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ABSTRACT 
 

The role of vibration in exercise is controversial, with much debate about its potential 

benefits.  The aim of the research reported in this PhD thesis was to inform evidence based 

practice by investigating the underlying responses of the human body during exercise with 

vibration. Human neuromuscular and cardiovascular systems were investigated using 3D 

motion analysis, near infra-red spectroscopy (NIRS), laser Doppler blood flow analysis and 

electromyography (EMG).  

Analysis of a prototype vibrating stationary cycle identified significant increases in muscle 

activation. However, the validity of the results was limited by a confounding issue of 

increasing resistance with increasing cadence due to the cycle’s vibration mechanism.  

Consistency of exercise performance on vibration platforms was measured by 3D analysis; 

vibration did not affect the kinematic parameters of exercises such as heel raises or press 

ups, even though significant physiological changes occurred. NIRS indicated a significant 

reduction in the depletion of oxygenated haemoglobin, total haemoglobin and the 

normalised tissue haemoglobin index of the lateral gastrocnemius in heel raise exercises.  

During quiet standing laser Doppler measurements of the dorsalis pedis artery indicated 

that the NIRS results were not a consequence of vasospastic responses or increased 

resistance to blood flow in response to vibration. Whilst heart rate and blood pressure 

remained constant, blood flow velocity significantly increased, suggesting the peripheral 

changes occurred independently of central cardiovascular function.  

Heel raise exercises with whole body vibration showed significant increases in muscle 

activation of the soleus, but not the gastrocnemius, indicating varied muscular responses to 

vibration. The influence of blood flow and tissue oxygenation on EMG parameters was 

demonstrated via the protection of muscle conduction velocity during static squats, despite 

a downward shift in median frequency of the EMG power spectra.  

Analysis of upper body muscles during press ups yielded significant increases in muscle 

activation, equivalent to increasing the load of the bench press by 10% of the one 

repetition maximum. The results indicate that vibration influenced the dynamic muscles 

more than stabiliser muscles; reinforcing the lower body studies showing that vibration has 

a varied influence on muscle function. The aforementioned results demonstrate the ability 

of vibration to augment the effects of exercise on the muscular and vascular physiological 

systems of the human body.  
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CHAPTER 1: INTRODUCTION 

 

Despite the fact that the role of vibration in health and exercise has been explored for over 

100 years, the fundamental mechanisms of the biomechanical and physiological changes 

are still not clearly understood. The earliest records of the application of vibration for 

health benefits is that of Jean-Martin Charcot, who in 1880 noted greater improvements in 

his pilgrim Parkinson’s patients who had to travel from a distance, leading to the 

assumption the improvements were related to vibrations from horse-drawn or railway 

carriages 1. Based on this observation, Charcot produced a vibrating chair (see Figure 1) to 

simulate the vibrations of travel 2 and inspired Gilles de la Tourette, a younger colleague of  

 

Charcot, to invent a motorized hat (see Figure 2) lined with adjustable steel plates to adjust 

to the size of the patients head. The vibrating helmet was used for the treatment of 

neurasthenia, which includes characteristic symptoms of fatigue, anxiety, headache, 

neuralgia, depressed mood, and migraines 1.  

 

 

 

 

 

 

Figure 1. Charcot's vibrating chair, taken from Goetz
1
. 

Figure 2. de la Tourette vibrating hat
1
. 
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The idea of utilising vibration as a clinical application was continued throughout the early 

twentieth century by Dr J.H Kellogg, who invented a range of devices including: an updated 

vibrating chair, a platform, a bar used to massage the feet and lower legs and a belt used to 

vibrate different body sections 3.  

The first application of vibration in relation to sport and exercise is credited to Vladimir 

Nasarov in the 1970’s who applied vibrations to athletes during eccentric training 

movements to increase athletes power and flexibility 4. Current applications of vibration 

involve a wide range of products based on different methods of training, potential 

applications include: 

 Whole body vibration (WBV) – where platforms vibrate while participants complete 

training movements whilst standing on the platform. 

 Partial body vibration – whereby a participant is half on and half off a vibrating 

platform whilst completing training movements such as press ups or lunges. 

  Local vibration; where a handheld device applies vibration to specific body regions 

for therapeutic or training purposes.  

 

There are also different methods of generating vibration, including: 

 Synchronous vertical vibration 

 Oscillating vertical vibration 

 Rotational vibration.  

 

Out of the varying types of equipment synchronous research on vertical vibration and 

oscillating vertical vibration platforms are by far the most common, which is mostly a 

consequence of the fact they are also the most widely available commercially.  
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Recently Power Plate Ltd began the process of developing a novel form of whole body 

vibration via a stationary cycle with a mechanical mechanism providing the option of 

introducing vibration. However, to date there have not been any published studies to 

provide peer reviewed conclusions about the effects of this form of vibration exercise.  

 

2.2 Physiological responses to different types of platform  

Recent meta analyses considering the effect of WBV on muscular strength 5 and power 6 

concluded that synchronous vertical vibration platforms elicit a significantly larger effect for 

chronic adaptations, where chronic adaptation were defined as those repeatable after one 

week, compared to oscillating platforms in both measures (muscular strength and power). 

However, oscillating platforms elicit a greater treatment effect for acute, i.e. less than one 

week, strength training adaptations. The difference in strength and power adaptations is 

potentially due a difference in the ratio of force to acceleration, known as mechanical 

impedance, which has been shown to be lower in oscillating platforms 7 . Rittweger 8 

combined the theory of oscillating platforms generating lower acceleration forces with the 

observation that the oscillating platform created rotation about the hips and concluded 

that this was the underlying mechanism for attenuating vertical accelerations at the spinal 

level and above. Although conversely, Pel et al. 9 recently reported that oscillating 

platforms produced higher accelerations of up to 15 g compared to vertical vibrating 

platforms which produced accelerations at approximately half the value (up to 8 g). These 

higher accelerations could potentially explain the increased acute effects reported 6. 

However, the ultimate differences and the underlying mechanisms between exposure to 

Figure 4. Synchronous vertical vibration (left) and oscillating platforms (right) 
(taken from Cardinale and Wakeling 2005). 
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the different styles of vibration types have yet to be ascertained 10. It should also be noted 

oscillating platforms tend to operate at lower frequencies than synchronous vertical 

vibrating platforms and the reported studies used for the meta-analysis on strength 5 

typically were based on lower exposure durations than that of synchronous vibration. The 

effects of synchronous and oscillating WBV on heart rate and VO2 were later compared by 

Gojanovic and Henchoz 11, who found that oscillating WBV produced greater increases 

heart rate than synchronous WBV. The authors’ intimated that the increased heart rate 

could result in elevated VO2, provided the intervention lasted longer than 20 minutes. 

Abercromby et al. 12 reported increased electromyographic (EMG) activity in the lower limb 

extensors, but not flexors, during oscillating WBV compared to that of synchronous vertical 

WBV. This paper received some criticism for using digital band stop filters which been 

known to result in signal attenuation 8, therefore potentially excessively reducing signal 

amplitude. However, since the conclusion was based on increased signal values, accounting 

for potential signal attenuation would only increase the significance of the findings. In 

order to ascertain the implications of EMG signal changes, one must first consider the 

neurophysiological influences of vibration. 

 

2.2.1 Neurophysiological responses to vibration 

 

The underlying neuromuscular responses to vibration have been studied extensively for 

approaching 100 years. However, originally local vibration was applied directly to the 

muscle belly or the muscle tendon. Generally local vibration is more effective when the 

tendon is vibrated, however if the intensity of the vibration is high enough the reflexes also 

appear when the vibration is introduced to the muscle belly 13.  In 1938 Echlin and Fessard 

14 investigated the effects of introducing vibration to the tendons of cats, rabbits and frogs 

on the output of muscle stretch receptors. Their findings suggested that not only did 

vibration result in increased neural output of muscle stretch receptors, but that if the 

discharge rate of the receptor was activated by pre-stretching, to an output level similar to 

that of the vibration frequency, the threshold for activation of the receptor was drastically 

lowered. These findings were confirmed in 1951, when Kuffler et al. 15 performed similar 

experiments and noted high sensitivity of mammalian muscle spindles to vibration. As 
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In the absence of pharmaceutical intervention the researchers also noted a depression of 

the tendon jerk reflex by local vibration. However, this depression could be reduced, or 

even removed, by the Jendrassik manoeuvre where participants clasp hands together and 

generate a small amount of force by pulling their hands apart and/or clench their jaw. It has 

been suggested that remote muscle activation results in the reduced presynaptic inhibition 

of 1a afferents allowing facilitation of reflex activity 23; Although it should be noted the 

influence of the Jendrassik manoeuvre has been shown to reduce with age 24, which could 

have implications if testing with participants of heterogeneous age groups. 

 

From these results the following conclusions were drawn: 

 

1. The tonic vibration reflex involves excitation of muscle spindles, as the reflex is 

reduced during a procaine block. 

2. The tonic vibration reflex involves more than one interneuron, as the reflex is also 

reduced by a barbiturate block and Ciba 28,882-Ba. 

3. The tonic vibration reflex is influenced by supraspinal levels as the Jendrassik 

manoeuvre influences tendon jerk depression. 

 

More recently  in 2011 Ritzmann et al. 25 investigated the effect of WBV on the H-reflex, the 

stretch reflex and the short latency response during hopping. The logic for this somewhat 

more functional approach was that the H-reflex bypasses the muscles spindles by direct 

electrical stimulation, whilst still operating at a spinal level via gamma motor neurons. The 

stretch reflex is modulated by alpha-gamma linkage and hopping is a complex motor task 

modulated at all levels i.e. spinal and supraspinal centres. The results obtained displayed 

significant reductions in the H-reflex, which occurred during WBV and had not recovered 

after 5 min rest. The stretch reflexes at the ankle (soleus and medial gastrocnemius 

muscles) were significantly reduced in a sitting position but not whilst standing; suggesting 

that active muscles, or neurophysiologically complex tasks increase reflex recovery. Finally, 

the short latency response of the muscle during hopping was not affected. Based on these 

results the following conclusions were drawn: 
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1. The basic responses of muscles to indirect vibration are similar to that of direct 

vibration. 

2. The greater influence of WBV on the H-reflex is a consequence of the H-reflex 

sensitivity towards pre-synaptic inhibition.   

3. Tasks which involve greater motor complexity e.g. standing or hopping, involve 

supraspinal centres which increase reflex recovery in active muscles via tonic 

vibration reflex inhibitory mechanisms. 

 

Despite being published 45 years apart, the findings from these studies reflect each other 

very well.  Both studies indicate that the greatest responses i.e. reflex depression, occur in 

inactive muscles and that pre-activation will diminish the effect of vibration on reflexes. 

Both studies also agree that underlying neurophysiological response is polysynaptic in 

nature and vibration does not facilitate reflexes under any conditions. Finally both papers 

agree that supraspinal centres influence the neurophysiological response to the effect of 

vibration. 

 

2.2.2 Neurophysiological risks and considerations in relation to exercise related 

vibration 

 

The risks and consequences of occupational vibration have been acknowledged and 

addressed by researchers and government organisations, such as the UK’s Health and 

Safety Executive, who provide information about the risks of industrial vibration and 

exposure during work commitments. This has been deemed necessary as both WBV and 

local vibration can lead to Hand and Arm Vibration Syndrome (HAVS) and/or debilitating 

conditions such as back pain (www.hse.gov.uk/vibration/). In addition, there are various 

methods by which nerve injuries can occur e.g. compression, traction and/or friction, often 

resulting from repetitive forceful motions in awkward or unusual positions 26 which are an 

integral part of sports activities, particularly during learning stages and/or regular 

participation that can be aggravated by vibration. Despite this, the neurophysiological and 

neuromechanical implications with regards to vibration during exercise have still received 

scant attention. One area which has been investigated is the risks involved with excessive 

vibration during cycling. Regular cyclists, particularly those who receive higher levels of 
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vibration e.g. off road cyclists, are at risk of upper limb compression neuropathy 27–30. 

Nerve injury is more frequently seen in the ulnar nerve than the median nerve, 31,32 with 

symptoms including weakness of grip and occasionally numbness of the fourth and fifth 

fingers 33. Prevention or management of the condition, if caught early, is relatively simple 

with recommendations including: use of correct protective equipment (padded gloves and 

handlebars), ensuring the correct set up of the bicycle e.g. seat and handlebar positions, 

regularly changing the position of hands whilst riding 34. Wilmarth and Nelson 31 performed 

a prospective study before and immediately after a four day 600 Km bicycle race and found 

70% of the study participants experienced either upper limb ulnar nerve motor, sensory or 

both symptoms following the race. These considerations are particularly relevant with the 

current development of Power Plate Ltd’s new PowerBIKE which has a vibrating mechanism 

acting upon the pedal crank. Of all the aetiological factors considered, the most common 

for ulnar nerve compression injuries is pressure on the heel of the hand during vibration 32. 

This obviously applies to other exercise situations, such as during press ups where even 

performing the exercise on a hard floor has been shown to cause ulnar nerve injury, 35. The 

presence of vibration, for example when completing push ups with hands on a vibrating 

platform, therefore increases the relative risk. This risk can again be exaggerated if the 

hands also receive impact e.g. during plyometric press ups, potentially leading to a 

debilitating condition of the ulnar nerve known as Hypothenar Hammer Syndrome 33. The 

ulnar nerve is not the only nerve at risk during vibration exercise. During press ups 

participants are required to place their hands directly upon the platform in a position 

similar to that of the ‘provocative positions’ which are positions which exacerbate 

symptoms used in the clinical diagnosis. Examples of provocative positions in carpal tunnel 

syndrome are the “reverse Phalen’s manoeuvre” (see Figure 5) where hands are held at 

shoulder height, wrist extended, palms touching with fingers pointing to the ceiling and has 

been shown to produce significantly higher carpal tunnel pressures than the normal 

Phalen’s manoeuvre which is flexed wrists with the backs of the hands placed together  36; 

as this position is utilised for its ability to generate unusual or uncomfortable sensations.  
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When combined with vibration it has potential to be an issue for carpal tunnel patients. 

Another test is the carpal compression test or Durkan’s test (see Figure 6) where direct 

pressure is placed upon base of the palm just distal to the wrist 37.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The carpal compression test has been shown to achieve a sensitivity of 87%, and a 

specificity of 95% 38, again confirming the risks of added pressure if the participant has a 

pre-existing condition. Median nerve compression injuries at the wrist are reported in 

athletes who perform repetitive gripping or sustained wrist hyperflexion or hyperextension 

or who are exposed to vibration 26. It should also be noted that the most severe nerve 

injury and structural changes (demyelination, interstitial and perineurial fibrosis) occur just 

Figure 5. Reverse Phalens's position. 

Figure 6. Durkan's carpal pressure test. 
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proximal to the wrists 39. If large diameter nerve fibres are affected prior to small fibres, as 

is often the case in carpal tunnel syndrome 40; then proprioceptive input will be reduced. In 

study considering the outcome of 55 carpal tunnel release operations performed due to 

vibration induced carpal tunnel syndrome, Hagberg et al. 41 found that the level of exposure 

prior to operation influenced the recovery after the surgery. These findings again confirm 

that neural structural changes occur in response to vibration. When considering the 

neurophysiological basis for nociceptive signals the gate theory suggested by Melzack and 

Wall 42 and further refined by Wall 43, suggests that there is a control system at the spinal 

level helping to modulate the signals transmitted to the brain. Essentially signals from small 

and large diameter fibres (noxious and non-noxious sensory signals respectively) initially 

communicate with an inhibitory interneuron within the spinal cord (see Figure 7). These 

inhibitory interneurons alter the ratio of the final ascending signal sent from the projection 

neuron. This process therefore regulates the intensity of the signal travelling up the spine 

to the brain. Consequently, if large nerve fibres are less active, there is less inhibition of 

nociception, in this instance it is said ‘the gate is open’.   
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Given that some pathological conditions, such as peripheral neuropathies and carpal tunnel 

syndrome 40, have been shown to damage large nerve fibres prior to small nerve fibres; this 

potentially provides one underlying mechanism for some clinical populations finding 

vibration exercise unpleasant. Although the concept that finding vibration unpleasant 

should not be restricted to clinical populations, Rittweger et al. 44 reported most subjects 

felt uncomfortable after approximately five minutes of WBV if they were not allowed to 

change position. It should also be noted that when considering the effect of vibration on 

peripheral nerves, Goldsmith et al. 45 suggested that the primary nerves affected by 

vibration white finger were the small nerve fibres. As nerve conduction studies displayed 

lower range sensory action potentials and nerve biopsies illustrated that neuronal damage 

had to be quite severe before large diameter nerve fibres were affected, despite 

conclusions being based on a small sample group (n= 6), the findings must be considered. A 

lack of nociceptive input decreases the effectiveness of the body’s protective mechanisms. 

This was recently confirmed in a study by Sandén et al. 46 who tested a cohort of office and 

manual workers for effects of combined hand/arm vibration on nerve conduction, 

especially the conduction of the large diameter nerve fibres; no relationship between 

exposure and distal neuropathy was observed. While this would suggest that vibration 

induced injury is unlikely to result in a condition that will further ‘open the gate’, it has 

clearly been shown that carpal tunnel syndrome can result in increased pain levels. 

However, it must also be considered that any condition which previously resulted in 

damage to large nerve fibres has potential to ‘open the gate’ (see Table 3 for conditions 

which ‘open/close the gate’). 
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Table 3. Conditions which open/close the gate in pain theory. 

 

 

 

 

 

 

 

 

 

There is also potential that a change in the ratio of peripheral stimulation results in ‘undue 

perception of exertion’ as described in Rittweger et al.44. It should also be noted that this 

process can be beneficial in pain reduction if large nerve fibres are not damaged or in 

neuropathies such as in diabetic small fibre neuropathy 50. Therefore, while gate theory has 

the potential to act as an underlying mechanism for perception of a WBV experience, more 

studies considering the perception of WBV exercise are needed. It is of interest to note that 

while the potentially different frequencies of vibration during exercise, compared to that of 

industrial applications, in combination with reduced exposure time, might not exaggerate 

pre-existing conditions; the process may be uncomfortable for the participants.  The key 

points from these studies are summarised in Table 4. 

 

 

 

 

               Factors that Regulate Spinal Gate Control 

                                Gate Open Gate Closed 

Physiological 

Aδ and/or C fibres active Aα or Aβ fibres active 

Overuse Relaxation 

Fatigue Strengthening/ Conditioning 

Improper Mechanics Monitored exercise 

Tired Rested 

Medical 
Extent of injury/- Medication 

Pathological condition Cooling/Heating 

Cognitive 

Focussing on Pain Distraction 

Anxiety/Fear Relaxation 

Depression Happiness 

Negative attitude Positive attitude 

Stress 
 

Prior Experience 

Compiled from 47–49
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2.2.3 Neurovascular risks and considerations in relation to exercise related vibration  

  

While generally neurovascular injuries in the hands of athletes are rare 51, the relatively 

high occurrence resulting from occupational exposure to vibration warrants consideration 

when introducing a participant to vibration exercise. Vibration introduced to the human 

body, whether whole body vibration or partial body vibration, potentially can influence 

peripheral vascular structure and consequently blood flow.  One of the most common 

conditions resulting from hand/arm vibration is Raynaud’s phenomenon (RP) and/or its 

secondary form Vibration White Finger (VWF). Both these are vasospastic conditions of the 

extremities for which the greatest risk occurs at frequencies 40-125 Hz 52. Widely available 

recreational vibration equipment can operate inside this range, therefore exposure risks 

further vasospastic responses. Typically, a vasospastic response, or excessive constriction of 

a blood vessel, will result in local pain, cyanosis (blue colour of the skin), pallor and altered 

sweat secretion 30. As peripheral sweat glands are under the control of the sympathetic 

nervous system, this suggests a global response as opposed to a purely local response. This 

hypothesis is strengthened by additional global responses to upper limb vibration, such as 

an increased heart rate 53, bilateral vasospastic responses to a unilateral hand vibration 

exposure 54 and vasospastic responses in the feet resulting from upper limb exposure to 

cold when assessing for hand/arm vibration syndrome 55–57. Local vibration to the palm of 

the hand has also been shown to result global responses such as increased skin sympathetic 

activity in the region innervated by the tibial nerve and causing increased perspiration of 

the sole of the foot 58. These responses have been attributed to both a global response via 

a centrally mediated sympathetic vasoconstrictor reflex and local responses within the 

blood vessels themselves 53. The connection between cutaneous vibration receptors 

(Pacinian corpuscles) and the sympathetic nervous system has previously been identified as 

postganglionic sympathetic fibres within Pacinian corpuscles 59. The connection between 

Pacinian corpuscles and sympathetic nervous activity was further supported by Hyvärinen 

et al. 21 who reported a constant relationship between vasospasms and the mean threshold 

for Pacinian corpuscle activation. It has therefore been suggested that continuous 

activation of these receptors could result in a  vasoconstriction a consequence of the 

reflexive efferent discharges 54. However, the resulting responses to vibration have been 

attributed to both a vasoconstrictor reflex and an active local vasodilatation, with both 
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mechanisms competing against each other 53. One potential underlying mechanism 

influencing local vasodilatation is local release of endothelial-derived relaxing factor (EDRF) 

and prostacyclin 54. The endothelium itself can be considered a dynamic interface between 

the vascular compartment and the extravascular space, acting in the roles of assisting in the 

regulation of protein flux, inflammatory cells into tissues, blood flow and prevention of 

thrombosis 60. The release of EDRF and prostacyclin can be stimulated by shear stress in 

isolated blood vessel sections 61,62.  As blood is a viscous liquid it is the principle cause of 

shear stress on the endothelium, particularly the blood that is contact with endothelial cell 

surface which does not flow at the rate of blood central to the blood vessels. However, 

unlike mechanical strain, shear stress is focussed on the endothelium and not transferred 

to local tissues 60. The mechanical stresses within vasculature and the predicted 

consequences as described have been mathematically modelled 63,64. It has also been 

shown that as blood flow increases an enhanced rate of prostacyclin release is observed 65. 

Therefore, it is conceivable that the endothelin-induced release of prostacyclin results from 

increased shear stress 66. The role endothelin-1 of has been investigated due to its ability to 

produce sustained vasoconstriction, therefore increasing shear stress and release of EDRF, 

however when endothelin-1 was introduced in the presence of a strong vasodilator (which 

abolished the vasoconstriction) no increase in EDRF was observed 66, which indicates that 

shear stress not the presence of endothelin-1 influenced the increased release of EDRF. 

Based on these findings the endothelium clearly has an important role in the response to 

shear stresses, potentially by activating cell signalling pathways which trigger effector 

responses, unfortunately to date it not known if these responses are direct 

mechanosensors i.e. they automatically respond to stress/strain, or they are 

mechanosensitive i.e. they respond to local signals produced in response to stress/strain 60. 

The effect of shear stresses on larger vascular structures have also been investigated by 

assessing pulse wave velocity and blood pressure at the ankles which can be used as 

predictor of peripheral arterial stiffness. To completely differentiate between peripheral 

and central arterial stiffness is problematical, however, it has been suggested that by 

obtaining wave velocity and blood pressure recordings at the ankles, peripheral influence 

would be greater 67. The findings indicated that changes in arterial stiffness reduced 

approximately 20 minutes after WBV exercise sustained, with reductions lasting for circa 40 

min. The authors hypothesised that the underlying mechanism is vasodilatation via vascular 
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endothelial function. This hypothesis is supported by reports that vibration during cycling 

resulted in an increase in the release of vascular endothelial growth factor (VEGF), a 

mitogen regulator of angiogenesis  and matrix metalloproteinases (endopeptidases) MMP-

2 and MMP-9 68, which have roles in vascular remodelling 69. Although, it should be noted 

that VEGF release following cycling with vibration was related to the participants training 

status as greater releases were noted in higher trained participants 68. It is not known if this 

was due to an increased production of VEGF or a release of increased stored levels of VEGF. 

It is possible that these changes also occur due to increased shear stresses as vibration 

during exercise has been shown to increase blood flow 70–72 and increased tissue 

oxygenation parameters 73,74. However, it should be noted that although vasospastic 

responses to vibration have been noted in the extremities; it has not yet been established if 

changes in tissue oxygenation are in relation to increased blood flow or to vasospastic 

responses in the feet.  

A final point of interest is that shear forces in blood vessels have also been shown to create 

mechanical risks which researchers and practitioners should be aware of. Two case studies 

have recently reported patients presenting with uniocular drops in vision clinically 

attributed to vitreous haemorrhage, the suspected cause in both cases was WBV. 

Bertschinger & Dosso 75 reported the case of a 43 year old man who presented with a 

uniocular drop in vision, the only reported change in recent activity was the introduction 

WBV for a period of two weeks prior to developing the condition. More recently Gillan et 

al.76 reported the case of vitreous haemorrhage with localised posterior retinal detachment 

in a 52 year old male. The patient presented with a uniocular drop in vision following a 

single session of WBV. While the authors acknowledge that causality cannot be 

categorically related to WBV, previous issues such as vitreous liquefaction has been 

reported in workers using pneumatic drills 77 indicating there is a need for caution, 

particularly if interacting with people who have previously suffered from this condition, and 

further research into this area. The key points from these studies are summarised in Table 5 
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2.3 Reporting issues in current literature 

 

An additional important area to be considered is the manner in which information from 

vibration exercise research is both received and recorded. Previously published literature 

reviews have illustrated the inconsistencies of current publications with respect to the lack 

of structure and standardisation (Lorenzen et al. 2009; Mikhael et al. 2010; Lau et al. 2011). 

The lack of standardisation creates two major issues. Firstly it makes systemic reviewing 

difficult and subsequent meta-analysis impossible. Secondly, it creates difficulties in 

undertaking safe and progressive research. For example, previous publications have been 

noted to either not report an amplitude 81 or include inconsistencies in the units within an 

article e.g. 3 cm amplitude in the abstract and 3 mm amplitude in the methods 82. While it 

can be assumed this was simply a typing error that survived editing it presents a risk that 

researchers unfamiliar with human vibration, or researchers who are simply less than 

vigilant, could base their practises or research on the information presented in the abstract. 

This would result in participants receiving ten times the intended magnitude of vibration!   

Despite recent publications detailing correct reporting strategies 78 and even papers 

providing a checklist for reporters to use e.g. Rauch et al. (2010) for WBV 84, for diagnostic 

accuracy tests, there are still papers using different terminology such as ‘peak to peak 

amplitude’ 85–88. Signal amplitude refers to the height of the signal waveform from the 

baseline. The peak to peak distance is the 

displacement (see Figure 8) not an amplitude 

83,89. While as a reporting issue this may seem 

to be a minor issue. In practise if a non-

vigilant researcher attempts to recreate the 

study there is potential for subjects to be 

exposed to double the amplitude, therefore 

increasing the exposure risk and of course 

producing data that is not applicable. 

Another issue to be considered is that not all 

equipment produces vibration via the same technique – or even in the same direction. 

Thoroughness when reporting details of studies such as the type of device, the sex of the 

participants, and the location of the participants on the equipment relevant to the centre 
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Figure 8. Vibration graph parameters. 
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vibration would make a difference to standardisation in the literature.  A final issue to be 

considered is the varying types of footwear used. It has been shown that different footwear 

influences the transmission of vibration (Marin et al. 2009). Although details of footwear 

are beginning to be included within the scope of the methods reported, the only form of 

effective standardisation to date is the removal of shoes from participants. While this 

approach is scientifically effective, it is not a transferable result for practitioners as 

recreational users will typically be wearing shoes. This lack of standardisation, combined 

with the plethora of areas investigated (see Table 6 for  examples of typical areas within the 

scope of vibration research), has resulted in reviews containing minimal numbers of papers 

in the review process; for example Mikhael et al. (2010) searched over 50 years of data yet 

only reviewed 6 papers. Typically within WBV exercise the focus of research focus is on 

functional outcomes from exposure to WBV, for example potential increases in 

performance; muscle or bone mass; balance etc. 

Table 6. Research parameters for human response to vibration (from Griffin 1990). 

Subjective Activity 

Absolute thresholds 
Subjective equality 
Subjective order 
Equality of intervals 
Equality of ratios 
Rating of stimuli 
Cross modality judgements 
Differential thresholds 
 

Vision 
Hearing  
Touch 
Proprioception 
Vestibular function 
Psychomotor performance 
Cognitive performance 
Vigilance 

Physiological Biodynamic 

Skeletal 
Muscle 
Nerve 
Cardiovascular 
Respiratory 
Central nervous system 
Endocrine/metabolic 

Body impedance 
Hand impedance 
Body transmissibility 
Head movements 
Hand movements 
Organ movements 
Energy absorbed 
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2.4 Thesis Aim 

The review of the literature illustrates that while the neurophysiological responses to local 

vibration are established, it has not yet been confirmed if these results translate to WBV 

vibration exercise. It is also shown that vibration induces significant changes in peripheral 

vascular function, though it is not clear if this is direct result of vibration exposure or a 

consequence of increased muscle activity. The overall aim of this PhD is therefore to 

address the underlying biomechanical and physiological responses in peripheral muscular 

and vascular function to whole body vibration. By establishing these responses 

practitioners and researchers in health related professions will be able formulate evidence 

based exercise regimes and research questions. 
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Typically the lower limb extensors, gluteus maximus and vastus medialis/lateralis, tend to 

be more active during the power stroke; lower limb flexors are more active from top dead 

centre through to 270: 92. The ankle plantar flexor activation varies dependent on the 

muscle insertion, with medial and lateral gastrocnemius being active through 30 - 270: and 

soleus being active through 45 - 270:; the ankle dorsiflexor, tibialis anterior, is typically 

active from 45 - 135:. While these typical values can be observed in a variety of studies 92, it 

should be noted that in trained cyclists there is a high heterogeneity in EMG patterns 93. 

