
A Novel Approach to Automatic Music Composing: Using
Genetic Algorithm

Damon Daylamani Zad *, Babak N. Araabi† and Caru Lucas**

*Department of Information Systems and Computing, Brunel University
ci05ddd@brunel.ac.uk

†Control and Intelligent Processing Center of Excellence, Dept. of Electrical and Computer Engineering,
University of Tehran

araabi@ut.ac.ir
**Control and Intelligent Processing Center of Excellence, Dept. of Electrical and Computer Engineering,

University of Tehran
lucas@ipm.ir

Abstract

Artificial music composition is one of the ever rising
problems of computer science. Genetic Algorithm has been
one of the most useful means in our hands to solve
optimization problems. By use of precise assumptions and
adequate fitness function it is possible to change the music
composing into an optimization problem. This paper
proposes a new genetic algorithm for composing music.
Considering entropy of the notes distribution as a factor of
fitness function and developing mutation and crossover
functions based on harmonic rules and trying to keep the
melodies intact during these processes would result in a
musical piece pleasant to human ears and interesting for
human mind. This algorithm does not have the constraints
of the previous algorithms. Restraining mutation and
crossover functions with a goal of producing melodies
based on acceptable melodies composed by humans, this
algorithm is not bound to any genre, instrument or melody.
The experimental results of this approach show that it is
near to the human composing and the results produced from
it are more acceptable than the ones produced by its
predecessors.

1 Introduction
 Music and Composing music has always amazed

human beings. The process of composing a musical piece,
the rhythms and melodies has ever astonished us.

In order to understand this area many have tried to
formulate these processes. The result of these attempts is the
Harmony and Melody rules that have been established in
16th centaury, yet they change everyday by new
professionals and new rhythms made by composers. The
most important reason for these changes is that composing

is the product of the state of mind, emissions and talents etc.
of a composer. It seems impossible to formulate these
factors.

By entering the computer era a new idea emerged.
Scholars wondered if it was possible to create an artificial
composer. This problem raised the question of simulating
human emissions and talents by computers.

Over the years there have been many attempts to create
an artificial composer. Contemporary algorithmic
composition ranges from traditional stochastic methods seen
in M and Jam Factory (Zicarelli, 1987) to complex rule-
based systems such as EMI (Cope, 1987, 1992) and Cypher
(Rowe, 1993). Later on Genetic Algorithm became a
popular way of solving this problem. Horner, A. (1991)
describes the application of genetic algorithms to thematic
transformation, yet he only deals with morphing one melody
into another. Biles, J. (1994, 2001, 2002a, 2002b) describes
a genetic-based jazz soloist, he also only generates single
melodies on top of given chord progressions and Horowitz,
D. (1994) describes a genetic algorithm for creating
interesting rhythms but deals with rhythms that span only
one measure. Jacob, Bruce L. (1995) presents his
application of genetic algorithms Variations, although very
effective but half human driven, Using human ear as a part
of fitness function. Moroni et al (2000) present another
Genetic based algorithm for algorithmic music composition,
their algorithm still suffers the human fatigue problem as all
other Interactive Evolutionary Algorithms. Ayesh and
Hugill (2005) describe their genetic approach for evolving
of music forms into another. Later on Tuohy and Potter
(2005) present their algorithm for creating guitar tablatures.
Although quit interesting, this algorithm only produces only
progressions of chords for guitar without any considerable
melody.

551

Here presented is a new approach to the problem using
genetic algorithm and MIDI file format, creating complete
pieces with nearly no human supervision. Having no
restriction on instruments, genre, composer and rhythm this
application can create many kinds of music according to the
initial population and the instruments specified. This
application produces musical pieces with interesting
melodies and rhythms and pleasant to human ears. These
pieces can nearly compete with pieces composed by real
composers in creativity, style and amusement.

The rest of this paper is organized as follow. In the next
section a quick overview of MIDI file format is provided,
follows a description of some of its features. Then it goes on
a study of the genetic algorithm proposed in this project.
Then presented are experimental results in section 4.
Finally, is concluded with a summary in section 5.

