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In this paper, the mechanical response of incompressible particle-reinforced neo-Hookean
composites (IPRNC) under general finite deformations is investigated numerically. Three-
dimensional Representative Volume Element (RVE) models containing 27 non-overlapping
identical randomly distributed spheres are created to represent neo-Hookean composites
consisting of incompressible neo-Hookean elastomeric spheres embedded within another
incompressible neo-Hookean elastomeric matrix. Four types of finite deformation (i.e., uni-
axial tension, uniaxial compression, simple shear and general biaxial deformation) are sim-
ulated using the finite element method (FEM) and the RVE models with periodic boundary
condition (PBC) enforced. The simulation results show that the overall mechanical
response of the IPRNC can be well-predicted by another simple incompressible neo-Hook-
ean model up to the deformation the FEM simulation can reach. It is also shown that the
effective shear modulus of the IPRNC can be well-predicted as a function of both particle
volume fraction and particle/matrix stiffness ratio, using the classical linear elastic estima-

tion within the limit of current FEM software.
© 2013 Elsevier Ltd. This is an open access article under the CC BY license (http://creati-
vecommons.org/licenses/by/3.0/).
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1. Introduction polynomial to predict the small strain Young’s modulus

of (rigid) particle-filled solids. Kerner (1956) designed an

A fundamental problem for particle-reinforced compos-
ites (PRC) is to predict the overall mechanical behavior of
the composite based on the mechanical properties of the
constituents and the microstructure of the composites.
Guth (1945) extended Einstein’s linear estimate originally
developed for viscous fluid and proposed a second order
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averaging procedure to estimate the effective shear modu-
lus and bulk modulus of the PRC. Hill (1965) proposed a
self-consistent model to estimate the effective shear mod-
ulus of the PRC. The three-phase model developed by
Christensen and Lo (1979) gives a very good prediction of
the PRCs effective shear modulus (Segurado and Llorca,
2002). Torquato (1998) derived accurate expressions for
the bulk and shear moduli of the PRC based on a third-or-
der approximation. Although a few studies investigated
some special microstructures such as cubic arrays of
spheres (e.g., Cohen, 2004), most papers in the literature
have focused on macroscopically isotropic composites
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with randomly distributed particles. Besides the direct
estimation of the effective moduli of the PRC, some rigor-
ous bounds for the elastic properties of the PRC have been
obtained from variational principles (e.g., Hashin and
Shtrikman, 1963). Another approach to investigate the
“overall” mechanical behavior of the PRC is to solve the
boundary value problems for a representative volume ele-
ment (RVE) model of the composite numerically (Michel
et al, 1999). Drugan and Willis (1996) showed that a small
size RVE model can predict accurately the mechanical re-
sponse of the PRC. Segurado and Llorca (2002) provided a
comprehensive numerical study of the mechanical proper-
ties of the linear elastic PRC using multi-particle RVE
models.

Although the mechanical properties of the PRC in infin-
itesimal strain have been investigated extensively, their
mechanical behavior in the finite deformation regime is
still not well-understood due to the intrinsic difficulties re-
lated to the geometrical and material nonlinearities. Hill
(1972) proposed a set of macroscopic variables for consti-
tutive modeling of composites in finite deformation. Based
on that, Ogden (1974) derived an approximate expression
for the overall bulk modulus of the PRC with second-order
isotropic compressible elastic constituents under finite
strain. Hashin (1985) studied the response of hyperelastic
PRC under hydrostatic loading. Imam et al. (1995) derived
the second order elastic field for incompressible hyperelas-
tic composites with dilute inclusions, which was then em-
ployed to estimate the overall moduli of the PRC. Although
recently several research groups have investigated hyper-
elastic composites with inclusions in two dimension
(which physically implies composites with aligned fiber
reinforcement) and some related boundary value problems
are solved analytically (e.g., deBotton et al., 2006; Guo
et al., 2008; Guo et al., 2006; Lopez-Pamies, 2010), analyt-
ical solutions for three-dimensional PRC model under gen-
eral homogeneous displacement boundary conditions are
far more difficult. Castaneda (1989) proposed a self-consis-
tent approach to predict the shear modulus of incompress-
ible particle-reinforced neo-Hookean composites (IPRNC).
Bergstrom and Boyce (1999) used the concept of strain
amplification under large strain to estimate the shear mod-
ulus of incompressible neo-Hookean composites filled
with rigid particles. Because these two models are not
based on an accurate approximation of the elastic fields,
it is not surprising to find that they don’t provide good esti-
mates of effective shear modulus of IPRNC with moderate
particle volume fractions. Recently Avazmohammadi and
Castaneda (2012) developed a tangent second-order
(TSO) method to investigate the macroscopic response of
PRC in finite deformation and an explicit formula is derived
to approximate the strain energy of incompressible neo-
Hookean composites reinforced with rigid particles.

The numerical studies of hyperelastic composites avail-
able in the literature are also mainly limited to two-
dimensional problems of composites with aligned fibers
or voids (e.g., Guo et al., 2008; Moraleda et al., 2007,
2009; Tang et al., 20124, b), though Bergstrom and Boyce
(1999) used simple 2D axisymmetric models to simulate
IPRNC under uniaxial deformation. Three-dimensional
RVE modeling in finite deformation is only investigated

for single-fiber unit cell (Guo et al., 2007). To the best of
the authors’ knowledge, there is no comprehensive numer-
ical study of the PRC under finite deformation published in
the literature.

Because it is difficult to predict the mechanical response
of the PRC under general finite deformation theoretically
due to the related geometrical and material nonlinearities,
this study employs the numerical homogenization ap-
proach to investigate the mechanical behavior of the sim-
plest hyperelastic PRC under general finite deformation,
in which the mechanical properties of both the matrix
and the reinforcement are described by an incompressible
neo-Hookean model respectively. In this paper, three-
dimensional RVE models are created to represent the neo-
Hookean composite which consists of one incompressible
neo-Hookean elastomer embedded with another randomly
distributed equal-sized spherical incompressible neo-
Hookean particle reinforcement. Commercial finite ele-
ment analysis software ABAQUS is employed for the
numerical simulations of the RVE models. Periodic bound-
ary conditions (PBC) are implemented in the RVE models
when general finite deformation is applied to the RVE mod-
els. The numerical results show that the overall mechanical
responses of the IPRNC can be well predicted by another
simple incompressible neo-Hookean model. The simulation
results also suggest that the classical linear elastic estima-
tion (Christensen and Lo, 1979) can be used to predict the
effective shear modulus of the IPRNC with different particle
volume fraction and different particle/matrix stiffness ratio.

The structure of the paper is as follows: In Section 2, the
IPRNC to be investigated is described and the theoretical
basis of the numerical homogenization in finite deforma-
tion (Hill, 1972; Ogden, 1974) is also introduced. In Section
3, the RVE models are developed for numerical simulations
using finite element method (FEM) and some related issues
(e.g., isotropy of the RVE models, FEM mesh) are discussed.
The results of the RVE simulations are presented and inves-
tigated in Section 4. The effective modulus of the hyper-
elastic composites is also compared with classical linear
elastic estimation. Some concluding remarks are given in
Section 5.