Therefore direct comparisons must be approached with caution.  

3.1.2 Addition of vibration to cycling 

Based on the rationale that the addition of vibration would provide a greater stimulus to 

the cardiovascular exercise, Power Plate Ltd have been developing a vibrating stationary 

cycle. The powerBIKE has a mechanical innovation providing the user with the option of 

adding vibration to the stationary cycle via a clutch mechanism (see Figure 10). When 

activated the clutch mechanism pulls the pedal crank to an eccentric position which 

generates mechanical vibrations at a ratio of 20:1 i.e. 20 vibrations for full cycle of the 

pedals. As the vibration is generated mechanically the ratio is therefore generated at a 

fixed rate which therefore increases with increasing cadence. Therefore at 60 rpm the 

vibration frequency is 20Hz, at 90 rpm the frequency is 30Hz, at 100 rpm it is 33.3 Hz etc. 

The amplitude of vibration is fixed at 1 mm, resulting in a 2 mm peak-to-peak displacement.   

 

 

a  

b

 

Figure 10. PowerBIKE vibration mechanism, a = stationary cycle without clutch activated, b = clutch activated and 

vibrations being generated at the pedal crank. Images supplied by Power Plate ltd. 
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To date the powerBIKE is not yet available for public purchase as it is still under 

development and requires further validation in order to ascertain the physiological 

responses of self-generated vibration during cycling. Previous research has been limited to 

external vibration using stationary cycles directly attached to vibrating platforms in 

comparison to mechanical vibration generated by the crank 68,94. The focus of both of these 

studies was the cardiovascular system in combination with metabolic factors such as 

lactate production and vascular enzymes, proteins and factors related to vasoconstriction 

and dilatation. The results of these studies indicate that both global and local responses 

occur as a result of the introduction of vibration to cycling, with increases in oxygen kinetics 

and peripheral haematological makers relating to angiogenic regulation 68,94. To the best of 

the author’s knowledge, to date there are no studies which have considered the effect of 

mechanical vibration during cycling on the neuromuscular activity of muscles. The aim of 

this project is to determine the effect of mechanical vibration on neuromuscular activity. 

The hypothesis for the study is that the vibration mechanism will increase the 

electromyographic activation patterns of the lower limb muscle groups. 

 

3.2 Methods  

 

3.2.1 Participants 

 

Seven male participants volunteered to participate in this study. The mean and standard 

deviation (± SD) values of the subjects’ age, height and mass were 24.6 ± 2.3 years, 1.79 ± 

0.04 m and 74 ± 9 kg, and all subjects were right-leg dominant. All procedures had been 

previously approved by the University’s Research Ethics Committee and participants 

provided informed consent to participate.  
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3.2.2 Study design 

 

The format for this investigation was a randomised repeated measures study design. Each 

participant performed:  60, 70, 80 and 90 rpm on the powerBIKE with a randomised order 

of starting with vibration (VIB), or without vibration (NVIB). The bike was set at a fixed 

resistance (powerBIKE resistance setting 4) for 3 min at each cadence to reach steady state. 

The mechanical vibration was cadence-related with a ratio of 1:20 (pedal revolutions to 

mechanical vibrations) being equivalent to 20, 23.3, 26.7 and 30 Hz, 1 mm amplitude 

vibration respectively. 

 

3.2.3 Data collection and processing 

 

Retro-reflective markers were fixed to the pedal crank in order to define pedal positions of 

top dead centre (TDC - 0o) and bottom dead centre (BDC - 180o) during the duty cycle (see 

Figure 9) using 10 infrared retro-reflective cameras (Oqus, Qualysis AB, Sweden) recording 

at 500 Hz.  

Marker motion was tracked and all synchronous data exported in .c3d format for 

subsequent post processing in Visual3D (C-Motion).  Post processing of data was achieved 

via interpolation with a 3rd order polynomial function with a max gap fitting of 50 data 

points (equivalent to 0.1 s) and a Butterworth low pass filter (4th order 6 Hz cut off). 

Electromyography (EMG) was used to determine the activities of the major ankle flexors, 

quadriceps, hamstrings and hip extensors (see Figure 11).  Differential bipolar (10 mm 

centre to centre) surface electrodes (DE-2.3, Delsys Inc. Boston, MA, USA) were placed over 

the lateral gastrocnemius, anterior tibialis, vastus lateralis, biceps femoris and gluteus 

maximus  in accordance with SENIAM recommendations 95.   A single reference electrode 

was placed on C7 vertebrae and all leads connected to the electrodes were secured with 

tape to avoid artefacts from limb movements. Impedance was minimised by shaving and 

skin cleaning with alcohol swabs. EMG signals were amplified (1 k gain) via a Delsys Bagnoli 

system (Delsys Inc. Boston, MA, USA) with a bandwidth of 20-450 Hz.  EMG activity was 
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Benjamini-Hochberg False Discovery Rate 96. Significance was set at alpha = 0.05 for all 

tests. 

Due to significant differences in EMG amplitude analysis of the power required to turn the 

pedals at the different settings e.g. vibration on/off and various cadences, was completed 

using an ergometer calibrator (Lode, Holland). The calibrator performed an isokinetic 

analysis by physically rotating the pedal crank at specific cadences matching that 

performed during the investigation. Power measurements (Watts) were obtained at each of 

the cadences. The cadence, frequency, power and filtered EMG amplitude were input to 

Microsoft Excel 2010 for calculation of correlations, coefficients of determinations and 

generation of graph for presentation.  

 

3.3 Results 

 

The location of significant differences between mean EMG amplitude during vibration and 

non-vibration across the tested cadenced is displayed in Table 7. 

Both vibration and cadence resulted in significant increases in EMG amplitude of the 

muscles assessed. The only muscles which did display a significant increase in EMG 

amplitude during the VIB condition were anterior tibialis and gastrocnemius, all muscles 

with the exception of the semimembranosus muscle affected by increasing cadence.    

 

Table 7. Statistical difference between test conditions, NS = not significant,  = p < 0.05, *=p < 0.01. 

Muscle VIB vs. NVIB Cadence (significantly different from 60 rpm) 

    

Anterior Tibialis NS 90 rpm* 90 rpm* 

Gastrocnemius NS 90 rpm* 80, 90 rpm* 

Vastus Lateralis * 80, 90 rpm* 80, 90 rpm* 

Vastus Medialis * 80, 90 rpm* 80, 90 rpm* 

Biceps Femoris  90 rpm  90 rpm* 

Semimembranosus * NS NS 

Gluteus Maximus * 90 rpm* 90 rpm 
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addressed. To date there is no data regarding the vibration at any other location than the 

crank itself. The nearest contact point for the participants is the pedals, yet there is 

currently no information about the frequency or amplitude of vibration at this location. The 

lack of knowledge about the parameters at user interface points i.e. pedal, seat and 

handlebars, is a major limitation with regards to drawing conclusions about neuromuscular 

changes resulting from the addition of vibration. 

One area which must be addressed is the increased resistance caused by the addition of the 

mechanical vibration mechanism. As the frequency of the vibration mechanically generated 

it there is a perfect linear relationship between increasing frequency and increasing 

cadence. However, Figure 15 clearly shows that the vibration mechanism also results in 

increased resistance, with a strong linear relationship. Therefore, potentially the vibration 

itself did not result in any neuromuscular changes. Figure 16 confirms that the increase in 

EMG amplitude with vibration reflects the higher power required to turn the crank once 

the vibration mechanism is turned on. The relationship between EMG amplitude and 

increased cadence, resistance and vibration frequency is curvilinear, yet as the cadence, 

resistance and vibration frequency are proportional the change in EMG cannot be solely 

attributed to one of the parameters. 

The results indicate that at lower pace cycling (60-80 rpm) the increases obtained during 

cycling with and with vibration are linear and proportional. However, cadences within this 

range are deemed as a more economical rate reserved for higher demand phases of 

competition e.g. uphill cycling 99. The typical preferred cadence of professional cyclists is 

approximately 90 rpm 99. Interestingly this value is the only data point which deviates from 

the linear response observed in the datasets obtained. As there are not enough additional 

data points in this region it is not possible to establish if either a) this point is an 

exponential change or an ‘elbow point’ change in the data set, or b) if increases beyond the 

current range will be linear or curvilinear. 

Figure 14 displays the relative increase in EMG compared to increasing frequency and 

clearly indicates the rapid change in EMG activity around 27 Hz vibration. Unfortunately to 

best of the authors knowledge there is no other studies considering a range of vibration 

frequencies during cycling for comparison. Potentially 27 Hz could be a key frequency for 

obtaining neuromuscular changes. However, as previously stated the influence of cadence 
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and power cannot be distinguished from increasing frequency, therefore further studies are 

required to confirm this hypothesis.  

While the data obtained within the scope of this study cannot confirm or deny a vibration 

induced influence in the neuromuscular activity of the locomotor muscles. Given the 

additional data obtained during the scope of this study further experiments could be 

designed to establish the true influence of the addition of mechanical vibration during 

cycling. 

 

3.5 Summary 

 

This study confirms the hypothesis that the vibration mechanism of the powerBIKE 

increases the myoelectrical activity of the main locomotor muscles. The total muscle 

activity data appears to initially show a linear increase, before a non-linear increase in 

activity at 90 rpm (equal to 30 Hz vibration frequency). The underlying cause for the 

increase cannot be established as the key parameters assessed are proportionally related.  

The unavoidable mechanical relationship between power, cadence and vibration frequency 

is therefore a major limitation on any future research considering more than one cadence. 

As the powerBIKE is still currently under development, feedback has been provided to 

Power Plate ltd who has advised that changes will be made to the design of the prototype 

tested in this investigation. Based on the now obsolete status of the powerBIKE prototype 

further research within the scope of this PhD will focus solely on the whole body vibration 

platform. 
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CHAPTER 4: THE EFFECT OF WHOLE BODY VIBRATION ON LOWER LIMB 

TISSUE OXYGENATION 

 

4.1 Introduction   

 

Recent years have seen an increasing popularity of whole body vibration (WBV) platforms 

as an exercise modality and have been the focus of much scientific research. Recent 

reviews indicate that WBV is effective in increasing reflex and muscle activity in athletes, 

older adults and those with compromised health 10, increasing muscle power and reducing 

pain 8. To function effectively muscles need a supply of oxygen at the appropriate pressure 

and quantity 100. Typically, the volume of oxygen held within the blood of a healthy adult is 

20.1 mL of oxygen per 100 mL of blood 101. To date there have been few studies 

investigating the effect of WBV on tissue blood flow and oxygenation parameters. 

Nakamura et al. 102 were one of the first research groups to report that vibration exercise 

has different blood flow responses to occupational vibration. The observation that blood 

flow was increased to the digits of the hand was attributed to a vasodilatation response of 

the peripheral blood vessels to vibration.  Laser Doppler studies have shown that the 

application of both local vibration 103 and WBV during isometric weight-bearing exercise 71 

significantly increased skin blood flow without subsequent vasoconstriction during the 

recovery period of 10 minutes. Kerschan-Schindl et al. 70 reported a 100% increase of blood 

flow in the popliteal artery (from 6.5 to 13 cm∙s-1), corresponding to Lythgo et al. 72 who 

found an increased mean blood cell velocity in the femoral artery following WBV. 

Previously Hazell et al. 104 reported no difference in the femoral artery from WBV in 

addition to Button et al. 105 who found local vibration did not affect blood flow. Yamada et 

al. 106 considered the influence of vibration on blood flow to the vastus lateralis during 

isometric squats, with results indicating vibration induced greater depletion of oxygenated 

haemoglobin (Hb) and myoglobin (Mb) during squats and increased Hb/Mb after 

completion of the squats. Conversely, Cardinale et al. 73 investigated the effects of vibration 

during a static squat on vastus lateralis and medial gastrocnemius oxygenation, however no 

statistically significant results were found. Though it should be noted that Yamada utilised 

an oscillating platform and Cardinale utilised a synchronous vibration platform. To date 

there have been limited studies considering the effect of vibration platforms on muscle 

oxygenation. More recently Coza et al. 74 investigated gastrocnemius muscle oxygenation 
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during heel raise exercise in arteriolar occluded (AO) conditions with respect to 

performance and recovery, both of which are dependent on blood flow.  The results 

indicated that vibration increased oxygen utilisation during arterial occlusion and increased 

the recovery rate for both occluded and non-occluded conditions. 

 

4.1.2 Measurement of tissue oxygenation  

 

Techniques for measuring tissue oxygenation originated in the 1950’s where electrodes 

were placed in to tissues of interest using glass pipettes, though it has been reported that 

technical aspects of the approach was somewhat difficult 107. In the current scientific 

environment there is a variety of techniques to measure tissue oxygenation. As the designs 

of electrodes have improved it is possible to obtain measurements via direct insertion of 

catheters for oxygenation and partial pressures 108, arterial-venous samples can provide 

location specific or difference measurements of Hb saturation 109 and blood samples or 

diverted flow can be analysed for metabolites (such as lactate, pyruvate or 

phosphocreatine) by NADH fluorescence meters 109. All of these techniques require invasive 

procedures to either implant sensors or to obtain blood samples. To circumvent this issue 

scientists have employed Near Infra-Red Spectroscopy (NIRS) to measure blood flow and 

oxygenation. Quantification of NIRS parameters is achieved via the application of a 

differential path-length factor (DPF) with the Lambert-Beer law 110. NIRS has been shown to 

provide valid, non-invasive measurements regarding tissue oxygenation parameters 111–114 

which are highly correlated with those of strain gauge plethysmography 115 yet have the 

advantage of obtaining results in a single process without the participant experiencing 

discomfort 116.  

 

4.1.3 Near infra-red spectroscopy 

 

NIRS units function via an emitter and receiver which are placed on specific 

regions/muscles of interest and provide information on combined arteriolar, capillary and 

venular Hb concentrations 117. The physiological parameters are calculated via changes 
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detected in the wavelengths of the emitted light signals (see Figure 17) after light 

absorption by local blood and tissues e.g. skin and skeletal muscle.  

 

Figure 17. Diagram of NIRS emitter and receiver, adapted from Lima and Baker 
118

. 

Hb and Mb absorption spectra overlap and as such are indistinguishable with NIRS112, 

however, it has previously been reported that 90% of the NIRS signal is influenced by Hb 

and the remaining 10 % to Mb 119. Hb absorption at wavelengths of 760–800 nm is highly 

correlated with saturation of oxygen and changes in local tissue perfusion yet only has a 

marginal influence of skin blood flow 120,121. The level of absorption for oxygenated and 

deoxygenated Hb is equal at a wavelength of 800 nm, though at 760 nm the majority of 

absorption is in deoxygenated Hb allowing prediction of changing oxygen saturation during 

monitoring 120 (see Figure 18).   

 

 

 

 

 

 

 

 

 

Figure 18. Representative changes in the wavelength of the emitted light (a). b Displays the 

corresponding change in oxygenation saturation. Figure taken from Liu et al.
121

. 
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The levels of signal changes obtained are dependent on both oxygen delivery and rate of 

use 122,123. The ratio of oxygenated Hb to total Hb provides an index of tissue saturation 

known as the Tissue Oxygenation Index (TOI), which is expressed as a percentage 111,124. 

The final parameter associated with NIRS signals is the Normalised Tissue Haemoglobin 

Index (nTHI) which is a measure of the total Hb in the tissue and is therefore highly 

influenced by changes in blood flow 74.  

The aim of this study was to investigate the influence of WBV on skeletal muscle tissue 

oxygenation parameters during simple dynamic movements i.e. heel raises, in order to 

establish fundamental physiological changes that occur. The hypothesis of this study was 

that acute increases in blood flow during dynamic exercise with WBV vibration will protect 

peripheral blood volume levels and that resulting differences are detectable by NIRS-

derived muscle oxygenation parameters. 

 

4.2 Methods  

 

4.2.1 Participants 

 

The format for this investigation was a randomised cross over study design. This study was 

carried out in accordance with University Ethics Guidelines and the ethical standards of the 

Declaration of Helsinki. All participants gave informed consent and received familiarisation 

of the procedure before data collection. Twenty physically active subjects (14 male, 6 

female, age 29 + 10.4 years, height 1.75 + 0.09 m, weight 76.2 + 17.2 kg), with no recent 

history of lower limb musculoskeletal disorders or peripheral vascular problems were selected 

for inclusion in the study.  

 

4.2.2 Study design 

 

All heel raise exercises were performed on a Power Plate pro6 (Power Plate Ltd) whole 

body vibrating platform (40 Hz 1.9 mm vertical displacement), with either NVIB or VIB being 

utilised in ten alternating sets of 15 heel raises each. The initial set for each participant was 

randomised (VIB or NVIB). The exercises were completed using a metronome operating at 1 
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Hz to ensure all exercises were completed at the same pace. The  participants’ were 

instructed to move at a pace of 0.5 Hz i.e. one second up on to toes to maximum heel raise 

and one second down to complete flat foot and to ensure each repetition was a full heel 

raise i.e. as far up onto their toes as possible. Participants’ were also instructed to keep a 

light bend on their knees, equivalent to approximately 3-5:. During straight leg heel raise 

activity although the soleus muscle contributes to the movement, the prime activity comes 

from the gastrocnemius which is mechanically better positioned to generate full power 

while the knee is extended compared to when flexed 125,126. To reduce confounding factors 

from differing levels of cushioning in shoes participants were asked to remove shoes and 

socks during testing. 

 

4.2.3 Data collection and processing 

 

Tissue oxygenation parameters were obtained using a NIRO 300 (Hamamatsu Photonics, 

Japan), the emitter and recording sensor were placed on the right lateral gastrocnemius 

with the central distance between the emitter and detector 1/3 of the distance between 

the head of the Fibula and the Calcaneus. While there are no specific guidelines on 

placement of the location of NIRS sensors, the guidelines for placement of EMG sensors 95 

typically occur over the widest part of the muscle belly, therefore are also suitable for NIRS 

sensors. A constant distance of 4 cm was maintained between the emitter and the 

detector. Analogue output to via a USB AD board allowed synchronous oxygenation and 

motion data capture. One retro-reflective marker was placed on the right lateral Malleolus 

and tracked for 60 seconds at 20 Hz to determine ankle motion (Oqus3, Qualysis AB, 

Sweden).  

Marker motion was tracked and all synchronous data exported in .c3d format for 

subsequent analysis in Visual3D (C-Motion).  Motion data was filtered (6Hz, 4th order low 

pass Butterworth filter), maximal and minimal vertical displacements were defined from 

which vertical ankle displacements were determined as well as total exercise time.  Voltage 

calibration was used to convert oxygenation signals to appropriate values; these data were 

then smoothed using a 0.2 Hz 4th order low pass Butterworth filter. All signals were baseline 

corrected relative to the first 5 seconds of data prior to initiation of the exercise.  Maximal 

or minimum values during the exercise period were used to determine absolute 
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concentration changes for deoxyhaemoglobin (ΔHHb), oxyhaemoglobin (ΔO2Hb), total 

haemoglobin (ΔcHb), and tissue oxygenation index (TOI) and normalised tissue 

haemoglobin index (nTHI). The magnitude of change in signal parameters was assessed via 

the slope of the TOI and the nTHI graphs as these figures are representative of all signal 

parameters. The slope for the TOI during the normalised exercise period was calculated via 

the following equation: 
 

Equation 1:             
    

     
  

 

The pattern of change for nTHI was different from TOI, with an initial decrease returning to 

baseline after completion of the exercises. Therefore the slope for the nTHI graph was 

calculated by the following equation: 

  

Equation 2:             
(                    )

     
 

 

4.2.4 Statistical analysis 

 

Mean values of the five VIB and five NVIB repetitions were determined for each participant 

and group mean data are presented as means ± SEs. Data were checked for normality 

(Shapiro-Wilk test) and between-conditions analysed using a Paired-Samples T-Test. Cross 

correlation analysis was completed to identify any relationship between movement and the 

cyclical changes observed in some of the oxygenation parameters. Gender differences were 

assessed using one way ANOVA. Statistical significance was set at alpha = 0.05 for all tests. 

PASW Statistics 18 software (IBM Corporation, USA) was used for statistical analysis. 

 

 4.3 Results  

 

No significant differences were observed in vertical ankle displacements (NVIB: 9.7 ± 0.4 

cm, VIB 9.2 ± 0.02 cm) or in the time taken to complete each set of exercises (no vibration 

29.4 ± 0.2 s, vibration: 29.3 ± 0.3 s). Peak changes in NIRS muscle oxygenation parameters 

during heel raise exercises between NVIB and VIB conditions are shown in Table 8. 

 











46 
 

Table 9. Gender comparison for all parameters (mean ± SE), * = significant difference between genders. 

Parameter Gender NVIB  VIB  

Vertical 
displacement 

male 0.1 ± 0.01 0.1 ± 0.003 

 female 0.1 ± 0.003 0.1 ± 0.003 

Duration male 29.4 ±   0.3 29.3 ± 0.4 

 female 29.6 ±  0.1 29.5 ± 0.1 

Δ O2Hb male 19.5 ± 1.6 15.7 ± 1.7 

 female 14.4 ± 1.3 11.1 ± 1.2 

Δ HHb male 15.7 ± 1.6 16.1 ± 1.7 

 female 8.9 ± 0.9 8.9 ± 0.5 

Δ CHb male -8.1 ± 1.2 -2.9 ± 0.9 

 female -8.0 ± 2.4 -5.8 ± 2.5 

Δ TOI male 19. ± 1.4 17.7 ± 1.3 

 female 15.6 ± 1.3 15.0 ± 1.3 

Δ THI male -3.1 ± 0.7 -1.1 ± 0.7 

 female -4.5 ± 0.8 -2.9 ± 0.6 

TOI slope male -0.7 ± 0.07 -0.7 ± 0.06 

 female -0.5 ± 0.04 -0.5 ± 0.06 

nTHI slope male 0.2 ± 0.02 0.2 ± 0.03 

 female 0.1 ± 0.02 0.1 ± 0.03 

 

 

4.4 Discussion 

 

The results obtained indicate that there were significant differences in tissue oxygenation 

resulting from the addition of whole body vibration to heel raise exercise. Whilst NIRS does 

not precisely measure blood flow, changes in Hb levels are indicative of changes in blood 

volume in the area assessed 112,127,128. Variation in Hb levels changes can also be an 

indication of oxygen delivery and utilisation in non-occluded conditions 129. 

The changes in cHb observed in this study suggest an initial decrease in blood volume/flow, 

potentially a consequence of ‘start up costs’ of exercise, followed by an increase in blood 

volume/flow. The differences observed in cHb, nTHI and O2Hb suggest that the addition of 

vibration during exercise reduces the depletion of these measures. Since the nTHI is based 

on an assessment of an unknown path length the actual tissue volume assessed is not 

known, therefore the units obtained are arbitrary units. However, the relative level of 

changes are an indication of changes in blood volume or blood flow, with potential to 

* * 

* * 
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discriminate between arterial (decreased nTHI) or venous (increased nTHI) occlusions 130. 

During exercise decreased levels of available oxygenated Hb in conjunction with increased 

levels of deoxygenated Hb are indicative of local muscular hypoxia; therefore any 

intervention which alters these parameters has potential to influence local muscle hypoxia. 

The pattern of change observed in nTHI is very similar to that reported by Coza et al. 74, 

who investigated the effect of vibration in arterially occluded and non-occluded blood flow 

in the lower limb. The results indicated changes in nTHI parameters, which were attributed 

to increased blood flow.  

The absolute decrease in in TOI was less than that observed in the study of Yamada et al. 

106, though different muscles were analysed (lateral gastrocnemius vs. vastus lateralis). 

However, the pattern of changes in TOI was again very similar.  These results also reflect 

previous research which has shown the rate of blood flow in the popliteal artery doubles 

during vibration exercise 70. The increase in blood flow potentially explains the lower levels 

of depletion in oxygenated Hb found in this study. Influx of blood to exercising muscles 

brings additional Hb and, in the absence of occlusion, will influence the recorded levels of 

oxygenated Hb.  

This increase in blood flow and volume will also influence tissue saturation and therefore 

TOI 131 which may explain the lack of a significant difference observed between the exercise 

conditions.  The similar Δ HHb profiles observed during exercise with and without vibration 

suggest that the mechanical and metabolic costs of each protocol were essentially the 

same. The only parameter noted to have a significant difference was Δ HHb between male 

and female participants. It could be suggested that female subjects were subjected to less 

mechanical work (due to lower body masses), or that gender differences in subcutaneous 

adipose tissue thickness affected NIRS signals 132. However, further work in this area is 

required to determine the relative impact of this on each of the NIRS signals. 

Interestingly the inverse relationship between changes in the levels of nTHI and position of 

the ankle suggests that systematic drops in HB occur at the point in time when the ankle is 

at its highest point i.e. at the peak of muscle contraction. This decrease could either be 

indicative of maximum use of Hb at the point when the muscle is working hardest, or 

reduced blood flow due to the muscle working isometrically for a brief period at the point 

of maximum heel raise. It should also be considered that a potential consequence of 

vibration exercise is a shift in the type of fibres being utilised to perform the exercise from 
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type II fibres to type I fibres resulting in greater increases in HHb levels which was not 

observed.  In order to address these questions the exercise protocol could be repeated 

whilst recording electromyographic activity to provide a greater insight into the possibility 

of muscle fibre activity. 

Previous studies have investigated the role of the gastrocnemius contraction as a muscle 

pump in relation to blood flow and venous return. The validity of muscular contractions 

influencing venous return remains a controversial issue with many authors reporting no 

influence and suggestions that increased blood flow is more likely to be a result of 

increased vasodilatation 133–136. 

It should also be considered that a more distal response, such as vasospasm in the feet, 

could result in a resistance to blood flow from the calves. Recently Thompson et al. 137 

reported a case of occupational exposure resulting in vasoconstriction in the feet but not 

the hands; diagnostic testing indicated normal ankle brachial indices but reduced digital 

plethysmographic waveforms in the toes when exposed to cold. However, it should be 

noted that the case study was based on a miner with 18 years of exposure. While this 

potential mechanism has not been fully investigated and to the author’s knowledge never 

investigated in response to WBV exercise, this type of local response could explain the 

results obtained. 

A final explanation to consider is that of a global response to vibration. Previous 

investigations of the extremities have indicated that local vibration to the hand has resulted 

in changes in circulatory disturbances of the foot 53,138. These changes have been attributed 

to a central sympathetic vasoconstrictor reflex elicited by vibration 53. These findings 

partially confirm the earlier work of Greenstein and Kester 54 who investigated the effect of 

unilateral hand vibration with and without a nerve block. They found that in the majority of 

cases a bilateral response suggestive of a sympathetic vasoconstrictor reflex in the absence 

of a digital nerve block was obtained. When the nerve block was administered the response 

was absent and vasodilatation was noted. However, it should also be noted that in some 

subjects vasodilatation was noted without the nerve block. The authors concluded that 

acute vibration may elicit both a vasoconstrictor reflex and an active local vasodilatation, 

with both mechanisms competing against each other. In 2002 Schweigert 139 conducted a 

systemic review to establish if competing hypothesis regarding the underlying mechanisms 
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for circulatory disturbances of the extremities in response to vibration could be developed 

into an established theory. Unfortunately the studies were found to have significant validity 

flaws such as lack of independent variables, selection and survivor bias, the assessment of 

confounding exposures and the lack of blinding of investigators. The ultimate conclusions 

were that there is some evidence for lower limb vascular symptoms (cold induced 

vasospasm) to be associated with Hand Arm Vibration Syndrome (HAVS) but not in workers 

exposed to vibration without HAVS. The effect on local vascular structures has also been 

investigated by assessing pulse wave velocity and blood pressure at the ankles as an 

estimate of peripheral arterial stiffness. While it is difficult to distinguish between 

peripheral and central arterial stiffness, it was suggested that by obtaining measurements 

at the ankles peripheral influence would be greater 67. Results obtained indicated that 

arterial stiffness reduced approximately 20 minutes after WBV exercise and lasted for up to 

40 min. The authors proposed that this may reflect vasodilatation via vascular endothelial 

function. This is supported by evidence that vibration during cycling resulted in an increase 

in the release of vascular endothelial growth factor 68 which could result from increased 

shear stress in blood vessels, as mathematically modelled by Yue et al. 63-64. 

 

4.5 Summary 

 

The results obtained indicate that the addition of vibration to heel raise exercise did not 

increase the metabolic cost of completing the exercise for the lateral gastrocnemius 

muscle. However, the addition of vibration during exercise does decrease the reduction in 

local muscle oxygenation parameters, potentially indicating less reduction in tissue blood 

volume and/or increased blood flow, this pattern of responses is indicative of reducing 

exercise induced tissue hypoxia. Nonetheless, it is important not to over interpret these 

results. To date it has not been fully established if the observed changes are a direct result 

of increased blood flow to the leg, or a consequence of a vasoconstriction response in the 

feet creating blood pooling effect in the legs. Without confirming the influence of WBV on 

blood flow in the feet the hypothesis that WBV protects depletion in peripheral blood 

volume cannot be confirmed. 

