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Abstract 

Permeation of chemicals through skin can lead to systemic effects of drugs or toxic 

exogenous chemicals. Skin permeation of compounds and the effect of mixture 

ingredients can be related to their chemical structures as expressed by molecular 

properties. This approach, known as Quantitative Structure-Activity Relationship 

(QSAR) analysis, is used to estimate the skin absorption of compounds from 

different mixtures and may aid the understanding of the mechanisms involved. 

In this investigation, using datasets of skin absorption of a model penetrant 

formulated in different solvents and a model penetrant formulated in mixtures 

containing various penetration enhancers, models were developed that could unravel 

the connection between structural features of such mixture ingredients and the skin 

permeation of the permeants. This work was further developed by investigating the 

combined effect of solvents and the permeant molecules in complex mixtures in 

order to identify the (permeant-mixture ingredient) interaction parameters as well. In 

order to obtain more applicable models, compounds were suggested for experimental 

measurements of skin permeation from the solvent mixtures through the comparison 

of the applicability domain of the available dataset with a commonly used skin 

absorption dataset (in water). With the addition of new data, the resulting QSAR 

models were able to estimate skin absorption of permeants from a complex mixture 

of solvents with a satisfactory level of accuracy. 

QSAR models are needed to predict the effect of the varying experimental conditions 

along with the effects of formulation components and the permeant molecular 

properties. For this purpose, the skin permeation database, EDETOX was updated 

with more recent data from 2001 to 2010 and a large dataset was constructed. This 

made it possible to investigate the effect of experimental conditions such as 

Occlusion, Hydration, Infinite/Finite dosing and Donor concentration at a large scale 

for the first time. In conclusion, the project resulted in well validated universal 

QSAR models for the prediction of skin absorption of compounds. The most notable 

predictor variables were donor concentration, wetting level of skin (affected by 

occlusion, donor volume and pre-hydration), the gap between melting and boiling 

points of the vehicle, molecular size and lipophilicity and electronic descriptors of 

the permeants. 
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1. Introduction 

Skin, the largest organ of the human body, is in continuous contact with exogenous 

molecules in everyday life. Some of these chemicals pass the skin barrier via specific 

pathways, ending in the blood and hence affecting metabolism and health. Skin's 

essential role is to protect the body from absorption of exogenous toxic material such as 

pesticides that target toxicological endpoints and can have local and systemic effects 

(Nielsen et al., 2004). Skin's protective nature is mainly dependent on the stratum 

corneum (SC), the outermost layer which limits the penetration of toxicants and drugs 

alike. 

Skin absorption of toxic chemicals may be high enough to lead to potsomng. For 

example, skin exposure to paraquat can cause breathlessness, high fever with interstitial 

infiltrates in the upper and middle lung fields leading to rapid evolution to pulmonary 

fibrosis (Parisis et al., 1995) or persistent cholestasis (Bataller et al., 1999). Currently 

the effect of dermal re-entry of pesticides e.g. when workers re-enter an area previously 

treated with a pesticide is also a cause for concern (Belsey et al., 2011 ). The European 

Commission regulations known as REACH (Registration, Evaluation and 

Authorisation/restriction of Chemicals) requires extensive risk assessments of all 

existing chemicals, including exposure via dermal contact (Commission of the European 

Communities, 2003). 

Skin is also the focus of research by drug formulators as a site of drug administration, 

due to the advantages it may offer over other routes of drug delivery (Barry, 2007) such 

as topical effect which bypasses the circulatory system having a much faster and 

targeted effect. Dermatological drug products are either dermal or topical and are 

intended for a localized pharmacological effect or transdermal drug products intended 

for the treatment or prevention of a systemic disease (Shah, 1993). Research effort has 

been invested in dermatological products, especially in transdermals, to enhance drug 

penetration through the se in order to achieve the desired pharmacological effects 

(Cooper, 1985). Systemic drug delivery through skin is non-invasive and it bypasses the 

11 





1.1.1. Epidermis 

The epidermis consists of four different layers, the Se, the stratum granulosum, the 

stratum spinosum, and the stratum basale (McGrath et al., 201 0). The cells in the basal 

layer divide and migrate upwards to produce the se. More specifically, in the stratum 

basale there is a single layer of more or less cuboidal karatinocytes with the majority of 

them having cellular projections extending into the dermis and resulting in a highly 

convoluted epidermal-dermal interface. Some of the basal keratinocytes in the deeper 

parts have a much flatter interface with the dermis. In the next layer the cells begin to 

become wider and flatter as they move outward toward the surface of the skin, their 

spiny appearance has given the name stratum spinosum to this layer. The spiny 

appearance of these cells reflects the presence of many desmosomal connections 

between cells as well as artifactual shrinkage of the cell bodies that occur during 

dehydration. In stratum granulosum the desmosomes become less prominent, but the 

cells are characterized by the presence of irregular dense proteinaceous granules known 

as keratohyalin granules. The end product of the keratinization process, extremely 

flattened cornified cells, result in the formation of the stratum corneum (Rosen, 2005; 

MacGrath et al., 201 0). 

The basal layer also includes melanocytes which are responsible for the production and 

distribution of melanin granules to keratinocytes. The langerhans cells, which are 

controlled by the immune system and are important in the body's defense mechanism, 

are also located in the epidermis (McGrath et al., 201 0; Barry, 2007). In order for a 

substance to be absorbed into the body following dermal exposure, first it must be 

dissolved in the se (the outermost sub-layer of the skin), and then diffuse through the 

remaining sub-layers of the epidermis and into the dermis, where it will finally diffuse 

into the blood capillaries (Barry, 2007). 
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1.1.1.1. The Stratum Corneum 

The first (outermost) layer of the multilayered epidermis, the SC, is the most important 

layer of the skin in terms of its barrier function. It is almost an impermeable dead dense 

layer that protects humans from exogenous 'intruders' such as allergens and is 

responsible for the permeability of human skin to dermally and transdermally delivered 

drugs. se also serves as the principle regulatory barrier to the transcutaneous traffic of 

water and xenobiotics (Hadgraft, 2004), aiding also in temperature regulation and UV 

protection (Rerek et al., 2005). SC varies in thickness throughout the body, from 0.8 mm 

on the palms to 0.006 mm on the eyelids. SC can be divided into two types according to 

thickness and purpose of use, type 1 is represented by the pads of the palms and soles 

that are adapted especially for friction and weight bearing, type 2 is represented by the 

remaining flexible and rather impermeable membranous layer (Barry, 2007). 

The SC consists of 1 0-15 layers of vertically stacked corneocytes (cornified epithelial 

cells) surrounded by the lipid-rich extracellular matrix (Michaels et al., 1975; Wegener 

et al., 1997). The SC lipids are arranged in multiple bilayers providing alternate 

hydrophobic and hydrophilic barriers (Williams and Barry, 1991 ). Composition analysis 

shows that the SC lipid sheets are comprised mostly of ceramides (Figure 1.2), long 

chain free fatty acids, and cholesterol, present in approximately equimolar 

concentrations (Laugel et al., 2005). 

More than one third of ceramides have chains longer than 22 carbon atoms and rod-like 

cylindrical shapes. The long chains of lipids, along with their spatial arrangement, have 

profound effects on the formation of the highly ordered and relatively impermeable lipid 

layer in the skin membrane (Forslind et al., 1997). Nine classes of ceramides have been 

identified and isolated from human SC. These are referred to as ceramides I -9 (Baroli, 

201 0). Among these, ceramide 1 has an exceptional molecular structure with linoleic 

acid linked to a m-hydroxy fatty acid and is the least polar, acting as a stabilizer of the 

intercellular lipid lamellae (Bouwstra et al., 2003). 
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Figure 1.2 Structure of a ceramide 

�.0 

Hif 

SC can absorb up to 10 times its dry weight when soaked in water (Anigbogu et al.. 

1995). When hydrated, keratinocytes swell as they absorb water into the intracellular 

keratin matrix, disrupting the organized layers of the SC. The permeability of SC has 

been shown to increase rapidly with water uptake, and reach a steady-state of diffusion 

(Roberts and Walker, 1993). 

Skin hydration can be achieved via occlusion with a dressing that captures insensible 

water loss, thus promoting skin hydration (Riviere et al., 200 I; Zhai and Maibach, 

2001). Hydration contributes to the mechanism by which transdermal delivery systems 

or 'patches' achieve acceptable systemic drug concentrations. Hydration of the SC 

increases its permeability to many compounds. Complete hydration of the barrier, 

obtained by using an occlusive dressing, drastically increases penetration. Most 

transdermal delivery devices, by their very nature, function as occlusive systems (Chang 

and Riviere, 1993). 

1.1.2. Dermis 

The dermis is 3-5 mm thick and a layer responsible for the skin's structural integrity, 

elasticity and resilience. It consists of a matrix of connective tissue woven from fibrous 

proteins (collagen, elastin, and reticulin) that are embedded in an amorphous ground 

substance of mucopolysaccharide. Collagen is responsible for the structural support and 

elastin for the structural resilience of the skin (Barry, 2007). The most important type of 

cells in dermis are the fibroblasts which synthesize collagen, elastin and other structural 

proteins. Dermis also contains tiny blood vessels and lymph nodes which produce 
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immune cells, sebaceous glands, sweat glands, hair follicles, nerve and muscle cells. 

The blood vessel branches deliver blood to dermis, sweat glands, hair follicles, and 

subcutaneous fat. They are also important to carry toxins or systemic drugs away into 

the body. This blood supply reaches to within 0.2 mm of the skin surface, thus most 

compounds that pass the epidermis are quickly absorbed and systematically diluted. In 

this way the diffusing molecules reach quickly the capillaries, the concentration of 

penetrants in the dermis is kept very low, the epidermal concentration gradients is 

maximized, and percutaneous absorption is promoted (Rosen, 2005; McGrath et al., 

20 1 0; Hunter et al., 2002 ). 

1.1.3. Subcutaneous tissue (hypodermis) 

The subcutaneous tissue consists mainly of fat cells. It acts as shock absorber and heat 

insulator, protecting underlying tissues from cold and trauma. It provides a mechanical 

cushion and a thermal barrier; it synthesizes and stores readily available high-energy 

chemicals (Mills et al., 2006). 

1.2. Routes of drug penetration across the skin 

For the absorption of chemicals from any biological membranes, compounds need to 

cross the biological cell membrane. The basic cell membrane structure consists of a 

bimolecular lipid leaflet that contains phospholipids, cholesterol and fatty acid esters 

oriented with their hydrophobic portions inside and their hydrophilic portions facing the 

outside aqueous environment. Associated with the lipid molecules are globular protein 

molecules embedded into or passing through the membrane. Compounds can cross cell 

membranes in several ways: passiv� permeation (diffusion) through the lipid bilayer, 

passive transport through membrane channels or pores, active transport, facilitated 

transport (carrier-mediated transport) and phagocytosis (Escuder-Gilabert et al., 2003). 

However, most drug substances cross cells by passive permeation. In this process, a 
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1.3. Factors affecting skin absorption 

The rate of absorption of a drug is mainly influenced by age, sex, race, anatomical 

region, skin health status, temperature and blood flow rate, hydration, dose, duration of 

exposure, occlusion and the synergistic effect of a penetrant with a solvent in case of a 

mixture (Barry, 2007; Riviere et al., 2001 ). The race and sex of a human do not show 

noticeable differences in barrier properties of the skin (Lotte et al., 1993). The age of a 

human can influence skin absorption because of the differences in se dryness, 

sebaceous glands activity and amount of skin surface lipids, due to flattening of the 

dermal-epidermal junction and attenuation of blood supply to viable epidermis caused 

by atrophy of the skin capillary network (Roskos et al., 1989). 

The anatomical site on a human is also important because of the differences in thickness 

and composition of the se, sebum composition and size and numbers of follicles 

(Scheuplein and Blank, 1971; Barry, 1983). The major route of permeation in se is 

around the corneocytes, therefore, the larger the corneocytes the longer the route for the 

permeation. The size of the corneocytes is dependent on the site on the body it belongs 

to and this may affect skin's permeability. For example, the skin on the face is thinner 

and corneocyte size is smaller than a corneocyte located in the se of the thicker 

abdominal area. This results in a shorter path for a drug to penetrate (Handgraft and 

Lane, 2009). 

1.4. Assessment of skin absorption 

1.4.1. In vivo methods 

In vivo methods make use of living animals including humans. Generally animals' skins 

differ significantly from the skin of humans especially in characteristics that affect 

percutaneous absorption, such as the thickness and nature of the se, the density of hair 

follicles and sweat glands, the nature of the pelt, the capillary blood supply and 
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biochemical aspects. Therefore, results taken from animal studies will need additional 

data from human studies (clinical assessment) in order for the regulatory bodies to grant 

a product licence (OECD 2004a, b). 

Several methods can be used for the in vivo assessment of percutaneous absorption; the 

best is measuring the drug levels in the blood after dermal exposure. Some of the most 

common methods are explained below: 

1. Plasma and/or excreta measurement: The dermal absorption of a chemical can be 

assessed by analyzing its concentration and/or its metabolite(s) in plasma, exhaled air, or 

urine (Akrill et al., 2002; Engstrom et al., 1977). The amount of the chemical that is 

absorbed can be measured from the concentration of a marker or from radioactivity in 

the case radiolabeled compounds have been used. By comparing either the totally 

excreted amount of a chemical or the area under the plasma concentration-time profile 

(AUC) of the two routes of administration (dermal and ref, the latter could be an oral 

dose), the dermal absorbed dose can be calculated from Eq. ( 1.1) (Kezic, 2008). 

Ab . d (AUC or Excretiondermal) D sorptwn osedermal = . . oseref AUC or Excretwnref 
Eq. (1.1) 

From the absorbed amount, exposed skin area, and exposure duration, the average 

absorption rate throughout the exposure can be deduced from eq. (1.2) (Kezic, 2008). 

Ab t. t 
Absorption dose dermal 

sorp ton ra edermal = C . ) Area·Ttme 
Eq. (1.2) 

From both equations only limited information on dermal kinetics can be extracted. It is 

preferred to use methods that estimate the dermal absorption rate time profile, such as 

(de)convolution methods, using the plasma concentration-time profile obtained from a 

dermal and a reference exposure of known rate and duration (Opdam, 1991 ). This 

approach can provide us with the average and maximum absorption rate as well as 

permeability coefficient (kp) and lag time in case of steady-state absorption. In case of 
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radiolabeled chemicals being used, a mass balance approach may be preferred (Hueber­

Becker et al., 2004). 

2. Surface loss: Determination of the flux of material into the skin can be performed by 

measuring the loss rate from the vehicle. High performance liquid chromatography is a 

method that can be used for loss determination. The drawback of this method is that 

because of the skin's low permeability, the vehicle may be changed by evaporation or 

by dilution with sweat or transepidermal water more likely than partitioning of the drug 

into the skin or deposition to the skin surface and SC (Barry, 2007). 

3. Histology: A common method of tissue analysis is the histological examination of the 

excised tissue. However, cutting, handling and development of skin sections encourage 

leaching and translocation of materials away from their original sites. Penetrants that 

fluoresce (e.g. tetracycline) can reveal the location of skin penetration routes via 

electronic microscopy. The use and combination of confocal microscopy techniques, 

such as laser scanning, fast digital signal capture/processing and image stabilization, can 

provide information at different depths in the skin (Rajadhyaksha et al., 1999). 

4. Microdialysis: This is a semi-invasive sampling technique with probes inserted in the 

dermis and perfused with buffer for measuring concentrations of a substance in the 

deeper skin layers (Wagner et al., 2000). The principle of the technique is based on the 

passive diffusion of a chemical across the semi-permeable membrane of a microdialysis 

probe that is introduced into the dermis parallel to the exposed skin surface. The probe is 

slowly perfused with a tissue compatible sterile buffer (the perfusate), mimicking the 

blood flow. Molecules able to pass the probe membrane will diffuse across the 

membrane into the perfusate, which is collected at timed intervals for analysis (Kezic, 

2008). The microdialysis method is less suitable for very lipophilic of highly protein­

bound compounds because of the low recoveries of these compounds (Benfeldt et al., 

1998). Microdialysis can be employed ex vivo as well as in vivo (Leveque et al., 2004). 
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5. Analysis of body tissues (e.g. biopsy of viable or non viable epidermis) or fluids e.g. 

circulating blood or urinary analysis is a major method for determining the skin 

absorption of chemicals in vivo. In addition, tape stripping of human Se has frequently 

been used for investigation of skin penetration barrier function and the factors involved 

in skin pathologies. Tape stripping is simple, inexpensive, with low invasive ability and 

can be used in humans and animals (Bashir et al., 2001 ). 

The tape stripping method is based on the determination of the amount of chemical in 

the separate layers of the outermost layer of the skin, the se. Generally a predetermined 

area of the skin is exposed to a chemical for a certain period of time. After the end of 

exposure, se layers are removed sequentially by adhesive tape. The amount of 

recovered substance in each tape strip is determined with an appropriate analytical 

technique (Kezic, 2008). Due to variability in the amount of se removed by tape caused 

from several factors, such as adhesive properties of the tape, pressure applied on the tape 

or even inter-individual anatomical differences, the measurement of the amount of 

protein on the tape is also essential, by monitoring trans-epidermal water loss or 

spectrophotometrically (Dreher et aL 1998). It should be mentioned that tape stripping 

is unsuitable for determination of volatile and rapidly penetrating chemicals, where the 

time needed to remove the entire se is critical (Reddy, 2002). 

6. Observation of a pharmacological or physiological response: Penetration kinetics can 

be determined when a drug stimulates a reaction in the viable tissue. Such a reaction 

can be a local allergic, toxic or physiological reaction (e.g. sweat gland secretion), 

pigmentation, sebaceous gland activity, vasodilatation, vasoconstriction, vascular 

permeability, epidermal proliferation and keratinisation changes in blood pressure, 

reduction in pain threshold and production of convulsions (Barry, 2007). 

7. Physical properties of the skin: An example of this is the measurement of the amount 

of water loss from within the skin to the external atmosphere (transepidermal water loss) 

(Handgraft and Lane, 2009). Other methods for determining the physical properties of 

the skin include thermal determinations (e.g. Differential Scanning ealorimetry), 
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ultrasound (a technique of cyclic sound pressure revealing inner structures of a medium 

or animal), classification of function and dimension, spectral analysis (infrared and 

Raman) and the use of photoacoustic and electrical properties (Barry, 2007). 

8. Bioassays: These involve measuring of the effects of a substance on a living 

organism, for example screening of topical formulations prior to clinical trial e.g. 

antibacterials (Hadgraft and Lane, 2009). Topical corticosteroid bioassays are the most 

sophisticated and refined of all such bioassays, and include, antigranuloma, thymus 

involution, inflammation, cytological techniques and psoriasis bioassays (Barry, 2007). 

1.4.2. In vitro methods 

As in vivo techniques require ethical approval, in vitro approaches have been used for 

dermal absorption studies and are also cheaper and faster (European Comission 

Guidelines and Guidance Documents, 2002; SCCNFP, 2003; ECB). Dermal absorption 

is an area in which in vitro approaches have a significant role to play as skin is a 

relatively easily accessible tissue (Williams, 2006). In vitro methods can use skin 

samples from humans (either viable or cadaver), excised animal skins (e.g. from rats or 

pigs) or artificial membranes. 

Artificial membranes such as cellulose acetate, silicone rubber of isopropyl myristate, or 

lamellar systems, or skin equivalent in which artificial skin is grown from keratinocytes 

and fibroblasts are designed to mimic the intercellular lipid of the SC (Chilcott et al., 

2005). Because such artificial membranes are not as complex as the human skin, 

experimental results need special consideration in the case of extrapolation to clinical 

trials. Similarly, the differences in the permeability of human and different animal skins 

have been observed in various studies (Moody, 1995). 

In vitro approaches have a specific role in investigating the mechanism of interactions 

during absorption, such as the effects of multiple doses, mixtures, vehicles and dose 
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(Pendlington et al., 2004). Using in vitro approaches, dermal absorption may be 

measured using either flow through or static diffusion cell systems, both described by 

OECD guideline 428 (OECD, 2004b). The static diffusion cells have some advantages 

compared to the flow-through system because of their much simpler design, having only 

a magnetic stirrer as a technical feature. Thus their cost is lower than a flow-through 

diffusion system. On the other hand, the flow-through system simulates better the real 

physiological conditions due to the continuous replacement of receptor fluid (Bronaugh, 

2004) resembling the systemic uptake of the drugs/chemicals in the blood vessels. 

However many comparative studies of static and flow-through diffusion cells have been 

carried out in the past with no difference in skin penetration measurements (Bronaugh 

and Maibach, 1985; Bronaugh and Stewart, 1985; Chilcott et al., 2005; van de Sandt et 

al., 2004). 

