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Abstract  

 

The prediction of the constitutive behavior of thermoplastic matrix composites from quasi-static up to impact 

rates demands a detailed understanding of the behavior of the polymeric constituents of these materials; this is due to 

the pronounced rate dependence of the polymeric matrix. This paper is an attempt at approaching the prediction of 

finite deformation of thermoplastic matrix composites, using a multi-scale approach in which the fibre and the matrix 

are separately modelled and combined within a finite element scheme to determine the constitutive response of the 

test composite. A micromechanical model comprising a finite element implementation of constitutive laws for the 

fibre and matrix constituents are discussed. The robust formulation for predicting the behavior of the semicrystalline 

polymer was successfully developed, including the techniques of generating the 3D representative volume element 

(RVE) of composites as well as prescribing the periodic boundary conditions on the 3D RVE. Finally, the validation 

studies for predicting the elastic properties of the composite using the Finite Element (FE) methods and the effect of 

spatial arrangement of the fibre inclusions within the matrix at finite strains are illustrated.  
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1. Introduction 

 

Continuous fibre, thermoplastic matrix, 

composite materials are attractive for the high volume 

production, because they combine the good features of 

 manufacturing economics with some of the stiffness, 

strength and density advantages of the more widely 

used thermoset matrix composites. They have the 

potential for industrial and advanced engineering 

applications, including manufacturing of the 

components of light-weight cars of the future. 

However, these materials offer new challenges about 

prediction of their properties in-use, arising from the 

pronounced viscoelasticity and plasticity of the matrix 

polymer, and its sensitivity to the thermal and 

mechanical history during processing. This study is an 

attempt at approaching the prediction of the finite 

deformation of thermoplastic matrix composites in 

which the modelling approach involves a multi-scale 

modelling of the composite by tracking deformation 

from very small strains where linear viscoelasticity 

conditions apply to finite strains which are dominated 

by nonlinear viscoelasticity effects. The modelling 

strategy is divided into microscale and mesoscale 

levels of analyses. The former deals with a microscale 

representation of the constitutive models for 

semicrystalline polymers and the fibre. The later 

considers the lamina-level representation and 

modelling of the composite.  

In this paper, a finite element implementation 

of the proposed micromechanical model, at the lamina-

level, is emphasised. The test composite used in the 

study is Plytron, a glass fibre polypropylene matrix 

composite. The following topics are presented in the 



 

next sections: (a) development of the robust matrix 

model for semicrystalline polymers; (b) design of a 

novel method of generating the 3D representative 

volume element (RVE) of continuous fibre composites; 

(c) implementation of the periodic boundary conditions 

(PBCs) and application of single load cases to the 3D 

RVE; (d) and FE implementation of the chosen 

homogenization strategy at the lamina-level to predict a 

nonlinear finite deformation of the composite. 

 
2. Development of the robust matrix model  

 

A robust physically-based constitutive model 

was developed for modelling the experimentally 

observed constitutive response for polypropylene; and 

the test matrix is polypropylene, a semicrystalline 

polymer. The 1D mechanical analogue for the model is 

shown in Fig. 1, while Fig. 2 shows the comparison 

between the model and experimental data for the 

compression tests on polypropylene. The model 

prediction is thought to capture accurately the observed 

experimental response. The matrix modelling principle 

is an extension to two-process viscoelastic relaxation of 

a single-mode glass-rubber constitutive model for 

amorphous polymers[1-3]. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. 1D Mechanical Analogue for modelling of 

semicrystalline. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Comparison of experiments with model prediction 

for compression tests on polypropylene. 

3.  A new algorithm for generating 3D RVEs 

 

Having developed a robust matrix model, the 

next stage of the micromechanical modelling approach 

is the development of a RVE for the test material. A 

MATLAB algorithm was developed based on the 

Monte Carlo Method or Hard Core model[4-6] in 

which a defined 2D RVE window is populated 

randomly until a defined volume fraction is achieved.  

An extra constraint of periodicity of material was 

applied on the generated RVE. For every fibre 

inclusion that is cut by a boundary wall, the 

corresponding half of the inclusion is replicated at a 

corresponding opposite and parallel wall.  

Typical RVEs generated using the above 

approach is shown in Fig. 3 while Fig. 4 shows the 

strategy for creating a 3D RVE for use in the 

micromechanical modelling. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Typical 2D RVEs generated using the Monte Carlo 

Algorithm for the different RVE window sizes (LRVE) 

and different volume fractions (Vf). 

 

 

 

 

 

 

 

 

 
Fig. 4.  A three step implementation for creating 3D RVEs. 

Step 1: 2D RVE generated using Monte Carlo Algorithm. 

Step 2: Use of Python script within ABAQUS to covert the 

2D RVE to the ABAQUS assembly model where white 
circles are the fibres and a green region is the matrix. Step 

3: Extrusion of the 2D model to create a 3D RVE. 
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4.  Implementation of the PBCs on 3D RVEs 

 

Traditionally, the periodic boundary 

conditions are generally applied to 2D RVEs such that 

the homogeneous deformation is enforced on the 

boundary nodes of a given 2D RVE as shown in Fig. 5. 

