

k

kk

k
ryprobabilitwithx

iryprobabilitwith
                                                       (7.6) 

 

b) When kk x1  perform an evaluation of the objective function ).( 1kh   If ,1 jk F  

accept it as the next state, otherwise reject it and take the current state as the next one, i.e., set 

.1 kk xx   Au and Beck (2007) have proved that the next sample will be distributed as if the 

current one is, and hence is the stationary distribution of the Markov Chain. The choice of 

proposal PDF affects the efficiency of the algorithm. According to Li (2011), the uniform 

PDF centred at the current sample with width equal to two times of the standard deviation of 

last simulation level which is a good candidate for the proposal PDF. Furthermore, the width 

for each artificial random variable will be in a manner of dynamical shrink with increasing 

the simulation level. This strategy is beneficial for convergence when the sequence of 

objective function is approaching a global optimum.  

 

Algorithm of proposed Subset Simulation optimisation process can be described as follows: 
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For i = 1 to n 

   Set an artificial PDF for each design variable 

End 

For i = 1 to N 

   Randomly generate ix   

   Compute the objective function value )( ixh  

End 

Sort ),...,2,1( Nixi  according to ),...,2,1)(( Nixh i    

Get the top 1Np samples from the ascending sequence 

Denote these as ),...,2,1( 1Npisi   

Get )1(,1 1pNh   

2K  
Do 

   ]/1[ 1 Kpl  

   For 1i to 1KNp  

   For j = 1 to l 

     Get a new sample jilx  )1( and the corresponding objective value jilxh  )1(( from is  using 

MMH algorithm 

    End 

End 

Sort ),...,2,1( Nixi  according to ),...,2,1)(( Nixh i   

Get the last KNp samples from the descending sequence which belong to  KF   

Denote them as ),...,2,1( Ki Npis   

Get )1(, KpNKh     

1 KK   
While (stop criterion not fulfilled) 

 
 

7.4 COMPUTATIONAL ISSUES IN SS OPTIMISATION 
 

There are some computation issues which need to be considered to execute the SS 

optimisation methods are presented as follows: 

 

7.4.1 Artificial PDFs for input variables  

In SS, the choice of the distribution for the input random variables directly affects 

optimisation process. A truncated Gaussian distribution may be used to handle simple bound 

on individual design variable as shown in Eq. (7.7) (Li and Au, 2010) 
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





















lu

lu xx

x

xxxf                                                                          (7.7) 

 

where )( is the probability density function of the standard Gaussian distribution, )(   is 

the cumulative distribution function of the standard Gaussian distribution and the definition 

domain, }:{ ul xxxx  . The mean  should be chosen close to the global optimum. If 

no prior information on the problem is available, one may locate it at the centre of the 

definition domain. The standard deviation of the artificial distribution controls the range to be 

explored and it has an influence on the efficiency. If it is too small, most of the samples will 

cluster in a small region and then the sequence of objective function will increase slowly. If it 

is too large, the samples will scatter over a large region and it would require a longer process 

to converge to the global optimum. In this regard, one strategy is often used, called three 

sigma limits in reliability engineering, setting the distance from sampling centre to the upper 

or lower bound equals to three times of standard deviations (Li, 2011)  

 

6

i
i

L
                                                                                                                                  (7.8) 

 

where Li is the interval length of definition domain of the i-th input variable  xi , and i  is the 

corresponding artificially standard deviation. 

 

7.4.2 Stopover conditions 

In SS optimisation process, three types of stop criteria can be used to terminate the searching 

process.  

Firstly, the searching process can be stopped when the failure probability is associated with 

the artificial reliability problem is less than some specified value level, normally it is denoted 

as 1 , as the global optimum is approaching as Pf (Li and Au, 2010)  





1

1

k

kf pP                                                                                                                     (7.9) 

where 1 is a specified value. However, according to Li (2011), this kind of stop criterion is 

not work well for many cases.  
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Secondly, the searching process can be stopped based on the convergence in the objective 

function values sequence (Li, 2011), i.e., 

2)1()1( ||
1

 
 kk pNpN hh                                                                                              (7.10) 

where 2  is a specified tolerance value. This criterion is used in many computational 

techniques in many science and engineering problems.  