The Franz diffusion cell is a widely used system for in vitro skin permeation studies 

(Friend, 1992) and may be run as static or flow through (ECETOC, 1993). In the donor 

chamber aliquots of penetrants can be applied only limited by the chamber's maximum 

volume. A skin membrane, which can be of various thickness, is applied between the 

donor and receptor chambers, the upper area of the skin is in contact with the donor 

chamber and the lower area of the skin is in contact with the receptor chamber. The 

heater circulator in the receptor chamber maintains a steady temperature of around 32°C, 

similar to the temperature of skin in a living human being. In the receptor chamber 

under the skin, the receptor fluid can manually be sampled by removing aliquots 

periodically for analysis (Bronaugh, 2004 ). 

1.4.2.1. Static diffusion cells 

For the static system (Figure 1.5), the sink conditions have to be arranged in a way that 

the concentration in the receptor fluid is not sufficient to inhibit absorption (Williams, 

2006). It may be important to determine the levels and fate of chemicals remaining in 

the skin and a full mass balance in the in vitro studies. 

24 







Usually the Franz cells are constructed from Teflon and contain a glass window in the 

receptor chamber for viewing the receptor contents. A number of flow-through diffusion 

cell systems that are similar to the Bronaugh cell system exist (Clowes et al., 1994; 

Tanojo et al., I 997). 

The flow-through diffusion cell system is associated with a lag time, this is due to the 

low flow rate compared with the volume of the receptor chamber and outlet. Therefore, 

the necessity of minimizing the lag time effect with altered conditions is important 

(Anissimov and Roberts, 2001 ). Today, with the commercial availability of automated 

flow-through systems, the sampling can be left unattended because such systems employ 

tube-shaped skin permeation cells that fit directly into standard 2-ml glass auto-sampler 

vials (Moody, 1997, 2000). 

1.4.3. Analysis of in vitro diffusion results 

The percutaneous absorption of chemical substances and drugs maybe characterised by 

the total amount penetrated, the percentage of absorption of applied dose, the flux and 

the permeability coefficient kp (Korinth et al., 2005). 

In infinite dose assays the permeation rate reaches a steady state flux. The slope of the 

plot of the accumulated amount penetrated versus time (Figure 1.7) is the steady state 

flux, which can be used to calculate the permeability coefficient (kp). There is usually an 

interval (lag time) between applying the dose and the steady state being reached. The 

'lag time' is derived from the graph of the cumulative absorbed dose versus time (Figure 

1.7) and it is the intercept (on the time axis) of the tangent to the linear part of the 

absorption profile (Jones et al., 2004 ). 
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dm 

dt 
Eq. (1.3) 

Where Co is the constant concentration of drug in the donor phase, K is the partition 

coefficient of the membrane and the bathing solution (because in a steady state 

condition the concentration in the two media might be different, the ratio of these 

concentration is described by K (Jones et al., 2004)) and h is the membrane's thickness. 

Also TL is the time axis intercept 'lag time' when the amount penetrated (diffused) is 

zero (Eq. 1.4). 

Eq. ( 1.4) 

Where D can only be estimated when thickness h is available. By analogy with chemical 

kinetic operations eq. (I .3) represents a zero-order process with a rate constant of DK/h 

(Barry, 2007). 

Sometimes with biological membranes (such as skin), it is not easy to differentiate 

between the value of D and that of K. Therefore, a composite parameter, the 

permeability coefficient, P, where P = KO or P = KD/h is commonly used. The latter 

definition is used when h is uncertain, e.g. diffusion through skin. 

The permeation coefficient, kp of a molecule is characterized according to Fick's first 

law of diffusion by dividing the molecule's steady state flux by the initial concentration 

in the donor phase (kp=Jss/Cdonor , kp is measured in cm/h and Cdonor in mg/cm3) 

(Environmental Protection Agency of US, 1992) and can only be calculated under 

infinite experimental conditions. 

Fick's law is only valid for homogenous membranes, when the concentration gradient is 

constant in time, and diffusivity is independent of concentration (Buist et al., 2005). 

Korinth et al. (2005) stated that Fick's first law of diffusion is definitely able to describe 
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the distribution of chemicals in fluids and is used in various technical fields but its 

applicability in complex biological systems, with exception of the total gas exchange in 

the lung, is limited. This is because the skin is not a simple porous membrane but a 

complex entity designed to protect the organism from the environment. The 

experimental evidence for the general validity of physical diffusion laws for the 

assessment of percutaneous absorption is missing thus far, making kp an artificial 

parameter, which is not applicable to specify or even to quantify the influence of the 

concentration of chemicals on percutaneous absorption. A few studies also indicate that 

kp is unable to adjust the flux to the concentration of some chemicals. For example Liron 

and Cohen ( 1984) demonstrate that kp of alkanoic acids enhances with increasing 

concentration of this compound in n-heptane as vehicle. 

It is believed that the permeability coefficient is a more reliable parameter than flux 

taking the concentration into consideration and should remain constant for each 

compound independent from the grade of dilution, and can also be used for 

concentrations other than the one used in the experiment (Environmental Protection 

Agency of US, 1992). The chemical uptake rate, relating the crossing of the barrier of 

the chemical itself in terms of the bulk concentration, then becomes C times kp times the 

surface area exposed (Environmental Protection Agency of US, I 992). In addition the 

permeation coefficient has been selected to quantify dermal absorption in QSAR studies 

(Fitzpatrick et al., 2004; Potts and Guy 1992), in comparison of various species studies 

(Lundh et al., 1997; Mehta et al., 1991) in vehicle effects studies (Liron and Cohen 

1984; Sloan et al., 1986) and in barrier integrity of human skin studies (Bronaugh et al., 

1986). 

1.4.4. Sources of variability with in vitro measures of skin absorption 

In vitro methods can vary greatly in terms of the skin samples, experimental procedures, 

and the resulting measurements. The inter- and intra-laboratory variation with in vitro 

percutaneous absorption methodology has been investigated to some extent in the past. 
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In a recent study by van de Sandt et al. (2004) the in vitro absorption of several 

compounds through human skin were determined in nine different laboratories and 

through rat skin in one laboratory. In all laboratories the studies were undertaken 

according to the detailed protocols of OECD (2004b) in terms of dose, exposure time, 

vehicle, receptor fluid, preparation of membranes and analysis. Results of this study 

showed noticeable differences that may be attributed to the inter-individual variability in 

absorption between samples of human skin and differences in skin site and source. Skin 

thickness only slightly influenced the absorption of benzoic acid and caffeine; however 

the maximum absorption rate of the most lipophilic compound, testosterone, was clearly 

higher in laboratories using thin, dermatomed skin membranes. 

1.4.4.1. The Skin Samples 

Not only have human and several animal skin types been used in in vitro studies, 

reconstituted human skin and several types of artificial membranes have also been 

suggested to mimic human skin (Chilcott et al., 2005). Human, monkey, rat, mouse, pig 

and guinea pig skin are some of the skin types have been used in dermal absorption 

studies (EDETOX, 20 I 0). Interspecies comparisons of the skin absorption of a chemical 

substance have demonstrated skin permeability differences among species and sex. For 

example in the study of Moody ( 1995), rat and guinea pig skin overestimated the degree 

of dermal absorption in human skin after application of benzo[a]pyrene. Also the study 

of Bronaugh et al. ( 1983) concluded that skin from the back of male rats was 

approximately two-fold less permeable than that of female rats of the same strain after 

application of benzo[a]pyrene, because of the two fold thicker se. 

Rat skin is often used for toxicological studies. It is also required for special protocols, 

such as that for pesticide testing in the USA (USEPA, 1998; Zendian, 2000). According 

to the Scientific Committee on Cosmetic Products and Non-Food Products Intended for 

Consumers (SCCNFP), human skin (abdomen or breast) and pig skin are recommended 

for cosmetic testing (Steiling et al., 2001; SCCNFP, 2003). 
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In terms of human skin samples, the skin can be cadaver human skin or surgically 

removed skin which may be used fresh as viable skin or after a certain period of 

freezing. These can all lead to variability in the experimental results. For example, the 

absorption of benzoic acid and para-aminobenzoic acid were significantly greater in 

non-viable, compared with viable, metabolically active hairless guinea pig skin (Nathan 

et al., 1990). Moreover, skin samples could be used as full thickness skin (epidermal 

membranes) or dermatomed with varying thicknesses such as SC, epidermis, epidermis 

with dermis layer/s (Wilkinson et al., 2006). Epidermal membranes can be enzymically, 

heat or chemically separated (OECD, 2004b). 

1.4.4.2. The receptor fluid 

An important source of potential variability in in vitro tests is the composition of the 

receptor fluid. The receptor fluid is intended to mimic the capillary blood circulation (in 

which the chemical must be soluble) and not affect the skin barrier integrity (OECD, 

2004a). The solubility between the test compound and the receptor fluid is important, 

especially in static diffusion systems, as it may affect the sink capacity and can have an 

influence on the receptor chamber dimensions or sampling frequency (Brain et al.. 

1998). Thus the selection of the receptor fluid and/ or the flow rate in flow-through cells 

is based on the solubility of the test compound, and the volume of the receptor chamber. 

As stated by Skelly et al. ( 1987), the criteria that establish a suitable flow rate are 1) the 

concentration in the receptor fluid should not be greater than about 10% of the 

solubility limit (as for static diffusion cells) but large enough to be detected and 2) there 

must be adequate mixing in the receptor chamber. In most studies the receptor phase for 

hydrophilic compounds is usually saline or isotonic buffered saline solution. However 

for lipophilic compounds it can contain solvent mixtures such as water:ethanol (Greaves 

et al., 2002), or 5% bovine serum albumin (Sartorelli et al., 2000; Bronough, 2004) to 

aid solubility in receptor phase; it may also contain surfactants, proteins or even non­

microbial growth factors (Collier et al., 1989). The effect of pH of the receptor fluid has 
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been studied on the absorption of Nicardipine and it was concluded that the receiver's 

pH effect, for weakly ionizable drugs, is more significant for compounds having high 

partition coefficients (Kou et al.. 1993 ). 

1.4.4.3. Duration of exposure and sampling time 

The exposure time should reflect in-use conditions. The exposure time may therefore 

vary between a few minutes for a rinse-off product up to a maximum of 24h for a leave­

on product and 6-8 h for industrial products (OECD, 2004b ). For finite dose 

experiments, the wash-off from the skin should be performed with an aqueous soap 

solution and the time of the wash-off determines the exposure (OECD, 2004b). It is 

important to sample the receptor fluid for at least a 24h period. Increased exposure times 

are appropriate only in cases of long Jag phases or for infinite applications in order to 

achieve a steady-state flux (OECD, 2004b). Periods of24h or 48h should be adequate to 

study dermal absorption. Unless adequately preserved, the skin can deteriorate beyond 

this time (Jewell et al., 2000). Standard exposure times for test substances in finite 

dosing experiments are up to 24h and shorter in the case of rinse-off products (although 

the measurement of penetration of material continues for at least 24h). 

1.4.4.4. Skin Hydration 

Experimental approaches vary from studies employing prior hydration of the skin before 

the start of the experiment; to those using infinite doses (aqueous donor phase) which 

leads to skin hydration during the period of the experiment; studies using occlusion of 

the skin which may lead to some levels of hydration during the experiment; or those 

investigations employing finite dosing without occlusion which limits the skin 

hydration. 
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It has been demonstrated that the se can significantly change its dimensions when 

exposed for long periods to water (Bouwstra et al., 2003). When in water or exposed to 

high humidity conditions, the se swells and expands to a greater extent in the plane 

perpendicular to the skin surface rather than in a lateral dimension. This, naturally, has 

an impact on the tortuosity of the se and, as such, can certainly influence se barrier 

function (erowther et al., 2008). 

Skin occlusion has been found to enhance the percutaneous absorption of many, but not 

all topically applied compounds (Zhai and Maibach, 2001 ). On the other hand, un­

occluded conditions can simulate the normal exposure situations in everyday life. 

However, volatile compounds may evaporate under un-occluded conditions and infinite 

dosing can only take place under occluded conditions (Kligman, 1983; Bronough and 

Stewart, 1985; Baker, 1986). 

1.4.4.5. Types of exposure 

With regard to dermal absorption there are two types of exposure, infinite and finite 

dose. In infinite dose experimental conditions the amount of test preparation that is 

applied to the skin achieves a maximal flux that is maintained (steady state) over time, 

thus it can be referred to as the steady state flux CJss). In finite dose experimental 

conditions the amount of test preparation is insufficient to maintain a maximal flux 

(Buist et al., 2005). The finite dose condition is used for simulation of everyday 

exposures of skin to penetrants. The dose solution is applied in a volume sufficient to 

cover the skin and normally remains unoccluded. In the infinite dose condition the 

solution is applied in excess and can be occluded for the duration of the study (OECDb, 

2004; Sartorelli et al., 2000). According to the OEeD (2004b), for finite dose 

experiments, a dose of 1-5 mg/cm2 or 10 J • .d/cm2 should be spread on the skin surface 

and for infinite dose experiments, a dose higher than I 0 mg/cm2 or 1 00 J..ll/cm2 is needed 

in order to obtain steady state-conditions from which the flux and kp can be calculated. 

In the literature, depending on the aims of the experiment, a full spectrum of application 
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doses can be found with varying duration of exposure and sampling time. However, in 

practice, dermal exposure will mostly occur under finite rather than infinite dose 

conditions, during which the concentration of the solution on the skin changes 

significantly over time (Buist et al, 201 0). 

1.4.5. Comparison of in vitro and in vivo skin absorption results 

A vast number of historical studies have compared in vitro and in vivo methods for skin 

absorption. In vitro absorption of the pesticide isofenphos using flow through diffusion 

cells with human cadaver skin gave a percentage of dose absorbed similar to that of in 

vivo human volunteer studies (Wester et al., 1992). The dermal absorption of lindane in 

acetone and a white spirit-based formulation was investigated in vitro and in vivo by 

Dick et al., (1997a,b), where in vitro studies predicted the 40-fold difference in 

absorption between the two applications observed in the human volunteers. In other 

studies, in vivo and in vitro predictions with human skin using the same dose, vehicle, 

and application time for 50% 2-butoxyethanol/water, resulted in a close relationship 

between absorption rate determined in vitro (2.0 j..lg/cm2/h) (Wilkinson and Williams, 

2002;) and in vivo (2. 7 j..lg/cm2/h) (Jakasa et al., 2004). In the study of Trauer et al. 

(2009) on the permeation of topically applied caffeine in vivo and in vitro through 

human skin, in vitro methodology proved valuable for estimating in vivo dermal 

absorption. However, they concluded that in vivo experiments should not be abandoned 

as with in vitro tests, structural changes of skin occur and blood flow and metabolism 

are absent, probably accounting for reduced penetration rates in vitro. 

In cases where there is a lack of correlation between in vitro and in vivo data, the 

discrepancy may be due to not correctly controlled experimental conditions or because 

they were conducted prior to the adoption of OECD Test Guidance 428 (OECD, 2004b). 

The OECD Test Guideline 428 has confirmed that in vitro studies can predict in vivo 

absorption when the correct methodology for both tests is used. 
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1.5. Effect of mixture components 

According to OEeD guidelines, application of a drug to the skin can be neat, diluted or 

with a vehicle (OEeD, 2004a, b). A vehicle can be a single component, e.g. water, or a 

mixture of components e.g. water and ethanol. A vehicle can play a very important role 

in the penetration of a chemical through the skin. According to Roberts et al. (2002), 

vehicles can affect skin permeability by a range of mechanisms including delipidization, 

dehydration, fluidization, desmosome disruption in the se and also by changing the 

polarity of the mixture followed by change in penetrant solubility and partitioning into 

se. Pure solutes, can in some cases, enhance skin permeability by a direct corrosive 

effect (Roberts et al., 2002; Zinke et al., 2002). Generally, substitution of organic 

vehicle has the potential to enhance maximal flux. In cases when there are components 

in the vehicle that can interact with the intercellular lipids of the se, then it is possible 

that permeation may be enhanced or suppressed (Davis et. al. 2002). Formulation 

ingredients can alter the skin penetration of a compound by affecting the barrier 

properties of the skin or by changing the partitioning of the compound into the Se. Two 

of the major formulation components in pharmaceutical preparations are surfactants and 

chemical enhancers (Roberts et al., 2002). 

The solubility coefficient is one of the most important factors in transdermal drug 

delivery. The solubility of a chemical is different in different vehicles hence resulting in 

different flux and kp values due to varying levels of saturation. Theoretically, when a 

chemical is saturated in a vehicle then the flux should be the same, no matter the 

vehicle, provided that the vehicle does not affect the skin membrane hypothetically and 

super-saturation does not occur (Roberts et al, 2002). 

A vehicle can promote the penetration of a chemical by having low solubility, in this 

way a chemical will not be retained in the vehicle (Baker, 1986). In order to maximize 

the penetration of a drug through skin the formulation must not be over-solubilised but 

should be at a near saturation stage. This is because the partition coefficient of a drug 

between the skin and the solvent mixture generally falls as the solubility in the solvent 
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nses. Polar eo-solvent mixtures such as propylene glycol with water may produce 

saturated drug solutions and so maximize the concentration gradient across the se 

(Barry. 2007: Wiechers. 2005), although they may also affect se directly. 

The effect of mixture/formulation components on the skin penetration of a compound 

depends on the nature of the components, i.e. their chemical structure and physico­

chemical properties. The relationship between chemical structures of the formulation 

ingredients and the skin penetration modification can be studied quantitatively using 

Quantitative Structure--Activity Relationship (QSAR) techniques (Ghafourian et al., 

2004; 201 Oa. b). 

1.5.1 Solvents 

It is widely acknowledged by the risk assessment community that most occupational and 

environmental exposures to chemicals are to complex mixtures, and not individual 

compounds in defined aqueous vehicles (Riviere and Brooks, 2005). Experimental skin 

absorption studies that have been conducted in the past have shown that mixture/vehicle 

effects may significantly modify a chemical's dermal absorption and sometimes in an 

extent that may even overshadow the magnitude of permeability differences between 

individual compounds (Baynes et al., 2002b; Brooks and Riviere, 1996; Idson, I 983; 

Qiao et al., 1996; Riviere and Monteiro-Riviere, 2002; Riviere et al., 200 I, 2003; 

Rosado et al., 2003). Many solvents open up the complex dense structure of the horny 

layer. Mixtures of non-polar and polar solvents such as chloroform and methanol 

remove the lipid fraction, forming artificial shunts through which molecules pass more 

easily (Barry, 2007). 

From a topical drug formulation point of view, there are a large number of vehicles that, 

in spite of being very good enhancers of skin penetration, can very rarely be used 

because of their deleterious effects upon the skin, such as dimethyl sulfoxide (DMSO). 

DMSO is a powerful solvent that increases drug penetration very well but at the same 
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time it alters the biochemical and structural integrity of the skin and operates by direct 

insult to the SC (Barry, 1983). Ethanol is very often used as an enhancer/cosolvent (i.e. 

in estrogen patches) and increases drug penetration (Waiters et al., 1989). For example 

in the study of Stinecipher and Shah ( 1997) dermal absorption of DEET (N,N-diethyl­

meta-toluamide) was significantly higher from 30-45% ethanolic solutions than that 

from pure DEET and also from 60-90% ethanolic solutions. 

1.5.2. Skin permeation enhancers 

A drug that is prepared for systemic drug delivery by the transdermal route is considered 

successful when it penetrates the skin barrier in sufficient quantity to achieve its desired 

therapeutic effect. Two methods that are used for the modification of the properties of 

the se, in order to enhance drug penetration and consequently absorption through the 

skin, are chemical and physical methods of enhancement (Rolf, 1988). The 

iontophoresis and ultrasound (also known as phonophoresis or sonophoresis) techniques 

are examples of physical means of enhancement that have been used for enhancing 

percutaneous penetration (and absorption) of various therapeutic agents (Shah, 1993). In 

iontophoresis a small electric charge is used to deliver a molecule (e.g. medicine) 

through the skin, whereas in the ultrasound technique cyclic sound pressure with a 

frequency greater than the upper limit of human hearing is used. With the iontophoresis 

technique, there is a possibility that the device may cause painful destruction of the skin 

with high current settings. Therefore, it is essential to use high quality electrodes with 

adequate skin adhesion, uniform current distribution, and well-controlled ionic 

properties (Shah, 1993). 

Chemical penetration enhancement is the most common technique used in topical drug 

delivery (Williams and Barry, 2004). Chemicals that enhance the penetration of 

topically applied drugs are usually named as accelerants, absorption promoters, or 

simply as penetration enhancers. When designing a transdermal drug formulation it is 

highly important to firstly identify chemicals that significantly enhance drug penetration 
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through the epidermis and at the same time irritate or damage the skin the least along 

with having no serious side effects in general. Important properties of such chemical 

permeation enhancers along with their desirable attributes have been referred and 

described by Barry (Barry, 1983) and reviewed (Williams and Barry, 2004). It is optimal 

that such chemicals are safe and non-toxic, pharmacologically inert, non-irritating, and 

non-allergic (Kat and Poulsen, 1971 ). In addition, the skin tissue should come back to its 

normal state along with the barrier properties when the chemical has been removed. 