2. Particle-reinforced neo-Hookean composites and
theoretical basis of numerical homogenization

First of all, some basic concepts in continuum mechan-
ics need to be introduced. For a continuum solid, the defor-
mation gradient is defined as F = 9x/0X, where X and x
denote the positions of a typical material point respec-
tively in the original (undeformed) and deformed configu-
ration of the solid, respectively. The mechanical behavior
of an isotropic hyperelastic material can be determined
by its strain energy function (per unit volume in the origi-
nal configuration) W = W(F). If the material is compress-
ible, the nominal stress P can be obtained as

_ OW(F) oW
P="0F > Pi=gp ()
while for an incompressible material, it reads

o, OW(F)
P=-pF ' + F (2)



Z. Guo et al./Mechanics of Materials 70 (2014) 1-17 3

where p is the (arbitrary) pressure. The simplest model for
hyperelastic materials is the incompressible neo-Hookean
model, as follows:

W(F) :%u(h -3), 3)

where the only material constant y is the shear modulus of
the material; I; = tr(C) is the first invariant of the right
Cauchy-Green deformation tensor C = F'F.

In the paper, our interest will focus on the mechanical
behavior of the simplest hyperelastic PRC, the so-called
“incompressible particle-reinforced neo-Hookean compos-
ite” (IPRNC), in which both the matrix and the particle
reinforcement are incompressible neo-Hookean materials
and they are perfectly bonded at the surfaces. Let u,, and
1, denote the shear moduli of the matrix and the reinforce-
ment respectively. If the mechanical properties of the com-
posite are assumed to be macroscopically isotropic and
homogeneous, only two parameters, the stiffness ratio
W,/ 1., and the volume fraction of the reinforcement c, need
to be considered. Hence the shear modulus of the matrix
W, can be set as 1 (one unit) without losing any generality.

The macroscopic mechanical behavior of the (micro-
scopically inhomogeneous) hyperelastic composite can be
characterized by the constitutive macro-variables defined
in Hill (1972). We now consider a representative volume
of the inhomogeneous hyperelastic material which occu-
pies volume V in the original configuration. The volume
average (denoted by an over-bar) of the deformation gradi-
ent F, the nominal stress tensor P, and the strain energy W
are given by (Hill, 1972; Ogden, 1974)

J,FdV  _ [,PdV [ W(F)dV
o Pl W= @)

Using the equilibrium equations and the divergence
theorem, it can be derived that

- x;in:dS

where S is the surface of the volume V; n = n;e; is the out-
ward unit vector normal to the surface S. Here €; is the unit
vector in the direction of the X; axis. This means that the
average deformation gradient F can be computed in terms
of the displacement on the surface S. Similarly, if the con-
tinuum body is in equilibrium, the average nominal stress
P can be obtained as

P,’j _ fSXl-P‘,/q-n,(dS7 (6)

which implies that the average nominal stress P can be
computed in terms of the nominal stress P on the surface
S. Hill (1972) showed that

F=

0]
P="%F @

for compressible composites. If the material is incompress-
ible, it reads
OW(F)

P— pFT ,
pE- OF

8)

Hence W (F) can be treated as a potential (strain energy)
for the volume V and a function of F. The mechanical
behavior of the overall composite can be determined by
W = W(F). However, because of the fundamental difficul-
ties caused by the related geometrical and material nonlin-
earity, even for the simplest PRC defined above, it is still
very difficult (if not impossible) to derive an analytical
expression for the strain energy field in the volume V un-
der a general deformation state (e.g., the explicit strain en-
ergy approximation obtained in (Avazmohammadi and
Castaneda, 2012) for incompressible neo-Hookean com-
posite with rigid reinforcement has about 200 terms).

To overcome the theoretical difficulty, numerical
homogenization methods have been proposed to estimate
the effective properties of microscopically inhomogeneous
composites (Kouznetesova, 2002; Michel et al., 1999).
Based on the macro-variables defined in Hill (1972), to
determine the mechanical behavior of hyperelastic com-
posites, for any given “overall” deformation (represented
by the average deformation gradient F), appropriate dis-
placement boundary conditions which satisfy (5) are ap-
plied to a geometrical representative model and the
corresponding stress/strain fields can then be computed
numerically (usually by FEM). The macroscopically defined
nominal stress tensor P can then be obtained from (7) and
the related strain energy W(F) can also be computed
numerically. For macroscopically homogeneous and isotro-
pic incompressible hyperelastic material, any general
deformation can be treated as a biaxial deformation in its
principal directions. Hence any general deformation can
be represented by principal stretches A, and /, (the third
principal stretch can be determined by the incompressibil-
ity constraint as A3 = 1/(1142)). If the principal stretches
are further sorted as /; > /4, > 43, then only the region
{(21,22)|41 = 1,21 = 2 = 4;"/*} needs to be investigated
numerically. Now the overall strain energy function can
be written as W = W (44, 4). When the invariant approach
is used, the overall strain energy function can be repre-
sented as W = W(Iy,I,), where I, = 1[(trC)> — trC?] is the
second invariant of the right Cauchy-Green deformation
tensor C. If sufficient values of W are computed numeri-
cally, for some simple composites, the data might suggest
a simple function W(/, /) or W(I;,1,), as illustrated later
in the paper.

3. RVE models and finite element simulations

The first step of numerical homogenization is to gener-
ate a set of appropriate RVE models which can statistically
represent the composite. In the paper, the IPRNC is geo-
metrically simulated by three-dimensional representative
cubic unit cell with 27 non-overlapping identical spheres
randomly distributed. Because the PBC will be applied to
the RVE models in the FEM simulations, it is required that
the RVE models have periodic microstructures. That is, if a
particle intersects the RVE surface, it has to be split into an
appropriate number of parts and copied to the opposite
sides of the cube (Fig. 1). Therefore the RVE model can be
used as a unit block to build composite models with cor-
rect periodic microstructures. The software DIGIMAT 4.1
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Fig. 1. The microstructure of a RVE model with 20 vol% of particles.

is used to generate RVE models with periodic microstruc-
tures. To investigate the effect of different particle volume
fraction ¢, RVE models with various volume fractions (i.e.,
c=5%, 10%, 20% and 30%) of particles are generated. For
each volume fraction, 4 different RVE samples are created
to study the variation of the predictions (an RVE sample
with 20 vol% of particles is shown in Fig. 1). The diameter
of the particles d in each RVE can be determined by the

@ 1
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Fig. 2. (a) Coordinates of the centroid of the spherical particles vs. the
particle volume fraction c. For each value of c, there are four RVE samples,
which produce 12 coordinate values (x, y, z coordinate values for every
RVE sample). (b) Moment of inertia, I, of the spherical particles vs. the
particle volume fraction c. I =cL?/6 for ideally randomly distributed
particles is also plotted in solid line for comparison. Similarly, there are 12
values of I for each value of c (there are Iy, I, I, for every RVE sample).

particle volume fraction c. For example, when ¢ =0.3,
d = 0.2768 (the size of the RVE cubic unit L =1 here). To
prevent severely distorted finite elements in the matrix
necking zone between particles, it is required that the dis-
tance between any two spheres is larger than 0.1d for
¢ < 0.2 and 0.05d for ¢ > 0.2.

