
Vibration-Based Finite Element Model 

Updating and Structural Damage 

Identification 

 

 

 

 

Maung Than Soe 

 

 

A thesis submitted in partial fulfilment of the  

requirements of the University of Greenwich 

for the Degree of Doctor of Philosophy 

 

 

 

 

May 2013 



2 

 

 

 

Declaration 

 

I certify that this work has not been accepted in substance for any degree, and is not 

concurrently being submitted for any degree other than that of Doctor of Philosophy being 

studied at the University of Greenwich. I also declare that this work is the result of my own 

investigations except where otherwise identified by references and that I have not plagiarised 

the work of others. 

 

 

Signature:  

PhD candidate: Maung Than Soe 

 

 

Signature:  

1st supervisor:Dr Hua-Peng Chen 

 

 

Signature: 

2nd supervisor: Prof Amir M Alani 

 



i 

 

 

Summary 

 

Damage and material deterioration could lead to structural failure with unknown 

consequences. Structural health monitoring strategy based on vibration measurements for 

existing aging structures offers a promising technique for effectively managing the 

deteriorating structures. The main objectives of this research are to develop a procedure for 

finite element model updating by using incomplete modal data identified from vibration 

measurements, to develop real time structural damage detecting method by directly using 

vibration measurements and then identify the damage at detailed location and extend in the 

structure on the basis of the validated numerical model. 

 

A steel frame model structure was constructed in the laboratory for finite element model 

updating and structural damage detection. Forced vibration testing was undertaken on the 

model structure, and dynamic response such as accelerations were measured by using sensors 

installed. Modal analyses are then carried out to identify modal parameters such as 

frequencies, mode shapes and damping from the vibration measurements. Structural damage 

scenarios were simulated by breaking bracing members of the model structure, and modal 

parameter of the damaged structures were also identified and analysed. 

 

An effective approach for directly updating finite element model from measured incomplete 

modal data with a regularised iterative algorithm is then presented.The exact relationship 

between the perturbation of structural parameters and the modal properties of the dynamic 

structure is developed. Numerical simulation investigations and experimental study of a 



ii 

 

laboratory tested space steel frame model and practical application to the Canton Tower 

benchmark problem are undertaken to verify the accuracy and effectiveness of the proposed 

model updating method. 

 

Finally, a new approach for real time structural damage detection by using acceleration 

measurements is presented. Structural damage is characterised at element level by 

introducing damage parameters which can indicate the location and severity of damage in the 

structure. The relationship between the damage parameters and the measured dynamic 

response is then established from the governing equation of the dynamic structure. Numerical 

examples of cantilever beams, plane frame, and braced frames are adopted to demonstrate the 

effectiveness of the proposed method. The new proposed technique performs well and 

produces stable and reliable results, which could be used for real time damage assessment 

during the event of earthquake and explosion.  
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Chapter 1 Introduction 

 

1.1 Background 

 

Due to structural material deterioration and extreme events on structures, structural health 

monitoring (SHM) of civil engineering infrastructure has received significant attention in 

order to assess the safety of structures during their service life. The safety of aging 

infrastructure and economic considerations have been motivating factors for the development 

of reliable structural condition assessment methods which can be used to evaluate the 

deterioration at the earliest stage. Assessment of structural conditions is not only beneficial to 

the cost effective maintenance strategy but also increases the overall efficiency of operation 

and life-span of a structure. It can also reduce the risk of loss of human lives due to 

unexpected structural failures. 

 

In the UK, over 40,000 bridges and tunnels have been constructed for the railway system 

alone. The average age of the bridges is more than 50 years old and the ages of London 

underground tunnels are 75-100 years old. Many of the structures are below the required 

strength and are in need of either strengthening, rehabilitation or replacement. Many 

researches have being undertaken by researchers for investigating the condition and 

performance of the structural integrity and functionality. However, inaccurate condition 

assessment has been identified as the most critical technical barrier for effective structural 

condition assessment. For example, conditions of structures are typically expressed in terms 

of subjective indices which are based on visual inspection alone. The difficulties of visually 

inspecting have proved to be inadequate in order to evaluate an aging structure accurately. 
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In the past two decades, the amount of research relating to structural health monitoring has 

increased significantly and various structural health monitoring techniques have been 

developed to detect the damage in the structures and assess the condition of the structures. 

Structural health monitoring is the implementation of a damage identification strategy to the 

civil engineering infrastructure. Damage is defined as changes to the material and/or 

geometric properties of the structural systems, including changes to the boundary conditions. 

Damage affects the current or future performance of the structural systems. In 1970s and 

1980s, the oil industry introduced vibration-based structural damage detection for offshore 

platforms but practical problems prevented adaptation and abandoned in early 1980s. In the 

late 1970s and early 1980s, the aerospace community made contributions in identifying 

fatigue damage in aircraft components. Cawley and Adams (1979) developed a method to 

detect damage in composites by using natural frequency shifts. However, the changes in 

natural frequencies did not provide sufficient information to fully assess or characterize 

damage in the structure. In the early 1980s, vibration-based damage assessment for bridge 

structures based on mode shape curvature and dynamic flexibility matrix indices was 

proposed (Farrar and Worden 2007). 

 

The curvature of the mode shape appears to be more sensitive to the reduction in stiffness 

caused by structural damage (Farrar and Cone 1995). However, the detection of structural 

damage may not be practical if the change in stiffness is relatively small and noise exists in 

the measurements. Most vibration-based damage identification methods have utilised the 

modal characteristics, i.e., natural frequencies, mode shapes, and damping properties of the 

structural system which are governed by the physical properties such as stiffness and mass of 

the structural system. Since the modal characteristics of a structure are functions of its 
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physical properties, any changes to these physical properties caused by damage will reflect 

the changes in the modal properties.  

 

In structural damage detection, the measured modal parameters of the damaged structure as 

well as the original undamaged structure are typically required. In general, the analytical 

model for the finite element (FE) analysis of the associated actual engineering structure is 

constructed on the basis of highly idealised engineering design that may not fully represent 

all the physical and geometrical aspects of the actually built structure. As a result, a 

significant discrepancy may exist between the modal properties calculated by the constructed 

finite element model and those identified from the vibration measurements of the actual 

tested structure.  In the 1990s, Mottershad and Friswell (1993) surveyed finite element model 

updating methods using vibration measurements. The finite element model updating methods 

are often utilised to adjust the numerical model using the measured modal data to maximize 

the correlation between the numerical and experimental results. The existing model updating 

method utilising vibration response data can be classified into two categories (i.e., direct and 

iterative methods). In direct method, the stiffness and mass matrices of elements are directly 

constructed utilising vibration measurements by one-step procedure. However, this method 

may not perform well to represent the actual tested structure concerned in the case of large 

number of structure parameters need to be updated in the finite element model. The iterative 

method including sensitivity method updates the structural parameters of finite element 

model by an optimisation process. The performance of iterative method mainly depends on 

the selection of objective function and constraints. However, optimisation techniques used in 

iterative method may not perform well if number of the chosen structure parameters to be 

updated is large and significant discrepancy exist between initial finite element model and 

actual tested structure. 
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Although, the advancement in structural health monitoring techniques based on measured 

vibration data have been widely utilised for assessing engineering structures, there is still a 

need to develop more accurate and reliable methods for finite element model updating by 

directly utilising incomplete modal data without requiring optimisation technique, mode 

shape expansion or model reduction technique. Moreover, the existing structural damage 

detecting methods required modal data identified from vibration measurements and may not 

provided evolution of damage in real time. Thus, it is beneficial to develop real time 

structural damage detection method to identify both the location and severity evolution of 

damage in the structure by directly utilising of monitored vibration measurements without 

requiring modal analysis technique. 

 

1.2 Aim and objectives 

 

The main aim of the research project is to develop aprocedure for finite element model 

updating, on-line structural damage detection and condition assessment using vibration 

measurements from installed sensors. 

The specific objectives of the project are 

1. To undertake vibration testing in the laboratory to investigate dynamic responses of 

intact and damaged structures. 

2. To develop a robust finite element model updating method using incomplete modal 

data 

3. To develop a structural damage identification method for assessing structural 

condition from vibration measurements. 
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1.3 Research methodologies 

 

The methodologies used in this research include: 

• Laboratory vibration testing of a scaled steel frame model structure. Vibration 

response data set such as acceleration is obtained from limited installed sensors (i.e., 

accelerometers) and incomplete modal data is identified by modal analysis technique. 

• Developments of new methods for finite element model updating by using incomplete 

modal data with regularised iterative algorithm and real time structural damage 

identification method by directly using vibration measurements without requiring 

modal analysis techniques. 

• Applications of the developed methods in validated numeral models and real 

engineering structures.  

The research will extend the modal perturbation method structural condition assessment 

(Chen and Bicanic 2006). The model updating method, on the basis of a physical-based 

model of the monitored structure, will be used as a tool for assessing the health and 

evaluating the condition of the structure by directly updating the finite element model from 

measured incomplete modal data with regularised iterative algorithms. This method will also 

be used as a basis to assess the reliability of the structure in performing as expected under 

uncertain current conditions of existing structures. Furthermore, real time structural damage 

detection method will be developed based on stiffness coefficients associated with element 

stiffness matrices (Chen and Bicanic 2006) and time step integration method to obtain 

dynamic responses such as displacement and velocity from acceleration (Newmark 1959, 

Kang et al. 2005). Structural damage evolution assessment can be carried out on the basis of 



6 

 

the validated numerical model using vibration measurements which can assess the condition 

and monitor the reliability or safety of the structures under consideration. 
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Chapter 2 Literature Review 

 

2.1 Introduction 

 

The performance and behaviour characteristics of civil infrastructure can be affected by 

degradation resulting from the structural damage caused by loading and extreme events such 

as earthquake and explosion. Monitoring the integrity of civil infrastructure is of great 

concern in order to improve the safety and reliability of the structures. Such monitoring 

processes can provide the necessary information for maintenance, rehabilitation, and other 

relevant activities to ensure the safety of the structure during its service life. Moreover, 

assessment of structural condition is also beneficial for on-time decisions which can reduce 

the probability of catastrophic collapse due to undetected structural failures.The structural 

health monitoringprocess involves the monitoring of a structure periodically by using 

structural response measurements obtained from installed sensors, extraction of features from 

measured data, and statistical analysis of these features to determine the current health 

condition of the structural system, and timely evaluating the structural performance (Sohn et 

al. 2003, Farrar 2007).  

 

Material deteriorationof a structural system, adversely affect the performance of the structure. 

The commonly measured modal parameters (frequencies, mode shapes, and damping) are 

functions of the physical properties of the structure (mass and stiffness). Therefore, changes 

in physical properties, such as reductionsof stiffness may cause detectable changes in modal 

properties (Chang et al. 2003).For example, long-spanned structures such as bridges are more 

sensitive to flutter instability under wind, earthquake and traffic-induced vibrations which 

may cause large deflections and considerable structural deterioration.  
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The structural health monitoring problem can be addressed in the context of a statistical 

pattern recognition paradigm (Farrar and Doebling 1999). This paradigm can be broken down 

into four parts:  

1. Operational evaluation 

2. Data acquisition and cleansing  

3. Feature extraction and data compression 

4. Statistical model development for feature discrimination 

 

Operational evaluation answers four questions regarding the implementation of a structural 

health monitoring system: 

1. What are the economic and/or life safety motives for performing the monitoring? 

2. How is damage defined for the system being monitored? 

3. What are the conditions, both operational and environmental, under which the system 

to be monitored function? 

4. What are the limitations on acquiring data in the operational environment? 

 

The data acquisition portion of the structural health monitoring process involves selecting the 

excitation methods, the types of sensors to be used, the number of sensors, the locations 

where the sensors should be placed, and the data acquisition hardware. Data cleansing is the 

process of data selection to pass on to or reject from the feature selection process. Signal 

processing techniques such as filtering and re-sampling can also be thought of as data 

cleansing procedures. Feature extraction is the process of identifying damage-sensitive 

properties, derived from the measured vibration response, which allows 

distinguishingbetween the undamaged and damaged structure. Statistical model development 
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is concerned with the implementation of the algorithms that operate on the extracted features 

to quantify the damage state of the structure.  

The damage state of a structural system can be described as a five-step process (Rytter 1993, 

Yan 2006). The damage state is described by answering the following questions: 

1. Is there damage in the system (existence)? 

2. Where is the damage in the system (location)? 

3. What kind of damage is present (type)? 

4. How severe is the damage (extent)? 

5. How much useful life remains (prognosis)? 

Experimental structural dynamics techniques may be used to address the first two questions. 

To identify the type of damage, measured data from structures with the specific types of 

damage can be used. Analytical models are usually needed to answer the fourth and fifth 

questions. Estimates of the future system loading are also necessary to completely address the 

fourth and fifth questions.In general, damage identification methods can be classified into 

two categories: data-based and modal-based methods. The data-based method describes the 

change in structural properties (mass and stiffness) in terms of structural response data and 

modal-based method expresses changes in structural properties in terms of modal parameters 

(natural frequencies, modal damping, and mode shapes) estimated from modal analysis. 

 

2.2 Data-based damage identification methods 

2.2.1 Neural networks 

 

The neural network method has been applied successfully in many applications including 

vibration based damage identification. Spillman et al. (1993) used neural network to identify 

damage in a steel bridge element. Damage was introduced by cutting the element and bolting 
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plate reinforcement over top of the cut. With the plate attached, the element was considered 

to be undamaged. With the bolts loosened, the element was considered to be partially 

damaged, and when the plate was removed, the element was considered to be fully damaged. 

There were three sensors mounted to the element: two accelerometers and a fiber optic 

sensor. 

 

The beam was struck in four different locations with a calibrated impact. A total number of 

eleven tests were performed. The time-history signal from each sensor was Fourier 

transformed, and the height and frequency of the first two modal peaks were used as inputs to 

the neural network. The impact intensity and location were also provided as inputs. A 

network configuration was selected with the 14 inputs, a hidden layer with 20 neurons, and 3 

outputs, one for each of the possible damage states. The body of training data was cycled 

through the training algorithm until the self-prediction error converged to a minimum. Using 

all three sensors, the authors found the proportion of correct diagnoses to be 58%. 

 

Liu and Sun (1997) used neural networks to identify damage in a simply supported three-span 

bridge. The neural networks were trained using simulated data from a finite element model of 

the bridge. The bridge model was discretized into 30 uniform beam elements. Damage was 

simulated by reducing element stiffness located in at the middle as well as the sides of the 

spans. The maxima and minima of the bridge elongation curves were produced by a moving 

truck traversing the bridge. Five separate neural networks were used to monitor local 

dynamic characteristics along the total span of the bridge.Nine local elongation curves, 

calculated at different locations along the bridge, were used as inputs to the five networks. 

The network outputs were estimated as reductions in terms of percentage. Liu and Sun found 

that damage influences the extreme values of the elongation curves in different ways, 



11 

 

depending on the damage location in relation to the elongation curve.Liu and Sun concluded 

that these local bridge elongations from a moving truck were effective features for damage 

detection.  

 

2.2.2 Wavelet analysis 

 

Wavelet analysis is very suitable to analyse non-stationary signal, so it can be used as a 

feasible method for processing signal in damage detection to construct the needed feature 

index of structural damage. Wavelet analysis has various applications in structural damage 

detection, for example, singular signal detection, signal-to-noise separation, frequency-band 

analysis and so on. The spectrum graph obtained using wavelet transform can indicate the 

damage existence (Chang and Chen 2005, Fan and Qiao 2009).Rajasekaran and Varghese 

(2005) proposed a wavelet based approach for structural damage detection in beams, plates 

and detection of delamination of composite plates. The main concept used was the breaking 

down of the dynamic signal of a structural response into a series of local basis function called 

wavelets, so as to detect the special characteristics of the structure using scaling and 

transformation property of wavelets.  

 

Lu and Hsu (2002) presented a study based on the wavelet transform for structural damage 

detection. Through comparing the discrete wavelet transforms of two sets of vibration signals 

from the undamaged and damaged structures in the space domain, not only the presence of 

defects can be detected, but also their number and location as well. Numerical results showed 

that even a minor localised defect can induce significant changes in the wavelet coefficients 

of the vibration signals.With respect to structural damage condition assessment and structural 
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health monitoring, wavelet analyses can be used to detect instantaneous changes in structural 

properties by monitoring online responses.  

 

2.2.3 Genetic algorithm (GA) 

 

The genetic algorithm (GA) is optimization technique based on the Darwin’s (1859) theory of 

evolution and survival of the fittest. This method, originally developed by Holland (1975), 

operates on an initial population of randomly generated candidate solutions. The applying 

principle is survival of the fittest to produce better approximations to the solution. At each 

generation, a new set of approximations is created by the process of selecting individuals 

according to their level of fitness. A simple Genetic Algorithm consists of three basic 

operations, selection, crossover and mutation (Perera and Torres 2006). The algorithm begins 

with a population of individuals each of them representing a possible solution of the problem.  

 

At the selection level, the quality of an individual is measured by its fitness value. In the 

crossover operation, the genes of pair of individuals are exchanged. The mutation operator 

introduces a change in one or more of the genes. Therefore, with this operator new material is 

introduced in the population and its main goal is to prevent the population from converging to 

a local minimum. The genetic algorithm approach attempts to find the best solution to a given 

problem by minimizing an objective evaluation function (Silva 2006).  
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Figure 2.1Flowchart of simple genetic algorithm 

 

Sazonov et al. (2002) used the genetic algorithm to produce a sufficiently optimized 

amplitude characteristic filter to extract damage information from strain energy mode shapes. 

The genetic optimization was performed based on the minimization of the signal-to-distortion 

ratio. The algorithm progresses with successive generations to reach an optimum solution for 

the problem.Chou and Ghaboussi (2001) used a genetic algorithm as a method of structural 

damage detection by optimizing fitness functions formulated in terms of static measured 

displacements. Xu and Liu (2002) applied genetic algorithm as an effective technique for 

flaw detection of composites. 

 

The application of genetic algorithm in structural damage assessment is effective, easy to 

implement, and no special requirement concerning the initial values of unknown parameters 
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is needed. Furthermore, genetic algorithm uses multiple points to search for the solution 

rather than single point, and the calculation of the derivative of the error function with respect 

to the search direction is not required. However, damage detection involves inverse analysis, 

and noise contaminated data may lead to large error in the damage estimations. 

 

2.3 Modal-based damage identification methods 

 

During the late 1970s and early 1980s vibration based damage detection techniques were 

started to be developed. The early approaches used were based on correlating numerical 

models with measured modal properties from undamaged and damaged components. Euring 

last decade, significant research effort has been applied to condition monitoring with the 

emergence of a broad range of techniques, algorithms and methods.  

 

Vibration-based structural damage detection methods can be categorized as (Wang and Chan 

2009, Fan and Qiao 2011) 

1. Change of natural frequency 

2. Change of structural vibration mode shape 

3. Change of structural flexibility or stiffness 

4. Damage index method 

5. Frequency response function 

6. Modal residual vectors 
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2.3.1 Change of natural frequency 

 

The presence of damage or deterioration in a structure causes changes in the natural 

frequencies of the structure. Frequency measurements can be quickly conducted and are often 

utilized in structural damage detection. Typically, measured frequencies are compared to the 

predicted frequencies of analytical model to determine the damage in the structure.  

 

Kim et al. (2003) have proposed a method to locate and estimate the size of damage in 

structures using a few natural frequencies. A damage-localisation algorithm to locate damage 

from changes in natural frequencies and a damage-sizing algorithm to estimate crack size 

from natural frequency perturbation were formulated.From the test study of I-40 concrete 

bridge in Oklahoma, USA, Farrar and Cone (1995) demonstrated that frequency shift was not 

a sensitive damaged indicator as no significant reductions of modal frequencies were 

observed although overall stiffness of the bridge cross section was reduced by 21%. Kessler 

et al. (2002) studied the effect on frequency response of various forms of damage (drilled 

through holes, impact damage, bending induced cracks and fatigue damage) on clamped 

composite plates and concluded that the only type of damage distinguishable from the others 

at low frequency ranges was fatigue damage.De Roeck et al. (2000) monitored the Z24 

concrete bridge built between 1961 and 1963 in Switzerland over a year.  Its damage pattern 

was identified using the eigen frequencies and unscaled mode shape data obtained from 

ambient vibrations. The damage was presented by a reduction in bending and torsion stiffness 

of the bridge girder. 

 

Lee and Chung (2000) ranked the first four frequencies of a simulated cantilever beam to 

locate a single crack. The crack depth was then approximated iteratively to match the first 
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frequency as closely as possible before the location of the crack was finally refined.Yang et 

al. (2001) used 3D plots of frequency change versus depth and location of a crack to identify 

a saw cut in an aluminium beam. The contour lines obtained from each frequency change plot 

were overlain and their intersection gave the true location and depth of the crack. 

 

A review of methods of damage detection using natural frequencies has shown that these 

approaches are potentially useful for routine integrity assessment of structures. Frequency 

values obtained from vibration testing could be used to detect structural damage. The most 

successful applications have been conducted to small laboratory structures. The advantage of 

using the change of structural natural frequency is its convenient measurement and high 

accuracy. However, natural frequency changes alone may not provide enough information for 

structural damage detection. Furthermore, the natural frequency is not often sensitive enough 

to initial damage in structures. Usually, this method can only ascertain existence of the large 

damage, but may not be able to detect the detailed location and extend of damage in the 

structure. 

 

2.3.2 Change of structural vibration mode shape 

 

The frequencies can be measured more accurately than the vibration mode shapes, but the 

mode shapes are more sensitive to local damage. Structural damage existence can be detected 

through the information of modal data. Modal analysis techniques are available for the 

extraction of mode shapes from the measured data. To check for agreement between the 

measured mode shapes and analytical ones, the Modal Assurance Criterion (MAC) proposed 

by Allemang and Brown (1983) is used, which is defined as 
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where iφφφφ~ is the measured i th mode shape and kφφφφ  is the corresponding analytical mode 

shape.The value of MAC is between “0” and “1”. When the two mode shapes are more 

similar, the MAC value is closer to “1”. The MAC value is “0” if two mode shapes are 

orthogonal with each other. 

 

Nikolakopoulos et al. (1997) used changes in natural frequencies and mode shapes to detect 

damage in a finite element model of the cable-stayed steel bridge consisting of 5 spans; i.e, 

31 m, 64 m, 171 m, 64 m, and 31 m respectively. Damage was simulated by removing the 

bottom flanges of the longitudinal girders in the end spans. The second vertical bending mode 

showed a 23% reduction in the corresponding frequency, and the MAC values of the mode 

shapes differed significantly from unity. Salawu and Williams (1995) tested a reinforced 

concrete bridge before and after repair. Although the first seven natural frequencies shifted by 

less than 3%, MAC values showed significant change. Salawu and Williams argued that 

comparison of mode shapes is a more robust technique for damage detection than shifts in 

natural frequencies. 

 

Fox (1992) showed that MAC was relatively insensitive to damage in a beam with a saw cut.  

MAC based on measurement points close to a node point for a particular mode was found to 

be a more sensitive indicator of changes in the mode shapes caused by damage. Graphical 
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comparisons of relative changes in mode shapes proved to be the best way of detecting the 

damage location. 

 

Ettouney et al. (1998) discussed a comparison of three different techniques applied to a 

complex structure. All three of the techniques were based on knowing the mode shapes and 

natural frequencies of the damaged and undamaged structure. A finite element model was 

used to extract modes of up to 250 Hz. The first method was based on monitoring the change 

of the stiffness matrix of the structure. The stiffness matrix of an undamaged structure can be 

computed from the measured modal parameters, and the stiffness matrix for the damaged 

structure can also be computed using the mode shapes and natural frequencies obtained from 

the damaged structure. The change in the stiffness matrix of the damaged and undamaged 

states can then be used for damage detection. In second method, the flexibility matrices can 

be computed from the measured modal parameters. Then, the flexibility change between the 

damaged and undamaged states can be used for damage detection. In the third method, 

damage was identified at structural element levels rather than at nodal degrees of freedom. 

All three methods were applied to a complex steel structure. 

 

Mode shape and natural frequency information was obtained from the analytical models of 

the damaged and undamaged conditions. Damage was introduced into the model by altering 

the modulus of elasticity for selected structural elements. All three methods were able to 

detect the relative location of the damaged elements with acceptable accuracy. However, 

applications of these methods are limited because the numbers of mode shape and natural 

frequencies identified from experimental modal analysis are often limited.In summary, 

changes in the mode shapes could be used to detect damage in the structure, however, the 
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detection may not be practical if the change in stiffness is relatively small and noise exists in 

the vibration measurements. 

 

2.3.3 Mode shape curvature 

 

Pandey and Barai (1995) assumed that structural damage only affects the stiffness and not the 

mass of the structure. For the undamaged condition, the characteristic equation of the 

structural dynamic system is expressed as 

 

 0MK =− ii φφφφ)( 2ω  (2.2) 

 

whereK  and M  are the global stiffness and mass matrices, iω and iφφφφ are the i th eigenvalue 

and the associated eigenvector respectively. Similarly, the damaged condition is described as 
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where“d”  denotes the damaged structure. Mode shape curvature for a beam in the 

undamaged and damaged conditions can then be estimated numerically from the mode 

shapes. For example, a beam cross section at location “x”subjected to a bending moment 

)(xM .The curvature )('' xν at location “x” is given by 

 



20 

 

 
EI

xM
x

)(
)('' =ν  (2.4) 

 

whereE is the modulus of elasticity and  Iis the second moment of area of the section. The 

curvature is inversely proportional to the flexural stiffness of the beam. Reduction in the 

stiffness resulting from damage tends to increase the curvature of the mode shapes in the 

vicinity of the damage. The mode shape curvature is more sensitive to a change in the 

stiffness. Structural damage location can be identified by using the change of mode shape 

curvature. Furthermore, an estimation of the extent of damage can be obtained by measuring 

the amount of change in the mode shape curvatures.  

 

Maeck and De Roeck (1999) applied a direct stiffness approach to damage detection, 

localization, and quantification for a bridge structure. The direct stiffness calculation used 

experimental frequencies and mode shapes in deriving the dynamic stiffness of a structure. 

The basic relation is that the bending stiffness of a beam is equal to the bending moment 

divided by the corresponding curvature, which is the second derivative of the bending 

deflection. A particular advantage of using either modal curvatures or their derivatives is that 

the modal curvatures tend to be more sensitive to local damage than modal displacements.  

 

2.3.4 Change of structural flexibility or stiffness 

 

Structural damage can be detected based on the change of the flexibility matrix (Jaishi and 

Ren 2006). According to the difference of the flexibility matrixes before and after structural 

damage, the largest element value in each column of the matrix can be found, and then the 
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structural damage location can be ascertained by examining the largest element value in each 

column of the matrix. The flexibility matrix 1−K is defined as the inverse of the stiffness 

matrix and, therefore, relates the applied static forceF and structural displacementU  as 

 

 FKU 1−=  (2.5) 

 

The flexibility matrix 1−K is generally estimated from, 

 

 Tφφφφφφφφ ~
 

~ 11 −− = ΛK  (2.6) 

 

whereφφφφ~  is measured mode shapes, and Λ is the diagonal matrix of the associated measured 

modal frequencies squared.Flexibility matrix is usually estimated by using the lower modes 

due to difficulties in measuring higher modes. Moreover, it is most sensitive to changes in the 

lower frequency modes because of the inverse relationship to the square of the modal 

frequencies.The variation matrix 1−∆K can be obtained by measuring the flexibility matrices 

before and after damage. 

 

 111 ~ −−− −=∆ KKK  (2.7) 

 

where 1~ −K represents the flexibility matrix of the damaged structure.Yan and Golinval (2005) 

also presented a damage diagnosis technique based on changes in dynamically measured 

flexibility and stiffness of structures. The covariance-driven subspace identification technique 

was applied to identify structural modal parameters, and these were then used to assemble the 
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flexibility matrix of dimensions corresponding to the measured degrees of freedom. The 

corresponding stiffness matrix was obtained by a pseudo-inverse of the flexibility matrix. 

Damage localisation was achieved by a combined assessment of changes in these two 

measured matrices in moving from the reference state to the damaged state.  