Generally enhancers increase the drug permeability through the skin by causing 

reversible damage to the se, increase (and optimize) the thermodynamic activity of the 

drug when functioning as eo-solvent, increase the partition coefficient of the drug thus 

promoting its release from the vehicle into the skin, operate by conditioning the se to 

promote drug diffusion and promote penetration and establish drug reservoir in the se 

(Shah, 1993 ). 

As discussed earlier, the routes of drug penetration through the skin are the polar, the 

non-polar, and the polar/non-polar pathways. The chemical enhancers penetrate the skin 

and enhance permeation of other chemicals by altering one of the above three pathways. 

The polar pathway is altered in reaction to protein conformational change or solvent 

swelling. The non-polar pathway is altered after differentiation to the rigidity of the lipid 

structure and fluidization of the crystalline pathway (a fact that substantially increases 

diffusion). The fatty acid enhancers increase the fluidity of the lipid portion of the se 

(Knutson et al., 1985; Potts, 1989). Binary vehicle enhancers may act on both polar and 

non-polar pathways by altering the multilaminate pathway for penetrants. The enhancers 

may increase the drug diffusivity in the se by simply dissolving the lipids of the skin or 

by denaturing the proteins of the skin. So when designing and developing a product, the 

type of enhancer that will be used is of significant importance. 
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According to Barry (2007), there are many points that should be considered and 

evaluated when penetration enhancers are used, these are: 

-the mechanism of action 

-if it is metabolised and generally the fate of enhancers in the body 

-the influence of the degraded moieties from the enhancer, if any 

-if the enhancer is powerful enough to increase penetration of other excipients 

-the level of irritation that it causes 

-the effect of the enhancer over the full duration of dosage form application 

-if its action is reversible 

-the interaction potentials with formulation ingredients 

-the effect on multiple application under occlusion 

-the effect of repeat application of enhancers at the same site and if it alters the integrity 

of the se and drug penetration properties upon application 

-if the enhancer selectively enhances permeation of specific ingredients 

-if the enhancer is inert or it causes contact irritation or promote bacterial growth 

-how safe the enhancer is and if it causes any toxicity 

In addition, the use of strong enhancers may leach other components from a patch which 

may penetrate the SC. If this occurs, the fate of such chemicals in the body must be 

known in advance (Shah, I 993). 

Chemical permeation enhancers may increase transdermal drug penetration but it is 

critical that this task can be accomplished without skin irritation or sensitization. The 

key is to find an enhancer that will combine both disruption of the impermeable se 

barrier membrane without altering the fragile living tissue underneath (Cooper and 

Berner, 1987). 

Chemical permeation enhancers may increase the permeation of other formulation 

excipients along with the drug as well. Their own intrinsic skin diffusivity can be 

increased too. Such effects must be carefully considered and evaluated in order to avoid 
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any toxicological implications and skin irritation. It has been observed that occlusion 

causes irritation that it is linked to se hydration and decreases diffusional resistance to 

formulation components such as enhancers (Sioan et al., 1986). Some well known 

enhancers are Azone ( 1-dodecylazacycloheptan-2-one or Iaurocapram), pyrrolidones 

such as N-methyl-2-pyrrolidone (NMP) and ethanol (Williams and Barry, 2004). 

Figure 1.8. Molecular structures ofNMP and Azone®. 

Terpenes, a class of hydrocarbons, have been widely used in transdermal drug delivery 

as enhancers of drug penetration through human skin. Terpenes are naturally occurring 

volatile oils that appear to be promising candidates for use as clinically acceptable 

enhancers (Williams & Barry 1991 ). They have been reported to have good 

toxicological profiles, high percutaneous enhancement abilities and low cutaneous 

irritancy at low concentrations (Okabe et al. 1990). Kang et al. (2007) compared the 

human skin penetration effect of 49 terpenes and terpenoids on the in vitro permeability 

coefficient of haloperidol through excised human skin. They concluded that an ideal 

terpene enhancer should possess at least one, or combinations of, the following 

properties: hydrophobicity, be in liquid form at room temperature, contain an ester or 

aldehyde but not acid functional group, and is neither a triterpene nor tetraterpene. 

1.5.3. Surfactants 

The term surfactant comes from the phrase "surface active agent". Surfactants ( or 

tensides) are wetting agents that are used to lower the surface tension of a liquid and the 

interfacial tension that leads to higher solubility of lipophilic compounds and easier 

spreading. Surfactants are used in many commercial formulations including skin 
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products. Surfactants are organic compounds that are amphiphilic, containing lipophilic 

("tail") and hydrophilic ("head") groups, a property that makes them soluble in both 

organic solvents and water. The lipophilic part is usually a saturated or unsaturated 

hydrocarbon chain(s) and can be a heterocyclic or aromatic ring system (Attwood, 

2007). Natural fats and oils, petroleum fractions, short synthetic polymers of high 

molecular weight synthetic alcohols are usually the source of such lipophilic parts. 

The head (hydrophilic) part of a surfactant defines its classification e.g. amomc, 

cationic, non-ionic or amphoteric. Anionic (hydrophilic) surfactant include carboxylates, 

sulphates, sulphonates and phosphates. Cationic surfactants are usually forms of amine 

products. Non-ionic 'heads' associate with water at the ether oxygens of a polyethylene 

glycol chain. Amphoteric surfactants are not widely used as emulsifying agents although 

lecithin is used to stabilize intravenous fat emulsions. 

The classification of surfactant decides whether it can bind cooperatively to proteins and 

thus denature them. With few exceptions (Otzen, et al., 2009), neutral surfactants do not 

denature proteins, whereas ionic surfactants do so at very low concentrations. 

Surfactants have many uses m pharmaceutical formulation as wetting agents, 

solubilisers, emulsifiers, detergents and antibacterials (Attwood, 2007). Different 

concentrations of surfactants have been shown to increase the skin permeability of drugs 

such as diazepam (Shokri et al., 2001) and lorazepam (Nokhodchi et al., 2003). Laughlin 

( 1978) has stated that surfactants with hydrophilic head groups enhance more effectively 

the percutaneous penetration of polar molecules, while those of lesser hydrophilicity 

should be less effective, a finding that was confirmed by Nokhodchi et al. (2003). In 

general cationic surfactants are more damaging and cause a greater increase in flux than 

anionic surfactants. Anionic surfactants cause greater enhancement and damage than 

nonionic surfactants (Stoughton, 1982; Cooper, 1984; Cumming and Winfield, 1994). 
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1.6 Quantitative Structure-Activity Relationships (QSARs) 

The biological behavior of a compound is a function of its molecular structure. 

Therefore, one should be able to relate the biological activity to the molecular properties 

(molecular descriptors) of compounds quantitatively using Quantitative Structure­

Activity Relationships (QSAR) techniques. These models may be able to estimate the 

biological activity of new compounds based solely on the properties of their molecular 

structures. As an integral part of the human health risk assessment of chemicals and also 

to be able to aid the drug delivery through skin, it is essential to be able to estimate 

absorption of chemicals via the dermal route. This is because despite the requirement by 

REACH for extensive risk assessment of chemicals, it is not practical to measure dermal 

absorption of the many thousands of industrial chemicals. Besides it is a well established 

fact that in order to enhance the permeability of a drug the choice of the vehicles and 

enhancers is crucial as the enhancing activities of enhancers towards different drugs are 

different (Ghafourian et al., 2004). The workload that is needed in order to identify just 

one good enhancer for only one specific drug is not a negligible factor. In order to 

accelerate this process a possible approach may be modeling the relationship of skin 

permeation measures of a series of compounds with their physico-chemical and/or 

structural properties. 

Physico-chemical properties of substances are critical determinants of their ability to be 

absorbed or affect the absorption of other compounds. QSARs are mathematical models 

that statistically relate the biological activity of a compound to its physico-chemical 

properties (Magnusson et al., 2004 ). With QSARs we assume that the biological, 

physical and chemical activity of a molecule is closely related to its structure (i.e. its 

geometric, steric and electronic properties). So the biological activity or 

physicochemical properties (e.g. melting and boiling point) of a new untested molecule 

can be inferred from previously assessed compounds with similar molecular structure 

(Gramatica, 2011 ). The modelling of dermal contacts using QSAR leads to the 

development of expert systems that may be capable of reliably predicting the extent to 
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which a molecule will be percutaneously absorbed, without the need to make 

experimental measurements. 

QSARs have found use in the regulatory risk assessment of new and existing 

compounds. The new regulatory framework, REACH, foresees the use of non-testing 

approaches, such as read-across chemical categories, structure-activity relationships 

(SARs) and QSARs (Bouwman et al., 2008; European Chemicals Bureau, 2008). 

1.6.1. Molecular Descriptors 

In order for the biological activity of a molecule to be related quantitatively to its 

physicochemical properties, calculations of descriptors that characterize its molecular 

structure are essential. A penetrant, after it is transported to the appropriate site of 

action, has to interact with that site to trigger the appropriate response. To trigger a 

biological response or, in this case, to be able to permeate skin, a compound must have 

the appropriate size and shape, or a specific range of lipophylicity, polarity or hydrogen 

bonding ability. Molecular descriptors such as molecular weight, melting and boiling 

point, number of double or triple bonds, number of carbon or oxygen molecules, are 

quantitative representatives of a molecule's chemical structure. Molecular descriptors 

can be discussed under three categories, hydrophobic, electronic and steric (size and 

shape) factors. 

1.6.1.1. Hydrophobic descriptors 

Hydrophobic descriptors indicate the comparative preference of a compound to be 

dissolved in non-polar organic solvents or in water. The partition coefficient (log P), 

where p is the octanol-water partition coefficient, is the most common descriptor. The 

aqueous solubility (Saq) that is inversely related to P can be used in its place but cannot 

be measured or calculated as accurately. Chromatographic parameters, such as Rm (a 
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retention descriptor derived from reversed-phase thin-layer chromatography retention 

factor), are related to lipophilicity and are used for the measurement of the partition 

coefficient of molecules that are difficult to be determined experimentally (e.g. 

surfactants ). Chromatographic parameters can only be obtained experimentally and are 

restricted to compounds in the range log P < 5. 

Since the 1970s, various methods for the calculation of log P have been proposed (Leo. 

1993: Carrut et al., 1997; Eros et al., 2002) and can be separated in two categories. 

Property-based methods that compute the log P as a function of molecular physico­

chemical properties, such as molecular surface, volume, dipole moment, partial charges, 

and HOMOILUMO energies. Alternatively additive methods use basic structural 

building blocks directly as descriptors. Additive methods calculate the log P value of a 

given molecule by summing up the contributions from all building blocks of its structure 

plus the required correction factors. 

1.6.1.2. Electronic descriptors 

Electronic descriptors represent properties such as atomic charge densities and 

molecular dipoles. Such descriptors are the Hammet substituent constant ( cr) that is 

derived from pKa values and shows the electron directing effect of an aromatic 

substituent. Molecular orbital descriptors such as dipole moment, atomic charges, the 

energy of the highest occupied molecular orbital (EHoMo) represent a molecule's 

electron-donating ability and the lowest unoccupied molecular orbital (ELUMo) represent 

a molecule's electron-accepting ability, can be calculated from the molecular orbital 

theory (Hansch and Leo, 1995). Hydrogen bonding descriptors are further electronic 

descriptors that can be split into H-bond donor (a hydrogen atom that is attached to 

relatively electronegative atom) and H-bond acceptor (when a hydrogen atom is 

missing) ability (Dearden and Ghafourian, 1999). 
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1.6.1.3. Steric descriptors 

Steric descriptors characterize the size and shape of molecules. Molecular size is a much 

simpler property to measure than molecular shape. Examples of descriptors for 

molecular size are molecular volume and molecular surface area that can be calculated 

by summing the van der Waals volumes or surface areas of a molecule's constituent 

atoms (Dearden and Cronin, 2005). 

Molar refractivity is the total polarizability of a mole of a substance, is derived from 

refractive (polarizability) index and has the units of molar volume. 

Shape descriptors are also quite common steric descriptors. Sterimol descriptors 

represent the length of a substituent and its widths in different directions (Hansch and 

Leo, 1995; Dearden and Cronin, 2005). The topological shape descriptors known as the 

Kier and Hall shape indices represent the number of bond fragments in a non hydrogen 

molecular skeleton. The Kier and Hall kappa descriptors are the basis of a method of 

molecular structure quantification in which attributes of molecular shape are encoded 

into three indices ctK, 2K, and 3K). These Kappa values are derived from counts of one­

bond, two-bond and three-bond fragments, each count being made relative to fragment 

counts in reference structures which possess a maximum and minimum value for that 

number of atoms (Hall and Kier, 1977; 1986; 1991 ) . 

1.6.1.4. 3-D descriptors 

The 3-0 descriptors represent three dimensionality of a molecule. Such descriptors can 

be as simple as inter-atomic distances or torsion angles or as complex as the distribution 

of electrostatic potential around a molecule. Also similarity descriptors allow 

comparison of the similarity of a molecule with a set of standard active molecules, on 

the bases of either electrostatic potential or steric parameters (Dearden and Cronin, 

2005). 
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1.6.1.5. Topological descriptors 

Topological descriptors represent the way that atoms are connected in a molecule, they 

include molecular connectivity descriptors of different orders such as the zero 

connectivity index (ChiO) and is dependent on the number of non-hydrogen atoms 

attached (Hall and Kier, 1986). Information content descriptors have been useful in 

correlating biological activity and predicting molecular similarity. The atom type 

electrotopological state indices are atomic level indices, combining the electronic 

character and the topological environment for each skeletal atom in a molecule (Kier 

and Hall, 1999). 

1.6.2. Development and validation of QSARs 

According to Gramatica (20 11) 'an ideal QSAR should: 1) consider an adequate 

number of molecules for sufficient statistical representation, 2) have a wide range of 

quantified end-point potency (i.e. several orders of magnitude) for regression models or 

adequate distribution of molecules in each class (i.e. active and inactive) for 

classification models, 3) be applicable for reliable predictions of new chemicals 

(validation and applicability domain) and 4) allow to obtain mechanistic information on 

the modelled end-point.' 

The interpretability of a QSAR model depends on the model's application, e.g. when 

predicted data are needed for screening of large libraries of chemicals, a validated 

mathematical model relating a target property to chemical features may be all that is 

necessary. In other more complex cases such as the dermal absorption of a molecule, it 

is obvious the need for also understanding and explaining the mechanism of action in 

chemical terms (Zefirov and Palyulin 2001; Livingstone, 2000). 

The best fit models are not the best ones for prediction. In fact, a QSAR model must, 

first of all, be a real model, robust and predictive, to be considered a reliable model. 
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Only a stable and predictive model can be usefully interpreted for its mechanistic 

meaning, even so this is not always easy or feasible (Gramatica, 2011 ). 

1.6.2.1. Multiple Linear Regression (MLR) 

MLR is one of the earliest methods used for developing QSAR/QSPR (Quantitative 

Structure Property Relationship) models. MLR is simple in form and creates an easily 

interpretable mathematical expression. The weakness of MLR is that in case of 

correlated descriptors, it is incapable of deciding which correlated sets of descriptors are 

the most significant to the model. Because of that new improved methods based on 

MLR have been developed in order to minimize that weakness. Such methods are 

stepwise regression analysis the Best Multiple Linear Regression (BMLR), Heuristic 

Method (HM) and Genetic Algorithm based Multiple Linear Regression (GA-MLR) for 

the selection of the most significant descriptors (Liu and Long, 2009). 

1.6.2.2. Partial Least Squares (PLS) 

PLS is a statistical analysis method that is used in vanous fields and also in 

QSAR/QSPR model development. It combines features from Principle Component 

Analysis (PCA) and MLR. PLS can predict/analyse a set of dependent variables from a 

set of independent variables (predictors) (Abdi, 2003). PLS have evolved by 

combination with other statistical methods to Genetic Partial Least Squares (G/PLS), 

Factor Analysis Partial Least Squares (F A-PLS) and Orthogonal Signal Correction 

Partial Least Squares (OSC-PLS) (Liu and Long, 2009). In PCA, which was mentioned 

above, the descriptors are combined into a smaller number of terms (principle 

components) each of which is orthogonal (uncorrelated) to the others (Dearden and 

Cronin, 2005). 
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1.6.2.3. Artificial Neural Networks (ANN) 

ANN have the ability to model non-linear correlations better than MLR (Dearden and 

Cronin, 2005). ANN tend to over-fit the data and have difficulty identifying the most 

significant descriptors in the resulting model. Radial Basis Function Neural Network 

(RBFNN) and General Regression Neural Network (GRNN) are the most frequently 

used ANN methods (Li u and Long, 2009). 

1.6.2.4. Support Vector Machine (SVM) 

SVM is a machine learning method, originally developed by Vapnik ( 1999) for pattern 

recognition problems in classification and regression analysis. Newly developed SVM 

methods are: Least Square Support Vector Machine (GS-SVM), Grid Search Support 

Vector Machine (GS-SVM), Potential Support Vector Machine (P-SVM) and Genetic 

Algorithms Support Vector Machine (GA-SVM) (Liu and Long, 2009). 

1.6.2.5. Classification and Regression Trees 

Classification trees are used to predict membership of cases or objects in the classes of a 

categorical dependent variable from their measurements on one or more predictor 

variables. Classification tree analysis is one of the main techniques used in so called 

data mining. The goal of classification trees is to predict or explain responses on a 

categorical dependent variable. 

1.6.3. QSAR models of skin absorption 

Most QSARs for skin absorption contain descriptors of hydrophobicity since the 

passage of a molecule through the SC involves a lipophilic pathway. As it is also a 
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diffusion process, descriptors of molecular size, such as molecular weight (MW) or 

volume (V), are also commonly included (Ghafourian and Fooladi. 2001 ). QSARs for 

the skin permeation are of two types. The • general' type where the algorithm is intended 

to encompass a wide range of substances without reference to their chemical nature. The 

'specific' type that have been developed to cover a smaller number of homologous 

chemical molecules or to investigate the influence of a particular physico-chemical 

property that is common to a group of molecules (Magnusson et al., 2004). 

A pre-requisite to QSAR studies is the availability of a reliable dataset. In addition its 

statistical validity is related to the validity of the data and should be applied only within 

the model's applicability domain (Gramatica, 2011 ). Dermal absorption data using 

infinite doses, generated mostly by in vitro approaches with human skin have been 

combined in a number of datasets (Fiynn, I 990; Cronin et al., 1999; Fitzpatrick et al.. 

2004; Riviere and Brooks (2005); EDETOX, 201 0). Recently a database of in vitro and 

in vivo dermal penetration studies from peer-reviewed journals in which the quality of 

data were considered has been established (EDETOX, 201 0). However, only about 50% 

of the entries satisfy the criteria for study design laid down by Soyei and Williams 

(2004). 

Several QSAR models are currently available for the estimation of the skin penetration 

of drugs from the available infinite dose data. Potts and Guy ( 1992) developed a simple 

two-parameter model based on the hydrophobicity (expressed as octanol/water partition 

coefficient) and molecular weight of compounds. Several other investigators have 

shown the involvement of hydrophobicity and molecular size in the transdermal 

penetration of chemicals (Lien and Gao, 1995). Other prediction methods include those 

based on the Linear Free Energy Relationships (LFER) developed by Abraham and 

Martins (2004) and models based on theoretical structural descriptors (Ghafourian and 

Fooladi, 2000; Dearden et al., 2000). Recently, more complicated non-linear models 

have been proposed by several investigators. Examples of these include models based 

on Artificial Neural Networks (Degim et al., 2003; Katritzky et al., 2006) or an 

ensemble model using k-nearest-neighbour models and ridge regression (Neumann et 
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al., 2006). In addition a step forward has been achieved in understanding, modelling and 

predicting the effect of complex mixtures (Ghafourian et al., 201 Oa, b; Riviere and 

Brooks, 20 11 ). 

In reality, estimation of skin absorption is complicated due to the inconsistency of the 

methods and therefore the inconsistent and sometimes even controversial results of in 

vitro/in vivo tests. The inter-laboratory and inter-individual variability is often high (van 

de Sandt et al., 2004; Chilcott et al., 2005) which may be explained by the huge variety 

of methods and test systems used for skin permeation experiments. Moreover, methods 

of calculation and interpretation of results from the complex experimental set-up also 

varies (Henning et al., 2009). 
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2. Aims and Objectives 

The aim of the research was to develop predictive models for the estimation of skin 

absorption of mixtures. This required characterization of the effect of formulation 

factors, experimental variables, and molecular properties on the permeation of 

compounds through the skin. Appropriate molecular modelling, Quantitative Structure­

Activity Relationships and data mining techniques were used in order to rationalize the 

effect of molecular structure of the permeant and properties of the ingredients present in 

the formulations/mixtures on the penetration of chemicals through the skin under 

different experimental conditions represented by well defined parameters. Due to the 

availability of the in vitro data and also due to the fact that in vivo measures of skin 

absorption are more complex involving pharmacokinetics principles such as 

metabolism, distribution and excretion, this work focuses on estimation of in vitro 

endpoints such as flux and permeability coefficient. 