2 Musical Instruments Digital
Interface Standard (MIDI)

2.1 History
 MIDI, the Musical Instruments Digital Interface
standard, was established in 1983, and has since
revolutionized the world of electronic music. First created to
help two synthesizers communicate with each other, MIDI
soon took over the electrical music world with his wide use
in PC's as the musical file format.

2.2 Format
 MIDI files contain one or more MIDI streams, with time
information for each event. Song, sequence, and track
structures, tempo and time signature information, are all
supported. Track names and other descriptive information
may be stored with the MIDI data. This format supports
multiple tracks and multiple sequences so that if the user of
a program which supports multiple tracks intends to move a
file to another one, this format can allow that to happen.

Each sequence contains tracks and each track contains
note events that together create a musical piece. Each note
event contains the following data:
• Onset: Specifying the moment of track when the note

starts to play.
• Duration: The duration of a note being played.
• MIDI Channel: Indicating by which instrument the

note is being played (1 – 16).
• MIDI Pitch: Denotes the note on numeric basis, where

middle C (C4) is 60.
• Velocity: Describes how fast the key of the note is

pressed, in other words, how loud the note is played (0
- 127).

3 Our Genetic Algorithm Based
Approach
The approach of this project to the composing problem

is based on genetic algorithms, transforming the dilemma
into an optimization problem of optimizing the harmonic
relationship between the notes and producing purposeful
melodies with as less repetition as possible.

3.1 Chromosomes and Genes
The project begins with defining the genetic algorithm's

genes and chromosomes as they are the basis of this
algorithm.

• Chromosome: Each string of notes in a musical
piece is defined as a chromosome in this project.
Leaving the algorithm with a vast field of
chromosomes to work on and the returning answer
would be a complete song. As a result Crossovers
occur on songs.

• Gene: Each note presents a gene. So Mutations
take place on notes themselves.

The other three most important factors are Mutation,
Crossover and Fitness functions. These functions work on
genes and chromosomes produce, control and optimize the
results.

3.2 Mutation Function
Mutation function is based on harmonic and melodic rules
with goal of producing new melodies based on old ones,
without disturbing the purpose of the song or conflicting
with harmonic rules.

In order to gain such function it was necessary to
calculate the scale of each song. This is done using
Krumhansl & Schmuckler (1990) key-finding algorithm.
This algorithm is based on key profiles obtained from
empirical work by Krumhansl & Kessler (1982), where
listeners heard a context sequence, consisting of an
incomplete major or minor scale or a chord cadence,
followed by each of the chromatic scale pitches in separate
trials. In this key-finding algorithm, the 24 individual key
profiles, 12 major and 12 minor key profiles, are correlated
with the pitch-class distribution of the piece weighted
according to their duration. This gives a measure of the
strength of each key. It is possible to see the approach of
this algorithm in Figure 1.

552

Figure1. Self-organizing map (SOM) of the tonality in
Bach’s C-major Prelude, Wohltemperierte Klavier II

(BWV 870)

When the scale is known to us, we can decide on the
available mutations for each note according to its scale.
Each note is allowed to change on the range of the notes on
the key's original chord or on the notes of it's chord's
relative chords.

This approach is implemented using a random number
generated from a normal distribution. This number is
between 0 and 1. If this number is smaller than 0.25, the
mutating note will not mutate or will mutate to the same
note yet in another octave. If the number is greater than
0.75, the note is mutated to its 7th distance on the related
chord in this scale either in the same octave or another
octave. Finally, if the number is between 0.25 and 0.75
which means that it is in the peak of the distribution and has
numbers have higher probability to be in this interval, then
the note will mutate to either its 4th distance on the related
Minor chord if the scale was Major or to the 4th distance on
the main chord if it was a Minor scale. The reason for this
emphasis on the 4th distance is that the 4th distance is the
best harmonic substitute of a note.