 

Generally, when some damage appears in a structure, the stiffness matrix can offer more 

information than the mass matrix. The stiffness changes remarkably when big damage 

appears in a structure. However, if the damage is very small, this method cannot work 

well.Zhao and DeWolf (1999) examined and compared sensitivity coefficients for natural 

frequencies, mode shapes and modal flexibility. On application to a simulated five degrees of 

freedom spring mass system it was found that the modal flexibility was the most sensitive to 

damage.Farrar and Doebling (1999) did not come to the same positive conclusions when 

comparing the strain energy, the mode shape curvature and the changes in flexibility based 

methods in locating damage on the I-40 bridge over the Rio Grande in America. Four 

controlled damage states were investigated and it was found that the strain energy based 

method was the most successful one followed by the mode shape curvature based method. 

The change in flexibility method could only locate damage in the most severe damage 

scenario. 

 

2.3.5 Damage index method (modal strain energy method) 

 

This method is based on the comparison of modal stain energy before and after damage. 

Damage causes a reduction in the flexural rigidity of the structure. The strain energy iSE in a 

Bernoulli-Euler beam associated with a particular mode shape can be calculated from 

(Carden and Fanning 2004, Humar et al. 2006) 
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Assuming that the beam is divided into several numbers of elements, then the strain energy in 

a element for a given mode shape is 
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where ja  and 1+ja are delimitations of elementj. From the strain energy related each element 

and the strain energy of the complete structure for a given mode, the fractional strain energy 

ijFSE , which is the ratio of the element strain energy and the beam strain energy, can be 

defined as, 

 
i

ij
ij SE

SE
FSE =  (2.10) 

 

Similar expressions can be derived for a damaged case as 
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The curvature required for this calculation is commonly extracted from the measured 

displacement mode shapes using a central difference approximation. 

 

Kim and Stubbs (1995) applied a damage identification algorithm to locate and determine a 

single crack size in an experimental plate girder. The method was also demonstrated to locate 

up to two damage sites in a simulated plate girder. The damage indicator was based on the 

ratio of modal strain energy of elements before and after the damage.Farrar and Doebling 

(1999) were successful in using Kim and Stubbs (1995) damage index in locating controlled 

damage in a bridge. They found that this method outperformed the direct comparison of 

mode shape curvature before and after the damage.The damage index method is fairly 

successful in predicting damages in the structures. Since the method relies on the 

computation of modal stain energy in the elements of the structure, damage will not be 

detected when the damaged member makes very little contribution to the strain energy of the 

measured modes. 

 

2.3.6 Frequency response function (FRF) 

 

There are many methods available for performing vibration analysis and testing. The 

frequency response function (FRF) is a particular method. FRF is a transfer function, 
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expressed in the frequency domain. It expresses the structural response to an applied force as 

a function of frequency. The response may be given in terms of displacement, velocity, or 

acceleration (Carden and Fanning 2004). Consider a system as represented by the following 

diagram. 

 

)(     

ForceInput 

ωF )(                

Responsent Displaceme

ωU)(           

Function Transfer 

ωH
 

Figure 2.2Frequency response function diagram 

 

)(ωF is the input force as a function of the frequencyω . )(ωH is the transfer function. )(ωU is 

the displacement response function. The relationship can be represented by the following 

equations. 
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)(
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ω
ωω

F
U

H =  (2.14) 

 

 )()()( ωωω FHU =  (2.15) 

 

Lee and Shin (2002) used both modal and FRF data from a simulated beam to identify up to 

three damage locations. Damage was simulated by the reduction in the Young’s Modulus of 

sections of a Bernoulli–Euler beam. Modal data from the beam in the undamaged state and 

FRF data from the beam in the damaged state were used in the identification algorithm. It 

was found that the multiple-excitation-frequency and multiple-measurement-point approach 

gave the most reliable results. 
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Mares et al. (1999) proposed a damage location procedure based on rigid body constraints. A 

crack in a two-dimensional finite element model of a cantilevered beam was simulated. The 

beam was discredited into 10 elements along the length. Frequency responses were calculated 

for the beam’s damaged and undamaged states. A crack was introduced at the third element 

from the fixed end. When the external load was applied at the damaged element, there was no 

difference in the frequency response functions between the damaged and undamaged states of 

the cantilever beam. 

 

Since the change of transfer function caused by structural damage is uniquely determined by 

the damage type and location, one column data is only need to be measured in transfer matrix 

to detect damage instead of measuring the whole transfer matrix. The advantages of these 

methods are the numericalmodel, vibration mode measurement and experimental knowledge 

are not needed. Therefore, this method can be used in online monitoring. The disadvantage is 

that the accuracy of structural damage detection is prone to be influenced by the amount and 

position of measurement point. 

 

2.3.7 Modal residual vector 

 

Based on the measured mode shapes and natural frequencies, the eigenvalue equation in 

Eq.(2.3) for the damaged structure can be rewritten as, 

 

 0MK =− d
i

dd
i

d φφφφ)(
2

ω  (2.16) 
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where dK and dM  can be defined as, 

 

 KKK ∆+=d  (2.17) 

 

 MMM ∆+=d  (2.18) 

 

where K∆  and M∆ are changes in stiffness and mass matrices, respectively.It is assumed that 

damage cause changes in the structural stiffness and structural mass remain unchanged.By 

substituting dK and dM  into eigenvalue equation Eq.(2.16)and rearranging gives the 

definition of the residual force vector  ir for the i th mode, 

 

 d
i

d
ii φφφφ)(

2

MKr ω−=  (2.19) 

 

Each mode provides a single residual force vector. When damage occurs to an element, the 

entry in the residual force vector becomes very large compared to the other entries where no 

damage has occurred. Picking out these large terms therefore provides the results for the 

location of damage.  

 

Chen and Bicanic (2000) identified up to three damage locations in a simulated plate. A mode 

shape expansion technique was employed and two algorithms were used to identify the 

damage, one involving the minimisation of the norm of the residual force vector and the 

second involving the minimisation of the norm of the residual energy vector. Both methods 

were found to give similar convergence to the correct identification. 
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2.4 Real time structural damage detection 

 

In the case of extreme event such as earthquake, roads and bridges are fundamental 

infrastructure to evacuate the affected people and to transport the emergency equipment and 

materials. Post-earthquake damage assessment of the structures typically requires long time 

to be completed. There is a need to develop faster and reliable methods to detect local 

damage evolution during and/or after the earthquake. During the past decades, various 

damage detection algorithms have been developed. Currently, visual inspection is the 

standard method used for health assessment of the structures, along with non-destructive 

damage detection methods such as methods using strain gauge measurements (Moyo et al. 

2005), using acoustic for crack detection (Yu et al. 2011) and ground radar penetration (GPR) 

methods (Hugenschmidt and Mastrangelo 2006). Chase et al. (2004) identified real time 

changes in structural stiffness using least mean square-based adaptive filtering. Recently, 

global positioning system (GPS) is employed for real time displacement monitoring of large 

structures (Safak and Hudnut 2006). However, most of those techniques may not provide 

immediate assessment of real time damage evolution at detailed level. Development of real 

time damage detection techniques would be useful for rapid detection of some sudden 

structural damages and aims to provide real time reliable information regarding the integrity 

of the structure during and/or after extreme events of earthquakes and impact of blast loading 

for appropriate repair of structural damage. There is limitation for requirement of vibration 

response measurements in all degrees of freedom in the structure, which may not be practical 

due to limited number of sensors are available for measurements. 
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2.5 Modal testing 

 

Maintenance of civil engineering infrastructure for safe and reliable operation is of 

paramount important throughout its entire life cycle. Currently, performance of different 

kinds of structures such as buildings, towers and bridges under different environmental 

conditionsare under investigation. The long term implementation of a structural health 

monitoring system by measuring vibration response may address a structural condition and 

issue an early warning on deterioration prior to a partial or catastrophic collapse. 

 

Modal testing is common practice in structural health monitoring (Wu and Li 2004). In modal 

testing, the structure needs to be excited by the operational condition (ambient vibration)or 

artificial vibrations (forced vibration). In general, force vibration is conducted for small scale 

structures in the laboratory. Ambient vibration is the only practical means of exciting large 

structures such as tall buildings, towers, and cable-stayed bridges. In structural dynamic 

testing, dynamic responses of a structure can be obtained from installed sensors. Measured 

data isanalysed in order to calibrate a finite element model and identify any structural 

damage. 

 

The purpose of vibration testing is to identify the dynamic characteristics of the structure 

such as frequencies, mode shapes and damping factors through the information of measured 

data. The changes in the vibration characteristics can provide the information of structural 

deterioration. The use of vibration responses to identity the damage is sometime referred to as 

vibration-based damage identification (Huynh et al. 2005). 
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In vibration testing, various mechanical devices are available to excite the structure. Among 

them are, impact hammer and dynamic shaker which are widely used due to their simplicity 

in their application. Transducers such as accelerometers are usually employed to measure the 

vibration responses of the structure. Modal properties of the structure are then extracted from 

the measured data by utilizing modal analysis techniques.  

 

2.5.1 Forced vibration 

 

Impact excitation 

 

Impact excitation offers the advantages of simplicity and speed of execution laboratory 

testing. The impact equipment typically consists of an impactor, usually with tips of varying 

stiffness from soft to hard to control its dynamic range, and an attached load cell is used to 

measure the impulse transmitted to the test structure. The impactor can take the form of a 

hammer that can be operated by hand, a drop weight mechanism or a spring loaded device. 

 

In structural dynamic testing, the impact hammer is used to excite the structure. Some modes 

may not be excited based on the location of the excitation. If the impact produces a perfect 

impulse force, then all modes will be excited.Those missing modes may be excited by using 

tips of different stiffness and hammers of different mass. The desired frequency range will be 

increased if stiffer hammer tips and lower hammer masses are used. The choice of desired 

frequency range is also critical to the accurate measurement of the modes of interest, as a 

hammer will not excite a structure with any great energy at frequencies above the desired 

frequency range. Impact excitation is generally convenience to apply to a structure and does 
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not produce any significant mass loading although the direction of impact is difficult to 

control accurately (Park et al. 2011). 

 

Shaker excitation 

 

Electro-magnetic shaker, electro-hydraulic shaker, and eccentric mass shaker are also used as 

excitation sources in forced vibration testing of the structure. The shakers can provide the 

flexibility to generate different forms of dynamic excitation time histories such as sinusoidal 

and random.An electro-magnetic shaker converts an input electrical signal into an alternating 

magnetic field that drives the shaker. It is suitable to generate a lower level force and 

normally used in laboratory scale structure testing (Ohm et al. 2006). Shakers making use of 

hydraulic actuators as the driving mechanism offer the potential advantage of incorporating 

long stroke lengths, enabling larger amplitude motion at the low frequencies. Mechanical 

shakers make use of a rotating eccentric mass and generate the prescribed forcing due to 

physical constraints involved in the system. In practice, eccentric mass shakers have rarely 

been used to apply load in the vertical direction.  

 

All types of shakers require a power supply, amplifier and control software for various input 

force in operation.  The shaker should only provide force to the structure in the direction 

measured by a transducer and poor attachment of shaker to excite the structure will lead to 

miss some of the vibration modes. Although shaker excitation is widely employed in 

structural dynamic testing, this excitation approach is inconvenience in mobility, requires 

high cost and more time for setting up the equipment than by impact hammer excitation. 
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Pullback testing 

 

Pullback testing is generally conducted for large-scale structures to determine their response 

to lateral dynamic excitation that are difficult to excite using other means. For example, in the 

case of testing a bridge, it is usually difficult to determine its lateral vibration characteristics 

since normal traffic loads do not significantly excite the bridge in the lateral direction. In this 

approach, the test structure is pulled by means of a steel cable or rope anchored in the ground 

or some other fixed object and suddenly releasing the cable to induce the lateral vibration 

(Robson and Harik 1998). 

 

Accelerometers 

 

An accelerometer is a sensor or transducer which is designed to generate an electrical signal 

in response to acceleration that is applied along its sensitive axis. Piezoelectric accelerometer 

typically weighs between 3 and 35 grams with sensitivities spanning from 10 mV/g to 100 

mV/g and is generally used in measuring the acceleration. It employs either natural quartz 

crystals or man-made polycrystalline ceramics as its sensing element. Uni-axial and multi-

axial models of accelerometer are available to detect acceleration. 

 

Mounting accelerometers 

 

The mounting technique of an accelerometer on the structure is also important for the 

accuracy of measurements. The structural dynamic responses are determined by securely 

mounting the accelerometers in the reference locations of the test structureby variety of 

methods, such as using studs, screws, adhesive and/or magnets. It is important to prepare a 
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smooth, clean and flat surface where the accelerometers are to be attached for the 

measurements. 

 

Stud mounting is suitable for permanent installations, where a very secure attachment of the 

accelerometer to the test structure is preferred. The stud mounted to a very smooth surface 

generally yields high accuracy in measurements and, therefore, the broadest usable frequency 

range. When installing accelerometer onto a thin-walled structure, a cap screw passing 

through a hole of sufficient diameter is an acceptable means for securing the accelerometer to 

the structure. 

 

Occasionally, mounting by studs or screws is impractical. For such cases, adhesive or magnet 

mounting offer an alternative mounting method. Adhesive and magnet mounting methods 

have the advantage that the accelerometers can be moved around easily. Magnetic mounting 

of accelerometers offer a very convenient, temporary attachment to magnetic surfaces and 

can provide higher accuracy in measurements. However, the addition of an adhesive or 

magnetic mounting base mass to the accelerometer lowers the resonant frequency of the test 

structure and may affect the accuracy in measurements. 

 

Also, compliant materials, such as a rubber interface pad, can create a mechanical filtering 

effect by isolating and damping high-frequency transmissibility. Surface flatness, adhesive 

stiffness, and adhesion strength also affect the measurements accuracy of an accelerometer.  

Generally, surface irregularities or increase in the thickness of the adhesive decrease the 

usable frequency ranges.Connecting cables should be securely fastened to the mounting 

structure with a clamp, tape, or other adhesive to minimize cable whip and connector strain. 
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Cable whip can introduce noise, especially in high-impedance signal paths (Colombo et al. 

2005). 

 

2.5.2 Ambient vibration 

 

When a tall building vibrates by wind or a bridge vibrates continuously under traffic, the 

input excitation is usually not known and/or can not be measured. This type of vibration is 

referred to as ambient vibration (Wenzel and Pichler 2005).Ambient vibration testing is the 

most economical non-destructive testing and only practical means of exciting the large 

structure as the ability to input significant energy into the structure. It describes the linear 

behaviour of the structure, since the amplitudes of vibration are small. In the practical 

application of testing the bridge, either controlled test vehicles or moving traffic loadings can 

be used to excite the structure. However, traffic excitation may not sufficiently excite the 

lateral modes of a bridge (Lu et al. 2006).  

 

Advantage is that ambient vibration test is full scale experiment and usually only light 

equipmentis required. It can provide evaluating the response of the structure to the actual 

vibration environment. Even a carefully planned laboratory experiment will represent only 

some aspects of the problem.  Disadvantage of using ambient excitation is that this type of 

input is often non-stationary and not known whether this excitation source can provide the 

input at the frequencies of interest range. 

 

In a review of various ambient and controlled input excitation methods, Brownjohn (2003) 

found that shaker excitation yielded the most reliable dynamic data in comparison with 

vehicle induced response and hammer impact test. However, Peeters and De Roeck (2001) 
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reported that results from ambient excitation was comparable to those obtained using either a 

shaker or drop weight impact. On the other hand, Farrar (2000) determined that natural 

frequencies extracted from impact hammer test data were more promising than those obtained 

using ambient excitation, and that fewer vibration modes could be successfully identified 

from ambient testing.  

 

2.5.3 Time, frequency and modal domains 

 

The vibration signal measured at discrete sampling instants can be represented in the time 

domain. A time domain graph shows how a signal changes over time. Measured signal in 

time domain can be converted to frequency domain with a pair of mathematical operators 

called a Fourier transform. Frequency domain is used to describe the signal with respect to 

frequency, rather than time. For a sampled signal kx  consisting of N samples over a time 

period of T seconds, this is defined by (Friswell and Mottershead 1995), 

 

 }
2

sin
2

cos{
2

)(xx
2/

1

0

T

jt
b

T

jt
a

a
t k

j
k

N

j
jkk

ππ
++== ∑

=
 (2.20) 

where 

 ∑
=

=
N

k
kN

a
1

0 x
1

 (2.21) 

 

 ∑
=

=
N

k
kj N

jk

N
a

1

2
cosx

1 π
 (2.22) 

 



36 

 

 ∑
=

=
N

k
kj N

jk

N
b

1

2
sinx

1 π
 (2.23) 

 

A Fourier series may be used because the signal is periodic, and the series is of finite length 

because the signal is sampled. The set of spectral coefficients ja  and jb  are called the 

discrete Fourier transform of the signal x . In practice the discrete Fourier transform is 

efficiently calculated by variations to the method given by Cooley and Tukey (1965) which is 

generally called the Fast Fourier Transform (FFT). The Fourier transform may be considered 

in the complex domain by writing the transform at the j th frequency, given by 
T

jπ2
, as 

jj iba +  where “i”  is the square root of -1. The inverse Fourier transform converts the 

frequency domain function back to a time function.   

 

2.5.4 Experimental modal analysis 

 

After the frequency response functions have been measured, the data may be further 

processed to obtain the natural frequencies, damping ratios and mode shapes of the 

experimental structure. Figure 2.3 shows example of modal parameters estimation from FRF 

(ME’scope VES). This is called experimental modal analysis which is able to accurately 

identify modal data from frequency response function data (Zivanovic et al. 2006). One 

major problem with any modal extraction method is the determination of the number of 

modes in a given frequency range. The experimental modal data should always be compared 

to the analytical results to give confidence in the measured data. 
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Figure 2.3Modal parameters estimation from FRF 

 

Input-output modal identification 

 

Conventional modal analysis techniques are typically single-input-multiple-output and based 

on estimating a set of frequency response functions relating the applied force and 

corresponding response. In a small and medium size structure, the excitation can be induced 

by an impact hammer. This device has ability to stimulate different modes of vibration in 

control manner. Advantage of input-output modal identification is that input excitation can be 

used in the modal identification (Verboven et al. 2004).On the other hand, it requires more 

energy to excite some relevant modes of vibration for a large structure and input excitation is 

difficult to measure. In this case, this traditional modal analysis might not work very well 

because of unknown input acting on the structure. 

 

Output-only modal identification 

 

In very large, flexible structures like cable-stayed or suspension bridges, the forced excitation 

requires extremely heavy and difficulty in exciting with sufficient energy for the most 
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significant modes of vibration in a low range of frequencies. Therefore, output-only modal 

identification techniques became an alternative of great importance in the field of structural 

dynamic testing (Rainieri et al. 2012). Recent technological developments are possible to 

measure the very low levels of dynamic response induced by ambient excitations such as 

wind or traffic loading without knowing the excitation force. It is also called operational 

modal analysis (Brownjohn et al. 2010). This new technology is capable of estimating the 

mode shapes, the natural frequencies and the damping ratio as input-output modal 

identification techniques.  

 

2.5.5 Measurement noise: random and systematic errors 

 

In finite element model updating, the measured data will be used to update the structural 

parameters of the analytical model. It is therefore vital to eliminate the likely errors in the 

measurements (Mohd-Yasin et al. 2009, Hu et al. 2010). Two main types of measurement 

errors are recognized: (a) random error, in which there are unpredictable random variations in 

the measured signal. It is often called noise; (b) systematic error, in which every 

measurement is consistently less than or greater than the correct value by a certain amount.  

 

Any signal corrupted by random noise is, by its nature, unpredictable. The noise may be 

described by a statistical distribution (Newland 1985, Hogg and Craig 1978). The most 

commonly used statistical distribution used to present noise is the Gaussian distribution that 

describes the probability of a random variable falling within a certain range of values. The 

distribution is totally specified by the meanµ  and variance 2σ , respectively. The probability 

Pof noise signalx between 1x  and 2x  is given by 
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is called the probability density function. Random errors may be reduced by careful 

preparation for experiments, choice of excitation methods and by smoothing the data.  Impact 

excitation, such as hammer excitation, puts very little energy into a structure and can produce 

noisy data (Friswell and Mottershead 1995). 

 

In smoothing process, the data points of a signal are modified so that individual points that 

are higher than the immediately adjacent points are reduced, and the points that are lower 

than the adjacent points are increased (Girard and Defosse 1993, Baneen et al. 2012). This 

naturally leads to a smoother signal. Smoothing the data reduces the variance of the noise on 

the data and so reduces the effect of the noise. The more reduction of noise can be done by 

larger smooth width but there will be the possibility of distorted signal by the smoothing 

operation. 

 

Systematic errors are difficult to remove from the data. It is important to model the tested 

structure as accurately as possible. For example, if a connection of beam in the tested 

structure is a fixed connection, then every effort must be made to ensure that connection is 

fixed in the analytical model. Significant errors can arise in the measured data, for example, 

the connections of brace members are assumed to be flexible in the analytical model, but 
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those connections in actual tested structureare relatively fixed.Attaching transducers and 

shakers to the structure may also introduce significant systematic errors. Mass loading or 

local stiffening due to the attachment system will change the dynamic properties of the 

structure (Rana 2011). Accelerometers can also produce mass loading and local stiffening 

problems, particularly with light structures. 

 

2.5.6 Measured incomplete modal data 

 

Finite element model of the tested structure can be very large and consist of several thousand 

degrees of freedom. In practice, only limited sensors are available and impossible to install 

sensors in all degrees of freedom. There are often internal nodes which cannot be measured. 

Rotational degrees of freedom are also very difficult to measure with accuracy. Consequently 

not all the degrees of freedom in the finite element model will be measured.Therefore, the 

measured mode shapes obtained from vibration testing are typically incomplete (Rahai et al. 

2007, Xu et al. 2012). Comparison of analytical and experimental mode shapes becomes 

difficult in practice unless some measurements are taken to fill in the missing entries or the 

order of the model is reduced. There are two ways of overcoming this difficulty, either a 

model reduction technique has to be applied to the finite element model or measured mode 

shapes have to be expanded to the full order of the finite element model (Zhang 2007, Chen 

2010, Panayirci et al. 2011). 

 

It is important to compare experimental results for the tested structure with predicted results 

for the corresponding finite element model to ensure the better correlation(Warren et al. 

2011). In the comparison, errors may be introduceddue to the large number of degrees of 
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freedom in the analytical model and limited number of transducers available to measure the 

response of the structure (Wendy et al. 2007). One of the critical tasks in structural dynamic 

testing is mode paring. The MAC is a widely used technique to estimate the degree of 

correlation between analytical and experimental mode shapes (Allemang and Brown 1982, 

Pastor et al.  2012). The MAC between an analytical mode kφφφφ  and measured mode iφφφφ~  is 

defined in Eq.(2.1). 

 

2.5.7 Model reduction 

 

Due to limited sensors and incomplete measurements, problems arise from comparing 

measured experimental data with numerically generated data. One way to compare the data is 

to reduce the number of degrees of freedom in the analytical model to the number of 

measured degrees of freedom of the tested structure.The idea is to reduce original finite 

element model to a properly chosen measured degrees of freedom system that has properties 

similar to the original system (Avitabile 2005). A complex system can thus be approximated 

by the simpler system involving fewer equations and unknown variables, which can be solved 

much more quickly than the original problem (Guedri et al. 2006).  

 

Guyan or static reduction 

 

Guyan (1965) reduction has been used for many years as one of the most common tools for 

the reduction of large analytical models. The state and force vectors, u and f, and the mass 

and stiffness matrices, M and K are split into sub-vectors and matrices relating to the master 
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degrees of freedom, which are retained, and the slave degrees of freedom, which are 

eliminated (Friswell and Mottershead 1995), expressed as 
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The subscripts “m” and “s” denote master and slave co-ordinates respectively. Assuming that 

no force is applied to the slave degrees of freedom and neglecting the inertia terms, Eq. (2.26) 

becomes static equation as 
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For the second set of equation in Eq. (2.27) 

 

 0uKuK =+ sssmsm  (2.28) 

 

which may be used to eliminate the slave degrees of freedom so that 

 

 { } msm
smsss

m uTu
KK

I

u

u
=









−
=









−1
 (2.29) 

 



43 

 

where sT denotes the static transformation between the full state vector and the master co-

ordinates. The reduced mass and stiffness matrices are then written as 

 

          ,        s
T
sRs

T
sR KTTKMTTM ==  (2.30) 

 

where RM and RK are the reduced mass and stiffness matrices respectively. Guyan reduction 

depends heavily on the selection of the master degrees of freedom, and a poor selection could 

yield inaccurate models. 

 

Dynamic reduction 

 

This is an extension to Guyan’s method by considering the inertia term. Eq. (2.28) is 

modified to include inertia forces at the chosen frequency iω (Friswell et al. 1995). The 

transformation to generate the slave co-ordinates from the master co-ordinates is then given 

by 
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This transformation matrix dT is then used in the same way as the static transformation sT  to 

obtain reduced mass and stiffness matrices similar to Eq. (2.30). Yin et al. (2009), Lam et al. 

(2011)presented a damage detection method based on dynamic reduction by utilizing ambient 

vibration data measured from a limited number of sensors in a transmission tower. The 
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transmission tower is divided into sub-structures and damage is identifiedby estimating the 

equivalent stiffness reduction. 

 

Improved reduced system (IRS) 

 

The IRS method was proposed by O’Callahan (1989) as an improvement of Guyan reduction 

by introducing the inertia terms. The transformation iT  used to generate the slave co-

ordinates from the master co-ordinates is given by 

 

 RRssi KMTMSTT 1  −+=  (2.32) 

where 
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The reduced mass and stiffness matrices obtained from static reduction (Friswell et al. 

1998).Xia and Lin (2004) presented an iterated improved reduced system (IIRS) technique to 

modify the iterative transformation matrix and achieve faster convergence and obtained the 

lowest eigensolutions of structures more accurately and efficiently. 

 

System equivalent reduction expansion process (SEREP) 

 

This method was originally introduced by O’Callahan et al. (1989) for the computed mode 

shapes to produce the transformation between the master and slave co-ordinates. The 

analytical modes are partitioned into the master and slave co-ordinates as (Li et al. 2008) 
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The generalised or pseudo inverse of mφφφφ is used to give the transformation as 
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The reduced mass and stiffness matrices may be obtained in a similar way to Eq.(2.30). With 

this method, the reduced model will exactly reproduce the lower natural frequencies of the 

full model. 

 

Comparison of methods 

 

Static or Guyan reduction is widely used to reduce the number of degrees of freedom in a 

finite element model but it is exact only at zero frequency and never reproduces frequencies 

of the original model.The improved version of the Guyan method, called the Improved 

Reduced System (IRS),produces a reduced model which more accurately estimates the modal 

data of the full system.The System Equivalent Reduction (SEREP) method produces the 

natural frequencies correctly but the method has the computational disadvantage of requiring 

the computation of pseudo inverse.In all reduction techniques, there exists a relation between 

the measured or master degrees of freedom and the unmeasured or slave degrees of freedom 

(Friswell and Mottershead 1995). 
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2.5.8 Mode shape expansion 

 

Model reduction process destroys the original sparse pattern in mass and stiffness matrices 

and propagates modelling errors. The alternative to model reduction is to expand the 

measured mode shapes to estimate the data at unmeasured locations (Miguel 2006). Mode 

shape expansion is the reverse of model reduction, and the methods have some similarities. 

The easiest way is to fill in the unmeasured components of the experimental modes from the 

corresponding components of analytical modes (Chen 2010, Liu 2011). To be consistent with 

the model reduction section, subscripts “m” and “s” will represent measured and unmeasured 

degrees of freedom respectively. Dynamic characteristic equation of the analytical model 

with measured and unmeasured components of mass and stiffness matrices can be written as 

(Friswell and Mottershead 1995) 
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where sjφφφφ represents the estimated mode shape at the slave, or unmeasured degrees of 

freedom, mjω  and mjφφφφ  represent the j th measured natural frequency and the corresponding 

mode shape at the measured co-ordinates. Rearranging the lower part of the matrix equation 

produces a solution for the unknown part of the measured mode shape vector, as 

 

 mjsmmjsmssmjsssj φφφφφφφφ )()( 212 MKMK ωω −−−= −  (2.37) 
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This technique is very similar to the dynamic model reduction method. 