Using QSAR techniques it is possible to estimate permeation of compounds through the 

skin and also the effect of formulation ingredients on the permeation of a chemical. 

Significant progress has been made in predicting the dermal absorption/penetration of 

topically applied compounds using QSAR models (Linusson et al., 201 0). One aim of 

the current work was to expand the application of QSAR to the prediction of the effect 

of formulation factors such as solvents, permeation enhancers and other mixture 

ingredients. The effect of structural characteristics of the chemical enhancers on the 

permeation of drugs has been investigated (Ghafourian et al., 2004; Pugh et al., 2005) 

and different mechanisms have been proposed for the effect of enhancers on different 

penetrants. QSAR models have been developed for the effect of terpenes and other 

enhancers on 5-tluorouracil, estradiol, lorazepam, sodium diclofenac (Ghafourian and 

Goudarzi, 2009; Nokhodchi et al., 2007). In this project, QSAR studies were extended to 

allow for the development of models analyzing the effect of enhancers on other drugs. 

Kang et al. (2007) compared the Human Skin Penetration effect of 49 terpenes and 

terpenoids on the in vitro permeability coefficient of haloperidol through excised human 

skin. Also, in a recent publication the effect of thirty-eight different solvents including 
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terpenes, alcohols, and fatty acid solvents on the transdermal absorption of formoterol 

has been systematically studied with the aim of finding the best vehicle system for drug 

delivery (Kakubari et al., 2006). These have each provided sets of data which were 

explored using QSAR and data mining techniques in order to develop 'local' models. 

From a toxicological point of view, there have been efforts to study the effect of mixture 

ingredients on the penetration of environmental pollutants and to use QSAR to predict 

the penetration of complex chemical mixtures (Riviere and Brooks, 2005; 2011: Xia et 

al., 2007). The study of Riviere and Brooks (2005) investigated the effects of solvents 

on skin permeability. Their skin permeability dataset consisted of permeability 

coefficients of 12 different penetrants each blended in 24 different solvent mixtures 

measured from finite-dose diffusion cell studies using porcine skin. The focus of this 

current work was to model the effect of mixture components on the skin penetration of 

chemicals. Considering the huge number of possible combinations of chemicals that 

might be intended for delivery through skin, or the skin might be exposed to 

unintentionally, a systematic method for characterizing the effects of formulation factors 

and or mixtures of chemicals was of great interest. 

The final aim of this study was to develop models that can also incorporate the effects of 

experimental conditions such as membrane thickness, occlusion, hydration, vehicle 

ingredients and mode of dose application (finite or infinite dosing) on skin permeation 

flux. This was achieved through the use of a large dataset extracted from the EDETOX 

database and collated from more recent publications. The dataset was large enough to 

investigate statistically the combined effects of experimental conditions, mixture 

components and molecular structures of the penetrants using several data mining tools. 

The QSARs focused on skin flux as the response variable and linked this to the chemical 

structures of the penetrants and the physico-chemical properties of the vehicle mixtures. 

Linear regression was used to develop QSARs where the dataset was relatively small 

(sections 3 and 4). For larger datasets, it was possible to employ some of the more 

complex non-linear methods including boosted trees, or simple regression trees. 
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Validation of a QSAR model is an essential part of in silica predictability. Since 

REACH highlighted the need to use QSAR models in order to reduce experimental and 

animal testing, the OECD (2004a, b) has defined the validation principles for QSAR 

models, for regulatory purposes (Commission of the European Communities, 2003). 

Depending on the size of the dataset validation of the models were performed using 

leave-a-group-out internal validation by employing a percentage of datapoints as 

external validation sets. 
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3. Effects of Solvents on Skin Permeation of Formoterol 

Fumarate 

The aim of this investigation was to develop QSAR models for the effect of solvents 

on the skin penetration behaviour of a model penetrant. Such a model may identify 

the mechanisms involved in the penetration through skin and the effects of 

formulation factors. Kakubari et al. (2006) have measured the effect of several 

liquids, some of which are known penetration enhancers, on the penetration of 

Formoterol Fumarate (FF) through excised rat skin. In the experiment, FF dissolved 

in 4 ml of different solvents containing 2J.Ll of ethanol was used as the donor phase in 

the diffusion cell. The receiver cells were filled with saline and solutions in both 

cells were stirred using magnetic stirrers. This dataset was selected for QSAR model 

development due to the consistency of the experiments and availability of results for 

a large number of solvents that is required for a QSAR study. 

The model penetrant in this study was FF (Figure 3.1 ), a catecholamine analogue 

that possesses �2 adreoceptor agonist potential and compliments it with high potency 

and prolonged efficacy (Bartow and Brogden, 1998; Faulds et al., 1991 ). Clinical 

studies have proved that FF causes bronchodilation for at least 12 hours after a single 

oral administration. Thus, in order to maintain a 24 hour inhibition of 

bronchoconstriction and effective plasma concentrations leading to suppression of 

asthmatic fits in asthma patients, transdermal drug delivery has been considered as a 

highly efficient method (Kakubari et al., 2006). 

In this in vitro study the results are reported by Kakubari et al. (2006) as the amount 

permeated at different time intervals. The results showed a high enhancement from 

terpenes, fatty acid esters and higher alcohols while on the other hand there was no 

significant influence from lower alcohols, pyrrolidones and amines. More 

specifically the cineole/N-methyl -2-pyrrolidone (NMP) mixture enhanced slightly 

more the skin permeation of FF than with cineole alone. /-menthol/NMP mixed 

solvent system caused significant further increase. The maximum skin permeation of 

FF was detected when the ratio of 1-menthol/NMP was 60/40 w/w. As an outcome of 

the in vitro study, 1-menthol/NMP and isopropyl myristate (IPM)/NMP mixed 
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solvent systems were suggested as effective systems for augmenting skin permeation 

of FF, with potential applications in transdermal delivery of the drug. QSARs was 

used to relate the penetration changing behaviour of the solvents to their molecular 

structures as measured by molecular descriptors. 

Log P = 2.03 
MW= 344.4 

pK8 = 8.95 (basic) 

Figure 3 .I. Molecular structure of formoterol fumarate 

3.1. Methods 

3.1.1. The dataset 

The dataset consisted of the cumulative amount of FF that penetrated through 

abdominal rat skin at different time intervals of 2, 4, 6, 8 and 24 h as reported by 

Kakubari et al. (2006). The flux was calculated from the original data as the slope of 

the best fit line of the linear section of the plot between the cumulative amount 

absorbed and time. The donor phase was the same concentration of the drug (12.5 

J.tg/ml) dissolved in the thirty-eight different solvents including terpenes, alcohols, 

and fatty acids. The volume applied was 4 ml. The rat skin used was full thickness, 

without pre-hydration, and non-occluded. Table 3.1 shows the dataset used in this 

study. 

3.1.2. Structural descriptors 

Structural descriptors included electronic parameters such as the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) 

energies, dipole moment, calculated by Vamp (using the AMI Hamiltonian) using 

TSAR 30, and atom and group counts, molecular weight and surface area and 
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volume calculated by TSAR 3D. Log P was calculated by the ACD/lab logD Suite 

7.05 release (ACD/LogD, 2008). 

3.1.3. Development and Validation ofQSARs 

Stepwise regression analysis was used to develop models for the cumulative amount 

penetrated at different time intervals, the flux and the enhancement ratio (ER) 

calculated as below: 

ERsolventl = formoterol flux from solvent 1 I formoterol flux from water 

All statistical analyses were performed in the MINIT AB Statistical software version 

13.20 (Minitab Statistical Software, 2008). Stepwise regression analyses were cut 

short to allow not more than 3-4 descriptors in the models. All the model parameters 

were significant with P<0.05. 

The predictability of the models was examined by a leave-a-group - out procedure. 

As such, chemicals were sorted according to the ascending flux values; for each set 

of 4 solvents, the first compound was allocated to group a, the second to group b, the 

third to group c and the fourth to group d. This ensured that each group covered 

similar ranges of the skin penetration parameters. The regression was carried for the 

chemicals in groups a, b and c (as the training set), and the resulting equation was 

used to calculate the skin penetration parameter for the remaining group d (as the test 

set). The procedure was carried on to leave one group out at a time (all the possible 

combinations of groups making the training set). The Mean Absolute Error (MAE) 

of prediction was used as the error measure for assessing the validity of the models 

and was calculated as below: 

Llobserved- predicted! 
MAE = ---------

n 

Where observed and predicted in this case are log flux values obtained from the 

literature and that calculated by the models, and n is the number of data points. 
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Table 3.I. Dataset used for the QSAR study; Q2-Q8 are the cumulative amount 

permeated at time intervals of 2-8 h (J.tg/cm2), and flux (J.tg/cm2 /h) of formoterol. 

Vehicle Q2 Q4 Q6 
Butyl myristate 0.8 2.6 3.9 
Cetyl isooctanate 0.1 0.3 0.8 
Cineole 8.4 21.8 30.1 
Diisopropyl sebacate 0 0.5 1.2 
Ethanol (50%) 0 0 0 
Ethyl Linoleate 0.5 2.3 6 
N-Methyl-2-Pyrrolidone 0.1 0.2 0.4 
Oleic acid 0 0.1 0.2 
Propylene glycol 0 0 0 
Terpinolene 2.1 6 7.9 
a-Terpineol 0.1 0.4 1.8 
Diethyl Phthalate 0 0.1 0.2 
d-Limonene 1.4 3.1 4.8 
Formamide 0 0 0 
1-Decanol 0.7 2.8 5.4 
Linalool 0.5 3.1 6.2 
Liquid paraffin 0 0 0 
Menthone 2.6 13.9 22.6 
Octyldodecanol O.I 0.3 0.5 
Oleyl alcohol 0.1 0.3 0.9 
a-Terpinene 5.6 11.8 15.8 
Decyl oleate 0.1 0.2 0.5 
Diisopropyl adipate 0.1 0.3 0.9 
d/-Menthol 0.2 0.9 1.9 
Ethyl oleate 0.5 1.6 3 
Hexadecyl isostearate 0 0.1 0.2 
Isopropanol 0 0 0 
Isopropyl myristate 0.4 2.5 5.5 

Oleyl oleate 0 O.I 0.1 
Diethyl sebacate 0.3 1.9 4.7 

Glyceryl triisooctanate 0.1 0.4 0.8 

Isopropyl palmitate 0.5 1.2 2.6 

1-Dodecanol 0.1 0.4 1.2 

Linalyl acetate 0.6 7 15.4 

1-0ctanol 0.8 2.6 4.3 

N,N-Dimethyl-3- 0 0 0 

toluamide 
Saline 0 0.1 0.2 

n-Butyl alcohol 0 0.1 0.2 
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Q8 Q24 Equation 
4.6 10.2 y = 0.635x- 0.2 
1.2 3.6 y = 0.19x- 0.35 
34.5 48.2 y = 4.33x + 2.05 
2.3 
0 
8.8 
0.6 
0.2 
0 
8.7 
2.4 
0.3 
5.5 
0 
7.5 
9.4 
0.1 

I 0.5 y = 0.38x- 0.9 
0 y=O 
17.1 y = 1.43x- 2.75 
2.4 y = 0.085x- 0.1 
I y = 0.035x- 0.05 
0 y=O 
13.7 y = 1.085x + 0.75 
9.6 y = 0.415x- 0.9 
0.8 y = 0.05x- 0.1 
12.1 y = 0.7x + 0.2 
0 y=O 
17.8 y=1.15x- 1.65 
23.1 y = 1.49x- 2.65 
0.2 y = 0.015x- 0.05 

28.6 36.7 y = 4.335x- 4.75 
0.6 1.9 y = 0.085x - 0.05 
1.3 4.9 y = 0.21x- 0.4 
I8.3 26.8 y = 2.I 05x + 2.35 
0.7 2.4 y = 0.105x- 0.15 
1.7 12.3 y = 0.27x - 0.6 
2.7 8.5 y = 0.425x- 0.7 
4.8 11.8 y = 0.7I5x- 1.1 
0.3 0.8 y = 0.05x- 0.1 
0 0 y=O 
7.8 I6.4 y = 1.26x- 2.25 

flux 
0.635 
0.19 
4.33 
0.38 
0 
1.43 
0.085 
0.035 
0 
1.085 
0.415 
0.05 
0.7 
0 
1.15 
1.49 
O.OI5 
4.335 
0.085 
0.21 
2.105 
0.105 
0.27 
0.425 
0.7I5 
0.05 
0 
1.26 

0.1 0.4 y = 0.015x + 9E-17 0.015 
8.1 22.4 y = 1.31x- 2.8 1.31 
0.8 3.6 y = 0.125x- 0.1 0.125 
3.2 6.3 y = 0.475x- 0.5 0.475 

2.3 10.6 y = 0.37x- 0.85 0.37 
23.5 45.3 y = 3.855x- 7.65 3.855 

5.9 15.8 y = 0.85x- 0.85 0.85 

0 0 y=O 0 

0.3 1.2 y = 0.05x- 0.1 0.05 

0.2 3.3 � = 0.035x- 0.05 0.035 

group 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
c 
c 
c 
c 
c 
c 
c 
c 
c 
d 
d 
d 
d 
d 
d 
d 

d 
d 



3.2. Results 

The histogram of Q and log Q at different time intervals showed that log Q has a less 

skewed normal distribution than Q. However, due to Q values being zero for many 

solvents, especially at smaller time intervals, which indicates a lag time, it was not 

possible to calculate the log Q for many data points, leading to the unnecessarily 

exclusion of data from the analysis. Therefore, a small value of 0.01 was added to all 

the Q values and the logarithm of those (log Q+O.O 1) were used for the model 

development. Models were developed for amount permeated at different time 

intervals, as the efficiency of a particular solvent system may differ at different time 

intervals and some solvents may work faster. Moreover, QSAR models were also 

developed for flux and log ER using step wise regression analysis. Equations (3.1 )­

(3 .4) below are the regression models obtained for the cumulative amount permeated 

from rat skin at various time intervals. Equations (3.5) and (3.6) are the QSAR 

models for log flux and log ER. 

Log Q4+0.01 = - 2.01 + 3.60 6-aliphatic rings + 0.392 Balaban + 0.0831 Total 
Lipole -35.3 Chiv6_r (3.1) 
S = 0.6684 r2 = 56.6°/o F = 10.76 P = 0.000 N =38 

Log Q6+0.01 =- 0.703 + 1.20 Chiv4_pc + 0.140 Total Lipole -1.20 6-aromatic 
rings -0.260 Dipole (3.2) 
S = 0.7091 r = 57.8o/o F = 11.30 P = 0.000 N = 38 

Log Q8+0.01 =- 0.409 + 1.15 Chiv4_pc + 0.138 Total Lipole -0.329 Dipole -1.10 
6-aromatic rings (3.3) 
S = 0.7207 r = 56.8% F = 10.85 P = 0.000 N = 38 

Log Q24+0.0 1 = 0.112 + 0.185 Chiv4 _pc + 0.298 log P-12.4 Chiv 10 _p-1. 76 6-
aromatic rings (3 .4) 
S = 0.6808 r = 66.4°/o F = 16.30 P = 0.000 N = 38 

Log flux= 8.51 -6.74 Chi9 _p + 0.233 ChiO-7.06 Index of refraction (3.5) 
S = 0.498 r = 49.3 o/o F = 11.01 P = 0.000 N = 38 

Log ER= 11.0-6.98 Chi9 _p + 0.236 ChiO-7.87 Index of refraction + 0.0388 Total 
Lipole (3.6) 
S = 0.484 r2 = 53.6% F = 9.53 P = 0.000 N = 38 
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The parameters of equations 3.1-3.6 have been explained in Table 3.2. The statistical 

parameters of these regression equations were S, r2, F, P, and N. Standard deviation 

(S) is a measure of spread of data, sensitive to shape of distribution, and shows how 

widely spread the values in the data set are from the regression line. r2 is the square 

of the correlation coefficient, the closer the value is to unity, the higher the 

percentage of variation in y is explained by the equation. Fisher's statistic (F or F­

statistic) is calculated for the regression. Probability error (P or P-value) is simply 

the probability that the hypothesis being tested is true. The hypothesis is that there is 

a less than one in twenty (0.05%) chance that there is no significant relationship. N is 

the number of data points. 

Table 3.2. Descriptors selected by stepwise regression analysis in each equation and 
the step in the analysis in which they were selected 
Descriptor Eq.3.1 Eq.3.2 Eq.3.3 Eq.3.4 Eq.3.5 Eq.3.6 Description 
6-aliphatic 

1 
Number of 6-membered 

nngs aliphatic rings 
Balaban 2 Balaban topological index 
Total Lipole 3 2 2 4 Total lipole moment 

6th order valence corrected ring 
molecular connectivity index 

Chiv6 r 

Chiv4_pc 

6-aromatic 
nngs 
Dipole 

Log P 

Chiv10_p 

Chi 9_p 

ChiO 

Index of 
refraction 

4 

1 

3 

4 

1 1 

4 4 

3 

2 

3 

1 1 

2 2 

3 3 

4th order valence corrected 
path/ cluster molecular 
connectivity index 
Number of 6-membered 
aromatic rings 
Dipole moment 
Logarithm of octanol/ water 
partition coefficient 
1oth order valence corrected 
path molecular connectivity 
index 
9th order simple path molecular 
connectivity index 
zero order simple molecular 
connectivity index 
Index of refraction calculated 
by ACD/labs Software 

Looking at the statistical fit of equations 1-6 and judging by the r2 values it can be 

seen that the QSAR for log Q24 has the best fit (equation 3.4 ). The predictive power 

of this equation was examined by the procedure of the leave-group-out (as explained 
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in section 3.1). Figure 3.2 shows the graph between flux and the corresponding 

absolute error values. It can be seen that for the majority of vehicles the absolute 

error is below 1. The solvents with large error of prediction can be seen in Table 3.3 

where the absolute error values are listed. 
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Figure 3.2: Graph between flux and the corresponding Absolute Error values 
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Table 3.3. DescriQtor values used in the QSAR models (eguations 3.1-3.6) 
VAMP 

6 -aliphatic Heat of Total 
rmgs Wiener Balaban Formation Chiv6 r LiEole Chi9 E 

Butyl myristate 0 1265 3.05 -197.03 0.00 8.03 0.34 
Cetyl isooctanate 0 2783 3.10 -235.47 0.00 8.40 0.51 
Cineole 2 128 1.87 -70.76 0.13 0.84 0.00 
Diisopropyl 
sebacate 0 1184 3.24 -248.00 0.00 0.20 0.30 
Ethanol (50%) 0 4 1.63 -62.65 0.00 1.31 0.00 
Ethyl Linoleate 0 1720 3.00 -152.22 0.00 12.79 0.41 
N-Methyl-2-
Pyrrolidone 0 40 2.08 -40.24 0.00 1.46 0.00 
Oleic acid 0 1313 2.92 -182.40 0.00 8.84 0.36 
Propylene glycol 0 18 2.54 -116.83 0.00 1.43 0.00 
Terpinolene 1 120 2.01 -9.16 0.05 0.28 0.00 
a-Terpineol 1 152 2.15 -73.83 0.06 2.49 0.00 
Diethyl Phthalate 0 446 2.40 -148.95 0.03 5.56 0.23 
d-Limonene I 120 2.01 -4.21 0.06 0.57 0.00 
Fonnamide 0 4 1.63 -44.75 0.00 0.55 0.00 
1-Decano1 0 220 2.69 -117.35 0.00 7.04 0.09 
Linalool 0 180 3.38 -50.02 0.00 1.34 0.00 
Liquid paraffin 0 560 2.81 -106.38 0.00 0.05 0.21 
Menthone I 150 2.17 -80.49 0.06 1.23 0.00 
Octyldodecanol 0 1380 3.28 -180.71 0.00 2.62 0.42 
Oleyl alcohol 0 1140 2.88 -142.83 0.00 11.15 0.34 
a-Terpinene I 120 2.01 -8.10 0.04 0.06 0.00 
Decyl oleate 0 4308 3.12 -196.70 0.00 3.63 0.67 
Diisopropyl 
adipate 0 574 3.38 -220.50 0.00 0.00 0.25 
d/-Menthol 1 ISO 2.17 -97.99 0.07 1.82 0.00 
Ethyl oleate 0 1720 3.00 -181.58 0.00 12.55 0.41 
Hexadecyl 
isostearate 0 6836 3.14 -297.03 0.00 0.73 0.81 
Isopropanol 0 9 2.32 -69.52 0.00 1.04 0.00 
Isopropyl myristate 0 1072 3.06 -187.45 0.00 9.13 0.30 
Oleyl oleate 0 8816 3.13 -261.70 0.00 2.77 0.92 
Diethyl sebacate 0 1016 3.23 -242.76 0.00 2.82 0.28 
Glyceryl 
tri isooctanate 0 4180 4.40 -384.81 0.00 6.48 0.72 
Isopropyl palmitate 0 1462 3.05 -201.14 0.00 10.68 0.37 
1-Dodecanol 0 364 2.76 -131.04 0.00 8.42 0.15 
Linalyl acetate 0 341 3.86 -82.78 0.00 3.30 0.00 
1-0ctanol 0 120 2.60 -103.66 0.00 5.66 0.00 
N,N-Dimethyl-3-
toluamide 0 197 2.16 -12.79 0.03 6.46 0.00 
Saline 0 0 0.00 -59.24 0.00 0.22 0.00 
n-Butyl alcohol 0 20 2.19 -76.30 0.00 2.87 0.00 
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Table 3.3. Continued 

