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Abstract 

Quinine, Chloroquine and mefloquine are commonly used to treat malaria; however with 

associated gastrointestinal (GI) side-effects. These drugs act as antagonists at recombinant 5-

HT3 receptors and modulate gut peristalsis.  These gastrointestinal side effects may be the 

result of antagonism at intestinal 5-HT3 receptors. Ileum from male C57BL/6 mice and 

guinea pigs was mounted longitudinally in organ baths. Concentration-response curves for 5-

HT and the selective 5-HT3 agonist 2-Me-5-HT were obtained with 5-HT (pEC50=7.57±0.33, 

12) more potent (P=0.004) than 2-Me-5-HT (pEC50=5.45±0.58, n=5) in mouse ileum.  There 

was no difference in potency of 5-HT (pEC50=5.42±0.15, n=8) and 2-Me-5-HT 

(pIC50=5.01±0.55, n=11) in guinea pig ileum (P>0.05).  Quinine, Chloroquine or mefloquine 

was applied for 10 min and inhibitions prior to submaximal agonist application. In mouse 

ileum, quinine, chloroquine and mefloquine antagonised 5-HT-induced contractions (pIC50 = 

4.9±0.17, n=7; 4.76±0.14,n=5; 6.21± 0.2, n=4, respectively) with mefloquine most potent (P 

<0.05). Quinine, chloroquine and mefloquine antagonised 2-me-5-HT-induced contractions 

(pIC50 = 6.35±0.11,n=8; 4.64±0.2, n=7; 5.11± 0.22, n=6, respectively) with quinine most 

potent (P<0.05).  In guinea-pig ileum, quinine, chloroquine and mefloquine antagonised 5-

HT-induced contractions (pIC50 = 5.02±0.15, n=6; 4.54±0.1, n=7; 5.32±0.13, n=5, 

respectively) and 2-me-5-HT-induced contractions (pIC50 = 4.62±0.25, n=5; 4.56±0.14, n=6;  

5.67±0.12, n=4, respectively) with chloroquine least potent against 5-HT and mefloquine 

most potent against 2-me-5-HT (P<0.05).  These results support previous studies identifying 

anti-malarial drugs as antagonists at recombinant 5-HT3 receptors and may also demonstrate 

the ability of these drugs to influence native 5-HT3 receptor-evoked contractile responses 

which may account for their associated GI side-effects. 

Keywords: 5-HT, quinine, chloroquine, mefloquine, gastrointestinal, contractions 
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1.0 Introduction. 

Enterochromaffin (EC) cells, within the epithelial layer of the gastrointestinal tract, 

release 5-HT and account for 90% of the body’s store of 5-HT (Bueno, 2005). A variety of 5-

HT receptors located on intestinal cells modulate peristalsis (Tuladhar et al., 2003; Tuladhar 

et al., 1997; Tuladhar et al., 2000) and secretions (Turvill et al., 2000).  These include 5-

HT1A, 5-HT3 5-HT4, and 5-HT7 receptors (Hoyer et al., 2002).  5-HT3 receptors play an 

important role in the excitability of the enteric nervous system, contributing to fast excitatory 

post-synaptic potentials in neurones of the myenteric and submucosal plexuses (Galligan, 

2002; Galligan et al., 2000; Michel et al., 2005).  5-HT3 receptors are distributed throughout 

the human, guinea pig, rat and mouse intestine, (Butler et al., 1990; Champaneria et al., 1992; 

Chetty et al., 2006; Chetty et al., 2008; Gaddum et al., 1957; Kapeller et al., 2011)  and play a 

pivotal role in modulating intestinal motility (Chetty et al., 2006; Liu et al., 2011; Mayer et 

al., 2006).  Additionally, 5-HT3 receptor antagonists such ramosetron have been indicated for 

diarrhoea-predominant irritable bowel syndrome by blocking intestinal 5-HT3 receptors (Lee 

et al., 2011) .    