 

2.6 Element types used for numerical examples 

 

The finite element method is often used to solve physical problems in engineering analysis 

and design. The basic concept of finite element method is dividing up a very complicated 

problem into small elements that can be solved in relation to each other. A typical finite 

element analysis requires the following information of a structure system: 

• nodal points or geometry of model 

• elements connecting the nodal points (e.g truss element, beam element) 

• material properties (e.g steel, concrete) 

• boundary conditions (e.g fix, pin) 

• loadings (e.g point load, uniform load) 

• analysis options (e.g static, dynamic) 

In this study, truss and beam elements are utilised for numerical examples and numerical 

modelling of the steel frame model structure. 

 

2.6.1 Plane truss element 

 

Truss element transmits only axial force and has no bending resistance.  It has two degrees of 

freedom (i.e, axial translation at each node). Stiffness and mass matrices of a plane truss 

element can be expressed respectively, as  
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whereA and E are cross section area, and modulus of elasticity;  l andρ are length, and 

density; eK and eM  are stiffness matrix, and mass matrix of the element, respectively. 

 

2.6.2 Plane beam element 

 

Beam element offers resistance to bending under applied load. A beam element differs from a 

truss element since a beam resists bending moments at the connections.  The joints can be 

assumed to be rigid connection. It has translation and rotation degrees of freedom at each 

node. Stiffness and mass matrices of plane beam element are given by 
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whereI  is moment of inertia. 

 

2.6.3 General plane beam element 

 

Truss and beam element matrix must be combined to form a plane beam element matrix with 

consideration of axial deformation. Sometime it is called as beam-frame element. It has two 

translation and one rotation degrees of freedom at each node. Element stiffness and mass 

matrices can be expressed as 
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From the transformation matrix Tthe relationship between the local and global element 

stiffness and mass matrices can be described as  
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where jK  and jM  are j th element of global stiffness mass matrices. The global stiffness 

matrix K and mass matrix M  of the structural system can then be obtained by combination 

of the element stiffness and mass matrices, respectively. They can be expressed as 
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whereNE represents total number of elements in the structural system. 

 

2.7 Description of Canton Tower benchmark problem 

 

For a case study of model updating, the Canton Tower in Guangzhou, China is selected. 

Numerical modelling and structural health monitoring system of the Canton Tower have been 

designed by Hong Kong Polytechnic University. The tower shown inFigure 2.4(a) has a total 

height of 610m with a 454m high main tower and a 156m high antenna mast (Ni et al. 2009, 

Chen et al. 2011). The structure comprises a reinforced concrete inner tube and a steel outer 

tube with concrete-filled columns. The outer structure has a hyperboloid shape, which is 

generated by opposite rotation of two ellipses, one at the ground level and the other at 454 m 

above the ground. The tightening caused by the rotation between the two ellipses forms a 

"waist" and a densification of structure in the tower. The cross-section of the outer structure 

is 50 m × 80 m at the ground, 20.65 m × 27.5 m at the waist level (280 m high), and 41 m × 

55 m at the top (454 m high). The outer structure is made of 24 inclined concrete-filled-tube 

columns, which are transversely interconnected by steel ring beams and bracings. The 

antenna mast is a steel structure founded on the top of the main tower. 
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Figure 2.4  The Canton Tower; (a) Finite element model of Canton Tower; (b) Positions of 

installed accelerometers; (c) Reduced finite element model 

A sophisticated long-term structural health monitoring system which consists of over 600 

sensors including accelerometers has been designed and implemented by The Hong Kong 

Polytechnic University for real-time monitoring of the Canton Tower at both in-construction 
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and in-service stages. Wire and wireless data acquisition network in conjunction with 13 data 

acquisition units (DAUs) during in-construction monitoring and 5 DAUs during in-service 

monitoring have been adopted in the structural health monitoring system. A total number of 

20 uni-axial accelerometers (Tokyo Sokushin AS-2000C) were installed at eight different 

levels, as shown inFigure 2.4(b) (Chen et al. 2011).  Four uniaxial accelerometers were 

installed at section 4 and 8, while two uni-axial accelerometers were installed in the rest of 

the sections in the direction of long and short axes of the inner tube oval. The vibration of the 

structure is monitored mainly by using a wired cabling network, while a wireless system is 

also adopted in-situ for complementary vibration monitoring. The detailed information on the 

structure and the implemented structural health monitoring system can be found in the studies 

by Chen et al. (2011) and Ni et al. (2009, 2011).  

 

A full-order three dimensional finite element model in ANSYS contains 122,476 elements, 

84,370 nodes, and 505,164 degrees of freedom in total. In order to carry out structural health 

monitoring and associated studies, a reduced-order three dimensional beam model was 

established by Hong Kong Polytechnic University on the basic of the complex three 

dimensional full finite element model. In the reduced analytical model, tower is model as a 

cantilever beam with 38 nodes and 37 beam elements, i.e. 27 elements for main tower and 10 

elements for mast, as shown inFigure 2.4(c). The vertical displacement of the structure is 

omitted in the reduced model and thus each node has 5 degrees of freedom, namely, two 

horizontal translational degrees of freedom and three rotational degrees of freedom.  
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Figure 2.5  The Canton Tower; measured accelerations of accelerometer 01 and 02 at 21:00-

22:00 

 

As a result, each beam element has 10 degrees of freedom and the reduced finite element 

model has a total of 185 degrees of freedom with a fixed end at the base. The reduced 

analytical model was finely tuned so that its dynamic characteristics match those of the full 

finite element model as closely as possible. The ambient vibration measurements were 

recorded through the installed system for 24 hours from 18:00 pm on 19 January to 18:00 pm 

on 20 January 2010 with a sampling frequency of 50 Hz. The measured data are divided into 
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24 data sets of one hour equal time interval. These measurements were released for the Phase 

I of the Benchmark Problem involving the updating of the reduced analytical model. In this 

study, the ambient vibration measurements recorded from 21:00 pm to 22:00 pm are adopted 

to identify operational modal properties of the tower, such as frequencies and mode shape 

measurements, by using the Stochastic Subspace Identification (SSI) technique (Peeters and 

De Roeck 1999, De Roeck and Peeters 1999, Conte et al.2008). The extracted acceleration 

measurements recorded by accelerometers 01 and 02 during the first 60 seconds after 21:00 

are shown in Figure 2.5. 

 

2.8 Conclusions 

 

Many vibration-based damage detection methods attempt to identify damage by utilising 

modal data estimated from vibration measurements. The frequency change-based damage 

identification method can be successfully applied to locate small damage in the simple 

structure in a controlled laboratory condition. In general, it is not reliable for detecting of 

structural damage in the real complex structures. Mode shape and mode shape curvature-

based methods are only useful for damage localisation and may not be able to detect the 

quantity of damage in the structure. Moreover, most damage identification methods may not 

be able to provide accurate predictions for the severity of damage related to stiffness changes 

with time at specific locations in the structure. Therefore, it is desirable to develop an 

applicable method for real time detection of structural damage caused by extreme event, such 

as earthquake, with the consideration of damage indicators to characterise both the location 

and extend of damage at element level. 
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In structural dynamic testing, forced vibration testing produces better modal parameter 

estimation if the input force is known. However, ambient vibration testing is critical for long-

term structural health monitoring of the large structures, such as bridges and towers, where 

input excitations are unknown. Thus, further development of modal parameter extraction 

techniques without an input record is another important issue for structural damage detection.  

Furthermore, there are a number of challenges still exist including development of methods to 

optimally define the number and location of the sensors, and statistical models to distinguish 

the features from undamaged and damaged structures. 
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Chapter 3 Dynamic Responses of Intact and Damaged 

Structures 

3.1 Introduction 

 

With growing interest in structural health monitoring, structural dynamic testing can be used 

as a tool for assessing the integrity of the structure. Laboratory testing techniques, such as 

impact excitation, shaking table, swept sine or random excitation by electromagnetic exciter, 

have been widely used in the dynamic testing of civil engineering structures and laboratory 

scale models (Ewins 2000). Changes in structural properties can cause the changes in 

dynamic responses of the structure. In this study, a space steel frame model structure is 

selected for structural dynamic testing in the laboratory. The model structure comprises of 

rectangular beams and columns, and circular bracings as shown in Figure 3.1.  Structural 

dynamic testing of the intact and damaged structures by using impact excitation is carried out 

for the following purposes:  

• Testing can provides the information about the dynamic characteristic of the tested 

structures.  

• The measurement modal parameters could be used to identify the difference in 

dynamic responses and integrities of the intact and damaged structures by observation 

of the changes in the modal parameters. 

• Analytical models of the tested structures can be validated and calibrated by using 

those measured modal parameters.  
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3.2 Structural model 

 

A small scale steel framemodelstructure was constructed, as shown in Figure 3.1, for 

numerical simulation investigation and experimental studies of finite element model updating 

and structural damage identification by using measured modal data. 

 

Figure 3.1Spacesteel frame model structure used in laboratory structural dynamic testing 

 

The associatedfinite elementmodel of the test structure is modelled with the geometric 

dimensions, the node and element numbering, as shown in Figure 3.2. The structure has four 

stories comprising of 10 structural members at each storey, i.e. four columns, four beams and 

two diagonal braces. The columns are fixed at the base and continuous at bean-column joints. 

The bracing is formed by inserting diagonal structural members between each story to resist 

lateral forces and are assumed pin-jointed at both ends and therefore primarily subject to axial 

force. The beams and columns are modelled as conventional beams and the braces as axial 
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bar elements. The connection joints of beams and columns are modelled as rigid joints to 

maintain bending moments. The analytical model has 20 nodes and 40 elements with a total 

number of 96 degrees of freedom. The column and beam elements have the same rectangular 

cross section with dimensions of 20 mm × 10 mm, while the brace elements have an identical 

circular cross section with diameter of 6 mm. The material properties of Young’s modulus  

E = 2.0 × 1011 N/m2 and density ρ = 7850 kg/m3 are adopted in calculations for all elements.  

 

 

Figure 3.2The finite element model of the laboratory tested space steel frame model structure 

with sixteen installed sensors 
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3.3 Laboratory testing 

 

Structural dynamic testing is undertaken in the laboratory to evaluate the dynamic 

characteristics of space steel frame structure. The data acquisition system is set up to measure 

vibration data and to calculate Fast Fourier Transform (FFT) (Brownjohn et al. 2001, Dong 

and Song 2010). The system consists of sixteen accelerometers, an impact hammer, data 

acquisition devices and Dell desktop computer loaded with Windows XP platform and modal 

analysis program. Uni-axial ICP accelerometers model 353B33 and 333B32 manufactured by 

PCB Piezotronics Ltd, as shown in Figure 3.3, are utilized as sensors. Those accelerometers 

have sensitivity of 100 mV/g, frequency rate of 1 to 4k Hz for model 353B33 andsensitivityof 

100 mV/g, frequency rate of 0.5 to 3k Hz for model 333B32 respectively.  

 

 

Figure 3.3Accelerometers model (a) 353B33; (b) 333B32 

 

3.3.1 Data acquisition 

 

Measured data are acquired by using 4 channel 24-Bit AC/DC input module and cDAQ-9178 

data acquisition chassis along with five NI-9234 DAQ signal processing modules from 

National Instruments. Initially, the test structure is cleaned especially around the nodes of 
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beam-column joints where the accelerometers are installed. The optimum sensors 

arrangement is determined from the information of analytical mode shapes and iteratively 

moving sensor locations that do not effect significantly to the linear independence of the 

mode shapes (Meo and Zumpano 2005, Flynn and Todd. 2010, Stephan 2012). A total 

number of 16 uni-axial accelerometers are installed by adhesive mounting to measure only 

translational displacement readings in horizontal directions as shown in Figure 3.2.  

 

Figure 3.4Impact hammer model 086D20 with rubber tips 

 

 

Figure 3.5The system of structural dynamic testing and data acquisition 



62 

 

Accelerometers are then connected by low noise cable (model 003C20) to the input module. 

PCB model 086D20 impact hammer mounted transducer is used to excite the structure at 

specified locations. The mass of the hammer is approximately 1.1 kg and has 5.1 cm diameter 

head. A super soft rubber hammer tip (model 084A60) is attached in the hammer to broaden 

the impulse that is imparted to structure in an effort to better excite the lower frequency 

modes.  Transducer at hammer tip has a nominal sensitivity of 0.23 m V/N.   Approximately 

7 m long coaxial cable (model 012A20) is used to connect the hammer and input module to 

acquire the impulse measurements. The impact hammer used for structural excitation and 

structural dynamic testing system are illustrated inFigure 3.4 and Figure 3.5 respectively. 

 

3.3.2 Damage patterns 

 

In this experiment, dynamic properties of intact structure and the damaged structures with 

four damage patterns are studied. These four damage patterns are defined as 

1. No stiffness in the braces of the level 1 (i.e. the braces still contribute mass, but 

provide no stiffness to the structure) 

2. No stiffness in any of the braces in levels 1 and 3 

3. No stiffness in any of the braces in levels 1, 2 and 3 

4. No stiffness in any of the braces in all stories 

Damage patterns of the tested structure are illustrated in Figure 3.6.  
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Figure 3.6The four damage patterns: (a) Damage pattern 1; (b) Damage pattern 2; (c) 

Damage pattern 3; (d) Damage pattern 4 

 

Finite element models of the tested structure are developed to estimatethe natural frequencies 

and corresponding mode shapes for both intact and damaged structures in all damage 

patterns. 

 

3.3.3 Modal parameters identification 

 

In the dynamic testing, the frame steel structure is excited by impact hammer at several 

places in order to excite all frequencies and mode shapes of interest range (Alwash et al. 

2009, Agarwal et al. 2010).  When the model structure is excited, the data set of acceleration 

measurements is recorded by using data acquisition devices and Labview Signalexpress 

commercial software (Labview 2009). The modal data such as frequencies and mode shape 

readings at measured degrees of freedom are extracted from the acceleration measurements 
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through ME’Scope VES modal analysis software (Vibrant Technology 2010, Michel et.al 

2008). In order to illustrate the laboratory testing clearly, flowchart diagram of experimental 

procedure is shown in Figure 3.7. 

Impact Hammer Accelerometers

Apply Load Vibration Signal

Data Acquisition

Raw Data

Signal Processing

Vibration Data

Modal Analysis

Extracting

Modal Parameters 

(Frequency, Mode Shape)

Experimental Modal Analysis Procedure

 

 

Figure 3.7Flowchart diagram of structural dynamic testing and modal parameters estimation 

 

3.4 Modal data for intact structure 

 

Structural dynamic testing of intact structure was undertaken at the beginning of the lab 

testing. The modal properties of the analytical and measured natural frequencies for the first 7 

modes along with Modal Assurance Criterion (MAC) values are provided in Table 3.1. It is 

evident that the natural frequencies could be extracted with a high degree of reliability. The 
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graphical presentations of measured natural frequencies from installed accelerometer are 

shown fromFigure 3.8 to Figure 3.23. It can be noticed thatnatural frequencies of mode 

number 3,4,5 and 6 are missing in the Figure 3.17. This is due to the fact that the selected 

location of excitation in the structure cannot excite those missing modes during structural 

vibration although several excitation attempts have been performed by selecting the different 

locations for impact excitation in the structure. Moreover, the most dominant modal 

parameters are globally identified based on measured vibration data obtained from all 

installed sensors rather than single sensor. It might be the cause of unable to identify some 

modes in the measured data. A similar problem can be found in the Figure 3.19,where 

frequencies mode number 3,4 and 5 are missing. Additionally, comparisons of the first 7 

mode shapes calculated from the finite element model and extracted from the measured data 

are illustrated inFigure 3.24 to Figure 3.30. 

 

As an indication of the level of agreement between the measured and calculated mode shapes, 

MAC factorsdefined in Eq.(2.1) is utilised. Good agreements are also found between 

analytical and measured mode shapes, particularly for the first four fundamental modes as 

shown in Figure 3.24 to Figure 3.27.5thmode shapes withvery low MAC values of 0.0574 do 

not correlate well with corresponding analytical mode shape. Similarly, comparisons of 6th 

and 7th modes do not yield satisfactory condition as MAC values indicate as low as 0.6469 

and 0.6098 respectively due to complexity of higher modes. 
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Figure 3.8 Measured frequencies extracted from measured acceleration at node 5 of intact 

structure 

 

Table 3.1Analytical and experimental frequencies of intact structure 

Mode Analytical 

Frequency 

(Hz) 

Experimental 

Frequency 

(Hz) 

MAC 

Analytic vs 

Experiment  

ModeDescription 

1 10.3552 10.3 0.9961 Y-axis bending 

2 25.9379 24.3 0.9823 Y-axis bendingand torsion 

3 31.7607 32.2 0.9972 Y-axis bending 

4 45.2474 46.0 0.9936 Y-axis bending and torsion 

5 51.8178 51.4 0.0574 Y-axis bending 

6 65.5715 60.3 0.6469 Y-axis bending and torsion 

7 70.6418 70.4 0.6098 Y-axis bending 
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Figure 3.9Measured frequencies extracted from measured accelerationat node 6 of intact 

structure 
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Figure 3.10Measured frequencies extracted from measured accelerationat node 7 of intact 

structure 
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Figure 3.11Measured frequencies extracted from measured acceleration at node 8 of intact 

structure 
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Figure 3.12Measured frequencies extracted from measured acceleration at node 9 of intact 

structure 
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Figure 3.13Measured frequencies extracted from measured acceleration at node 10 of intact 

structure 
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Figure 3.14Measured frequencies extracted from measured acceleration at node 11 of intact 

structure 
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Figure 3.15Measured frequencies extracted from measured acceleration at node 12 of intact 

structure 
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Figure 3.16Measured frequencies extracted from measured acceleration at node 13 of intact 

structure 
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Figure 3.17Measured frequencies extracted from measured acceleration at node 14 of intact 

structure 
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Figure 3.18Measured frequencies extracted from measured acceleration at node 15 of intact 

structure 
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Figure 3.19Measured frequencies extracted from measured acceleration at node 16 of intact 

structure 

 

 

0 10 20 30 40 50 60 70 80 90 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Frequency (Hz)

A
m

pl
itu

de

 

Figure 3.20Measured frequencies extracted from measured acceleration at node 17 of intact 

structure 
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Figure 3.21Measured frequencies extracted from measured acceleration at node 18 of intact 

structure 
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Figure 3.22Measured frequencies extracted from measured acceleration at node 19 of intact 

structure 
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Figure 3.23Measured frequencies 

structure 
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Figure 3.25Comparison of 2

 

Figure 3.26Comparison of 3
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Comparison of 2nd analytical and experimental mode shapes of intact structure
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Figure 3.27Comparison of 4

 

Figure 3.28Comparison of 5
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Comparison of 4th analytical and experimental mode shapes of intact structure

Comparison of 5th analytical and experimental mode shapes of intact structure

 

analytical and experimental mode shapes of intact structure 
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Figure 3.29Comparison of 6

 

Figure 3.30Comparison of 7
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3.5 Modal data for damaged structures 

 

In the experiment, four damage patterns for damaged structures are defined as summarised in 

Table 3.2 in order to identify the modal data of the damaged structures.  

 

Table 3.2  Damage patterns defined for space steel frame model structure 

Damage pattern Element number Damage description 

1 33,34 Stiffness reduction 

2 33,34,37,38 Stiffness reduction 

3 33 to 38 Stiffness reduction 

4 33 to 40 Stiffness reduction 

 

3.5.1 Damage pattern 1 

 

In the damage pattern 1, no stiffness exists in the brace members at level 1. Firstly, finite 

element analysis is performed to obtain the dynamic properties of the damaged structure. 

Invibration testing, two brace elements in level 1 are cut to reduce the stiffness of braces but 

the masses are still remained in the structure as shown in Figure 3.6(a). The cut edges of the 

brace member are slotted in to a small pipe and hold the both cut edges to prevent from local 

element vibration. Vibration responses through the installed sensors are acquired with the 

help of data acquisition devices while the impact hammer hit the beam element number 32 at 

the top floor to excite the modes in the interest range. Natural frequencies and mode shapes 

are identified by using similar method for the intact structure.  
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Comparison of analytical and measured frequencies, and MAC values are summarised in 

Table 3.3. Graphical presentation of measured frequencies is also presented in the Figure 

3.31. Although no stiffness in brace members at floor level, the 1st mode frequency do not 

reduce and in good agreement with corresponding analytical mode. 2nd mode frequency 18.8 

Hz is slightly lower than analytical value of 20.0396 Hz. 4th, 5th, and 7th measured frequencies 

are in well match with corresponding analytical frequencies.It is immediately apparent that 

some modes are not excited in the dynamic testing of damaged structure due to missing 

damaged elements. Higher MAC values showthat measured mode shapes are agreeing well 

with corresponding analytical modes.  

 

Table 3.3Analytical and experimental frequencies of damaged structure in damage pattern 1 

Mode Analytical 

Frequency 

(Hz) 

Experimental 

Frequency 

(Hz) 

MAC 

Analytic vs 

Experiment  

1 10.3551 10.5 0.9942 

2 20.0396 18.8 0.8482 

3 27.1367 / / 

4 31.7604 32.3 0.7690 

5 45.1850 45.9 0.9723 

6 49.1911 / / 

7 51.8190 52.2 0.7233 
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Figure 3.31Measured frequencies of damaged structure in damage pattern 1 

 

3.5.2 Damage pattern 2 

 

In the damage pattern 2, no stiffness exists in the brace members at the level 1 and 3. For 

comparison of analytical and measured modal data, mathematical model of damaged 

structure is developed and finite element dynamic analysis is performed prior to experimental 

study. In this damage pattern, additional two brace members in floor level 3 are cut to reduce 

the additional stiffness of braces in damage pattern 1 as shown in Figure 3.6(b). Measured 

modal data are extracted with the help of modal analysis technique implemented in the modal 

analysis software. Analytical and measured frequencies as well as MAC values are shown in 

Table 3.4. Graphical illustration of measured frequencies is also shown in the Figure 3.32. 
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Table 3.4Analytical and experimental frequencies of damaged structure in damage pattern 2 

Mode Analytical 

Frequency 

(Hz) 

Experimental 

Frequency 

(Hz) 

MAC 

Analytic vs 

Experiment  

1 10.3550 10.5 0.9710 

2 18.7420 18.0 0.7872 

3 24.3464 / / 

4 31.7602 32.3 0.9956 

5 44.1538 45.0 0.9881 

6 48.2108 / / 

7 51.8178 52.8 0.7901 

 

In this damage pattern, 1st measured and analytical frequencies do not change significantly.  

However, 2nd, 4th, 5th, and 7th measured frequencies agree well with corresponding analytical 

frequencies. Even though additional stiffness of the brace elements are reduced, all measured 

frequencies of the damaged structure in damage pattern 2 do not change significantly. Higher 

MAC values indicate that measured modes are in good correlation with corresponding 

analytical modes.  
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Figure 3.32Measured frequencies of damaged structure in damage pattern 2 

 

3.5.3 Damage pattern 3 

 

In this damage pattern, brace elements in level 1, 2 and 3 are assumed to be damaged and no 

stiffness of those elements contribute to the structure system. Two more brace elements at 

level 2 of tested frame structure are cut in order to reduce further stiffness. Similar to 

previous damage pattern, comparison of numerically estimated frequencies vs measured 

frequencies and MAC values are presented in Table 3.5. Extracted frequencies are also 

plotted in Figure 3.33.Major notice in this damage pattern is 2ndmeasured frequencyis further 

reduced to 14.9221 Hz.1st, 4th, 6th, and 7th measured frequencies do not change significantly, 

and agree well with corresponding analytical frequencies. By judging the MAC values closed 

to unity, measured modes 1 to 6 except missing modes 3 and 5 show well correlations with 

the corresponding analytical modes. The existence of damage in the structure affects the 

natural frequencies and corresponding mode shapes of the structure. 
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Table 3.5Analytical and experimental frequencies of damaged structure in damage pattern 3 

Mode Analytical 

Frequency 

(Hz) 

Experimental 

Frequency 

(Hz) 

MAC 

Analytic vs 

Experiment  

1 10.3549 10.4 0.9834 

2 14.9221 14.9 0.9866 

3 15.3495 / / 

4 31.7601 32.7 0.8740 

5 43.4155 / / 

6 45.5680 44.2 0.8509 

7 51.8175 52.9 0.6378 
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Figure 3.33Measured frequencies of damaged structure in damage pattern 3 
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3.5.4 Damage pattern 4 

 

In the last damage pattern, all brace elements are assumed to be damaged and there is no 

contribution of their stiffness into the structure system. Two brace members at the top floor of 

the frame structure are cut in addition to damage pattern 3. Finite element analysis and 

experimental study are undertaken in similar way to previous damaged structures. 

Numericallyestimated frequencies, measured frequencies, and MAC values are summarised 

in Table 3.6.Graphical presentation of identified frequencies is also shown in Figure 3.34. In 

this damage pattern, 1st measured frequency does not change noticeably. The rest measured 

frequencies except missing 3rd, 6th, and 7th modes are in good agreement with corresponding 

analytical values.  MAC values close to unity show that measured mode shapes are in good 

correlation with analytical mode shapes. 

 

Table 3.6Analytical and experimental frequencies of damaged structure in damage pattern 4 

Mode Analytical 

Frequency 

(Hz) 

Experimental 

Frequency 

(Hz) 

MAC 

Analytic vs 

Experiment  

1 10.3548 10.4 0.9934 

2 14.2052 14.6 0.9973 

3 15.0934 / / 

4 31.7598 32.8 0.9638 

5 42.5627 43.0 0.9952 

6 45.3228 / / 

7 46.8497 / / 
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Figure 3.34Measured frequencies of damaged structure in damage pattern 4 

 

3.6 Comparison of measured frequencies for intact and damaged structures 

 

Comparison of measured frequencies for intact and four damaged structures are indicated in 

Table 3.7. In the comparison, 1st mode frequencies of all structures do not change 

significantly. However, 2nd mode frequency of the intact structure reduces from 24.3 Hz to 

14.6 Hz of damaged pattern 4 structure where stiffness of all brace elements are reduced in 

the structural system.  Similarly, 4th, 5th, and 7th measured frequencies of damage pattern 1 

structure are reduced. However, no significant reductions of frequencies are observedin all 

four damaged structures although stiffness of brace elements arefurther reduced. It is 

assumed that stiffness reductions of brace members from a relatively stiffness structural 

system are not large enough to reduce the measured frequencies significantly. It is apparent 

that some of the modes are not exciting in the dynamic testing of damaged 
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structures.Moreover,Figure 3.28 andFigure 3.30 show that 5thand 7th measured modes include 

torsion effect on bending mode although corresponding analytical modes are pure bending. 

 

Table 3.7  Comparison of measured frequencies identified from measured daata of space 

steel frame model structures including intact and four damaged structures 

Mode Intact 

(Hz) 

Damage 1 

(Hz) 

Damage 2 

(Hz) 

Damage 3 

(Hz) 

Damage 4 

(Hz) 

1 10.3 10.5 10.5 10.4 10.4 

2 24.3 18.8 18.0 14.9 14.6 

3 32.2 / / / / 

4 46.0 32.3 32.3 32.7 32.8 

5 51.4 45.9 45.0 / 43.8 

6 60.3 / / 44.2 / 

7 70.4 52.2 52.8 52.9 / 

 

 

3.7 Conclusions 

 

Structural dynamic testing of the steel frame model structure was undertaken in the 

laboratory for the purposes of identifying the dynamic characteristics of the intact and 

damaged structures. A three dimensional steel frame model structure was constructed with 

rectangular beam and column elements, and circular brace elements. For damaged structures, 

four damage patterns were defined by cutting the brace elements of the structure. Local 

vibration of cut braced members was prevented by using a small plastic pipe holding the both 
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cut ends of the braced members. The first seven natural frequencies ranging from 10.3 Hz to 

70.4 Hz and associated mode shapes were identified from measured acceleration data by 

utilising experimental modal analysis technique. Those measured modal parameters were 

validated with the analytical results obtained from finite element dynamic analysis and 

integrities of the tested structures were determined by observing the changes in modal 

parameters.  For the intact structure, the first four experimental modes correlate well with 

corresponding analytical modes. However, fifth to seven modes do not agree well with 

corresponding analytical modes due to complexity of higher modes. Some lower modes were 

missed and could not be extracted from the measured data due to missing stiffness of 

damaged braced members in the structure. Moreover, the location of input force to excite the 

structure also affected the excitation of the experimental modes. 
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Chapter 4 Finite Element Model Updating Using 

Incomplete Measured Modal Data 

4.1 Introduction 

 

The finite element method is useful for many applications in engineering practice such as 

structural analysis and structural damage detection (Wu and Li 2006, Friswell 2007, Quek et 

al. 2009). In general, the analytical model of the associated actual engineering structure may 

not fully represent all the physical and geometrical aspects of the actually built structure. As a 

result, discrepancies exist between analytical predictions and experimental results.These 

discrepancies can occur due to: 

• errors in structural modelling caused by imperfection in geometry, member’s 

connection such as bolted or welded connection. 