To correctly predict the mechanical response of the
macroscopically isotropic IPRNC, it is important to make
sure that the generated RVE models are close to isotropic.
The isotropy of the particle distribution in the 16 RVE mod-
els is analyzed by computing the positions of the centroid
of the particles and their moment of inertia in relation to
the three axes which are parallel to the three axes of the
coordinate system and pass through the centre of the
RVE unit. The results are plotted in Fig. 2. When the parti-
cles are ideally random distributed, the moment of inertia
is I = cL?/6 (Segurado and Llorca, 2002). This is also plotted
in Fig. 2 for comparison. The results in Fig. 2 show that, for
all RVE samples, the centroid is always close to L/2, and the
value of the moment of inertia is also close to the ideal va-
lue cL?/6 (the moment of inertia of the particles in an RVE
model is usually slightly smaller than the ideal value be-
cause the partition of the particles leads to smaller contri-
butions of the particles to the overall moment of inertia).
This implies that there are no axial preferential directions
identified in the 16 RVE samples. An alternative method
to verify the isotropy of an RVE model is to simulate the re-
sponse of the RVE model under uniaxial tension/compres-
sion along various directions, which will be discussed in
the next section.

For a given average deformation gradient F, based on
(5), it is obvious that the choice of boundary condition is
not unique. Usually three types of boundary condition
are used for general RVE models: (i) the prescribed dis-
placement boundary condition (PDBC); (ii) the prescribed
traction boundary condition (PTBC) (or sometimes named
as “mixed boundary condition (MBC)”); and (iii) the peri-
odic boundary condition (PBC) (Chen et al,, 1999). Chen
et al. (1999) investigated the effects of these three types
of boundary condition on predictions of RVE models and
their results showed that the PBC provides the best perfor-
mance, while the PDBC and the MBC over and underesti-
mate the yield strength respectively. This observation has
been verified by many other researchers (e.g., Hohe and
Becker, 2003). Because of this, the PBC is applied to all
FEM simulations of the RVE models in the paper. For any
given average deformation gradient F applied to the RVE
model, the PBC can be represented as the following general
format (Guo et al., 2007):

X(Q1) — X(Q2) = FIX(Q,) — X(Q,)l,
V(Q) = -V(Q2),

where Q; represents a general node on a face of the RVE
cube and the corresponding node Q, is at the same loca-
tion of the opposite face of the RVE model. V is the force
applied at the nodes. Here again X and x denote the posi-
tion of a material point respectively in the original (unde-
formed) and deformed configuration. The first equation in
(9) represents the periodic displacements, while the sec-
ond one represents the antiperiodic traction conditions.

9)
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The PBC is implemented by “Equation” type of constraints
in ABAQUS 6.10 (ABAQUS, 2010). To implement the PBC, it
is essential to have periodic meshes (i.e., identical meshes
on each pair of faces of the RVE cube) for the RVE models.
The same procedure proposed by Segurado and Llorca
(2002) is employed here to mesh the RVE models to guar-
antee that all the meshes are periodic.

The FEM simulations of all RVE models are performed
with ABAQUS/Standard 6.10 within the framework of finite
deformation (ABAQUS, 2010). The matrix is modeled as an
incompressible neo-Hookean material with p,, = 1. The
particles are also modeled as an incompressible neo-Hook-
ean material and different particle/matrix stiffness ratios
are considered, i.e.,, u, =100, 10, 0.5 (u, = 0.5 implies a
softer particle inclusion), and the case of rigid particle
(which corresponds to p, = co) is also investigated. In a
standard mesh of an RVE model, there are about 60,000
elements for the matrix phase and about 20,000 elements
for the particles. Quadratic tetrahedral elements (element
type C3D10MH in ABAQUS) are used and around 120,000
nodes are defined. Because of the material and geometric
nonlinearity, as well as the severe meshing distortion in
the matrix necking zone between spherical particles, con-
vergence is usually very challenging in the numerical sim-
ulations (particularly when the stiffness contrast between
the particles and the matrix is large) and a typical simula-
tion on an RVE with the standard mesh takes about 4-
7 days on an HP Z600 workstation with 16 GB of RAM
and 12 CPU cores. To check if this standard mesh is good
enough or not to predict accurately the response of the
RVE models, an RVE model with ¢ = 0.2 is meshed with a
refined mesh containing more than 170,000 elements
and 200,000 nodes. The uniaxial tension along the X; axial
direction is simulated for the RVE model with standard and
refined meshes respectively. The nominal stress vs. nomi-
nal strain (defined as € = /1 — 1, where /. denotes the stretch
ratio) curves for both meshes are plotted in Fig. 3. The two
curves are practically superposed, which implies that the
standard mesh is able to predict the mechanical response
of the RVE model at almost the same level of accuracy as
the refined mesh. Hence the standard mesh is used in all

1.5
2 17
<
@
=
g
&
2 05
—&— Standard mesh
—©— Refined mesh
0 &
0 0.1 0.2 03 0.4 05 0.6

Nominal strain

Fig. 3. Results of the FEM simulations of an RVE model (c = 0.2, u, = 10)
subjected to uniaxial tension along the X; axial direction with standard
(denoted by triangles) and refined meshes (denoted by circles). The
curves show the nominal stress and the nominal strain ¢ = 2 — 1.

the numerical simulations in the paper due to the limita-
tion of the computing resources. As pointed out in the pre-
vious section, any general deformation can be represented
by a biaxial deformation provided the model is “overall”
isotropic. Therefore the following four types of finite defor-
mations are simulated in the paper: uniaxial tension, uni-
axial compression (along the coordinate axial directions
and random directions), simple shear and biaxial deforma-
tion. For most FEM simulations in the paper, the deforma-
tion is applied until convergence is not achieved in
ABAQUS with minimum strain increment setting as
0.001. Because of the convergence issue of the proposed
numerical approach, all our discussion, if not explicitly ex-
pressed, is limited up to the deformation the FEM software
can simulate.

4. Results and discussion
4.1. Size of the RVE in finite deformation

Based on the homogenization theory, an RVE model
should be sufficiently large to be statistically representa-
tive of the composite (Drugan and Willis, 1996). But be-
cause of the limitation of computing resources,
practically the size of an RVE model should be chosen such
that the RVE model can predict the overall response of the
composite with desired accuracy (Drugan and Willis,
1996). Drugan and Willis (1996) showed that within the
framework of linear elasticity a small size RVE model can
well represent the macroscopic behavior of many compos-
ites with reinforcement: for example, the minimum RVE
size required to obtain “overall” modulus of the composite
with less than 5% error is just about twice of the reinforce-
ment diameter. This is verified by the numerical simula-
tions of the RVE models for the linear elastic PRC
(Segurado and Llorca, 2002). For composites with nonlin-
ear phase(s), although there is no theoretical estimates
for the minimum RVE size, various numerical investiga-
tions showed that similar sizes of RVE models can be used
to obtain predictions with the same degree of accuracy
(Segurado and Llorca, 2005, 2006).

For hyperelastic composites, however, as pointed out by
Moraleda et al. (2009), there is no critical size of the RVE
because of the instabilities arising from the non-convexity
of the local strain energy functions (Miehe et al., 2002). The
numerical simulations of fiber-reinforced composites in fi-
nite deformation (Khisaeva and Ostoja-Starzewski, 2006;
Moraleda et al., 2009) suggested L/d > 16. However, in
our RVE models, L/d =3.61 (for c=0.3) to 6.56 (for
¢ = 0.05). If the ratio L/d was increased to 16, more than
390 spheres would be required in the RVE and obviously
the corresponding computing cost would be beyond the
practical limit. On the other hand, as will be illustrated in
this section later, our simulation results show that the vari-
ations between the predictions of various RVE models are
well below 5% in general, which implies that the small size
RVE used in the paper is able to obtain exact responses (to
a few percent) of the IPRNC under general three-dimen-
sional finite deformation. That is, similar accuracy can also
be obtained for the IPRNC in the finite deformation regime
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with small size RVE models comparing to the results in the
infinitesimal deformation regime. We note that material
instability is not considered in this paper.