Assessing the level of lower limb muscular activity can also be achieved by measuring the 

volume and frequency of electrical activity of the musculature during exercise. By repeating 
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the protocol adopted during this study and measuring electrical activity greater insight into 

the influence of vibration on the lower limb could be achieved.  Further studies should be 

undertaken to investigate these potential explanations prior to conclusions being formed 

and exercise/rehabilitation recommendations being issued.  
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CHAPTER 5: THE INFLUENCE OF WHOLE BODY VIBRATION ON THE CENTRAL 

AND PERIPHERAL CARDIOVASCULAR SYSTEM 

 

5.1 Introduction  

 

It is well documented that occupational vibration at high frequencies, above 100 Hz, is 

potentially hazardous to health 89. Risks include; structural damage to  blood vessels, 

reduction in blood supply, venous insufficiency, nerve damage leading to paraesthesia and 

in severe cases arthritis and Vibration White Finger Syndrome 140,141. It has, however, been 

suggested that at low amplitude (0-5 mm), low frequency (5-50 Hz ) WBV using specifically 

designed exercise equipment, may have the potential for enhancing exercise  142. Typically 

WBV investigations have been used for short durations, with cumulative exposure of up to 

15 min, to investigate influences on the central cardiovascular system.  These studies have 

reported statistically, though not physiologically, significant increases in oxygen 

consumption and heart rate 143, significant increase in both systolic and diastolic blood 

pressure (BP) 144, significant increases in diastolic blood pressure only 145 and no significant 

changes in blood pressure 67,146.  Despite the conflicting results from central cardiovascular 

system investigations, other studies have reported additional cardiovascular benefits, even 

in the absence of significant changes in heart rate and blood flow, in the form of the 

attenuation of the increases in leg and abdominal aortic arterial stiffness following acute 

WBV and reduced blood pressure following repeated WBV exercise sessions 67,145,147,148. 

Although to date there is no conclusive evidence, it has been speculated that changes in 

arterial stiffness are a direct result of WBV induced oscillations creating mechanical stimuli 

on blood vessels combined with changes in vascular endothelium function 67. However, the 

reported effects of WBV on peripheral blood flow velocity (BFV) are inconclusive, with 

some studies indicating an increase in BFV 71,97,149 and others reporting decreases or no 

change after vibration 104,105. Peripheral blood flow has also been shown to significantly 

increase in response to increase in temperature 150, which has been shown to increase in 

response to WBV 151. The relationship between peripheral temperature and peripheral 

blood flow has been attributed to ‘thermoregulatory peripheral vasoconstriction’ 150. 

Vasoconstriction, or a reduction in the cross sectional area of a blood vessel, is a 

physiological mechanism to control the rate and volume of blood flow. The opposite of 
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vasoconstriction is vasodilatation 152.  An increase in the cross sectional area of a blood 

vessel decreases the physical resistance and leads to an increase in blood flow, a decrease 

in cross sectional area increases resistance, decreases blood flow and potentially results in 

blood flow being fully or partially redirected to other blood vessels 153. This redistribution of 

blood is one possible explanation of an underlying mechanism for the reduction in 

depletion of blood observed in the investigation detailed in Chapter 4. The potential for 

vibration to induce vasoconstriction is not a positive prospect; this in itself could become a 

risk factor for patients with peripheral vascular conditions. Therefore the area requires 

further research to establish the influence of WBV on peripheral blood flow. 

5.1.1 Measurement of blood flow  

 

When measuring blood flow velocity the technique utilised is typically achieved with either 

strain gauge plethysmography, Ultrasound Doppler, Laser Doppler, LED sensors such as 

NIRS units or photoplethysmography (PPG). Strain gauge plethysmography is typically 

applied to the forearm or calf of participants. Blood flow to the limb is controlled via an 

inflatable cuff. Inflation pressures of 50mmHg are sufficient to occlude the blood flow in 

veins but not the arteries 154. A strain gauge approximately 5-10% smaller in diameter than 

the forearm/calf at its widest point is placed around the area to be assessed. The strain 

gauge is filled with a conductive fluid e.g. mercury and attached to electrodes to enable an 

electrical current to be passed through. As blood flows to the area an increase in diameter 

changes the resistance of the strain gauge allowing calculation of the blood flow to the area 

155. The results from strain gauge plethysmography have been used to validate NIRS, with 

results being highly correlated 115, though it has been reported to have the advantage of 

obtaining results in a single process with the participant experiencing discomfort 116. 

5.1.2 Laser Doppler measurements 

 

Ultrasound Doppler is available in two forms: 

 

1. Transcutaneous Ultrasound Doppler 

Doppler ultrasound relies on the principle defined by Johann Doppler, in which the 

frequency of a waveform is dependent on the velocity of movement between the 

source and observer of the sound or light generated. With regards to ultrasound, the 
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position of the backscattered signal, not a shift in the frequency of the signal, though the 

probes are generally still referred to as Doppler probes 158. 

Laser Doppler measurements provides can provide measurements including: blood flow 

velocity, in both forward and reverse flow, the ratio between forward and reverse flow in 

relation to the duration of a cardiac cycle (pulsatility index), and the ratio between the 

forward flow at the start and end of each cardiac cycle (resistance index). Resistance index 

can indicate changes in peripheral resistance via vasodilatation or vasoconstriction of 

capillaries in distal muscles 70. 

NIRS units are also based on an optical sensor system as reviewed in Chapter 4. An 

additional optical system used for estimation blood flow velocity in the superficial or 

dermal blood vessels is known as photoplethysmography (PPG) or venous 

photoplethysmography (VPPG). PPG is a low cost technique that focuses on venous 

function in the micro-vascular bed 159 and works in a similar way to NIRS, where a light 

signal is emitted through the skin and changes in wavelength allow calculation of 

parameters such as blood flow velocity, depletion of blood in micro-vascular and levels of 

oxygenation 120.   

The aim of this investigation was to identify the influence of WBV on the central or 

peripheral cardiovascular system during quiet standing WBV whole body vibration 

exposure.  In order to address this question, the effects of acute WBV participant’s heart 

rate, blood pressure, skin temperature in the lower leg and foot and BFV in the foot were 

investigated.   

The hypothesis for the study was that the vasospastic responses in the feet resulting from 

vibration exposure created peripheral resistance resulting in blood pooling in the lower 

limb.  
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5.2 Methods 

 

5.2.1 Participants 

 

This study was carried out in accordance with University Ethics Guidelines and the ethical 

standards of the Declaration of Helsinki. All participants gave written informed consent. 

Twenty participants (12 male 8 female, age 24 + 3 years, height 1.74 + 0.09 m, weight 66 + 

10 kg, calf girth 0.36 + 0.03 m) with no recent history of illness or lower limb 

musculoskeletal disorders, peripheral vascular problems or contraindications to vibration 

exposure were recruited for the study. 

 

5.2.2 Study design 

 

The format for this investigation was a randomised repeated measures study design. 

Participant’s cardiovascular parameters including: peripheral skin temperature, peripheral 

venous function, BFV in the dorsalis pedis artery, blood pressure, heart rate were assessed 

on two separate sessions, with at least 24 hours rest between data collection. Subjects 

avoided caffeine, alcohol and exercise for 24 hours before both test days in order to 

prevent any excitatory influences on the cardiovascular system. The study was divided into 

two separate phases. Test one (T1) consisted of the collection of measurements for blood 

pressure, micro-vascular blood volume depletion and temperature, whereas test two (T2) 

determined the BFV and heart rate. Participants experienced 5 min of vibration (1 min on 1 

min off), on both testing days, as shown in Figure 26. Following vibration an additional 4 

min of recovery data collection was completed.  
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Figure 26. Chapter 5 data collection procedure. 
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The venous function data collection protocol required participants to sit motionless while 

VPPG signal stability was obtained; the participants then moved their foot in and out of 

dorsiflexion in time with a computer generated audio and visual signal which was used to 

promote consistent movements resulting in 10 ‘foot taps’. This process was repeated 3 

times consecutively, following the manufacturer’s guidelines and is postulated to 

effectively lower the levels of local venous blood.  

After the movements were completed the participants again sat still while the recovery 

patterns were measured. The participants where then placed in a standing position on a 

Power Plate pro6 whole body vibration platform (Power Plate Ltd) for a period of 5 min to 

allow stabilization of orthostatic pressure, in order to obtain baseline measurements, skin 

temperature, and blood pressure.  

Once the values were recorded, 5 sets of 60 s of vibration (40 Hz 1.9 mm vertical 

displacement) with 60 s recovery were introduced.  Skin temperatures were carried out in 

each set after 30 s of vibration. Blood pressure was obtained, at the mid-point of the rest 

periods, and temperature was recorded 30 s in to the rest period. This process was 

repeated throughout the intervention process. It was not possible to collect venous 

function data during the vibration section of the protocol as the vibration interfered with 

the signal acquisition. Once the final 60 s of vibration were completed the participant was 

immediately seated, and blood pressure, venous function and skin temperature was 

reassessed.  

In T2 the participants followed the same two acclimatisation periods (sitting and standing); 

however during the standing acclimatisation baseline heart rate was recorded using a Polar 

Heart Rate monitor (Polar FT1, Warwick UK).  For normalisation, heart rates were 

expressed as a percentage of the individuals predicted heart rate maximum (HRmax) 

estimated by Equation 3 160. 

 

Equation 3: HRmax = 207 - (0.7 x age)  

 

Once the standing acclimatisation was completed baseline blood flow measurements were 

taken from the dorsalis pedis artery using a Rheo Dopplex II with an 8 MHz laser Doppler 

probe. The location of the dorsalis pedis artery was identified medial to the navicular bone 
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as detailed in 161, BFV and resistance index were simultaneously obtained. Blood flow 

measurements were taken during the rest periods between vibration exposures and every 

minute during the recovery phase.  

 

5.2.4 Statistical analysis 

 

All data was collated in Microsoft Excel and exported to MatLab (MathWorks, USA), where 

Lilliefors test for normal distribution was used to identify whether parametric or non-

parametric analysis should be implemented.  

Data that was normally distributed is displayed as means + 1 standard deviation (SD), data 

that was not normally distributed is displayed as median + 1 median absolute deviation 

(MAD). For Grouped data pooled variance (PVSD or PVMAD) is used to display the level of 

variance across the group using the Equation 4.  

Equation 4:                  (  )  √
∑ (    )  

  
 

∑ (    ) 
 

 

 

Where n = the number of results in a group/repeated measure and σ represents variance 

(SD or MAD depending on data distribution). 

For testing between conditions, where data was normally distributed a repeated measures 

ANOVA was applied and the Friedman’s analysis of variance test was used for data that was 

not normally distributed. Where significant differences were found Wilcoxon matched pairs 

analysis was completed on each stage compared to baseline, with P values adjusted using 

the false discovery rate method 96. To assess the impact of variance on significant results 

effect sizes were calculated using matched pairs biserial correlation coefficient previously 

detailed 162, with each stage being compared to the baseline values. Significance was set at 

alpha = 0.05 for all tests. 

Equation 5:                                                   
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Where R+ and R- are the positive and negative ranks respectively, T is the smaller of the two 

values and N = the number of pairs of scores. The results are classified as small = ≤ 0.2, 

medium 0.3 ≥ 0.7 and large = ≥ 0.8. 

 

5.3 Results 

 

Initially there were twenty participants in the study; however, only seventeen were 

available to complete both testing procedures.  The following results are therefore based 

on data obtained from these participants. Heart rate data was the only normally distributed 

data set, all other variables were found to have non-Gaussian distributions. 

The results for peripheral temperature did not display significant differences throughout 

the duration of testing. There were no significant differences in the level of change in skin 

temperature at any of the locations recorded. Median skin temperatures + 1 PVMAD were: 

TA = 33.7 + 0.03o, PL = 33.3 + 0.04o, EHB = 30.4 + 0.04o and AH = 29.3 + 0.06o. 

The results obtained for blood pressure and venous function are displayed in Table 10. The 

blood pressure displayed some variance between subjects, as indicated by the pooled 

variance. However the within subject differences did not change, as indicated by a lack of 

significant differences in median values for standard blood pressure values at any stage in 

of the intervention. 

The results for venous function indicate that the volume of blood displaced displayed large 

variance between subjects, as indicated by the pooled variance. However, as with blood 

pressure, the within subject changes did not change, as indicated by a lack of significant 

differences in median values. 
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The primary findings of this study were the significant changes that were observed in the 

BFV of the dorsalis pedis artery.  BFV is influenced by both central and peripheral factors 

such as: heart rate, blood pressure, muscle temperature and cross sectional area of local 

vasculature 150,153. The data show no significant changes in the central cardiovascular 

parameters of heart rate or blood pressure. There were also no significant differences 

observed at any of the four locations where skin temperature was measured, though 

typical temperature on the foot were lower than that observed in the calf. The difference in 

temperature is likely explained by the reduced density of local muscle tissue in the foot 

compared to the leg. The lack of change in temperature is in contrast to previous reported 

values 104 where measured skin temperatures 0.025 m superior to the lateral malleolus of 

the left ankle during static squats reported a maximum increase of 2ο. However, it should 

be noted that this was following a much longer period of 15 min of WBV exposure than the 

5 min used in the current study.  While differences in skin temperature did not display 

significant changes throughout the protocol, it cannot be assumed that this indicates no 

change in muscle temperature. Cochrane et al.151 compared the effects dynamic squats 

during WBV, cycling and soaking in a hot bath and showed that intramuscular temperatures 

rose by 2: for all conditions, with no concomitant change in skin or core temperatures. 

The results obtained for peripheral venous function using VPPG were not significant. 

However, during data collection immediately after vibration exposures the VPPG system 

required 90 – 120 s before sufficient signal stability was obtained to allow measurement. 

Previously venous function investigations using strain gauge plethysmography indicated 

improved venous drainage 163. Therefore it could be suggested that if changes in venous 

function were occurring immediately post recovery, the fluctuating results interfered with 

VPPG sensors.  Based on this hypothesis significant changes were potentially missed. 

However, if this were the case the significant changes were transient and therefore unlikely 

to have a significant physiological effect on healthy participants. In addition, the fact that 

the BFV resistance index did not change  infers that there was no reduction in peripheral 

resistance via widening of capillaries in distal muscles 70.  

Analysis of the peripheral BFV was completed with each repeated measure being compared 

to the baseline value. The first three values obtained following the vibration exposures, 

were significantly increased from the baseline value with the greatest effect sizes seen after 
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the second and third exposures. Of all measures obtained the data following the second 

exposure displayed the largest variance, equivalent to approximately 50% of the median 

value obtained. However, this ratio is equivalent to values for baseline femoral artery BFV 

reported in Lythgo et al. 72, who reported increases of over 300%. Hazell et al. 104 also 

considered femoral blood flow, during a minute on minute off protocol totalling 15 min, 

resulting in the mean femoral blood flow doubling, though with particularly high variance. 

Kerchan-Schindl et al. 70 investigated the effect of WBV on popliteal artery blood flow over 

9 min, the results displayed doubling of BFV from 6.5 to 13.0 cm·s-1.  Lohman et al. 71 

examined calf skin blood flow over three minutes of vibration, significant changes were 

only observed following direct skin vibration, as opposed to standing on the platform 

performing semi squats. The Lohman et al. concluded these changes were a consequence 

of mechanical friction upon cutaneous cells, potentially causing greater nitric oxide 

circulation resulting from the pulsatile stresses. These physiological responses could explain 

the occurrence of erythema previously reported 70,144,164. Erythema is an additional example 

of reported changes in peripheral venous function following the introduction of vibration. 

However, participants often quickly adapt and after two or three sessions of WBV no longer 

display signs of erythema 144. In the current study no participants showed signs of 

erythema. Rittweger et al.144 used laser Doppler techniques to measure skin blood flow on 

the calf and foot, but did not state exactly where on the foot the measurements were 

taken. The reported increases were 1.8 – 2.8 times that of baseline values. However, as 

these were arbitrary units and cutaneous not arterial measurements, the absolute values 

detailed were not directly comparable to results in the current study. It should also be 

noted that squats were performed until exhaustion rather than quiet standing adopted in 

the current study.  

Considering the results obtained in the current study did not display significant changes in 

heart rate, blood pressure or resistance index, it can be inferred that changes in BFV can be 

attributed to changes in vascular cross sectional area prior to the distal capillaries or the 

influence of muscular contractions proximal to the extremities. However, further research 

needs to be completed in order to confirm this hypothesis. Considering only the first 3 of 

the 5 vibration exposures resulted in significant differences in peripheral BFV and no 

recovery BFV measurements resulted in significant differences, further studies should also 

be completed with greater volumes of vibration exposure.  
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5.5 Summary 

 

The results from this investigation indicate that the peripheral cardiovascular system is 

more sensitive to vibration than the central cardiovascular system. However, the exact 

physiological processes which control vibration induced vasoconstriction have yet to be 

established and it is likely to be a combination of the cardiovascular system and both 

central and peripheral neural mechanisms 165,166.  While the lack of changes in resistance 

index and VPPG suggest that there were no micro-vascular changes influencing the BFV, 

peripheral macro-vascular, i.e. blood vessels > 150 µm in diameter 167, changes are not 

accounted for. It should be noted that the increase in popliteal artery blood flow velocity 

reported by Kirchan-Schindl 70 was accompanied by an increase in popliteal artery 

diameter.  

Overall the results of this investigation do not support disprove the hypothesis that WBV 

results in vasospastic responses in the feet. While direct measures of macro and 

microvasculature diameter were not made, vasospastic responses would have resulted in 

increased resistance index and decreased BFV. Therefore the underlying mechanism of the 

reduced depletion in blood volume observed in Chapter 4 is unlikely to have been caused 

by vasospastic responses in the feet. However, as the BFV in the dorsalis pedis artery was 

increased, it is likely that the BFV in the proximal blood vessel was also increased and 

influencing blood volume in the lower limb.  The results obtained are of particular interest 

to exercise and rehabilitation practitioners and researchers; though it is advised that 

further studies should also be completed in participants with circulatory dysfunction before 

any form of clinical applications are adopted. 
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CHAPTER 6: EFFECT OF WHOLE BODY VIBRATION DURING STATIC SQUATS 

ON THE MYOELETRICAL PROPERTIES OF THE VASTUS LATERALIS 

 

6.1 Introduction 

 

The investigations reported in Chapters 4 and 5 indicate that WBV influences muscle tissue 

oxygenation parameters and extremity blood flow. Previous publications have indicated 

that WBV increases blood flow 70, however, if isometric contractions are preventing the 

perfusion of blood into muscles via increased intramuscular pressure 168,169 it can therefore 

be hypothesised that the muscular contractions can reduce the perfusion of local blood in 

to the active muscles. It has previously been reported that changes in parameters of tissue 

oxygenation affect EMG 170, via investigation into the changes in NIRS and synchronous 

EMG resulting from WBV during isometric squats. A significant correlation was found 

between the decrease of the mean power of the frequency (MNF) and the decreased tissue 

oxygenation recorded synchronously in human vastus lateralis muscles. 

6.1.1 Parameters of electromyography 

Analysis of myoelectrical signals is typically completed in either the frequency or the time 

domain. The time domain allows calculation of temporal parameters such as the onset, 

duration and offset of the myoelectrical signal. The time domain also allows measurement 

of the volume of the activity i.e. the signal amplitude and the amount of power of the 

within signal i.e. the root mean square (RMS). The frequency domain indicates how a signal 

can be decomposed into a range of its constituent frequencies.  Within EMG research these 

frequency ranges are often summarised by two measures of central tendency, the mean 

(MNF) and median (MDF) frequencies. To date research on the effect of vibration on EMG 

frequency has been equivocal, with reports of the MNF decreasing in lower limb muscles 

171, increasing MDF of the vastus lateralis during squats 144 and increasing MDF of vastus 

lateralis and rectus femoris during knee extensions following vibration 128. Reports of 

muscle fatigue are typically reported as either the mean or median value of the total 

frequency spectrum.  
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The equations used to calculate MNF and MDF are as follows:  

Equation 6:     
∑      

 
   

∑    
 
   

 

 

Where fj represents the frequency of the spectrum j points along the x axis, Pj represents 

the EMG power at point j and M represents the maximum value on the x axis.  The MNF is 

representative of the volume of power from the frequency spectrum in a given period of 

time e.g. one second. 

 

Equation 7:      ∑   
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The MDF represents half of the total power in the frequency spectrum. The power in the 

spectrum is therefore divided in to equal amounts covering the range of frequencies below 

and above the MDF.  Both MNF and MDF highly correlated to independent measures of 

fatigue 172 generally the MNF is slightly higher than MDF 173. The MDF is also less affected 

by random noise and therefore muscle fatigue has a greater influence on MDF than MNF 

173. MDF is also indicated to be superior to the MNF when  considering changes in muscle 

fibre conduction velocity (CV) 174.  Calculating CV is achieved via cross correlation analysis of 

EMG signals obtained from electrodes placed along the length of a muscle fibre 175. The 

cross correlation algorithm calculates the lag in the signal which is used on conjunction with 

the known distance between the recording electrodes to calculate the conduction velocity. 

As the basis for the calculation is the signal lag and the known distance between the 

electrodes there are two key factors when undertaking CV analysis. The first is to ensure 

that during set up the electrodes are aligned with the muscle fibre orientation, this can be 

achieved via imaging equipment or array electrodes which detect the direction of signals 

along  muscle fibres and secondly ensuring there is an exact known distance between 

recording electrodes, Figure 30 displays representative EMG signals used for calculation of 

CV. 





69 
 

indicated different recovery patterns for CV and MDF. MDF recovered fully in all subjects 

but CV only partially recovered. The authors therefore concluded that blood flow influences 

CV but not MDF. The changes in CV of vastus lateralis during different contraction types 

(isometric vs. dynamic) has also been considered 180, where isometric contractions resulted 

in significant decreases in CV whilst dynamic contractions did result in any significant 

change. Both contractions resulted in significant increases in amplitude and decreases in 

MDF, though not significantly different from each contraction type. Based on these findings 

the authors concluded that metabolic state has a greater influence on CV than on MDF or 

amplitude and that changes in MDF cannot be explained by CV alone. Based on these 

findings it can be proposed that the combination of myoelectrical signal frequency and CV 

analysis will provide the option of identifying influences on contractile function.  

The results from Chapter 4  indicates that WBV influences tissue oxygenation of the lateral 

gastrocnemius, unfortunately pilot studies indicated that obtaining the conduction velocity 

of the lateral gastrocnemius did not yield reproducible results, potentially due to the 

changing orientation of gastrocnemius muscle fibres during contraction. The vastus lateralis 

is a key locomotor muscle, similar in fibre type ratio to that of the lateral gastrocnemius 181, 

which has been previously studied for CV, as such the focus of this study was on the vastus 

lateralis. The aim of this study was to investigate the influence of WBV on myoelectrical 

activity during isometric squat exercises to provide an insight into the physiological 

consequences on muscular contractile activity of adding vibration to exercise.  The 

hypothesis for the study is that decreased depletion of oxygenated haemoglobin will 

protect CV, but not MDF. 

 

7.2 Methods 

 

7.2.1 Participants 

 

This study was carried out in accordance with University Ethics Guidelines and the ethical 

standards of the Declaration of Helsinki with all participants providing informed consent. 

Twelve male participants (25.4 ± 4.0 years, 1.81 ± 0.1 m, 82.2 ± 10.7 kg) with no recent 

history of illness or lower limb musculoskeletal disorders volunteered for the study.  
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7.2.2 Study design 

 

The format for this investigation was a randomised cross over study design. All exercises 

were performed on a Power Plate pro6 (Power Plate International Ltd) whole body 

vibrating platform. Six alternating sets of 50 s unloaded isometric partial squats were 

performed with either no vibration (NVIB) or whole body vibration (VIB; 40 Hz 1.9 mm 

vertical displacement).  The initial squat condition (NVIB vs. VIB) was randomised for each 

participant. 

 

7.2.3 Data collection and processing 

 

Myoelectrical activity was acquired from the vastus lateralis with an EMG-USB system 

(OTbioelettronica, Torino, Italy) using an 8 sensor EMG surface array with an inter-

electrode distance of 5 mm. To identify the optimal location for array placement, a 

reference line was first drawn on the surface of the thigh aligned between the anterior 

superior iliac spine and the top of lateral pole of the patella. A second line representing 

muscle fibre orientation (FO) was drawn from the top of the lateral pole of the patella 20ο 

relative to the reference line. This process has been defined by and thoroughly reported by 

Beck et al. 182 who used anatomical measures of muscle fascicle orientation to establish the 

technique.  Prior to placement of the EMG array the region between the innervation zone 

and the distal tendon was determined.   According to Rainoldi  et al. 183 the innervation 

zone can be found on average at a distance of 94 mm from the patella. Therefore, the skin 

was shaved at a distance of approximately 100 mm along the FO line and cleaned with 

alcohol. Each participant was then asked to perform a sub- maximal muscle contraction 

whilst a 16 electrode silver bar electrodes (5 mm x 1 mm, inter electrode distance of 5 mm) 

was used to identify the innervation zone along the FO line. The innervation point was 

identified as the electrode position where signal reversal was observed (see Figure 31). 

Once the innervation zone was identified an appropriate area distal to this point was 

marked for recording vastus lateralis conduction velocities. The participants then 

undertook 5 min of stationary cycling at 70 rpm (50 W) as a pretesting warm up. Once this 

was completed the predetermined recording area was re-cleaned using alcohol after which 
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7.2.4 Statistical analysis 

 

The CV, amplitude and raw data signals were exported to MATLAB (MathWorks, USA) for 

additional analysis. The raw signals of the three channels used to calculate CV and 

amplitude were analysed using a custom written script to identify the MDF of each channel 

using FFT analysis. All results were tested for normal distribution using Lilliefors test, then 

significant differences were assessed using paired t-Test if the data was normally 

distributed or Wilcoxon signed ranks tests if the data was not normally distributed.  For all 

statistical analysis significance was set at alpha = 0.05. Results of EMG parameters are 

presented as mean values and 1 SEM. Where significant differences were found Cohen’s d 

effect size (Equation 8) was calculated using the following formula:  

 

Equation 8:            
( ̅   ̅  )

       
 

 

 

Where x̄ represents the group mean, i the sample number, k the maximum number of 

samples and σpooled represents the pooled variance (Equation 9). 
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Effect size was then adjusted for upward bias with Hedges g (Equation 10) using the 

following formula: 
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Where n represents the number of samples in the group. 

 

 

  



73 
 

7.3 Results 

 

The signal amplitude data was not normally distributed; therefore the results were 

analysed using Wilcoxon signed rank test. As myoelectrical signal amplitude is typically 

variable amongst test days and test participants the signal amplitude was only analysed as 

the differences between the start and the end of the squats. During squats with vibration 

the amplitude increased by an average of 1.3 ± 0.6 µV, during squats without vibration the 

signal amplitude increased by 2.0 ± 1.4 µV these results are displayed in Figure 32. These 

increases were not found to be significant.  

  

 

 

 

 

 

Figure 32. Difference in amplitude at the start and end of squats. Outliers, 
identified as being greater than the interquartile range from the median, are 
plotted as red crosses. 
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The MDF were found to be normally distributed; therefore the results were analysed using 

paired t-Tests. During NVIB squats the MDF at the start of the squats was 76.3 ± 4.6 Hz and 

at the end of the squats the MDF was 76.4 ± 4.5 Hz. This difference was not found to be 

significant. During VIB squats the MDF at the start of the squats was 77.6 ± 4.8 Hz and 73.9 

± 4.5 Hz at the end of the squats. This difference was found to be significant, although the 

effect size was found to be small (g = 0.2). 

The rate of decline (final frequency – initial frequency) in MDF is displayed in Figure 33, this 

result was also found to be significant. Finally effect size difference in decline in MDF was 

calculated and found to be large (g = 0.8). 

 

 

 

 

 

 

 

Figure 33. Difference in median frequency at the start and end of squats with 
and without vibration. Outliers, identified as being greater than the interquartile 
range from the median, are plotted as red crosses. 
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The CV results were normally distributed; therefore the results were analysed using paired 

t-Tests.   During the NVIB condition the mean CV at the start of the squat was 3.56 ± 0.48 

ms-1 and 3.58 ± 0.51 ms-1 at the end of the squat. These results were not found to be 

significantly different. During VIB the mean CV at the start of the squat was 3.56 ± 0.6 ms-1 

and 3.4 ± 0.4 ms-1 at the end of the squat. This difference was also not significant. The 

amount of difference between the CV at the start and end of squats with and without 

vibration is displayed in Figure 34 which shows median change values, these differences 

were again not significant.  

 

 

 

 

 

 

 

 

 

 

7.4 Discussion  

 

This study investigated the effect of static partial squats on myoelectrical activity of the 

vastus lateralis. Partial squats were employed studied 185, comparing deep, parallel or 

partial squats. There was no significant difference between biceps femoris, vastus medialis 

or vastus lateralis EMG activity between the squat depths analysed. The EMG array 

placement reflects that previously reported 182, with indications that specific and consistent 

placement of the electrode is required if the signals are to be compared across subjects. 

The recommended location of the sensor matches that previously reported 186, where CV is 

most stable when obtained between the innervation zone and the myotendinous junction. 