• errors in model order which associated with discretization in the generation of the 

finite element model.  

• errors in structural parameter due to incorrect material properties and boundary 

conditions. 

 

Many investigations show that the differences between the numerical and experimental 

frequencies may exceed 10% or sometimes even 40% (Brownjohn and Xia 2000, Jaishi and 

Ren 2005,  Zivanovic et al. 2007). In order to improve the correlation between the analytical 

predictions and measured data, effective methods for finite elementmodel updating are 

required to adjust the structural parameters of the initial analytical model by using the 

measured vibration data of the actual tested structure (Friswell and Mottershead 1995, 

Teughels et al. 2002, Weng et al. 2011). In this chapter, existing model updating methods are 
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reviewed and development of a robust model updating method is presented. The proposed 

model updating method can directly adopt measured incomplete data to update the structural 

updating parameters at critical point level without requiring mode shape expansion or model 

reduction techniques. 

 

4.2 Existing model updating methods 

4.2.1 Direct method 

 

The direct method, also called model-based method, directly reconstruct the elements 

stiffness and mass matrices by a one-step procedure (Caesar and Peter 1987, Friswell et al. 

1998, Yang and Chen 2009). Incomplete measured modal data could be used for updating 

structural parameters without using standard modal expansion or model reduction techniques 

(Carvalho et al. 2007). Apart from the measured modal data, the measured frequency 

response functions can also be utilised to update the structural parameters of the finite 

element model by minimizing the residual error between analytical and experimental outputs 

(Esfandiari et al. 2010). The direct updating methods basically require full degrees of 

freedom measured data to update the finite element model. When a full set of measurements 

at all degrees of freedom are available, the model updating problem is algebraically linear 

and can be solved in one step iteration. However, in practice, it is impossible to measure 

vibration responses at all degrees of freedom of a large structure. Thus, the numbers of 

measurable degrees of freedom are limited and the measured data sets are often incomplete. 

Then, the applicability of the direct method may be restricted to update the large number of 

structural parameters and the updated physical properties may not truly represent the actual 

tested structure concerned.  
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There are some advantages and disadvantages in direct updating methods (Maia and Silva, 

1997, Jaishi 2005). The main advantages are: 

• the method does not require any iteration and assures the convergence solution. 

• the analytical data may be produced exactly as test results. 

Disadvantages include: 

• precisegeometry of test structure in finite element modelling and accurate finite 

element modal analysis are required. 

• the measured modal data must be expanded to the size of finite element model or 

reduce the finite element model to the size of measured degrees of freedom of test 

structure. 

• original element matrices before updating are diagonally dominated with couplings 

since elements connect each other to their neighbour elements. However, the updated 

matrices are usually polluted due to forced manipulating the test results. 

• the method may produce deficiency in connectivity of the structure as all the element 

matrices in the structure system are changed separately.  

• possibility of loss in symmetry of the element matrices and no guarantee for the 

positive definiteness of the updated matrices. 

 

4.2.2 Matrix mixing method 

 

The matrix mixing approach was proposed by Thoren (1972) and Ross (1971), and further 

developed by Caesar (1987) and Link et al. (1987). The problem in assembling of stiffness 

and mass matrices from tested data is that measured mode shapes are usually incomplete. The 
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unmeasured partitions of mode shape are recovered by using analytical data to construct the 

full measured mode shapes. 

 

 ∑∑
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whereK̂ andM̂  are updated stiffness and mass matrices, iω~  and iω are i th measured and 

analytical natural frequencies, iφφφφ~  and iφφφφ  are associated measured and analytical mode 

shapes,  m andn are number of measured and analytical mode shapes, respectively. The 

updated stiffness and mass matrices are generally polluted and updated model is not always 

physically realistic.  

 

4.2.3 Error matrix method 

 

Error matrix methods directly estimate the error in the stiffness and mass matrices by 

assuming that the error is very small. Sidhu and Ewins (1984) defined an expression for the 

error matrix K∆ as: 

 

 KKK −=∆ ~
 (4.3) 

 

Due to the incompleteness of the measured data, Eq. (4.3) was rearranged and an expression 

for the error in the stiffness matrix was obtained by expanding the flexibility matrix1~−K . 
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Considering the second order terms in the error matrix were negligible and rearranging 

produces an estimated error matrix. 

 

 KKKKK )
~

( 11 −− −≈∆  (4.4) 

 

Lieven and Ewins (1990) defined the stiffness error matrix in Eq.(4.4) by a modified version 

of the error matrix method via Singular Value Decomposition (SVD) method. 

 