 

The third criterion is based on the sample statistical property in each simulation level. The 

standard deviation of samples in each simulation level is used to check the convergence of 

the searching process. This stop criterion can be expressed as following Eq. (7.11) (Li and 

Au, 2010) 

 

3
1 










lu

kk

xx
 (7.11) 

where


k  is the estimator of standard deviation of samples in k-th simulation level. In order 

to eliminate the effects of different scaling of design variables, the interval length of 

definition domain can be used as a reference in this stop criterion.  

 

The idea of this stop criterion stems from the fact that when the searching procedure is 

approaching the global optimum, the more repeated samples would be found in the sequence 

and then the estimator of standard deviation of samples will tend to be zero. When the stop 

criterion is satisfied, the largest value in the objective function sequence is taken as the 

maximal value and the corresponding sample as the solution. According to different 

researchers, such as Li and Au   (2010) and Li (2011),   should be within the range of 10
-5

 to 

10
-7

. 

 

7.4.3 Level probability 

The SS for optimisation is a procedure of continuous regeneration, trial and selection method. 

Each new simulation level is an improvement on the previous one that went before, which is 

realised by the level probability kp  as shown in Eq. (7.4). The level probability kp  plays an 

important role in the original SS for reliability analysis, which controls the efficiency of 
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calculation and the choice of level probability as a trade-off between the number of samples 

required in each simulation level and the number of simulation levels required to reach the 

target failure region. Au and Beck (2007) suggested that kp takes a constant value of 0.1 to 

0.2 in a real reliability problem. In SS for optimisation, the level probability is a control 

parameter which regulates the convergence of the optimisation process. If very small is used, 

the algorithm would have a low probability of reaching a global optimum. Therefore, the 

level probabilities must be large enough to permit the locally developed Markov Chain (MC) 

samples to move out of a local optimum in favour of finding a global optimum, especially in 

the early simulation level. However, a large value would increase the number of simulation 

levels. The level probability is used to select a sub-population which provides the sampling 

‘seeds’ for the next simulation level. 

The selection process needs to consider the constraint fitness function and objective function 

simultaneously. The samples are first sorted according to the constraint fitness function 

values. Those samples that satisfy the constraints will appear at the top of the list with the 

same value. Then these samples are sorted again according to the objective function values. 

The first ranking is based on the constraint fitness function is designed to search the feasible 

domain, while the second ranking is based on objective function searches for the optimal 

solution. In this manner, the searching processes for the feasible region and the optimal 

solution proceed altogether.  

 

 

7.5 NUMERICAL EXAMPLE 

An underground pipeline network under a heavy roadway subjected heavy load operating 

conditions, passed under commercial and residential areas are taken as a numerical example 

to validate the proposed risk-cost optimisation management strategy in SS method in this 

Chapter. The underground pipeline network consists of approximately 789 km of sanitary 

flexible buried metal pipelines, constructed in 1940 as mentioned in the previous Chapter. 

The whole network consists of six segments of pipeline, namely, A to F (Table 6.5). The 

whole network constructed above the ground water table. LCC is used as objective function 

which includes all appropriate costs including initial construction costs, maintenance, repair 

and renewal costs, social costs, decommissioning costs as well as carbon dioxide emissions 

mitigation cost in this study. The analysis period under consideration should be long enough 

to cover the service life of the infrastructure system. All alternatives for maintenance and 

166 

Chapter 7: Risk-Cost optimisation using Subset Simulation 



Reliability Estimation and Risk-Cost Optimisation of Underground Pipelines 

 

1 
 

renewal should be considered. The essence of LCC is that one alternative may have a higher 

initial cost, but its costs over the asset’s life cycle may be lower than other alternatives. The 

capital cost, maintenance cost and failure consequence cost are predicted or calibrated based 

on real case study on Municipal Infrastructure Investment Planning (MIIP) in Canada, 

(Rahman and Vanier, 2004), Melbourne water report (2012) and Davis et al (2008) report. 

The capital cost, maintenance cost and failure consequence cost (future values) are mentioned 

in Table 6.7 on the yearly basis. A typical discount rate (UK) 5% is considered in this 

Chapter.  