Principal side effects of quinine, chloroquine and mefloquine include gastrointestinal 

disturbances such as nausea, vomiting, diarrhoea and constipation (Barrett et al., 1996; Fogh 

et al., 1988; White, 1992).  This may be partially due to an interaction with receptors or ion 

channels expressed within the gut and the enteric nervous system. Quinine is known to block 

voltage-gated K+ channels (Schmalz et al., 1998) and chloroquine may indirectly modulate 

large Ca2+-activated K+ channels (BKca) in the ileum (Jing et al., 2013).  Quinine, 

chloroquine, and mefloquine have also been shown to act as antagonists at human and mouse 

recombinant 5-HT3A homo-oligomeric receptors expressed in Xenopus oocytes (Thompson et 

al., 2007; Thompson et al., 2008). Additionally, quinine, chloroquine and mefloquine can 

displace [3H]granisteron binding to mouse recombinant 5-HT3 receptors (Thompson et al., 
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2007) indicating that these anti-malarial drugs directly bind to the 5-HT binding site on the 

receptor. We hypothesise that these anti-malarial drugs, quinine, chloroquine and mefloquine 

will also act as antagonists at native 5-HT3 receptors in the small intestine, and by doing so 

may significantly attenuate 5-HT3–mediated contractions. In an attempt to investigate this 

hypothesis, we have utilised both mouse and guinea-pig isolated ileum preparations and 

examined the ability of the anti-malarial compounds, quinine, chloroquine and mefloquine to 

antagonise 5-HT and 5-HT3 mediated contractions. The rationale for using both mouse and 

guinea pig ileum being that the action of anti-malarial compounds at recombinant mouse 5-

HT3A homo-oligomeric receptors has been evaluated previously (Thompson et al., 2007) and 

the guinea-pig 5-HT3A subunit (Lankiewicz et al., 2000) has a 85% sequence homology with 

its human counterpart with relatively similar agonist pharmacology to human recombinant 5-

HT3A receptors (Belelli et al., 1995). 
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2.0 Materials and methods 

2.1 Preparation of Tissues 

Male C57BL/6 mice (25-35g; Charles River Laboratories, Margate, UK) were killed by 

cervical dislocation and the ileum was excised 2 cm before the ileo-caecal junction and 

placed in Tyrode’s solution (in mM: NaCl 137, KCl 2.7, CaCl2 1.8, MgCl21.0, NaH2PO4 0.42, 

NaHCO3 12.0, Glucose 5.5, pH 7.4).  Segments of whole ileum (3-4 cm) were then carefully 

mounted longitudinally in 50 ml water jacketed organ baths containing Tyrode’s solution 

continuously aerated with 95% O2/5% CO2 and kept at 35-37 °C.  The ileum segments were 

allowed to equilibrate for 30 mins whilst mechanically attached to a force transducer with a 

resting tension of 0.5 g. The contractile responses were recorded by the forced transducer and 

visualised by means of a chart recorder. 

Portions of guinea pig ileum were obtained from adult male guinea pigs (200-300 g, 

Charles River, Laboratories, Margate, UK). The ileum was cut into 3.5-4 cm and mounted in 

a similar manner to that of mouse ileum.  The tissues were equilibrated for 30 min followed 

by an initial application of acetylcholine (ACh; 1 µM) to establish the integrity of the tissue 

at the start of the experiment.  All procedures involving animals were approved by the 

University of Kent Animal Welfare and Ethical Review Body in accordance with the UK 

Animals (Scientific Procedures) Act (1986). 

2.2 Drugs 

Acetylcholine, chloroquine, quinine (Sigma Aldrich, Poole, UK), 5-Hydroxytryptamine 

hydrochloride (Tocris Bioscience, Bristol, UK), 2-methyl-5-HT (Tocris Bioscience, Bristol, 

UK) were dissolved in Tyrode’s solution. Mefloquine (Sigma Aldrich, Poole, UK) was 

dissolved in 50% dimethyl sulfoxide then diluted in Tyrode’s solution to final dimethyl 
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sulfoxide concentration of ≤ 0.3%.  5-HT and 2-methyl-5-HT were applied to the serosal 

layer of the ileum and responses recorded for 30 seconds which was sufficient for capturing 

the maximal contraction evoked from the drug. The Tyrode’s solution was then flushed and 

the organ bath filled with fresh Tyrode’s solution. The ileum was then maintained for 10 

minutes prior to application of the next agonist concentration. For the anti-malarial 

(antagonist) compounds, application was also made to the serosal layer, however the ileum 

remained in contact with the anti-malarial compounds for 10 min. Following this 10 min 

interval, agonist was applied in the manner described above and the agonist evoked response 

recorded. The application of antagonists was not initiated until at least two agonist baseline 

responses (mm) in the absence of an antagonist did not differ greater than 5%. 