 ++ −≈∆ )()
~~~

( 22 T
iii

T
iii φφφφφφφφφφφφφφφφ ωωK  (4.5) 

 

where“ + ” refers to SVD. The advantage of this approach is that the structural system 

matrices computed by finite element analysis are not required. 

 

4.2.4 Eigenstructure assignment method 

 

The eigenstructure assignment method adapted from the control theory has been used to 

update finite element models. In this method, state feedback is used to describe the right hand 

side of equation of motion in terms of the displacements and velocity states. Using the state 

feedback, Moore (1976) formulated the sufficient conditions for simultaneous eigenvalue and 

eigenvector assignment.Consider mathematical equation of motion of a structural dynamic 

system as 
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 BFKUUCUM =++ &&&  (4.6) 

 

where the matrix B  is the location matrix and F  is the input or control force vector on the 

structure. An arbitrary output Y  can be described by a combination of displacements and 

velocities as 

 

 UDUDY &
10 +=  (4.7) 

 

where 0D  and 1D  are the measurement matrices associated with displacement and velocity 

respectively. The matrices B , 0D , and 1D  have to be chosen. The required input force is 

produced by actuators based on feedback gain matrix G such that the closed loop system has 

the desired eigenvalues and eigenvectors, 

 

 GYF =  (4.8) 

 

The result of this procedure is that the stiffness and damping matrices are modified and the 

analytical mass matrix remains unchanged. The updated damping and stiffness matrices are 

given by 

 

 
1

ˆ BGDCC +=  (4.9) 

 

 0
ˆ BGDKK +=  (4.10) 
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The perturbations on the damping and stiffness matrices are given by the matrix triple 

products 1BGD and 0BGD . These perturbed matrices will give updated matrices which can 

reproduce the measured eigendata (Inman and Minas 1990, Mottershead and Friswell 1995).  

 

4.2.5 Iterative method 

 

Another category of finite element model updating method covers the widely used iterative 

updating method including sensitivity-based approaches. The iterative method update 

structural parameters of the finite element analytical model by an optimisation process, which 

requires the eigen solutions and associated sensitivity matrices of the analytical model to be 

calculated in each iteration (Bakira et.al 2007, Chen and Bicanic 2010). The performance of 

the iterative method largely depends on the selections of an objective function and 

constraints, structural updating parameters and optimisation techniques, requiring significant 

computational effort in the model updating process. The objective function can be taken as 

the residuals between the measured quantities and the corresponding predictions from the 

initial finite element model, such as difference in frequencies and mode shape measurements 

(Modak et al. 2002). The selection of structural parameters to be updated requires 

considerable physical insight into the tested structure so as to correctly characterise the 

physical properties at local level such as at connections of structural elements (Palmonella et 

al. 2005, Zapico-Valle 2012). The global optimisation technique is often employed to obtain 

optimum structural updating parameters in the model updating process (Bakir et al. 2008, Tu 

and Lu 2008). However, the sensitivity analysis and optimisation technique used in the 

iterative model updating methods may not perform well, in particular in the cases when the 
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number of the chosen structural parameters to be updated is large and the discrepancy 

between the initial finite element model and the actual tested structure is significant. 

 

4.2.6 Sensitivity-based method 

 

The sensitivity method is probably the most successful approach in finite element model 

updating of engineering structures. It is developed from Taylor series expansion truncated 

after the first order term (Mottershead et al. 2011). The errorε  between the measured and 

analytical data can be expressed as  

 

 iRR−=ε  (4.11) 

 

whereRand iR  are structural responses of experimental and analytical predictions 

respectively. This can be taken as eigenfrequencies, mode shapes or frequency response 

functions. The residual R∆  at i th iteration is defined as iRRR −=∆ . The sensitivity matrixS

can be calculated as follows: 

 

 
j

i
ij P

R
S

∂
∂=  (4.12) 

 

where jP represent structure parameter. The sensitivity matrixS  is computed at the current 

value of the complete vector of parameter iPP =  whereP and iP  are the measured and 

analytical predicted outputs. At each iteration Eq.(4.11) is solved for residual of structural 

parametersP∆  as  
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 iPPP −=∆  (4.13) 

 

P∆ is evaluated by dynamic perturbation approach and the model is then updated to next 

iteration 

 

 PPP ∆+=+ ii 1  (4.14) 

 

This procedure continues until consecutive estimates iPand 1+iP  are sufficiently converged. 

 

4.3 Proposed model updating method 

 

A new robust procedure offinite element model updating method (Maung et al. 2011) is 

presented. The proposed model updating method is extended based on nonlinear perturbation 

method structural dynamic (Chen 2005)by using incomplete measured vibration data and 

regularised algorithm. This method can directly adopt measured incomplete modal data for 

evaluating the chosen structural updating parameters of the initial finite element model at 

local level, without requiring mode shape expansion or model reduction techniques. On the 

basis of the dynamic perturbation method, the exact relationship between the structural 

parameter modifications and the incomplete measured modal data of the tested structure is 

generated, without requiring sensitivity analysis and the construction of an objective function. 

The structural parameters to be updated are properly chosen to characterise the modifications 

of structural parameters, i.e. differences in stiffness and mass matrices between the analytical 

model and tested structure. An iterative solution procedure is proposed to estimate the chosen 

structural updating parameters in the least squares sense, without requiring an optimisation 
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technique. The Tikhonov regularisation algorithm incorporating the L-curve criterion method 

for determining the regularisation parameter is employed to reduce the influence of modal 

measurements uncertainty and then to produce reliable solutions for the structural updating 

parameters. 

 

4.3.1 Dynamic perturbation method with incomplete mode shapes 

 

The characteristic equation for an undamped dynamic structural system with global stiffness 

matrixK and global mass matrixM  of N degrees of freedom analytical model in Eq.(2.1) is 

rewritten as 

 

 0MK =− ii φφφφ)( 2ω  (4.15) 

 

The analytical eigenvectors are assumed to be normalised as unity withrespect to the mass of 

the analytical model. 

 

In the finite element model updating, the finite element model often has uncertainty in 

modelling structural parameters such as the stiffness and mass of the associated tested 

structure due to the complexity of the actually constructed structure. The model uncertainty is 

mainly related to the unknown perturbations of structural parameters such as differences in 

stiffness K∆  and mass M∆  between the analytical model and the tested structure. The global 

stiffness matrixK
~

 and mass matrixM
~

 of the tested dynamic structure can be expressed as 
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 KKK ∆+=~
 (4.16a) 

 

 MMM ∆+=  (4.16b) 

 

Similarly, the characteristic equation for the actual tested structure is expressed as 

 

 0MK =− ii φφφφ~)~~~
( 2ω  (4.17) 

 

in which iω~  and iφφφφ~  are the i thfrequency and the corresponding modeshape for the tested 

dynamic system, respectively. From Eq.(4.16) the experimental characteristic equation in 

Eq.(4.17) becomes 

 

 0MKMK =−+∆−∆ iii φφφφ~)]~()~[( 22 ωω  (4.18) 

 

Pre-multiplying Eq.(4.18) by analytical eigenvectorT
kφφφφ  

 

 0MKMK =−+∆−∆ iii
T
k φφφφφφφφ ~

)]~()~[( 22 ωω  (4.19) 

 

replacing MK 2
kω= , in Eq.(4.19) becomes 

 

 0MMMK =−+∆−∆ iik
T
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T
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Since the analyticaleigenvectors are linearly independent due to the symmetry of the 

analytical stiffness and massmatrices, the mode shapes of the tested structure canbe expressed 

as a linear combination of the analytical eigenvectors, namely 

 

 ∑
=

=
N

k
kiki C

1

~ φφφφφφφφ  (4.22) 

 

where ikC are mode participation factors. Premultiplying Eq.(4.22)by ΜT
kφφφφ ,  

 

 k
T
k

N

k
iki

T
k C φφφφφφφφφφφφφφφφ ΜΜ ∑

=
=

1

~
 (4.23) 

 

using themass normalisation of the analytical eigenvectors 1=k
T
k φφφφφφφφ Μ  , yields, 

 

 i
T
kikC φφφφφφφφ ~
Μ=  (4.24) 

 

Assuming that the mode shapes of the tested structure are scaled in the following form 

 

 1
~ =i

T
i φφφφφφφφ Μ  (4.25) 
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The mode participation factoriiC becomes 1=iiC . The mode shapes of the tested structure in 

Eq.(4.22) is then rewritten as 

 

 ∑
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From the mode participation factorikC  in Eq.(4.24), the Eq.(4.21) becomes 
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Substituting the mode participation factors ikC in Eq.(4.28) into Eq.(4.22), yields 
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In structural dynamic testing, modal data about the natural frequencyiω~  and mode 

shapereadingsiψ
~  of the tested structure can be extracted from vibration measurements by 

modalanalysis techniques. However, in practice, the measured mode shapes are usually 

incomplete since the numbers of measured degrees of freedom are less than the numbers of 

degrees of freedom of analytical model due to limited number of sensorsavailable for 

vibration measurements. The measured modes arepaired to the analytical eigenvectorsa
kφφφφ  
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(restricted to the same dimensions as iψ
~ ), by usingMAC factors defined in Eq. (2.1).In the 

application of governing equation Eq. (4.29), the measured incomplete mode shapes of the 

actual tested structure need to be close to the corresponding part of the original eigenvectors 

a
kφφφφ  . The measured degrees of freedom readings iψ

~ are then scaled by a mode scale factoriυ  
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        where,  ~~ φφφφ

φφφφ == υυ  (4.30) 

 

The remaining unmeasured components u
iφφφφ~  are covered with corresponding parts of 

analytical model by using Eq.(4.26) 
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where u
kφφφφ is original eigenvector corresponding to the entries of the unmeasured components. 

In the calculation of ikC , complete mode shapes of all degrees of freedom are constructed by 

using measured components of measured mode shapes and unmeasured components from 

analytical mode shapes. For simplicity and convenience in matrix operations, both the 

measured components aiφφφφ~ andthe remaining calculated components u
iφφφφ~  of the i th mode shapes 

of tested structure areexpanded to full dimension with zeroes at their unknown entries. The i th 

completeeigenvector of the tested structure, consisting of the measured components and the 

remainingcalculated components, is then given by 
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where a
iϕϕϕϕ is a known vector of dimension N, defined as 
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From Eq. (4.32), the mode participation factorsikC in Eq.(4.28) are rewritten as 
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(4.34) 

 

By using the scaled measured degrees of freedom readings in Eq.(4.30) and the constructed 

eigenvector in Eq.(4.32), Eq.(4.29) is now restricted to the dimension for the measured 

components and becomes 
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(4.35) 

 

The governing equation in Eq.(4.35) represents the exact relationship between the change in 

structural parameters and the measured modal properties of the tested structure such as mode 

shape readings. The governing equation avoids the approximations and complexity in most 
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existing eigensesitivity-based analysis methods for model updating, without requiring 

eigensolution derivatives. 

 

4.3.2 Governing equations for model updating 

 

In the proposed model updating method, structural system parameters to be updated, such as 

parameters for material and geometric properties, are employed to reflect the updating of 

structural parameters, e.g. stiffness matrix and/or mass matrix. The structural system updating 

parameters can characterise the structural parameters at element level or at integration point 

level. In the case where structural updating parameters are chosen at element level, the 

change in element stiffness matrix eK∆ can be expressed by 

 

 eeeee KKKK θ=−=∆ ~
 (4.36) 

 

where eθ is a stiffness updating parameter characterised at element level to be determined 

from model updating; eK and eK
~

are the eth element stiffness matrices for the analytical 

model and the tested structure, respectively. 

 

For the frame structures, it is difficult to accurately model beam-column joints in the 

analytical model and the bending stiffness at the joints is often estimated with uncertainty. In 

order to effectively update the bending stiffness at the ends of beam and column elements, the 

element stiffness matrix is now calculated from an integral form (Hinton and Owen 1985). 
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The element stiffness matrix excluding axial stiffness for a conventional beam with bending 

stiffness EI and element length l is given by 

 

 ξξξ d
l

EI Tb
e 2
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= bbK  (4.37) 

 

where the dimensionless natural coordinate ξ associated with the longitudinal beam axis xis 

defined as 1
2 −=
l

xξ ; )(ξb is a row vector representing the relationship between thecurvature 

of the structural element and the nodal displacements, expressed as 
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By adopting the three-point Newton-Cotes integration rule (Stoer and Bulirsch 1980), the 

element stiffness matrix in Eq.(4.37) is calculated from the sum of the contributions of 

integration points at the middle and both ends of the element 
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in which index r denotes the integration points at the middle and both ends of the element 

where rξ = 0  and 1±=rξ , respectively; Weight coefficients rw  for the three-point  Newton-

Cotes integration rule at the middle and both ends are rw = 4/3 and rw = 1/3, respectively; 

rEI)(  represents bending stiffness at integration points, i.e. in the middle and at both beam-
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column joints of the structural element. The change in element stiffness matrix b
eK∆ between 

the element stiffness of tested structure beK
~

 and the element stiffness of analytical model 

b
eK for the beam element is given by 
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rr
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 (4.40) 

 

where rθ  is stiffness updating parameter characterised at critical point level to be determined 

from model updating. Consequently, the change of global stiffness matrix between the tested 

structure and analytical model is written as (Chen and Bicanic 2006, Maung et al. 2011) 
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where θN  represents the total number of stiffness updating parameters adopted in 

calculations; jθ  is stiffness updating parameter characterised at element level or integration 

point level; jK is the contribution of the j th element or integration point to the global stiffness 

matrix. Similarly, the change of global mass matrix between the tested structure and the 

analytical model is expressed as 
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where βN  represents the total number of mass updating parameters
jβ adopted for model 

updating; jM  is the j th contribution to the global mass matrix. In order to minimise the 

computational effort, the sensitivity coefficients associated with the known eigenmodes and 

structural parameters in the governing equation Eq.(4.35) are defined in a general form as 
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from Eq.(4.41) andEq.(4.42) the governing equation Eq.(4.35) is rewritten as 
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substituting Eq.(4.43a) and Eq.(4.43b) gives 
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Similarly, define the sensitivity coefficients associated with the known eigenmodes and 

structural parameters in Eq. (4.34) as 
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from Eqs.(4.41) and (4.42), the mode participation factorsikC in Eq.(4.34) are thus expressed 

as 
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(4.47) 

 

and by using Eq. (4.46), rewriting as 
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On the basis of the governing equations Eq.(4.45) and Eq.(4.48) developed above, an iterative 

solution procedure is required to solve for the structural updating parameters. In order to 

accelerate the convergence process, the nth approximations for the structural updating 
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parameters )(n
jθ and )(n

jβ and the mode participation factors )(n
ikC are calculated, respectively, 

from 
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wheren indicates the nth iteration and (n-1) indicates the (n-1)th iteration. When the )(n
ikC  are 

being calculated, the )(n
ilC  where kl <  are known, while )(n

ilC  where kl > are not available, 

but )1( −n
ilC  are known. Therefore the )(n

ilC  where kl <  are used for calculating nth iteration 

)(n
ikC  to accelerate the iterative procedure. The governing equation Eq.(4.49) is used for 

evaluating the structural updating parameters, where a regularisation algorithm is often 

required to obtain stable solutions due to the ill-posed problem (Titurus and Friswell 2008). 

 

4.3.3 Regularised solution to updating parameters 
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A regularization algorithm is often required to obtain stable solutions for the ill-posed 

problem defined in the governing equation Eq.(4.49).For the i th measured mode with a total 

of Ns  mode shape readings, that governing equation are rewritten here as  

 

 NsiNxNxNsiii RRR ∈∈∈= )(x)()()(     ,      ,      ,  bxAbxA  (4.51) 

 

where )(iA is sensitivity matrix with dimensions of NxNs x associated with sensitivity 

coefficients and the obtained mode participation factor defined in the governing equation 

Eq.(4.50) for the i th measured mode; x  is unknown vector of dimension Nx containing 

structural updating parametersjθ and jβ ;  )(ib is known vector of dimension Ns containing 

degrees of freedom’s readings for the i th measured mode. In order to reduce the influence of 

measurement uncertainty on finite element model updating, the Tikhonov regularisation, one 

of the most popular regularisation methods (Tikhonov and Arsenin 1993), is adopted, in 

which the linear equations Eq.(4.51)is replaced by a minimisation problem 
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where 0≥λ  is the regularisation parameter and • denotes the Euclidean norm. An explicit 

regularised solution λx  to the minimisation problem is given by 

 

 ( ) bAIAAx TT 12 −+= λλ  (4.53) 
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whereI is the identity matrix. Let Singular Value Decomposition (SVD) of the sensitivity 

matrix A be 
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whereΣ is a diagonal matrix ],...,,[ 21 Nxdiag σσσ=Σ   in which Nxσσσ ≥≥≥ ...21  ; UandV 

are orthogonal matrices with IUUUU == TT  and IVVVV == TT . By using the SVD of 

Ain Eq.(4.54), the regularised solution λx is thus given by 
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where )(λjf is the Tikhonov filter, defined as 
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The regularisation parameter λ  in Eq.(4.55)needs to be properly selected in order to filter out 

enough noise without losing too much information in the regularised solution. Computational 

experience shows the L-curve criterion can provide suitable values of regularisation 

parameters in many problems (Hansen and O’Leary 1993), without requiring the 

priorknowledge of noise in the measured data. The L-curve is a plot in log-log scale of the 



111 

 

corresponding values of the residual norm )(λρ and solution norm )(λη  as a function of the 

regularisation parameterλ , defined in terms of the SVD as 
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It can be shown that the L-curve’s corner, where the curvature of the L-curve approximately 

has a maximum value, indicates an optimal regularisation parameter to balance the residual 

norm error and the solution norm error (Hansen and O’Leary 1993). From Eq.(4.57), the 

curvature of the L-curve )(λκ  is given by 
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whereη′denotes the first derivative ofη with respect toλ and is expressed as 
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A one-dimensional optimisation procedure is adopted to determine the optimal regularisation 

parameterλ corresponding to the maximum curvature.The iterative solution algorithm and 
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flowchart for solving for structural updating parametersjθ and jβ is now summarised as 

follows. 

 

Algorithm start 

1. Calculate and store sensitivity coefficients in Eq.(4.43). 

2. Calculate and store sensitivity coefficients in Eq.(4.46). 

3. Give initial values )(     ,0)0( ikCik ≠=  . 

4. For n = 1, 2, 3, … 

• )(n
jθ and )(n

jβ are evaluated from Eq.(4.49), where regularised solutions are obtained 

from Eq.(4.55) in whichλ is determined by maximising Eq.(4.58). 

• )(n
ikC are calculated from Eq.(4.50) 

• Return if solution has not converged. 

Algorithm end. 
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4.3.4 Flowchart for proposed model updating procedure 
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Figure 4.1Flowchart for modal updating scenario 

 

The above iterative solution algorithm is performed until the convergence for structural 

updating parameters is achieved, often after only a few iterations. In order to assess the 

performance of the proposed model updating method, evaluation criteria are introduced to 

compare the updated modal properties with the measured modal data. The relative error for 
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the i th updated frequency iEω and the average absolute error for all updated frequencies ωE  

are defined, respectively, as 
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whereNm is the total number of measured modes andiω̂ is the i th updated natural 

frequency.The relative error for the i th updated incomplete mode shape iEφ  and the average 

error forall updated incomplete mode shapes φE are defined, respectively, as 
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where a
iφφφφ̂  is the i th incomplete mode shape of the updated analytical model. 
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Chapter 5 Verifications of Proposed Model Updating 

Method 

5.1 Introduction 

 

The effectiveness and applicability of the proposed finite element model updating method 

presented in Chapter 4 are demonstrated by the numerical simulation investigations and 

experimental studies of the steel frame model structure for adjusting the stiffness at the joints 

of structural members.  Additionally, the benchmark problem of Canton Tower located in 

Guangzhou, China (Chen et al. 2011, Ni et al. 2009) established by the Hong Kong 

Polytechnic University is employed for practical application. Incomplete modal data 

identified from the recorded ambient vibration measurements are utilized to updated the 

given finite element model of the Canton Tower. 

 

5.2 Numerical study of steel frame model structure 

 

A small scale spacesteel frame model structure was constructed for numerical simulation 

investigation and experimental studies to demonstrate the accuracy and effectiveness of the 

proposed finite element model updating method, as shown in Figure 5.1. Analytical model of 

the tested structure to be updated has been presented in section 3.2. In the tested structure, 

accelerometers are placed at beam-column joints to measure only translational displacement 

readings in horizontal directions. The modal data such as frequencies and mode shape 

readings at measured degrees of freedom are extracted from the acceleration measurements 

by using modal analysis technique (Reynolds et al. 2002, Pavic and Reynolds2007). 
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In order to update the physical properties at specific locations in individual structural 

components, structural updating parameters are chosen to characterise the physical properties 

at critical point level for beams and columns, i.e. at both ends and in the middle, and at 

element level for braces. A total number of 104 stiffness updating parameters are introduced 

for updating the initial finite element model, i.e. 48 for columns, 48 for beams and 8 for 

braces, while the updating of mass is not considered due to its relatively higher accuracy. 

 

 

 

Figure 5.1Steel frame model structure used for laboratory testing with installed sensors. 

 

In the numerical simulation investigations, three simulation cases with different number of 

measurement sensors are considered,as shown in Table 5.1, to verify the accuracy of the 

proposed finite element model updating method. 
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Table 5.1  Simulations of sensor measurements for the space steel frame model structure 

Simulation Description 

1 Simulated sensor measurements at four nodes 

2 Simulated sensor measurements at six nodes 

3 Simulated sensor measurements at sixteen nodes 

 

5.2.1 Simulation 1: Simulated sensor measurements at four nodes 

 

In this Simulation 1, the stiffness difference to be updated are simulated at different structural 

elements with various updating levels, i.e. -40% change at both ends of column elements 2, 3, 

26 and 27, -10% change at both ends of beam elements 6 and 30, and -20% change in brace 

elements 33 and 40. Here, the “measured” exact modal data, i.e. frequencies and the 

corresponding incomplete mode shapes, are obtained from finite element dynamic analysis 

for the simulated “tested” structure, namely by solving the characteristic equations for the 

“tested” structure with assumed stiffness changes. The first 10 natural frequencies for the 

initial finite element model and the simulated “tested” structure are summarized in Table 

5.2with an average frequency absolute error of 4.25%. The “measured” incomplete mode 

shapes are constructed by the degrees of freedom translational displacement readings in only 

X and Y directions at four nodes, as shown in Figure 5.2. 

 

In structural dynamic testing, frequencies can be measured more accurately than mode 

shapes. Thus, ability of 6-10 modes is assumed to be used in the numerical simulation. The 

initial finite elementmodel is adjusted through the proposed model updating method by using 

the simulated “measured” incomplete modal data. Information about different number of 
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noise-free incomplete modes, i.e. 6 modes, 8 modes and 10 modes, is utilised for evaluating 

the chosen stiffness updating parameters. The results show that the updated frequencies are in 

excellent agreement with the simulated exact values, with average absolute errors of only 

0.0013%, 0.0003% and 0.0008% for cases with 6, 8 and 10 modes used, respectively. The 

errors between measured and updated frequencies are very little due to using simulated 

analytical modal data. The accuracy of the updated mode shapes is assessed by the results 

given in Table 5.3where MAC diagonal values and relative and average mode errors are used 

as the performance indicators compared with simulated exact mode shapes.The correlation 

between the updated modes and the simulated exact modes is obviously improved for each 

mode after model updating with maximum possible MAC values of unity. The average mode 

error of 16.78% between the initial finite element model and the simulated “tested” structure 

is significantly reduced after model updating to values of 0.0244%, 0.0175%, and 0.0907% 

for cases with 6, 8, and 10 incomplete modes used, respectively.  

 

In order to investigate the influence of modal measurement uncertainty on the performance of 

the proposed model updating method, errors in the “measured” modal data are simulated by 

corrupting the exact analytical modal data with certain standard normally distributed noise 

levels (i.e. standard deviations). Here, information on a total number of eight corrupted 

incomplete modes with various noise levels, i.e. 5%, 10% and 15%, are then employed for 

updating the initial analytical model. The Tikhonov regularisation incorporating the L-curve 

criterion is adopted in the proposed solution algorithm to obtain robust solutions for the 

chosen structural updating parameters. The best results data set is selected among the other 

simulated data sets. The stiffness at some beam members ends need to be adjusted with 

relatively small absolute values of typically less than 10% , and the stiffness of columns ends 

however requires relatively large modifications in some members with adjusted stiffness 
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factor value of up to approximately -45%. The stiffness of brace elements need modifications 

up to approximately -20% in some members, and other elements only require little 

modifications. Table 5.4gives results for updated natural frequencies from eight corrupted 

incomplete modes with various simulated noise levels. The results indicate that the 

frequencies of the updated finite element model are in good agreement with the simulated 

noise-free exact values, with a small average frequency absolute error for each simulated 

noise case. The mode shapes for the updated analytical model also match the simulated exact 

values, with MAC diagonal values of close to unity and significantly reduced average mode 

errors after updating, as shown in Table 5.5. 
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Figure 5.2The finite element model of the laboratory tested space steel frame model structure 

with simulated sensors at four nodes adopted for model updating 
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Table 5.2Updated natural frequencies of the finite element model of the experimental 

structure using different number of noise-free incomplete modes extracted from simulated 

sensor measurements at four nodes 

    6 modes used 8 modes used 10 modes used 

Mode FE  

(Hz) 

Exact 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

1 10.3552 9.7865 5.8111 9.7867 0.0020 9.7866 0.0004 9.7866 0.0002

2 25.9380 25.3668 2.2517 25.3669 0.0005 25.3668 -0.0001 25.3667 -0.0004

3 31.7608 29.3901 8.0662 29.3904 0.0009 29.3902 0.0002 29.3903 0.0005

4 45.2475 43.6114 3.7515 43.6115 0.0002 43.6113 -0.0002 43.6110 -0.0008

5 51.8179 47.6142 8.8287 47.6128 -0.0028 47.6139 -0.0005 47.6155 0.0029

6 65.5716 62.9209 4.2126 62.9200 -0.0015 62.9208 -0.0003 62.9204 -0.0009

7 70.6418 68.6193 2.9474 / / 68.6194 0.0000 68.6191 -0.0003

8 72.1780 70.4225 2.4929 / / 70.4219 -0.0008 70.4209 -0.0022

9 85.2298 83.3627 2.2398 / / / / 83.3626 -0.0001

10 86.5838 84.9609 1.9102 / / / / 84.9607 -0.0002

Average error Eω (%) 4.2512  0.0013  0.0003  0.0008

 

The adjusted stiffness parameters of the critical points and elements are then compared with 

the assume values, as shown in Figure 5.3, where information on eight simulated noise-free 

incomplete modes is adopted for model updating. The results indicate that the updated 

stiffness parameters match well the assumed exact values for stiffness changes at different 

levels and at various specific locations, such as beam-column joints. However, ill condition 

problem significantly affects the accuracy of structural updating parameters and leads to 
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produce more errors than simulated results. The results for adjusted stiffness parameters of 

the all updating points and elements are also plotted in Figure 5.4. The results give consistent 

indications that the updated stiffness parameters agree well with the simulated exact value for 

stiffness changes at different levels in various specific locations. 

 

Table 5.3Updated mode shape properties of the finite element model of the experimental 

structure using different number of noise-free incomplete modes extracted from simulated 

sensor measurements at four nodes 

   6 modes used 8 modes used 10 modes used 

Mode MAC 

initial, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

1 0.9992 2.8867 1.0000 0.0207 1.0000 0.0173 1.0000 0.0494 

2 0.9823 13.2940 1.0000 0.0165 1.0000 0.0157 1.0000 0.0446 

3 0.9273 26.9679 1.0000 0.0282 1.0000 0.0249 1.0000 0.0447 

4 0.9838 12.7441 1.0000 0.0280 1.0000 0.0240 1.0000 0.0731 

5 0.9587 20.3162 1.0000 0.0361 1.0000 0.0232 1.0000 0.0655 

6 0.9262 27.1664 1.0000 0.0167 1.0000 0.0086 1.0000 0.0736 

7 0.8994 31.7249         /         / 1.0000 0.0124 1.0000 0.0755 

8 0.9915 9.1992          /         / 1.0000 0.0142 1.0000 0.0828 

9 0.9794 14.3371         /         /         /         / 1.0000 0.2069 

10 0.9915 9.2034          /         /         /         / 1.0000 0.1910 

Average error φE (%) 16.7838  0.0244  0.0175  0.0907 
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The stiffness at some beam members ends need to be adjusted with relatively small absolute 

values of typically less than 10%, and the stiffness of columns ends however requires 

relatively large modifications in some members with adjusted stiffness factor value of up to 

approximately -45%. The stiffness of brace elements need modifications up to approximately 

-20% in some members, and other elements only require little modifications. 

 

Table 5.4Updated natural frequencies of the finite element analytical model of the 

experimental structure using eight incomplete modes extracted from simulated sensor 

measurements at four nodes with various noise levels 

    5% noise 10% noise 15% noise 

Mode FE  

(Hz) 

Exact 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

1 10.3552 9.7865 5.8111 9.7752 -0.1163 9.7698 -0.1711 9.7621 -0.2499

2 25.9380 25.3668 2.2517 25.3728 0.0236 25.3792 0.0487 25.3880 0.0836

3 31.7608 29.3901 8.0662 29.3970 0.0236 29.5330 0.4862 29.5775 0.6374

4 45.2475 43.6114 3.7515 43.6306 0.0440 43.6475 0.0828 43.6573 0.1053

5 51.8179 47.6142 8.8287 47.6688 0.1147 48.2065 1.2440 48.4057 1.6625

6 65.5716 62.9209 4.2126 62.9347 0.0219 62.9110 -0.0159 62.9259 0.0079

7 70.6418 68.6193 2.9474 68.6452 0.0377 68.6405 0.0309 68.6660 0.0680

8 72.1780 70.4225 2.4929 70.4158 -0.0095 70.3770 -0.0645 70.3957 -0.0380

Average error Eω (%) 4.7953  0.0489  0.2680  0.3566
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Table 5.5Updated mode shape properties of the finite element model of the experimental 

structure using eight incomplete modes extracted from simulated sensor measurements at 

four nodes with various noise levels 

   5% noise 10% noise 15% noise 

Mode MAC 

initial, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

1 0.9992 2.8867 1.0000 0.5989 0.9999 0.9596 0.9999 1.1734 

2 0.9823 13.2940 0.9999 1.0479 0.9990 3.1671 0.9984 3.9547 

3 0.9273 26.9679 0.9997 1.6157 0.9963 6.0452 0.9944 7.4601 

4 0.9838 12.7441 0.9999 1.0360 0.9995 2.2659 0.9992 2.8687 

5 0.9587 20.3162 1.0000 0.3617 0.9995 2.2940 0.9987 3.5526 

6 0.9262 27.1664 0.9988 3.4073 0.9952 6.9333 0.9915 9.2333 

7 0.8994 31.7249 0.9992 2.8356 0.9976 4.9102 0.9956 6.6673 

8 0.9915 9.1992 0.9989 3.3632 0.9991 3.0501 0.9984 3.9794 

Average error φE (%) 18.0372  1.7833  3.7032  4.8612 
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Figure 5.3Comparison of updated stiffness parameters of the finite element model and 

simulated exact stiffness parameters, using eight noise-free incomplete mode extracted from 

simulated sensor measurements at four nodes (end location l, u, b and f represent low, upper, 

back and front ends, respectively) 

 

 

Figure 5.4Updated stiffness parameters of the finite element model of the laboratory tested 

structure (three stiffness updating parameters for each beam or column, one parameter for 

each brace), using eight noise-free incomplete modes extracted from simulated sensor 

measurements at four nodes 
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5.2.2 Simulation 2: Simulated sensors measurements at six nodes 

 

In Simulation 2, the stiffness difference to be updated are simulated at different structural 

elements with various updating levels, i.e. -50% changes at upper and lower ends of column 

elements 2, 3, 18 and 19, -10% changes at both ends of beam elements 6 and 22, and -30% 

changes in brace elements 34 and 38. The first 6, 8 and 10 “measured” exact frequencies and 

the corresponding incomplete mode shapes are obtained from the simulated measurements 

only in X and Y directions at six nodes, as shown in Figure 5.5. The results in Table 5.6show 

that the updated frequencies are in excellent agreement with the simulated exact values, with 

average absolute errors of only 0.0039%, 0.0049% and 0.0173% for cases with 6, 8 and 10 

modes used, respectively. The accuracy of the updated mode shapes is assessed by the results 

given in Table 5.7. The correlation between the updated modes and the simulated exact 

modes is obviously improved for each mode with MAC values close to unity. The average 

mode error of 31.87% between the initial finite element model and the simulated “tested” 

structure is significantly reduced after model updating to values of 0.1408%, 0.0980%, and 

0.2393% for cases with 6, 8, and 10 incomplete modes used, respectively. 

 

In this simulation, errors in measurements are considered as the same in Simulation 1. Again, 

information on eight corrupted incompleted modes is employed to update the initial finite 

element model. The results in Table 5.8 indicate that the frequencies of the updated finite 

element model are in well agreement with the simulated noise-free exact values, with a small 