After this decision is made, another random number
from a normal distribution is produced. This number is also
between 0 and 1. If this number is smaller than 0.1, the
mutated note will be in a random number of octaves before
the original note’s octave. If the random number is between
0.1 and 0.25 the new note will be in the previous octave of
the original note and in case the number is between 0.25 and
0.75 the new note will be in the same octave as the original
note. Then if the number is between 0.75 and 0.9 the note
will be on the next octave of the original note and at last if
the number is between 0.9 and 1, the note will be in a
random number of octaves higher than the original octave.
The reason for this approach is to prevent big jumps and
discontinuity in the melody as much as possible without
totally restricting jumps.

3.3 Crossover Function
The crossover function is not much restricted; it follows

a uniform crossover pattern with a simple constraint so as to
prevent segmentations in the middle of a melodic sequence.

This limitation is executed by the calculation of musical
distance between successive notes played by the same
instrument. This distance is defined as the pitch number of a
note minus it's successor's pitch number. While these
distances are only positive or only negative, it is not allowed
to break the chromosome.

If the crossover function decides to break from a point
that has the condition above that prevents breaking, the
break will be rejected and the crossover will be preformed
again.

3.4 Fitness Function
The fitness function of this project plays a great role for

accepting the best song possible by far and to diminish the
dissonance notes from the resulting song.

The fitness function of this program is calculated by
minimizing the distance of the generated songs' entropy
from the Mean-Square of the initial population's entropies

The withdrawing of dissonance notes is accomplished by
multiplying the fitness value of the song by a fixed number
so that it would be much greater than the fitness value of a
song with no dissonance notes.

The major factor of fitness function of this program is
entropy of distribution of notes. Entropy along with
originality has been found to correspond to the predictability
ratings given by listeners in experiments (Eerola, ,
Toiviainen & Krumhansl, 2002). This measure offers a
possibility to observe the moment-by-moment fluctuations
in melodic predictability.

Maximizing the entropy up to a certain amount
guaranties there will not be any additional repetitions except
the ones caused by the melody. This is known to be a key
element in measuring the popularity of a music the amount
of it's acceptance between people. Over-maximizing the
entropy, results in an unpleasant and disturbing piece of
music. To keep a balance the program is trying to have
closer entropy to the initial population’s entropy.

4 Experimental Results
In order to evaluate and analyze the performance of this

genetic algorithm, MATLAB environment was used for
developing this project. MATLAB has a toolbox for
handling MIDI files. This toolbox transforms a MIDI file
into a matrix such as Table 1.

553

Table 1. First two verses of the Finish folk song Laskin in

MIDI format.

The first test described here has the initial population
containing 20 of J.S Bach's preludes imported from MIDI.
The plot of fitness values generated for this test is illustrated
in Figure 2. This test was done for 500 generations,
considering that fitness values of generations with
dissonance notes are multiplied by 1.5.

Figure 1. Fitness values for Bach's preludes. The graph

shows a struggle for gaining better fitness value right from
the start. Finding better generations in around every 15
generations, it is appealing to say that most of the good

generations have been accepted for regeneration

The result of this test was played for 50 students in

University of Tehran. Their opinion is shown in Figure3.

Very Poor
Poor
Acceptable
Good
Very Good

Figure 3. Opinions on the Prelude shows more than 50%

of the listeners find this song amusing, considering those

who have found the song acceptable, it is possible to say
that this experiment has been rather successful.

Another test was done, this time the initial population

was 20 songs by Bob Dylan. Other variables were the same
as the previous test except that it was running for 100
generations. The plot of fitness values of generations is
demonstrated in Figure 4.

Figure 4. The graph shows a struggle for gaining better

fitness value right from the start. Finding better generations
in around every 15 generations, it is appealing to say that

most of the good generations have been accepted for
regeneration.

This song was played for 50 random students of

University of Tehran. Their opinion on this song can be
seen in Figure 5.

Very Poor
Poor
Acceptable
Good
Very Good

Figure 5. Opinions on the Dylan song shows more than 50%

of the listeners find this song amusing, considering those
who have found the song acceptable, it is possible to say

that this experiment has been rather successful.