4.2. Isotropy of the RVE models

After the random distribution of the particles in the 16
RVE models is verified in the previous section, the isotropy
of the mechanical behavior of the RVE models is double-
checked by direct simulations of the responses of the RVE
models subjected to uniaxial tension/compression along
various directions. For an RVE model with ¢=0.2,
1, = 10, the nominal stress vs. nominal strain curves for
uniaxial tension along the three coordinate axial directions
are plotted in Fig. 4. For the three uniaxial tension simula-
tions, convergence problem occurs when the stretch ratio 4
reaches about 1.5-1.7. The ultimate stretch ratio obtained
by ABAQUS depends on the particle/matrix stiffness ratio,
the RVE geometry, the mesh, as well as the stretch direc-
tion. The response of the same RVE model subjected to uni-
axial tension along a random direction represented by the
unit vector (—0.6461,-0.1411,0.7501) is also simulated
and plotted in Fig. 4 (all random directions and numbers
used in the paper are generated in MATLAB prior to the
ABAQUS simulation). The four curves are practically super-

(a)2s

Norminal stress

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Nominal tensile strain

0 0.2 0.4 0.6 0.8

=2
I . S ~
a I S
I a & °

Nominal transverse strain

s
S

-0.25

Nominal tensile strain

Fig. 4. (a) Nominal stress vs. nominal strain curves of an RVE model
(c=0.2, u, = 10) subjected to uniaxial tensions along the three axial
directions and a random direction (—0.6461, —0.1411, 0.7501). The
theoretical nominal stress vs. nominal strain curve from the fitted strain
energy function is plotted as a dotted line. (b) The corresponding nominal
strains in the transverse directions are also plotted against the nominal
tensile strain. The isotropic solution &, = &5 =42 —1=(14¢&)"* -1
is plotted as a dotted line.

posed (relative difference less than 0.85%, which is within
the error of the FEM simulation itself). The nominal strains
in the two transverse directions are also examined for the
four simulations against the isotropic solution
G=e=2""-1=(1+¢) -1 (Fig. 4). The eight
curves from numerical simulation results are very close
to the theoretical solution (maximum relative variation
less than 1.5%). This indicates that the uniaxial tensile
behavior of this RVE model (in the undeformed configura-
tion) is very close to isotropic. Similarly, the FEM simula-
tion results of this RVE model subjected to uniaxial
compression along the three coordinate axial directions
and a random direction (0.6366,0.6433,0.4253) are plot-
ted in Fig. 5. Uniaxial compression can be simulated until
about 4= 0.55. It is clear that the uniaxial compression
behavior of this RVE model is also very close to isotropic
because the maximum variation between the four simula-
tions is well below 0.9%.

Since both Castaneda (1989) and Bergstrom and Boyce
(1999) proposed the use of an incompressible neo-Hook-
ean model to estimate the response of an IPRNC, the strain
energy results W computed from the FEM simulations of

0.6 -0.5
(a)

w
v
@
ot
=]
w»
=
S
g
£
St
S
4

-5

Nominal strain

(b) - 0.4
=

= 0.3
&
%
b
1]
@
A

£ 0.2
«
-]
Té‘
£

Z 0.1

0
0.5 0.4 03 0.2 0.1 0

Nominal compression strain

Fig. 5. (a) Nominal stress vs. nominal strain curves of an RVE model
(c=0.2, u, =10) subjected to uniaxial compressions along the three
axial directions and a random direction (0.6366, 0.6433, 0.4253). The
theoretical nominal stress vs. nominal strain curve from the fitted strain
energy function is plotted in dotted line. (b) The corresponding nominal
strains in the transverse directions are also plotted against the nominal
compression strain. The isotropic solution & =& =2""2-1=
(1+ &) "% =1 is plotted as a dotted line.
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the uniaxial tension are plotted against I; — 3 in Fig. 6. A
clear propositional relation is observed and the data is well
fitted by W = 0.7441(I; —3) using MS Excel 2007 (the
coefficient of determination R?> =0.9999 indicates an
excellent fit), which implies the effective shear modulus
of the IPRNC is u. = 1.4882 for the loading case of uniaxial
tension. The theoretical nominal stress-strain curve com-
puted from the fitted strain energy function is plotted as
a dotted line in Fig. 4, which is practically identical to the
numerical results. The strain energy results W computed
from the four uniaxial compression simulations are also
fitted as W = 0.7459(I; — 3) in Fig. 6 (R* = 0.9998 in MS
Excel 2007). The corresponding theoretical nominal
stress—strain curve obtained from this fitted strain energy
function is plotted in dotted line in Fig. 5, which is again
practically superposed with the numerical results. The dif-
ference between the effective shear moduli of the IPRNC
predicted by uniaxial tension and uniaxial compression is
less than 0.24%, which suggests that, up to the deformation
the FEM software can simulate, a unique incompressible
neo-Hookean model might be capable of predicting the
mechanical behavior of the IPRNC under general finite

0.8

0 0.2 0.4 0.6 038 1
-3
(a) W vs. I, -3 for uniaxial tension simulations

0.8

0.6

0.2

0 0.2 0.4 0.6 0.8 1
Ii-3
(b) W vs. I, =3 for uniaxial compression simulations

Fig. 6. (a) The strain energy results W computed from four FEM
simulations of an RVE model (c =0.2, u, = 10) subjected to uniaxial
tensions are plotted against I; —3. The data is fitted by
W = 0.7441(I, — 3) (solid line). (b) The strain energy results W computed
from four FEM simulations of an RVE model (¢ = 0.2, i, = 10) subjected
to uniaxial compressions are plotted against I; — 3. The data is fitted by
W = 0.7459(I; — 3) (solid line).
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Fig. 7. Average strain energy W vs. I; — 3 for the 20 uniaxial tension/
compression simulations of 4 RVE models (c = 0.2, . = 10). The linear
fitting curve is plotted in solid line.

deformation. Similar procedure is applied to all 16 RVE
models to examine their isotropy. The simulation results
show that, for any RVE model, its responses under uniaxial
tension or compression along different directions can all be
well described by a unique incompressible neo-Hookean
model. The differences between the effective shear moduli
predicted by various tension or compression simulation
cases for one RVE model is well below 4.6%. Therefore
the isotropy of the 16 RVE models is confirmed directly
by the FEM simulations.

To study the variations between different RVE models,
the other three RVE models with ¢ = 0.2 are subjected to
uniaxial tension along the X; and X, axial directions, as
well as uniaxial compression along the X5 axial directions
and a random direction in FEM simulations (u,. = 10). In
Fig. 7, all the computed strain energy data W from the 20
simulations is plotted against I; —3 and they are fitted
excellently by a linear relation W = 0.7479(I; — 3) in MS
Excel 2007 (R?> = 0.9999). The effective shear moduli of
the 4 RVE model are obtained individually (by fitting the
corresponding simulation results on each RVE model) as
1. = 1.4896, 1.4948, 1.505, 1.5064, respectively. The rela-
tive differences between these effective shear moduli are
less than 1.2%. This shows again that the small size RVE
models used here are able to obtain exact responses (to a
few percent) of the IPRNC.