average frequency absolute error for each simulated noise-polluted case. Similarly, Table 5.9 

gives the results of mode shapes for the updated analytical model which are also match the 

simulated exact values, with MAC diagonal values of close to unity and small average 

absolute mode error for each simulated noise-polluted case. 
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Figure 5.5The finite element model of the laboratory tested space steel frame model structure 

with simulated sensors at six nodes adopted for model updating 

 

Comparison of adjusted stiffness parameters with the assumed values is shown in Figure 5.6, 

where information on eight simulated noise-free incomplete modes is employed for model 

updating. The results indicate that the updated stiffness parameters match well the assumed 

exact values for stiffness changes at different levels and at various specific locations. 

Moreover, the results for all adjusted stiffness parameters are also plotted in Figure 5.7. The 

results show that the stiffness at beam ends need to be modified with relatively small absolute 
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values of typically less than 10%. The stiffness of columns ends however requires relatively 

large modifications in some members with adjusted stiffness factor value of up to 

approximately -55%. The stiffness of braces in some members also require large alterations 

with adjusted stiffness factor values of up to approximately -30%. 

 

Table 5.6Updated natural frequencies of the finite element model of the experimental 

structure using different number of noise-free incomplete modes extracted from simulated 

sensor measurements at six nodes 

    6 modes used 8 modes used 10 modes used 

Mode FE  

(Hz) 

Exact 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

1 10.3552 9.4554 9.5170 9.4552 -0.0017 9.4553 -0.0006 9.4569 0.0162 

2 25.9380 25.1115 3.2912 25.1145 0.0120 25.1116 0.0006 25.1128 0.0052 

3 31.7608 28.0390 13.2734 28.0411 0.0074 28.0410 0.0070 28.0395 0.0018 

4 45.2475 42.4984 6.4686 42.4986 0.0004 42.4973 -0.0028 42.4996 0.0028 

5 51.8179 50.4929 2.6240 50.4932 0.0006 50.4915 -0.0029 50.5101 0.0340 

6 65.5716 63.5167 3.2351 63.5177 0.0016 63.5168 0.0000 63.5508 0.0536 

7 70.6418 65.0895 8.5303 / / 65.0884 -0.0017 65.0888  -0.0011 

8 72.1780 68.3407 5.6149 / / 68.3569 0.0236 68.3278  -0.0189 

9 85.2298 81.7057 4.3133 / / / / 81.7166 0.0134 

10 86.5838 83.9274 3.1652 / / / / 83.9491 0.0259 

Average error Eω (%) 6.0033  0.0039  0.0049  0.0173 
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Table 5.7Updated mode shape properties of the finite element model of the experimental 

structure using different number of noise-free incomplete modes extracted from simulated 

sensor measurements at six nodes 

   6 modes used 8 modes used 10 modes used 

Mode MAC 

initial, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

1 0.9985   3.8326 1.0000 0.0774 1.0000 0.0582 1.0000 0.0782 

2 0.9821 13.3652 1.0000 0.2038 1.0000 0.1069 1.0000 0.1723 

3 0.8851 33.8940 1.0000 0.1310 1.0000 0.0888 1.0000 0.1375 

4 0.8998 31.6542 1.0000 0.1217 1.0000 0.0580 1.0000 0.1199 

5 0.9217 27.9819 1.0000 0.1169 1.0000 0.0858 1.0000 0.2326 

6 0.3957 77.7367 1.0000 0.1937 1.0000 0.1068 1.0000 0.5359 

7 0.6176 61.8349         /         / 1.0000 0.1118 1.0000 0.2842 

8 0.9562 20.9219         /         / 1.0000 0.1677 1.0000 0.3762 

9 0.9257 27.2557         /         /          /        / 1.0000 0.1290 

10 0.9589 20.2707         /         /          /        / 1.0000 0.3275 

Average error φE (%) 31.8748  0.1408  0.0980  0.2393 
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Table 5.8Updated natural frequencies of the finite element model of the experimental 

structure using eight incomplete modes extracted from simulated sensor measurements at six 

nodes with various noise levels 

    5% noise 10% noise 15% noise 

Mode FE  

(Hz) 

Exact 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

1 10.3552   9.4554  9.5170   9.4407 -0.1556    9.4351 -0.2150   9.4344 -0.2223 

2 25.9380 25.1115  3.2912 25.1035 -0.0320 25.1010 -0.0418 25.1004 -0.0441 

3 31.7608 28.0390 13.2734 28.0772  0.1359 28.1546  0.4120 28.2505  0.7541 

4 45.2475 42.4984  6.4686 42.4576 -0.0961 42.4396 -0.1385 42.4300 -0.1609 

5 51.8179 50.4929  2.6240 50.5017  0.0174 50.5054  0.0248 50.5036  0.0211 

6 65.5716 63.5167  3.2351 63.4923 -0.0385 63.4907 -0.0409 63.5170  0.0004 

7 70.6418 65.0895  8.5303 65.2266  0.2107 65.4059  0.4860 65.6214  0.8172 

8 72.1780 68.3407  5.6149 68.4002  0.0870 68.6235  0.4137 83.9093  0.8320 

Average error Eω (%) 6.5693   0.0967   0.2216   0.3565 
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Table 5.9Updated mode shape properties of the finite element model of the experimental 

structure using eight incomplete modes extracted from simulated sensor measurements at six 

nodes with various noise levels 

   5% noise 10% noise 15% noise 

Mode MAC 

initial, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

1 0.9985   3.8326 1.0000 0.4768 1.0000 0.5973 0.9999 0.8280 

2 0.9821 13.3652 0.9995 2.1480 0.9990 3.1915 0.9985 3.9144 

3 0.8851 33.8940 0.9998 1.5371 0.9990 3.1778 0.9976 4.9439 

4 0.8998 31.6542 0.9998 1.4864 0.9990 3.1439 0.9973 5.2135 

5 0.9217 27.9819 0.9998 1.3211 0.9993 2.6923 0.9984 4.0619 

6 0.3957 77.7367 0.9988 3.4043 0.9970 5.5220 0.9938 7.8493 

7 0.6176 61.8349 0.9997 1.6778 0.9985 3.9061 0.9960 6.3421 

8 0.9562 20.9219 0.9991 2.9778 0.9978 4.7076 0.9958 6.4845 

Average error φE (%) 33.9027  1.8787  3.3673  4.9547 
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Figure 5.6  Comparison of updated stiffness parameters of the finite element model and 

simulated exact stiffness parameters, using eight noise-free incomplete mode extracted from 

simulated sensor measurements at six nodes (end location l, u, b and f represent low, upper, 

back and front ends, respectively) 

 

 

Figure 5.7  Updated stiffness parameters of the finite element model of the laboratory tested 

structure (three stiffness updating parameters for each beam or column, one parameter for 

each brace), using eight noise-free incomplete modes extracted from simulated sensor 

measurements at six nodes 
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5.2.3 Simulation 3: Simulated sensors measurements at sixteen nodes 

 

In this simulation, the stiffness difference to be updated are simulated at different structural 

elements with various updating levels, i.e. -50% change at upper and lower ends of column 

10,11,26, and 27, -10% change at both ends of beam elements 6 and 30, -20% change in 

brace elements 33 and 40. The first 6, 8 and 10 “measured” exact frequencies and the 

corresponding incomplete mode shapes are obtained from the total ofsixteen simulated sensor 

measurements at nodes 5,7,9,11,13,15,17 and 19 in X direction,andat nodes 

6,8,10,12,14,16,18 and 20 in Y direction, as shown in Figure 5.8. The results in Table 5.10 

indicate that the updated frequencies agree well with the simulated exact values, with average 

absolute errors of only 0.055%, 0.0007% and 0.0008% for cases with 6, 8 and 10 modes 

used, respectively. Furthermore, the accuracy of the updated mode shapes is assessed by the 

results given in Table 5.11. The correlation between the updated modes and the simulated 

exact modes is greatly improved with MAC values close to unity. The average mode error of 

26.67% between the initial finite element model and the simulated “tested” structure is 

significantly reduced after model updating to values of 0.4109%, 0.043%, and 0.0334% for 

the cases with 6, 8, and 10 incomplete modes used, respectively.  

 

Here, measurements errors are simulated by corrupting the exact analytical modal data with 

standard normally distributed noise levels as in the Simulation 1. The results in Table 5.12 

show that the updated frequencies agree well with the simulated noise-free exact values, with 

a small average frequency absolute error for each noise corrupted case. Similarly, high MAC 

diagonal values, as shown in Table 5.13, indicated that the updated mode shapes are match 

well with the simulated exact values, with smallerrors for noise corrupted cases. 
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Figure 5.8The finite element model of the laboratory tested space steel frame model structure 

with sixteen simulated sensors adopted for model updating 

 

The adjusted stiffness parameters obtained by using the first eight simulated noise-free 

incomplete modes are plotted in Figure 5.9 and Figure 5.10. The results in Figure 5.9 indicate 

that the updated stiffness parameters match well with the assumed exact values for stiffness 

changes at different levels and at various specific locations.Similarly, the results summarised 

in Figure 5.10 show that the stiffness of the ends of beam elements 6 and 30 need to be 

modified with relatively small absolute values of approximately -10%. However, the stiffness 
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of column members 10, 11, 26, and 27 require relatively large modifications with adjusted 

stiffness factor values of up to approximately -50% in the upper and lower ends. The stiffness 

of brace elements 33 and 40 also need to be updated large alterations with adjusted stiffness 

factor values of up to approximately -20% while other brace elements only require very small 

modifications. 

 

Table 5.10Updated natural frequencies of the finite elementmodel of the experimental 

structure using different number of noise-free incomplete modes extracted from simulated 

sensor measurements at sixteen nodes 

    6 modes used 8 modes used 10 modes used 

Mode FE 

(Hz) 

Exact 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

1 10.3552 9.7504 6.2032 9.7473 -0.0321 9.7504 0.0003 9.7506 0.0015 

2 25.9380 25.4704 1.8357 25.4680 -0.0096 25.4701 -0.0013 25.4702 -0.0010 

3 31.7608 29.7914 6.6105 29.7580 -0.1122 29.7912 -0.0009 29.7914 -0.0002 

4 45.2475 43.2756 4.5567 43.2295 -0.1063 43.2746 -0.0021 43.2749 -0.0015 

5 51.8179 46.0823 12.4464 46.0588 -0.0509 46.0823 0.0000 46.0826 0.0007 

6 65.5716 62.0041 5.7536 61.9924 -0.0188 62.0034 -0.0011 62.0037 -0.0007 

7 70.6418 64.5818 9.3835 / / 64.5818 0.0000 64.5805 -0.0020 

8 72.1780 70.5104 2.3650 / / 70.5107 0.0003 70.5101 -0.0004 

9 85.2298 81.6361 4.4021 / / / / 81.6359 -0.0003 

10 86.5838 85.0314 1.8257 / / / / 85.0313 -0.0001 

Average error Eω (%) 5.5382  0.0550  0.0007  0.0008 
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Table 5.11Updated mode shape properties of the finite elementmodel of the experimental 

structure using different number of noise-free incomplete modes extracted from simulated 

sensor measurements at sixteen nodes 

   6 modes used 8 modes used 10 modes used 

Mode MAC 

initial, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

1 0.9979   4.6045 1.0000 0.0409 1.0000 0.0243 1.0000 0.0189 

2 0.9973 5.2370 1.0000 0.0401 1.0000 0.0299 1.0000 0.0234 

3 0.9502 22.3221 1.0000 0.2223 1.0000 0.0599 1.0000 0.0430 

4 0.7150 53.3855 1.0000 0.5431 1.0000 0.0602 1.0000 0.0381 

5 0.5629 66.1168 0.9999 0.7203 1.0000 0.0676 1.0000 0.0410 

6 0.9020 31.3076 0.9999 0.8985 1.0000 0.0414 1.0000 0.0421 

7 0.8529 38.3533         /         / 1.0000 0.0374 1.0000 0.0502 

8 0.9907   9.6458         /         / 1.0000 0.0234 1.0000 0.0124 

9 0.9311 26.2430         /         /         /         / 1.0000 0.0359 

10 0.9909 9.5494         /         /         /         / 1.0000 0.0295 

Average error φE (%) 26.6765  0.4109  0.0430  0.0334 
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Table 5.12Updated natural frequencies of the finite elementmodel of the experimental 

structure using eight incomplete modes extracted from simulated sensor measurements at 

sixteen nodes with various noise levels 

    5% noise 10% noise 15% noise 

Mode FE  

(Hz) 

Exact 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

Updated 

(Hz) 

Error 

(%) 

Update

d (Hz) 

Error 

(%) 

1 10.3552 9.7504 6.2032 9.7429 -0.0768 9.7501 -0.0034 9.7602 0.1006 

2 25.9380 25.4704 1.8357 25.4530 -0.0682 25.4622 -0.0324 25.4738 0.0133 

3 31.7608 29.7914 6.6105 29.8029 0.0386 29.8280 0.1228 29.8637 0.2425 

4 45.2475 43.2756 4.5567 43.3031 0.0636 43.3635 0.2031 43.4397 0.3792 

5 51.8179 46.0823 12.4464 46.1581 0.1645 46.2823 0.4341 46.4542 0.8072 

6 65.5716 62.0041 5.7536 61.9810 -0.0372 61.9609 -0.0696 61.9478 -0.0908 

7 70.6418 64.5818 9.3835 64.6185 0.0569 64.6704 0.1372 64.7442 0.2514 

8 72.1780 70.5104 2.3650 70.6925 0.2582 70.9147 0.5734 70.8202 0.4394 

Average error Eω (%) 6.1443  0.0955  0.1970  0.2906 
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Table 5.13Updated mode shape properties of the finite elementmodel of the experimental 

structure using eight incomplete modes extracted from simulated sensor measurements at 

sixteen nodes with various noise levels 

   5% noise 10% noise 15% noise 

Mode MAC 

initial, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

MAC 

updated, 

exact 

Error 

iEφ  (%) 

1 0.9979   4.6045 1.0000 0.6791 1.000 0.6886 0.9999 0.7378 

2 0.9973 5.2370 0.9999 1.1552 0.9998 1.4812 0.9998 1.4003 

3 0.9502 22.3221 0.9997 1.7143 0.9992 2.8612 0.9982 4.2821 

4 0.7150 53.3855 0.9998 1.5641 0.9985 3.9087 0.9940 7.7162 

5 0.5629 66.1168 0.9998 1.3980 0.9984 3.9669 0.9930 8.3913 

6 0.9020 31.3076 0.9987 3.6716 0.9953 6.8487 0.9907 9.6182 

7 0.8529 38.3533 0.9979 4.5520 0.9927 8.5334 0.9859 11.8779 

8 0.9907   9.6458 0.9994 2.3505 0.9997 1.7446 0.9998 1.2276 

Average error φE (%) 28.8716  2.1356  3.7541  5.6564 
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Figure 5.9Comparison of updated stiffness parameters of the finite elementmodel and 

simulated exact stiffness parameters, using eight noise-free incomplete mode extracted from 

simulated sensor measurements at sixteen nodes (end location l, u, b and f represent low, 

upper, back and front ends, respectively) 

 

 

Figure 5.10Updated stiffness parameters of the finite elementmodel of the laboratory tested 

structure (three stiffness updating parameters for each beam or column, one parameter for 

each brace), using eight noise-free incomplete modes extracted from simulated sensor 

measurements at sixteen nodes 
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5.3 Experimental study of space steel frame model structure 

 

In the laboratory vibration testing of the space steel frame model structure, a total number of 

16 uni-axial accelerometers are installed at the beam-column joints to measure translational 

displacements in X or Y direction as shown inFigure 3.2. When the model structure is excited 

by an impact hammer, the data set of acceleration measurements is recorded by using 

National Instrument (NI) data acquisition device NI-DAQ 9178 with NI-9234 acceleration 

modules and Labview Signalexpress commercial software as shown in Figure 5.11. 

 

 

Figure 5.11Structural dynamics testing; (a) Impact hammer; (b) Installed accelerometer; (c) 

NI data acquisition device; (d) Labview Signalexpress signal processing program 
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                  (a) Typical acceleration measurements 

 

           (b) Identified frequencies 

Figure 5.12Laboratory vibration test results for the space steel frame model structure 

 

The experimental modal data including frequencies and mode shape readings at the measured 

degrees of freedom are extracted from the measured acceleration data by a modal analysis 

technique. The recorded typical acceleration measurements and the identified natural 
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frequencies are shown in Figure 5.12. The first four and six measured incomplete modes are 

adopted for updating the initial finite element model since they correlate well with the 

corresponding initial analytical modes.  

 

The proposed model updating method can be employed to update the initial analytical model 

by utilising measured frequencies and incomplete mode shapes. The results in Table 5.14 

show the updated modal properties by using four experimental frequencies and incomplete 

modes. The average frequency absolute error is reduced from an initial value of 2.07% to a 

value of 0.67% after updating. MAC values closed to unity show that the updated mode 

shapes are in well agreement with both the initial analytical and experimental modes. 

Similarly, in the case where first six experimental frequencies and incomplete modes are 

adopted for model updating, the updated frequencies agree well with the corresponding 

experimental values and the updated mode shapes have good correlation with both the initial 

analytical and experimental modes as indicated in Table 5.15. 

 

Table 5.14Updated modal properties of the finite elementmodel of the experimental structure 

using four laboratory experimental frequencies and incomplete modes 

Mode FE 

frequency 

(Hz) 

Tested 

frequency 

(Hz) 

Initial 

error 

(%) 

MAC 

initial, 

tested 

Updated 

frequency 

(Hz) 

Updated 

error 

(%) 

MAC 

updated, 

initial 

MAC 

updated, 

tested 

1 10.3552 10.569 -2.0224 0.9697 10.5433  -0.2432 0.9997 0.9689 

2 25.9380 25.174  3.0348 0.8185 25.7470   2.2760 0.9992 0.8322 

3 31.7608 32.258 -1.5413 0.9932 32.2592  0.0036 0.9966 0.9899 

4 45.2475 46.018 -1.6744 0.9983 45.9417 -0.1659 0.9983 0.9973 

Average error  Eω (%)  2.0682     0.6722   
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Table 5.15Updated modal properties of the finite elementmodel of the experimental structure 

using six laboratory experimental frequencies and incomplete modes 

Mode FE 

frequency 

(Hz) 

Tested 

frequency 

(Hz) 

Initial 

error 

(%) 

MAC 

initial, 

tested 

Updated 

frequency 

(Hz) 

Updated 

error 

(%) 

MAC 

updated, 

initial 

MAC 

updated, 

tested 

1 10.3552 10.569 -2.0224 0.9697 10.5333 -0.3374 0.9997 0.9689 

2 25.9380 25.174  3.0348 0.8185 25.6105  1.7339 0.9990 0.8294 

3 31.7608 32.258 -1.5413 0.9932 32.2388 -0.0596 0.9968 0.9894 

4 45.2475 46.018 -1.6744 0.9983 45.9252 -0.2017 0.9973 0.9963 

5 51.8179 51.847 -0.0562 0.9844 51.8418 -0.0100 0.9957 0.9850 

6 65.5716 65.522  0.0756 0.8351 65.5599 0.0578 0.9875 0.8402 

Average error  Eω (%)  1.4008     0.4001   

 

The adjusted stiffness parameters obtained by using first four and six incomplete 

experimental modes are plotted in Figure 5.13 and Figure 5.14, respectively. The results give 

consistent indications that the stiffness at beam-column joints needs to be adjusted with 

relatively small absolute values of typically less than 10%. The stiffness of braces however 

requires relatively large modifications in some members with adjusted stiffness factor values 

of up to approximately -20%, which is probably caused by the errors in modelling the welded 

connections in the laboratory tested structure as the pin-jointed connections are assumed in 

the initial analytical model. 
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Figure 5.13Updated stiffness parameters of the finite elementmodel of the laboratory tested 

structure (three stiffness updating parameters for each beam or column, one parameter for 

each brace), four experimental frequencies and incomplete modes used 

 

Figure 5.14Updated stiffness parameters of the finite elementmodel of the laboratory tested 

structure (three stiffness updating parameters for each beam or column, one parameter for 

each brace), six experimental frequencies and incomplete modes used 
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5.4 Practical application by using field measured data 

5.4.1 Modal parameter identification of Canton Tower 

 

Canton Tower in China is selected as a case study to demonstrate the applicability of 

proposed model updating method by using field measured data. Description of Canton Tower 

is expressed in the Section 2.7. Data processing and modal identification of the Canton Tower 

are performed by using the modal analysis software MACEC (Peeters and De Roeck 1999, 

De Roeck and Peeters 1999). The output-only system identification of the structure via 

Frequency Domain Peak Picking (FDPP) and Stochastic Subspace Identification (SSI) 

techniques are utilised (Peeters and De Roeck 1999, De Roeck and Peeters 1999). The 

interested first fifteen frequencies obtained from finite element dynamic analysis of analytical 

lie between 0 to 2.0 Hz. Thus, re-sampling and filtering of the raw measurement data from 50 

to 5 Hz are carried out which lead to desired frequency range. The natural frequencies are 

simply determined from the observation of the peaks of the spectra, as shown in Figure 5.15. 

However,disadvantage of FDPP is that it can only extract natural frequencies and is not able 

to produce mode shapes. On the other hand, SSI method directly works with measured time 

history data without requiring the conversion into spectra. The SSI technique identifies the 

state space matrices based on the measurements by using robust numerical techniques, such 

as Singular Value Decomposition (Van Overschee and De Moor 1996). Once the 

mathematical description of the structure (the state space model) is determined, it is 

straightforward to extract natural frequencies, damping ratios and associated mode shapes 

from the stabilisation diagram, as shown in Figure 5.16. 

 

 



146 

 

 

Figure 5.15Averaged normalized power spectral densities (ANPADs) of the measured 

acceleration data used for the Frequency Domain Peak Picking (FDPP) technique 

 

 

Figure 5.16The stabilization diagram of measured acceleration data used for the Stochastic 

Subspace Identification (SSI) technique 
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The natural frequencies identified by the FDPP technique and the SSI technique are then 

compared with those obtained from finite element analysis of the reduced-order finite 

element model, as summarised in Table 5.16. The results show that the differences between 

the frequencies identified from the ambient vibration measurements and the frequencies 

obtained from finite element dynamic analysis of analytical model are relatively large. 

However, the frequencies identified by the SSI technique are very close to the frequencies 

identified by the FDPP technique. The significant difference between the measured and 

analytical frequencies requires an updating of the finite element model to improve the 

correlation. In this study, the modal data identified by the SSI technique are adopted for 

model updating. 
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Table 5.16Comparison of 10 field measured frequencies identified by the FDPP and SSI 

methods with those calculated from the reduced-order finite elementmodel of the Canton 

Tower 

Mode FE  

model 

 (Hz) 

FDPP  

method  

(Hz) 

SSI  

method  

(Hz) 

FE vs FDPP 

error  

(%) 

FDPP vs SSI 

error 

(%) 

1 0.1109 0.094 0.094  17.995  0.000 

2 0.1588 0.139 0.140  14.274 -0.714 

3 0.3473 0.365 0.367   -4.853 -0.545 

4 0.3691 0.424 0.421 -12.952  0.713 

5 0.4003 0.475 0.475 -15.724  0.000 

6 0.4617 0.505 0.505   -8.575  0.000 

7 0.4868 0.522 0.519   -9.746 0.578 

8 0.7384 0.797 0.789   -7.358 1.014 

9 0.9037 0.968 0.967   -6.641  0.103 

10 0.9973 1.151 1.151 -13.354  0.000 

Average error  Eω (%)    10.847  0.367 

 

5.4.2 Model updating using frequencies and incomplete mode shapes 

 

The proposed model updating method is used to update the numerical model of actually 

constructed Canton Tower. The updated frequencies and MAC diagonal values of the 

reduced finite element model are summarised in Table 5.17, where the first five measured 
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frequencies and incomplete modes are utilised for model updating. The results show that the 

updated frequencies are much closer to the frequencies identified from vibration 

measurements, reducing the average frequency absolute error from 12.98% initially to 4.72% 

after updating. The obtained MAC diagonal values indicate that the updated mode shapes 

correlate well with the initial modes of the analytical model and also have good correlation 

with the modes identified from field measurements.  

 

Table 5.17Initial and updated modal properties of the reduced-order finite element model of 

the Canton Tower using five field measured incomplete modes 

Mode FE 

frequency 

(Hz) 

Tested 

frequency 

(Hz) 

Initial 

error 

(%) 

MAC 

initial, 

tested 

Updated 

frequency 

(Hz) 

Updated 

error 

(%) 

MAC 

updated, 

initial 

MAC 

updated, 

tested 

1 0.1109 0.094 17.9950 0.9004 0.0914 -2.7522 0.9081 0.9846 

2 0.1588 0.140 13.4581 0.9341 0.1378 -1.5662 0.8599 0.9875 

3 0.3473 0.367 -5.3711 0.9141 0.3655 -0.4079 0.9820 0.8991 

4 0.3691 0.421 -12.3321 0.9438 0.3879 -7.8621 0.9856 0.9609 

5 0.4003 0.475 -15.7237 0.8811 0.4227 -11.0161 0.9887 0.8689 

Average error  Eω (%)  12.9760     4.7209   

 

In order to investigate the influence of the modal information required on the performance of 

structural model updating, information about first ten measured frequencies and incomplete 

modes (excluding the 6th torsion mode) is adopted for updating the reduced finite 

elementmodel. Again, the updated frequencies become closer to the corresponding measured 

frequencies, with the average frequency absolute errors reduced from 10.8% to 5.12%. The 

obtained high MAC diagonal values indicate that the updated mode shapes correlate well 
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with both the initial analytical eigenvectors and measured mode shapes, as shown in Table 

5.18. 

 

Table 5.18Initial and updated modal properties of the reduced-order finite element model of 

the Canton Tower using ten field measured incomplete modes 

Mode FE 

frequency 

(Hz) 

Tested 

frequency 

(Hz) 

Initial 

error 

(%) 

MAC 

initial, 

tested 

Updated 

frequency 

(Hz) 

Updated 

error 

(%) 

MAC 

updated, 

initial 

MAC 

updated, 

tested 

1 0.1109 0.094 17.9950 0.9004 0.0951    1.2036 0.9306 0.9603 

2 0.1588 0.140 13.4581 0.9341 0.1401    0.0782 0.8971 0.9747 

3 0.3473 0.367  -5.3711 0.9141 0.3635   -0.9607 0.9832 0.8689 

4 0.3691 0.421 -12.3321 0.9438 0.4132  -1.8526 0.9977 0.9536 

5 0.4003 0.475 -15.7237 0.8811 0.4367  -8.0640 0.9944 0.8519 

6 0.4617 0.505 -8.5752         / 0.4614  -8.6259 0.7506          / 

7 0.4868 0.519 -6.2068 0.7691 0.4968  -4.2796 0.9712 0.8696 

8 0.7384 0.789 -6.4191 0.7792 0.7776  -1.4454 0.9881 0.8206 

9 0.9037 0.967 -6.5440 0.7717 0.9301  -3.8203 0.9825 0.8477 

10 0.9973 1.151 -13.3545 0.7015 0.9932 -13.7136 0.9889 0.6776 

11 1.0375 1.190 -12.8175 0.7519 1.0434 -12.3207 0.9889 0.8203 

Average error  Eω (%)  10.7998      5.1241   

 

The results for the updated stiffness parameters of the analytical model are shown in Figure 

5.17 where the two cases with five and ten measured frequencies and incomplete modes used 

for model updating are considered. The values of stiffness updating parameters are relatively 
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small and reasonably consistent for both cases. In the case with five measured modes used in 

model updating, the obtained stiffness updating parameters range from -8.77% to 8.24% with 

an average of the absolute values of 2.70%. For the case with ten measured modes used, 

similar results are obtained and the updated stiffness parameters vary between -10.08% and 

11.36% with an average of the absolute values of 3.41%. The results for the adjusted stiffness 

parameters for both cases are reasonably close to each other. 

 

 

Figure 5.17Updated stiffness parameters of the finite element model of the Canton Tower, 5 

and 10 measured incomplete modes used 

 

5.5 Conclusions 

 

Space steel frame model structure is utilised to demonstrate the accuracy and effectiveness of 

the proposed model updating method to adjust the analytical model by using incomplete 

modal data obtained from numerical simulation investigations and experimental studies. The 

practical application of the proposed technique is demonstrated by correctly updating 
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thereduced finite element model of Canton Tower benchmark problem by using the 

operational modal properties identified from ambient vibration measurements.Based on the 

numerical simulations, experimental studies and practical applications, the following 

conclusions are drawn. 1) The proposed method is able tocorrectly update the structural 

parameters such as stiffness at both element and critical point levels, so that the stiffness at 

the connections of structural members such as beam-column joints can be modified from 

limited information of measured incomplete modes. 2) The proposed approach needs only 

little computational effort to estimate the structural updating parameters, and provides 

optimised solutions for model updating in the least squares sense without requiring objection 

functions or optimisation techniques. 3) The proposed technique performs well for various 

scenarios considered and providesrobust predictions of structural updating parameters even in 

the cases where relatively large modifications in structural parameters and/or modal 

properties exist between the finite element model and tested structure. 4) Tikhonov 

regularisation algorithm incorporating the L-curve criterion, is employedin order to reduce 

the influence of measurements errors in the modal data and provided stable solution for 

structural updating parameters. 5) Finally, the proposed model updating method provides 

reasonably small modifications of structural properties to minimise the relatively large 

difference between the modal data calculated from the initial finite elementmodel and those 

identified from the vibration measurements of actually constructed structures. 
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Chapter 6 Real-Time Structural Damage Detection 

6.1 Introduction 

 

The performance of existing structural systems is deteriorating with time due to the 

degradation of resistance capacity caused by the operation environments or severe loading 

events such as impact and earthquake. Structural damage detection methods are employed to 

detect the damage that may have occurred due to the severe loading events.  A number 

developed damage detecting methods have been discussed in the Chapter 2 Literature 

Review. Most of those existing methods require the measured modal data such as frequencies 

and mode shapes, which have to be extracted from vibration measurements such as 

acceleration by using modal analysis techniques. In addition, these existing methods may not 

be able to deal with the evolution of structural damage during a dynamic loading event. 

Therefore, there is a need to develop an effective method for correctly quantifying the 

evolution of structural damage over time at specific locations in the structure directly from 

the monitored dynamic response data.  

 

This chapter presents the development of effective method for identifying structural damage 

evolution over time directly from noisy dynamic response measurements such as 

accelerations. Based on the governing equations of motion, the relationship between the 

change in stiffness due to structural damage evolution and the associated dynamic response 

measurements of the monitored structural system is developed. Structural damage parameters 

associated with the elements stiffness matrices are selected to reflect the evolution of 

structural damage and to contain information about both damage location and severity 

development. The recorded dynamic response measurements can be directly adopted in the 
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developed equation to solve for the chosen structural damage parameters without requiring a 

modal analysis technique. The Newmark time step integration method is introduced to 

evaluate the structural damage parameters at each time step during dynamic loading period. 

The Tikhonov regularisation technique incorporating the L-curve criterion is then employed 

to provide stable solutions for the structural damage parameters from measured vibration data 

with uncertainties at each time step. Therefore, structural damage evolution with time, 

represented here by the obtained time-dependent damage parameters, is determined from the 

continuously monitored dynamic response data. The proposed real-time damage detection 

method requires measured dynamic responses in all degrees of freedom of the structure and 

same applied force for both undamaged and damaged structures. 

 

6.2 Inversely detecting structural damage using expanded mode shapes 

 

Recently, significant research works have been done in the area of detecting damages in the 

structures using dynamic response data (Humar et al. 2006, Yu et al. 2007). However, the 

measured data set is normally incomplete as the numbers of measured locations of the tested 

structure are usually less than the number of degrees of freedom of the analytical model 

(Yuen 2012). The data set of measurements only exists at degrees of freedom associated with 

the tested locations. Therefore, it is desirable to expand the measured data set onto the 

associated full analytical coordinate set because model reduction process produces the 

modelling errors and also destroys the original sparse pattern in mass and stiffness matrices.  

 

This study uses the new mode shape expansion technique for detecting damage in the 

structure. The process of damage detection utilises the complete mode shapes at all degrees 
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of freedom of the damaged structure that is expanded from the measured incomplete modal 

data. Two damage detection techniques, i.e. mode shape curvature change and modal strain 

energy method (Cornwell et al. 1999) are employed in the inverse detection of structural 

damage. The results from the numerical example show that damage location can be detected 

from the expanded mode shapes. 

 

6.2.1 Mode shape expansion 

 

Mode shape expansion is useful in many applications, such as for finite element model 

updating and structural damage detection. Most mode shape expansion methods utilise 

transformation matrix to obtain the unmeasured mode components of the actual tested 

dynamic system. The characteristic equation of a dynamic structural system is expressed as 

 

 0MK =− ii φφφφ)( 2ω  (6.1) 

 

where iω  and iφφφφ  are the i th natural frequency and the associated eigenvector of the original 

structure, respectively. Similarly, the characteristic equation for the tested structure is 

 

 0MK =− ii φφφφ~)~~~
( 2ω  (6.2) 

 

where the superscript ‘~’ denotes the quantitative of the  tested structure.  It is assumed here 

that iω~ and the incomplete set of measured degrees of freedomiψ
~  of the tested structure are 

obtained from the structural dynamic testing. Then, iψ
~  needs to be factored by mode scale 
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factor iυ  in order to make the measured mode shapes close to the corresponding part of the 

analytical mode shapes aiφφφφ , as  
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The incomplete set of modal measurements a
iφφφφ~  can then be expanded by using mode shape 

expansion approach (Chen 2010) onto the full set of analytical model, as  

 

 a
ipi φφφφφφφφ ~~

T=  (6.4) 

 

Here, the transformation matrix, pT , for mode shape expansion is defined as  
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where u
kφφφφ  is the analytical mode shape associated with the unmeasured partition and N 

denotes number of original eigenvectors available. The matrix  +S  is the Moore-Penrose 

pseudo inverse of sensitivity coefficient matrix S, calculated from 
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The MAC factors are used here to verify the correlation between the expanded measured 

mode shapes iφφφφ
~

 and the analytical mode shapes kφφφφ , defined in Eq.(2.1). 

 

6.2.2 Damage detection 

 

From the beam theory, the curvature of beam deformation is inversely proportional to the 

flexural stiffness of the beam. The reduction in stiffness caused by damage tends to increase 

the curvature of the mode shape around the damaged region. A curvature change can be used 

to detect the damage location in the structure (Qiao et al 2007, Gandomi et al. 2008).It can be 

estimated numerically by using central difference quotient method from the displacement of 

mode shapes. Expanded mode shapes are required in order to calculated the mode shape 

curvature which is defined for the i th expanded mode iφφφφ
~

 as  
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ixixix

ix ∆
+−

=′′ −+ φφφφφφφφφφφφ
φφφφ  (6.7) 

 

wherex, x+1 and x-1 are coordinate difference of the curvature of the i th mode shape (Carden 

and Fanning 2004, Jag et al. 2006). Furthermore, the extent of damage can be estimated by 

measuring the amount of change in the mode shape curvature at the damaged region. 

Moreover, the modal strain energy (MSE), defined as the product of the elemental stiffness 

matrix and its mode shape component in (Shi et al. 2000), is also employed for structural 

damage detection. For the j th element and i th mode shape of undamaged structure, the MSE is 

given as  
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 ij
Τ

iijMSE φφφφφφφφ K=  (6.8) 

 

Since the damaged element is not known, the undamaged elemental stiffness matrix jK  is 

used instead of damaged one to approximate MSE for j th damaged element and i th damaged 

mode shape, expressed as 

 

 ij
Τ

iijESM φφφφφφφφ ~~~
K=  (6.9) 

 

The elemental modal strain energy ratio (MSECR) then can be utilised as an indicator for 

damage localization, defined as (Shi et al. 2000) 

 

 
ij

ijij

ij MSE

MSEESM
CREMS

−
=

~
~

 (6.10) 

 

The location of damage in the structure then could be detected by using the indicators 

discussed above. 

 

6.2.3 Numerical example 

 

In structural dynamic testing, dynamic responses are obtained from installed sensors. Due to 

economic constraint, limited number of sensors are available and measured mode shapes are 
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usually incomplete. Those incomplete mode shapes can be expanded by using mode shape 

expansion method. For the purpose of inversely detecting damage in the structure by utilising 

incomplete measured data and mode shape expansion method, a numerical example of steel 

bridge structure is selected as shown inFigure 6.1. In this example, the numerically generated 

modal data of the damaged structure, replacing experimental measurements, are adopted in 

the calculations. 

 

 

Figure 6.1 Finite element model of three span bridge with simulated sensors and damaged 