Figure 34. Difference in muscle fibre conduction velocity at the start and end of squats. 
Outliers, identified as being greater than the interquartile range from the median, are 
plotted as red crosses.  
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This region was also reported to produce the highest values for MDF, though the rate of 

change was not affected by sensor location. While previous studies such as that of 182, have 

used the EMG array to analyse knee extension, static squats were selected for this study. 

This decision was based on two factors. Firstly it is impractical to add whole body vibration 

to knee extension as it is not practical to place resistance equipment on to the vibration 

platform and secondly it has previously been shown that squats produce both greater 

amounts of myoelectrical activity and greater reduction in MDF in the vastus medialis and 

lateralis compared to knee extension 187. Shift in MDF has long been used as an indicator of 

fatigue during isometric contractions 188. Previous investigation 180 considered the effect of 

both static and dynamic contractions on both MDF and CV of the vastus lateralis during 

knee extensions; their results indicated that isometric extensions elicited greater changes in 

both MDF and CV, with no change at all in CV during dynamic exercise. 

Over all the results in the current study indicate that the only significant differences 

obtained was the decrease in MDF. The fact that the MDF did not change in the NVIB 

condition suggests that the warm up was appropriate, as previously it has been shown that 

active warm up increases the MDF of exercising muscles and this effect relates to increases 

CV 189. An important point to note is that while there was a significant decrease in MDF this 

is unlikely to be indicative of a physiologically fatigued state. There are two reasons which 

indicate this to be true. Firstly the reduction in MDF was 4.6%, previous studies inducing 

fatigue and measuring MDF have found the reductions to be much greater e.g. 10% 

decrease 190 22.4% 180 and between 12-26% 191. Therefore while the reduction in MDF 

observed is suggestive of the onset of physiological fatigue it is unlikely that the 

participants actually reached a fatigued state via this protocol. Secondly the effect size for 

the change in the vibration group was 0.2, which according to 192 is a small effect size. 

When comparing the amount of change in MDF between VIB and NVIB conditions the 

effect size was 0.8, indicating a large difference between the two conditions. 

No significant differences were obtained in the CV although it could be argued that the 

level of contraction was potentially not high enough to induce a change. It has been 

suggested that a linear relationship between CV and MDF during isometric contractions at 

40% of MVC exists 179. However, further investigations on the effect of varying intensities of 

muscular contractions (as percentage of MVC) on changes in CV of both biceps brachii and 
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vastus lateralis identified thresholds of20-30% MVC  to increase CV, whilst 40% of MVC was 

identified to induce a reduction in CV. It was also reported that at all intensities CV is 

sensitive to changes in blood flow 168. In contrast 193 investigated isometric contractions of 

the biceps brachii at 60% and 70% of MVC. In all participants the mean frequency and the 

CV were reported to vary linearly, both decreasing during sustained muscle contractions. 

This led the authors to conclude that frequency shifts occurring during fatiguing muscle 

contractions are a consequence of reduce CV. Additionally, previous research 178 

considered two different influences on myoelectrical properties of the adductor pollicis 

muscle. Firstly a 60 second maximal voluntary contraction (MVC) was employed to induce 

fatigue and secondly muscle temperature was changed in the absence of fatigue. Both 

protocols induced similar changes in signal frequency. However, fatigue was found to have 

a much greater influence on CV than temperature. The baseline CV and amount of change 

is also dependent on muscle fibre type ratios. Participants with greater volume of fast 

fibres will have greater CV than participants with majority slow fibres 194,195. This 

observation has been investigated via electrical stimulation whilst monitoring the level of 

intracellular free calcium 196. It was found that a single electrical stimulation of fast twitch 

fibres would elicit an action potential and a rise in intracellular concentration 

approximately three times faster than slow twitch fibres. Based on these findings it was 

concluded that in fast twitch fibres calcium may be delivered at a faster rate to contractile 

proteins. This is likely to be the explanation for variances in baseline CV and MDF 

measurements. However, this is unlikely to influence the results obtained as the data 

analysis focussed on the change in parameters between the start and the end of the squats. 

Muscle fibre type can influence resistance to change on myoelectrical parameters. Finally, 

it should be noted that when comparing participants with varying ratios of fast and slow 

twitch muscle fibres it can take 25-30 knee extension repetitions before differences are 

observed 191. The combination of these results refutes the hypothesis that WBV results in 

contractions generating intramuscular pressure preventing the perfusion of blood in to 

muscle tissue. The hypothesis of this study was based on results obtained in Chapter 4, 

where studies of the lateral gastrocnemius yielded significant reductions in depletion of 

oxygenated haemoglobin. Previous studies utilising NIRS on the vastus lateralis during 

isometric squats have yielded conflicting results with reports of decreased total 

haemoglobin 106 and no significant differences in total haemoglobin or in tissue 
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oxygenation index 73. However, without considering the individual oxygenated and 

deoxygenated haemoglobin levels direct comparisons cannot be made. 

 

7.5 Summary 

 

In summary the results obtained indicates that acute exposure to WBV does not affect CV 

or amplitude of myoelectrical signals. The frequency content of the signal is statistically 

significantly reduced during squats with WBV; however this is unlikely to represent a 

physiologically fatigued state. These results, in conjunction with the findings of Chapter 4, 

provide further evidence for the hypothesis that WBV protects the CV but not the median 

frequency during partial isometric squats. However, as there is conflictions in the reported 

responses of tissues oxygenation parameters of the vastus lateralis during isometric 

vibration exercise 73,106.The value of this information is that it indicates that WBV increases 

the muscular contractile activity during static squats without inducing fatigue. This finding 

is potentially beneficial for practitioners in rehabilitation, health and exercise who may 

incorporate vibration in to exercise protocols. 
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CHAPTER 7: THE EFFECT OF WHOLE BODY VIBRATION DURING DYNAMIC 

MOVEMENTS ON THE MYOELECTRICAL ACTIVITY OF LOWER LIMB MUSCLES 

 

7.1 Introduction 

 

Recent meta-analyses have established the benefits of WBV for improvement of muscle 

strength 5 and power 6, building on previous reviews which have illustrated the benefits in 

lower limb muscular performance and balance 98. However, some of the fundamental 

biomechanical and physiological changes have still not been fully investigated to explain 

the underlying mechanisms of these changes. The results from Chapter 4 indicate that 

simple heel raise exercises completed with WBV influence tissue oxygenation parameters. 

The results from Chapter 5 suggest these changes are not a consequence of vibration 

induced vasoconstriction in the feet; therefore whether muscle contraction intensity or 

duration is changing must be questioned. The reduction of MDF observed in the results of 

Chapter 6 is an indication of increased muscle activity and potentially an early indication of 

the onset of fatigue. However, these results were based on a different muscle. To 

appropriately investigate the fundamental physiological and biomechanical changes in 

response to WBV the study completed in Chapter 4 must be repeated, whilst investigating 

additional parameters.  

7.1.1 Assessing muscle function with electromyography 

To address issues of this nature EMG provides a tool which is typically used to quantify the 

level of activation  of muscles, the timing of the electrical activity driving muscular 

contractions, the force/EMG signal relationship and the use of the EMG signal as a fatigue 

index 197. A fatigue index is typically where the MDF is tracked throughout contraction 

periods and compared to the initial MDF value 197. Recently Pererira et al. 198 reported that 

heel raise activity not only displayed changes in the frequency of muscle activity as 

participants approached fatigue, but resulted in phase specific changes in the amplitude of 

the EMG signal as the participants approached fatigue i.e. increases in amplitude during the 

heel raising phase and reductions in amplitude during the lowering phase. The reduction in 
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MDF has previously been validated as an indicator of calf muscle fatigue during both heel 

raise exercises 199 and uphill running on a treadmill 200.  

7.1.2 Assessing muscular response to vibration with electromyography 

The effect of WBV on the soleus, gastrocnemius and vastus lateralis EMG was previously 

investigated during a four minute dynamic workout 171. EMG signals were sampled at four 

set points during the exercise regime in one second intervals at which the participants was 

not moving. The results indicated that during WBV the MNF decreased in all muscles and 

the root mean square (RMS) increased in both soleus and gastrocnemius, but did not 

change in the vastus lateralis. In contrast static squat positions of high and low depth of 

squat and one legged squats have been shown to significantly increase in the RMS of the 

EMG signal of the rectus femoris, vastus lateralis, vastus medialis, and gastrocnemius in 

response to vibration 201. The difference between static and dynamic squats during WBV 

was later considered by Hazel et al. 202. Results indicated amplitude increases of 4.8% of 

MVC in the vastus lateralis and 1.0% in the biceps femoris during static squats and 6.2% in 

the vastus lateralis 1.2% in the biceps femoris during dynamic squats 202. A similar 

comparative study was later completed by Abercromby et al. 12 where results indicated 

equal or higher EMG amplitudes of vastus lateralis, biceps femoris gastrocnemius and 

tibialis anterior muscles during static squats with WBV compared to dynamic squats with 

WBV. The effect of quite standing during WBV with only slight knee bends, approximately 

15:, was investigated by Pollock et al. 203. The influence of both WBV amplitude (2.5 – 5.5 

mm) and frequency (5, 10, 15, 20, 25 and 30 Hz) were investigated. Results indicated 

increases in EMG amplitude of soleus, lateral gastrocnemius, anterior tibialis, rectus 

femoris and biceps femoris ranging from 5 to 50 and from 5 to 20% MVC for amplitude and 

frequency changes respectively. The increases in EMG amplitude were most marked in the 

lower leg, with reasonably linear increases for soleus, gastrocnemius and anterior tibialis (r 

= 0.505, 0.446 and 0.596 respectively, P < 0.001). The rectus femoris and biceps femoris 

also increased linearly, yet with reduced linear correlation (r = 0.294 and 0.388 respectively, 

P < 0.05). Increased WBV amplitude always resulted in higher EMG amplitude, though the 

difference was not always significant. Increases in lower limb musculature has been 

attributed to vibration induced stretch reflexes, following comparison of EMG results 

obtained during both WBV and a custom built rig which introduced dorsiflexion movements 

204. Comparative analysis of EMG signals of soleus, gastrocnemius medialis and rectus 
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femoris muscles suggested changes resulting during WBV area a result of stretch reflexes 

within the muscle. The theory of vibration induced stretch reflexes has also been 

investigated via the use of ultrasound to measure the temporal association between EMG 

activity and muscle contractile tissue displacement during quiet standing with only a slight 

knee bend 19. The results indicate significant increases in the contractile length of the 

medial gastrocnemius muscle in response to WBV. 

The review of current literature indicates that WBV results in increased EMG amplitude of 

the lower body during dynamic and isometric squatting exercises. However, to the best of 

the author’s knowledge the influence of dynamic movements at the ankle in the presence 

of WBV has not yet been investigated. Heel raise exercise utilises the triceps surae muscles 

(gastrocnemius and soleus) which are easily accessible for surface EMG analysis. Though it 

should be noted that previous reports have indicated that the medial and lateral 

gastrocnemius muscles have different skin-fold thicknesses, with the lateral gastrocnemius 

being closer to that of the soleus muscle 205. The medial gastrocnemius has also been 

shown to be more sensitive to changes in knee angles than the lateral gastrocnemius 206. 

The aim of investigating this hypothesis is to investigate the effect of WBV on EMG during 

simple dynamic human movements, such as heel raise exercise. Therefore, the hypothesis 

of this study is that vibration will increase the EMG activity of the lateral gastrocnemius and 

the soles muscle during heel raise exercise.   

 

7.2 Methods 

 

7.2.1 Participants 

 

Ten healthy male subjects (age 27 _+  5 years, height 1.78 _+  0.04 m, weight 75.75 _+  11.9 kg), 

with no recent history of lower limb musculoskeletal disorders were selected for inclusion 

in the study,  took part in this study and provided informed consent in accordance with 

University ethics guidelines.  
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7.2.2 Study design and protocol  

 

The format for this investigation was a randomised cross over study design. All heel raise 

exercises were performed on a Power Plate pro6 (Power Plate International Ltd) whole 

body vibrating platform (40 Hz 1.9 mm vertical displacement), with either NVIB or VIB  

being utilised in 6 alternating sets of 15 seconds during which heel raises were performed. 

The initial set for each participant was randomised (i.e. VIB or NVIB). The exercises were 

completed using a metronome operating at 1 Hz to ensure all exercises were completed at 

the same pace. The subjects were instructed to move at a pace of 0.5 Hz i.e. one second up 

on to toes to maximum heel raise and one second down to complete flat foot and to ensure 

each repetition was a full heel raise i.e. as far up onto their toes as possible. Subjects were 

also instructed to keep a light bend on their knees to prevent excessive transmission to 

their heads. During straight leg heel raise activity the soleus muscle contributes, but a 

greater contribution comes from the gastrocnemius which is in a mechanically better 

position to generate full power compared to whilst the knee is bent 125,126.  

 

7.2.3 Data collection and processing 

 

Differential bipolar (10 mm centre to centre) surface electrodes (DE-2.3, Delsys Inc. Boston, 

MA, USA) were placed over the right lateral gastrocnemius and soleus muscles in 

accordance with SENIAM recommendations 95.   A single reference electrode was placed on 

C7 vertebrae and all leads connected to the electrodes were secured with tape to avoid 

artefacts from limb movements. Impedance was minimised by shaving and skin cleaning 

with alcohol swabs. EMG signals were amplified (1 k gain) via a Delsys Bagnoli system 

(Delsys Inc. Boston, MA, USA) with a bandwidth of 20-450 Hz.  EMG activity was 

synchronously acquired with the kinematic data at 2000 Hz. Prior to undertaking any 

exercise MVCs were obtained in a seated position with the knee against a fixed resistance.  

Ankle motion was captured from a 16 mm retroreflective marker located on the right 

lateral malleolus at 500 Hz using 10 infrared retro-reflective cameras (Oqus, Qualysis AB, 

Sweden). Prior to capture a 46 m3 volume was calibrated with a mean residual error of 1.6 
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mm. Marker motion was tracked and all synchronous data exported in .c3d format for 

subsequent post processing in Visual3D (C-Motion).  Maximal and minimal vertical 

displacements were defined from which vertical ankle displacements were derived to 

define when the ankle was at the bottom or top of its movement cycles, the vertical 

displacement of the ankle and total exercise time.   

EMG data were initially filtered using a 60 Hz cut-off 4th order bidirectional high pass 

Butterworth filter to remove any D.C. offset. A full rectification was applied before the 

signal was filtered with a 2 Hz cut-off, 2nd order bidirectional low pass Butterworth filter. 

Peak amplitudes, normalised to the MVC, of each muscle and timings for peak activity 

relative to movement onset were then determined.  

Data sequences of 0.6 s centred on the peak EMG activity, 0.3 s before and 0.3 s after peak 

activity, were identified and exported for analysis in the frequency domain using an ‘in-

house’ LabView virtual instrument (National Instruments Corporation). A Hanning window 

was applied to the data prior to fast Fourier transformation. Power spectra of the vibration 

EMG data were used to identify the dominant frequency due to the vibration ‘noise’. A 4th 

order Chebyshev band stop filter was applied with low and high cut-off frequencies 2 Hz 

below and 2 Hz above the first vibration frequency as well as its 2nd and 3rd harmonics. The 

same process was then applied to the no vibration data and mean power frequencies 

calculated as the frequency centroid of the spectrum. 

 

7.2.4 Statistical analysis 

 

EMG amplitude, timing and frequency data were exported to MATLAB (The MathWorks 

Inc., Natick, MA) and tested for normality using Lilliefors test, mean and standard error of 

the mean values were also calculated for each variable with a normal distribution. Data 

normally distributed was then tested for significant differences using paired t-Tests and 

non-normal distributions were analysed using Wilcoxon signed rank tests. Statistical 

significance was set at alpha = 0.05 for all tests.  
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7.4 Discussion 

 

When considering the normalised amplitude of the EMG signal there are two points of 

interest. Firstly the amplitude of the signal for the lateral gastrocnemius actually decreased 

with VIB. It could be suggested that the standard error of the mean could account for the 

differences observed and potentially there was not a true change at all. However, there 

was a comparable standard error for the both conditions and both conditions had normal 

data distributions; therefore this explanation is somewhat unlikely. Secondly, while there 

was no significant difference between the amplitude of the gastrocnemius EMG signal 

during VIB and NVIB conditions, a significant increase in soleus EMG amplitude during VIB 

was noted. Based on these results it could be suggested that the increased output from the 

soleus muscle accounts for a greater proportion of the workload. As the physical workload, 

i.e. mass and amount of movement were not changed, the outcome of the increased 

workload of the soleus muscles could be reduced workload for the gastrocnemius muscles. 

If this is the case, it is likely that the lack of additional resistance during the exercise 

resulted in the gastrocnemius muscles simply not reaching the threshold needed for 

increased activity. Structurally the gastrocnemius and soleus muscles have been shown to 

have different fibre type distributions. The proportion of type I fibres in the soleus, medial 

gastrocnemius, and lateral gastrocnemius has been reported to be 75.2, 58.5 and 52.4% 

respectively 207,208. These physiological differences are the most likely explanation for the 

different responses observed. It is also worth noting that the MVC technique selected for 

this study is unlikely to obtain a true MVC for the gastrocnemius muscles due to the 

amount of knee flexion, however as the focus of the data analysis was based levels of 

change within EMG normalised to a predetermined level – not absolute signal power; the 

fact that a maximal signal was not obtained should not be an issue. This is presuming that 

knee position affects EMG, though recently Hébert-Losier et al. 209 suggested that changes 

in knee angle of up to 45ο only results in 4-5% changes in the level of EMG activity. It should 

also be noted that amending the position of the feet during heel-raise exercises will prompt 

varying degrees of medial gastrocnemius and lateral gastrocnemius activation 210. 

Therefore although the exact position of the feet was not standardised in the protocol of 

this study, the participants were asked not to change the position of their feet once testing 

had begun. 
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The frequencies obtained agree with that previously reported in heel raise activity 211–213. 

However, the total range of frequencies obtained was smaller. The smaller range of 

frequencies, combined with the lack of significant changes in the median frequency, 

indicate that neither muscle reached a fatigued state. This is not particularly surprising due 

to the low intensity of the testing protocol. The analogous reduction in median frequency 

for both muscles resulting from heel raise activity is also in line with that reported 

previously values 211. Potentially, the slight drift in the median frequency observed in both 

the lateral gastrocnemius and the soleus could be attributed to fatigue of fast twitch but 

not slow twitch fibres. Slow twitch fibres are not only more suited to repeated exertions, 

but less likely to exhibit frequency changes during exertion 214. It has also been shown that 

individual slow twitch fibres contain greater capillary density than fast twitch fibres in both 

soleus and gastrocnemius muscles 215, providing greater support for repeated exertions. 

The slightly higher median frequency range for the lateral gastrocnemius compared to the 

soleus muscle could be explained by a greater proportion of fast twitch fibres within the 

gastrocnemius 216 compared to that of the soleus muscle. The lack of significant differences 

in results obtained from the lateral gastrocnemius is in contrast to that obtained via NIRS in 

Chapter 4, potentially suggesting that greater differences would have been obtained if the 

NIRS sensor was placed upon the soleus muscle. However further studies would need to be 

completed to confirm this hypothesis. Despite these speculations, the total reduction in 

frequency was not significant at the exercise intensity of this protocol indicating muscle 

fatigue was not present. 

The timing of the peak activity during the heel raises suggests that the early part of the 

movement contains a combination of soleus and gastrocnemius muscle activity, after which 

the level of soleus muscle activity declines and the gastrocnemius muscle is the main 

contributor to the exercise. However, before firm conclusions are formed there are some 

additional factors that must be considered. One key area to be considered is the effect of 

electromechanical delay (EMD). The exact value of EMD was not measured within this 

study, however previously values have been reported as ranging from 41.9 to 77 ms in the 

upper limb 217, if these values are applied to the data obtained in the current experiment 

that would equate to average EMD’s of 5.9% of the time taken to for the ankle to reach 

peak height. Though Grosset et al. 218 reported lower limb EMD to be much lower, in the 

region of 8.3 ms on average depending on the  type of training recently training undertaken 
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(plyometric or endurance training), based on these numbers the timing of the peak activity 

would only be out by 0.8% on average. Nordez et al. 219also estimated a lower duration of 

EMD at 11.64 ms (providing an EMD of 1.16% to the current data). Nordez also reported 

that half of the EMD is due to the force propagation along the passive part of the series 

elastic component (i.e. tendon and aponeurosis). Therefore EMD is greatly influenced by 

the mechanical properties of the tendon and aponeurosis, which are known to be variable 

among subjects 220 and biomechanical factors such as ankle angle, participant flexibility, 

musculotendinous tension throughout the movement and musculotendinous stiffness 

221,222. A final area to consider with regards to EMD is the effect of fatigue. It has been 

shown that EMD is modified during a fatiguing task 223. Therefore while fatigue was not 

achieved in the current protocol, the exact point at which EMD occurs during dynamic 

movement has not yet been identified. Ultimately based on the available information, 

particularly that of lower limb assessment, it is likely that if EMD’s were present they were 

not significant enough to change the overall results. Particularly as the muscles considered 

share a common tendon in the Achilles.  

Within the muscle groups there were not significant differences in the timings of peak 

activity. Subtle differences in the gastrocnemius muscles activity can be observed in figure 

3, which is likely the cause of the different levels of significant difference between the peak 

soleus and gastrocnemius muscle activity during vibration and non-vibration comparisons. 

An additional point of interest is that during the last 5% of the movement i.e. the ‘heel 

down’ time, the level of muscular activity increased. This is likely due to pre-activation in 

anticipation of the next movement. Despite the potential deviations from reported values 

by influences such as EMD or pre-activation, the results obtained indicate that the soleus 

muscle reaches peak activity shortly after half of the heel rise, whereas the gastrocnemius 

muscle reaches peak activity at approximately three quarters of the time to maximum heel 

rise. The timings of these peaks are not significantly affected by WBV.  
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7.5 Summary 

 

WBV in the absence of additional resistance results in significant changes in healthy 

populations. While the changes observed in the scope of this study were not the result of a 

fatigue inducing protocol, as indicated by the lack of change in EMG signal frequency, the 

ratio of plantar flexor muscle amplitude did change. Although there were no changes in the 

level of gastrocnemius muscle activity, greater levels of soleus muscle activity was found 

during whole body vibration. This is in contrast to the hypothesis that increases would be 

observed in both gastrocnemius and soleus muscles.  The current study also identified the 

different phases of muscle activity during heel raise. Initially the movement is a 

combination of soleus and gastrocnemius muscle activity, until approximately half way to 

maximum heel raise height. After which the soleus activity reduces whilst gastrocnemius 

continues to increase to a maximum at approximately three quarters of the time to 

maximum heel height. These findings help to provide a fundamental understanding of the 

action of the plantar flexor muscles during heel raise exercise and the influence of WBV on 

the lateral gastrocnemius and soleus muscles.  
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CHAPTER 8: EFFECTS OF VIBRATION ON DYNAMIC AND STABILISER MUSCLE 

ACTIVITIES DURING THE PRESS UP 

 

8.1 Introduction 

 

To date there have been many studies considering the effect of whole body vibration 

(WBV) on the lower body, as reviewed by Rehn 98, however yet there have been few 

investigations on the effects of WBV platforms on the upper body.  

8.1.1 Upper body vibration effects on EMG  

Hazell et al. 202 considered the effect of WBV during static and dynamic squats and bicep 

curls on EMG of both the upper and lower body, with results indicating significant increases 

in signal RMS, yet this was not a consequence of direct vibration of the upper body. In a 

similar study Marin et al. 224 also reported significant increases in EMG activity of the biceps 

of older adults following isometric squats and bicep contractions via straps attached to a 

WBV platform. Gómez-Cabello et al. 225 investigated the effects of 11 week dynamic squats 

with WBV and found significant increases in both lower and upper body strength. McBride 

et al. 226 investigated the effect of a direct upper body vibration, via a vibrating dumbbell, 

on subsequent isometric contractions. The results indicated reduced EMG amplitude with 

an increased EMG frequency following vibration. Mischi and Cardinale 227 also investigated 

the influence of vibration during isometric upper limb exercise; reporting an increase in 

EMG RMS during vibration. However, subsequent muscle function was not analysed, 

making comparison of results difficult. Tripp et al. 228 considered the influence of a vibrating 

dumbbell at varying frequencies on elbow joint position sense; the results indicated both 

increased accuracy and decreased variability.  While the investigations reported provide 

some insight into the influence of vibration on upper limb function, they do not provide an 

insight into multi-muscular or ‘compound’ exercises.   

8.1.2 Press up exercise analysis 

The press up is a commonly applied exercise to target the upper body for improvements of 

muscular strength, power and endurance 229. The upper body musculature utilised during 

press ups can be split in to two groups. The dynamic muscles: pectoralis major, triceps and 

anterior deltoid 229–231 and the stabiliser muscles: latissimus dorsi, biceps, posterior deltoid, 
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trapezius (upper, middle and lower) and the serratus anterior 229,230,232–235. Investigations of 

press up exercises have utilised EMG as a tool to examine press ups variations, such as: 

unstable surfaces e.g. hands placed on Swiss balls or basketball(s), altered hand and/or leg 

positions and altered hand and/or leg height 231,234–236. However, care must be taken when 

altering the position or style of press up exercises. Modelling of compression forces in the 

lumbar spine during the various forms of press up have indicated that press up varieties 

such as amending hand position or speed of movement increases lumbar spine 

compressive forces by 20-37%, use of unstable surfaces creates increases of 25-55% and 

changing completing dynamic ‘jumping’ style press ups increases lumbar spine forces by 58-

238% 231.  Therefore variations in press up exercises which do not rely on altering the 

standard position are potentially beneficial. In addition to standardising the position of the 

participant care must be taken to address technical aspects of the data collection process 

itself. The placement of the electrodes is a particularly important technical factor in study 

protocols. If electrodes are placed above the neuromuscular innervation zone the signal 

amplitude will be minimised 237,238, if surface electrodes are placed too close to the tendon 

during analysis of dynamic motion the myotendinous movement under the surface of the 

skin can also relate in significant signal reduction 239. While these studies are typically 

completed using surface electrodes, it is worth noting that muscle contractions and length 

changes have also been shown to move intramuscular electrodes 240. The relative changes 

between electrode and muscle position is a particular concern since up to 17% of peak to 

peak amplitude of detected EMG signal has been shown to result from ‘cross-talk’ from 

neighbouring muscles 241. Studies of optimal surface electrode positions have been 

published in order to provide evidence based practice to avoid these issues 95. To the best 

of the author’s knowledge, to date there is no published research on the effect of vibration 

during press ups. The aim of this study is therefore to consider the effect of using WBV 

platforms on press up exercise performance (posture) and muscular activity (EMG). The 

hypothesis of the investigation is that press ups with vibration will increase the muscular 

activation of dynamic and stabiliser muscles detected by EMG. 
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8.2 Methods 

 

8.2.1 Participants 

 

Nine healthy male participants (21.1 ± 3.4 years, 1.68 ± 0.03 m, 72.3 ± 9.5 kg), experienced 

in recreational training and without any history of recent illness or injury volunteered for 

the study and provided informed consent in accordance with University Ethics Committee 

and the Declaration of Helsinki.  

 

8.2.2 Study design  

 

Three press up conditions were tested on the WBV platform in a randomised cross over 

study design: press up in the absence of vibration (NVIB), low amplitude and frequency 

vertical vibration (30L; 1.2 mm, 30 Hz) high amplitude and frequency vertical vibration 

(40H; 1.9 mm, 40 Hz). Press ups were completed in a randomised order at a self-selected 

pace by participants for a period of 15 s with 3 min rest between each set.  Participants 

were assessed for press up ability and familiarisation at least 24 hours before data 

collection. All press ups were completed in one testing session and all press ups were 

completed on the platform with feet resting on a bench of equal height to the platform.  

 

8.2.3 Data collection and processing 

 

Prior to testing participants completed 4 min arm crank ergometery (Lode Angio, 

Groningen The Netherlands) as a warm up activity. Press ups were performed with the 

hands consistently placed at a distance 1.2 times the distance between the 

acromioclavicular joints. Press ups on a Power Plate Pro 6 whole body vibration platform 

(Power Plate Ltd). During press ups on the Power Plate the participant’s feet were placed 

on a small bench to replicate the press up position of that on the floor. 3D motion capture 

was acquired using 16 mm retroreflective markers on the spine at C7 and S1, and acromion 

processes bilaterally. The sampling frequency of the motion capture was 500 Hz using 10 

Oqus cameras (Qualisys, AB, Sweden). Maximal vertical displacements of the C7 and S1 

were used to define cervical and pelvic vertical movements, the displacements between 
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the C7 and S1 markers were used as a measure of postural changes i.e. kyphotic or lordotic 

postures. Synchronous to motion capture data surface EMG (Delsys Bagnoli system, Boston, 

USA) was obtained via differential bipolar Ag-AgCl electrodes placed on the triceps (TR), 

pectoralis major (PM), serratus anterior (SA) and lower trapezius (LT) muscles in accordance 

with SENIAM recommendations 95.  Signal impedance and noise artefacts were minimised 

by skin preparation and taping of wires to prevent excessive movement during press ups. 