4.3. Composites embedded with rigid particles

When the particles are rigid (i.e., i, = oo), each particle
component (some particles are partitioned into several com-
ponents by the RVE surface) is defined as a rigid body using
the nodes on its matrix-particle surface. Hence there is no
need to discretize it into elements (Fig. 8). If a spherical par-
ticle is divided into several components by the RVE surface,
the translational and rotational degrees of freedom (d.o.f.s)
of those components are constrained properly to make sure
the PBC is satisfied on the RVE surface. This can be verified,
for example, by the deformed shape of an RVE model with
5 vol% rigid particles under uniaxial tension (Fig. 8).

Three simple deformations, i.e., uniaxial tension (along
the X, axial direction and up to 4; = 1.85), uniaxial com-
pression (along the X3 axial direction and up to
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Fig. 8. An RVE model with 5 vol% of rigid particles (a) and its deformed
shape after uniaxial tension (b).

43 = 0.60) and simple shear (in the X;X, plane and up to
k = 0.32), are simulated for an RVE model with ¢ = 0.05.
The nominal stress-strain curves are plotted in Fig. 9.
Numerical simulation of a biaxial deformation with nomi-
nal strain ratio & /&; randomly assigned as —0.3432 (be-
cause only 4 > 4, > ;"> needs to be considered, a
random value between —-0.5 and 1 is assigned to
&/& = (42 —1)/ (41 — 1)) is performed (up to & = 0.85)
to check the response of the RVE model under general
three-dimensional finite deformation. The nominal
stress-strain (in the X; direction only) curve is plotted in
Fig. 9. The strain energy W obtained from the four simula-
tions is plotted against I; — 3 in Fig. 10 and they are fitted
excellently by a linear relation W = 0.5687(I; — 3) in MS
Excel 2007 (R* = 1.0, and relative error (between the fitted
function and the numerical data) well below 0.23%). There-
fore the effective shear modulus of the RVE model is pre-
dicted as p.=1.1374. The theoretical nominal stress—
strain curves from the effective shear modulus are plotted
as dotted lines in Fig. 9, which are almost identical to the
numerical results (maximum relative error less than 1.6%).

FEM simulations on other three RVE models with
¢ = 0.05 are required to obtain an “average” effective shear
modulus of the IPRNC with (c = 0.05, u, = o). Ideally all
the four types of deformations should be examined on
every RVE model to compute the effective shear modulus,
however, because of the extensive computing time re-
quired for the simulations, the following timesaving strat-
egy is used: to compute the effective shear modulus for a

given (c, u,) case, the following three requirements are sat-
isfied: (i) at least 6 FEM simulations are performed; (ii) all
four types of deformations are simulated; and (iii) all four
related RVE models (with the particular volume ratio) are
involved. Then the strain energy data from all the FEM sim-
ulations are collected together to fit the effective shear
modulus of the IPRNC. For example, eight FEM simulations
are performed on the 4 RVE models for the IPRNC with
(c = 0.05, u, = o) discussed above, and the effective shear
modulus is computed by fitting all the strain energy data
from the eight simulations as p, = 1.1376. To investigate
the variation between the effective shear moduli of differ-
ent FEM simulations, the effective shear modulus of every
simulation is calculated by fitting related strain energy data
and the maximum and minimum effective shear moduli are
recorded to compare with the average effective shear mod-
ulus. For the IPRNC with (¢ = 0.05, i, = o), the maximum
and minimum values of the eight computed effective shear
moduli are uS,,, = 1.1404 and u,;, = 1.1350, and they are
represented by the error bars in Fig. 11.

Similarly, the effective shear modulus of the IPRNC can
be computed numerically for c = 0.1, 0.2, 0.3 (we note that
for RVE models with large rigid particle volume fraction
value, ABAQUS standard can only simulate a relatively lim-
ited extent of deformation because all deformations are
carried by the matrix phase and the mesh in the matrix
necking zones between close particles is severely distorted
at even the early state of the deformation). The obtained
moduli are plotted in Fig. 11 as a function of the particle
volume fraction.

Based on the concept of strain amplification, Bergstrom
and Boyce (1999) assumed that the composite is still a
neo-Hookean material and they proposed the following
estimate of shear modulus for incompressible neo-Hook-
ean composite embedded with rigid particles:

te = (1= ¢)(1 + 3.5¢ + 30¢2). (10)

Castaneda (1989) also assumed the neo-Hookean
behavior of the composite and gave a self-consistent esti-
mate of the effective shear modulus of the IPRNC as
follows:

. VI =308, + (3¢~ 2) >+ 8tpt, — [(1- 304, + (B¢ -2,
< 4 .

(11)

When the particles are rigid, it leads to the following re-
sult (Castaneda, 1989)

Hin
:uc - 1 _ 3C - (12)

Obviously it will overestimate g, when ¢ — 1/3. The
strain amplification estimate, SAE (Bergstrom and Boyce,
1999), and the self-consistent estimate, SCE (Castaneda,
1989) are both plotted in Fig. 11 to be compared with
the numerical results. Because the dispersion of the values
of the effective shear moduli obtained from different RVE
models (maximum and minimum values illustrated by
the error bars in Fig. 11) is remarkably small in all cases
(less than 2.1%), the numerical results can be taken as a
very close approximation to the “exact” solution. From
Fig. 11, it can be found that both the SCE and the SAE over-
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Fig. 9. Simulation results of an RVE model with 5 vol% of rigid particles: (a) nominal stress P;; vs. nominal strain &; for uniaxial tension simulation along the
X; axial direction (up to 4; = 1.85); (b) nominal stress P33 vs. nominal strain &; for uniaxial compression simulation along the X5 axial direction (up to
/3 = 0.6); (c) nominal shear stress Py, vs. nominal shear strain F;, for simple shear simulation in the X;X, plane (up to k = F;, = 0.32); (d) nominal stress
P11 vs. nominal strain ¢; for simulation of a biaxial deformation with nominal strain ratio & /&, = —0.3424. The theoretical nominal stress-strain curve from

the effective shear modulus is plotted as a dotted line in each figure.

1.4
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Ii-3

Fig. 10. Average strain energy W vs. I; — 3 for four numerical simulations
of an RVE model with 5 vol% of rigid particles. The linear fitting curve is
plotted as a solid line.

estimate u. when ¢ > 0.1. When c = 0.05, the prediction of
the SCE and the SAE are about 3.42% and 4.39% larger than
the numerical result, respectively. The errors increase up to
8.47% and 12.8% when c = 0.1. For moderate particle vol-
ume fraction ¢ = 0.2, 44.3% and 33.9% errors are intro-

10
Rigid Particles i

TPM

—-—--SAE

Effective shear modulus

0 0.1 0.2 0.3

Particle volume fraction ¢

Fig. 11. The effective shear moduli computed from numerical homoge-
nization for IPRNC with rigid particles are compared with the SAE, SCE,
and TPM predictions.

duced to the SCE and the SAE predictions, respectively.
The SCE result is actually not useable when ¢ > 0.2: it will
overestimate three times the value of u. when ¢ = 0.3. The
SAE prediction overestimate p, by 39.8% when c = 0.3.
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Because the large deformation estimates for PRC cannot
well predict the effective modulus of the IPRNC with rigid
particles, the classical results for PRC in infinitesimal defor-
mation regime are examined. Since the formula proposed
by Christensen and Lo (1979) based on the three phase
model (TPM) for the effective shear modulus of the linear
elastic PRC agrees very well with the numerical homogeni-
zation results under small strain (Segurado and Llorca,
2002) and is relatively simple, it is chosen to be compared
with our numerical results under large deformation
(Fig. 11). Surprisingly, the TPM model originally developed
for linear elastic PRC provides a much better prediction
than the large deformation formulae. The differences be-
tween the predictions of the TPM model and the numerical
results are only 0.39%, 2.05%, 0.22%, 5.08% for ¢ = 0.05, 0.1,
0.2, and 0.3, respectively.