Kappa1 Chiv4 PC VAMP Chi5 P ChiO Index of Absol 
-

index Total refraction ute 

Energy error 

Butyl myristate 20.00 0.08 -3445.59 2.00 14.89 1.44 0.178 

Cetyl isooctanate 26.00 0.37 -4380.48 2.72 19.30 1.45 0.297 

Cineole 7.64 2.41 -1849.82 2.53 8.11 1.46 0.59 

Diisopropyl 20.00 0.39 -3746.78 1.71 15.38 1.44 0.033 

sebacate 
Ethanol (50%) 3.00 0.00 -659.79 0.00 2.71 1.35 1.843 

Ethyl Linoleate 22.00 0.08 -3700.10 2.15 16.31 1.47 0.529 

N-Methyl-2- 5.14 0.44 -1291.77 0.4 7 5.28 1.47 0.175 

Pyrrolidone 
Oleic acid 20.00 0.05 -3417.64 1.94 14.89 1.47 0.877 

Propylene glycol 5.00 0.08 -1136.36 0.00 4.28 1.43 1.305 

Terpinolene 8.10 1.05 -1501. 15 1.45 7.56 1.48 0.338 

a-Terpineol 9.09 1.60 -1849.95 1.52 8.48 1.48 0.61 

Diethyl Phthalate 14.06 0.51 -3011.08 2.70 11.97 1.51 0.702 

d-Limonene 8.10 1.01 -1500.94 1.45 7.56 1.47 0.016 

Formamide 3.00 0.00 -697.12 0.00 2.71 1.37 1.768 

1-Decanol 11.00 0.00 -1906.46 0.85 8.36 1.44 0.381 

Linalool 11.00 0.82 -1848.92 0.61 8.91 1.46 0.005 

Liquid paraffin 15.00 0.00 -2364.99 1.35 11.19 1.43 0.993 

Menthone 9.09 1.36 -1850.24 1.46 8.43 1.44 0.464 

Octyldodecanol 21.00 0.38 -3464.59 2.21 15.60 1.45 0.033 

Oleyl alcohol 19.00 0.00 -3124.56 1.85 14.02 1.46 0.155 

a-Terpinene 8.10 1.02 -1501.11 1.45 7.56 1.48 0.615 

Decyl oleate 30.00 0.14 -4810.50 3.25 21.96 1.46 0.554 

Diisopropyl 16.00 0.39 -3123.43 1.21 12.55 1.43 0.503 

adipate 
d/-Menthol 9.09 1.52 -1878.31 1.46 8.43 1.46 0.61 

Ethyl oleate 22.00 0.08 -3728.68 2.15 16.31 1.46 0.286 

Hexadecyl 35.00 0.37 -5783.00 3.84 25.66 1.46 0.51 

isostearate 
Isopropanol 4.00 0.00 -815.62 0.00 3.58 1.38 1.813 

Isopropyl 19.00 0.19 -3289.64 1.72 14.35 1.44 0.4 

myristate 
Oleyl oleate 38.00 0.08 -6193.45 4.25 27.62 1.47 0.205 

Diethyl sebacate 19.00 0.43 -3591.01 1.62 14.51 1.46 0.385 

Glyceryl 33.00 1.26 -6073.68 3.99 25.06 1.46 0.271 

triisooctanate 
Isopropyl 21.00 0.19 -3601.31 1.97 15.76 1.44 0.097 

palmitate 
1-Dodecanol 13.00 0.00 -2218.13 1.10 9.78 1.44 0.041 

Linalyl acetate 14.00 1.01 -2452.79 1.14 11.19 1.45 0.69 

1-0ctanol 9.00 0.00 -1594.79 0.60 6.95 1.43 0.005 

N,N-Dimethyl-3- 10.08 0.69 -1986.33 1.77 9.14 1.53 0.712 

toluamide 
Saline 1.00 0.00 -348.56 0.00 0.00 1.33 1.301 

n-Butyl alcohol 5.00 0.00 -971.45 0.00 4.12 1.40 0.042 
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3.3. Discussion 

In Q4 hours (equation 3.1) there is a positive correlation between the response and 

the number of 6-membered aliphatic rings, which can be translated as, the more 6-

aliphatic rings in the molecular structure of the solvents the higher the penetration 

after 4h. The solvents that have 6-membered aliphatic rings in the dataset belong to 

the group of terpenes; these are cineole, terpinolene, a-terpineol, d-limonene, 

menthone, a-terpinene, dl-menthol. Cineole contains two 6-membered aliphatic rings 

and the other terpenes have one each. All terpenes in this study have I 0 carbon 

atoms with similar molecular weight, 136 Da as minimum and 156 Da as maximum. 

As an exception linalool is a terpene with molecular weight of 154.24; which does 

not contain a ring. The molar refractivity of the above terpenes is also quite close 

with 45.35 m3 mor1 as minimum and 47.83 m3 mor1 as maximum. Their molar 

volume is similarly close as well with 159.6 m3/mol as minimum and 175.5 m3/mol 

as maximum. Polarizability of the drugs is very close with 17.98 cm3 as minimum 

and 18.96 cm3 as maximum. Terpenes as vehicles result in FF having an average flux 

of 1.91 which is higher than the average of all the other data points at 0.65. From all 

the above we can assume that terpenes have high enhancement activity which could 

be due to any of the structural or physico-chemical properties selected by stepwise 

regression explained in Table 3.2. Terpenes have been shown to increase skin 

permeation by interacting with stratum corneum lipids and/or keratin and increasing 

the solubility of drug into the stratum corneum lipids (Williams and Barry, 1991). 

Therefore, terpenes with different chemical structures will be expected to have 

different activities in terms of the effects on the skin penetration of a chemical. 

Although all but one of the terpenes in this list have equal number of 6-membered 

aliphatic rings, the remaining three descriptors of equation 3.1 will be able to 

differentiate different potencies of the terpenes. In order to affect the drug 

permeability, solvents will need to penetrate the SC. Kang et al. (2007) determined 

permeability coefficient of different terpenes experimentally using human skin. Their 

results suggested that liquid terpenes tend to produce better enhancing effects than 

solid terpenes and triterpenes (C30), while tetraterpenes (C4o) generally had poor 

penetration effect than other terpenes. The terpenes in this investigation contained 10 

carbon atoms (monoterpenes). 
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The balaban index, a highly discriminating topological index whose values does not 

substantially increase with the molecular size and represents extended connectivity 

and the shape of molecules (Thakur et al., 2004), is the second best descriptor in 

equations 3 .1. Balaban topological index shows a positive correlation with the Q4 

hours. The enhancer glyseryl triisooctanate has the highest balaban topological index 

with a value of 4.40 and saline has the lowest balaban topological index with a value 

of 0. The terpenes with 6-aliphatic rings have relatively average values, 1.87 

minimum and 2.16 as maximum. The balaban topological descriptor is a molecular 

size dependant descriptor (Todeschini and Consonni, 2000) meaning that the higher 

the molecular size, the higher the balaban values become, resulting in a higher 

penetration of FF after 4h. For this dataset, the correlation between balaban and 

molecular weight has an r2 value of 51.4%. In terms of terpenes, due to the equal 

number of carbon atoms, the difference between the molecular weights will be 

attributed to the presence of oxygen atoms, cyclicity and unsaturation. It has been 

shown that terpenes with aldehyde and ester functional groups are often better 

enhancers than the hydrocarbon terpenes (Vaddi, et al., 2002; Williams and Barry, 

2004 ). Furthermore, smaller alcoholic terpenes with a higher degree of unsaturation 

appeared to be good candidates for enhancing the permeation of hydrophilic drugs 

(Ghafourian et al., 2004). Oxygen containing terpenes have been found to be more 

effective than hydrocarbon terpenes, with those containing a bicyclic structure 

displaying a lesser permeation enhancing effect (Fang et al., 2007). It has also been 

reported that terpenes with a minimal degree of unsaturation, like menthol and 

cineole, are good absorption promoters for polar and water-soluble drugs (lain et al., 

2002). 

The descriptor total lipole is the second best descriptor in both equations 3.2 and 3.3, 

the third best descriptor of equation 3.1 and the fourth best descriptor of equation 

3.6. Total lipole has positive correlation with the Q4, Q6, Q8 and Enhancement 

Ratio. From table 3.2 ethyl linoleate has the highest total lipole value 12.78 and 

diisopropyl adipate the minimum value 0. Total lipole shows lipophilicity of the 

molecule in a specific direction. For example, surfactants are expected to have high 

total lipole values and they are known enhancers of drug skin penetration (Ma et al., 

2007). According to equations 3.1-3.3 and 3.6, such a lipolar property for the solvent 

is a contributing factor to the increase of skin absorption of FF. Oxygen containing 
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terpenes have lipolar (surfactant-like) property, which will increase their enhancer 

activities according to the QSAR equation. Evidence from DSC (differential 

scannmg calorimetry) and ATR-FT-IR (attenuated total reflectance Fourier 

transform infrared spectroscopy) analysis revealed that the 1,8 cineole and menthol 

enhanced permeation of zidovudine by transforming stratum corneum lipids from a 

highly ordered orthorhombic perpendicular subcellular packing to a less ordered, 

hexagonal subcellular packing. Both terpenes show effects on both lipid alkyl tails 

and polar head groups, suggesting that the above terpenes mainly act at polar head 

groups and break interlamellar and intralamellar hydrogen bonding networks 

(Narishetty and Panchagnula, 2005). This mechanism is also shared with some of the 

suggested mechanisms of penetration enhancements by surfactants (Aungst et al., 

1986; Barry, 1987). Accordingly, such amphipathic molecules can align themselves 

with the polar head groups close to the polar head groups in the lipid bilayers and 

have their alkyl chains descending into the hydrophobic region of the bilayer. 

Chiv6_r is the fourth best descriptor in equation 3.1 with a high negative correlation 

with the response 'Log Q4+0.01 '. The enhancers that have high Chiv6_r values are 

all the terpenes containing aliphatic rings plus enhancers diethyl phthalate and N,N­

dimethyl-m-toluamide with diethyl phthalate and N,N-dimethyl-m-toluamide having 

the lowest value of 0.028 and cineole having the highest value. Here it can be 

assumed that every enhancer with 6-aliphatic rings has a non-zero Chiv6 _r as well, 

but every enhancer that has Chiv6_r does not have 6-aliphatic rings (the six­

membered ring may be aromatic). Therefore, it seems that solvents containing 

aromatic rings will lead to lower enhancement through the skin. 

Chiv4_pc index is the best descriptor in equations 3.2, 3.3 and 3.4 having a positive 

correlation with all three responses. Chiv4 _pc indicates the presence of following 

molecular fragments in the molecule: 

;------< 
Cineole has the highest Chiv4 _pc index of 2.41. From Table 3.3 it is very interesting 

to see that the group of terpenes with 6-membered aliphatic rings in addition to 
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glyceryl triisooctanate and linalyl acetate, are the only solvents with Chiv4_pc values 

above 1, while the rest of the solvents in most cases have values well below 1. 

The presence of a 6-membered aromatic ring is the third best descriptor in equation 

3.2 and the fourth best descriptor in equations 3.3 and 3.4. It has negative correlation 

with responses, 'Log Q6+0.01 ', 'Log Q8+0.01' and 'Log Q24+0.01 '. The solvents 

diethyl phthalate and N,N-dimethyl-m-toluamide are the only compounds with 6-

membered aromatic rings. It is interesting that these two solvents have a lot in 

common such the high dipole moment values, 3.82 and 3.85 respectively, the highest 

Index of Refraction values, high surface tension and density values. In line with this, 

total dipole moment is the third best descriptor of equation 3.3 and the fourth best 

descriptor of equation 3.2 with a negative correlation with the response. Enhancer 

diisopropyl adipate has the lowest dipole moment value of 0.00002 and the enhancer 

N-methyl-2-pyrrolidone has the highest (3.91 ). This could be due to a better 

partitioning of solvents with low dipole moment into the SC, carrying along the drug 

and hence increasing its penetration into the skin. 

Log P is the second best descriptor of equation 3.4. It has a positive correlation with 

the response (Log Q24+0.0 1 ). Solvents propylene glycol and oleyl oleate have the 

lowest and highest log P values, -6.44 and 16.67 respectively. This correlation shows 

that the more lipophilic the vehicles are, the higher the amount of the drug absorbed 

within 24h of application. Better penetration from lipophilic solvents could be 

attributed to the effect of such solvents on the SC. For example, previous studies 

have shown that terpenes with larger log P values are more effective enhancers than 

those with lower log P values, as it is easier for lipophilic terpenes to mix with the 

se intercellular lipids (for extraction or for lipid transition) (Narishetty and 

Panchagnula, 2004; Ghafourian et al., 2004; Kang et al., 2007; Williams and Barry, 

2004). 

ChivlO_p is the third best descriptor of equation 3.4. It has a negative correlation 

with the response (Log Q24+0.01). Cineole, ethanol (50%), N-methyl-2-pyrrolidone, 

propylene glycol, terpinolene, a-terpineol, d-limonene, formamide, linalool, 

menthone, a-terpinene, dl-menthol, isopropanol, linalyl acetate, 1-octanol, N,N­

dimethyl-m-toluamide, saline, n-butyl alcohol have a value of 0 for Chiv1 O_p. 
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Enhancer Hexadecyl isostearate has the highest Chiv10_p value (0.41). Chiv10_p 

indicates the presence of long (10-atom) path fragments (not-branched). Equation 3.4 

with a positive coefficient for log P and negative coefficient for Chivl 0 _p shows that 

the more lipophilic solvents that are not linear (non-branched) increase the 

absorption of FF. 

Chi9 _p is the best descriptor in equations 3.5 and 3.6. Chi9 _p is the 9th order path 

molecular connectivity index indicating the presence of 9 atom chains (Hall and 

Kier. 1 991 ). Chi9 _p has a negative correlation with the log flux and log ER. 

Terpenes with 6-aliphatic rings, along with the enhancers ethanol (50%), N-methyl-

2-pyrrolidone, propylene glycol, formamide, linalool, isopropanol, linalyl acetate, 1-

octanol, N,N-dimethyl-m-toluamide, saline, n-butyl alcohol have a Chi9 _p value of 

0. Oleyl oleate has the highest Chi9 _p value of 0.915712. According to this 

relationship, solvents with long linear (non-branched) chain are not good enhancers. 

This is in accordance with the finding from equation 3.4 as explained before. 

ChiO is the second best descriptor in equations 3.5 and 3.6 and has a positive 

correlation with responses log flux and log ER. Saline has a 0 value and the 

maximum value has been observed with oleyl oleate. ChiO is strongly related to 

molecular size, the higher the molecular weight the more the ChiO is (Hall and Kier, 

1986). ChiO can also be an indicator of lipophilicity in specific series of compounds, 

as growing atom numbers indicates growing number of carbon atoms which increase 

lipophilicity. Therefore, joint presence of Chi9 _p and ChiO in equations 3.5 and 3.6 

is in accordance with presence ofChiv10_p and log Pin equation 3.4. 

The Index of refraction is the third best descriptor in equations 3.5 and 3.6; it also 

has a negative correlation with the response in both equations. Saline has the lowest 

value of 1.329 and N,N-dimethyl-m-toluamide has the highest observed value of the 

dataset (1.526). Index of refraction is an indicator of molecular polarisability; it 

shows polarisable molecules such as N,N-dimethyl-m-toluamide are not good 

promoters of skin penetration. This effect is similar to the effect of 6-aromatic rings 

in equations 3.2 3.3 and 3.4 and probably reflects the higher partitioning rates of FF 

from less polar solvents. 
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In the in vitro study of Kakubari et al. (2006), remarkable enhancement was noted 

with terpenes, fatty acids and higher alcohols whereas no significant influence was 

observed in the case of lower alcohols, pyrrolidones and amines. In the case of 

terpenes the greatest permeation of FF was seen with cineole, menthone and linalyl 

acetate after 8h. According to the QSAR estimation, terpenes (when used as the 

vehicles) are the most efficient ehancers of FF absorption, as indicated by regression 

equations 3.1, 3.2, 3.3 and 3.4. 

The equations giVe useful information regarding the effect of structural 

characteristics on the penetration altering behaviour of the vehicles. However, the 

statistical parameters show an average fit and therefore it is expected to obtain a 

rather poor predictive power. Table 3.3 and Figure 3.2 show that the absolute errors 

are acceptable for majority of vehicles. Unfortunately, the outliers cannot be 

explained sufficiently by their molecular properties. Without exclusion of outliers, 

the mean absolute error was calculated to be 0.535. 

3.4. Conclusion 

This study showed that when specific terpenes, esters and higher alcohols are used as 

vehicles they can enhance substantially the penetration of FF through rat skin with 

the enhancement effect quantitatively related to specific properties of their molecular 

structures. It became evident that QSAR analysis can help identify those specific 

molecular characteristics for the vehicles that will aid and promote the absorption of 

a specific penetrant. Solvents with a lipolar (surfactant like) structure increase drug 

penetration at various time intervals, especially at the earlier times of 4, 6 and 8h. 

This effect is also evident in the enhancement ratio of the flux by solvents. 

According to the QSARs, lipophilic solvents are more effective in increasing 

penetration of the drug. This was shown by the presence of descriptors such as 

partition coefficient and zero order connectivity index in the QSARs. On the other 

hand, linear molecules (non-branched molecules with high Chiv 10 _p and Chi9 _p) 

have a negative contribution to the absorption rate of the drug. This was evidenced 

by the concomitant presence of lipophilicity descriptors (positive coefficients) with 

descriptors such as high order connectivity indices (negative coefficients). An 
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interesting conclusion can be drawn from the QSARs that presence of aliphatic rings 

either represented by the number of 6-membered aliphatic rings or by the fourth 

order valence corrected path/cluster connectivity index (Chiv4_pc) is a positive 

factor for the solvents leading to increased drug penetration at various time intervals 

of 4, 6, 8 and 24h. The chemicals with 6-membered aliphatic rings and therefore 

high Chiv4 _pc are mainly those belonging to the group of terpenes, which are 

known for their penetration enhancement activities. Solvents containing aromatic 

rings (6-aromatic ring) have a negative effect on the permeation ofFF. This has been 

indicated indirectly by the descriptor 'index of refraction' in some of the reported 

QSAR. 

It must be noted however that the molecular characteristics of 'good' enhancers of a 

specific drug (FF here) may not be the same as the good enhancers of a different 

penetrant. Here is the scope for more study to compare QSARs obtained for the 

penetration changing behaviour of vehicles towards different penetrants with 

different molecular properties. It can be seen that QSAR methods can support in 

vitro and in vivo analysis. 
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4. Effects of terpenes on the skin permeation of Haloperidol 

Terpenes are a class of naturally occurring hydrocarbons known as essential oils. 

They are widely used in transdermal drug delivery as enhancers of drug permeation 

through human skin. They have been reported to have good toxicological profiles, 

high percutaneous enhancement abilities and low cutaneous irritancy at low 

concentrations (Okabe et al., 1 990). The human skin permeation effect of 49 

terpenes and terpenoids (chemically modified terpenes by oxidation or 

rearrangement of their carbon skeleton) on the in vitro permeability coefficient of 

haloperidol has been reported by Kang et al. (2007). 

The permeability coefficients were determined with standardised methods usmg 

human skin samples from the abdomen areas of three healthy female donors. A full 

spectrum of terpenes was selected to include monoterpene, sesquiterpene, diterpene, 

triterpene and tetraterpene with various functional groups ranging from 

hydrocarbons, alcohols, aldehydes, ester, ketones, to oxides (Figure 4.1 ). The dataset 

offers an opportunity for Quantitative Structure- Activity Relationship studies to 

investigate the molecular properties in terpenes that lead to high levels of skin 

permeation of haloperidol. The advantage of this dataset is consistency of the 

methods used for the measurement of permeability coefficients of the model drug 

haloperidol. 