EMG signals were amplified (1 k gain) with a bandwidth of 20-450 Hz and a sampling 

frequency of 2000 Hz. A single reference electrode was placed on the skin level with the C7 

vertebrae. All synchronous data was acquired using Qualisys track manager software 

(Qualisys, AB, Sweden) and exported in .c3d format for post processing in Visual3Dtm (C-

Motion, Inc. Germantown, USA). EMG signals were corrected for zero offset by subtracting 

the signal mean, fully rectified and smoothed using a 6th order Butterworth low pass filter 

with a cut-off frequency of 2 Hz. For direct comparison of averaged results between 

subjects, signals were time normalised from the start to the end of each press up based on 

the vertical position of the C7 marker. The mean signal amplitude for both the concentric 

and eccentric phase was calculated using the vertical displacement of C7 marker to identify 

the timing of each phase of the movement. The time normalised signal and mean values 

were then exported to MatLab (MathWorks, USA) for statistical analysis. 

 

8.2.4 Statistical analysis 

 

The Anderson-Darling test showed that the kinematic data was not normally distributed, 

the mean EMG data, with the exception of the lower trapezius during the concentric phase 

and pectoralis major for the eccentric phase were all normally distributed. Therefore, 

median values were reported in place of means for the kinematic data 242, with statistical 

dispersion represented as + one median absolute deviation (MAD) for kinematic data and 

standard error of the means (SEM) were used for mean EMG data.  Friedman’s test was 

used to test non-normally distributed conditions and repeated measures ANOVA was used 

for normally distributed data. The locations of significant differences were identified with 

Tukey’s honest significant difference test to account for repeated measures analysis. In all 

analyses significance was set at alpha = 0.05.  
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For data that was normally distributed the effect size was calculated using Omega2 ( ̂ ) 

using Equation 11. 

 

 

Equation 11:     ̂  
(   )(   )

(   )(   )   
 

 

Where F is the ANOVA F-value, N represents the number of participants and k represents the 

number of repeated measures. 

 

For data that was not normally distributed the effect size was calculated using the 

coefficient of concordance (W) using Equation 12. 

 

Equation 12:       
  

 (   )
 

 

Where X2 represent the Friedman’s test statistic, N represents the number of participants and k 

represents the number of repeated measures. 

 

8.3 Results 

 

The results obtained for all kinematic data during each condition are presented in Table 11. 

Comparison between the 3 conditions showed no significant differences in  the duration of 

the press ups, vertical displacement of the upper thorax (C7) or pelvis (S1) or spinal posture 

(C7-S1 distance). 

 

Table 11. Kinematic parameters for press ups, values are presented as medians ± 1 MAD. 

 

 

 

 

 

 

 

Variable       NVIB 30L    40H 

Duration (s) 1.76 + 0.38 1.69 + 0.34  1.76 + 0.38  

C7 vertical displacement (m) 0.37 + 0.05 0.35 + 0.07 0.34 + 0.04 

S1 vertical displacement (m) 0.24 + 0.02 0.24 + 0.03 0.24 + 0.02 

Spinal posture (m)  0.51 + 0.03 0.51 + 0.03 0.52 + 0.03 
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The time normalised EMG amplitude for all muscles analysed is displayed in Figure 38.  The 

pattern of muscle activation i.e. the EMG amplitude over time was consistent in SA and PM.  

For all muscles the activation pattern for 30L was similar to that seen in NVIB. However, the 

activation patterns for both LT and PM during 40H VIB displays differences from NVIB. The 

LT and PM muscle activation during 40H displays a new peak emerging in the eccentric 

phase occurring at approximately halfway through the eccentric phase. The concentric 

phase of LT 40H is similar to 30L. In addition to the eccentric phase increase of PM during 

40H VIB, the concentric phase also displays a new peak, again occurring around halfway 

through the phase. 

None of the muscles analysed displayed significant increases in mean EMG amplitude in 

response to 30L VIB in the eccentric or the concentric phase of the exercise. During the 

eccentric phase the TR muscles displayed a significant increase from NVIB but not from 30L. 

PM was the only muscle in the eccentric phase with data that was not normally distributed, 

therefore was analysed with Friedman’s test rather than repeated measures ANOVA. The 

effect size for all muscles was small (0.2), except TR which was medium (0.3). 

Figure 38. Time normalised EMG amplitude for each muscle during press up exercises.  
The red line = NVIB, the green line = 30L and the blue line = 40H. The error bars represent  SEM. 
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The mean amplitude of the EMG signals during the concentric phase of the press up 

exercises displayed significant increases from NVIB in response to 40H VIB in all muscles 

except the lower trapezius, where 40H resulted in a slight decrease in amplitude. LT was 

the only muscle with data that was not normally distributed and therefore analysed with 

Friedman’s test rather than repeated measures ANOVA. The mean EMG amplitudes for the 

eccentric and concentric phases are displayed in Figure 39. The effect size for all muscles 

was small (0.2), except TR which was medium (0.4). 

    

 

8.4 Discussion 

 

The lack of significant difference between the timing to complete press ups, vertical 

displacements of cervical spine (C7) and pelvis (S1) and the distance between C7 and S1 

indicate that the participants performed each press up in the same pace, range of motion 

and did not change posture i.e. develop kyphotic or lordotic postures during the press ups 

in any condition.  This consistency of movements is important for two reasons, firstly 

vibration has previously been shown to reduce postural stability 243 and secondly the 

consistency in movement removes the variable of changing exercise performance when 

considering changes in EMG.  Care was taken during the initial set up of NVIB, 30L and 40H 

to ensure all participants were positioned with hands and feet level, as changing the 

 

 

* 

* b a 

* 

* 

Figure 39. Eccentric phase mean EMG amplitude (a) and Concentric phase mean EMG amplitude (b).  
The black bars = NVIB, the dark grey bars = 30L and the light grey bars = 40H.0 
The error bars = SEM, * = significantly different from NVIB (p < 0.05). 
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relative position of height and hands and feet has been shown to influence EMG activity of 

shoulder musculature, particularly that of the serratus anterior 234,244. In addition, hand 

position was standardised as the distance equivalent to that between the acromioclavicular 

distance with avoidance of movement in a caudad and cephalad direction, as this has been 

shown to influence the EMG activity of the shoulder and upper arms agonist muscles 232,236. 

During a standard press up it has previously been reported that the forces experienced are 

typically around two thirds of body weight 236,245. Although it has been shown that narrow 

base press ups, i.e. with the hands closer together, have an elbow torque which is 71% of 

maximal torque, compared to wide base press ups which are only 29% 246 which likely 

explains the reported increase in EMG activity during press ups with altered hand positions 

232,236.  Considering the adherence to specific participant positional set up, combined with 

the lack of significant differences in kinematic parameters, it can be assumed the only 

variable influencing muscle performance was the introduction of vibration. WBV platforms 

have been shown to increase EMG activity of the lower body 247–249 with results indicating 

that increases occur in line with that obtained during increasing resistance  of comparable 

exercises 250. Utilising muscle contractions typical of the activity to be analysed i.e. without 

the intervention condition, has also been shown to have the advantage of providing a form 

of representative activation of the position for the movement to be analysed 236, therefore 

providing comparable muscle activity for analysis.  The results in Figure 38 and Figure 39 

provide a sense of the level of increase in activity resulting from changing the vibration 

experienced during press up exercises. The greatest increases observed in EMG amplitude 

were observed in TR during 40H VIB, with increases apparent during both the eccentric and 

concentric phases. Interestingly Marin et al. 251 found that elbow extension during WBV is 

enhanced with high magnitude vibration (50Hz, 2.5 mm) but not low vibration (30 Hz, 1.2 

mm), suggesting that triceps muscles require a certain threshold of vibration to enhance 

performance.  The pattern of EMG activity for PM displayed a significant change in mean 

activation during 40H VIB only during the concentric phase. However, it should be noted 

that the data distribution of the mean EMG amplitude data during the eccentric phase was 

not normally distributed and therefore the analysis via non-parametric methods did not 

have the same power as that used to analyse the other muscles during the eccentric phase. 

The low and medium effect sizes obtained for the results are a further indication that tests 

with reduced power i.e. non-parametric hypothesis tests, are less likely to able to confirm 
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statistical significance. The eccentric phase of PM displayed a change in the pattern of 

activation, with a new peak becoming apparent at approximately halfway through the 

eccentric phase (see Figure 38). An increase in LT activation was also noted at this 

approximate time point, suggesting potential for increased muscular demand at this point 

of the movement. To the best of the author’s knowledge there is no data on transmission 

of vibration through the human body in this position; yet it has previously been shown that 

when standing with increased knee flexion reduces vertical transmission of vibration 7. It is 

therefore a reasonable assumption that whilst the elbows are flexed there is increased 

demand for damping of vibration transmission via the shoulder girdle, though further 

studies should be completed to confirm this. While patterns of EMG activity in LT did occur 

it should be noted that the increases in mean amplitude were not significant. The LT is the 

furthest analysed muscle from the WBV platform surface and is the only muscle to not 

display any significant increases in mean EMG amplitude. This observation can potentially 

be explained by the postulation that increased distance from the platform decreases 

muscle activity 252 indicating the role of the muscle and the location of the muscle are the 

key factors in the influence of vibration on muscle activity. This theory is given further 

credence by previously reported values of EMG during standard press ups to fatigue, where 

the SA displayed changes 3.5 times the level of the lower trapezius 253. These differences in 

activation level are also potentially explained by the fact that the SA has previously been 

reported to be both the prime mover of the scapula 254 and a stabiliser muscle, particularly 

in prevention of conditions such as scapula winging 255.  

One final area worthy of note is that it has previously been reported that large differences 

have been observed between skilled and unskilled performers of press up exercises 231. 

Though unfortunately while the timing of EMG activity was also reported, a single pass 

Butterworth filter was applied to the signals. Single pass filters cause phase distortions 

resulting in time lags within the signal 256 and are therefore not comparable to the data 

obtained within this investigation.  
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8.5 Summary 

 

The introduction of vibration to press up exercises does not result in kinematic changes to 

exercise performance. Duration, posture and range of motion did not change in any tested 

condition indicating the actual exercise performance did not change in any condition. In 

contrast EMG activity displayed highly significant differences, particularly in the shoulder 

stabiliser muscles which displayed increases of 3.5 times the activity in a standard press up. 

In addition the pattern of EMG activity in both pectoralis major, serratus anterior and lower 

traps displayed significant changes. These results suggest that vibration has significant 

influence on both dynamic and stabilising muscles of the shoulder; these changes are 

potentially influenced by the changing the force moment arm during the movement. 

However, further studies should be completed on the transmission of vibration through the 

upper body and the potential safety implications of transmission of vibration to the neck 

and head, prior to recommendations being made for the application of vibration in press up 

exercises. 
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CHAPTER 9: CAN BENCH PRESS EXERCISES BE USED TO QUANTIFY CHANGES 

IN EMG DURING PRESS UPS ON A VIBRATING PLATFORM? 

 

9.1 Introduction 

 

The results from Chapter 8 indicate significant increases in muscle activity, particularly in 

the pectoralis major, following the addition of vibration during press ups, yet this does not 

provide information on the potential force changes resulting from increased vibration. To 

date research on the effects of vibration on the upper body force or power are both limited 

and varied.  

9.1.1 Effects of vibration on upper body muscular strength and power 

The varying approaches adopted for investigation of the effect of vibration on the upper 

body include the use of custom rigs applying vibration to a cable used for elbow flexion 

exercises 257,258, direct vibration of biceps tendon prior to elbow flexion 259,260 and use of 

vibrating dumbbells 151,227,261. The application of custom rigs resulted in significant increases 

in acute power 257 and contraction force 258. Results from indirect vibration using a vibrating 

dumbbell are inconsistent with different studies showing increases in EMG activity and 

force 227, increases in power but not EMG activity 97 and no increases in power 151. Direct 

musculotendinous vibration studies have found no increase in either upper limb power, 

joint moment or angular velocity during bicep curls 259,260. The influence of standing WBV 

on upper body function has also been investigated. Grip strength has been shown to be 

non-significant 262–264, though the effect of WBV on EMG during elbow flexion has produced 

both significant 224 and non-significant 202 changes. Although these investigations begin to 

provide a picture of the potential effective use of vibration exercise in upper body exercise; 

the application in complete exercise regimes is somewhat limited to isolation exercises e.g. 

bicep curls. One of the most common upper body compound exercises is the press up, 

which is used to improve upper body strength, power and muscular endurance 229, yet to 

the best of the author’s knowledge there is only one peer reviewed investigation in to the 

influence of vibration on the press up. Marin et al 265 considered the effect of vibration 

exposure during press up exercises on subsequent bench press performance, although the 

results did not indicate improved performance. This research therefore suggests that 

vibration results in changes in both EMG parameters and force/power output. While the 
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volume of myoelectrical activity is known to vary with the intensity of muscular 

contraction, predicting force from EMG amplitude must be approached with caution 256,266.  

9.1.2 EMG and force 

The relationship between EMG amplitude and force has been studied for over 60 years, yet 

there are conflicting results with regards to whether this relationship is linear or non-linear 

(see Table 12). 

 

Table 12. The relationship between force and EMG amplitude. 

Authors Linear Non-
Linear 

Muscles Comments 

(Lippold, 1952) 
267

 
 
 

 
Gastrocnemius 
Soleus 

 

(Close J et al., 1960) 
268

   Soleus  

(Zuniga and Simons, 1969) 
269

 
  Biceps  

(Milner-Brown and Stein, 
1975) 

270
 

  First dorsal interosseous  
Force adjusted on a 
logarithmic scale 

(Komi and Vitasalo, 1976) 
271

 
  Rectus femoris  

(Miller and Seireg, 1977) 
272

   Vastus medialis  

(Bigland-Ritchie, 1981) 
273

 

 
 
 
 
 
 

 
 
 
 
 

Soleus  
First dorsal interosseous  
Adductor pollicis  
Biceps  
Triceps 
 BR 

Non-linear graphs display a 
linear response above 50%  
MVC 

(Lawrence and De Luca, 
1983) 

274
 

 
 

 
 
 

First dorsal interosseous  
Biceps  
Deltoid 

 

(Alkner et al., 2000) 
275

 
 
 
 

 
 
 

Vastus lateralis 
Rectus femoris 
Biceps femoris 

 

(Madeleine et al., 2001) 
276

    First dorsal interosseous   

(Praagman et al., 2003) 
277

 
 
 

 
Biceps  
Brachioradialis 

Also linearly related to NIRS 

 

 

It is clear from Table 12 that there are conflicting results in scientific literature. One of the 

primary reasons for these differences results from the conclusions drawn from the results. 

For example, Bigland-Ritchie et al. 273 chose to report muscle responses as non-linear when 

the response is only linear after a certain threshold of activation is reached, whereas Miller 

and Seireg 272 opted to report a similar responses as linear.  Milner-Brown and Stein 270 
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applied a logarithmic scale to the force value in order to obtain a linear response, which 

suggests that raw force values would have yielded a non-linear relationship between EMG 

and force. In addition there are also technical and physiological aspects of study design 

which can influence the difference in the analysis of EMG to force. An example of technical 

influences of study design was introduced in Chapter 8 with regards to placement of 

electrodes during protocol set up. Another example of a technical influence on test results 

is the type of electrodes utilised in the study. It has previously been shown that during 

muscular contractions at less than 50% of MVC the EMG signal amplitude from surface 

electrodes will be lower than that obtained from intramuscular electrodes, however, at 

contractions above 50% of MVC the amplitude from surface EMG progressively increases 

278. In conjunction to technical aspects of EMG analysis the physiological influences on 

myoelectrical signals must be considered. The first key physiological factor to be considered 

is the contraction type. Concentric contractions are weaker than both isometric and 

eccentric contractions (see Figure 40 (a)) and as such typically require greater levels of 

myoelectrical activity to produce a given force. Eccentric contractions are typically the 

strongest of the muscular contractions and therefore require the least amount of 

myoelectrical activity to achieve the required force levels 279–281. The second physiological 

factor to be considered is the muscle fibre length. A fundamental aspect of concentric and 

eccentric contractions is a change is muscle length. It has been suggested that joint position 

influences EMG amplitude 278. However, studies of MVC and evoked contractions of the 

biceps have resulted in constant levels of EMG regardless of joint position 282. Further 

studies have produced results suggesting muscle groups can differ in their responses, with 

biceps and brachioradialis EMG being influenced by joint angle, yet triceps EMG was not 283. 

Isometric contractions of the long head of the biceps femoris at increasing muscle length 

have shown an inverse relationship between EMG amplitude and joint torque, with EMG 

decreasing and torque increasing as muscle lengthened 284.  The ability of muscle to 

generate greater forces at greater lengths is attributed to the combined influence of 

passive and active tensions within the muscle 268, as displayed in Figure 40 (b). 
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a  b 
Figure 40. Effect of velocity (a, adapted from Hall 

285
) and muscle length (b, adapted from Close et al. 

268
) on force. 

 

The disparities in reports of the influence of muscle length can potentially be explained by 

the influence of the force moment arm.  Nourbakhsh and Kukulka 286 investigated the 

influence of changing moment arm and muscle length of the triceps surae musculature. The 

results indicated when the moment arm was changed in the presence of a constant muscle 

length the EMG amplitude resulting from plantar flexion torque was significantly increased. 

No significant differences where observed with stable moment arm and increasing muscle 

length. Mohamed et al. suggested a similar hypothesis for decreased EMG activity in knee 

flexor muscles at extended knee angles (semitendinosus, short head of biceps femoris, 

sartorius and gracilis), where reduced EMG amplitude is speculated to be a consequence of 

a reduced moment arm of the muscles in extended knee positions. While the authors 

report ‘common responses of decreased EMG activity’ a lack of consistency in results 

prevented significant differences being reported 287. Coupled with changes in muscle length 

is the velocity at which the changes occur. Gerdle et al. 288 used an isokinetic dynamometer 

to investigate the influence of contraction velocity on the EMG amplitude and MNF. The 

results indicated that neither parameter is dependent on the angular velocity of the 

contraction. Potvin et al. 289 investigated the influence of different contraction velocities of 

the biceps brachii whilst holding a 7 Kg load. Concentric contractions at higher velocities 

yielded increases in EMG amplitude, conversely eccentric contractions increased EMG 

amplitude during slower velocities. To the best of the author’s knowledge there does not 

appear to be enough evidence to deduce whether the differences in findings are a 

consequence of different muscle groups or contractions types. A final physiological area to 

be considered is that when collecting EMG data the muscle, or muscle groups, being 
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considered may not represent all of the muscular activity responsible for the action being 

completed 279,290. All movement is achieved by the combined effort of groups of muscles, 

therefore the fact that some muscles which are not being recorded with EMG may 

contribute to the movement. While direct measurement of EMG during press ups on a 

vibration platform does not present an issue, measurement of force between a participant 

and a WBV platform during vibration is difficult. The aim of this study is therefore to 

investigate if the level of change in EMG can be used for comparison to exercises using the 

same agonist muscles i.e. bench press, to estimate a comparative change in force output. 

The hypothesis is that vibration will directly augment the level of EMG during press up 

exercises. 

 

9.2 Methods 

 

9.2.1 Subjects 

 

Fourteen healthy male participants (25.6 ± 3.9 years, 1.8 ± 0.1 m, 73.0 ± 3.9 kg) without any 

history of recent illness of injury volunteered for the study and provided informed consent 

in accordance with University Ethics Committee and the Declaration of Helsinki.  

 

9.2.3 Study design 

 

Participants attended two testing sessions separated by at least 48 hours to provide 

participants time to recover from exertions during test session. During both sessions 

participants completed 4 min arm crank ergometery at 40 W (Lode Angio, Groningen; The 

Netherlands) as a warm up activity.  The first test session consisted of a one rep maximum 

(1RM) bench press test completed following the NSCA protocol 126. During the second visit 

bench press exercises were completed at 20, 32, 44, 56 and 70% of 1RM to provide data for 

the generation of calibration curves and three press up conditions on a Power Plate Pro 6 

WBV platform (Power Plate Ltd). Press up conditions were: press up in the absence of 

vibration (NVIB), low amplitude and frequency vibration (30L; 1.2 mm, 30 Hz) high 

amplitude and frequency vibration (40H; 1.9 mm, 40 Hz). All exercises were performed in a 

randomised order at a self-selected pace by participants for a period of 15 s with 3 min rest 
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between each set. Both press ups and bench press exercises were performed with the 

hands consistently placed at 1.2 times the distance between the acromioclavicular joints. 

During press ups on the Power Plate the participant’s feet were placed on a small bench to 

replicate the press up position of that on the floor i.e. hands and feet at equal height.  

 

9.2.3 Data collection and processing 

 

3D motion capture during the bench press and press up exercises was acquired using 16 

mm retro-reflective markers on each end of the barbell and the spine at C7 respectively. 

The sampling frequency of the motion capture was 200 Hz using 10 Oqus infrared cameras 

(Qualisys, AB, Sweden). Synchronous to motion capture, surface EMG (Delsys Bagnoli 

system, Boston, USA) was obtained via differential bipolar Ag-AgCl electrodes placed on the 

anterior deltoid (AD), pectoralis major sternal (PMS) and clavicular (PMC) portions and 

triceps (TR) muscles in accordance with SENIAM recommendations 95.  Signal impedance 

and noise artefacts were minimised by skin preparation and securing of wires to prevent 

excessive movement during press ups. EMG signals were amplified (1 k gain) with a 

bandwidth of 20-450 Hz and a sampling frequency of 2000 Hz. A single reference electrode 

was placed on the skin level with the C7 vertebrae. All synchronous data was tracked using 

Qualisys track manager software (Qualisys, AB, Sweden) and exported in .c3d format for 

post processing in Visual3D (C-Motion, Inc. Germantown, USA).  

EMG signals were corrected for zero offset by subtracting the signal mean, fully rectified 

and smoothed using a 8th order Butterworth low pass filter with a cut-off frequency of 4 

Hz.  

The process for producing time normalised graphs of EMG amplitude during press ups 

detailed in Chapter 8 was repeated to allow direct comparison of the data generated, 

furthermore the EMG data obtained during bench press with 56% of 1RM was filtered and 

plotted for direct comparison of EMG amplitude and timing of activity. For direct 

comparison of average, time normalised results between subjects, signals were divided into 

concentric and eccentric phases for each press up based on the vertical position of the C7 

or barbell markers and exported to MatLab (MathWorks, USA) for statistical analysis. The 

total EMG activity during each phase of the bench press movement was calculated by 

summing the individual amplitudes of muscle activity.  
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9.2.4 Statistical analysis 

 

A regression analysis utilising individual and total muscle activity was completed in order to 

generate calibration graphs for comparison to total EMG activity during press up exercises 

(representative trace in Figure 42). The level of variance in muscle activity explained by 

variance in the increasing mass (1RM%) was quantified via the coefficient of determination 

of the regression line (R2). To ensure that press up durations between Chapter 8 and the 

current study were not significantly different the duration of the eccentric component was 

also tested. The Anderson-Darling test for data distribution was applied to the data, with 

results indicating a normal distribution. A repeated measures ANOVA test with Tukey’s HSD 

post hoc was applied to identify the level and location of any significant differences 

between test conditions and two sample t-Test was used to identify any differences 

between the mean eccentric duration of the press ups in chapters 8 and the current study.  

Finally the omega squared effect size ( ̂ ) of differences was calculated using the approach 

detailed in Kinnear and Gray 162. All values presented are means ± 1 SD. The level of 

significance for statistical tests was set at alpha = 0.05. 

 

9.3 Results 

 

All participants completed the protocol; however, the EMG activity of four participants was 

outside the range of the calibration graph and as such was not suitable for regression 

analysis. The ratio of 1RM to body mass (1RM/BM) of the 10 suitable participants was 1.23 

± 0.23 s, compared to the ratio of the remaining four unsuitable participants which was 

0.86 ± 0.19.  There was no significant difference in the displacements of the C7 marker 

during press ups or the displacement of the barbell during bench press exercises indicating 

consistent range of motion for all exercises completed. There was no significant difference 

in the either the duration of the concentric phase or the total duration of the press ups. 

However, there were highly significant differences between the durations of both the 

concentric phase and total movement time of bench press repetitions at 70% of 1RM 

compared to all other bench press conditions (p < 0.01).  To allow direct comparison of the 

pattern of EMG activity during the press up and bench press exercises the time normalised 

EMG activity is displayed in Figure 41. An intensity of 56% of 1RM was selected from the 
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range of bench press conditions as the EMG amplitude was representative of the press up 

condition, 56% was also the highest exercise intensity level with the same velocity of 

movement as the press up exercises. The TR and PM muscles are analysed in both Chapters 

8 and the current study, with the electrode placement for TR and PMS being identical, 

therefore allowing direct comparison between muscle activities. The activations patterns of 

all muscles analysed in the current study did not change in timings or location of peaks for 

either eccentric or concentric phases of the press up exercises with regards to the total 

press up duration. However, the eccentric phase in Chapter 8 occurred at approximately 

48% of the total press up duration, whereas in the current study the eccentric phase lasted 

for approximately 55% of the total press up duration, this difference is highly significant (p 

< 0.001). 

 

 

Figure 41. Time normalised EMG amplitude for each muscle during press up exercises.  
A = anterior deltoid, b = triceps, c = sternal portion of pectoralis major, d = clavicular portion of the pectoralis 
major. The red line = NVIB, the green line = 30L and the blue line = 40H. The error bars represent SEM. 
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Figure 42. Representative EMG calibration graph for triceps EMG activity.  
 = concentric phase, X = eccentric phase,  = NVIB,  = 30L,  = 40H. 

 

 

The predicted percentages of bench press 1RM during the concentric phase of the press up 

as calculated from the calibration graphs are displayed in Table 13. Significant differences 

(p < 0.001) were obtained for both the sternal and clavicular portions of the pectoralis 

major muscle at 40H VIB compared to NVIB, but not the anterior deltoid or the triceps 

muscles, although the overall  ̂  was small, at 0.3 and 0.4 respectively.  

 

 

 

Table 13. Predicted percentage of 1RM based on EMG activity during press up.  
R2 = the coefficient of determination, * = significant increase from NVIB (p < 0.05). 

 NVIB (%) 30L (%) 40H (%) R2 

AD 56.8 ± 10.2 55.2 ± 17.3 61.6 ± 16.6 0.96 ± 0.02 

PMS 51.0 ± 15 52.1 ± 17.4 60.0 ± 14.2* 0.95 ± 0.1 

PMC 55.7 ± 8.6 62.4 ± 9.8 85.8 ± 19.5* 0.97 ± 0.2 

TR 60.8 ± 13.7 59.4 ± 10.6 65.8 ± 14.6 0.94 ± 0.07 
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The combined mean EMG amplitude for all muscles during the press up exercises is 

displayed in Figure 43 as a predicted percentage of the 1RM during concentric phase of the 

bench press exercise. These values are based on the regression equations obtained from 

the calibration graphs. The mean value for the predicted exertion level during press ups 

based on the combined EMG activity of all muscles analysed i.e. summed mean activity of 

all four muscles. The difference between NVIB and 30L was not significant. The difference 

between 40H and both NVIB and 30L was highly significant (p < 0.01). The effect size for the 

overall differences was small ( ̂   = 0.4). 

 

 

 

The EMG during the eccentric phase of the press up exercise produced EMG levels outside 

of the calibration graph range in 8 of the 15 participants for the NVIB and 30L conditions 

and 11 out of 15 participants for the 40H condition. The mean values were 60.5 ± 10, 62.5 ± 

5 and 66.9 ± 3% for NVIB, 30L and 40H respectively. The eccentric sample size, (n = 4) was 

considered too small for reliable hypothesis testing. 

 

* 

Figure 43. Predicted percentage of mean EMG amplitude during 1RM.  
Black bars = Concentric phase (n = 10), grey bars = eccentric phase (n = 7 for 
NVIB and 30L, 4 for 40H).  * = significant increase from NVIB. 
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9.4 Discussion 

 

One of the key findings from this investigation is that for regression analyses such as the 

study undertaken here, a minimum strength:1RM ratio of approximately 1 or higher is 

required to generate a calibration curve. For effective interpolation of outcome values (Y 

axis) and the predictor values (X axis), must be within the range obtained during the data 

collection 291. In the current study four participants did not meet this criterion, therefore 

reducing the sample size. Although the remaining 10 participants provided data from the 

concentric phase, some values were close to the upper limit. Potentially extending the 

calibration curve to 80% of 1RM could have allowed inclusion of greater number of 

participants. However, considering the lower ratio of 1RM/BM of the excluded participants, 

the increase in bench press intensity was not advisable as the increased demands would 

likely exceed the ability of the participants. Previous studies have indicated that the forces 

experienced during press up exercises are approximately two thirds of body weight 236,245, 

which provides a sensible hypothesis for the need for a minimum bench press 1RM when 

generating a calibration curve. Bench press loads equivalent to that experienced during 

press ups have been shown to have PM and TR EMG amplitudes that are not significantly 

different 245. While both press up and bench press exercises use the same agonist muscles 

to achieve the desired movement, it should be noted that during the press up the eccentric 

component has far higher levels of EMG activity than that obtained during the eccentric 

phase of the bench press. Of all participants tested only four produced EMG data during 

the eccentric phase of the press up exercises that fell within the predictor values obtained 

during the bench press exercises. This could be explained by the greater stability of the 

bench requiring less muscular action to stabilise the body. This issue could be addressed in 

future studies by changing the predictor exercise to press ups with upper body loading via 

weight vests.  This approach would allow loading to increase the forces required for 

completion of the exercise without changing the style of the exercise performed. 