2.3 Analysis of Results. 

To construct the 5-HT and 2-me-5-HT agonist concentration-response curves, individual 

agonist-evoked contractile response heights (mm) were normalised to the maximal 

contraction height for each ileum.  The mean normalised responses ± S.E.M. for each agonist 

concentration in a series were iteratively fitted using GraphPad Prism (version 6, Iowa, USA) 

to the non-linear regression equation: 
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where Emin is the baseline contraction, Emax is the maximal agonist-evoked contraction, EC50 

is the concentration of the agonist required to produce 50% of the maximal contraction, L is 

the log of the agonist concentration and nH is the Hill slope.  Agonist potency was expressed 

as EC50 and pEC50 is the negative log of the EC50.  

For antagonist experiments, baseline agonist response heights (mm) were measured 

and antagonist effects were measured as a % of the mean baseline agonist response for each 
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ileum preparation. The relationships between increasing antimalarial (antagonist) 

concentration and % inhibition of agonist concentration-evoked contractions were iteratively 

fitted using GraphPad Prism (version 6, Iowa, USA) to the non-linear regression equation:  

  ( )50
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where IC50 is the concentration of the antagonist required to reduce to 50% of the agonist 

contraction, L is the log of the antagonist concentration and nH is the Hill slope.  Agonist 

potency was expressed as IC50 and pIC50 is the negative log of the IC50.   

5-HT and 2-me-5-HT pEC50s were compared independently for mouse and guinea pig 

by a Student’s t-test, whilst pIC50s for each antagonist against 5-HT and 2-me-5-HT were 

compared by a oneway analysis of variance (ANOVA) followed by post-hoc analysis 

(Tukey’s t). Statistical significance was defined as P < 0.05. 

 

3.0 Results. 

3.1 Mouse tissue  

Both 5-HT and 2-methyl-5-HT were able to evoke concentration-dependent contractions in 

mouse ileum tissue 5-HT was significantly more potent in its ability to induce contraction of 

the ileum than 2-methyl-5-HT (Fig 1). Potency (expressed as pEC50) for 5-HT was 7.57 ± 

0.33 (n = 12), whilst potency for 2-methyl-5-HT was 5.45 ± 0.58 (n = 5), which was 

significantly greater than potency for 5-HT when compared to the selective 5-HT3 agonist 

(Student’s t-test, t = 3.36, df = 15, P = 0.004). With increasing concentrations, quinine was 

able to successfully antagonise 5-HT-induced (25 nM) contractions in mouse ileum (pIC50 = 

4.9 ± 0.17, n = 7, Fig 2A) with complete block at 300 µM. Chloroquine also antagonised 5-

HT induced contractions (pIC50 = 4.76 ± 0.14, n = 5, Fig 2B) as did mefloquine (pIC50 = 6.21 
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± 0.2, n = 4, Fig 2C). A one-way analysis of variance revealed a statistically significant 

difference in the potency of the antimalarials to act as antagonists of the 5-HT mediated 

contractions [F (2, 13) = 17.90, P < 0.001] with mefloquine acting as the most potent 

antagonist of 5-HT mediated contractions (Tukey’s t, P < 0.05).  A 10 minute wash was 

sufficient to reinstate 5-HT-evoked contractions following the highest concentration of either 

quinine or chloroquine, but not mefloquine.   