A selected set of physicochemical properties of terpenes was used as the predictor 

variables and the permeability coefficient (kp) of the model drug, haloperidol, 

exposed to skin in vehicles containing different terpenes, was chosen as the response 

variable. Haloperidol is an anti-psychotic· agent suitable for transdermal delivery and 

there is a clinical need to develop such a dosage form (Vaddi et al., 2002; 

Whitehead, 1 975). By nature, it is a hydrophobic molecule with low molecular 

weight (Figure 4.2). The only long-lasting formulation is its ester, the haloperidol 

decanoate, for intramuscular injection, which, however, has disadvantages such as 

injection pain, marked inter-individual variation and complex administration 

regimen. It is important to develop an alternative for its maintenance therapy to 
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prevent the relapse of psychosis. The solvent, propylene glycol (PG), is commonly 

used in skin care products. 

In this research the focus was to model the effect of chemical enhancers on the skin 

penetration of chemicals. Considering the huge number of possible combinations of 

chemicals that might be intended for delivery through skin or the skin might be 

exposed to unintentionally, a systematic method for characterizing the effects of 

formulation ingredients is of great interest. 

4.1. Methods 

4.1.1. The Dataset 

The dataset consisted of the permeation coefficient of haloperidol (HP) through 

excised human skin with the aid of 49 terpenes and terpenoids listed in Figure 4.1. 

The data were generated by Kang et al. (2007) using standardised experimental 

protocols. The donor mixture was HP dissolved in propylene glycol with a 

concentration of 3 mg/ml containing 5o/o (w/v) of the respective terpene. The 

receptor solution was 500 ml of 0.03% (v/v) lactic acid solution containing 1% (v/v) 

antibacterial antimycotic solution. Human skin samples were taken from abdomen 

area of three healthy female donors. The skin samples were used as dermatomed 

(epidermis), pre-hydrated, under occluded conditions, and the donor phase volume 

applied on the skin was 1 ml. In vitro experiments were performed using the same set 

of automated flow-through diffusion cells. 

4.1.2. Molecular Descriptors 

A total of 205 descriptors for 49 terpenes (Citral was obtained from the average of 

Citral-a and Citral-�) were calculated using the following software packages: ACD 

labs/LogD Suite 7.0.5 (ACD/LogD, 2008), TSAR 3D version 3.3 (TSAR 3D, 2008) 

and Symyx QSAR version 2.3.0.0.12 (MDL QSAR, 2009). The descriptors included 
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electronic descriptors such as the highest occupied molecular orbital (EHoMo) and the 

lowest unoccupied molecular orbital (ELuMo) energies and dipole moment calculated 

using the AM 1 Hamiltonian, atom and group counts, molecular weight, topological 

indices, surface area, volume and atom-type electrotopological indices calculated by 

TSAR 30 and Symyx QSAR. The logarithm of the octanol-water partition 

coefficient (log P) was calculated by the ACD/labs logO suite. 

4.1.3. Development of QSAR models 

Stepwise regression analysis and Support Vector Machines (SVM) were used for the 

development of QSAR models. The enhancers were divided into training and test 

sets. QSAR models were developed using the enhancers in the training set and the 

models were used for the estimation of log kp of haloperidol when chemicals in the 

test set were used as the enhancers. In order to divide the chemicals, data were sorted 

according to ascending log kp values, and from each group of four, the first two 

chemicals were allocated to the training set, the third into the test set and the fourth 

into the training set. This was continued until all the chemicals were allocated into 

these two groups. 

Stepwise regression analysis was performed with log kp as the response against all 

molecular descriptors as the predictors. In order to obtain several other regression 

models, stepwise regression was repeated with the exclusion of some of the 

descriptors. In this way, three different regression models were developed and the 

prediction powers of the models were investigated. 

ST ATISTICA data mining version 8.0 (StatSoft, Inc., 201 0) was used to carry out 

Support Vector Machine (SVM) analyses. In these analyses, log kp was used as the 

continuous dependent and the descriptors selected by the three stepwise regression 

analyses or the feature selection tool in STATISTICA as the independent variables. 

Feature selection in ST ATISTICA is a data mining tool specifically designed to 

handle extremely large sets of continuous and/or categorical predictors for regression 

or classification type problems. It assumes no linear or monotone relationships 

between predictors and the dependent variables of interest, instead the software 
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applies a generalised 'notion of relationship' while screening the predictors one by 

one. In order to optimise the outcome, SVM types 1 and 2 ( E-SVM and v-SVM), 

with different kernels of RBF (Radial Basis Function) and sigmoid were 

investigated. Several starting values for the capacity factor (C), E and v were 

investigated. Analyses were performed on the training set and the resulting models 

were used for the estimation of prediction error of the test set group. The best models 

were selected according to the lowest mean absolute prediction error for the test set 

group. 
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Figure 4.1. Molecular structures of the 49 terpenes 
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Figure 4.2. Molecular structure of Haloperidol 
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4.2. Results 

4.2.1. Linear models 

Skin permeation of haloperidol is affected by the addition of various terpenes (5% 

w/v) to the donor mixtures during in vitro tests. The resulting permeability 

coefficients are expected to be related to the molecular structure of the terpenes. 

Stepwise regression analyses in Minitab selected the most significantly related 

molecular descriptors to log kp (as the response) and produced the QSAR models 

4.1-4.3. 

Log kp =- 11.4 - 0.00144 Wiener + 0.0205 SA - 2.73 SHHBd + 31.1 MaxHp - 1.18 

dipole1 +5.09 ABSQon (4.1) 

S = 0.999 r2 = 0.662 F = 13.7 N = 49 p = 0.000 

Log kp =- 6.98 - 0.0147 Bp+ 0.0273 SA+ 2.63 SssO_acnt + 1.56 Naldehyde + 7.40 

chi4_C- 0.559 Chi2_p (4.2) 

S=l.114 r2=0.583 F=9.6N=49 p = 0.000 

Log kp = 0.79 + 3.07 Naldehyde - 0.240 Solubility - 0.134 surface tension + 2.08 

SssO _acnt - 0.307 dipole2 - 46.3 SpcPolarizability (4.3) 

S=l.168 r=0.538 F=8.1 N=49 P = O.OOO 

The statistical parameters of the models are S, standard deviation, r2, squared 

correlation coefficient, F, Fisher's statistic, and N, number of data points. P-values 

for equations (4.1)-(4.3) were <0.0005. The molecular descriptors have been 

described in Table 4.1. The descriptors in equations (4.1)-(4.3) are in the order that 

they were selected by stepwise regression analysis. 
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Table 4. 1. Description of the molecular descriptors used in the QSAR models 

Descriptors Model No. 

Wiener 4.1 

SA 4.1 & 4.2 

SHHBd 4.1 

MaxHp 4.1 
Dipole I 4.1 

ABSQon 4.1 

Bp 4.2 & 4.7 
SssO acnt 4.2 & 4.3 

Naldehyde 4.2, 4.3, 4. 7 & 4.8 
Chi4 c 4.2 
Chi2_p 4.2 

Solubility 4.3 

Surface tension 4.3 

Dipole2 4.3 

SpcPolarizability 4.3 

EwMo 4.7 & 4.8 

SHother 4.7 

SdsCH 4.7 & 4.8 

SE! 4.8 
ChiO 4.8 

4.2.2. Non-Linear models 

Description 

The sum of the number of edges in the shortest 
paths in a chemical graph between all pairs of non­
hydrogen atoms in a molecule 
Surface area 
e-State descriptor that emphasises hydrogen bond 
donating ability 
The largest positive charge on a hydrogen atom 
Dipole moment calculated by AMI 
The sum of absolute charges on nitrogen and 
oxygen atoms 
Boiling point of the compound 
Count of all ( -0-) groups of a molecule 
Number of aldehyde groups 
41h order cluster molecular connectivity index 
2"d order simple path molecular connectivity index 
solubility of HP in Propylene Glycol at 37 °C with 
or without 5% (w/v) enhancer 

Dipole moment calculated by ACD 

Self-Consistent Point Polarisability 

Energy of the lowest unoccupied molecular orbital 
Sum of the Hydrogen E-State values for hydrogens 
on carbon atoms 
Sum of electrotopological state values for (=CH-) 
groups in a molecule 
Total value of e-state indexes 
Zero order simple molecular connectivity index 

The results of SVM analysis have been tabulated in Table 4.2. Models (4.4)-(4.6) in 

this table were generated using descriptors selected by stepwise regression analyses 

used in equations (4. 1)-(4.3), respectively. In order to find the best SVM models, 

several combinations of the model parameters were investigated. C (Capacity) is a 

regularisation parameter that controls the trade-off between maximising the margin 

and minimizing the training error. If C is too small the insufficient stress will be 

placed on fitting the training data. If C is too large, then the algorithm will over-fit 

the training data (Luan et al. 2008). The minimum value for C was set at 1.0 with 

maximum at 10, 100 or 1000 with an increment of 1, 10 or 100. The kernel 
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parameters v and E were given maximum values of 1.0 and IO and minimum values 

of O.I with increments of O.I respectively. 

Table 4.2. Selected SVM models generated by ST ATISTICA for log kp 

SVM 
No Descriptors Type Kernel y_ Coefficient c E V 

Wiener, SA, SHHBd, 
4.4 MaxHP, dipole I, 2 Sigmoid O.I67 0.000 IO 0.5 

ABSQon 
Bp, SA, SssO_acnt, 

4.5 Naldehyde, Chi4 _ C, I RBF 0.167 68 0.2 
Chi2_p 

N aldehyde, Solubility, 

4.6 
surface tension, 

I RBF O.I67 IO 0.4 
SssO _ acnt, dipole2, 

SpcPolarizability 

4.7 
ELuMo, Bp, Naldehyde, 

2 RBF 0.2 691 0.8 
SHother, SdsCH 

4.8 
Naldehyde, SdsCH, SE!, 

2 RBF 0.2 72I 0.8 
ELUMO, ChiO 

Models ( 4. 7) and ( 4.8) were derived using descriptors selected by feature selection 

and variable screening tool of STATISTICA software. Model 4.7 resulted when the 

number of cuts for continuous predictors was set to 5 (the range of values for each 

continuous predictor was divided in 5 intervals) and model 8 resulted when the 

number of cuts for continuous predictors was settled to I 0. 

Table 4.3 shows a comparison of the statistical significance of the linear and non­

linear regression models. In general non-linear models ( 4.4, 4.5, 4.6) show increased 

r values in comparison with the analogous linear models (4.1, 4.2 and 4.3), which 

employ the same descriptors respectively. However these non-linear models also 

have higher MAE (mean absolute error) values. Also non-linear models (4.7) and 

( 4.8) have higher MAE, but similar or better r2 values than the linear models. The log 

kp values for haloperidol and the predicted values by the selected models have been 

presented in appendix I. 
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Table 4.3. Differences in linear and non-linear regression analysis 

Model 
No. 
4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

Mean Absolute Error % 

Train Test Overall 
0.662 0.760 0.686 

0.867 0.744 0.837 

0.894 0.711 0.849 

1.074 0.868 1.024 

1.026 0.835 0.980 

1.053 0.662 0.959 

I. 1 1 9 I. 04 9 1.1 0 I 

1.073 1.140 1.090 

4.3. Discussion 

Correlation Coefficient 

Train Test Overall 
0.679 0.620 0.662 

0.596 0.574 0.583 

0.527 0.64 0.538 

0.682 0.740 0.691 

0.784 0.711 0.764 

0.675 0.791 0.693 

0.676 0.648 0.670 

0.685 0.588 0.665 

Terpenes are well-documented enhancers of drug absorption through skin (Barry, 

2007). The effect of terpenes on the skin absorption depends on the chemical 

structure of the terpene and varies depending on the chemical structure of the 

penetrant ( Ghafourian et al., 2004 ). Quantification of these effects can improve the 

process of drug formulation by facilitating the choice of the correct enhancer. 

Moreover, such computational models will help toxicologists with the human health 

risk assessment of skin exposure to chemical mixtures. Unfortunately, development 

of the computational models is greatly restricted due to the limitations in the 

availability of data. In this investigation, QSAR models were developed for the 

effect of terpene penetration enhancers on the penetration of haloperidol through 

excised human skin. Two statistical methods, stepwise regression analysis and 

STATISTICA Feature Selection were used for the selection of relevant descriptors 

with significant influence on the permeability coefficient from among a total of 205 

molecular descriptors of the chemical enhancers calculated by computer software or 

determined experimentally (such as boiling point). 

The Wiener topological index is the first descriptor of the QSAR model ( 4.1 ). In the 

chemical graph theory, the Wiener index is a topological index defined as the sum of 

the number of edges in the shortest paths in a chemical graph between all pairs of 

non-hydrogen atoms in a molecule (Diudea and Gutman, 1998). The Wiener index is 

the oldest topological index related to molecular branching (Todeschini and 
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Consonni, 2000). This index correlates with the van der Waals surface area of 

molecules (Gutman and Kortvelyesi, 1995). The second descriptor in model 4.1 is 

surface area which has a positive correlation with log kp, meaning that the higher the 

surface area of a terpene the higher the log kp of haloperidol. This combined with the 

negative coefficient of Wiener which has information on branching as well as 

molecular size, may indicate that branched terpenes will lead to high absorption of 

haloperidol through skin. It must be noted that in terms of molecular size, the 

molecular weight of all the terpenes in this study is below 500 Da and therefore they 

should not have penetration problems (Lipinski, 1997), in order to penetrate into the 

SC and change the barrier properties. Model ( 4.1) also shows the negative effect of 

hydrogen bond donor ability (SHHBd) of terpenes on the penetration rate of 

haloperidol. On the other hand, the descriptor MaxHP which represents the largest 

positive charge on a hydrogen atom in molecules has a positive correlation with log 

kp. In other words, terpenes with a lower number of hydrogen bonding groups (e.g. 

non-hydroxylated terpenes), containing a positively charged hydrogen (such as those 

containing hydrogens close, but not directly attached to heteroatoms thus not 

counting as hydrogen bond donors) are better enhancers of haloperidol penetration. 

These are either molecules with an ether or ester group. In the study of Jeffrey et al. 

(1999), irritant esters of the skin showed lower density, lower water solubility, lower 

sum of partial positive charges, higher Hansen hydrogen bonding parameter and 

higher Hansen dispersion parameter when compared with non-irritant esters. 

Hydrogen bonding and the sum of partial positive charges is closely related to 

intermolecular interactions. The terpenes with the highest SHHBd and lowest 

MaxHP are the two esters octisalate and cedryl acetate respectively which according 

to Jeffrey et al. (1999) are also potential irritants. However, skin irritation is a 

property that depends not only on the skin penetration, but also on specific 

interactions of the chemical with skin (Roberts and Patlewicz, 2002). 

Another descriptor of model (4.1), dipole! is the dipole moment calculated by AMI 

semi-empirical method, representative of the strength and orientation behaviour of a 

molecule in an electrostatic field. It has a negative correlation with log kp indicating 

the negative effect of terpene dipolarity. Descriptor ABSQon with a positive 

coefficient in this same model represents the sum of absolute charges on nitrogen 

and oxygen atoms, which in case of terpenes only oxygen atoms may be present. 
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This indicates the positive effects of the oxygen atom on enhancement activity of 

terpenes. These findings are consistent with the work of Ghafourian et al. (2004) 

who demonstrated that low molecular weight terpenes containing heteroatoms 

(oxygen) are better penetration enhancers for 5-fluorouracil. 

The descriptor Bp is the first descriptor of QSAR model ( 4.2) and represents the 

boiling point of terpenes. Boiling point can indicate the intermolecular interaction 

energy of a terpene which may result from its polarity or polarisability or most 

significantly from the hydrogen bonding. Therefore the negative relationship with 

the permeation coefficient indicates a higher skin permeation rate with the non­

hydrogen-bond-donor terpenes. This is similar to the descriptor SHHBd in equation 

( 4.1 ). Boiling point was also selected by ST A TISTICA feature selection (non-linear 

model (4.7)). SssO_acnt is the count of other oxygen groups in terpene molecules. It 

has a positive correlation with log kp in QSAR models (4.2) and (4.3), Indicating 

higher skin permeation of haloperidol with ether or ester terpenes in the donor phase, 

analogous to ABSQon in equation (4.1). Moreover, the number of aldehyde groups 

CNaidehyde) also has a positive correlation with log kp in QSAR models ( 4.2) and ( 4.3). 

This descriptor is also present in both non-linear models (4.7) and (4.8), indicating a 

good enhancement effect on haloperidol penetration by aldehyde terpenes. These are 

again in accordance with Ghafourian et al. (2007) on the permeation enhancement of 

terpenes towards 5-fluorouracil. 

The other descriptor of model (4.2), Chi4_c is the 4th order cluster molecular 

connectivity index that is positively correlated with log kp. It indicates presence of 

atoms that are attached to four other non-hydrogen atoms. Terpenes such as cedrol 

which are highly branched and cyclic have high values of Chi4_c. Moreover, the 

descriptor Chi2 _p in this model is the 2"

d 
order simple path molecular connectivity 

index (Hall and Kier, 1991) that is negatively correlated with log kp. This descriptor 

in conjuction with surface area which has a positive coefficient indicates that 

branched and more complex terpenes lead to higher penetration rates of haloperidol. 

In model (4.3), apart from the number of aldehyde and etheric oxygen atoms which 

are similar to equation ( 4.2), solubility (mg/ml) of haloperidol in each terpene 

solution (measured by Kang et al., 2007) has been selected. This parameter has a 
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negative coefficient, this is in accordance with the scientific literature suggesting that 

a permeant should not be over-solubilised in the donor mixture, as this leads to lower 

degrees of saturation (ratio of concentration/solubility) when comparing the same 

drug concentrations. A near saturation level will maximise the concentration gradient 

across the SC because the partition coefficient of a drug between the skin and the 

solvent mixture generally falls as the solubility in the solvent rises (Roberts et al., 

2002; Baker, 1986). 

The descriptor surface tension in model (4.3) represents the surface energy of a 

liquid (a measure of how difficult it is to stretch or break the surface of a liquid). 

Surface tension is a result of higher intermolecular interaction forces between a 

liquid's molecule, than between the liquid molecule and air. In model ( 4.3), it shows 

a negative correlation with log kp which is in fact analogous to the negative effect of 

Bp in equation ( 4.2). Terpenes such as (S)-(-)-perillaldehyde and (1 R)-(-)-myrtenal 

with conjugated systems have high surface tensions and low skin penetration 

enhancement activities. 

The other descriptor of model ( 4.3), Dipole2, is dipole moment calculated by MDL 

QSAR software, with a negative coefficient in equation ( 4.3) similar to that in 

equation ( 4 . 1 ). This indicates the negative effect of terpene dipolarity on the 

penetration enhancement property. Also in this equation SpcPolarizability is Self­

Consistent Point Polarisability which is defined as specific polarisability of a 

molecule equal to PolarisabilityNolume. This is the last descriptor of model (4.3) 

with a negative correlation with log kp and terpenes thymol and (±)-linalool have the 

highest and the lowest values of this descriptor, respectively. 

In models (4.7) and (4.8), EwMo is a descriptor that represents the energy of the 

lowest unoccupied molecular orbital and measures the electrophilicity of a molecule. 

ELuMo has been shown to be related to hydrogen bond donor ability as well (Dearden 

and Ghafourian, 1999). The descriptor SHother represents the sum of the Hydrogen 

e-State values for hydrogens on groups other than -OH, -NH2, =NH, -SH, -NH-, 

=CH, or, if attached to chlorine or fluorine, -CH3, -CH2-, >CH-, =CH-. In this case, 

it can be seen from Figure 4.1 that SHother value will be high for molecules 
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containing hydrogen atoms attached to carbon atoms without a Cl or F atom 

attachments. In this dataset squalene, retinoic acid and retinol have a value of above 

12 and �-carotene has a value of 26; on the contrary, (R)-(+)-pulegone and 

Cyclohexanemethanol have the lowest values. SdsCH is the atom type 

electrotopological state index for =CH- groups in a molecule. SEI is the sum of e­

State indices; it represents the availability of electrons in atoms of a molecule. 

Although it is an electronic descriptor, it can also be related to the molecular size, as 

larger molecules have higher number of atoms with different levels of 

electrotopological state index. The descriptor ChiO is the zero order simple molecular 

connectivity index, a molecular size descriptor. 

Kang et al. (2007) suggested that an ideal terpene enhancer should possess at least 

one or combination of the following properties: hydrophobic, in liquid form at room 

temperature, with an ester or aldehyde but not acid functional group, and is neither a 

triterpene nor tetraterpene. Our findings agree well with this conclusion and m 

addition provide a quantitative model for estimation of the enhancement effect. 

There are several previous QSAR works on penetration enhancers. The work 

published by Pugh et al. (2005), relates the enhancement effect to the simple 

descriptors of hydrogen bonding with a negative effect, chain lengths with a positive 

effect, and molecular weight with a negative effect. However, this model failed to 

predict the activity of some of the most effective enhancers. The models generated in 

our work employ more complex descriptors such as those related to molecular shape. 