Recently Avazmohammadi and Castaneda (2012) pro-
posed a TSO model to estimate the strain energy function
of the IPRNC with rigid inclusions. In this model the behav-
ior of the composite is no longer assumed as neo-Hookean
type. Although the explicit formula of the strain energy
function for general deformation status is rather lengthy
(which reflect the complex nature of the problem), the
expression can be significantly simplified for special cases

FEM-5%
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FEM-20%
FEM-30% :
——TS0-5% -1
— + =TSO-10%

- = =TS0-20% --
~~~~~~~~~ TSO-30% - -

w
n
op O

(a) Uniaxial tension
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such as uniaxial tension, simple shear, equi-biaxial tension
(which is equivalent to uniaxial compression). The stress
results from the numerical simulations of the uniaxial ten-
sion (UT), simple plane shear (PS), and uniaxial compres-
sion (UC, which is equivalent to the equi-biaxial tension,
ET) loading cases are plotted in Fig. 12 and compared with
the TSO model. When the volume fraction of the particles c
is small (i.e., c = 5%, 10%), the curves predicted by the TSO
model fit the numerical results very well for all cases (rel-
ative error less than 3.7%). This implies that the mechanical
responses of the composites predicted by the TSO model
are very close to the neo-Hookean model within the re-
gime that the numerical simulation can reach. This is fur-
ther verified by the almost linear W vs. I; — 3 curves of
the TSO model in Fig. 13 for three loading cases. When
the volume fraction of the particles increases (i.e.,
¢ = 20%, 30%), though the stress and strain energy pre-
dicted by the TSO model is slightly smaller than the
numerical results (relative errors up to 14%, Figs. 12 and
13c¢,d), the relations between W vs. I; — 3 are still very
close to linear within the moderate deformation regime.
We note that the TSO model will behave differently from
neo-Hookean model when the deformation of the IPRNC
is significantly large.
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Fig. 12. The nominal stress-deformation curves predicted by TSO model for (a) uniaxial tension, (b) uniaxial compression (equivalent to equi-biaxial
tension), and (c) simple shear simulations respectively. The numerical results are plotted for comparison.
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Fig. 13. The strain energy W vs. I; — 3 curves predicted by TSO model for IPRNC with rigid particles. The volume fraction of the particles ¢ = (a) 5%, (b) 10%,
(c) 20%, and (d) 30%, respectively. The numerical results are plotted for comparison.

4.4. Particles 100 times stiffer than matrix

FEM simulations are carried out on the IPRNC with large
but finite stiffness contrast between particles and matrix
(u, = 100). Again the effective shear modulus are obtained
by simulations of four types of deformations, i.e., uniaxial
tension along the X; axial direction (up to 4; = 1.46), uniax-
ial compression along the X; axial direction (up to
3 =0.59), simple shear in the X;X, plane (up to
k = 0.77), and general biaxial deformation (¢&,/&; = 0.8116
up to & =0.24) on an RVE with ¢=0.1. The nominal
stress—strain curves are shown in Fig. 14(a)-(c) for uniaxial
tension, uniaxial compression and simple shear simula-
tions, while the strain energy W computed in the four sim-
ulations of this RVE is plotted against I; — 3 in Fig. 14(d).
The observed linear relation between W and I; — 3 is fitted
by W = 0.6457(I; — 3) (R* = 1 in MS Excel 2007). The effec-
tive shear moduli computed from numerical homogeniza-
tion for the IPRNC with y, = 100 are compared with the
SCE, TPM predictions in Fig. 15. The variations represented
by the error bars are all below 4.25% (Fig. 15). The TPM
model matches the numerical results very well and the dif-
ferences for ¢ = 0.05, 0.1, 0.2, 0.3 are only 0.41%, 0.96%,
0.22% and 3.82%, respectively. The SCE result will overesti-

mate the shear modulus significantly when ¢ > 0.1, and the
relative errors are 3.14%, 8.69%, 36.39% and 123.77% for
c=0.05, 0.1, 0.2, 0.3, respectively.

4.5. Particles 10 times stiffer than matrix

To explore the case that the particle stiffness is compa-
rable to the matrix stiffness, a set of simulations is per-
formed for u, =10 in ABAQUS. Because previously the
uniaxial tension and the uniaxial compression deforma-
tions have already been investigated extensively to verify
the isotropy of the RVE models, only simple shear and gen-
eral biaxial simulations are required. To validate the neo-
Hookean model for the IPRNC, eight series of biaxial simu-
lations (&;/¢; =1, 0.8, 0.6, 0.4, 0.2, 0, -0.2, -0.4) as well as
the simple shear simulation (up to k = 1.0) are performed
on an RVE model with ¢ = 0.2 to cover a significant amount
of general deformations. All the W vs. I; — 3 data from 34
FE simulations (9 biaxial, 3 simple shear, 12 uniaxial ten-
sion and 10 uniaxial compression simulations) for the
IPRNC with (c = 0.2, u, = 10) is fitted by the linear relation
W = 0.7480(I, — 3) (e.g., u = 1.4960) in Fig. 16, which is
consistent with the effective shear modulus obtained from
the wuniaxial tension simulations in Section 4.2



12 Z. Guo et al./Mechanics of Materials 70 (2014) 1-17

1.5
w
3
St 1
=]
w
_
=
=
g
£
z

0.5

0 T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6
Nominal strain
(a) Nominal stress vs. nominal strain for uniaxial
tension simulation

1.2
2 08 -
@
}
=]
wv
—_
=}
=
£
g
Z 04

0 T T T
0 0.2 0.4 0.6 0.8

Nominal strain

(c) Nominal shear stress vs. nominal shear strain for simple
shear simulation

Nominal stress

-0.5 -0.4 -0.3 -0.2 -0.1 0

T T T T o 0

11

12

{3

-4

Nominal strain
(b) Nominal stress vs. nominal strain for uniaxial
compression simulation
0.6
0.4
0.2
0 T T T
0 0.2 0.4 0.6 0.8
Ii-3

(d) Strain energy W vs. I,-3

Fig. 14. The nominal stress-strain curves are shown in (a), (b) and (c) for uniaxial tension, uniaxial compression and simple shear simulations respectively,
while the obtained strain energy W is plotted against I; — 3 for an RVE (c = 0.1, g, = 100) in (d).
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Fig. 15. The effective shear moduli computed from numerical homoge-
nization for IPRNC with g, =100 are compared with the SCE, TPM
predictions.

(1 = 1.4958). The maximum and minimum effective shear
moduli from individual simulation are u,,, = 1.5190 and
Ue., = 1.4526, which implies the variations of the effective
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Fig. 16. All the W vs. I, — 3 data from 34 FE simulations (9 biaxial, 3
simple shear, 12 uniaxial tension and 10 uniaxial compression simula-
tions) for the IPRNC (c = 0.2, u, = 10) are fitted by the linear relation
W = 0.7480(I; — 3) (R* = 0.9998).

shear moduli are within 4.5%. This clearly indicates that
the IPRNC can be well predicted by a neo-Hookean model.

The numerical results for the effective shear modulus
are plotted in Fig. 17 together with the predictions of the
SCE and TPM models, and the reported dispersions in the
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Fig. 17. The effective shear moduli computed from numerical homoge-
nization for IPRNC with p, =10 are compared with the SCE and TPM
predictions.

numerical simulation are less than 4.56%. Again the TPM
model represents an excellent approximation of the