 

The statistical properties of materials are shown in Table 6.6. It is presumed that the whole 

underground pipeline network located in a high seismic vulnerable zone area. Table 6.7 

summarises the yearly basis cost data (Future value) for the whole network, sections A – F. 

The network is subjected to corrosion and its corrosion rate is modelled using Eq. (3.1). The 

underground pipeline materials, location and soil parameters are listed in Table 6.5. There are 

9 random variables (elastic modulus of pipe, soil modulus, soil density, live load, deflection 

coefficient, corrosion coefficients, pipe wall thickness and height of the backfill) where the 

mean and coefficient of variation are listed in Table 6.6. After the pipe’s life cycle, the pipe is 

disposed, recycled, or abandoned.  

 

 

 

7.6 RESULTS AND DISCUSSION 

SS optimisation process has been developed to solve the risk-cost optimisation problem to 

validate the proposed method. The life cycle cost in Eq. (6.4) is used in SS method where 

CO2 cost is also included in risk-cost optimisation process. To make a fair and reliable result 

considerable computational effort and time have been spent and checked the best number of 

samples required for achieving reasonably good solution. The results are presented as 

follows: 

 

7.6.1 Pipeline reliability 

First, the probabilities of buried pipe failure due to corrosion induced excessive deflection, 

buckling, wall thrust and bending with respect to time are estimated based on the parameters 

and basic variables given in Tables 6.5 and 6.6 as mentioned in Chapter Six. The failure 
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probabilities are predicted using SS method and results are shown in Figures 7.2 – 7.7.  All 

the random variables are considered as uniformly distributed, except deflection coefficient 

which is log-normally distributed. The occurrence of either failure mode of the pipe will 

constitute its failure. Therefore, the probability of failure of the underground pipeline network 

is determined as a series system using Eq. (3.32a) and the results are shown in Figures 7.2 – 

7.7. When the thickness of the pipe is reduced due to corrosion, the moment of inertia and the 

cross-sectional area of pipe wall are decreased with a resulting reduction in pipe strength as 

Eqs. (3.5) and (3.6), respectively.  

 

 

Figure 7.2: Probability of failure for pipeline section A using SS 

 

 
 

 

Figure 7.3:  Probability of failure for pipeline section B using SS 
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Figure 7.4: Probability of failure for pipeline section C using SS 
 

 
Figure 7.5: Probability of failure for pipeline section D using SS 

 

 

 
 

Figure 7.6: Probability of failure for pipeline section E using SS 
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Figure 7.7: Probability of failure for pipeline section F using SS 

 

 

The study shows that on average the probability of pipe failure at the beginning is close to 

zero and it remains unchanged until about 45 years of service life, then it gradually changes 

as time increases and after 50 years, the probability of failure rises drastically. Upper failure 

probability (Pf) as shown in Figures 7.2 – 7.7 has been used for the subsequent risk-cost 

optimisation for sections A to F as a worst case scenario. 

 

7.6.2 Optimum renewal cost, time and priority 

As shown in Eq. (6.3), the failure risk cost is calculated by multiplying failure cost with the 

probability of system failure. Once the probability of system failure has been calculated, the 

optimal time to repair or replace and the associated life cycle risk and cost (Eq. 6.4) are 

obtained from the risk-cost optimisation using Subset Simulation. Table 7.1 summarises the 

statistical performance of SS optimisation process, where 500 numbers of samples, level 

probability 0.1 and stopover value 10
-5

 are used in this study. The Table 7.1 shows the 

convergence of total LCC obtained from risk-cost optimisation where the optimal LCC cost 

is associated with the first maintenance.  

 

Next, the proposed maintenance strategy is extended to determine an applicable and feasible 

renewal method using Tables 6.1 and 6.2. The recorded database shows that the underground 

pipelines are built on clay, sand and sandy gravel type soil. In addition, all types of pipelines 

are above the groundwater level. Based on this information and according to Table 6.2, the 

possibility of soil loss for sanitary underground pipeline sections A and B is low, whereas for 

sections C to F, the possibility of surrounding soil loss is high. The condition index (CI) for 
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the underground pipeline network is estimated as shown in Table 7.1 using Eq. (6.7) by 

substituting the identified optimal time to renew from the risk-cost optimisation. Applicable 

renewal categories are then selected from Table 6.1 based on the underground pipeline CI 

and the possible scenario of soil loss. The sections A, B and C pipelines are required to renew 

using non-structural or semi-structural lining method based on the estimated CI and low 

possibility of soil loss. On the other hand, due to high possibility of soil loss and CI >2, the 

sections D and E pipelines are needed to renew using semi-structural or structural liners. 