Karande et al. (2005) took a different approach by investigating the barrier 

disruption potential and skin safety of several classes of enhancers. They concluded 

that disruption of the skin barrier occurs by fluidisation of lipid bilayers or by 

extraction. It was suggested that irritation response correlated with the denaturation 

of se proteins, while the fluidisation potential correlated with hydrophobicity of 

molecules, and the extraction potential correlated with the ratio of the hydrogen 

bonding component of solubility parameter (oh) to the square root of cohesive energy 

density. It is difficult to compare the results of this investigation with the findings of 

Karande et al. (2005), as this study is focused on a specific class of enhancers as 

opposed to the broad dataset employed by Karande et al. However as the relationship 
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with log P is not significant, it can be concluded that the terpenes in this 

investigation are either equal in their fluidisation property or their mechanism is 

mostly through extraction. The latter explanation can be confirmed by the negative 

effects of descriptors SHHBd, Bp and surface tension in the models. In terms of the 

fluidisation ability, on the other hand, the log P range of the terpenes varies from 1.6 

to 15.51 with the average at 4.55. Therefore with this wide range of log P, similar 

fluidisation activity seems highly unlikely. 

Linear methods, such as multiple linear regression (MLR) or Partial Least-Squares 

regression (PLS), are the most widely used statistical methods in the QSAR/QSPR 

area based on an assumption of linearity between the descriptors and the 

investigated experimental property (Gramatica et al., 2002; Hadjmohammadi et al., 

2007: Roy et al., 2006; Tuppurainen et al., 2006). Support vector machine (SVM) is 

a non-linear algorithm developed for regression and classification problems (Vapnik, 

1998). Due to its remarkable generalisation performance, SVM has attracted 

increased attention and gained extensive applications, including applications in 

QSAR and QSPR for drug design (Burbidge et al., 2001; Czerminski et al., 200 I; 

Liu et al., 2003). Goudarzi and Goudarzi (2009) compared SVM with PLS, Principle 

Component Regression (PCR), and MLR, and found that SVM model was much 

better for modelling and predicting the acidic dissociation constants of some organic 

compounds. They concluded that SVM can be used as a powerful chemometrics tool 

for QSPR studies and that SVM drastically enhances the prediction ability of QSAR 

models. SVM has been used not only to construct activity and toxicity models (Yao 

et al., 2004) but also to build quantitative structure-retention index models (Du et al., 

2009). In the findings of Chen (2008) it was shown that non-linear SVM derived 

statistical models have similar prediction ability to those of radial basis function 

neural network and MLR methods. It was also indicated that SVM can be used as an 

alternative modelling tool for quantitative structure-property/ activity relationships 

(QSPR/QSAR) studies. In our findings SVM gave better r2 but higher MAE when 

compared with linear regression analysis (Table 4.3). According to the internal 

validation results in Table 4.3, the best estimation accuracy occurs through the use of 

the linear model (4.3) for the test and validation sets. 
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4.4. Conclusion 

According to the findings of our in silica study, an ideal terpene enhancer should 

preferably contain an aldehyde, ester or ether group, while the presence of hydrogen 

bonding donor groups is not advantageous. The chemical range of the enhancers 

investigated in this work is limited to terpenes with similar structural properties. 

Therefore the conclusions drawn from this work might not be applicable to 

enhancers from other chemical classes such as ionic surfactants, Azone® like 

compounds (Figure 1.8) or fatty acids. 

SVM models did not prove to be better than the linear regression models in terms of 

average prediction error, a general finding that contradicts those of Chen (2008), 

Goudarzi and Goudarzi (2009) and Luan et al. (2008) and indicates that the relation 

of log kp with the selected descriptors is linear. 
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5. Modelling the Effect of Mixture Components 

Chemicals that come into contact with skin are, more often than not, formulated in a 

mixture, or in the simplest form, dissolved in at least one solvent. Skin absorption of 

a chemical depends not only on the nature of the compound but also on the nature of 

the other ingredients present in the mixture (formulation). As a result, varying range 

of penetration rates are achieved by altering the formulations. However, the data 

used in most prediction models are based on experimental data for aqueous solutions 

of chemicals. The reason is because very limited experimental data are available for 

chemical mixtures. While it is frequently difficult to assess the absorption of 

individual chemicals, it is challenging to quantitatively assess the absorption from 

chemical mixtures. The aim of this investigation was to develop QSAR models to 

study the effect of mixture components on skin absorption of penetrants. The model 

will help identify the mechanisms involved in the penetration through skin and the 

effect of formulation factors. Data for this study were acquired from Riviere (2008) 

who collaborated with us in this project. 
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5.1. Methods 

5.1.1. The dataset 

Skin permeation data of 12 different penetrants (Table 5.1) each blended in 24 

different solvent mixtures (Table 5.2), were used in this investigation. Experimental 

details are fully described in Riviere and Brooks (2005). The permeability data 

consisted of apparent skin permeation rate constants (kp) in cmlh measured using 

finite-dose in vitro porcine-skin flow through diffusion cells. The skin was perfused 

using a Krebs-Ringer bicarbonate buffer spiked with dextrose and bovine serum 

albumin, and topically dosed unoccluded with 20 J.LL of one of 12 marker penetrant 

compounds (target dose of 10-20 J.Lg/cm2) formulated in one of 24 specified 

mixtures (Table 5.2). Trace amounts of methanol and toluene were used to solubilise 

radiolabelled penetrants before dilution with non-radiolabelled compounds. 

Table 5.1. Penetrants 

Atrazine Pentachlorophenol 

Chlorpyrifos Phenol 

Ethy I parathion p-Nitrophenol 

Fenthion Propazine 

Methylparathion Simazine 

Nonylphenol Triazine 

This dataset was used for the development of QSARs. In order to evaluate the 

applicability of the model the chemical space of the penetrants of this dataset was 

compared with the combined datasets of Flynn ( 1990) and Wilschut et al. ( 1995). 

The combined dataset contains in vitro human skin permeability data (log kp) for 112 

compounds. 
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5.1.2. Structural descriptors 

The predictors (descriptors) of penetrants included connectivity indices, quantum 

molecular descriptors and group counts calculated using the TSAR 3D software 

(Accelrys Ltd version 3.3). The physico-chemical properties of the mixture 

components including boiling point, melting point, solubility, vapour pressure and 

Henry's law constant were obtained through ChemBioFinder (CambridgeSoft, 2009) 

online software and the SRC PhysProp database (Syracuse Research Corporation, 

2009). Log P for solvent components and for the penetrants was calculated by the 

ACD labs/logD Suite 7.0.5 (ACD/LogD, 2008). Averages of physico-chemical 

properties for solvent mixtures were calculated using the fractions of each 

component e.g. boiling point of the mixture. 

5.1.3. Development and validation of QSARs 

Stepwise regression analysis was used to develop the QSAR models in MINIT AB 

version 15.1.0.0 (Minitab Statistical Software, 2009) The predictability of the 

models was examined by a leave- many - out procedure. As such, chemicals were 

sorted according to the ascending log kp values; for each set of four solvents, the first 

compound was allocated to group a, the second to group b, the third to group c and 

the fourth to group d. This ensured that each group covered similar ranges of the skin 

permeation kinetics. The regression analysis was carried for the chemicals in groups 

a, b and c (as the training set), and the resulting equation was used to calculate the 

skin permeation parameter for the remaining group d (as the test set). The procedure 

was carried on to leave one group out at a time (all the possible combinations of 

groups making the training set). The Mean Absolute Error {MAE) of prediction was 

calculated as a measure of the model accuracy. 
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Table 5 .2. Mean Composition of the 24 mixtures 

Mixture %EtOH o/oWater %PG %MNA %SLS 
Et 99.67 0 0 0 0 
Et+MNA 99.51 0 0 0.16 0 
Et+SLS 62.59 26.53 0 0 10.61 
Et+MNA+SLS 62.50 26.49 0 0.13 10.60 
Et+Wa 42.66 55.86 0 0 0 
Et+Wa+MNA 43.79 55.78 0 0.14 0 
Et+Wa+SLS 39.44 50.25 0 0 10.05 
Et+Wa+MNA+SLS 39.39 50.18 0 0.13 10.04 
Wa 0 99.75 0 0 0 
Wa+MNA 3.03 96.59 0 0.13 0 
Wa+SLS 0 90.70 0 0 9.07 
Wa+MNA+SLS 2.75 87.77 0 0.12 9.13 
Et+ PG 42.99 0 56.73 0 0 
Et+PG+MNA 42.92 0 56.65 0.14 0 
Et+PG+SLS 28.39 24.15 37.54 0 9.66 
Et+PG+MNA+SLS 28.36 24.13 37.50 0.12 9.65 
PG 0 0 99.75 0 0 
PG+MNA 2.93 0 96.70 0.12 0 
PG+SLS 0 22.13 68.79 0 8.85 
PG+MNA+SLS 2.69 22.29 65.76 0.11 8.92 

Wa+PG 0 48.99 50.76 0 0 

Wa+PG+MNA 2.98 47.46 49.18 0.13 0 

Wa+PG+SLS 0 44.62 46.23 0 8.92 

Wa+PG+MNA+SLS 2.71 43.20 44.76 0.11 8.98 
Et-Ethanol; PG-Propylene glycol; MNA-Methyl nicotinate; SLS-Sodium Jauryl sulphate; Wa-Water. 

The chemical space of the present dataset was compared with that of the skin 

permeability dataset drawn from Flynn (1990) and Wilschut et al. (1995). The 

comparison was made using descriptor spaces of Potts and Guy ( 1992) model (i.e 

molecular weight and octanol/water partition coefficient), Principal Component 

Analysis (PCA) scores plot with all the descriptors being included in the analysis and 

PCA scores plot using the descriptors selected by stepwise regression analysis for 

the Flynn (1990) and Wilschut et al. (1995) dataset. PCA was carried out using 

MINIT AB statistical software. 
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5.2. Results and Discussion 

The combined effect of chemical structures of the penetrants and the properties of 

the mixture components on the penneation rate through porcine skin was studied 

using QSAR. Stepwise regression analysis perfonned on the data set of 288 

penetrant/ mixture-component combinations resulted in equation 5.1, in which the 

descriptors were limited to two penetrant descriptors and one solvent mixture 

descriptor. 

Log kp =- 0.909-0.610 log P + 2.62 Chi9 _p- 0.00917 (SolBP - SolMP) 

(5.1) 

S = 0.438, r2 = 0. 729, F = 255.2, P = 0.000, N = 288 

In equation (5.1), Log kp represents penneation rate constant of compounds 

dissolved in various solvent mixtures from porcine skin, log P is the octanol/ water 

partition coefficient of the solute (the penetrant), Chi9 _p is the 9th order path 

molecular connectivity index of the penetrant, and SolBP - SolMP is the difference 

between the boiling point and the melting point of the solvent system. 

Log P was the most significant descriptor of the equation (the first to be selected by 

the stepwise regression analysis). It can be seen in equation (5.1) that log P of 

penetrants has a negative effect on the skin permeation rate. This is opposite to the 

common knowledge that lipophilic compounds have higher skin permeation profiles, 

as evidenced also in Potts and Guy's model (1992). The negative relationship 

between log kp and log P could be due to the fact that most of the drugs in this 

particular dataset are more lipophilic than the compounds in the datasets nonnally 

used in QSAR studies of skin penneability. Figure 5.1 shows a graph between log kp 

and log P for the penetrants of this study and the penetrants of Wilschut et al. (1995) 

and Flynn ( 1990). The opposite trends of the relationships between log kp and log P 

for the two datasets are evident despite the poor correlations. The figure also shows 

that compounds of the present dataset have relatively higher log P values than 

compounds in the combined datasets of Wilschut et al. (1995) and Flynn (1990). 

This follows the well established nonlinear relationship of biological activity with 

lipophilicity described by parabolic (Hansch and Clayton, 1973) or bilinear 
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(Kubinyi, 1977) models. Compounds with extreme lipophilicity can be expected to 

partition into the skin and remain there, with little permeation to the aqueous 

receptor phase. This has been shown for example for tetrahydrocannabinol 

(Challapalli and Stinchcomb, 2002), with extremely high log P value of 6.84 as 

calculated by ACD/logD Suite. L6pez et al. (I 998) showed a bilinear relationship 

between lipophilicity of phenyl alcohols and the permeability coefficient through rat 

skin, where the kp was reduced for compounds with log P values higher than around 
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Figure 5 .1. Comparison of the lipophilicity of the drugs in the two datasets of 

Riviere's (solid circles) and Flynn (1990) and Wilschut et al. ( 1995) dataset (empty 

circles) 

There are a number of other factors that may have contributed to the observed 

negative relationship between log kp and lipophilicity. One is the finite-dose nature 

of the experiments with skin dosed with a limited amount of drug. The limited 

availability of the compound could result in a large fraction of the lipophilic 

compounds being concentrated in the skin according to their skin/water partition 
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coefficients. A second factor is the differing nature of the receptor phase which 

contained albumin. 

Chi9 _p is the second most significant descriptor of equation (5.1 ). This molecular 

connectivity descriptor indicates the presence of nine-atom chains in the molecules. 

The positive coefficient of this descriptor indicates a better permeation of 

compounds containing long chain fragments. The penetrants with the highest Chi9 _p 

values were chlorpyrifos, fenthion and nonylphenol. These penetrants have the 

maximum molecular weight of 350 Da which is still smaller than the size expected to 

limit the absorption. According to Barry (2007) a molecule's ideal molecular mass, 

in order to penetrate the SC is less than 600 Da. In addition, according to Lipinski's 

rule of five, chemicals with molecular weight of above 500 Da may have biological 

membrane penetration problems (Lipinski et al., 1997). 

The third descriptor of the equation, SolBP - SolMP, represents the difference 

between melting and boiling points of the solvent mixtures, where the higher the 

difference, the lower the skin absorption of compounds from the vehicle. It is 

therefore expected that compounds formulated in vehicles with small boiling and 

melting point gaps will have better permeation through skin. The difference between 

these two properties has been attributed to the molecular symmetry, with highly 

symmetrical molecules having much larger melting points and decreased boiling 

points (Slovokhotov, 2007). In the solvents used in this study, the biggest difference 

in the melting and boiling points is for propylene glycol. Therefore the vehicles 

containing higher concentrations of this solvent will lead to lower permeation of the 

penetrants studied in this investigation. 

In order to validate the reported QSAR, a leave-many-out procedure as explained in 

the methods section was used and mean absolute error calculated. Figure 5.2 is the 

graph between observed and predicted log kp. The? between observed and predicted 

log kp and the MAE were 0.654 and 0.396, respectively. 
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As a second strategy, the two datasets were compared usmg all the calculated 

molecular descriptors, a total of 128. This was made possible through the use of 

Principal Component Analysis (PCA). PCA is a data reduction method which takes 

the information from original molecular descriptors and generates the same number 

of new descriptors (PCs), with the first PC containing the maximum information of 

the original dataset, and the second PC being the second most informative. 

Therefore, the plot between PC1 and PC2 (the scores plot) provides a good overview 

of the information content of the dataset. The first two principal component score 

vectors, PC1 and PC2, are plotted in Figure 5.4. The figure shows that the chemicals 

of the current dataset are located in the bottom left quarter of the plot, with relatively 

low PC 1 and PC2 values. By visual inspection of the graph, several groups of 

chemicals belonging to datasets of Flynn (1990) and Wilschut et al. (1995) were 

identified in the plot to cover various ranges of PC1/PC2. These are chemicals with 

high PC 1 and PC2 values such as codeine and morphine, compounds with high PC 1 

and varying values of PC2 including steroids such as testosterone and hydrocortison 

octanoate, and compounds with very low PC1 and PC2 values such as octanol. 
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Figure 5.3. Comparison of the chemical diversity of the penetrants of the present 

dataset (solid circles) with that of the combined dataset of Flynn (1990) and 

Wilschut et al. (1995) (empty circles), using log P and molecular weight. 
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Figure 5.4. Comparison of the chemical diversity of the penetrants of the present 

dataset (solid circles) with that of the combined dataset of Flynn (1990) and 

Wilschut et al. (1995) (empty circles), using PCA scores plot incorporating all the 

descriptors. 
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Figure 5.5. Comparison of the chemical diversity of the penetrants of the present 

dataset (solid circles) with that of the combined dataset of Flynn (1990) and 

Wilschut et al. (1995) (empty circles), using PCA scores plot incorporating the 

descriptors of equation 5.2. 

The third method for comparison of the datasets involved the use of a selection of 

molecular properties that are specifically involved in the skin permeation of 

compounds. To this end, stepwise regression analysis was used for the selection of 

molecular descriptors affecting compounds' absorption through skin. In this analysis, 

the dataset ofFlynn (1990) and Wilschut et al. (1995) containing the skin permeation 

rate constant through human skin was used. In stepwise regression analysis, the skin 

permeation rate constant (log kp) was the dependant variable and all the molecular 

descriptors were the independent variables. Stepwise regression analysis selected 

three descriptors and resulted in equation (5.2) below. 

Log kp = -2.91 + 0.62 log P + 5.21 ChivlO_p - 1.64 Chiv6_p 

S = 0.548, r2 = 0. 757, F = 140, P = 0.000, N = 139 

(5.2) 

In equation 5 .2, log P is the octanol/water partition coefficient, Chiv 10 _p and 

Chiv6 _p are I 01h and 61h order valence corrected path molecular connectivity indices 

of the penetrants. Molecular connectivity indexes are topological descriptors of 

molecular structures indicating the frequencies of occurrence of certain fragments in 

the molecules. Path molecular connectivity indexes indicate the frequency of non­

branched chains of certain lengths, in this case six-atom and ten-atom chains as 

shown in scheme 5.1 below (Todeschini and Consonni, 2000). 
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Scheme 5.1. Six-atom and ten-atom fragments for the calculation of path molecular 

connectivity indexes, Chiv6_p and Chiv10_p. 

The three descriptors selected by stepwise regression analysis were used in PCA and 

the scores plot between the first and the second PCs (Figure 5.5) was used to 

compare the datasets. Figure 5.5 is similar to Figure 5.4 in identifying certain 

compounds from the dataset of Flynn ( 1990) and Wilschut et al. ( 1995) such as 

steroids, narcotic analgesics and small polar molecules such as caffeine and 

methanol which are not present in the current dataset. 

Therefore, an overview of Figures 5.3-5.5 can identify several areas of the chemical 

space that are missing from the present dataset. From these groups of chemicals, 

caffeine, 1-octanol, testosterone and codeine were selected for further studies. 

5.3. Conclusion 

In conclusion, skin permeation of drugs from different vehicle systems can be 

modelled using QSAR given the availability of an appropriate dataset containing 

diverse permeants and vehicles. Vehicle effects were well predicted in this work. 

However, rigorous validation of such models for estimation purposes will require a 

large volume of data. In this study, the negative relationship was obtained between 

log kp and log P. This was attributed to the fact that most of the drugs in this 

particular dataset are more lipophilic than the compounds in the common 

permeability datasets used in QSAR studies of skin permeability. Therefore, it can be 

envisaged that these highly lipophilic agents concentrate in the SC with little ability 

to partition into the aqueous receptor phase. This scenario is relevant for many 
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pesticides and lipophilic contaminants encountered in environmental exposure 

scenarios. For further validation of this model, skin permeation of the compounds 

identified through the comparison of the datasets is necessary to be determined in 

similar solvent mixtures. 
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6. Validating the effects of Mixture Components 

For a rigorous study analysing the effect of mixture components as well as the effect 

of molecular structures of the penetrants a chemically diverse dataset is required. As 

suggested from the study comparing the datasets of Riviere (2008) and combined 

dataset of Flynn ( 1990) and Wilschut et al. ( 1995), caffeine, codeine, octanol and 

testosterone were the compounds with relatively high distance from Riviere (2008) 

compounds in the chemical space. These were selected as representatives of the 

chemical space of the dataset when compared with the skin permeability dataset of 

Flynn ( 1990) and Wilschut et al. ( 1995). The skin permeability of the above four 

different penetrants, each blended in the 24 different solvent mixtures presented in 

Table 5.2, were determined using diffusion cell studies employing porcine skin. The 

resulting 96 kp values were combined with the previous dataset of 288 kp data and 

used for QSAR analysis. 
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6.1. Material and Methods 

6.1.1. Materials 

Caffeine [8-14C] Specific Activity: 50-60 mCi/mmol 1.85-2.22 GBq/mmol, n­

Octanol [1-14C] Specific Activity : 2-10 mCi/mmol 74-370 MBq/mmol, 

Testosterone [4-14C] Specific Activity : 50-60 mCi/mmol 1.85-2.22 GBq/mmol, 

Codeine [N-methyl-14C], obtained from American Radiolabeled Chemicals, Inc, St. 