element 

 

To evaluate the effectiveness of the damage detection method discussed above, one damage 

case is simulated by assuming that a single element (element No.3) in the 1st span is damaged 

by reducing EI value of -50%. Finite element dynamic analysis is performed in order to 

compute the analytical mode shapes of the damaged structure. The incomplete mode shapes 

of damaged structure are obtained by selecting the mode values at degrees of freedom of five 

sensors from the complete analytical mode shapes. Those incomplete mode shapes are fully 

expanded by using the mode shape expansion method (Chen 2010) and then the expanded 

mode shapes are utilised for detecting the simulated damage in the structure. The results 

inFigure 6.2given by the 4th expanded mode shape for the damaged structure, indicate that the 
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deformation of the damaged mode shape curvature in the region of damaged element No. 3 is 

clearly larger than the undamaged mode shape curvature. The possible damage location could 

be identified from the largest percent of curvature change at element No. 3, as indicated 

inFigure 6.3, and largest modal strain energy ratio at element No. 3 as shown in Figure 

6.4Similar results can also be seen in the Figure 6.5toFigure 6.7 given by the 6th expanded 

damaged mode. 

 

 

Figure 6.2 4th undamaged and damaged mode shapes 

 

 

Figure 6.3 Percentage of mode shape curvature change for the 4th expanded mode 
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Figure 6.4Modal strain energy ratio using

 

Figure 6.5

 

Figure 6.6 Percentage of mode shape curvature change for the 6
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Figure 6.7Modal strain energy ratio using damaged mode 6 

 

The numerical simulation results of a bridge modelled with plane beam elements show that 

damage in the structure could be located from the limited vibration measurements utilising 

changes in mode shape curvatures and modal strain energy calculated from the expanded 

mode shapes.  

 

6.3 Basic equation 

 

The equation of motion for the structural dynamics system is given by 

 

 iiii FKUUCUM =++ &&&  (6.11) 

 

where“i”  represents the time step atit , C and iF are global damping matrix and applied force 

vector respectively. Time dependent variableiU , iU& , and iU&&  are nodal displacement, 
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velocity and acceleration, respectively.Similarly, equation of motion for the damaged 

structure can also be given by 

 

 d
i

d
i

dd
i

dd
i

d FUKUCUM =++ &&&  (6.12) 

 

For the damaged structure, dK and dM are expressed as 

 

 KKK ∆+=d  (6.13) 

 

 MM =d  (6.14) 

 

In which mass matrix is assumed to remain unchanged.The change in the structural stiffness 

matrix K∆ is given by (Chen and Bicanic 2006, Maung et al. 2012) 

 j

NE

j
j KK ∑

=

=∆
1

α  (6.15) 

 

where NE is the total number of structural elements in the system, jK  is the contribution of 

the j th element to the global stiffness matrix andjα  is the damage parameter associated with 

the j th element which ranges from “0” to “-1”. Damage parameterjα can provide information 

about the location and extent of damage in the structure. For damage location, the j th element 

is considered as damaged element if the value of damage parameterjα  is not equal to zero, 

whereas for the damage quantification, the damage extent of the j th element is determined by 
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the magnitude of the damage parameterjα . As a result, structural damage can be detected by 

determining the damage parameterjα . 

 

Newmark (1959) introduced a time integration method for solving structural dynamic 

problems (Clough and Penzien 1975). Here, Newmark’s method is implemented into the 

formulation of new damage detection technique. A harmonic force is considered as applied 

force on both undamaged and damaged structures. In the Newmark’s method, displacement 

and velocity for the next time step are given by 

 

 1
22

1 )5.0( ++ ∆+∆−+∆+= iiiii ttt UUUUU &&&&& δδ  (6.16) 

 

 ])1[( 11 ++ +−∆+= iiii t UUUU &&&&&& γγ  (6.17) 

 

where“i+ 1”  denotes the next time step tti ∆+ . In Newmark’s method coefficients 4
1=δ  and 

2
1=γ  are required for the algorithm to be second order accuracy and unconditionally stable. 

The time history is divided into a sequence of equal time stepst∆ .  

 

In the case of using displacement sensors, acceleration and velocity can be computed from 

measured displacement data by using the following derivation based on Newmark’s method.

1+iU , 1+iU& , and 1+iU&&  can be expressed as incremental form 

 

 iii UUU ∆+=+1  (6.18) 
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 iii UUU &&& ∆+=+1  (6.19) 

 

 iii UUU &&&&&& ∆+=+1  (6.20) 

 

where iU∆ , iU&∆ , and iU&&∆ are incremental displacement, velocity and acceleration, 

respectively. Substituting 1+iU   in Eq.(6.18) into Eq.(6.16) gives 

 

 iiii tt
UUUU &&&&&

δδδ 2

111
2 −

∆
−∆

∆
=∆  (6.21) 

 

Similarly, substituting Eq.(6.19) into Eq.(6.17) leads to 

 

 iii tt UUU &&&&& ∆∆+∆=∆ γ  (6.22) 

 

From iU&&∆  in Eq.(6.21), Eq.(6.22) becomes 

 

 iiii t
t

UUUU &&&& )
2

1(
δ
γ

δ
γ

δ
γ −∆+−∆
∆

=∆  (6.23) 

 

Equation of motion for the time step “i+ 1”  can be described by 

 

 1111 ++++ =++ iiii FKUUCUM &&&  (6.24) 
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The difference between Eqs.(6.11) and(6.24) gives the incremental equilibrium equation of 

motion 

 iiii FUKUCUM ∆=∆+∆+∆ &&&  (6.25) 

 

where iF∆  is incremental applied force. From iU&&∆  in Eq.(6.21) and iU&∆  in Eq.(6.23), 

Eq.(6.25) is rewritten as 

 

 ii FUK ** =∆  (6.26) 

where 

 KCMK +
∆

+
∆

=
tt δ

γ
δ 2

* 1
 (6.27) 

 

 iiii t
t UCMUCMFF &&& ]

1
[])1

2
(

2

1
[*

δ
γ

δδ
γ

δ
+

∆
+−∆++∆=  (6.28) 

 

with the knowledge of system properties,iU&  and iU&& at the initial time, iU∆ at time step“i” can 

be computed by inverting K* in Eq.(6.26) as 

 

 ii FKU *1* −=∆  (6.29) 
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In which, 1* −K  is a square matrix. Once iU∆  is known iU&&∆ and iU&∆ can be computed from 

Eq.(6.21) and Eq.(6.23), respectively. Similarly,1+iU , 1+iU& , and 1+iU&& can also be computed 

from Eq.(6.18), Eq.(6.19) and Eq.(6.20). 

 

6.4 Inverse prediction of damage parameter 

 

Substitution of damaged stiffness dK from Eq.(6.13) into Eq.(6.12) and assuming unchanged 

mass and damping for the damaged dynamic system lead to  

 

 i
d
i

d
i

d
i FUKKUCUM =∆+++ )(&&&  (6.30) 

 

Evidently, the right-hand side equality of Eq.(6.11) and Eq.(6.30) gives 

 

 iii
d
i

d
i

d
i KUUCUMUKKUCUM ++=∆+++ &&&&&& )(  (6.31) 

 

Simply, Eq.(6.31) can be rewritten in the following form 

 

 )()()( d
ii

d
ii

d
ii

d
i UUKUUCUUMKU −+−+−=∆ &&&&&&  (6.32) 

 

From K∆ in Eq.(6.15), Eq.(6.32) becomes 
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 )()()(
1

d
ii

d
ii

d
ii

d
ij

NE

j
j UUKUUCUUMUK −+−+−=∑

=

&&&&&&α  (6.33) 

 

Only damage parameterjα is an unknown vector in the above equation. Therefore, Eq.(6.33) 

can be expressed as a set of linear algebraic equation in the following form 

 

 bAα =  (6.34) 

 

in which row vectors ja  in matrix A and vector b are defined as 

 

 d
ijj UKa =  (6.35) 

 

 )()()( d
ii

d
ii

d
ii UUKUUCUUMb −+−+−= &&&&&&&  (6.36) 

 

In Eq.(6.34), the inverse of A may not exist since the coefficient matrix A may not be square. 

In these cases, the inverse will befound via the Moore-Penrose pseudoinverse method and the 

damage parameters can be estimated from  

 

 bAAAbAα
TT 1)( −+ ==  (6.37) 

 

where +A  is the Moore-Penrose pseudoinverse matrix in a least squares sense, which can be 

calculated from SVD. Consequently, the location and amount of damage can be determined 

by the obtained damage parameters at detailed level. 
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6.4.1 Flowchart for calculation of damage parameter 

 

In order to understand more clearly on the process of proposed method, a flowchart of 

computational procedure for damage parameter jα  from the developed equation is presented 

as 

bAα =

jα

A

KKK ∆+=d

jα

 

 

Figure 6.8 Flowchart for calculation of damage parametersjα  
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6.5 Numerical example 

 

A cantilever beam comprising of 10 elements is selected as a numerical example to 

demonstrate the applicability of proposed approach.Assumed set of geometric and material 

properties for the beam structure is adopted as cross sectional area 2cm 9.64=A , area 

moment of inertia 44 cm 10 x 4136.1=I , Young’s modulus 24 kN/cm 10 x 0.2=E , and 

density 33 kg/cm 10 x 850.7 −=ρ  .In order to understand how the procedure works, three 

damage scenarios are considered as summarised in Table 6.1. Structural damages are 

assumed reduction in stiffness and mass remained unchanged. 

 

Table 6.1  Simulated damage scenarios for the cantilever beam 

Damage scenario Element number Damage amount (%) 

1 1 -10 

2 1 -10 

 3 -20 

 4 -30 

3 1 -10 

 3 -5 

 4 -5 

 

Only the first element is assumed to be damaged 10% damage in damage scenario 1. In 

damage scenario 2, elements 1, 3 and 4 are assumed as 10%, 20% and 30% damage, 

respectively. Additional damage scenario 3 based on the damage scenario 2 is 
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assumedelement 1 unchanged and element 3 and 4 damaged with the same amount of 5% 

damaged. For simplicity and future purpose of laboratory experiment using harmonic input 

force, same harmonic force is applied on both undamaged and damaged structures. Noise is 

not considered for this example but will be included for the next examples. The location and 

amount of the simulated damage are then determined from the inverse calculations of the 

damage parameterjα . 

 

6.5.1 Damage scenario 1 

 

Firstly, the simulated damage scenario 1 is considered, as shown in Figure 6.9 .The proposed 

approach is employed to inversely identify the simulated damage in the structure. Figure 6.10  

shows the results for inverse predictions of damage parameter jα without considering the 

damping effect in the structure. The damaged element 1 with damage amount of 10% is 

clearly identified while the other elements are identified as undamaged elements. This gives 

an excellent agreement with the assumed simulation. From the results shown inFigure 6.11, 

the damping of the structure has little influence on the inverse structural damage 

identification. 

 

 

Figure 6.9 Cantilever beam subject to harmonic force with simulated damaged element 1 in 

damage scenario 1 
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Figure 6.10  Inversely identified damage parameters in real time for damage scenario 1 

without damping where only element 1 damaged by 10% 
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Figure 6.11  Inversely identified damage parameters in real time for damage scenario 1 with 

damping where only element 1 damaged by 10% 
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6.5.2 Damage scenario 2 

 

In damage scenario 2, structural damage at multiple locations in various damage magnitudes 

is considered, as shown in Figure 6.12. The results for inverse predictions damage parameter 

jα  with no damping effect in the structure are indicated inFigure 6.13 and Figure 6.14. 

Again, the proposed approach provides accurate inverse predictions of the simulated damage 

for this complex case, and the obtained results agree well with the locations and magnitudes 

of simulated structural damage. The results also show that the inverse predictions for the 

undamped structure are better and stable, comparing with the results of damped structure as 

shown in Figure 6.14. The damping therefore may affect the structural damage identification 

in the cases of severe damage at multiple locations. The identified damage parameter for 

element 2 is slightly influenced by the damping with oscillation at the beginning of time steps 

due to the severe damage inthe neighbor elements 1, 3 and 4. 

 

 

Figure 6.12Cantilever beam subject to harmonic force with simulated damagedelements 1, 3 

and 4 in damage scenario 2 
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Figure 6.13Inversely identified damage parameters in real time for damage scenario 2 

without dampingwhere elements 1, 3 and 4 damaged in 10%, 20% and 30%, respectively 
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Figure 6.14Inversely identified damage parameters in real time for damage scenario 2 with 

damping where elements 1, 3 and 4 damaged in 10%, 20% and 30%, respectively 
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6.5.3 Damage scenario 3 

 

For the additional damage scenario 3 assuming element 1 damaged 10%, both elements 3 and 

4 damaged equal amount of 5%, the identified damage parameters are presented in Figure 

6.15 and Figure 6.16by using the proposed technique without and with damping, respectively. 

It can be seen that influence of surrounding damaged elements on the predictions of damage 

parameter for element 2 is reduced significantly and stable predictions are then obtained for 

all damage parameters for all elements concerned. 
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Figure 6.15  Inversely identified damage parameters in real time for damage scenario 3 

without damping where elements 1, 3 and 4 are damaged in 10%, 5% and 5%, respectively 
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Figure 6.16Inversely identified damage parameters in real time for damage scenario 3 with 

damping where elements 1, 3 and 4 are damaged in 10%, 5% and 5%, respectively 

 

6.6 Further damage parameter equation 

 

In this study, Rayleigh damping matrix is used in the formulation of damage parameter 

equation (Clough and Penzien 1975). Subtraction of Eq.(6.12) from Eq.(6.11) gives 

 

 d
ii

d
i

d
i

d
i

d
i

d
i

d
i FFUKKUUCUCUMUM −=−+−+− &&&&&&  (6.38) 

 

In which, damping matrix is assumed to be proportional to a combination of mass and the 

stiffness matrices as 
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 KMC km cc +=  (6.39) 

 

 dd
k

dd
m

d cc KMC +=  (6.40) 

 

Substituting dK  in Eq.(6.13) into Eq.(6.40) gives 

 

 KKMC ∆++= d
k

d
k

d
m

d ccc  (6.41) 

 

The above damping factors  mc  and  kc  can be calculated from 

 

 
nm

nm
mc

ωω
ωςω

+
= 2

 (6.42) 

 

 
nm

kc
ωω

ς
+

= 2
 (6.43) 

 

whereς is the damping ratio of the structural system. mω is generally taken as fundamental 

circular frequency and nω  is set among the higher circular frequencies of the analytical 

structural system  (Clough and Penzien 1975).mω and nω  can be obtained from the finite 

element analysis of analytical model. In the calculation, d
mc  and d

kc  are assumed same value 

as mc and kc . Substituting dM , dC and  dK into Eq.(6.38) leads to  
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Furthermore, Eq.(6.44) is rewritten as 
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From K∆  in Eq.(6.15), Eq.(6.45) becomes 
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In structural dynamic testing, the data acquisition instruments generally take the signal from 

the specific transducer type, and giving displacement, velocity or acceleration. Conversion 

from displacement to acceleration and velocity requires numerical differentiation as 

 

 
dt

d i
i

U
U =&  (6.47) 

 

 
dt

d i
i

U
U

&
&& =  (6.48) 

 

On the other hand, velocity and displacement can be obtained from numerical integration of 

acceleration and can be described as 
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i
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t
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ii ∫
+

=
1

UU &&&  (6.49) 

 

 dt
i

i

t

t

ii ∫
+

=
1

UU &  (6.50) 

 

But those methods produce significant errors in the conversion process (Han 2003). In order 

to obtain dynamic responses from measured data, Newmark’s time step integrating method is 

implemented into the formulation of a new damage detection technique (Clough and Penzien 

1975).   

 

Here, t∆ for this example is roughly estimated as
nf

t
π2=∆ where nf  is natural frequency at 

“n”  number of mode which is selected among the higher modes for the harmonic applied 

force. In the case of velocity sensors are used, the following equation is derived from 

Eq.(6.17) to compute  1+iU&& . 

 iiii t
UUUU &&&&&& )1

1
()(

1
11 −−−

∆
= ++ γγ  (6.51) 

 

Then, 1+iU&& in Eq.(6.51) is substituted in to Eq.(6.16) to compute1+iU . In this study, 

accelerometer is utilised as a sensor to acquire measured acceleration data. In this case, 

Eq.(6.16) and Eq.(6.17) can be directly employed to compute velocity and displacement from 

acceleration. In the case of undamaged and damaged structures are subjected to identical 

loading as 
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 d
ii FF =  (6.52) 

Then, Eq.(6.46) becomes 
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Here, jα is only unknown damage parameter. Thus, Eq.(6.53) can be expressed as a set of 

linear algebraic equation in the following form 

 

 bAα =  (6.54) 

 

whererow vectors in matrix A are as follows 
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An inverse prediction procedure is required to compute damage parameterα  . Here, the SVD 

is employed to solve for damage parametersα .Let the SVD of matrixA of dimension M x NE 

be 

 
T
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T
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 x  x  x  x σ  (6.57) 
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where∑  is the diagonal matrix containing strictly non-negative and non-increasing singular 

values jσ , i.e. 0...21 ≥≥≥≥ nσσσ  . U andV are the matrices of orthonormal left and right 

vectors ju and jv respectively. Ordinary least squares solution in Eq.(6.54) can then be 

described in the form 

 

 ∑
=

=
NE

j
j

j

T
j

1

v
bu

α
σ

 (6.58) 

 

Therefore, the damage parameters are obtained from Eq.(6.58). 

 

6.7 Numerical example 

 

One-bay plane frame model, shown in Figure 6.17, is utilised to demonstrate the applicability 

of the proposed damage identification approach using measured acceleration data. The 

structure concerned is a two-story model comprising beams and columns which are divided 

into 60 elements in total. The structure has 3.0 m width and 6.0 m height. For simplicity, 

beams and columns are considered same material properties as shown in Table 6.2. The 

damage parameters are chosen to characterize structural damage at element level. A total 

number of 60 damage parameters indicating the location and extent of structural damage are 

employed for the damage identification of the plane frame model structure. In the example, 

five simulated damage scenarios are defined for the structure model by reducing the stiffness 

of elements at various locations in the structure as summarised in Table 6.3. For simplicity, 

noise effect on inverse damage predictions is not considered in this example. 
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Table 6.2  Material properties of the structure 

Cross-sectional area A (mm2) 4.70 x103 

Moment of inertia I (mm4) 2.21 x107 

Density ρ (kg/mm3) 7.85x10-6 

Young’s modulus E (N/mm2) 2.10 x105 

 

 

Figure 6.17One-bay plane frame subjected to harmonic force with simulated damage at 

elements 10,16,17,32 and 46 
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Table 6.3  Simulated damage scenarios for the one-bay plane frame structure 

Damage 

scenario 

Damage description 

(stiffness reduction) 

Element 

number 

Damage 

amount (%) 

1 1st column  in 1st story 10 -5 

2 1st column in 2nd story 16 -10 

 2nd column  in 1st story 46 -10 

3 1st column  in 1st story 10 -5 

 1st column in 2nd story 17 -25 

 2nd column  in 2nd story 32 -10 

4 beam in 2nd story 24 -10 

5 beam in 2nd story 23 -10 

 beam in 2nd story 28 -20 

 

6.7.1 Damage scenario 1 

 

For the first damage scenario, element number 10 is assumed to be damaged with the amount 

of 5% in the simulated example. Damage location and amount identified for damage scenario 

1 are shown inFigure 6.18, where the inverse damage predictions at element level are plotted. 

It can be seen that the predictions of the location and amount of the considered damage are 

identified by the proposed method. Also, damping of the structure has little influence with 

oscillation on the inverse structural damage identification at the beginning of the time steps. 
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Figure 6.18  Inversely identified damage parameters in real time for damage scenario 1 

where only element 10 is damaged by 5% 

 

6.7.2 Damage scenario 2 

 

Figure 6.19 gives the results for inverse predictions of damage scenario 2 for structural 

elements. Two elements, i.e. element number 16 and 46, are assumed to be damaged in the 

same amount of 10%. The results show that the proposed approach is capable of giving good 

predictions of the damage using modal data measurements. 
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Figure 6.19  Inversely identified damage parameters in real time for damage scenario 2 

where elements 16 and 46 are damaged by the same amount of 10% 

 

6.7.3 Damage scenario 3 

 

Damage scenario 3 involves the loss of stiffness in three elements namely 10, 17 and 32 with 

5%, 25% and 10%, respectively. This is a difficult damage case to be identified due to 

increasing damaged elements in the structure. Again, damaged elements are clearly identified 

as shown in Figure 6.20. The proposed approach provides accurate predictions of the location 

and extent of structural damage, when comparing with the simulated damage. 
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Figure 6.20  Inversely identified damage parameters in real time for damage scenario 3 

where elements 10, 17 and 32 are damaged by 5%, 25% and 10%, respectively 

 

6.7.4 Damage scenario 4 

 

In order to effectively identify damage existing on beam, harmonic loading is applied 

vertically on the top story as show in Figure 6.21. In the simulated damage scenario 4, the 

proposed approach is employed again to inversely identify the simulated damage in the 

structure. Figure 6.22 shows the results for inverse prediction of the simulated damaged 

element. The damaged element 24 with damage amount of 10% is clearly identified while the 

other elements are indicated as undamaged elements. This gives an excellent agreement with 

the simulated damage. 
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Figure 6.21One-bay plane frame subject to harmonic force with simulated damaged elements 

23, 24 and 28 
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Figure 6.22  Inversely identified damage parameters in real time for damage scenario 4 

where element 24 is damaged by 10% 
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6.7.5 Damage scenario 5 

 

The structural damages at multiple locations in various damage magnitudes are considered in 

simulated scenario 5. The results of inverse predictions for the simulated damage scenario 5 

are shown in Figure 6.23. Again, the proposed approach provides accurate inverse predictions 

of the damaged elements 23 and 28 with simulated damaged amount of 10% and 20%, 

respectively,for this complex case, and the obtained results agree well with the locations and 

magnitudes of simulated structural damage. 
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Figure 6.23  Inversely identified damage parameters in real time for damage scenario 5 

where element 23 and 28 are damaged by 10% and 20%, respectively 

 

6.8 Regularized damage identification 

 

Extreme catastrophic events such as earthquake, impact and blast are regarded as the most 

destructive disasters and can cause severe damages in the structures. Damage related to 
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stiffness change with time during a short period is more difficult to identify.The extent of 

damages needs to be assessed immediately during and/or after the event. Therefore, there is a 

strong need to develop robust methods for real time detecting and evaluating of damage to 

monitor the safety and integrity of the structures. 

 

Vibration response such as acceleration measurements can be used for real time detection of 

damage in the structure. However, noise often exist in the vibration measurements, therefore, 

a regularization algorithm is needed to reduce the influence of noise on the damage 

identification.Tikhonov regularization algorithm incorporating the L-curve criterion is 

employed here to filter out the measurements errors (i.e. noise) in the modal data (Hansen 

1998, 2000, 2007, Tikhonov and Arsenin 1993). The more detailed about regularisation 

algorithm has been discussed in Section 5.3.3. Structural damage evolution with time in the 

element is determined from continuously monitored data, and the condition of the structure is 

then further assessed and updated. Those damage parameters could also be used to monitor 

real time damages caused by extreme loading such as earthquake, impact and blast (Ma et al. 

2005).The algebraic equation in Eq.(6.54) can be rewritten as a general form of 

 

 MNENEM bαA = x  (6.59) 

 

whereM ranges from 1 to total number of measured degrees of freedom readings of the 

structural system. The system of linear equation becomes discrete ill-posed problem as 

singular values of the matrix A  decay gradually to zero and the ratio between the largest and 

the smallest non-zero singular values become larger(Chen 2008, Chen and Bicanic 2010). In 

practice, the vectorb is often contaminated by certain level of measurement errors which are 

assumed to be noise here (Sanliturk and Cakar 2004). To investigate the effect of noise-



190 

 

polluted measurements, simulated noise is added in the acceleration data and then velocity 

and displacement are computed by using Eq.(6.16) and Eq.(6.17). Noise contaminated 

acceleration can be defined as  

 

 )( εζ+= 1UU d
i

d
i

&&&&  (6.60) 

 

where d
iU&& is noise-free acceleration for the damaged structure. The noise level is represented 

as standard deviationε > 0 and random numbersζ  are generated from standard normal 

distribution. The terms with small singular values will make the computed solution unstable 

because the ordinary solution coefficients 
j

T
j

σ
bu

  in Eq.(6.58) become increasingly large when 

the singular values jσ  decrease. Thus, the regularization of the ill-posed problem is required 

to filter out the contribution of the inevitable noise contained in b. For this case, Tikhonov 

regularization algorithm incorporating L-curve criterion is one of the most commonly used 

method. This method utilises a continuous regularisation parameter which replaces the 

original operation with a better-conditioned and produces regularised solution to the original 

problem (Hansen and O’Leary 1993).The procedure discussed in section 4.3.3 will be used to 

evaluate regularization parameterλ .   

 

6.9 Numerical examples 

6.9.1 One-bay braced frame 

 

A ten-story one-bay braced frame building model, shown inFigure 6.24 is utilised to 

demonstrate the applicability of the proposed damage identification approach. The structure 
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concerned has 6.0m width and 3.0 m story height comprising beams, columns and braces 

which are divided into 40 elements in total. The damage parameters defined in Eq.(6.54) are 

chosen to characterise structural damage at element level. A total number of 40 damage 

parameters are employed for damage identification. For simplicity, all elements are 

considered same material properties as summarized in Table 6.4. 
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Figure 6.24  One-bay braced frame structure with simulated damage at elements 32, 35, 37 

and 40 subjected to harmonic force 
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Table 6.4  Material properties of the structure 

Cross-sectional area A (m2) 1.740 x10-2 

Moment of inertia I (m4) 3.281 x10-4 

Density ρ (kg/m3) 7850 

Young’s modulus E (N/m2) 2.100 x1011 

 

Table 6.5  Simulated damage scenarios for the structure 

Damage 

scenario 

Damage description 

(stiffness reduction) 

Element 

number 

Damage 

amount 

1 brace in 2nd story 32 0%-20% 

2 brace in 2nd story 32 0%-20% 

 brace in 5th story 35 0%-25% 

3 brace in 2nd story 32 0%-13% 

 brace in 5th story 35 0%-20% 

 brace in 7th story 37 0%-25% 

 brace in 10th story 40 0%-32% 

 

In the example, the bracing is formed by inserting diagonal structural members between each 

story to resist lateral forces. The brace members are pin-jointed at both ends and therefore 

primarily subject to axial force. The connection joints of beams and columns are modelled as 

rigid joints to maintain bending moments. For the braced frame structure, structural damage 

is assumed to occur at brace members. Here, three damage scenarios are considered for the 
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structural damage problems. In the simulated damage scenarios, damage is introduced by 

gradually reducing the stiffness in the brace elements at every time step as summarised in 

Table 6.5. The dynamic responses before and after the damage are obtained by performing 

finite element dynamic analysis of analytical model. Simulated noise level 1% and 3% are 

adopted in the acceleration data as measurement error in all assumed cases. Tikhonov 

regularization method incorporating the L-curve criterion for determining the regularization 

parameter is employed to produce stable and robust solutions for damage parameters. 

 

Damage scenario 1 

 

For the first damage scenario, only brace element 32 is assumed to be damaged. Simulated 

damage is gradually increased from 0 to 20% in every time step. The results for the damage 

location and amount identified are shown in Figure 6.25 to Figure 6.27where the damage 

predictions associated with the elements are plotted. In the case free of noise, as shown in 

Figure 6.25, the damaged element 32 with increasing damage magnitude is clearly identified 

while the other elements are identified as undamaged elements. This prediction agrees well 

with the assumed simulation. 

 

The results of inverse predictions for the damage parameters with noise level 1% and 3% are 

shown in Figure 6.26 and Figure 6.27 respectively. Presence of noise in the measurements 

causes some false predictions on damage parameters providing unstable solutions.  More 

unstable solution for damage parameters are appeared when noise level rises from 1% to 3% 

in measured modal data.  In this case, the proposed method incorporating the regularisation 

method is capable of giving good predictions of the severe damage using modal data 

measurements with realistic errors. 
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Figure 6.25  Inversely identified damage parameters in real time without noise in 

acceleration where element 32 is damaged 
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Figure 6.26  Inversely identified damage parameters in real time with 1% noise in 

acceleration where element 32 is damaged 
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Figure 6.27  Inversely identified damage parameters in real time with 3% noise in 

acceleration where element 32 is damaged 

 

Damage scenario 2 

 

Damage scenario 2 involves two damaged brace members with various damage magnitudes 

at different stories. Simulated damage from 0 to 25% at element 35 is considered in addition 

to damaged element 32 in damage scenario1. Figure 6.28 gives the result of noise free case 

for inverse predictions of structural damage. Two damaged elements 32 and 35 are clearly 

identified as predicted.  The results in Figure 6.29 and Figure 6.30 show some false damage 

detections in the inverse prediction of damage parameters due to the noise effect in modal 

data. False indications become more when noise level rises to 3%. However, the predictions 

of the location and amount of the considered damaged elements are correctly identified by the 

proposed method. 
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Figure 6.28  Inversely identified damage parameters in real time without noise in 

acceleration where elements 32 and 35 are damaged 
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Figure 6.29  Inversely identified damage parameters in real time with 1% noise in 

acceleration where elements 32 and 35 are damaged 
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Figure 6.30  Inversely identified damage parameters in real time with 3% noise in 

acceleration where elements 32 and 35 are damaged 

 

Damage scenario 3 

 

In damage scenario 3, multiple damaged elements 32, 35, 37 and 40 with different damage 

magnitudes are considered. This is more difficult damage pattern to be identified due to 

increasing damaged elements in the structural system when compared with the other damage 

patterns discussed. The results for identified damage parameters in noise free case 

arepresented in Figure 6.31. There are some unstable predictions of damage parameters for 

damage elements as more damaged elements are involved. It can be seen that the proposed 

approach provides results agreeing well with the locations and magnitudes of simulated 

structural damage for this complex case too. 
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Figure 6.31  Inversely identified damage parameters in real time without noise in 

acceleration where elements 32, 35, 37 and 40 are damaged 
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Figure 6.32  Inversely identified damage parameters in real time with 1% noise in 

acceleration where elements 32, 35, 37 and 40 are damaged 



199 

 

0 25 50 75 100 125
-40

-30

-20

-10

0

10

others α

 

 

D
am

ag
e 

am
ou

nt
 (

in
%

)

Time step

α
32

 

α
35

 

α
37

 

α
40

 

 

Figure 6.33  Inversely identified damage parameters in real time with 3% noise in 

acceleration where elements 32, 35, 37 and 40 are damaged 

 

Again, Figure 6.32 and Figure 6.33 show some false damage indications due to existence of 

noise but the magnitudes of the false damage are small.  The results show that all four 

damaged brace elements are clearly identified and the magnitudes of damage are correctly 

estimated. 

 

6.9.2 Cantilever beam 

 

Cantilever beam example is reselected to illustrate the further progress of proposed method 

for detecting damage evolution with time. The structure is divided into a number of elements 

for damage detection in detailed level. For simplicity, same material properties as shown in 

Table 6.4are utilised. In order to understand how the procedure works, two damage scenarios 

for the cantilever beam as summarised in Table 6.6. Damage is simulated by gradually 
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reducing the stiffness of assumed damaged element during a short time period of 0-25s. 

Dynamic responses before and after the damage are obtained by performing finite element 

dynamic analysis of the structure. Simulated noise level 1%, 3% and 5% are adopted in the 

acceleration data as measurement errors in all assumed cases. Tikhonov regularization 

algorithm incorporating with the L-curve criterion is utilised to filter out the noise on the 

inversely predictions of damage parameters. 

 

Figure 6.34  Cantilever beam with simulated damaged elements 1, 9, and 12 

 

In the cantilever beam example as shown in Figure 6.34, member is divided in to 15 

elements. Only one element is assumed to be damage in damage scenario 1. In damage 

scenario 2, various structural damages at multiple locations are considered. The undamaged 

and damaged structures are subjected to the same harmonic force. The location and amount 

of the simulated damage are then determined from the inverse calculation of the damage 

parameter jα . 
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Table 6.6  Damage scenarios for cantilever beam 

Damage 

scenario 

Damage  

description  

Element 

number 

Damage amount 

(during 0-25s) 

1 stiffness reduction 1 0%-12% 

2 stiffness reduction 1 0%-12% 

 stiffness reduction 9 0%-20% 

 stiffness reduction 12 0%-32% 

 

 

Damage scenario 1 

 

In damage scenario 1, element 1 is assumed to be damaged by gradually reducing its stiffness 

up to 12% for the duration of 0-25s. Figure 6.35 shows the results for inverse predictions of 

damage parameters in noise-free case. Increasing damage amount of element 1 is clearly 

identified while the other elements are identified as undamaged elements. This gives an 

excellent agreement with the assumed simulation. Results of noise effect in measurements 

show some false indications of damage parameters as shown in Figure 6.36 to Figure 6.38. In 

this case, the proposed method incorporating the regularization algorithm is capable of giving 

good predictions of the damage using modal data measurements with realistic errors. 
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Figure 6.35Inversely identified damage parameters in real time for damage scenario 1 

without noise in acceleration where element 1 damaged 0-12% in cantilever beam 
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Figure 6.36Inversely identified damage parameters in real time for damage scenario 1 with 

1% noise in acceleration where element 1 damaged 0-12% in cantilever beam 
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Figure 6.37  Inversely identified damage parameters in real time for damage scenario 1 with 

3% noise in acceleration where element 1 damaged 0-12% in cantilever beam 
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Figure 6.38Inversely identified damage parameters in real time for damage scenario 1 with 

5% noise in acceleration where element 1 damaged 0-12% in cantilever beam 
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Damage scenario 2 

 

In damage scenario 2, elements 9 and 12 are selected as damaged elements in additional to 

damage scenario 1. The results of inverse predictions for damage parameters in noise-free 

case are indicated in Figure 6.39. All damaged elements with different magnitudes are clearly 

identified. Unstable predictions of damage parameters due to noise effect are shown in Figure 

6.40 to Figure 6.42. Although noise existin acceleration, the proposed approach provides good 

predictions of the simulated damage for this multiple damage case, and the obtained results 

agreeing well with the locations and magnitudes of simulated structural damages. 