This work serves as the first instance where the PBCs 

are applied to 3D RVEs with the random spatial 

arrangement of inclusions.  This implies applying the 

homogeneous deformation equations shown in Fig. 6, 

to all six surface nodes, 8 corner nodes and 12 edge 

nodes of a 3D RVE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.  A strategy for applying the Periodic Boundary 

Conditions (PBCs) on 2D RVEs.  

 

 

 

 

 

 

 

 

 

 
Fig. 6. Strategy for applying Periodic Boundary 

Conditions (PBCs) on 3D RVEs and list of applicable 

homogeneous deformation equations for the given 3D 

RVE domain. 

 

The following shows examples of the 

simulations based on 3D RVEs of the polypropylene-

glass fibre composite where the z-axis corresponds 

with the fibre direction. Figure 7 presents the 

logarithmic strain for the compression tests along the x- 

and y-axes.  Figure 8 shows the von mises stress in the 

z-axis and out-of-plane shear deformation (xy). The 

logarithmic strain for the out-of-plane (xz) and in-plane 

(yz) shear deformations is shown in Fig. 9. 

 

 

 

 

 

 

 

 
Fig. 7.  The logarithmic strain for the compression tests 

along the x- and y-axes. 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  The von mises stress in the z-axis and out-of-

plane shear deformation (xy). 
 

 

 

 

 

 

 

 

 

 

Fig. 9.  The logarithmic strain for the out-of-plane (xz) and 

in-plane (yz) shear deformations 

 

5.  Homogenization strategy 

 

In order to derive the constitutive properties 

of the test composites, the generated 3D RVE 

implemented with the PBCs has to be used to 

determine homogenized properties. A homogenization 

strategy based on the Direct macro-micro 

relationship[7-11] was adopted in this work. The 

previous works adopted a 2D RVE where three 

retained nodes (for the RVE) are used to prescribe any 

desired load case. This work extended the 

homogenization strategy above for a 3D RVE such that 

four retained nodes are used to prescribe the 3D 

homogeneous deformation for the given RVE.  

Consider a typical 3D RVE domain (ΩRVE) 

such that there exist four retained nodes (N1, N2, N3 

and N4). The coordinate positions for these nodes 

become: x1, x2, x3, and x4). The corresponding 

reactions forces (in 3D) for the four nodes include:  fN1, 
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fN2, fN3, and fN4.  The formulations for determining the 

overall stresses and strains at macroscale based on the 

reaction forces; and coordinate positions of chosen 

retained nodes are shown below:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.10. Macro-micro links for an RVE subjected to the 

periodic boundary conditions. 

 

6.  Model predictions 

 

In order to validate the modelling strategy, a 

boron-aluminum composite of volume fraction 47% 

was simulated using the above strategy.  The 

experimental data on tests carried out on the boron-

aluminum composite [12] and predictions from several 

prediction approaches were compared with predictions 

based on this work. One of the other approaches 

include that attributed to Sun and Vaidya [13] which is 

an FE method approach using a single-fibre square 

fibre array 3D RVE. Other approaches are Hashin-

Rosen analytical approach based on energy variational 

principles [14-16], as well as semi-empirical classical 

laminate theory [17].  This work used two 3D RVEs 

consisting of (a) one fibre (FEM Small) and size 30µm
2
 

and (b) 27 fibres (FEM Big) and size 100 µm
2
.  Table 

1 shows the results of comparison between the two 

approaches.  

In order to determine the elastic properties 

using the above approach, an optimal RVE window 

size needs to be determined for the test composite. This 

is the RVE window size at which there is a 

convergence of all elastic properties for the given RVE 

window. Figure 11 shows the graph of elastic 

properties against the RVE window size for Young 

Modulus.  Also, model predictions of rate-dependent 

transverse compression for polypropylene-glass fibre 

composite are shown in Figure 12 using the above 

homogenization approach. Again, the effect of spatial 

fibre arrangement at nonlinear finite deformation is 

illustrated in Figure 13. This shows the transverse 

strain (ε22) contour plots for six different realizations of 

a 90x90 µm
2
 RVE window tested at 25

0
C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11. Variation of predictions of Young Modulus with 

RVE Window sizes. 

 

Table 1 

Comparison of elastic properties of the boron-aluminium 

composite (vf=47%) based on different approaches. The fibre 

axis is along 1-axis and the transverse directions are 2- and 

3-axes. Unit: GPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.  Conclusions 

 

A FE micromechanical model for prediction 

of the finite deformation of a polypropylene-glass fibre 

composite is presented. The modelling overview 

includes (i) development of the robust matrix model, 

 

 



generation of 3D RVEs, (ii) implementation of PBCs 

on 3D RVEs, (iii) definition of micro & macro 

homogenization relationships, and (iv) the model 

predictions for elastic and finite deformations. The 

effect of spatial arrangement at the finite deformation 

suggests that in order to obtain the homogenized 

responses at such large strains, a large RVE window is 

required. This presents opportunities for further work.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.12. Prediction of rate-dependent transverse 

compression of test composite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.13. Transverse compression (ε22) contour plots for 6 

different spatial arrangements of the test composite. 
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