Finally, section F should be renewed with structural liners or replacement (CI>3, high 

possibility of soil loss). Alternatively, replacement is recommended for other sections if the 

repair cost becomes greater than the cost of replacing the pipes. 

 

Table 7.1: Results of pipeline risk-cost optimisation using SS 

Pipe 

section 

Optimum 

Life cycle 

cost (£b) 

Renewal 

time 

(year) 

Structural 

Condition 

index (CI) 

Renewal priority Renewal methodology 

A 2.1 60 1.9 
Low, minimal 

structural risk 
Non-structural or semi structural 

B 1. 29 61 2.1 
Low, minimal 

structural risk 
Non-structural or semi-structural 

C 1.32 67 2.3 
Low, minimal 

structural risk 
Non-structural or semi-structural 

D 1.9 59 2.0 
Medium, poor 

condition 

Semi-structural, structural or 

replacement 

E 1.28 71 2.5 
Medium, poor 

condition 

Semi-structural, structural or 

replacement 

F 1.31 86 3.2 
Immediate, high 

structural risk 
Structural or replacement 

 

Based on the underground pipeline’s inventory information and alignment, the renewal 

assessment has been carried out considering all six major impact factors and results of the 

renewal priority based on the structural condition index and failure impact index using Table 

6.4. According to Table 6.4, the pipes which are in fair or minimal structural risk condition 

needs low renewal priority and on the other hand, pipe with highly structural risk condition 

requires immediate rehabilitation or replacement for safety of the network. The results are 

shown in Table 7.1. Finally, the comparisons are made with the GA results to check the 

accuracy of the SS optimisation process as shown in Table 7.2.  
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Table 7.2: Comparison between SS and GA results  

 SS method GA method 

Pipe 

section 

Optimum 

Life cycle 

cost (£b) 

Renewal 

time (year) 

Structural 

Condition 

index (CI) 

Optimum Life 

cycle cost (£b) 

Renewal 

time (year) 

Structural 

Condition 

index (CI) 

A 2.1 60 1.9 2.0 62 
2.2 

B 1. 29 61 2.1 1.35 63 2.3 

C 1.32 67 2.3 1.41 66 2.25 

D 1.9 59 2.0 2.13 62 2.2 

E 1.28 71 2.5 1.29 72 2.5 

F 1.31 86 3.2 1.33 88 3.5 

 
Table 7.2 shows a good agreement between these two optimisation processes. The obtained 

optimal costs and renewal time from SS and GA methods are very close.  The renewal time 

and methodologies are same for both optimisation processes. The advantage of SS 

optimisation process is that it takes about 30 minutes to execute the current problem, whereas 

GA optimisation process takes more than 1 hour and 30 minutes. Note that the computational 

speed is measured in terms of Central Processing Unit (CPU) time on a 1.6-GHz Pentium IV 

personal computer in this Chapter. 

 

 

7.7 SUMMARY 

 
New optimisation technique SS has been developed for reliability based risk-cost 

optimisation process for buried pipeline network to demonstrate the robustness and efficiency 

of the proposed algorithm in this Chapter. Current Chapter focuses on testing its performance 

on buried pipelines risk-cost optimisation process and improving its efficiency by combining 

with local search strategies. SS illustrates that large value of N tends to increase the number 

of objective function evaluation which is time consuming process. On the other hand, the 

small value of N may cause the generated samples not to cover the searching space well and 

thus lead to a fail in finding a good optimum solution. Therefore, in practice, this number 

should not be too large or too small. A numerical example is presented to validate the 

technique. Then comparison is made with the results of GA to check the accuracy the SS 
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optimisation process. The study shows a good agreement between these two methods. But SS 

takes only one third computational time of GA. The proposed algorithm is found to be 

competitive in exploiting the feasible regions and providing optimal designs in solving 

complex problems. The proposed risk-cost optimisation approach can help the management 

in making correct decisions concerning the intervention year and renewal methodology. The 

method produces a rational good result with much less computational effort. 
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8.1 CONCLUSIONS 

A comprehensive discussion and analysis have been conducted on flexible buried metal 

pipeline reliability prediction and risk-cost optimisation process in this research. The main 

conclusions and recommendations for improved reliability prediction and optimisation of 

buried pipes are summarised in this Chapter. It is concluded that the proposed approach will 

provide an enhanced reliability prediction and risk-cost optimisation for flexible underground 

metal pipelines. In general, this approach can be applied for other types of structures. The key 

outcome of this research is to predict more accurate and realistic reliability and risk-cost 

optimisation of buried pipelines. 