Quinine (pIC50 = 6.35 ± 0.11, n = 8), chloroquine (pIC50 = 4.64 ± 0.2, n = 7), and 

mefloquine (pIC50 = 5.11 ± 0.22, n = 6) also successfully antagonised contractions evoked by 

the selective 5-HT3 antagonist, 2-methyl-5-HT (10 µM) in mouse ileum (Fig 3). Mefloquine 

was also able to successfully antagonise 2-methyl-5-HT-induced contractions with complete 

block at 100-300 µM.  A one-way analysis of variance revealed a statistically significant 

difference in the potency of the antimalarials to act as antagonists of the 5-HT3 mediated 

contractions  [F (2, 18) = 28.82,  P < 0.0001] with quinine acting as the most potent 

antagonist of 5-HT3 mediated contractions (Tukey’s t, P < 0.05). 

3.2 Guinea-pig tissue 

5-HT (10 nM -100 µM) and the selective 5-HT3 agonist 2-methyl-5-HT (10 nM – 30 µM) 

produced concentration-dependent contractions in isolated guinea pig ileum.  Potency 

(expressed as pEC50) for 5-HT was 5.42 ± 0.15, whilst potency for 2-methyl-5-HT was 5.01 ± 

0.55 with no statistical significant difference in potency between the two agonists (Student’s 

t-test, t = 0.619, df = 17, P = 0.544, Fig 4) Increasing concentrations of quinine and 

chloroquine were able to antagonise submaximal 5-HT-induced contractions (pIC50 = 5.02 ± 

0.15, n = 6 and pIC50 = 4.54 ± 0.1, n = 7, respectively) (Fig 5A and B).  Following a 10 min 

wash, 5-HT-evoked contractions were reinstated. In a similar manner, increasing 

concentrations of mefloquine also antagonised submaximal 5-HT contractions (pIC50 = 5.32 
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± 0.13, n = 5, respectively, Fig 5C), however, 5-HT-evoked contractions could not be 

sufficiently restored in ileum treated with the maximal concentration of mefloquine (300 μM) 

following three successive washes (i.e., > 5 min).  A one-way analysis of variance revealed a 

statistically significant difference in antagonist potency across the three anti-malarial 

compounds [F (2, 14) = 8.874, P < 0.01] with chloroquine least potent in inhibiting 5-HT-

induced contractions in the guinea pig ileum (Tukey’s t, P < 0.05). In addition, quinine (pIC50 

= 4.62 ± 0.25, n = 5), chloroquine (pIC50 = 4.46 ± 0.14, n = 6) and mefloquine (pIC50 = 5.67 

± 0.12, n = 4) were able to block selective 5-HT3 receptor mediated contractions by 

antagonising submaximal 2-methyl-5-HT-evoked responses (10 µM) in a concentration 

dependent manner (Fig 6). All but mefloquine were reversible within 10 min of wash.  A one-

way analysis of variance revealed a statistically significant difference in antagonist potency 

[F (2, 12) = 10.51, P < 0.01) with mefloquine acting as the most potent antagonist of 5-HT3 

mediated contractions (Tukey’s t, P < 0.05). 

 

4.0 Discussion. 

The main findings of the current investigation are that the antimalarial compounds quinine, 

chloroquine and mefloquine antagonise 5-HT-evoked contractions of both mouse and guinea-

pig ileum. These drugs also antagonise 5-HT3 receptor mediated contractions. The ability of 

these drugs to significantly influence the activity of key intestinal modulators, such as 5-HT, 

may underlie or partially account for their associated GI side effects of these drugs. 

5-HT and the selective 5-HT3 receptor agonist 2-me-5-HT produced concentration-

dependent contractions in mouse and guinea-pig ileal tissue.  The potency of 5-HT to produce 

contractions in guinea pig ileum tissue (pEC50: 5.42) is very similar to previous studies which 

reported potencies (pEC50) obtained in the presence of methysergide (e.g.,5.32, 5.38) (Butler 
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et al., 1990; Eglen et al., 1990). The potency of the selective 5-HT3 agonist, 2-me-5-HT 

(pEC50: 5.01), was also very similar to previous reports (e.g, 5.4 - 4.91) (Butler et al., 1990; 

Butler et al., 1988; Eglen et al., 1990) adding validity to our investigation.  Interestingly, 5-

HT was significantly more potent as an agonist than 2-me-5-HT in producing contractile 

responses in mouse ileum, suggesting the possibility that a variety of 5-HT receptor subtypes 

may be responsible for 5-HT-evoked contraction in the mouse ileum. This is consistent with 

previous studies which report a greater potency for 5-HT in the mouse ileum compared to 5-

HT application with 5-HT1,2,4,5,6,7 antagonism and 5-HT potency compared to 2-me-5-HT 

(Chetty et al., 2006).  