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Figure 6.39  Inversely identified damage parameters in real time for damage scenario 2 

without noise in acceleration where elements 1, 9 and 12 damaged 0-12%, 0-20% and 0-32% 

in cantilever beam respectively 
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Figure 6.40  Inversely identified damage parameters in real time for damage scenario 2 with 

1% noise in acceleration where elements 1, 9 and 12 damaged 0-12%, 0-20% and 0-32% in 

cantilever beam respectively 
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Figure 6.41  Inversely identified damage parameters in real time for damage scenario 2 with 

3% noise in acceleration where elements 1, 9 and 12 damaged 0-12%, 0-20% and 0-32% in 

cantilever beam respectively 
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Figure 6.42  Inversely identified damage parameters in real time for damage scenario 2 with 

5% noise in acceleration where elements 1, 9 and 12 damaged 0-12%, 0-20% and 0-32% in 

cantilever beam respectively 

 

6.9.3 Three-bay braced frame 

 

A three-bay braced frame building model, as shown inFigure 6.43, is utilised as a numerical 

example to demonstrate the applicability of the proposed damage identification method. The 

structure concerned has nine stories comprising beams, columns and braces which are 

divided into 72 elements in total. The damage parameters defined in Eq.(6.54) are chosen to 

characterize structural damage at element level. In this example, the bracing is formed in the 

middle bay by inserting diagonal structural members between stories to resist lateral forces 

generated by strong excitation such as earthquake or wind. The brace members are pin-

jointed at the ends and therefore primarily subjected to axial force. The connection joints of 

beams and columns are modelled as rigid joints to maintain bending moments. The braced 
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frame structure is subject to the lateral force as shown inFigure 6.43. Thus, structural 

damages are assumed to be occurring in the brace members. 

 

Figure 6.43Nine-story three-bay braced frame structure with simulated damage at elements 

8, 16, 40, and 48 is subject to harmonic force 

 

Here, three damage scenarios are considered for the structural damage problems. Simulated 

damage scenarios are introduced by gradually reducing the stiffness of the assumed damaged 

elements in every time step as summarised in Table 6.7. 
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Table 6.7  Damage scenarios for three-bay braced frame structure 

Damage 

scenario 

Damage description 

(stiffness reduction) 

Element 

number 

Damage amount 

(during 0-25s) 

1 brace in 1st story 8 0%-12% 

2 brace in 1st story 8 0%-12% 

 brace in 2nd story 16 0%-20% 

3 brace in 1st story 8 0%-12% 

 brace in 2nd story 16 0%-20% 

 brace in 5th story 40 0%-25% 

 brace in 6th story 48 0%-33% 

 

 

Damage scenario 1 

 

In damage scenario 1, only brace element 8 is assumed to be damaged. Structural damage is 

gradually increased from 0% to 12% for the short duration of 0-25s. In noise-free case, 

increasing damage magnitude ofelement 8 is correctly predicted while the other elements are 

identified as undamaged elements as shown in Figure 6.44. This agrees well with the 

assumed damage simulation.The results of inverse predictions for the damage parameters 

with noise level 1%, 3% and 5% are shown in Figure 6.45 to Figure 6.47respectively where 

the damage predictions associated with the elements are plotted. Presence of noise in the 

measurements occurs some false predictions on damage parameters providing unstable 

solutions. More unstable predictions for damage parameters appear when higher noise levels 

are existed in the measured data. 
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Figure 6.44  Inversely identified damage parameters in real time for damage scenario 1 

without noise in acceleration where element 8 damaged 0-12% in braced frame structure 
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Figure 6.45Inversely identified damage parameters in real time for damage scenario 1 with 

1% noise in acceleration where element 8 damaged 0-12% in braced frame structure 
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Figure 6.46Inversely identified damage parameters in real time for damage scenario 1 with 

3% noise in acceleration where element 8 damaged 0-12% in braced frame structure 
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Figure 6.47Inversely identified damage parameters in real time for damage scenario 1 with 

5% noise in acceleration where element 8 damaged 0-12% in braced frame structure 
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Damage scenario 2 

 

Damage scenario 2 involves two damaged brace members with different damage magnitudes. 

Simulated damage from 0% to 20% at element 16 is considered in addition to damaged 

element 8 in damage scenario1. Figure 6.48 gives the result of noise-free case for inverse 

predictions of structural damage. Two damaged elements 8 and 16 are clearly identified as 

predicted.  The results in Figure 6.49 to Figure 6.51show some false damage detections in the 

prediction of damage parameters due to the noise effect in measurements. More false 

predictions are indicated at higher noise level. However, the predictions for location and 

amount of the considered damaged elements are correctly identified by the proposed method. 
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Figure 6.48Inversely identified damage parameters in real time for damage scenario 2 

without noise in acceleration where elements 8 and 16damaged 0-12% and 0-20% in braced 

frame structure respectively 
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Figure 6.49Inversely identified damage parameters in real time for damage scenario 2 with 

1% noise in acceleration where elements 8 and 16 damaged0-12% and 0-20% in braced 

frame structure respectively 
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Figure 6.50Inversely identified damage parameters in real time for damage scenario 2 with 

3% noise in acceleration where elements 8 and 16 damaged0-12% and 0-20% in braced 

frame structure respectively 
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Figure 6.51Inversely identified damage parameters in real time for damage scenario 2 with 

5% noise in acceleration where elements 8 and 16 damaged0-12% and 0-20% in braced 

frame structure respectively 

 

Damage scenario 3 

 

In damage scenario 3, multiple damaged elements 8, 16, 40 and 48 with various damage 

magnitudes are considered. Simulated damage magnitudes of above damaged elements are 

summarised in Table 6.7. This is more difficult damage pattern to be identified due to 

increasing damaged elements in the structure when compared to the above damage patterns 

discussed. The result for identified damage parameters in noise-free case is plotted in Figure 

6.52. There are some unstable predictions of damage parameters as more damaged elements 

are involved. Again, Figure 6.53 to Figure 6.55show some false damage indications due to 

existence of noise but the magnitudes of all damaged elements are clearly identified.  It can 

be seen that the proposed approach provides results agreeing well with the locations and 

magnitudes of simulated structural damage for this complex case too. 
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Figure 6.52  Inversely identified damage parameters in real time for damage scenario 3 

without noise in acceleration where elements 8, 16, 40 and 48 damaged 0-12%, 0-20%, 0-

25% and 0-33% in braced frame structure respectively 
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Figure 6.53  Inversely identified damage parameters in real time for damage scenario 3 with 

1% noise in acceleration where elements 8, 16, 40 and 48 damaged 0-12%, 0-20%, 0-25% 

and 0-33% in braced frame structure respectively 
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Figure 6.54  Inversely identified damage parameters in real time for damage scenario 3 with 

3% noise in acceleration where elements 8, 16, 40 and 48 damaged 0-12%, 0-20%, 0-25% 

and 0-33% in braced frame structure respectively 
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Figure 6.55  Inversely identified damage parameters in real time for damage scenario 3 with 

5% noise in acceleration where elements 8, 16, 40 and 48 damaged 0-12%, 0-20%, 0-25% 

and 0-33% in braced frame structure respectively 
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6.10 Conclusions 

 

A new method for real-time structural damage identification is presented. In this method, 

appropriate damage parameters are defined to characterize the local damage evolution for 

individual structural members by decreasing structural stiffness at element level. A system of 

linear equations for determining damage parameters is developed by directly adopting 

vibration measurements such as acceleration. The Tikhonov regularisation algorithm 

incorporating the L-curve criterion is employed to filter out the influence of noise in the 

measured data. Then, damage parameters are inversely predicted from the developed 

equation. Those damage parameters could be used in real time detection of structural damage 

evolution. Based on the numerical results involving cantilever beams, one-bay plane frame, 

and one-bay and three-bay braced frame examples, the following conclusions are noted: (1) 

The proposed new method is capable of successfully detecting the local damage in the 

structure; (2) It can be used for detecting damage in the structure at early stage; (3) Damage 

location and magnitude can be identified with relatively high accuracy; (4) The new proposed 

technique performs well for all simulated damage cases and produces stable and reliable 

results even though existing certain levels of noise exist in the measurements; (5) It can also 

be used for real time and rapid damage assessment during operation and immediately after 

the events of earthquake and explosion. However, the current limitation of the proposed 

method is that it requires measured dynamic responses in all degrees of freedom of the 

structure and same applied force for both undamaged and damaged structures. In practice, 

numbers of sensor available are limited due to economic constraints and difficulty in 

measuring dynamic responses at all degrees of freedom for a large structure. Moreover, 

excitation force for actual large structure in structural dynamic testing is usually unknown 
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and ambient vibration testing is more practical. Therefore, further research developments 

such as using unknown excitation forces, expansion of incomplete measurements to complete 

full degrees of freedom measurements or reduction of finite element model to the measured 

degrees of freedom, and experimental verification utilising real measured data should be 

continued.  
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Chapter 7 Summary, Conclusions and Further Works 

 

7.1 Conclusions 

 

In this PhD study, research problems and objectives are presented. Relevant literatures are 

reviewed. Then methodologies and techniques used in current research are described. Finally, 

the critical contribution and recommended areas of future research are presented.Initially, 

numerical simulation investigation and experimental study of a steel frame model structure 

including intact and four damage scenarios have been conducted. The objectives of the 

experiments were to determine the modal parameters of tested structure from vibration 

measurements and apply the modal data into the proposed model updating method. Dynamic 

characteristics of the analytical models are obtained from finite element dynamic analysis of 

the tested structure. The optimum sensor arrangement was determined based on the analytical 

mode shapes and repeatedly moving sensor locations which did not affect significantly the 

modal data. Modal parameters are identified from the measured acceleration data through 

modal analysis techniques. Comparison of analytical and measured modal data provides the 

real dynamic behaviour of the structure. The results show that modal parameters of actually 

constructed structures can be successfully identified, and are in good agreement with 

analytical results. 

 

Furthermore, an effective finite element model updating method is presented for adjusting 

analytical models of the experimental structure by utilising only limited information about 

measured incomplete mode shapes. Structural updating parameters are chosen to characterise 

the modifications of the structure at element or integration point level in order to adjust the 

stiffness at the connections of structural members such as beam-column joints. From the 
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obtained exact relationship between the perturbation of structural parameters and the modal 

properties of the actual tested structure, an iterative solution algorithm is developed to solve 

for the chosen structural updating parameters in the least squares sense. The regularisation 

algorithm based on the Tikhonov solution incorporating the L-curve criterion is employed to 

reduce the influence of measurement errors in the modal data and to produce robust solutions 

for the updating parameters. 

 

The laboratory tested steel frame model structure is utilised to demonstrate the accuracy and 

effectiveness of the proposed method for updating the finite element model by numerical 

simulation investigations and experimental studies. The practical application of the proposed 

method is demonstrated by correctly updating the Canton Tower benchmark problem using 

the operational modal properties identified from ambient vibration measurements. Based on 

the numerical simulations, experimental studies and practical applications, the following 

conclusions are drawn. The new effective model updating procedure discussed here is 

capable of successfully updating structural parameters such as stiffness at both element and 

critical point levels. The proposed approach converges quickly to evaluate the structural 

updating parameters, and provides optimised solutions for model updating in the least squares 

sense without requiring optimisation techniques even in the cases where large modifications 

of structural parameters exit. The proposed model updating method provides reasonably 

small modifications of structural properties to minimise the relatively large difference 

between the modal data calculated from the initial analytical model and those identified from 

the vibration measurements. 

 

For inversely structural damage detection, an inverse damage detection algorithm based on 

expanded mode shapes is discussed. The incomplete measured modal data are fully expanded 
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by using a reliable mode shape expansion technique, providing the complete mode shapes at 

all degrees of freedom of the tested structure. The damage detection technique based on mode 

shape curvature and modal strain energy calculated from expanded mode shapes is then 

utilised to detect the damage in the structure. The effectiveness of the proposed method for 

inverse damage detection is demonstrated by a numerical study of a bridge structure. The 

results show that the damage in the structure can be detected by utilising only limited 

vibration measurements and expanded mode shapes. 

 

In addition, a new approach for real-time structural damage detection by using monitored 

noisy acceleration measurements is presented. In this method, appropriate damage parameters 

are introduced to characterize the structural damage at element level. The relationship 

between the damage parameters and the measured dynamic response is then established from 

the governing equation of the dynamic structure. On the basis of the measured acceleration 

data, structural dynamic responses such as displacement and velocity are obtained by using 

Newmark’s numerical integration method in order to construct damage equation from the 

developed equation of motion for the structural system. Tikhonov regularization algorithm 

incorporating the L-curve criterion for determining the regularisation parameters is employed 

to filter out the influence of noise in measured data on the predictions of damage parameters. 

Both the location and extent of the damage are then determined based on the inverse 

predictions of damage parameters of individual structural elements. Moreover, structural 

damage evolution with time in the elements is determined from continuously monitored data, 

and the condition of the structure is then further assessed and updated.  

 

The results from the numerical examples involving a cantilever beam, one-bay plane frame, 

and one-bay and three-bay braced frame show that damage can be correctly identified in 
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terms of location and extent in the structure, even in the case when relatively high level of 

noise exists in the measured vibration data. The new proposed technique performs well and 

produces stable and reliable results from noisy vibration measurements. Therefore, the 

developed approach has potential to be used for real-time structural health monitoring such as 

at the severe loading event of earthquake and blast. However, the limitation of the proposed 

method is that it requires measured time history dynamic responses such as accelerations at 

all degrees of freedom of the structure and same applied force for both analytical model and 

tested structure. 

 

7.2 Further works 

 

The success of the proposed model updating method depends on the accuracy of mode shapes 

and natural frequencies identified from the limited sensor measurements. Therefore, the 

development of methods for optimum sensors arrangements is required. The proposed real-

time damage detection method is proved to be effective with numerical examples. Further 

evaluation and implementation of real time measured data for practical damage detection 

approach should be carried out. The proposed damage detection method has been shown to 

work under certain circumstances such as requiring same applied forces for analytical model 

and tested structure. The applied force can be obtained in control vibration testing. However, 

application of the proposed method is limited in the cases of ambient vibration testing where 

unknown applied force or input measurements is not available. To make this method more 

practical, further developments of using unknown excitation force is required.  

 

The proposed real-time damage detection method requires not only acceleration data but also 

velocity and displacement data at all degrees of freedom. In order to achieve this, more 
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reliable methods for the calculation of velocity and displacement from measured acceleration 

and development of more robust model reduction or modal expansion techniques are 

required. The performances of real-time damage detection algorithm in the controlled 

laboratory and real operational environments still need to be validated.  Finally, the ultimate 

goal of “Damage Prognosis” needs to be addressed, which estimates the remaining service 

life of a structure, providing the assessment of its current damaged state and performance 

predictions in the future loading environments. 
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Appendix 

Matlab program for on-line structural damage detection 

 

 

 

Figure A.  Flowchart diagram for online damage detection program 

 

To implement the proposed on-line structural damage detection method inapplication, a 

program is developed in the Matlab environment. It contains four primary categories: 

structural modelling, vibration response simulation, damage identification and graphical 

presentation. In this program, damage refers to loss in stiffness and mass remains unchanged. 

The following primary functions are included in the Matlab program discussed above. 

 



246 

 

frame is main function of online damage detection program. It calls sub-functions for 

analysis and produce results. 

 

cal_modeltime is called by “frame” for the information of the system matrices such as 

stiffness and mass of the undamaged structure. 

 

cal_damagemodeltime provides information of stiffness and mass matrices of the damaged 

structure. 

 

getNEPis a sub-function to provide the information of geometry and material properties of 

the structural system for “cal_modeltime” and “cal_damagemodeltime”. 

 

frame2dassembles stiffness and mass matrices of the structural system and provides those 

information to “cal_modeltime” and “cal_damagemodeltime”. 

 

fe2d computesstiffness and mass matrices of individual element for “frame2d”. 

 

timestep computes incremental time step for“frame”. 

 

lcurvet is called by “frame” for the information of L-curve. 

 

lcurveconer computes L-curve corner and feeds that information to“lcurvet”. 

 

lcurvature provides information of L-curve curvature to “lcurvet”. 
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plotlcurveis a sub-function for plotting of L-curve. 

 

plot_F_DeltaF plots applied force and incremental applied force in time domain. 

 

plot_dis_ddisplots displacements of undamaged and damaged structure in time domain. 

 

plot_alphaplots damage parameters in time domain. 

 

draw3d is final sub-function called by “frame” for plotting of structural geometry. 

 

The main part of on-line damage detection in the program is as follow: 

%*******************************************************************  

%                                                                  *  

%  frame:   main program for online structural damage detection    *             

%                                                                  *  

%*******************************************************************  

% Remark:                                                          *  

%  k_sys       =  system stiffness matrix of undamaged structure   *  

%  m_sys       =  system mass matrix of undamaged structure        *  

%  d_sys       =  system damping matrix of undamaged structure     *  

%                                                                  *  

%  dk_sys      =  system stiffness matrix of damaged structure     *  

%  dm_sys      =  system mass matrix of damaged structure          *  

%  dd_sys      =  system damping matrix of damaged structure       *  

%                                                                  *  

%  ke_sys      =  element stiffness matrix of the system           *  

%                                                                  *  

%  X_cur       =  displacement of undamaged structure at current   *  



248 

 

%                   time step                                      *  

%  Xp_cur      =  velocity of undamaged structure at current       *  

%                   time step                                      *  

%  Xpp_cur     =  acceleration of undamaged structure at current   *  

%                   time step                                      *  

%                                                                  *  

%  X_old       =  displacement of undamaged structure at previous  *  

%                   time step                                      *  

%  Xp_old      =  velocity of undamaged structure at previous      *  

%                   time step                                      *  

%  Xpp_old     =  acceleration of undamaged structure at previous  *  

%                   time step                                      *  

%                                                                  *  

%  dX_cur      =  displacement of damaged structure at current   *  

%                   time step                                      *  

%  dXp_cur     =  velocity of damaged structure at current       *  

%                   time step                                      *  

%  dXpp_cur    =  acceleration of damaged structure at current   *  

%                   time step                                      *  

%                                                                  *  

%  dX_old      =  displacement of damaged structure at previous  *  

%                   time step                                      *  

%  dXp_old     =  velocity of damaged structure at previous      *  

%                   time step                                      *  

%  dXpp_old    =  acceleration of damaged structure at previous  *  

%                   time step                                      *  

%                                                                  * 

%  Iy          =  moment of inertia in the strong axis             *  

%  A           =  cross-sectional area                             *  

%  E           =  Young's Modulus                                  *  

%  rho         =  density                                          * 
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%  mbar        =  mass per unit length                             *  

%                                                                  *  

% Call:  cal_modeltime, cal_damagemodeltime, timestep, lcurvet,    *  

%        plot_F_DeltaF, plot_dis_ddis, plot_alpha, draw3d          *  

%                                                                  *  

% Sub-function: frame2d, getNEP, fe2d, lcurvecorner, lcurvature,   *  

%               plotlcurve                                         *  

%                                                                  *  

%*******************************************************************  

 

01. for  i=1:rdof   

02.    tempK(i)=0.;  

03. for  j=1:rdof      

04. if  (noiseinput==1)      %without noise    

05.   tempK(i) = tempK(i)+((m_sys(i,j)*(Xpp_cur(j)- dXpp_cur(j))+ 

(d_sys(i,j)*Xp_cur(j)- d_d_sys(i,j)*dXp_cur(j))+ 

k_sys(i,j)*(X_cur(j)-dX_cur(j))));  

06. elseif  (noiseinput==2)  %with noise   

07.    tempK(i) = tempK(i)+((m_sys(i,j)*(Xpp_cur(j)- dXpp_cur(j))+ 

(d_sys(i,j)*Xp_cur(j)- d_d_sys(i,j)*dXp_cur(j))+ 

k_sys(i,j)*(X_cur(j)-dX_cur(j))));   

08. end  

09. end  

10.   deltaKdX(i,1)=tempK(i);                  

11.   DeltakdX(TIME,i)= deltaKdX(i);         

12. end  

13. for  k=1:ne                                     

14.    for  i=1:rdof       

15.        kedx(i,k)=0.0;  

16.       for  j=1:rdof                
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17.          kedx(i,k)= kedx(i,k)+ke_sys(i,j,k)*(dCk*dXp_cur(j)+dX_cur(j));   

18.       end  

19.    end  

20. end  

21.    A=kedx;       

22.    b=deltaKdX;  

23. if  (noiseinput==1)   

24.    [U,S,V]=svd(kedx); %singular value decomposition  

25.    utb=U'*deltaKdX;  

26.    for  i=1:ne   

27.       Y(i,1)=utb(i)/S(i,i);                             

28.    end  

29.    alpha=V*Y; %computing damage parameters  

30. elseif (noiseinput>1)  

31.    [U,S,V]=svd(A);    

32.    utbb= U'*b;     

33. for  i=1:ne       

34.    s(i,1)=S(i,i);   

35.    utb(i,1)=utbb(i);  

36. end  

37.    xi=utb./s;  

38.    [reg_c,eta,rho,rho_c,eta_c,kappa,reg_param] = lcurvet(U,utb,b,s,xi);  

39.    lambda_l=reg_c; %L-curve corner  

40. for  j= 1:ne          

41.    alpha(j)=0.0;  

42.    for  i=1:ne     %computing regularised damage parameters  

43.        alpha(j)=alpha(j)+s(i)/((s(i)*s(i))+lambda_l^2)*utb(i)*V(j,i);     

44.    end  

45. end  

46. end  

47. plot_alpha(T,Alph,TT,enum) %plotting regularised damage parameters  
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In the above Matlab program, line 05 and 06 refer to right hand side of Eq.(7.43 ) or 

Eq.(7.46), line 17 refers to left hand side of Eq.(7.43), line 29 refer to Eq.(7.48 ) and line 43 

refers to Eq.(5.55) for the calculation of damage parameter jα , respectively. 

 

Input information of detecting damaged elements “8” and “16” in the three-bay braced frame 

example is as follow: 

 

% ***** node coordinates and node condition index*****  

X1=6.00; X2=8.00; Y=3.50;   

%X-coordinate Y-coordinate  X-translation Y-translation theta-rotation  

0=fixed, 1=free  

node=[        

       0            0             0             0            0    %node 1    

      X1            0             0             0            0    %node 2  

    2*X1            0             0             0            0    %node 3  

 2*X1+X2            0             0             0            0    %node 4  

%floor 1  

       0            Y             1             1            1    %node 5  

      X1            Y             1             1            1    %node 6  

    2*X1            Y             1             1            1    %node 7  

 2*X1+X2            Y             1             1            1    %node 8  

%floor2  

       0          2*Y             1             1            1    %node 9  

      X1          2*Y             1             1            1    %node 10  

    2*X1          2*Y             1             1            1    %node 11  

 2*X1+X2          2*Y             1             1            1    %node 12  

%floor3  
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       0          3*Y             1             1            1    %node 13  

      X1          3*Y             1             1            1    %node 14  

    2*X1          3*Y             1             1            1    %node 15  

 2*X1+X2          3*Y             1             1            1    %node 16  

%floor4  

       0          4*Y             1             1            1    %node 17  

      X1          4*Y             1             1            1    %node 18  

    2*X1          4*Y             1             1            1    %node 19  

 2*X1+X2          4*Y             1             1            1    %node 20  

%floor5  

       0          5*Y             1             1            1    %node 21  

      X1          5*Y             1             1            1    %node 22  

    2*X1          5*Y             1             1            1    %node 23  

 2*X1+X2          5*Y             1             1            1    %node 24  

%floor6  

       0          6*Y             1             1            1    %node 25  

      X1          6*Y             1             1            1    %node 26  

    2*X1          6*Y             1             1            1    %node 27  

 2*X1+X2          6*Y             1             1            1    %node 28  

%floor7  

       0          7*Y             1             1            1    %node 29  

      X1          7*Y             1             1            1    %node 30  

    2*X1          7*Y             1             1            1    %node 31  

 2*X1+X2          7*Y             1             1            1    %node 32  

%floor8  

       0          8*Y             1             1            1    %node 33  

      X1          8*Y             1             1            1    %node 34  

    2*X1          8*Y             1             1            1    %node 35  

 2*X1+X2          8*Y             1             1            1    %node 36  

%floor9  

       0          9*Y             1             1            1    %node 37  
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      X1          9*Y             1             1            1    %node 38  

    2*X1          9*Y             1             1            1    %node 39  

 2*X1+X2          9*Y             1             1            1    %node 40    

     ];  

 

% ***** element connectivity and element group *****  

%startnode  endnode   elementnumber  

elem=[  

%base  

      1           5           1  

      2           6           2  

      3           7           3  

      4           8           4  

      5           6           5  

      6           7           6  

      7           8           7  

      2           7           8  

%floor 1  

      5           9           9  

      6          10          10  

      7          11          11  

      8          12          12  

      9          10          13  

     10          11          14  

     11          12          15  

      6          11          16  

%floor 2  

      9          13          17  

     10          14          18  

     11          15          19  

     12          16          20  
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     13          14          21  

     14          15          22  

     15          16          23  

     10          15          24  

%floor 3  

     13          17          25  

     14          18          26  

     15          19          27  

     16          20          28  

     17          18          29  

     18          19          30  

     19          20          31  

     14          19          32  

%floor 4  

     17          21          33  

     18          22          34  

     19          23          35  

     20          24          36  

     21          22          37  

     22          23          38  

     23          24          39  

     18          23          40  

%floor 5  

     21          25          41  

     22          26          42  

     23          27          43  

     24          28          44  

     25          26          45  

     26          27          46  

     27          28          47  

     22          27          48  
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%floor 6  

     25          29          49  

     26          30          50  

     27          31          51  

     28          32          52  

     29          30          53  

     30          31          54  

     31          32          55  

     26          31          56  

%floor 7  

     29          33          57  

     30          34          58  

     31          35          59  

     32          36          60  

     33          34          61  

     34          35          62  

     35          36          63  

     30          35          64  

%floor 8  

     33          37          65  

     34          38          66  

     35          39          67  

     36          40          68  

     37          38          69  

     38          39          70  

     39          40          71  

     34          39          72     

    ];  

 

% ***** material properties *****  

Iy=32.814E-5;    %305 x 305 x 137 UKC  
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  Iy1=Iy;   %Iy of undamaged element 1  

  Iy2=Iy;   %Iy of undamaged element 2  

  Iy3=Iy;    

  Iy4=Iy;    

  Iy5=Iy;    

  Iy6=Iy;    

  Iy7=Iy;    

 

  Iy9=Iy;    

  Iy10=Iy;   

  Iy11=Iy;   

  Iy12=Iy;   

  Iy13=Iy;   

  Iy14=Iy;   

  Iy15=Iy;   

 

  Iy17=Iy;   

  Iy18=Iy;   

  Iy19=Iy;   

  Iy20=Iy;   

  Iy21=Iy;   

  Iy22=Iy;   

  Iy23=Iy;   

 

  Iy25=Iy;   

  Iy26=Iy;   

  Iy27=Iy;   

  Iy28=Iy;   

  Iy29=Iy;   

  Iy30=Iy;   
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  Iy31=Iy;   

 

  Iy33=Iy;   

  Iy34=Iy;   

  Iy35=Iy;   

  Iy36=Iy;   

  Iy37=Iy;   

  Iy38=Iy;   

  Iy39=Iy;   

 

  Iy41=Iy;   

  Iy42=Iy;   

  Iy43=Iy;   

  Iy44=Iy;   

  Iy45=Iy;   

  Iy46=Iy;   

  Iy47=Iy;  

 

  Iy49=Iy;   

  Iy50=Iy;     

  Iy51=Iy;   

  Iy52=Iy;   

  Iy53=Iy;   

  Iy54=Iy;   

  Iy55=Iy;  

 

  Iy57=Iy;   

  Iy58=Iy;   

  Iy59=Iy;   

  Iy60=Iy;     
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  Iy61=Iy;   

  Iy62=Iy;   

  Iy63=Iy;  

 

  Iy65=Iy;   

  Iy66=Iy;   

  Iy67=Iy;   

  Iy68=Iy;   

  Iy69=Iy;   

  Iy70=Iy;   

  Iy71=Iy;  

 

%Braces  

  Iy8=0.0;    

  Iy16=0.0;   

  Iy24=0.0;   

  Iy32=0.0;   

  Iy40=0.0;   

  Iy48=0.0;   

  Iy56=0.0;   

  Iy64=0.0;   

  Iy72=0.0;  

 

%control decreasing rate  

stiffreduc1=0.0010*TIME;   

stiffreduc3=0.0021*TIME;  

stiffreduc5=0.0030*TIME;  

 

%stiffness decreasing  

if  stiffreduc1<=1.0   
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stiffleft1= 1-stiffreduc1;  

else  

    stiffleft1=0.0;  

end  

 

if  stiffreduc3<=1.0  

stiffleft3= 1-stiffreduc3;  

else  

    stiffleft3=0.0;  

end  

 

if  stiffreduc5<=1.0  

stiffleft5= 1-stiffreduc5;  

else  

    stiffleft5=0.0;     

end  

 

A =174.0E-4;        %305 x 305 x 137 UKC  

E    =2.10E11;        

rho=7850;           

mbar =rho*A;          

Ab =174.0E-4;         

mbarb =rho*Ab;       % for brace element                     

 

Eb8 = E;               %brace element  

Eb16 = E;  

Eb24 = E;  

Eb32 = E;  

Eb40 = E;  

Eb48 = E;  
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Eb56 = E;  

Eb64 = E;  

Eb72 = E;  

 

Eb8 = stiffleft3*E;    %damaged brace element  

Eb16 = stiffleft5*E;  

 

%***** element properties for different element group *****  

%***** element number must be ascending order  

prop=[  

      Iy1 A E mbar     %element 1  

      Iy2 A E mbar     %element 2  

      Iy3 A E mbar     %element 3  

      Iy4 A E mbar      

      Iy5 A E mbar      

      Iy6 A E mbar      

      Iy7 A E mbar      

      Iy8 Ab Eb8 mbarb % brace element 8  

      Iy9 A E mbar      

      Iy10 A E mbar     

      Iy11 A E mbar      

      Iy12 A E mbar      

      Iy13 A E mbar      

      Iy14 A E mbar      

      Iy15 A E mbar      

      Iy16 Ab Eb16 mbarb      

      Iy17 A E mbar      

      Iy18 A E mbar      

      Iy19 A E mbar      

      Iy20 A E mbar      

      Iy21 A E mbar      



261 

 

      Iy22 A E mbar      

      Iy23 A E mbar      

      Iy24 Ab Eb24 mbarb      

      Iy25 A E mbar      

      Iy26 A E mbar      

      Iy27 A E mbar      

      Iy28 A E mbar      

      Iy29 A E mbar      

      Iy30 A E mbar           

      Iy31 A E mbar  

      Iy32 Ab Eb32 mbarb  

      Iy33 A E mbar  

      Iy34 A E mbar  

      Iy35 A E mbar  

      Iy36 A E mbar  

      Iy37 A E mbar  

      Iy38 A E mbar  

      Iy39 A E mbar  

      Iy40 Ab Eb40 mbarb       

      Iy41 A E mbar  

      Iy42 A E mbar  

      Iy43 A E mbar  

      Iy44 A E mbar  

      Iy45 A E mbar  

      Iy46 A E mbar  

      Iy47 A E mbar  

      Iy48 Ab Eb48 mbarb  

      Iy49 A E mbar  

      Iy50 A E mbar       

      Iy51 A E mbar  

      Iy52 A E mbar  
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      Iy53 A E mbar  

      Iy54 A E mbar  

      Iy55 A E mbar  

      Iy56 Ab Eb56 mbarb  

      Iy57 A E mbar  

      Iy58 A E mbar  

      Iy59 A E mbar  

      Iy60 A E mbar       

      Iy61 A E mbar  

      Iy62 A E mbar  

      Iy63 A E mbar  

      Iy64 Ab Eb64 mbarb  

      Iy65 A E mbar  

      Iy66 A E mbar  

      Iy67 A E mbar  

      Iy68 A E mbar  

      Iy69 A E mbar  

      Iy70 A E mbar  

      Iy71 A E mbar  

      Iy72 Ab Eb72 mbarb  

     ];  

 

 