To the best of the author’s knowledge the only potentially comparable study is that of 

Poston et al  292, who investigated the influence of a mechanically vibrated barbell on 

power output during bench press exercises. However, there were key differences between 

the studies that limit direct comparisons.  Firstly, the vibration was introduced via a barbell 

and press ups were not considered. Secondly, vibration was introduced during isometric 
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holds, not during dynamic movements. Thirdly, only one set of vibration parameters (30 Hz, 

1.1 mm amplitude) was considered and finally the variances in the results were particularly 

large preventing the detection of significant differences in performance. Ultimately the 

authors could only speculate that differences were the result of psychological factors. 

The level of change occurring during different variants of press ups has been studied more 

extensively. Results indicate that narrow base hand positions are effective increasing the 

level of EMG in both the PM and TR, with increases of 2-25% of PM MVC and 10-35% of TR 

MVC 232,236. The increase in EMG can potentially be explained by two factors, firstly it has 

been shown that narrow base press ups increase elbow torque to 71% of maximal torque 

246, secondly narrow base hand positions require the PM muscles to function in shortened 

muscle length position. Basic muscle mechanics indicate that force output is lower in 

shortened and lengthened states, therefore requiring higher motor unit function to 

generate forces equivalent to that in optimal muscle fibre lengthened positions 266. In 

addition Freeman et al. 231 investigated a variety of press up exercises including press ups 

with both hands on a basketball, press ups with hands on 2 basketballs, fast concentric 

movement and plyometric movements. EMG increases as a percentage of MVC in PM were 

8, 20, 26 and 27%, AD 9, 2, 11 and 16% and TR 3, 0, 2 and 20% respectively. While it should 

be noted these results are displayed on scales different to that of the current study, the 

increases are of a similar magnitude, based on this it could be hypothesised that press ups 

with vibration is approximately equivalent to either narrow base or plyometric press ups 

with regards to increases in EMG. Typically the results obtained indicated that PMC activity 

was a higher percentage of MVC compared to PMS, this is in line with results obtained 

when comparing the effect of grip width and hand position of bench press exercises 293 yet 

contrast to investigations of incline compared to decline bench pressing 294. However, it 

should be noted that EMG electrodes placed centrally on the PM, both vertically and 

horizontally, typically display lower EMG amplitudes than at any other location on the PM 

295 and that the regional activity of PM has been shown to be influenced by fine tuning of 

the motor units by the CNS to match the task required 296. Considering this variability within 

EMG of the PM regions and functions care must be taken before conclusions can be drawn. 

Over-interpretation of results can be avoided by the analysis of muscle function in its 

combined form i.e. the analysis of total EMG amplitude, as presented in Figure 43. These 

results lead to the conclusion that when using synchronous vertical vibration for upper 
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body exercise 30L setting will not increase EMG activity, yet 40H settings will lead to an 

increase approximately equivalent to increasing the load on a barbell by 10% of 1RM. An 

additional area worth of note is the spatial and temporal effects of the exercises. The press 

up exercise durations did not change during the concentric phase or total repetition times. 

The introduction of vibration also did not change the level of displacement of the C7 

marker, representing vertical displacements completed during press up exercises. 

Therefore the increase in muscular activation observed during 40H vibration cannot be 

attributed to changing pace or range of movement during press ups. Contrarily, bench 

press exercises displayed highly significant decreases in movement velocity during 

repetitions at 70% of 1RM for both the concentric phase and the total movement duration. 

Considering the actual range of movement did not change, the time under tension must 

have increased. The difference in movement duration introduces a fundamental difference 

between the bench press at 70% of 1RM and press ups with vibration i.e. increasing muscle 

activation via the introduction of vibration does not reduce movement velocity.  

Overall the effect sizes for the significant increases in muscle activations were small, though 

 ̂  is influenced by two factors which lead to this conclusion. Firstly, at 10-15 % of the 

mean values, the variance within the predicted values compared to the level of change in 

30L and for AD and TR both in 30L and 40H were fairly large, secondly and more 

importantly, the fact that were no differences between NVIB and 30L reduces the overall 

effect size dramatically. If the authors had ignored the first repeated measure and simply 

performed Cohen’s effect size between NVIB and 40H the effect size would have been 

large, despite the level of variance. Consideration of the lack of changes in EMG seen in 30L 

condition, in both Chapter 8 and the current study, and the overall influence on the effect 

size, future studies could focus simply on NVIB vs. 40H without the need to consider 30L. 

With regards to comparing the muscular activation recorded during the current study and 

that in the previous Chapter it is worth noting the TR and PMS displayed less activation 

during the eccentric phase relative to the concentric in the current study compared to that 

observed in Chapter 8. An anecdotal observation is that the participants of the current 

study had greater resistance training experience which likely explains the differences in 

activation patterns. 
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9.5 Summary 

 

The results obtained suggest that bench press exercises can be used to generate a 

calibration curve. However, there are minimum strength requirements for this to be 

effective. In addition, the calibration curve is only effective for the concentric phase of 

press up exercises.  Providing these limitations are accounted for, the results indicate that 

bench press exercises can be used to generate effective calibration curves for press up 

exercises can also be confirmed.   

The results from this study also confirm the second hypothesis, that appropriate levels of 

vibration can significantly increase muscle activation of the upper body, therefore vibration 

can be used to augment muscle function during press up exercises. The increase is 

approximately equivalent to a load increase of 10% of 1RM during bench press exercises. In 

contrast to bench press exercises, the increase in muscle activation during press ups with 

vibration is achieved without influencing the duration or kinematic aspects of the exercise.   
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CHAPTER 10: CONCLUSIONS 

 

The aim of the research reported in this doctoral thesis was to investigate the fundamental 

responses of the human body to vibration exercises. This research indicates that WBV 

during exercise has significant influences on both the muscular and vascular physiological 

systems of the human body. Throughout the studies there were no significant changes in 

either spatial or temporal parameters, indicating that WBV did not alter the performance of 

the exercises analysed. 

Analysis of the powerBIKE identified issues with the mechanical design.  The vibration 

mechanism introduced additional resistance and the settings provided no equivalent 

resistances for NVIB and VIB conditions. However, while it is pertinent to not over interpret 

results; initial findings indicate that at higher cadences there was a greater increase in 

muscle activation in the presence of vibration. This suggests that when comparable 

resistance parameters are available, i.e. power matched VIB and NVIB cadence, meaningful 

differences in muscle activation could be hypothesised.  

Subsequent studies utilised the WBV platforms to investigate physiological and 

biomechanical responses to vibration during both dynamic and static exercises. The 

introduction of WBV to heel raise exercises significantly reduced the depletion of 

oxygenated haemoglobin, total haemoglobin and the normalised tissue haemoglobin index 

of the lateral gastrocnemius. NIRS cannot indicate if these changes are a consequence of 

distal vasospastic responses, changes in proximal blood flow or local muscle activity, 

therefore further studies were designed to address these issues. During quiet standing, 

there was no indication of vasospastic responses causing blood pooling in the lower limb.  

It can be inferred that vascular resistance to blood flow was not altered by the addition of 

vibration since laser Doppler and photoplethysmographic measurements showed no 

significant changes in microvascular drainage or resistance index. The blood flow velocity of 

the dorsalis pedis artery significantly increased, despite no changes in heart rate or blood 

pressure. The increase in blood flow velocity, without central cardiovascular influence, 

indicates further investigation of peripheral muscle function was required.  
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The myoelectrical activity of the lateral gastrocnemius did not increase during heel raises 

with WBV, but was significantly increased in the soleus muscle. A possible explanation for 

this is that the soleus muscle has a higher volume of slow twitch fibres, which have lower 

activation thresholds. The reduced depletion in oxygenated haemoglobin of the lateral 

gastrocnemius could be explained by an increase in blood flow, as indicated by increased 

blood flow velocity. However, the peripheral cardiovascular influences on myoelectrical 

activity could not be inferred and required further investigation. During isometric squats 

the muscle fibre conduction velocity of the vastus lateralis did not change but the 

myoelectrical median frequency significantly decreased. This could be a consequence of 

local oxygenated haemoglobin volume protecting muscle fibre conduction velocity.  

The data obtained thus far indicates that WBV has a significant influence on the lower 

body. However, there is limited comparable scientific data in the literature on the effects of 

upper body exercise on vibration platforms; therefore, the impact of vibration during press 

ups was investigated. 

There were significant increases in the EMG amplitudes of shoulder muscles in response to 

higher vibration settings (40 Hz high amplitude), when compared to press ups without 

vibration. Greater increases were also noted in the EMG amplitude of dynamic muscles 

compared to stabiliser muscles. In terms of force, the quantification of increased muscle 

activity required the generation of calibration curves for muscular activity. Combined 

muscle activity significantly increased during the concentric phase of movement, with 40 Hz 

high amplitude vibration having an equivalent effect to increasing bench press load by 10% 

of the participant’s one repetition maximum. These results are particularly important as to 

date there is no published research on the influence of vibration during the performance of 

press up exercises. 

The changes in muscle activation of both lower and upper body studies indicate that 

vibration has a selective influence on muscle function, with vibration having a varied 

influence on different muscles. The combination of results within this thesis contributes to 

the scientific evidence base for both practitioners and researchers in the health related 

professions. The significant changes that were measured in the muscular and vascular 

physiological systems of the human body can be used as a basis to influence the design of 

exercise regimes and inspire future research. 
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CHAPTER 11: FUTURE WORK 

 

While the studies completed within the scope of this PhD have added to the scientific 

evidence base for the use of vibration during exercise, there are still many areas for further 

research. The powerBIKE presents the most difficult challenge for progressive research. 

While adjustments to the current mechanical design have potential to produce power 

matched settings, the manufacturer is still developing the prototype design. Until a final 

version of the powerBIKE is produced, scientifically sound studies cannot be completed, or 

are pointless with the prototype utilised in chapter 3, if the current design is never 

reproduced.  

WBV platforms present a more valid option for future research. An interesting observation 

within the current lower body studies was the significant reduction in lateral gastrocnemius 

NIRS but lack of significant change in EMG amplitude. The increased EMG amplitude in the 

soleus muscle potentially explains these differences; therefore NIRS of the soleus muscle 

during heel raise exercises with WBV would provide valuable information on lower leg 

function during vibration. Logically this also raises the question of whether slow twitch fibre 

are more susceptible to WBV than fast twitch fibres. The increase in muscular activity is 

also potentially an explanation for the increase in peripheral blood flow, with muscular 

contractions increasing blood flow. If future research can support this hypothesis it would 

provide an explanation for how vibration affects local blood flow without changing central 

blood flow i.e. heart rate. Considering there are conflicting reports of tissue oxygenation 

parameters of the vastus lateralis during isometric vibration exercise 73,106, further studies 

of the vastus lateralis, particularly with synchronous EMG, will help to strengthen the 

scientific knowledge of the influence of vibration on blood flow and tissue oxygenation and 

how this in turn influences EMG.  

It should be noted that all studies completed in this PhD were completed in the absence of 

additional load i.e. bodyweight exercises or static positions. Future work with additional 

resistances applied during exercise, particularly in press up exercises where research is 

scarce, would be beneficial.  

One final key area for future research is with regards to the transmission of vibration whilst 

in the press up position. Whilst to date the transmission of WBV in the standing position 
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has been studied, there are no such studies for the upper body. As transmission of vibration 

is related to the safety of the exercise, accelerometer studies during the press up position 

are vital for evidence based practice and research. The results from studies of vibration 

transmission through the upper body in this position would provide important information 

with regards the potential risks to the head and neck. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



119 
 

REFERENCES 

1. Goetz, C. G. Jean-Martin Charcot and his vibratory chair for Parkinson disease. Neurology 73, 475–8 
(2009). 

2. Albasini, A., Krause, M. & Rembitzki, I. Using Whole Body Vibrtion in Physical Therapy and Sport. 
(Churchill Livingstone Elsevier, 2010). 

3. Calvert, R, N. The History of Massage. (Inner traditions bear and company, 2002). 

4. Nasarov, V. S. G. & Spivak, G. Development of athlete’s strength abilities by means of biomechanical 
stimulation method. Theory and practice of physical culture (Moscow) 12, 37–39 (1985). 

5. Marín, P. J. & Rhea, M. R. Effects of vibration training on muscle strength: a meta-analysis. Journal of 
strength and conditioning research 24, 548–56 (2010). 

6. Marín, P. J. & Rhea, M. R. Effects of vibration training on muscle power: a meta-analysis. Journal of 
strength and conditioning research 24, 871–8 (2010). 

7. Abercromby, A. et al. Vibration exposure and biodynamic responses during whole-body vibration 
training. Medicine and science in sports and exercise 39, 1794–800 (2007). 

8. Rittweger, J. Vibration as an exercise modality: how it may work, and what its potential might be. 
European journal of applied physiology 108, 877–904 (2010). 

9. Pel, J. J. M. et al. Platform accelerations of three different whole-body vibration devices and the 
transmission of vertical vibrations to the lower limbs. Medical engineering & physics 31, 937–44 
(2009). 

10. Cochrane, D. J. J. Vibration exercise: the potential benefits. Journal of Sports Science and Medicine 32, 
19–30 (2011). 

11. Gojanovic, B. & Henchoz, Y. Whole-body vibration training: Metabolic cost of synchronous, side-
alternating or no vibrations. Journal of Sports Sciences 37–41 (2012). at 
<http://www.tandfonline.com/doi/abs/10.1080/02640414.2012.710756> 

12. Abercromby, A. et al. Variation in neuromuscular responses during acute whole-body vibration 
exercise. Medicine and science in sports and exercise 39, 1642–50 (2007). 

13. Eklund, G. & Hagbarth, K. E. Normal variability of tonic vibration reflexes in man. Experimental 
neurology 16, 80–92 (1966). 

14. Echlin, F. & Fessard, A. Synchronized impulse discharges from receptors in the deep tissues in 
response to a vibrating stimulus. The Journal of physiology 93, 312–34 (1938). 

15. Kuffler, S. W., Hunt, C. C. & Quilliam, J. P. Function of medullated small-nerve fibers in mammalian 
ventral roots; efferent muscle spindle innervation. Journal of neurophysiology 14, 29–54 (1951). 

16. Bianconi, R. & van der Meulen, J. The response to vibration of the end organs of mammalian muscle 
spindles. Journal of neurophysiology 26, 177–90 (1963). 

17. Stålberg, E. & Trontelj, J. V. Demonstration of axon reflexes in human motor nerve fibres. Journal of 
neurology, neurosurgery, and psychiatry 33, 571–9 (1970). 



120 
 

18. Bishop, B. Vibratory stimulation. Part I. Neurophysiology of motor responses evoked by vibratory 
stimulation. Physical Therapy 54, 1273–1282 (1974). 

19. Cochrane, D. J., Loram, I. D., Stannard, S. R. & Rittweger, J. Changes in joint angle, muscle-tendon 
complex length, muscle contractile tissue displacement, and modulation of EMG activity during acute 
whole-body vibration. Muscle & nerve 40, 420–9 (2009). 

20. Latash, M, L. Neurophysiological Basis of Movement. (Human Kinetics, 2008). 

21. Hyvärinen, J., Pyykkö, I. & Sundberg, S. Vibration frequencies and amplitudes in the aetiology of 
traumatic vasospastic disease. Lancet 1, 791–4 (1973). 

22. De Gail, P., Lance, J. W. & Neilson, P. D. Differential effects on tonic and phasic reflex mechanisms 
produced by vibration of muscles in man. Journal of neurology, neurosurgery, and psychiatry 29, 1–11 
(1966). 

23. Zehr, E. P. & Stein, R. B. Interaction of the Jendrássik maneuver with segmental presynaptic inhibition. 
Experimental Brain Research 124, 474–80 (1999). 

24. Burke, J. R., Schutten, M. C., Koceja, D. M. & Kamen, G. Age-dependent effects of muscle vibration and 
the Jendrassik maneuver on the patellar tendon reflex response. Archives of Physical Medicine and 
Rehabilitation 77, 600–604 (1996). 

25. Ritzmann, R., Kramer, A., Gollhofer, A. & Taube, W. The effect of whole body vibration on the H-reflex, 
the stretch reflex, and the short-latency response during hopping. Scandinavian journal of medicine & 
science in sports 1–9 (2011). at <http://www.ncbi.nlm.nih.gov/pubmed/22011018> 

26. Allieu, Y. & Mackinnon, S, E. Nerve Compression Syndromes of the Upper Limb. (Martin Dunitz, 2002). 

27. Eckman, P. B., Perlstein, G. & Altrocchi, P. H. Ulnar Neuropathy in Bicycle Riders. Archives of Neurology 
32, 130–131 (1975). 

28. Noth, J., Dietz, V. & Mauritz, K.-H. Cyclist’s palsy. Journal of the Neurological Sciences 47, 111–116 
(1980). 

29. Weiss, B. D. Nontraumatic injuries in amateur long distance bicyclists. The American Journal of Sports 
Medicine 13, 187–192 (1985). 

30. Dawson, D., Hallett, M. & Wilbourn, A, J. Entrapment Neuropathies. (Lippincott-Raven, 1999). 

31. Wilmarth, M. A. & Nelson, S. G. Distal sensory latencies of the ulnar nerve in long distance bicyclists: 
pilot study*. The Journal of orthopaedic and sports physical therapy 9, 370–4 (1988). 

32. Richmond, D. R. Handlebar problems in bicycling. Clinics in sports medicine 13, 165–73 (1994). 

33. Pecina, M., Krmpotic-Nemanic, J. & Markiewitz, A. Tunnel Syndromes, Peripheral Nerve Compression 
Sundromes. (CRC Press, 1997). 

34. Patterson, J. M. M., Jaggars, M. M. & Boyer, M. I. Ulnar and Median Nerve Palsy in Long-distance 
Cyclists: A Prospective Study. Am. J. Sports Med. 31, 585–589 (2003). 

35. Walker, F. O. & Troost, B. T. Push-up Palmar Palsy. JAMA: The Journal of the American Medical 
Association 259, 45–46 (1988). 



121 
 

36. Werner, R. A., Bir, C. & Armstrong, T. J. Reverse Phalen’s maneuver as an aid in diagnosing carpal 
tunnel syndrome. Archives of physical medicine and rehabilitation 75, 783–6 (1994). 

37. Durkan, J. A. A new diagnostic test for carpal tunnel syndrome. The Journal of bone and joint surgery. 
American volume 73, 535–8 (1991). 

38. González del Pino, J., Delgado-Martínez, A. D., González González, I. & Lovic, A. Value of the carpal 
compression test in the diagnosis of carpal tunnel syndrome. Journal of hand surgery (Edinburgh, 
Scotland) 22, 38–41 (1997). 

39. Strömberg, T., Dahlin, L. B., Brun, a & Lundborg, G. Structural nerve changes at wrist level in workers 
exposed to vibration. Occupational and environmental medicine 54, 307–11 (1997). 

40. Macgregor, R. J., Sharpless, S. K. & Luttges, M. W. A pressure vessel model for nerve compression. 
Journal of the neurological sciences 24, 299–304 (1975). 

41. Hagberg, M., Nyström, A. & Zetterlund, B. Recovery from symptoms after carpal tunnel syndrome 
surgery in males in relation to vibration exposure. The Journal of hand surgery 16, 66–71 (1991). 

42. Melzack, R. & Wall, P. D. Pain mechanisms: a new theory. Science (New York, N.Y.) 150, 971–9 (1965). 

43. Wall, P. D. The gate control theory of pain mechanisms. A re-examination and re-statement. Brain : a 
journal of neurology 101, 1–18 (1978). 

44. Rittweger, J., Schiessl, H. & Felsenberg, D. Oxygen uptake during whole-body vibration exercise: 
comparison with squatting as a slow voluntary movement. European Journal of Applied Physiology 86, 
169–173 (2001). 

45. Goldsmith, P. C. et al. Cutaneous nerve fibre depletion in vibration white finger. Journal of the Royal 
Society of Medicine 87, 377–81 (1994). 

46. Sandén, H. et al. Nerve conduction in relation to vibration exposure - a non-positive cohort study. 
Journal of occupational medicine and toxicology (London, England) 5, 21 (2010). 

47. Michael-Titus, A., Revest, P. & Shortland, P. The Nervous System. (Churchill Livingstone, 2007). 

48. Schofield, P. Beyond Pain. (Whurr Publishers, 2007). 

49. Koestler, A. & Myers, A. Understanding Chronic Pain. (University Press of Mississippi, 2002). 

50. Hong, J., Barnes, M. J. & Kessler, N. J. Case study: Use of vibration therapy in the treatment of diabetic 
peripheral small fiber neuropathy. International Journal of Diabetes Mellitus Article in, (2011). 

51. Aulicino, P. L. Neurovascular injuries in the hands of athletes. Hand clinics 6, 455–66 (1990). 

52. Kroemer, K. Cumulative trauma disorders: their recognition and ergonomics measures to avoid them. 
Applied ergonomics 20, 274–280 (1989). 

53. Egan, C. E., Espie, B. H., McGrann, S., McKenna, K. M. & Allen, J. a. Acute effects of vibration on 
peripheral blood flow in healthy subjects. Occupational and environmental medicine 53, 663–9 (1996). 

54. Greenstein, D. & Kester, R. C. Acute vibration--its effect on digital blood flow by central and local 
mechanisms. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in 
medicine 206, 105–8 (1992). 



122 
 

55. Sakakibara, H. et al. Circulatory disturbances of the foot in vibration syndrome. International archives 
of occupational and environmental health 63, 145–148 (1991). 

56. Sakakibara, H. Sympathetic responses to hand-arm vibration and symptoms of the foot. Nagoya 
journal of medical science 57 Suppl, 99–111 (1994). 

57. House, R. et al. Vasospasm in the feet in workers assessed for HAVS. Occupational medicine (Oxford, 
England) 61, 115–20 (2011). 

58. Sakakibara, H. et al. Skin sympathetic activity in the tibial nerve triggered by vibration applied to the 
hand. International archives of occupational and environmental health 62, 455–8 (1990). 

59. Santini, M., Ibata, Y. & Pappas, G. D. The fine structure of the sympathetic axons within the Pacinian 
corpuscle. Brain research 33, 279–87 (1971). 

60. Ali, M. H. & Schumacker, P. T. Endothelial responses to mechanical stress: where is the 
mechanosensor? Critical care medicine 30, S198–206 (2002). 

61. Rubanyi, G. M., Romero, J. C. & Vanhoutte, P. M. Flow-induced release of endothelium-derived 
relaxing factor. The American journal of physiology 250, H1145–9 (1986). 

62. Davies, P. How do vascular endothelial cells respond to flow? Physiology 4, 22–25 (1989). 

63. Yue, Z. et al. On the Cardiovascular Effects of Whole-Body Vibration Part II. Lateral Effects: Statistical 
Analysis. Studies in Applied Mathematics 119, 111–125 (2007). 

64. Yue, Z. & Mester, J. On the Cardiovascular Effects of Whole-Body Vibration Part I. Longitudinal Effects: 
Hydrodynamic Analysis. Studies in Applied Mathematics 119, 95–109 (2007). 

65. Wennmalm, A., Benthin, G., Karwatowska-Prokopczuk, E., Lundberg, J. & Petersson, A. S. Release of 
endothelial mediators and sympathetic transmitters at different coronary flow rates in rabbit hearts. 
The Journal of Physiology 435, 163 (1991). 

66. Lamontagne, D., Pohl, U. & Busse, R. Mechanical deformation of vessel wall and shear stress 
determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary 
vascular bed. Circulation research 70, 123–30 (1992). 

67. Otsuki, T. et al. Arterial stiffness acutely decreases after whole-body vibration in humans. Acta 
physiologica (Oxford, England) 194, 189–94 (2008). 

68. Suhr, F. et al. Effects of short-term vibration and hypoxia during high-intensity cycling exercise on 
circulating levels of angiogenic regulators in humans. Journal of applied physiology 103, 474–83 
(2007). 

69. Berceli, S. A., Jiang, Z., Klingman, N. V, Schultz, G. S. & Ozaki, C. K. Early differential MMP-2 and -9 
dynamics during flow-induced arterial and vein graft adaptations. The Journal of surgical research 134, 
327–34 (2006). 

70. Kerschan-Schindl, K. et al. Whole-body vibration exercise leads to alterations in muscle blood volume. 
Clinical Physiology 21, 377–382 (2001). 

71. Lohman III, E.B..Petrofsky, J.S. Maloney-Hinds, C. Betts-Schwab, H. Thorpe, D. et al. The effect of 
whole body vibration on lower extremity skin blood flow in normal subjects. Med Sci Monit 13, 76 
(2007). 



123 
 

72. Lythgo, N., Eser, P., de Groot, P. & Galea, M. Whole-body vibration dosage alters leg blood flow. 
Clinical physiology and functional imaging 29, 53–9 (2009). 

73. Cardinale, M., Ferrari, M. & Quaresima, V. Gastrocnemius medialis and vastus lateralis oxygenation 
during whole-body vibration exercise. Medicine and science in sports and exercise 39, 694–700 (2007). 

74. Coza, A., Nigg, B. M. & Dunn, J. F. Effects of vibrations on gastrocnemius medialis tissue oxygenation. 
Medicine and science in sports and exercise 43, 509–15 (2011). 

75. Bertschinger, D. R. & Dosso, A. Vitreous hemorrhage and whole-body vibration training-is there an 
association? Journal français d’ophtalmologie 31, e17 (2008). 

76. Gillan, S., Sutherland, S. & Cormack, C, G. Vitreous Hemorrhage After Whole-Body Vibration Training. 
Retinal Cases & Brief Reports 5, 130–131 (2011). 

77. Mansour, A. M., Uwaydat, S. H. & Khouri, A. S. Ocular sequelae of pneumatic drills. Eye (London, 
England) 14 ( Pt 1), 64–6 (2000). 

78. Lorenzen, C., Maschette, W., Koh, M. & Wilson, C. Inconsistent use of terminology in whole body 
vibration exercise research. Journal of science and medicine in sport 12, 676–8 (2009). 

79. Mikhael, M., Orr, R. & Fiatarone Singh, M. a. The effect of whole body vibration exposure on muscle 
or bone morphology and function in older adults: a systematic review of the literature. Maturitas 66, 
150–7 (2010). 

80. Lau, R. W. K., Teo, T., Yu, F., Chung, R. C. K. & Pang, M. Y. C. Effects of whole-body vibration on 
sensorimotor performance in people with Parkinson disease: a systematic review. Physical therapy 91, 
198–209 (2011). 

81. Kawanabe, K. et al. Effect of whole-body vibration exercise and muscle strengthening, balance, and 
walking exercises on walking ability in the elderly. The Keio journal of medicine 56, 28–33 (2007). 

82. Gusi, N., Raimundo, A. & Leal, A. Low-frequency vibratory exercise reduces the risk of bone fracture 
more than walking: a randomized controlled trial. BMC musculoskeletal disorders 7, 92 (2006). 

83. Rauch, F. et al. Reporting whole-body vibration intervention studies: recommendations of the 
International Society of Musculoskeletal and Neuronal Interactions. Journal of musculoskeletal & 
neuronal interactions 10, 193–8 (2010). 

84. Bossuyt, P. M. et al. Towards complete and accurate reporting of studies of diagnostic accuracy: the 
STARD initiative. BMJ (Clinical research ed.) 326, 41–4 (2003). 

85. Rees, S. S., Murphy, A. J. & Watsford, M. L. Effects of whole body vibration on postural steadiness in 
an older population. Journal of science and medicine in sport / Sports Medicine Australia 12, 440–4 
(2009). 

86. McBride, J. M. et al. Effect of an acute bout of whole body vibration exercise on muscle force output 
and motor neuron excitability. Journal of strength and conditioning research 24, 184–9 (2010). 

87. Sayenko, D. G., Masani, K., Alizadeh-Meghrazi, M., Popovic, M. R. & Craven, B. C. Acute effects of 
whole body vibration during passive standing on soleus H-reflex in subjects with and without spinal 
cord injury. Neuroscience letters 482, 66–70 (2010). 

88. Kipp, K., Johnson, S. T., Doeringer, J. R. & Hoffman, M. a. Spinal reflex excitability and homosynaptic 
depression after a bout of whole-body vibration. Muscle & nerve 43, 259–62 (2011). 



124 
 

89. Griffin, M. J. Handbook of Human Vibration. (Elsevier Ltd, 1990). 

90. Marin, P, J., Bunker, D., Rhea, M, R. & Ayllon, F, N. Neuromuscular activity during whole-body 
vibration of different amplitudes and footwear conditions: implications for prescription of vibratory 
stimulation. The Journal of Strength & Conditioning Research 23, 2311–2316 (2009). 

91. Sidwells, C. Cyclosportive + Preparing for and taking part in long distance cycling challenges. (A & C 
Black Publishers, 2011). 

92. Hug, F. & Dorel, S. Electromyographic analysis of pedaling: a review. Journal of electromyography and 
kinesiology 19, 182–98 (2009). 

93. Hug, F., Drouet, J. M., Champoux, Y., Couturier, A. & Dorel, S. Interindividual variability of 
electromyographic patterns and pedal force profiles in trained cyclists. European journal of applied 
physiology 104, 667–78 (2008). 