 

First, this research presents a time-dependent reliability analysis of flexible buried pipelines 

due to corrosion induced deflection, buckling, wall thrust and bending stress. In reliability 

analysis, probability of failure with respect to time is predicted for every failure mode using 

HL-RF algorithm and MCS. The results suggested that excessive bending is the most critical 

failure mode whereas buckling is the least susceptible during the whole service life of the 

pipe. Then correlations among the failure modes are predicted in this study which indicates 

that these failure modes are strongly correlated and correlation is about 1. Correlations 

between random variables, such as soil density and soil modulus or loading and pipe stiffness 

with known correlation coefficients (0 – 0.9) in different failure modes also have been 

assessed with varying time. The results indicates that the probability of failure due to 

corrosion induced wall thrust is lower when soil modulus and soil density are positively 

correlated whereas it is higher when loading and pipe stiffness are negatively correlated due 

to corrosion induced bending stress. In addition, parametric study and sensitivity analysis 

have been performed to analyse the effect of the design variables on the reliability of the 

flexible underground metal pipeline system. The parametric analysis demonstrates that 

behaviour of buried pipes is considerably influenced by uncertainties due to external loads, 

corrosion parameters, pipe materials and surrounding soil properties, etc. The sensitivity 

analysis suggested that among all random variables in reliability prediction, the relative 

contribution of the corrosion parameters, multiplying constant, k and exponential constant, n 

are highly remarkable.  
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To enhance the reliability prediction, SS has been developed in pipeline failure probability 

analysis which is new in this area. A numerical example has been conducted to illustrate the 

robustness and effectiveness of SS method. The application of SS method is verified with 

respect to the standard MCS. One of the major complications to estimating small failure 

probabilities is to simulate rare events. SS resolves this by breaking the problem into the 

estimation of a sequence of larger conditional probabilities. It is found that the reliability 

analysis calculated by SS is in good agreement with that from MCS, while the efficiency of 

the SS method, which is indicated by the sample size and computational time, is higher than 

that of MCS.  

 

ROC curve has been introduced in application for reliability analysis due to above mentioned 

failure modes. The ROC curve provided a model performance assessment for pipe failure 

state function of reliability prediction. The analysis shows that ROC curve is a useful 

technique to predict the optimum threshold value and accuracy of the results. The study 

reveals that with increasing inaccurate pipe data, say 10% to 20%, the area of the ROC curves 

(both classical and NPI) are decreased for every failure mode. The area under the curve 

provides an objective parameter of the accuracy of an analysis, combinations of sensitivity 

and specificity values. Choosing the optimal operating point on the ROC curve which 

involves both maintenance and financial issues, can be ideally implemented in a formal risk-

cost management process of buried pipeline network.  

  

Next, this research presents a novel integrated approach for systematising manages of flexible 

underground metal pipeline network using GA. LCC has been used as an objective function 

to optimise risk and cost.  A numerical example is presented to validate the proposed risk-

cost management strategy with a view to prevent the unexpected failure of underground 

flexible metal pipes by prioritising the maintenance options based on the failure severity and 

structural reliability. A parametric study has also been carried out to analyse the effects of 

different parameters, such as soil density, soil height and discount rate on reliability and life 

cycle cost of the pipelines. The study shows that if soil properties, such as soil modulus or 

soil density changes, this will affect probability of failure and hence reliability and life cycle 

cost of the pipeline network. The parametric study demonstrates that with increasing soil 

height above pipeline decreases service life and increases life cycle cost of the pipeline 
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network. Similarly, with increasing discount rate increase the life cycle cost and decreases the 

service life. 