The antimalarial compounds also blocked contractions evoked by 5-HT and 2-me-5-

HT in mouse ileum. Interestingly, mefloquine was significantly more potent in antagonising 

5-HT mediated contractions then either chloroquine or mefloquine. This pattern of 

antagonism is very similar to previous reports which found that mefloquine was significantly 

more potent in antagonising 5-HT-induced current responses in mouse recombinant 5-HT3A 

homo-oligomeric receptors (Thompson et al., 2007). However, when looking at the 

antagonism of 2-me-5-HT mediated contractions, we found that quinine was a significantly 

more potent antagonist. This difference may be due to expression native 5-HT3AB hetero-

oligomeric receptor in the mouse gut (Matsumoto et al., 2013) which may be more sensitive 

to quinine antagonism than homo-oligomeric 5-HT3A receptors, although no studies of 

recombinant mouse 5-HT3AB hetero-oligomers have been completed to date. What also must 

be considered is that the contractions would be mediated by native receptors which may 

possess different regulatory sites compared to recombinant receptors, as well as being 

modulated by different cellular machinery compared to expression systems such as Xenopus 

oocytes. 
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The antimalarial compounds quinine, chloroquine and mefloquine were also able to 

antagonise both 5-HT and selective 5-HT3 receptor evoked contractions in guinea pig ileal 

tissue. Interestingly, the antagonist action of the antimalarial compounds on native receptors 

expressed in tissue is very similar to previous reports of antagonist action of antimalarial 

compounds on recombinant receptors. Thompson et al., (2007; 2008) expressed human and 

mouse recombinant 5-HT3 receptors in Xenopus oocytes and measured 5-HT3 receptor-

mediated inward current responses via two-electrode voltage clamping. As with the current 

study, both quinine and mefloquine antagonised agonist induced responses with complete 

block at 100-300 μM, remarkably similar to the present results from native receptors 

expressed in guinea-pig tissue. The rank order of antagonist potency of 5-HT3 receptor 

mediated contractions in guinea pig ileum, with mefloquine significantly more potent than 

quinine or chloroquine, was extremely similar the antimalarial antagonism of current 

responses mediated by recombinant human 5-HT3AB hetero-oligomers reported by Thompson 

et al., (2008).  Based on previous studies, it is likely that the native receptors expressed in the 

guinea pig ileum are hetero-oligomeric receptors, and the biophysical profile of native 5-HT3 

receptors is similar to that of human 5-HT3AB hetero-oligomers (Zhou et al., 1999). This may 

explain the similar antagonist profile observed in this study. 

It was noted that for guinea-pig and mouse ileum experiments, the antimalarial 

compounds were able to block contractions induced by the non-selective agonist 5-HT.  As 

there are other 5-HT receptors expressed within the intestine (e.g., 5-HT1A, 5-HT4 and 5-HT7) 

and these receptors may also induce or influence contractile responses, it raises the question 

as to whether quinine and mefloquine also have affinity for other 5-HT receptors in addition 

to 5-HT3.  Receptor binding experiments and subsequent docking studies conducted by 

Thompson et. al, (2007) indicated that the antimalarial compounds quinine and chloroquine 

will most likely dock at the 5-HT binding site on the 5-HT3 receptor. This may be due to the 
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molecular similarity with these compounds and 5-HT. It is plausible that these antimalarial 

compounds may also bind to the 5-HT docking site at other 5-HT receptors thus potentially 

act as antagonists at other 5-HT receptors.  This may in part explain the complete block of 5-

HT induced contractions following pre-application of quinine.  