94. Sperlich, B. et al. Physiological and perceptual responses of adding vibration to cycling. Journal of 
Exercise Physiologyonline 12, 40–46 (2009). 

95. Hermens, H. J., Freriks, B., Disselhorst-Klug, C. & Rau, G. Development of recommendations for SEMG 
sensors and sensor placement procedures. Journal of electromyography and kinesiology 10, 361–74 
(2000). 

96. Westfall, P., Tobias, R., Rom, D., Wolfinger, R. & Hochberg, Y. Multiple Comparisons and Multiple Tests 
Using SAS. (SAS, 1999). 

97. Cardinale, M. Bosco, C., Cardinale, M. & Bosco, C. The use of vibration as an exercise intervention. 
Exercise and sport sciences reviews 31, 3–7 (2003). 

98. Rehn, B., Lidström, J., Skoglund, J. & Lindström, B. Effects on leg muscular performance from whole-
body vibration exercise: a systematic review. Scandinavian journal of medicine & science in sports 17, 
2–11 (2007). 

99. Lucía, A., Hoyos, J. & Chicharro, J. L. Preferred pedalling cadence in professional cycling. Medicine and 
science in sports and exercise 33, 1361–6 (2001). 

100. Pittman, R. Regulation of Tissue Oxygenation. (Morgan & Claypool Life Sciences, 2011). at 
<http://www.ncbi.nlm.nih.gov/books/NBK54104/> 

101. Berry, B. & Pinard, A. Assessing tissue oxygenation. Critical Care Nurse 22–40 (2002). at 
<http://ccn.aacnjournals.org/content/22/3/22.short> 

102. Nakamura, H. et al. Change in digital blood flow with simultaneous reduction in plasma endothelin 
induced by hand-arm vibration. International archives of occupational and environmental health 68, 
115–9 (1996). 

103. Maloney-Hinds, C., Petrofsky, J. S. J. S. & Zimmerman, G. The effect of 30 Hz vs. 50 Hz passive 
vibration and duration of vibration on skin blood flow in the arm. Med Sci Monit 14, 116 (2008). 

104. Hazell, T. J., Thomas, G. W. R., Deguire, J. R. & Lemon, P. W. R. Vertical whole-body vibration does not 
increase cardiovascular stress to static semi-squat exercise. European journal of applied physiology 
104, 903–8 (2008). 

105. Button, C., Anderson, N., Bradford, C., Cotter, J. D. & Ainslie, P. N. The effect of multidirectional 
mechanical vibration on peripheral circulation of humans. Clinical physiology and functional imaging 
27, 211–6 (2007). 



125 
 

106. Yamada, E. et al. Vastus lateralis oxygenation and blood volume measured by near-infrared 
spectroscopy during whole body vibration. Clinical physiology and functional imaging 25, 203–208 
(2005). 

107. Intaglietta, M., Johnson, P. C. & Winslow, R. M. Microvascular and tissue oxygen distribution. 
Cardiovascular research 32, 632–43 (1996). 

108. Chang, N., Goodson, W. H., Gottrup, F. & Hunt, T. K. Direct measurement of wound and tissue oxygen 
tension in postoperative patients. Annals of surgery 197, 470–8 (1983). 

109. McCoy, C. L., McIntyre, D. J., Robinson, S. P., Aboagye, E. O. & Griffiths, J. R. Magnetic resonance 
spectroscopy and imaging methods for measuring tumour and tissue oxygenation. The British journal 
of cancer. Supplement 27, S226–31 (1996). 

110. Delpy, D. T. et al. Estimation of optical pathlength through tissue from direct time of flight 
measurement. Physics in medicine and biology 33, 1433–42 (1988). 

111. SuzukiI, S., Takasaki, S., Ozaki, T. & Kobbayashi, Y. A tissue oxygenation monitor using NIR spatially 
resolved spectroscopy. Proceedings of SPIE 3597, 582–592 (1999). 

112. Boushel, R. et al. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in 
health and disease. Scandinavian journal of medicine & science in sports 11, 213–22 (2001). 

113. McCully, K. K. & Hamaoka, T. Near-infrared spectroscopy: what can it tell us about oxygen saturation 
in skeletal muscle? Exercise and sport sciences reviews 28, 123–7 (2000). 

114. Beekvelt, M. Van, Coliert, W., Wevers, R. & Englelen, B. Performance of near-infrared spectroscopy in 
measuring local O2 consumption and blood flow in skeletal muscle. Journal of applied physiology 511–
519 (2001). at <http://jap.physiology.org/content/90/2/511.short> 

115. Edwards, A. D. et al. Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy. 
J Appl Physiol 75, 1884–1889 (1993). 

116. De Blasi, R. A. et al. Noninvasive measurement of forearm blood flow and oxygen consumption by 
near-infrared spectroscopy. J Appl Physiol 76, 1388–1393 (1994). 

117. Quaresima, V., Colier, W. N., van der Sluijs, M. & Ferrari, M. Nonuniform quadriceps O2 consumption 
revealed by near infrared multipoint measurements. Biochemical and biophysical research 
communications 285, 1034–9 (2001). 

118. Lima, A. & Bakker, J. Near-infrared spectroscopy for monitoring peripheral tissue perfusion in critically 
ill patients. Revista Brasileira de Terapia Intensiva 23, 341–351 (2011). 

119. Seiyama, a, Hazeki, O. & Tamura, M. Noninvasive quantitative analysis of blood oxygenation in rat 
skeletal muscle. Journal of biochemistry 103, 419–24 (1988). 

120. Mancini, D. M. et al. Validation of near-infrared spectroscopy in humans. J Appl Physiol 77, 2740–2747 
(1994). 

121. Liu, H., Boas, D. A., Zhang, Y., Yodh, A. G. & Chance, B. Determination of optical properties and blood 
oxygenation in tissue using continuous NIR light. Physics in medicine and biology 40, 1983–93 (1995). 

122. Li, Z. et al. Wavelet analysis of lumbar muscle oxygenation signals during whole-body vibration: 
implications for the development of localized muscle fatigue. European journal of applied physiology 
112, 3109–17 (2012). 



126 
 

123. Delpy, D. T. & Cope, M. Quantification in tissue near-infrared spectroscopy. Philosophical Transactions 
of the Royal Society B: Biological Sciences 352, 649–659 (1997). 

124. Matcher, S. J., Kirkpatrick, P. J., Nahid, K., Cope, M. & Delpy, D. T. Absolute quantification methods in 
tissue near-infrared spectroscopy. in Proceedings of SPIE (Chance, B. & Alfano, R. R.) 486–495 
(International Society for Optics and Photonics, 1995). doi:10.1117/12.209997 

125. Palastanga, N., Field, D. & Soames, R. Anatomy and Human Movement, Structure and Function. 
(Butterworth Heinemann, 2004). 

126. Baechle, T. R. & Earle, E. W. Essentials of Strength and Conditioning. (Human Kinetics, 2008). 

127. Bhambhani, Y., Tuchak, C., Burnham, R., Jeon, J. & Maikala, R. Quadriceps muscle deoxygenation 
during functional electrical stimulation in adults with spinal cord injury. Spinal cord 38, 630–8 (2000). 

128. Mileva, K. N., Naleem, A. A., Biswas, S. K., Marwood, S. & Bowtell, J. L. Acute effects of a vibration-like 
stimulus during knee extension exercise. Medicine and science in sports and exercise 38, 1317–28 
(2006). 

129. McNeil, C. J., Murray, B. J. & Rice, C. L. Differential changes in muscle oxygenation between voluntary 
and stimulated isometric fatigue of human dorsiflexors. Journal of applied physiology (Bethesda, Md. : 
1985) 100, 890–5 (2006). 

130. Myers, D., McGraw, M., George, M., Mulier, K. & Beilman, G. Tissue hemoglobin index: a non-invasive 
optical measure of total tissue hemoglobin. Critical care 13 Suppl 5, S2 (2009). 

131. Quaresima, V. & Ferrari, M. Muscle oxygenation by near-infrared-based tissue oximeters. Journal of 
applied physiology 107, 371; author reply 372–3 (2009). 

132. Cooper, C. E., Penfold, S.-M., Elwell, C. E. & Angus, C. Comparison of local adipose tissue content and 
SRS-derived NIRS muscle oxygenation measurements in 90 individuals. Advances in experimental 
medicine and biology 662, 177–81 (2010). 

133. Nagami, K. Excess venous return immediately after brief contraction of human calf muscles. The Tokai 
journal of experimental and clinical medicine 15, 81–6 (1990). 

134. Hamann, J. J., Valic, Z., Buckwalter, J. B. & Clifford, P. S. Counterpoint: The muscle pump is not an 
important determinant of muscle blood flow during exercise. Journal of applied physiology 99, 6–10 
(2003). 

135. Hamann, J. J., Buckwalter, J. B. & Clifford, P. S. Vasodilatation is obligatory for contraction-induced 
hyperaemia in canine skeletal muscle. The Journal of physiology 557, 1013–20 (2004). 

136. Clifford, P. S. Skeletal muscle vasodilatation at the onset of exercise. The Journal of physiology 583, 
825–33 (2007). 

137. Thompson, a M. S., House, R., Krajnak, K. & Eger, T. Vibration-white foot: a case report. Occupational 
medicine (Oxford, England) 60, 572–4 (2010). 

138. Hashiguchi, T., Yanagi, H., Kinugawa, Y., Sakakibara, H. & Yamada, S. Pathological changes of finger 
and toe in patients with vibration syndrome. Nagoya J Med Sci 57, 129–136 (1994). 

139. Schweigert, M. The relationship between hand-arm vibration and lower extremity clinical 
manifestations: a review of the literature. International Archives of Occupational and Environmental 
Health 75, 179–185 (2002). 



127 
 

140. Hobson, J., Bicknell, C. & Cheshire, N. Dorsalis pedis arterial pulse: palpation using a bony landmark. 
Postgraduate medical journal 79, 363 (2003). 

141. Palmer, K. T., Griffin, M. J., Bendall, H., Pannett, B. & Coggon, D. Prevalence and pattern of 
occupational exposure to whole body vibration in Great Britain: findings from a national survey. 
Occupational and environmental medicine 57, 229–36 (2000). 

142. Cardinale, M. & Wakeling, J. Whole body vibration exercise: are vibrations good for you? British 
journal of sports medicine 39, 585–9; discussion 589 (2005). 

143. Avelar, N. C. P. et al. Oxygen Consumption and Heart Rate During Repeated Squatting Exercises With 
or Without Whole-Body Vibration in the Elderly. The Journal of Strength & Conditioning Research 25, 
3495 (2011). 

144. Rittweger, J., Beller, G., Felsenberg, D. & Rittweger, J. Beller,G Felsenberg, D. Acute physiological 
effects of exhaustive whole-body vibration exercise in man. Clinical physiology (Oxford, England) 20, 
134–42 (2000). 

145. Figueroa, A., Vicil, F. & Sanchez-Gonzalez, M. a. Acute exercise with whole-body vibration decreases 
wave reflection and leg arterial stiffness. American journal of cardiovascular disease 1, 60–7 (2011). 

146. Cardinale, M., Soiza, R. L., Leiper, J. B., Gibson, a & Primrose, W. R. Hormonal responses to a single 
session of wholebody vibration exercise in older individuals. British journal of sports medicine 44, 
284–8 (2010). 

147. Baum, K., Votteler, T. & Schiab, J. Efficiency of vibration exercise for glycemic control in type 2 
diabetes patients. International journal of medical sciences 4, 159–63 (2007). 

148. Figueroa, A., Gil, R. & Sanchez-Gonzalez, M. a. Whole-body vibration attenuates the increase in leg 
arterial stiffness and aortic systolic blood pressure during post-exercise muscle ischemia. European 
journal of applied physiology 111, 1261–8 (2011). 

149. Herrero, A. J. et al. Whole-body vibration alters blood flow velocity and neuromuscular activity in 
Friedreich’s ataxia. Clinical physiology and functional imaging 31, 139–44 (2011). 

150. Rubinstein, E. H. & Sessler, D. I. Skin-surface temperature gradients correlate with fingertip blood flow 
in humans. Anesthesiology 73, 541–5 (1990). 

151. Cochrane, D. J., Stannard, S. R., Sargeant, a J. & Rittweger, J. The rate of muscle temperature increase 
during acute whole-body vibration exercise. European journal of applied physiology 103, 441–8 
(2008). 

152. Kraemer, W., Fleck, S. & Deschenes, M. Exercise Physiology, Integrating Theory and Application. 
(Lippincott Williams & Wilkins, 2012). 

153. Brown, S. P., Miller, W. C. & Eason, J. M. Exercise Physiology: Basis of Human Movement in Health and 
Disease. 652 (Lippincott Williams & Wilkins, 2006). at 
<http://books.google.com/books?hl=en&lr=&id=1b0iwv8-jGcC&pgis=1> 

154. Eston, R. & Reilly, T. Kinanthropometry and Exercise Physiology Laboratory Manual: Tests, Procedures 
and Data. (Taylor & Francis, 2001). 

155. Knight, K. & Draper, D. Therapeutic Modalilities. The Art and Science. (Lippincott Williams & Wilkins, 
2013). 



128 
 

156. Schulthess, G., Smith, H., Pettersson, H. & Allison, D. The Encyclopaedia of Medical Imaging, Physics, 
Techniques an Procedures. (Isis Medical Media, 1998). 

157. Schumacher, M. et al. Intravascular ultrasound Doppler measurement of blood flow velocity. Journal 
of neuroimaging : official journal of the American Society of Neuroimaging 11, 248–52 (2001). 

158. Jensen, J. Estimation of Blood Velocities Using Ultrasound. A Signal Processing Approach. (Cambridge 
University Press, 1996). 

159. Allen, J. Photoplethysmography and its application in clinical physiological measurement. 
Physiological measurement 28, R1–39 (2007). 

160. Gellish, R. L. et al. Longitudinal modeling of the relationship between age and maximal heart rate. 
Medicine and science in sports and exercise 39, 822–9 (2007). 

161. Mowlavi, A. Dorsalis pedis arterial pulse: palpation using a bony landmark. Postgraduate Medical 
Journal 78, 746–747 (2002). 

162. Kinnear, P. R. & Gray, C. D. PASW 17 Statistics made simple. Psychology Press 17, (2010). 

163. Stewart, J. M., Karman, C., Montgomery, L. D. & McLeod, K. J. Plantar vibration improves leg fluid flow 
in perimenopausal women. American journal of physiology. Regulatory, integrative and comparative 
physiology 288, R623–9 (2005). 

164. Roelants, M., Delecluse, C. & Verschueren, S. M. Whole-body-vibration training increases knee-
extension strength and speed of movement in older women. Journal of the American Geriatrics 
Society 52, 901–8 (2004). 

165. Cronin, J. B., Oliver, M. & McNair, P. J. Muscle stiffness and injury effects of whole body vibration. 
Physical Therapy in Sport 5, 68–74 (2004). 

166. Robbins, D., Zeinstra, E., Jimenez, A. & Goss-Sampson, M. Does Whole Body Vibration have Clinically 
Significant Neurophysiological and Neurovascular Implications? International Journal of Prevention 
and Treatment 1, 18–26 (2012). 

167. Serné, E., de Jongh, R., Eringa, E., IJzerman, R. & Stehouwer, C. Microvascular dysfunction: a potential 
pathophysiological role in the metabolic syndrome. Hypertension 50, 204–11 (2007). 

168. Zwarts, M. J. & Arendt-Nielsen, L. The influence of force and circulation on average muscle fibre 
conduction velocity during local muscle fatigue. European Journal of Applied Physiology and 
Occupational Physiology 58, 278–283 (1988). 

169. Dobson, J. L. & Gladden, L. B. Effect of rhythmic tetanic skeletal muscle contractions on peak muscle 
perfusion. Journal of applied physiology 94, 11–9 (2003). 

170. Yamada, E. et al. Relationship between muscle oxygenation and electromyography activity during 
sustained isometric contraction. Clinical physiology and functional imaging 28, 216–21 (2008). 

171. Torvinen, S. et al. Effect of a vibration exposure on muscular performance and body balance. 
Randomized cross-over study. Clinical physiology and functional imaging 22, 145–52 (2002). 

172. Kerr, D. & JP, C. Establishing a relationship between spectral indicators of fatigue and ratings of 
perceived discomfort. Proceedings of 31st conference on Human Factors Association Canada 301–307 
(1999). 



129 
 

173. Knaflitz, M., Merletti, R. & De Luca, C. Inference of Motor Unit Recruitment Order in Voluntary and 
Electrically Elicited Contractions. Journal of applied physiology 68, 1657–1667 (1990). 

174. Stulen, F. B. & DeLuca, C. J. Frequency parameters of the myoelectric signal as a measure of muscle 
conduction velocity. IEEE transactions on bio-medical engineering 28, 515–23 (1981). 

175. Arendt-Nielsen, L. & Mills, K. . The relationship between mean power frequency of the EMG spectrum 
and muscle fibre conduction velocity. Electroencephalography and Clinical Neurophysiology 60, 130–
134 (1985). 

176. Mortimer, J., Magnusson, R. & Petersen, I. Conduction velocity in ischemic muscle: effect on EMG 
frequency spectrum. Am J Physiol -- Legacy Content 219, 1324–1329 (1970). 

177. Arjunan, S. P., Kumar, D., Wheeler, K., Shimada, H. & Naik, G. Spectral properties of surface EMG and 
muscle conduction velocity: A study based on sEMG model. ISSNIP Biosignals and Biorobotics 
Conference 2011 1–4 (2011). doi:10.1109/BRC.2011.5740675 

178. Bigland-Ritchie, B., Donovan, E. F. & Roussos, C. S. Conduction velocity and EMG power spectrum 
changes in fatigue of sustained maximal efforts. J Appl Physiol 51, 1300–1305 (1981). 

179. Zwarts, M. J., Weerden, T. W. & Haenen, H. T. M. Relationship between average muscle fibre 
conduction velocity and EMG power spectra during isometric contraction, recovery and applied 
ischemia. European Journal of Applied Physiology and Occupational Physiology 56, 212–216 (1987). 

180. Masuda. K et al. Changes in surface EMG parameters during static and dynamic fatiguing contractions. 
Journal of electromyography and kinesiology 9, 39–46 (1999). 

181. Gollnick, P., Sjödin, B., Karlsson, J., Jansson, E. & Saltin, B. Human soleus muscle: A comparison of fiber 
composition and enzyme activities with other leg muscles. Pflugers Archiv European Journal of 
Physiology 348, 247–255 (1974). 

182. Beck, T. W., Housh, T. J., Cramer, J. T. & Weir, J. P. The effects of electrode placement and innervation 
zone location on the electromyographic amplitude and mean power frequency versus isometric 
torque relationships for the vastus lateralis muscle. Journal of electromyography and kinesiology 18, 
317–28 (2008). 

183. Rainoldi, a, Melchiorri, G. & Caruso, I. A method for positioning electrodes during surface EMG 
recordings in lower limb muscles. Journal of neuroscience methods 134, 37–43 (2004). 

184. McGill, K. & Dorfman, L. High-resolution alignment of sampled waveforms. IEEE transactions on 
biomedical engineering 31, 462–468 (1984). 

185. Caterisano, A. et al. The effect of back squat depth on the EMG activity of 4 superficial hip and thigh 
muscles. Journal of strength and conditioning research 16, 428–32 (2002). 

186. Roy, S. H., De Luca, C. J. & Schneider, J. Effects of electrode location on myoelectric conduction 
velocity and median frequency estimates. Journal of applied physiology 61, 1510–7 (1986). 

187. Signorile, J., Weber, B. & Roll, B. An electromyographical comparison of the squat and knee extension 
exercises. Journal of strength and conditioning research 8, 178–183 (1994). 

188. De Luca, C. J. Myoelectrical manifestations of localized muscular fatigue in humans. Critical reviews in 
biomedical engineering 11, 251–79 (1984). 

189. Stewart, D., Macaluso, A. & De Vito, G. The effect of an active warm-up on surface EMG and muscle 
performance in healthy humans. European journal of applied physiology 89, 509–13 (2003). 



130 
 

190. Tesch, P. A., Komi, P. V., Jacobs, I., Karlsson, J. & Viitaslao, J. T. Influence of lactate accumulation of 
EMG frequency spectrum during repeated concentric contractions. Acta Physiologica Scandinavica 
119, 61–67 (1983). 

191. Komi, P. & Tesch, P. EMG frequency spectrum, muscle structure, and fatigue during dynamic 
contractions in man. European journal of applied physiology and occupational physiology 42, 41–50 
(1979). 

192. Cohen, J. Statistical power analysis for the behavioral sciences. (Lawrence Erlbaum Associates, 1988). 

193. Eberstein, A. & Beattie, B. Simultaneous measurement of muscle conduction velocity and EMG power 
spectrum changes during fatigue. Muscle & nerve 8, 768–73 (1985). 

194. Linssen, W. H. et al. Fatigue in type I fiber predominance: a muscle force and surface EMG study on 
the relative role of type I and type II muscle fibers. Muscle & nerve 14, 829–37 (1991). 

195. Kupa, E. J., Roy, S. H., Kandarian, S. C. & De Luca, C. J. Effects of muscle fiber type and size on EMG 
median frequency and conduction velocity. Journal of applied physiology 79, 23–32 (1995). 

196. Hochachka, P, W. Muscles as Molecular and Metabolic Machines. (CRC Press, 1994). 

197. De Luca, C. The Use of Surface Electromyography in Biomechanics. Journal of Applied Biomechanics 
13, 135–163 (1997). 

198. Pereira, R., Schettino, L., Machado, M., da Silva, P. A. V. & Pinto Neto, O. Task failure during standing 
heel raises is associated with increased power from 13 to 50 Hz in the activation of triceps surae. 
European journal of applied physiology 110, 255–65 (2010). 

199. Österberg, U., Svantesson, U., Takahashi, H. & Grimby, G. Torque, work and EMG development in a 
heel-rise test. Clinical Biomechanics 13, 344–350 (1998). 

200. Ament, W., Bonga, G. J., Hof, A. L. & Verkerke, G. J. EMG median power frequency in an exhausting 
exercise. Journal of electromyography and kinesiology 3, 214–20 (1993). 

201. Roelants, M., Verschueren, S. M. P., Delcuse, C., Levin, O. & Stijnen, V. Whole-Body-Vibration--
Induced Increase in Leg Muscle Activity During Different Squat Exercises. Strength and Conditioning 
Journal Research 20, 124–129 (2006). 

202. Hazell, T. J., Jakobi, J. M. & Kenno, K. A. The effects of whole-body vibration on upper- and lower-body 
EMG during static and dynamic contractions. Applied physiology, nutrition, and metabolism 32, 1156–
63 (2007). 

203. Pollock, R. D., Woledge, R. C., Mills, K. R., Martin, F. C. & Newham, D. J. Muscle activity and 
acceleration during whole body vibration: effect of frequency and amplitude. Clinical biomechanics 
25, 840–6 (2010). 

204. Ritzmann, R., Kramer, A., Gruber, M., Gollhofer, A. & Taube, W. EMG activity during whole body 
vibration: motion artifacts or stretch reflexes? European journal of applied physiology 110, 143–51 
(2010). 

205. Bilodeau, M., Goulet, C., Nadeau, S., Bertrand Arsenault, A. & Gravel, D. Comparison of the EMG 
power spectrum of the human soleus and gastrocnemius muscles. European Journal of Applied 
Physiology and Occupational Physiology 68, 395–401 (1994). 



131 
 

206. Cresswell, A. G., Löscher, W. N. & Thorstensson, A. Influence of gastrocnemius muscle length on 
triceps surae torque development and electromyographic activity in man. Experimental Brain 
Research 105, 283–290 (1995). 

207. Edgerton, V. R., Smith, J. L. & Simpson, D. R. Muscle fibre type populations of human leg muscles. The 
Histochemical Journal 7, 259–266 (1975). 

208. Alway, S. E., MacDougall, J. D., Sale, D. G., Sutton, J. R. & McComas, A. J. Functional and structural 
adaptations in skeletal muscle of trained athletes. J Appl Physiol 64, 1114–1120 (1988). 

209. Hébert-Losier, K., Schneiders, A. T. G., García, J. A., John Sullivan, S. & Simoneau, G. G. Influence of 
knee flexion angle and age on triceps surae muscle activity during heel-raises. Journal of strength and 
conditioning research / National Strength & Conditioning Association (2011). 
doi:10.1519/JSC.0b013e31824435cf 

210. Arnsdorff, K. J., Limbaugh, K. & Riemann, B. L. Analysis of Heel Raise Exercise with Three Foot 
Positions. International Journal of Exercise Science 4, 3 (2011). 

211. Matthijsse, P. C., Hendrich, K. M., Rijnsburger, W. H., Woittiez, R. D. & Huijing, P. A. Ankle angle 
effects on endurance time, median frequency and mean power of gastrocnemius EMG power 
spectrum: a comparison between individual and group analysis. Ergonomics 30, 1149–59 (1987). 

212. Ament, W., Bonga, G. J., Hof, A. L. & Verkerke, G. J. EMG median power frequency in an exhausting 
exercise. Journal of electromyography and kinesiology : official journal of the International Society of 
Electrophysiological Kinesiology 3, 214–20 (1993). 

213. Österberg, U., Svantesson, U., Takahashi, H. & Grimby, G. Torque, work and EMG development in a 
heel-rise test. Clinical biomechanics 13, 344–350 (1998). 

214. Gerdle, B. Fugl-Meyer, A. R. Is the mean power frequency shift of the EMG a selective indicator of 
fatigue of the fast twitch motor units? Acta Physiologica Scandinavica 145, 129–138 (1992). 

215. Andersen, P. & Kroese, A. J. Capillary supply in soleus and gastrocnemius muscles of man. Pflugers 
Archiv European Journal of Physiology 375, 245–249 (1978). 

216. Edgerton, V. R., Smith, J. L. & Simpson, D. R. Muscle fibre type populations of human leg muscles. The 
Histochemical Journal 7, 259–266 (1975). 

217. Cavanagh, P. R. & Komi, P. V. Electromechanical delay in human skeletal muscle under concentric and 
eccentric contractions. European journal of applied physiology and occupational physiology 42, 159–
63 (1979). 

218. Grosset, J.-F., Piscione, J., Lambertz, D. & Pérot, C. Paired changes in electromechanical delay and 
musculo-tendinous stiffness after endurance or plyometric training. European journal of applied 
physiology 105, 131–9 (2009). 

219. Nordez, A. et al. Electromechanical delay revisited using very high frame rate ultrasound. Journal of 
applied physiology 106, 1970–5 (2009). 

220. Abellaneda, S., Guissard, N. & Duchateau, J. The relative lengthening of the myotendinous structures 
in the medial gastrocnemius during passive stretching differs among individuals. Journal of applied 
physiology (Bethesda, Md. : 1985) 106, 169–77 (2009). 

221. Muraoka, T., Muramatsu, T., Fukunaga, T. & Kanehisa, H. Influence of tendon slack on 
electromechanical delay in the human medial gastrocnemius in vivo. Journal of applied physiology 96, 
540–4 (2004). 



132 
 

222. Conforto, S. et al. How much can we trust the electromechanical delay estimated by using 
electromyography? Conference proceedings : ... Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. 
Conference 1, 1256–9 (2006). 

223. Pääsuke, M., Ereline, J. & Gapeyeva, H. Neuromuscular fatigue during repeated exhaustive 
submaximal static contractions of knee extensor muscles in endurance-trained, power-trained and 
untrained men. Acta physiologica Scandinavica 166, 319–26 (1999). 

224. Marín, P. J. et al. Whole-body vibration increases upper and lower body muscle activity in older 
adults: potential use of vibration accessories. Journal of electromyography and kinesiology 22, 456–62 
(2012). 

225. Gómez-Cabello, A., González-Agüero, A., Ara, I., Casajús, J. a & Vicente-Rodríguez, G. Effects of a 
short-term whole body vibration intervention on physical fitness in elderly people. Maturitas 74, 276–
278 (2013). 

226. McBride, J., Porcari, J. & Scheunke, M. Effect of vibration during fatiguing resistance exercise on 
subsequent muscle activity during maximal voluntary isometric contractions. The Journal of Strength 
& Conditioning Research 18, 777–781 (2004). 

227. Mischi, M. & Cardinale, M. The effects of a 28-Hz vibration on arm muscle activity during isometric 
exercise. Medicine and science in sports and exercise 41, 645–53 (2009). 

228. Tripp, B., Faust, D. & Jacobs, P. Elbow joint position sense after neuromuscular training with handheld 
vibration. Journal of athletic training 44, 617–23 (2009). 

229. Contreras, B. et al. The Biomechanics of the Push-up: Implications for Resistance Training Programs. 
Strength and Conditioning Journal 34, 41–46 (2012). 

230. Baumgartner, T. A., Oh, S., Chung, H. & Hales, D. Objectivity, Reliability, and Validity for a Revised 
Push-Up Test Protocol. Measurement in Physical Education and Exercise Science 6, 225–242 (2002). 

231. Freeman, S., Karpowicz, A., Gray, J. & McGill, S. Quantifying muscle patterns and spine load during 
various forms of the push-up. Medicine and science in sports and exercise 38, 570–7 (2006). 