numerical results and the maximum difference for
c=0.3 is only 1.8%. The SCE model still overestimates
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Fig. 19. The effective shear moduli computed from numerical homoge-
nization for IPRNC with p, = 0.5 are compared with the SCE and TPM
predictions.

the shear modulus by 1.65%, 4.41%, 12.36% and 21.32%,
respectively, for ¢ = 0.05, 0.1, 0.2, 0.3, though the intro-
duced error for a given volume fraction is smaller than that
of the IPRNC with p, = 100. This is expected because the
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Fig. 18. The nominal stress-strain curves are shown in (a), (b) and (c) for uniaxial tension, uniaxial compression and simple shear simulations respectively,
while the obtained strain energy W is plotted against I; — 3 for an RVE (¢ = 0.3, u, = 0.5) in (d).
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difference between the stiffness of the particles and the
matrix is smaller due to the reinforcement of less stiff
particles.

4.6. Matrix twice stiffer than particles

In previous simulations, the particles are always stiffer
than the matrix. The opposite case (i.e., the matrix is stiffer
than the particles) is considered here to fully examine the
effect of stiffness contrast between particles and matrix. A
small stiffness contrast (u,,/u, = 2, or u, = 0.5) is used to
make relatively large deformation possible in the numeri-
cal simulation (the convergence problem usually occurs
at relatively moderate deformation in previous simula-
tions, which partially comes from the large stiffness con-
trast, i.e., /i, = 10). The FEM simulations of uniaxial
tension (up to Z; =2.0), uniaxial compression (up to
43 = 0.17), simple shear (up to k = 2.40), and general biax-
ial (&/e; = —0.4025 up to & = 1.0) deformation are per-
formed on an RVE with ¢ = 0.3. The strain energy data W
from all the 4 simulations are fitted in Fig. 18(d) and the
obtained effective shear modulus yu. = 0.8296. The nomi-
nal stress—strain curves are shown in Fig. 18(a)-(c), which
are almost identical to the theoretical results based on the
computed effective shear modulus. This suggests that the
IPRNC's response at significant stretch still follows the
neo-Hookean model’s prediction.

The effective shear moduli derived from the FEM simu-
lation results are shown in Fig. 19 with maximum disper-
sions represented by error bars (all less than 0.7%). The
numerical results are also compared with the theoretical
approximations of the SCE and TPM models. Because the
stiffness contrast between the particles and the matrix is
small, the effective shear moduli of the IPRNC are close
to the shear modulus of the matrix. It is then not surprising
that both the SCE and TPM models agree well with the

(a) Undeformed

(b) Deformed (100% uniaxial tension)

Fig. 20. Undeformed (a) and deformed (b) simple “one particle in the
centre” unit cell model. The shown deformation is 100% uniaxial tension.

Table 1
Deformation range represented by I; for all the FE simulations.

c pr/pm
0.5 10 100 00

0.05 17.55 (4 =4.13) 4.96 (1.=1.98) 3.87 (4=1.62) 45 (2=1.84)
13.71 (4 =0.14) 6.31 (41=0.32) 3.74 (#=0.58) 5.19 (2 =0.39)
13.68 (k=3.26) 4(k=1)" 4(k=1) 3.21 (k=0.45)
5.03 5.66 3.41 4.53

0.1 17.16 (4 =4.08) 44 (1=1.81) 3.58 (4=1.49) 3.31(2=1.35)
17.79 (4=0.11) 5.02 (A=0.41) 3.77 (4=0.58) 3.66 (2 =0.60)
1042 (k=2.72) 4(k=1)" 3.60 (k=0.77) 3.08 (k=0.28)
8.17 4.49 3.47 33

0.2 14.36 (4 =3.71) 4.22 (.=1.75) 3.35(4=1.37) 3.05 (4=1.13)
19.63 (1=0.10) 4.29 (.=0.49) 3.41(42=0.67) 3.17 (#=0.78)
11.96 (k=2.99) 4(k=1) 3.6 (k=0.77) 3.06 (k=0.24)
7.81 3.9 343 3.25

03 13.77 (4 =3.63) 3.51 (4=1.46) 3.08 (1=1.17) 3.06 (4=1.14)
11.74 (4 =0.17) 3.92 (4=0.55) 3.14 (1=0.8) 3.003 (12=0.96)
8.80 (k =2.40) 3.53 (k=0.72) 3.07 (k=0.27) 3.03 (k=0.17)
5.06 343 3.15 3.006

* The simulations finished without convergence problems.
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numerical results. The maximum errors for ¢ = 0.3 are only
0.36% and 0.76% for the SCE and TPM models, respectively.

4.7. Deformation ranges of the FE simulations

A total number of 152 FE simulations have been per-
formed on the 16 RVE models. The strain energy W com-
puted from each FE simulation shows a clear linear
proportional relation with I; — 3, which suggests a neo-
Hookean type response and the corresponding effective
shear modulus can be obtained by data fitting for each
FEM simulation. The dispersions of fitted effective shear
moduli are within 7.5% as shown in Figs. 10, 12, 14 and 16.

It should be noted that convergence is a big issue in our
numerical simulations even for RVE models with very re-
fined mesh (e.g., with more than 200,000 elements), partic-
ularly when the stiffness contrast between the particles
and the matrix is large (e.g., u, = oo, 100). Because we
can only claim the neo-Hookean type response of the
IPRNC with the deformations simulated by our FEM simu-
lations, it is worthy to report the deformation ranges of the
FEM simulations for various IPRNC in Table 1, in which the
deformation range is represented by the maximum I
reached by the FEM simulations, as well as the principal

1.5

0.5

0 0.5 1 1.5
-3

(a) Strain energy W vs. I, -3 for uniaxial tension simulation

0.8

stretches for uniaxial tension/compression, or nominal
shear strain for simple shear deformation. For IPRNCs with
particular volume fraction of particles, the larger the stiff-
ness contrast between the particles and the matrix, the
smaller deformation range the FE simulations can reach.
For IPRNCs with particular u,/p,,, the larger the volume
fraction of particles, the more limited the FEM simulations.
The reason is that larger volume fraction of particles usu-
ally means more severe mesh distortion at the necking
area between particles due to the deformation localization.
It should be noted that the uniaxial tension, pure shear and
equibiaxial tension behaviors of an INRNC with
(c=0.1, u, = oo) predicted by Avazmohammadi and Cas-
taneda (2012) (as in Fig. 11 there) are very close to neo-
Hookean behavior for I; < 5.

4.8. One particle unit cell model

The simple “one particle in the centre” unit cell model
(Fig. 20) is sometimes used in the literature to simulate
PRC (Bergstrom and Boyce, 1999). This type of unit cell
represents composites embedded with cubic arrays of
spheres (Cohen, 2004), which is macroscopically orthotro-
pic. To examine the mechanical responses of the IPRNC

0 0.5 1 15 2
-3

(b) Strain energy W vs. I, -3 for uniaxial compression simulation

0.6

= 04

0.2

0 0.2 0.4 0.6

-3

0.8 1 1.2

(c) Strain energy W vs. I, =3 for simple shear simulation

Fig. 21. The average strain energy W vs. I; — 3 curves of the simple “one particle in the centre” unit cell model for three loading cases: uniaxial tension (a),

uniaxial compression (b), and simple shear (c).
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with this particular type of microstructure under finite
deformation, FEM simulations of the unit cell model are
performed in ABAQUS for uniaxial tension/compression
and simple shear. The particle volume fraction ¢ = 0.2
and there are around 20,000 tetrahedral elements and
30,000 nodes in the FEM model. Both the matrix and the
particles are modeled as incompressible neo-Hookean
materials with u,, = 1 and u, = 10, respectively. In all sim-