Other possible factors influencing the results may be downstream receptor interaction 

and/or channel blockade by the antimalarial drugs. It is known that 5-HT3 receptors can be 

expressed presynapticly on parasympathetic and sympathetic afferents to the gut causing 

release of ACh (Fox et al., 1990), which in turn elicits contractions of longitudinal muscle via 

activation of muscarinic ACh receptors. As quinine is known to act as a blocker of voltage-

activated currents and muscarinic activated potassium channels (Dresviannikov et al., 2006), 

it is plausible that the effects observed may have been influenced in part by a blockade of 

these channels by quinine.  Mefloquine is also known to block K+ channels.  However it 

would be anticipated that a blockade of K+ channels would result in excitation, rather than an 

inhibition of contractile responses.  It was noted during the experiments that following the 

initial application of quinine at 100 nM -300 nM, there was a clear contraction with no 

responses at higher doses (data not shown).  These observations would be consistent with 

potassium channel blockade leading towards excitation and contractile responses rather than 

a straightforward inhibition of the contractions.  It is not clear that the results can be 

explained as simply a downstream blockade of muscarinic receptor activated cation channels. 

Both quinine and mefloquine completely antagonised 5-HT induced contractions, which may 

indicate an antagonism at 5-HT2 receptors, as well as 5-HT3 and 5-HT4 receptors. It is known 

that 5-HT2 induced contractions are not influenced or dependent upon cholinergic receptor 

activation or inhibition. Therefore this would imply that the effects of quinine and mefloquine 

observed upon 5-HT induced contractions cannot be due exclusively to an interaction at 

muscarinic receptor activated channels. 
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It should be noted that this study has focused exclusively on isolated intestinal tissue 

preparations.  The antimalarial drugs may have direct central effects. Ondansetron, a selective 

5-HT3 antagonist and antiemetic drug, produces its antiemetic effect by blocking peripheral 

5-HT3 receptors on vagal afferents and brain 5-HT3 receptors expressed in the medullary 

chemoreceptor zone (Gan, 2005).  It is plausible that the antimalarial drugs would act at the 

same central 5-HT3 receptors producing an antiemetic effect. Mefloquine has the ability to 

cross the blood brain barrier (Baudry et al., 1997).  However, quinine and chloroquine cannot 

easily cross the blood brain barrier (Hagihara et al., 2000; Silamut et al., 1985) and this would 

be expected to impede any possible antiemetic effects by these drugs by acting at central 5-

HT3 receptors.  

In conclusion, the present findings present an inhibition of both 5-HT and 5-HT3 

receptor- mediated contractions in both guinea-pig and mouse ileum tissue by the antimalarial 

drugs quinine, chloroquine and mefloquine. These results strongly suggest that these 

antimalarial drugs will directly interact and influence physiological function in the gut and 

may inhibit or disrupt normal contraction reflex responses at high concentrations. It is 

possible that the GI side-effects reported for these compounds may partially be the result of 

antagonist action at 5-HT3 receptors.   
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Table 1. 5-HT and 2-me-5-HT-evoked contraction in isolated mouse and guinea pig ileum 

Mouse ileum tissue 

Agonist  EC50   pEC50 (± S.E.M) n  

5-HT    27.12 nM  7.57 (± 0.33)    12 

2-me-5-HT  3.5 µM   5.45 (± 0.58)   5  

Guinea pig ileum tissue 

Agonist  EC50    pEC50 (± S.E.M) n  

5-HT    3.8 µM   5.42 (± 0.15)  8 

2-me-5-HT  9.7 µM   5.01 (± 0.55)    11  
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Table 2. Inhibition of agonist evoked contractions in isolated mouse ileum by antimalarial 
compounds 

 

Inhibition of 5-HT-evoked contractions 

Antimalarial   IC50 (µM)  pIC50 (± S.E.M) n  

Quinine  12.5    4.9 (± 0.17)    7 

Chloroquine  17.6   4.76 (± 0.14)   5 

Mefloquine  0.62   6.21(± 0.2)  4 

 