232. Cogley, R. et al. Comparison of Muscle Activation Using Various Hand Positions During the Push-Up. 
The Journal of Strength and Conditioning Research 19, 628–633 (2005). 

233. Chuckpaiwong, B. & Harnroongroj, T. Palmar pressure distribution during push-up exercise. Singapore 
medical journal 50, 702–4 (2009). 

234. Lehman, G. J., Gilas, D. & Patel, U. An unstable support surface does not increase scapulothoracic 
stabilizing muscle activity during push up and push up plus exercises. Manual therapy 13, 500–6 
(2008). 

235. Lehman, G. J., MacMillan, B., MacIntyre, I., Chivers, M. & Fluter, M. Shoulder muscle EMG activity 
during push up variations on and off a Swiss ball. Dynamic medicine : DM 5, 7 (2006). 

236. Gouvali, M. & Boudolos, K. Dynamic and electromyographical analysis in variants of push-up exercise. 
J Strength Cond Res 19, 146–151 (2005). 

237. Masuda, T., Miyano, H. & Sadoyama, T. The propagation of motor unit action potential and the 
location of neuromuscular junction investigated by surface electrode arrays. Electroencephalography 
and clinical neurophysiology 55, 594–600 (1983). 



133 
 

238. Rainoldi, a et al. Geometrical factors in surface EMG of the vastus medialis and lateralis muscles. 
Journal of electromyography and kinesiology 10, 327–36 (2000). 

239. Zuniga, E. N., Truong, X. T. & Simons, D. G. Effects of skin electrode position on averaged 
electromyographic potentials. Archives of physical medicine and rehabilitation 51, 264–72 (1970). 

240. Komi, P. V & Buskirk, E. R. Reproducibility of electromyographic measurements with inserted wire 
electrodes and surface electrodes. Electromyography 10, 357–67 (1970). 

241. De Luca, C. J. & Merletti, R. Surface myoelectric signal cross-talk among muscles of the leg. 
Electroencephalography and clinical neurophysiology 69, 568–75 (1988). 

242. Lang, T. & Secic, M. How to Report Statistics in Medicine: Annotated Guidelines for Authors, Editors 
and Reviewers. (American College of Physicians, 2006). 

243. Lee, B.-C., Martin, B. J. & Sienko, K. H. Directional postural responses induced by vibrotactile 
stimulations applied to the torso. Experimental brain research. Experimentelle Hirnforschung. 
Expérimentation cérébrale 222, 471–82 (2012). 

244. Lear, L. J. & Gross, M. T. An electromyographical analysis of the scapular stabilizing synergists during a 
push-up progression. The Journal of orthopaedic and sports physical therapy 28, 146–57 (1998). 

245. Blackard, D., Jensen, R. & Ebben, W. Use of EMG analysis in challenging kinetic chain terminology. 
Medicine & Science in Sports & Exercise 31, 443–448 (1999). 

246. Donkers, M. J., An, K.-N., Chao, E. Y. S. & Morrey, B. F. Hand position affects elbow joint load during 
push-up exercise. Journal of Biomechanics 26, 625–632 (1993). 

247. Eckhardt, H., Wollny, R., Müller, H., Bartsch, P. & Friedmann-Bette, B. Enhanced myofiber recruitment 
during exhaustive squatting performed as whole-body vibration exercise. The Journal of Strength & 
Conditioning Research 25, 1120–1125 (2011). 

248. Ritzmann, R., Gollhofer, A. & Kramer, A. The influence of vibration type, frequency, body position and 
additional load on the neuromuscular activity during whole body vibration. European journal of 
applied physiology 113, 1–11 (2013). 

249. Hazell, T., Kenno, K. & Jakobi, J. Evaluation of muscle activity for loaded and unloaded dynamic squats 
during vertical whole-body vibration. The Journal of Strength & Conditioning Research 24, 1860–1865 
(2010). 

250. Marín, P. J., Santos-Lozano, A., Santin-Medeiros, F., Delecluse, C. & Garatachea, N. A comparison of 
training intensity between whole-body vibration and conventional squat exercise. Journal of 
electromyography and kinesiology 21, 616–21 (2011). 

251. Marin, P. J., Azael, h, Nuria, S., Rhea, M, R. & Garcia-Lopez, D. Effects of Different Magnitudes of 
Whole-Body Vibration on Arm Muscular Performance. Journal of Strength & Conditioning Research 
24, 2506–2511 (2010). 

252. Wirth, B., Zurfluh, S. & Müller, R. Acute effects of whole-body vibration on trunk muscles in young 
healthy adults. Journal of electromyography and kinesiology : official journal of the International 
Society of Electrophysiological Kinesiology 21, 450–7 (2011). 

253. Borstad, J. D., Szucs, K. & Navalgund, A. Scapula kinematic alterations following a modified push-up 
plus task. Human movement science 28, 738–51 (2009). 



134 
 

254. Dvir, Z. & Berme, N. The shoulder complex in elevation of the arm: A mechanism approach. Journal of 
Biomechanics 11, 219–225 (1978). 

255. Kendall, F., McCreary, E. & Provance, P. Muscles Testing and Function, with Posture and Pain. 
(Lippincott Williams and Wilkins, 1993). 

256. Winter, D. Biomechanics and Motor Control of Human Movement. (John Wiley and Sons,Inc., 2005). 

257. Issurin, V. & Tenenbaum, G. Acute and residual effects of vibratory stimulation on explosive strength 
in elite and amateur athletes. Journal of sports sciences 17, 177–182 (1999). 

258. Kin-Isler, A., Acikada, C. & Aritan, S. Effects of vibration on maximal isometric muscle contraction at 
different joint angles. Isokinetics and exercise science 14, 213–220 (2006). 

259. Moran, K., McNamara, B. & Luo, J. Effect of vibration training in maximal effort (70% 1RM) dynamic 
bicep curls. Medicine and science in sports and exercise 39, 526–33 (2007). 

260. Luo, J., Clarke, M., McNamara, B. & Moran, K. Influence of resistance load on neuromuscular response 
to vibration training. The Journal of Strength & Conditioning Research 23, 420–426 (2009). 

261. Bosco, C., Cardinale, M. & Tsarpela, O. Influence of vibration on mechanical power and 
electromyogram activity in human arm flexor muscles. European journal of applied physiology and 
occupational physiology 79, 306–11 (1999). 

262. Torvinen, S. et al. Effect of 4-min vertical whole body vibration on muscle performance and body 
balance: a randomized cross-over study. International journal of sports medicine 23, 374–379 (2002). 

263. Torvinen, S. et al. Effect of four-month vertical whole body vibration on performance and balance. 
Medicine and science in sports and exercise 34, 1523–8 (2002). 

264. Cochrane, D. J. & Stannard, S. R. Acute whole body vibration training increases vertical jump and 
flexibility performance in elite female field hockey players. British journal of sports medicine 39, 860–5 
(2005). 

265. Marín, P. J., Torres-Luque, G., Hernández-García, R., García-López, D. & Garatachea, N. Effects of 
different vibration exercises on bench press. International journal of sports medicine 32, 743–8 
(2011). 

266. Brinckmann, P., Frobin, W. & Leivseth, G. Musculoskeletal Biomechanics. (Theime, 2002). 

267. Lippold, O. C. J. The relation between integrated action potentials in a human muscle and its isometric 
tension. The Journal of physiology 117, 492–9 (1952). 

268. Close J, Nickel E & FN, T. Motor-Unit Action-Potential Counts Their Significance in Isometric and 
Isotonic Contractions. The Journal of Bone & Joint Surgery 42-A, 1207–1222 (1960). 

269. Zuniga, E. N. & Simons, E. G. Nonlinear relationship between averaged electromyogram potential and 
muscle tension in normal subjects. Archives of physical medicine and rehabilitation 50, 613–20 (1969). 

270. Milner-Brown, H. & Stein, R. The relation between the surface electromyogram and muscular force. 
The Journal of physiology 246, 549–569 (1975). 

271. Komi, P. V & Vitasalo, J. H. Signal characteristics of EMG at different levels of muscle tension. Acta 
physiologica Scandinavica 96, 267–76 (1976). 



135 
 

272. Miller, N. & Seireg, A. Effect of load, speed, and activity history on the EMG signals from the intact 
human muscle. Journal of bioengineering 1, 147–55 (1977). 

273. Bigland-Ritchie, B. EMG/force relations and fatigue of human voluntary contractions. Exercise and 
sport sciences reviews 9, 75–117 (1981). 

274. Lawrence, J. H. & De Luca, C. J. Myoelectric signal versus force relationship in different human 
muscles. Journal of applied physiology: respiratory, environmental and exercise physiology 54, 1653–9 
(1983). 

275. Alkner, B. a, Tesch, P. a & Berg, H. E. Quadriceps EMG/force relationship in knee extension and leg 
press. Medicine and science in sports and exercise 32, 459–63 (2000). 

276. Madeleine, P., Bajaj, P., Søgaard, K. & Arendt-Nielsen, L. Mechanomyography and electromyography 
force relationships during concentric, isometric and eccentric contractions. Journal of 
electromyography and kinesiology : official journal of the International Society of Electrophysiological 
Kinesiology 11, 113–21 (2001). 

277. Praagman, M., Veeger, H. E. J., Chadwick, E. K. J., Colier, W. N. J. M. & van der Helm, F. C. T. Muscle 
oxygen consumption, determined by NIRS, in relation to external force and EMG. Journal of 
Biomechanics 36, 905–912 (2003). 

278. Perry, J. & Bekey, G, A. EMG-Force relationship in skeletal muscle. Critical reviews in biomedical 
engineering 7, 1–22 (1981). 

279. Richards, J. Biomechanics in Clinic and Research. (Churchill Livingstone Elsevier, 2008). 

280. Moritani, T., Muramatsu, S. & Muro, M. Activity of motor units during concentric and eccentric 
contractions. American journal of physical medicine 66, 338–50 (1987). 

281. Grabiner, M. D. & Owings, T. M. EMG differences between concentric and eccentric maximum 
voluntary contractions are evident prior to movement onset. Experimental brain research. 
Experimentelle Hirnforschung. Expérimentation cérébrale 145, 505–11 (2002). 

282. Leedham, J. S. & Dowling, J. J. Force-length, torque-angle and EMG-joint angle relationships of the 
human in vivo biceps brachii. European journal of applied physiology and occupational physiology 70, 
421–6 (1995). 

283. Jaskólska, A., Katarzyna Kisiel-Sajewicz, Brzenczek-Owczarzak, W., Yue, G. H. & Jaskólski, A. EMG and 
MMG of agonist and antagonist muscles as a function of age and joint angle. Journal of 
electromyography and kinesiology 16, 89–102 (2006). 

284. Lunnen, J. D., Yack, J. & LeVeau, B. F. Relationship between muscle length, muscle activity, and torque 
of the hamstring muscles. Physical therapy 61, 190–5 (1981). 

285. Hall, S. J. Basic Biomechanics. (McGraw Hill, 2003). 

286. Nourbakhsh, M. R. & Kukulka, C. G. Relationship between muscle length and moment arm on EMG 
activity of human triceps surae muscle. Journal of electromyography and kinesiology : official journal 
of the International Society of Electrophysiological Kinesiology 14, 263–73 (2004). 

287. Mohamed, O., Perry, J. & Hislop, H. Relationship between wire EMG activity, muscle length, and 
torque of the hamstrings. Clinical biomechanics 17, 569–79 (2002). 



136 
 

288. Gerdle, B., Wretling, M. L. & Henriksson-Larsén, K. Do the fibre-type proportion and the angular 
velocity influence the mean power frequency of the electromyogram? Acta physiologica Scandinavica 
134, 341–6 (1988). 

289. Potvin, J. Effects of muscle kinematics on surface EMG amplitude and frequency during fatiguing 
dynamic contractions. Journal of Applied Physiology 82, 144–151 (1997). 

290. Robertson, D. G. E., Caldwell, G. E., Hamill, J., Kamen, G. & Whittlesey, S. N. Research Methods in 
Biomechanics. (Human Kinetics, 2004). 

291. O’Donoghue, P. Statistics for Sport and Exercise Studies. (Routledge, 2012). 

292. Poston, B., Holcomb, W., Guadnagnoli, M. & Linn, L. The acute effects of mechanical vibration on 
power output in the bench press. Journal of strength and conditioning research 21, 199–203 (2007). 

293. Lehman, G. The influence of grip width and forearm pronation/supination on upper-body myoelectric 
activity during the flat bench press. The Journal of Strength & Conditioning Research 19, 587–591 
(2005). 

294. Glass, S. & Armstrong, T. Electromyographical activity of the pectoralis muscle during incline and 
decline bench presses. The Journal of Strength & Conditioning Research 11, 163–167 (1997). 

295. Król, H., Sobota, G. & Nawrat, A. Effect of electrode position on EMG recording in pectoralis major. 
Journal of Human Kinetics 17, 105–112 (2007). 

296. Paton, M. E. & Brown, J. M. An electromyographic analysis of functional differentiation in human 
pectoralis major muscle. Journal of electromyography and kinesiology : official journal of the 
International Society of Electrophysiological Kinesiology 4, 161–9 (1994). 

 

 



137 
 

 

 

 

 

 

APPENDICES 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



138 
 

Appendix I Participant information letter 
  

 

MEDWAY SCHOOL OF SCIENCE 

SCHOOL OF LIFE AND SPORT SCIECNCE 

The effects of whole body vibration training on neuromuscular performance 

in healthy individuals. 

Researchers contact details: 

 

Daniel Robbins                  0208331 7986           rd51@gre.ac.uk  

Dr Mark Goss-Sampson       0208331 7986    gm03@gre.ac.uk   

Centre for Sports Science and Human Performance.  

University of Greenwich at Medway,  

Central Avenue, 

Chatham Maritime,  

Kent ME4 4TB 

Supervisor:  

Dr Mark Goss-Sampson 

Dear participant, 

Thank you for volunteering to participate in this study. The overall aim of this study is to investigate 

the effects of vibration on exercise performance. In order to achieve this aim the immediate effects 

of vibration on exercise must first be understood. The study you have volunteered for will involve 

light exercise on a vibrating platform. Prior to starting the exercise there may be some questions 

you would like answered, therefore this handout has been produced to help you understand the 

process. If there are any additional questions you would like answering please do not hesitate to 

contact me on either rd51@gre.ac.uk or 0208331 7986 (please only use the phone number 

between 9am-4pm). 

Confidentiality 

All data and personal information will be stored securely within University of Greenwich 

premises in accordance with the terms of the Data Protection Act 1998 and the University's 

own data protection requirements, and will be accessed only by the researchers involved. 

After completion of the study, all data will be made anonymous (i.e. all personal information 

associated with your data will be removed). Your data will be anonymous in any written 

reports, articles, and presentations of the results of the study. 
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Q+A: 

1. What sort of exercises will I be expected to do? 

a. The exercises will be lower limb exercises, examples include: squats (static and/or 

dynamic), heel and/or toe raises, lunges. All exercises will be explained and 

demonstrated prior to testing. 

2. Will I be exposed to vibration for the whole session? 

a. No. The total time estimation includes set up, rest times and removal of any test 

equipment  

3. How long will testing last? 

a. The whole testing session will not be longer than one hour, depending on the study 

you may be asked to come back for an additional session. 

4. What test equipment will be used? 

a. Depending on the testing you are undertaking we may be looking at the amount of 

oxygen in your muscles, the electrical activity of your muscles or your position while 

you exercise. It is assumed that vibration will cause changes in each of these factors 

so we will place sensors on the surface of your skin (there are no needles or 

anything that will cause pain) to detect these changes. We may need to prepare the 

skin at the site of the sensors (cleaning or potentially shaving the area), however we 

will not break the skin and only use suitable and clean equipment to do this. 

5. Do I need to do anything before testing? 

a. It is better if you do not exercise up to 24hours before testing and do not eat 

immediately before testing. It is also preferable you do not use skin creams on your 

legs up to 24 hours before testing. Apart from that there are no special 

requirements. 

6. Are there any risks associated with testing? 

a. If you have had an intraocular lens replacement you are at risk of dislocation 

b. We are looking to test people without any injuries, if you have any injuries you 

should state what the injury is prior to testing. It is likely you will not be suitable for 

testing if you have lower limb or spinal injuries. 

c. Pre-test questionnaires will help establish if you are suitable. 

7. Will I get feedback about my test results? 

a. Data will not be immediately available as analysis and comparison to other data will 

be required. If you are interested a summary will be available at a later date. 

 

Important 

You are free to take part or not in this study. You can withdraw from your participation at any time 

without any reason given or consequences. 

 

 

 

Once again, thank you for volunteering! 
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Appendix II Example Consent form 
 

UNIVERSITY of GREENWICH 

RESEARCH ETHICS COMMITTEE 

CONSENT FORM 

SCHOOL/DEPARTMENT  

Title of  Study  

Investigator's name  

To be completed by the subject/patient/volunteer/informant/interviewee/parent/guardian 

(delete as necessary) 

 

1. Have you read the information sheet about this study? 

2. Have you had an opportunity to ask questions and discuss this study? 

3. Have you received satisfactory answers to all your questions? 

4. Have you received enough information about this study? 

5. Which researcher/investigator have to spoken to about this study? 

6. Do you understand that you are free to withdraw from this study? 

 at any time 

 without giving a reason for withdrawing 

 without affecting your future with the University/studies/medical or nursing 
care 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

 

 

YES/NO 

YES/NO 

YES/NO 

7. Do you agree to take part in this study? YES/NO 

Signed Date 

Name in block letters  

  

Signature of investigator Date 

 

Please note 

 For persons under 18 years of age the consent of the parent(s) or guardian(s) must be obtained or an 
explanation given to the Research Ethics Committee and the assent of the child/young person should be 
obtained to the degree possible dependent on the age of the child/young person. 
 

 In some studies witnessed consent may be appropriate 
 

The consent form must be signed by the actual investigator concerned with the project after having 

spoken to the subject to explain the project and after having answered his or her questions about 

the project. 
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Appendix III Example MATLAB scripts 
 

III(a) Loading Data from Excel and Testing for Normal Distribution 
 

Limitations 
 
This script will only work with a dataset of four columns with the same column/vector/variable headings as 
used in the file selected below. 
 

Clear Memory and Load EMG Data 
 
close all, clear all,clc 
ds = dataset('xlsfile', 'timings for matlab.xls'); 

 
Performing Lilliefors Test for Normality and Displaying Results 
 
GVnorm = lillietest(ds.GV); 

if GVnorm == 0 
disp ('The distribution of Gastroc EMG during vibration is normal') 

else 
disp ('The distribution of Gastroc EMG during vibration is not normal') 

end 
GNVnorm = lillietest(ds.GNV); 

if GVnorm == 0 
disp ('The distribution of Gastroc EMG during no vibration is normal') 

else 
disp ('The distribution of Gastroc EMG during no vibration is not normal') 

end 
SVnorm = lillietest(ds.SV); 

if SVnorm == 0 
disp ('The distribution of Soleus EMG during vibration is normal') 

else 
disp ('The distribution of Soleus EMG during vibration is not normal') 

end 
 
 
SNVnorm = lillietest(ds.SNV); 

if SNVnorm == 0 
disp ('The distribution of Soleus EMG during no vibration is normal') 

else 
disp ('The distribution of Soleus EMG during no vibration is not normal') 

end 
 

 
Results of distribution analysis 
 

The distribution of Gastroc EMG during vibration is normal 
The distribution of Gastroc EMG during no vibration is normal 
The distribution of Soleus EMG during vibration is normal 
The distribution of Soleus EMG during no vibration is normal 
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Performing Paired hypothesis tests on data 
 

As the data is from normally distributed data then parametric hypothesis tests will be used. The 
data is from a cross-over study with single session data collection therefore paired t-Tests will be 
used. The direction of any data changes is not currently known so two-tailed tests are required. 
 
 
[h p ci] = ttest(ds.GV,ds.GNV,0.05,'both'); 

if p>0.05 
disp('p > 0.05, The difference for gastroc vib vs. no vib is not significant'); 

elseif (p<0.05) & (p>0.01) 
disp('p<0.05, The difference for gastroc vib vs. no vib is significant'); 

else p<0.01 
disp('p<0.01, The difference for gastroc vib vs. no vib is highly significant') 

end 
[h p] = ttest(ds.SV,ds.SNV,0.05,'both'); 

if p>0.05 
disp('p > 0.05, The difference for soleus vib vs. no vib is not significant'); 

elseif (p<0.05) && (p>0.01) 
disp('p<0.05, The difference for soleus vib vs. no vib is significant'); 

else p<0.01 
disp('p<0.01, The difference for soleus vib vs. no vib is highly significant') 

end 
[h p] = ttest(ds.GV,ds.SV,0.05,'both'); 

if p>0.05 
disp('p > 0.05, The difference for gastroc vib vs. soleus vib is not significant'); 

elseif (p<0.05) && (p>0.01) 
disp('p<0.05, The difference for gastroc vib vs. soleus vib is significant'); 

else p<0.01 
disp('p<0.01, The difference for gastroc vib vs. soleus vib is highly significant') 

end 
[h p] = ttest(ds.GNV,ds.SNV,0.05,'both'); 

if p>0.05 
disp('p > 0.05, The difference for gastroc no-vib vs. soleus no-vib is not significant'); 

elseif (p<0.05) && (p>0.01) 
disp('p<0.05, The difference for gastroc no-vib vs. soleus no-vib is significant'); 

else 
disp('p<0.01, The difference for gastroc no-vib vs. soleus no-vib is highly significant') 

end 
 
 
 

Results of Hypothesis Tests 
 
P > 0.05, The difference for gastroc vib vs. no vib is not significant 
P > 0.05, The difference for soleus vib vs. no vib is not significant 
P < 0.05, The difference for gastroc vib vs. soleus vib is significant 
P < 0.01, The difference for gastroc no-vib vs. soleus no-vib is highly significant 
 
Published with MATLAB® 7.10 
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III(b) Pooled Variance 
 

Limitations 
 
This code calculates pooled variance on an array with normal. If data is not normally 
distributed the code should be amended to use mad(x,1) in place of std(x). 
 

Load Data and Define Matrix 
 
ds = dataset('xlsfile', 'TAtemp.xls'); 
a= [ds.Baseline ds.PostVib1 ds.PostVib2 ds.PostVib3 ds.PostVib4... 
ds.PostVib5 ds.Recovery1 ds.Recovery2 ds.Recovery3 ds.Recovery4 ds.Recovery5]; 
 

Calculate Parameters 
 
n=length(a(:,1)); 
stdev=std(a); 
stdev=stdev.^2; 
 

Pooling Variance 
 
for i=1:length(a(1,:)) 

top(i)=(length(a(:,i))-1)*stdev(i); 
end 
 
top=sum(top); 
 
for j=1:length(a(1,:)) 

bottom(j)=(length(a(:,j))-1); 
end 
 
bottom=sum(bottom); 
 
k=top/bottom; 
 
PooledVariance = sqrt(k); 
 
Published with MATLAB® R2013a 
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III(c) Matched-pairs Rank Biserial Correlation Coefficient 
 

Limitations 
 
This is the effect size used with non-parametric matched pair’s datasets. If the data is not 
matched pairs Glass rank biserial correlation coefficient should be used. The results are 
potentially useful after a Wilcoxon analysis for generating effect sizes following Wilcoxon or 
Friedman tests. The process is detailed in Kinnear and Gray (2010) PASW 17 Statistics made 
simple 
 

Loading the Raw Data 
 

x=xlsread('data'); 
low = x(:,1); 
high = x(:,2); 
 

Establishing and Ranking Differences 
 

dif=low-high; 
abDIF = abs(dif); 
rank = tiedrank(abDIF); 
 
Note, tiedranks only ranks the dataset, it does not account for the fact that non-parametric 
analysis requires differences amongst the datasets being analysed to be ranked. 
 

 
Adjusting rank 
 

This section adjusts ranks to remove data points with equal values 
for i=1:length(abDIF) 

if abDIF(i)==0 
countZEROS(i)=1; 

else 
countZEROS(i)=0; 

end 
end 
 
count=sum(countZEROS); 
 
rank=rank-count; 
 
for i=1:length(rank) 

if rank(i)< 0 
rank(i) = 0; 

else 
rank(i) = rank(i); 

end 
end 

 



145 
 

Defining Negative and Positive Ranks 
 
 

for i=1:length(dif) 
if dif(i)< 0 

rank(i) = rank(i)*(-1); 
else 

rank(i) = rank(i); 
end 

end 
 
 

Summing the Negative and Positive Ranks 
 
 

for i=1:length(rank) 
if rank(i)< 0 

negRANK(i) = rank(i); 
else 

negRANK(i) = 0; 
end 

end 
 
for i=1:length(rank) 

if rank(i)> 0 
posRANK(i) = rank(i); 

else 
posRANK(i) = 0; 

end 
end 
 
PRtotal=abs(sum(posRANK)); 
 
NRtotal=abs(sum(negRANK)); 
 
 

Calculating the Effect Size 
 
 

n=length(dif); 
 
eSIZE=(4*abs((min([PRtotal NRtotal]))-((PRtotal+NRtotal)/2)))/(n*(n+1)); 
 
 
Published with MATLAB® R2013a 
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III(d) Benjamini Hochberg False Discovery Rate (FDR) for Adjusting P-values 

from Multiple Tests 
 

 

While the FDR process has been used for data analysis within the PhD, this example 
MATLAB script is based on data from the textbook Westfall et al., 1999 Multiple 
Comparisons and Multiple Tests Using SAS. P 34. The rationale for this is that it allows 
anyone unfamiliar with the process to easily confirm the validity of the MatLab 
script/output. I have replicated the results from the textbook (p35). The initial rawP dataset 
below is the data from the textbook. 
 

Limitations 
 
While the FDR has maximum power out of the post hoc test options (see: Koen J. F. 
Verhoeven, Katy L. Simonsen and Lauren M. McIntyre, 2005, Implementing false discovery 
rate control: increasing your power. OIKOS 108: 643-647,), it should also be noted that the 
FDR is the least conservative of the post hoc tests. This is acknowledged in Westfall et al. 
and should be considered if the process is applied to high impact data e.g. pharmaceutical 
intervention studies. 
 
 

Importing the data 
 
 
rawP = [0.0001 0.0058 0.0132 0.0289 0.0498 0.0911 0.2012 0.5718 .8912 0.9011]'; 
 
 

Establishing parameters 
 
 
n=length(rawP); 
[sorted order] = sort(rawP); 
adjustedP(n)=max(rawP)';  
 
As BH is a step down procedure the maximum value must first be established. This allows a 
point the algorithm can work from. This also has the advantage of pre-allocating the vector 
the for  loop will work through. 
 
 

Adjusting the P Value 
 
 
for i = (n-1):-1:1 

adjustedP(i)=min(adjustedP(i+1),(n/i*sorted(i))); 
end 
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Displaying the Results 
 
 
The array is converted into an array to help display the output; potentially this could have 
been completed earlier when sorting results. 
 
compare=sortrows([order sorted adjustedP']);  
 
I am using ‘sortrows’ here to % help the output be as easy to read as much as possible. 
‘sortrows’ has the advantage of keeping the relationship between the rows within in an 
array. 
 
results = dataset({compare 'HypothesisNum','Raw_P','Adjusted_P'}) 
 
results = 
 
HypothesisNum Raw_P Adjusted_P 

1 0.0001 0.001 

2 0.0058 0.029 

3 0.0132 0.044 

4 0.0289 0.07225 

5 0.0498 0.0996 

6 0.0911 0.15183 

7 0.2012 0.28743 

8 0.5718 0.71475 

9 0.8912 0.9011 

10 0.9011 0.9011 

 
Published with MATLAB® R2013a 
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Appendix IV NSCA One rep max protocol 
 

This protocol is taken from: 

 Baechle, T and Earle, R. 2008, Essentials of Strength training and Conditioning.  

1. Instruct the athlete to warm up with a light resistance that easily allows 10-10 repetitions 

2. Provide a 1 minute rest period 

3. Estimate a warm up load that will allow the athlete to complete three  to five repetitions by 

adding  

a. 10 to 20 pounds (4-9 Kg) or 5% to 10% for upper body exercise or 

b. 30 to 40 pounds (14-18 Kg) or 10-20% for lower body exercise 

4. Provide a two minute rest period 

5. Estimate a conservative, near maximal load that will allow the athlete to complete two to 

three repetitions by adding 

a. 10 to 20 pounds (4-9 Kg) or 5% to 10% for upper body exercise or 

b. 30 to 40 pounds (14-18 Kg) or 10-20% for lower body exercise 

6. Provide a two to four minute rest period 

7. Make a load increase: 

a. 10 to 20 pounds (4-9 Kg) or 5% to 10% for upper body exercise or 

b. 30 to 40 pounds (14-18 Kg) or 10-20% for lower body exercise 

8. Instruct the athlete to attempt a one repetition maximum (1RM) 

9. If the athlete was successful, provide a two to four minute rest period then go back to step 

7 

10. If the athlete failed, provide a two to four minute rest period, then decrease the load by 

subtracting: 

a. 5 to 10 pounds (2-4 Kg) or 5% to 10% for upper body exercise or 

b. 15 to 20 pounds (7-9 Kg) or 10-20% for lower body exercise 

AND then go back to step 8 

Continue increasing or decreasing the load until the athlete can no longer complete one repetition 

with proper technique. Ideally the athlete’s 1RM will be measured within three to five training sets. 

 