ulations, PBC is applied to get a good estimate of the real
response of the composite and a deformed unit cell is
shown in Fig. 20(b). The average strain energy W vs.
I; — 3 curves are plotted for three loading cases (Fig. 21).
For each loading case, a clear proportional relation be-
tween W and I; — 3 can be observed and the effective shear
moduli predicted from uniaxial tension/compression and
simple shear simulations are p, = 1.6698 (R? = 0.9999,
uniaxial tension), 1.8596 (R? = 0.9989, uniaxial compres-
sion) and 1.4150 (R* = 1.0, simple shear), respectively.
The relative difference is about 27.2%, while for the mul-
ti-particle RVE models with (c = 0.2, u, = 10) used in the
paper, the maximum relative difference between effective
shear moduli predicted by different loading cases is well
below 1.2%. The effective modulus predicted by the mul-
ti-particle RVE models (¢ =0.2, u, =10) is p, = 1.4946.
The comparisons between the results from one-particle
unit cell model and multi-particle RVE models suggest
that, although the effective modulus predicted by the
one-particle unit cell model is close to the one predicted
by multi-particle RVE models (relative error about 20%),
the behavior of the one-particle unit cell model is aniso-
tropic under finite deformation, as determined by its
orthotropic microstructure. Furthermore, a one-particle
unit cell model cannot capture the characteristics of the
stress/strain field in the matrix necking zone, which is crit-
ical to the strength investigation of the IPRNC. Hence mul-
ti-particle RVE models should be used to obtain realistic
response of IPRNC under finite deformation.

5. Concluding remarks

Three-dimensional RVE models are employed to inves-
tigate the mechanical behavior of the IPRNC, in which both
the matrix and the particle reinforcement are incompress-
ible neo-Hookean materials. To consider different particle
volume fractions (i.e., c = 0.05, 0.1, 0.2, 0.3), 16 RVE sam-
ples (4 for each volume fraction value) with periodic
microstructures are created. In each RVE, 27 non-overlap-
ping identical spheres are randomly distributed in a cubic
unit. The isotropy of the random distributions of particles
in the 16 RVE models is then examined, and the RVE mod-
els are meshed for finite element computation. Periodic
meshes are generated so that the periodic boundary condi-
tions can be applied during the FEM simulations. The mesh
convergence study shows that a standard mesh with about
80,000 elements can obtain accurate result.

To double check the isotropy of the RVE models’
mechanical responses, uniaxial tensions and compressions
along different directions are simulated for the RVE models
and the isotropy of the RVE models is verified directly. The
simulation results of the uniaxial tension and compression

are consistent, which implies that the small-size RVE mod-
els used here are sufficient to obtain accurate responses of
the IPRNC. The computed strain energy data suggests that
the mechanical response of the IPRNC can be well pre-
dicted by an incompressible neo-Hookean model. Material
instability is not considered in this paper.

Four different particle/matrix stiffness ratios are stud-
ied in the FEM simulations: u./u,, = oo (i.e., rigid parti-
cles), 100, 10, 0.5, to investigate the effect of stiffness
contrast between the particle and the matrix. The follow-
ing four types of finite deformations are simulated: uniax-
ial tension and compression along coordinate axial
directions and random directions, simple shear, and gen-
eral biaxial deformation. All the simulation results (i.e.,
RVE with any particle volume fraction, any particle/matrix
stiffness ratio and any loading case) show that the average
strain energy W is proportional to I; — 3, which suggests
that the overall behavior of the IPRNC can be modeled by
an incompressible neo-Hookean model. The effective shear
moduli p. of the IPRNCs are obtained by fitting the strain
energy data from the numerical simulation results. Be-
cause the dispersion in the values of the obtained moduli
is remarkably small in all cases, the numerical results can
be considered as a very close approximation to the “exact”
effective shear moduli of the IPRNC. They are compared
with three theoretical models: the self-consistent estimate,
SCE (Castaneda, 1989), the strain amplification estimate
for composites with rigid particles, SAE (Bergstrom and
Boyce, 1999), and the classical linear elastic three phase
model, TPM (Christensen and Lo, 1979). It is found that
the TPM provides very accurate approximation to the
numerical results (maximum relative difference less than
5.1%) though it is developed for linear elastic PRC. Even
though the SCE and the SAE are proposed for neo-Hookean
composites, they overestimate the effective shear modulus
of the IPRNC when the particle volume fraction ¢ > 0.1. In
present work, we neglect the viscous behavior of particle
reinforced elastomer, which was observed in many exper-
iments. Previous works on viscoelasticity (Tang et al.,
2008a,b) can be extended in the strategy presented here
to account for the memory of the material.

The numerical approach employed here can be used to
study the mechanical responses of other composites (e.g.,
particle-reinforced composite with matrix of Ogden mod-
el) in finite deformation regime. But due to the strong
material and geometrical nonlinearity, it is usually much
more difficult if not impossible to construct a simple con-
stitutive model to fit the obtained numerical results.

In the numerical simulations, it is usually assumed that
the particle fillers will not change the mechanical proper-
ties of the matrix. However, many researchers argued that,
for elastomers, the fillers may alter the effective crosslink-
ing density in the elastomeric phase and therefore affect
the mechanical properties of the matrix (a detailed discus-
sion can be found in Bergstrom and Boyce (1999)). Because
of this, the numerical results are not compared with the fi-
nite deformation experimental data rarely available in the
literature.

We note that mesh of the matrix necking zone between
close particles is very challenging and severe deformation
localization may happen when the stiffness contrast be-
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tween the particle and the matrix is large. Hence conver-
gence is a big issue in our numerical simulation even for
RVE models with very refined mesh (e.g., with more than
200,000 elements). For example, it is only possible to reach
moderate deformation state for some cases (e.g., [; = 3.06,
or 14% tension for the IPRNC with (i, = co,c = 0.3)). For
much less critical case like the IPRNC with (u, =0.5,
¢ = 0.3), huge deformation can be reached (i.e., 313% ten-
sion or 86% compression). The numerical results show
clearly that up to the deformations the FEM simulations
can reach (that is, until there is a convergence problem),
all the numerical results of W and I; — 3 can be fitted al-
most exactly using the linear relation suggested by the
incompressible neo-Hookean model. Therefore it is safe
to conclude that the mechanical behavior of the IPRNC
studied here can be well modeled by another incompress-
ible neo-Hookean model within the limit of current FEM
software ABAQUS.
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