There links to these two songs at the end of references

section.

554

5 Conclusion
This paper presented a new genetic algorithm for

composing music. This algorithm not only has none of the
previous algorithms' deficiencies but is near to the human
composing and its results are more acceptable than the ones
before. Having no barriers for instrument or genre, it can
compose a vast portion of different musical pieces. These
abilities can be seen clearly in fitness plots of the composing
process and better yet can be heard and confirmed by human
ears.

6 Acknowledgment
This paper would not be readable or understandable

without the everlasting efforts and guidance of Hamed S.
Alavi.

References

Aladdin Ayesh and Andrew Hugill, 2005, Genetic Approaches for

Evolving Form in Musical Composition, Proceedings of the
23rd IASTED international Multi-Conference, Artificial
Intelligence and Applications, February14-16, 2005,
Innsbruck, Austria

Biles, J. 1994. “GenJam: A genetic algorithm for generating jazz
solos”, In Proceedings of the 1994 International Computer
Music Conference. Aarhus, Denmark: International Computer
Music Association.

Biles, John A. 2001, “Autonomous GenJam: Eliminating the
Fitness Bottleneck by Eliminating Fitness”, Proceedings of the
GECCO-2001 Workshop on Non-routine Designwith
Evolutionary Systems.. 2001.

Biles, John A. 2002a, “GenJam in Transition: from Genetic
Jammer to Generative” Jammer.Generative Art. 2002.

Biles, John A. 2002b, “GenJam: Evolutionary Computation Gets a
Gig”, Proceedings of the 2002 Conference for Information
Technology Curriculum, Rochester, New York, Society for
Information Technology Education. September 2002.

Cope, D. 1987. "An expert system for computer-assisted
composition.", Computer Music Journal, 11(4):30-46.

Cope, D. 1992. "Computer modeling of musical intelligence in
EMI", Computer Music Journal, 16(2):69-83.

Eerola, T. & Toiviainen, P. 2004. MIDI Toolbox: MATLAB Tools
for Music Research. Proceedings of ISMIR 2004, 5th
International Conference on Music Information Retrieval,
Barcelona, Spain, October 10-14, 2004

Eerola, T. Toiviainen, P., & Krumhansl, C. L. 2002. "Real-time
prediction of melodies:Continuous predictability judgments
and dynamic models. In C. Stevens, D. Burnham, G.
McPherson, E. Schubert, J. Renwick (Eds.)". In Proceedings of
the Seventh International Conference on Music Perception and
Cognition, Sydney, 2002. Adelaide.

Horner, A. & Goldberg, D. 1991. “Genetic algorithms and
computer-assisted music composition”, Proceedings of the
Fourth International Conference on Genetic Algorithms,
Urbana-Champaign, Illinois.

Horowitz, D. 1994. “Generating rhythms with genetic algorithms”,
In Proceedings of the 1994 International Computer Music

Conference, Aarhus, Denmark: International Computer Music
Association.

Jacob, Bruce L. 1995, "Composing with genetic algorithms",
Proceedings of the 1995 International Computer Music
Conference, Banff, Alberta.

Moroni, Artemis, Manzolli, Jônatas, Zuben, Fernando Von, and
Gudwin, Ricardo Vox Populi, 2000, “An Interactive
Evolutionary System for Algorithmic Music Composition”,
Leonardo Music Journal, Vol. 10, 49-54. 2000.

Rowe, R. 1993. “Interactive Music Systems”, Cambridge,
Massachusetts: MIT Press.

Tuohy D. and Potter W.D. 2005, "A Genetic Algorithm for the
Automatic Generation of Playable Guitar Tablature," In
Proceedings of International Computer Music Conference
ICMC'05, Barcelona, Spain, September, 2005.

Zicarelli, D. 1987. "M and Jam Factory", Computer Music Journal,
Vol. 11, issue 4, pages 13-29.

khorshid.ut.ac.ir/~d.dzad/files/preludetest.mid
khorshid.ut.ac.ir/~d.dzad/files/dylantest.mid

555