 

New optimisation technique, SS has been developed for reliability based risk-cost 

optimisation process for buried pipeline network to improve the optimisation process. This 

method is new in risk-cost optimisation application. The proposed algorithm is found to be 

competitive in exploiting the feasible regions and providing optimal designs in solving 

complex problems. A numerical example is presented to validate the technique.  Then 

comparison is made with the results of GA to check the accuracy the SS optimisation process. 

The results show a good agreement between these two methods. The advantage of SS 

optimisation process is that it takes less than one third of GA computational time to execute 

the current risk-cost optimisation problem. 

 

In summary, the proposed approach is a simplified approach which can be used as a rational 

tool for concerned decision makers with regard to strengthening and rehabilitation of existing 

and new pipelines. Precise prediction of reliability (probability of failure) and reliability 

based management of buried pipeline system can help engineers and managers to obtain a 

cost-effective strategy in the controlling the pipeline system. The reliability based risk-cost 

optimisation method is designed to maximise the performance of pipeline distribution 

networks with minimal risk and optimum cost. The proposed maintenance strategy will 

enable the decision makers to select appropriate renewal methods based on the identified 

optimal time to renew, i.e., repair or replace the pipes. 

 

8.2 RESEARCH LIMITATIONS 

There are some limitations in the current research work. The limitations of the reliability 

estimation and developed risk-cost optimisation process for underground pipelines in this 

research can be summarised as follows: 

1. This research shows that among all random variables in reliability prediction, the relative 

contribution of the corrosion parameters, multiplying constant, k and exponential 

constant, n are highly remarkable. But these are highly uncertain and are typically 

determined from regression analysis on observed and experimental data obtained for 
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specific soil and environmental conditions. Therefore, more concern should be taken in 

order to determine the values for corrosion parameters. 

2. Only numerical simulations are used in reliability prediction. Therefore, validation is 

required by lab and field test. 

  

3. Due to lack of sufficient real pipe data, the ROC curve has been applied for generated 

data, assuming different percentages of inaccuracy.  Real case data are required to analyse 

the method.  

 

4. Predicting future costs is not straight forward as interest rate is time dependent. In risk-

cost optimisation process, assuming that the discount rate will be constant over the life 

cycle of the pipeline structures.  But it is highly unlikely that material, labour and energy 

costs will change at exactly the same rate. Therefore, major cost elements (capital, 

maintenance, operation, etc.) can vary accordingly. 

5. Pipe structural priority index (PI) is obtained according to the time of the collected data. It 

should be updated when data is changed as pipe materials and other critical factors, i.e., 

accessibility, depth, etc., may change after rehabilitation works.  

 

8.3 RECOMMENDATIONS FOR FURTHER RESEARCH 

It is hoped that the proposed methods in this research would improve the ability of concerned 

industry in predicting and preventing catastrophic failures of the underground pipelines. In 

the reliability estimation, among the applied three methods MCS and HL-RF methods are 

more challenging than SS method for small probability of failure prediction. In the risk-cost 

optimisation process, Genetic Algorithm method is more challenging compared to the SS 

optimisation method as SS method showed a good capability to execute the optimisation 

processes of buried pipes in less time with good accuracy. The listed issues which can be 

considered for future work to enhance and extend the developments made in this research: 

 

1. In this research, the progression of corrosion depth on pipes wall was assumed linear 

with respect to time. The corrosion rate remains unlikely to be linear with changing 
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the environmental conditions. The reliability prediction over service life will be much 

more accurate if the non-linearity of corrosion process can be developed. To obtain 

the realistic relationship between the corrosion depth and time in a buried metal pipe, 

an extensive lab experiment is suggested. 

2. For further works in the field of failure assessment of buried pipes, it is suggested to 

model the pipeline and existing loads using finite element software, such as ABAQUS 

or ANSYS to verify pipe behavior and deterioration process, e.g., corrosion induced 

deflection, buckling, bending, etc.  

3. Receiver Operating Characteristic (ROC) curve has been introduced in application for 

reliability analysis in this thesis. Real case data should be analysed on ROC curve for 

advanced application for underground pipeline reliability accuracy prediction. 

4. Develop an automated tool to implement the developed risk-cost optimisation 

procedure and algorithms in this research and employ it to real case studies.  
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