Inhibition of 2-me-5-HT-evoked contractions  

Antimalarial   IC50 (µM)  pIC50 (± S.E.M) n  

Quinine  0.44    6.35 (± 0.11)    8 

Chloroquine  22.9    4.64 (± 0.2)   7 

Mefloquine  7.85    5.11 (± 0.22)  6 
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Figure 4 
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Table 3. Inhibition of agonist evoked contractions in isolated guinea pig ileum by antimalarial 
compounds 

Inhibition of 5-HT-evoked contractions 

Antimalarial   IC50 (µM)  pIC50 (± S.E.M) n  

Quinine  9.46    5.02 (± 0.15)    6 

Chloroquine  28.71    4.54 (± 0.1)   7 

Mefloquine  4.78    5.32 (± 0.13)  5 

 

Inhibition of 2-me-5-HT-evoked contractions  

Antimalarial   IC50 (µM)  IC50 (± S.E.M)  n  

Quinine  24    4.62 (± 0.25)    5 

Chloroquine  27.48    4.56 (± 0.14)   6 

Mefloquine  2.15    5.67 (± 0.12)  4 
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Figure Captions 

Figure 1. (A) 5-HT (●) and 2-me-5-HT (○) induced contractions in mouse ileum. 5-HT 

(pEC50= 7.57 ± 0.33, n = 12) was more potent (Student’s t-test, t = 3.36, df = 15, P< 0.01) 

than 2-Me-5-HT (pEC50 = 5.45 ± 0.58, n = 5). (B) 5-HT and 2-me-5-HT induced contractions 

in the guinea-pig ileum. Concentration-dependent contractions produced by 5-HT (pEC50 = 

5.42 ± 0.15, n = 8) and the selective 5-HT3 agonist 2-Me-5-HT (5.01 ± 0.55, n = 11) were not 

significantly different (Student’s t-test, t = 0.619, df = 17, P = 0.544) in guinea pig ileum. 

Results are expressed as mean ± S.E.M. 

Figure 2.  Quinine (●), chloroquine (○) and mefloquine (□) block 5-HT-induced contractions 

in isolated mouse ileum. Increasing concentrations of quinine (pIC50 = 4.9 ± 0.17, n = 7), 

chloroquine (pIC50 = 4.76 ± 0.14, n = 5) and mefloquine (pIC50 = 6.21 ± 0.2, n = 4) were able 

to antagonise 5-HT induced contractions in mouse ileum, with mefloquine significantly more 

potent (Tukey’s t, P <0.05) Results are expressed as mean ± S.E.M. 

Figure 3. Quinine (●), chloroquine (○) and mefloquine (□) block 2-me-5-HT-induced 

contractions in isolated mouse ileum. Increasing concentrations of quinine (pIC50 = 6.35 ± 

0.11, n = 8), chloroquine (pIC50 = 4.64 ± 0.2, n = 7) and mefloquine (pIC50 = 5.11 ± 0.22, n = 

3) were able to antagonise 2-me-5-HT induced contractions in mouse ileum, with quinine 

significantly more potent (Tukey’s t, P <0.05) Results are expressed as mean ± S.E.M. 

Figure 4. Quinine (●), chloroquine (○) and mefloquine (□) block 5-HT-induced contractions 

in isolated guinea-pig ileum. Increasing concentrations of quinine (pIC50 = 5.02 ± 0.15, n = 

6), chloroquine (pIC50 = 4.54 ± 0.1, n = 7) and mefloquine (pIC50 = 5.32 ± 0.13, n = 6) were 

able to antagonise 5-HT induced contractions in the guinea pig ileum with complete block at 

100 µM and 300 µM applications for quinine and mefloquine. Results are expressed as mean 

± S.E.M. 
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Figure 5. Quinine (●), chloroquine (○) and mefloquine (□) block 2-me-5-HT-induced 

contractions in isolated guinea-pig ileum. Increasing concentrations of quinine (pIC50 = 4.62± 

0.25, n = 5), chloroquine (pIC50 = 4.56 ± 0.14, n = 6) and mefloquine (pIC50 = 5.67 ± 0.12, n 

= 4) were able to antagonise 2-me-5-HT induced contractions in the guinea pig ileum. Results 

are expressed as mean ± S.E.M. 