Louis USA. Absolute ethyl alcohol was obtained from Aaper Alcohol and Chemical 

Co. Shelbyville, K Y, USA. Propylene glycol (purity = 99%), Sodium lauryl 

sulphate (purity = 99%), and Methyl nicotinic acid (purity = 99%) were obtained 

from Sigma Chemical Co. St. Louis, MO, USA. Water was distilled in our in-house 

still. 

6.1.2. Skin penetration studies 

Apparent permeability coefficient (kp) of caffeine, codeine, octanol and testosterone, 

each blended in the 24 different mixtures, as presented in Table 5.2, were obtained 

through flow-through diffusion cell using porcine skin. The flow-through diffusion 

cell was used to perfuse skin obtained from the dorsal area of weanling female 

Yorkshire pigs according to protocols approved by the North Carolina State 

University Institutional Animal Care and Use Committee. Skin was dermatomed to a 

thickness of 500 J.Lm with a Padgett dermatome. Each circular skin disk was punched 

to provide a dosing surface area of 0.64 cm2 and then placed into a two-compartment 

Teflon Bronaugh flow-through diffusion cell. Skin was perfused using a Krebs­

Ringer bicarbonate buffer spiked with dextrose and bovine serum albumin, and 

topically dosed non-occluded with 20 J.Ll of one of the four marker penetrant 

compounds ( 1 OJ.Lg/cm2) formulated in one of 24 specified mixtures listed in Table 

5.2. This resulted in a total of 96 treatments with n = 4-5 replicates/treatment 

designed as a randomised complete factorial experiment. 
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6.1.3. QSAR studies 

The kp values measured in this study for caffeine, codeine, octanol and testosterone 

were merged with the previous dataset of log kp values for 12 other compounds 

(Table 5.1) also blended with the same mixture components as Table 5.2 (Riviere 

and Brooks. 2005). These log kp values are measured using the same experimental 

procedures as in this study. Therefore, the dataset used for the QSAR studies 

consisted of a total of 384 unique measurements of kp for the penetrant/ components 

combinations. Table 6.1 is the list of the 16 penetrants used in QSAR study. 

Table 6.1. Complete set of Penetrants 

Atrazine Pentachlorophenol Caffeine 

Chlorpyrifos Phenol Codeine 

Ethyl parathion p-Nitrophenol Octanol 

Fenthion Propazine Testosterone 

Methyl parathion Simazine 

Nonylphenol Triazine 

For the development of QSAR models, properties of the penetrants and the solvent 

mixtures were assembled. The molecular descriptors (properties) of the penetrants 

were calculated using two software packages of ACD labs/LogD Suite 7 .0.5 release 

(ACD/LogD, 2008) and TSAR 3D (Accelrys Ltd version 3.3). The molecular 

descriptors included octanol/ water partition coefficient, molecular connectivity 

indices, quantum molecular descriptors, and various atom and group counts. The 

physico-chemical properties of mixture components including boiling point, melting 

point, solubility, vapour pressure and Henry's law constant were obtained through 

ChemBioFinder (CambridgeSoft, 2009) online software and SRC PhysProp database 

(Syracuse Research Corporation, 2009). Hildebrand solubility parameters (o) were 

obtained from Hansen (1967) for the solvents and calculated according to Fedors 

( 1974) group contribution method for the penetrants. As there was a mixture of a 
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number of solvents in the vehicles, averages of physicochemical properties for 

solvent mixtures were calculated using the fractions of each component. 

Stepwise regression analysis was performed between log kp as the dependant 

variable and the molecular descriptors of the penetrants and the mixture components 

as the predictors. This enabled the identification of the significant molecular 

descriptors affecting skin penetration of chemicals. Several stepwise regression 

analyses using various sets of penetrant molecular descriptors and solvent properties 

were performed and several regression models were generated. In order to minimise 

the risk of chance correlations, the number of descriptors in the regression models 

were limited to four. 

The models were validated for penetrants using a leave-many-out cross validation 

procedure. To do this, the penetrants were divided into four groups with similar 

ranges of lipophilicity (log P values) in each group. Regression analyses were 

performed four times, each time leaving one group out. The log kp values of the test 

sets were estimated using the equations obtained for the training sets and the mean 

absolute error was calculated from the difference between the observed and the 

predicted log kp values of the test sets. 

6.2. Results and Discussion 

Skin penetration of drugs is controlled by the molecular structures and physico­

chemical properties of the intended penetrants and the mixture ingredients in the 

vehicle. In order to rationalise the combined effect of structural characteristics of the 

penetrants and the physico-chemical properties of the mixture components, this 

investigation focused on QSAR model development for a dataset of skin permeation 

of chemicals dissolved into a combination of several solvents, surfactants and methyl 

nicotinic acid. Permeation coefficients were measured for four compounds that were 

rationally selected in order to add a high level of diversity to the existing dataset 

(Ghafourian et al., 201 0). Tables 5.2 and 6.1 provide the list of the vehicles and the 

permeants, respectively. The kp data measured in this investigation (n = 96) were 

merged with the previously obtained dataset of kp (n = 288) and the resulting dataset 
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was used for the QSAR development. This data set is available online through 

(Riviere and Brooks, 201 0). 

Stepwise regression analysis of different combinations of solvent properties and 

molecular descriptors of the penetrants resulted in a number of QSAR models from 

which four were selected based on the goodness of fit (r2 values). In order to reduce 

the risk of chance correlations, only four descriptors were allowed in the equations. 

The selected equations are listed in Table 6.2. In equations (6.1 )-(6.4), the letter in 

the brackets indicates if the variable is a descriptor for the penetrant (P) or for the 

vehicle (V). It can be seen that each equation consists of 2-3 penetrant descriptors 

and 1-2 vehicle descriptors, with equations 6.1-6.3 containing 1 combined vehicle­

penetrant descriptor. In equations 6.1-6.4, �mp is the difference between the melting 

point of the penetrant and that of the solvent, Wiener is the Wiener topological index 

(the sum of distances between all pairs of vertices in the molecular graph of an 

alkane (Diudea and Gutman, 1998)), o is the Hildebrand solubility parameter, EHoMo 

is the energy of the highest occupied molecular orbital, BP is the boiling point, Natoms 

is the total number of atoms in the molecules, BP-MP is the difference between the 

boiling and melting points of a compound, and Lipole is the total lipole moment of 

the penetrants. 

Table 6.2. QSAR models obtained from stepwise regression; N is the number of 
datapoints (penetrant/ vehicle combinations); S, the standard deviation; r2, the 
squared correlation coefficient 
EQ N s 

6.1 Log kp = - 0.956 - 0.00322 �mp - 0.000320 Wiener(P) -
384 0.478 

0.0121 BP(V) - 0.114 Lipole(P) 
6.2 Log kp = - 310 - 0.000315 Wiener(P) - 0.00771 

384 0.494 
o(V).EHoMo(P) - 0.0102 BP(V)- 0.0750 Lipole(P) 

6.3 Log kp =- 2.48- 0.0474 Natoms(P)- 0.00798 o(V).EHoMo(P)-
384 0.516 

0.0102 BP(V)- 0.0723 Lipole(P) 
6.4 Log kp = -4.29 - 0.0474 Natoms(P) - 0.00904 BP-MP(V) -

384 0.522 
0.345 EHoMo(P) - 0.0790 Li..E_ole(P) 

Considering that Natoms and Wiener (Diudea and Gutman, 1998) can be regarded as 

size descriptors, it can be seen from Table 6.2 that all QSAR models indicate the 

negative effect of the penetrant's molecular size on the log kp. Moreover, there is a 

negative contribution from the total lipole of the penetrants in equations (6.1 )-(6.4). 
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Total lipole is a measure of lipophilicity distribution calculated as sum of local 

values of log P, similar to dipole moment (Pedretti et al., 2002). It shows 

lipophilicity of the molecule in a specific direction. Surfactants are expected to have 

high total lipole values and they are known enhancers of drug skin penetration (Ma 

et al., 2007). Thus, according to these equations, the less lipolar penetrants will have 

higher permeation rates. Chlorpyrifos has the highest total lipole value of I 0.0 and 

caffeine has the lowest value of 0.19. 

The other penetrant descriptor, which can be seen in most of the equations, is EHoMO· 

This molecular descriptor represents the energy of the highest occupied molecular 

orbital. EHoMo measures the nucleophilicity of a molecule. The negative relationship 

of this descriptor with the logarithm of the permeation rate indicates that the electron 

rich nucleophilic compounds such as those containing aromatic rings are the least 

permeable. In equations (6.2) and (6.3), the product of the penetrants' EHoMo and the 

vehicles' solubility parameter is used. The parameter o(V).EHoMo(P) is a 

solvent/penetrant interaction term. This descriptor indicates that a highly 

nucleophilic penetrant will have a lower penetration from highly associated vehicles, 

i.e. those vehicles with high intermolecular interaction forces such as hydrogen 

bonding. 

The most persistent vehicle descriptor in the QSARs is the boiling point, with a 

negative effect on the permeation rate of chemicals. The solubility parameter is also 

present in some equations. Both solubility parameter and boiling point can represent 

the intermolecular interaction energy of the vehicle which can result from the 

polarity of the solvents. Therefore the negative relationship indicates a higher skin 

permeation rate with the less polar vehicles. Similar results have been shown 

previously where the permeation coefficients of highly lipophilic compounds, 

nicardipine and nimodipine was increased in the less polar solvent mixtures of 

ethanol-water (Krishnaiah et al., 2002; Krishnaiah et al., 2004). In the case of 

nimopidine, 60:40 (v/v) ratio of ethanol: water was an optimum solvent mixture 

leading to the highest permeation rate of nimopidine, with the kp dropping slightly at 

higher ethanol concentrations (Krishnaiah et al.. 2004 ). 
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Solubility parameters of the solvents and the permeants have been implicated as 

important factors controlling skin penetration of compounds (Dias et al., 2007; Roy 

and Flynn, 1989). From a parabolic relationship between skin permeation rate and 

the solubility parameter it has been concluded that the skin has a solubility parameter 

of around 10 (cal/cm3)112 (Liron and Cohen, I 984). In equations (6.2)-(6.4), the 

solubility parameter of the vehicle has been selected by stepwise regression analysis 

as a significant contributor to skin permeation rate. The solvent mixtures in this 

study have solubility parameters of> 12. Therefore, it is expected that the lower the 8 

value of the vehicle, the closer the value to the skin 8 and therefore the higher the 

permeation constant should be. In equations (6.2) and (6.3), 8(V) EHoMo(P) has a 

negative effect on the skin absorption, implying a lower skin absorption of 

nucleophilic drugs from polar solvents, as explained before. 

In equation (6.1 ), the difference between melting points of the vehicle and penetrant 

has been selected as the most significant of all descriptors. The negative coefficient 

of the descriptor &np indicates that the melting point of the penetrants should be 

close to the melting point of the vehicle for better skin absorption. Therefore, since 

the vehicles are all liquids, this implies that penetrants with low melting points are 

likely to have higher absorption rates. This finding is in agreement with a previous 

observation where it has been shown for two optical isomers of ibuprofen that the 

low melting point, S enantiomer has a higher skin permeation rate than the high 

melting point R enantiomer (Cilurzo et al., 2010a). A similar conclusion has been 

made in a different investigation, when it was observed that among the alkyl 

analogues of cyclizine the analogue with the lowest melting point, and not the most 

lipophilic one, showed the highest skin penetration rate (Monene et al., 2005). 

Melting point has a similar effect on the intestinal absorption of drugs with low 

melting point drugs generally showing a higher fraction of dose absorbed from the 

GI tract (Chu and Yalkowsky, 2009). 

In equation (6.4), the descriptor BP-MP(V), with a negative coefficient, indicates 

that penetration rate is slower from solvents with large boiling and meting point 

gaps. The difference between these two properties has been attributed to the 

molecular symmetry, with highly symmetrical molecules having much larger melting 
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points and decreased boiling points (Slovokhotov, 2007). In the solvents used in this 

study, the biggest difference in melting and boiling points is for propylene glycol. 

Therefore the vehicles containing higher concentrations of this solvent will have 

higher difference between melting and boiling points, leading to lower penetration of 

the penetrants. 

Table 6.2 shows that equation 6.1 with the highest r2 and the lowest S value has the 

best fit to the data. The goodness of fit is reduced from equation (6.1) to (6.4). The 

predictive powers of the equations were tested by an internal validation procedure 

explained in the methods section. Table 6.3 shows the statistical parameters obtained 

from this exercise. 

Table 6.3. Statistical parameters obtained from internal validation of QSAR 
equations 6.1-6.4; N is the number of datapoints, S is the standard deviation and r2 is 
the squared correlation coefficient between observed and predicted log kp for the test 
sets, and MAE is mean absolute error of prediction 

Equation N s r2 MAE 
1 384 0.557 0.592 0.454 

2 384 0.594 0.535 0.496 

3 384 0.605 0.517 0.497 

4 384 0.618 0.497 0.493 

It must be noted that during validation tests, each set of four penetrants (dissolved in 

any solvent mixture) were removed once as the test set and the equation obtained for 

the remaining 12 penetrants were used for the estimation of the log kp of the test set. 

Thus, Table 6.3 represents the results of such log kp estimations for all the four test 

sets (each set containing 4 penetrants). According to the table, the predictivity of 

equation (6.1) is the highest among all the equations with a mean absolute error of 

0.454. Equations (6.2)-(6.4) show slightly higher prediction errors for the test sets, 

with MAE increasing in the order of eq. (6.4) > eq. (6.2) > eq. (6.3). Therefore, it 

appears that the QSAR model ( 6.1) is robust in terms of prediction of log kp for those 

new penetrants that fall within the applicability domain of the model. Figure 6.1 is 

the plot of observed versus predicted log kp values using Equation 6.1. 
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6.3. Conclusion 

In order to further understand and predict the combined effect of solvents and 

permeant structures on the skin absorption of chemicals, the diversity of the dataset 

(both penetrants and solvents) is of utmost importance. In this work, addition of the 

four selected chemicals expanded the diversity of our dataset. This had a positive 

impact on the estimation accuracy of the QSAR models, as it is evident from the 

results of internal validation. It can be assumed that the current QSAR could perform 

better in the estimation of the external data which fall within the applicability 

domain. 
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7. Statistical Evaluation of the Effect of Mixtures and 

Experimental Conditions on In Vitro Human Skin 

Penetration - Data from the updated EDETOX database 

In vitro methods are commonly used in order to estimate the extent of systemic 

absorption of chemicals through skin. Due to the wide variability of experimental 

procedures, types of skin and data analytical methods, the resulting permeation 

measures e.g. flux, permeability coefficient or percentage absorbed during a certain 

period of exposure varies significantly between laboratories and individuals. The 

OECD test guidelines allow the use of a relatively flexible range of in vivo and in 

vitro methods for the assessment of human health risk of chemicals. A 

comprehensive assessment of the reliability and consistency of the available data to 

date for extrapolations to in vivo situations has been restricted due to the limitations 

in the availability of a wide-ranging database. The aim of this study was to 

investigate the effects of experimental conditions such as membrane thickness, 

occlusion, hydration, vehicle ingredients and mode of dose application (finite or 

infinite dosing) on the skin permeation flux, by using the collated data from the 

literature and the largest database of in vitro studies that is publically available, in 

the EDETOX project (EDETOX, 2010). In this work, an exhaustive literature review 

covering the period 2001-2010 was performed and the in vitro skin permeation data 

were collated and combined with the dataset extracted from EDETOX database. 

Only flux data obtained using human skin were analysed at this stage. The 

investigation focused on the effects of experimental conditions including the 

membrane thickness, type of exposure (finite/ infinite), pre-hydration and occlusion 

of the skin on the in vitro flux. These parameters were investigated in combination 

with the effects of the chemical structures of the penetrants and the 

formulation/mixture ingredients. The statistical techniques consisted of linear and 

non-linear methods of stepwise regression analysis and Regression Trees (RT). 
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7.1. Methods 

7.1.1 The dataset 

The in vitro fluxes of chemicals from human skin measured by flow-through or static 

cells were obtained from the recent literature (2001-2010) and EDETOX 

(Evaluations and Predictions of Dermal Absorption of Toxic Chemicals) database 

(EDETOX, 201 0). The EDETOX database contains data from in vitro and in vivo 

percutaneous penetration studies involving use of different species, cell types and 

chemicals with a total of 2501 records for in vitro and in vivo data taken from 341 

penetration studies. The EDETOX database gave information about chemical name, 

vehicle used, origin of the skin sample, membrane thickness, area of the membrane 

to which the dose was applied, cell type (flow through or static), exposure time, 

length of study, percentage of dose absorbed, percentage recovery, flux, permeation 

rate (kp), lag time, where available, and the references to the original publications. 

Further information with regards to the hydration state, occlusion condition, the 

volume applied (J.tl/cm2), dose applied (J.tg/cm2) and donor concentration (J.tg/ml) 

was added to the dataset by careful inspection of the original publications. In a small 

number of cases, flux values were calculated by multiplying kp by drug 

concentration that remained relatively constant in the vehicle, assuming that under 

sink conditions the drug concentration in the receiver compartment was negligible 

compared to that in the donor compartment. 

An exhaustive literature survey was carried and the data from recent publications 

(2001-2010) were added to the dataset extracted from EDETOX database. The 

literature survey was carried out in the Web of Knowledge with the key words; skin 

absorption, skin penetration, skin permeation, skin permeability, dermal absorption, 

dermal penetration, dermal permeation and dermal permeability. From the resulting 

1800 scientific publications all human in vitro data were extracted. 

Data concerning the pre-treated skin samples with a solvent or a penetration 

enhancer were discarded but pre-treatment with water (hydration) was allowed in the 

dataset. Absorption measurements from commercial mixtures with unknown 

constituents or complicated formulations such as liposomes and emulsions were not 
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used. The final working dataset consisted of 884 studies (536 with flux values) 

containing 272 unique chemicals. The chemicals were either applied as neat (around 

1 Oo/o of the data) or formulated in simple mixtures with the majority of vehicles 

containing water as a constituent. In a few cases that the formulations were gels, the 

percentage of constituents were known. In majority of cases the exposure time was 

24 h, but it varied from 0.167 to 336 h, and the sampling time between 0.167 and 

336 h. The composition of the receptor fluid could vary to allow different additives, 

pH or solvent types. In many cases, the finite or infinite dosing conditions were 

explicitly specified in the literature. In other cases, if the application volume was 

above 1 OOJ.tl it was taken as 'infinite', if donor volume was between 50-1 OOJ.tl then 

provided that the percentage absorbed was less than 20% it was considered as 

'infinite' or otherwise a 'finite' application. An indicator variable was generated to 

indicate finite or infinite dosing in the statistical analyses with the values of 2 for 

finite and I for infinite dosing. Experimental conditions under which flux was 

measured were explored further and whether the skin was hydrated prior to the 

experiment (minimum of 1 hr hydration) and whether the donor compartment was 

occluded was recorded in the dataset. In order to incorporate these in statistical 

analysis, states of pre-hydration or occlusion were given a value of '1' where skin 

was hydrated or occluded, and '0' when the skin was not pre-hydrated or occluded. 

In the dataset, the preparation of the skin may vary from full thickness or 

dermatomed skin, to epidermal membranes and from frozen/ thawed to fresh skin. 

Skin thickness measurements were specified in many publications in mm. If only a 

description was provided in the literature, the full thickness skin was taken as 2 mm, 

epidermis as 0.8 mm and SC as 0.2 mm thick. 

7.1.2. Molecular descriptors of permeants 

Simplified Molecular Input Line Specifications (SMILES) of penetrants were 

obtained online from ChemSpider, PubChem (accessed Sep 20 I 0), and Sigma­

Aldrich ( accessed Oct 20 I 0). If the compound structure was not available in these 

databases, reference books or ChemBioFinder (CambridgeSoft, 201 I) were used to 

find the molecular structure, then the structure was generated by drawing in 
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ACD/ChemSketch freeware software (ACD/ChemSketch, 20 I 0) and SMILES codes 

were obtained. The molecular descriptors (375) were calculated using ACD 

labs/LogO Suite version 12.01 (ACD/LogD, 2009) and Molecular Operating 

Environment (MOE) version 2011.10 (Chemical Computing Group, 20 I I). The 

molecular descriptors included physical properties (e.g. partition coefficient and 

molecular weight), subdivided surface areas, atom and bond counts, molecular 

connectivity and kappa shape indices, adjacency and distance matrix descriptors, 

partial charge descriptors, potential energy descriptors, MOPAC descriptors, and 

conformation dependent charge descriptors. 

7.1.3. Properties of the mixture (vehicle) 

The physico-chemical properties of mixture components such as boiling point, 

melting point, density, log P, and solubility were obtained through SRC PhysProp 

database (Syracuse Research Corporation, 201 0), Sigma Aldrich website, and 

ChemSpider. For pharmaceutical excipients such as polyethyleneglycols (PEGs), 

petrolatum and mineral oil the properties were obtained from Rowe et al. (2009). 

Average of the physicochemical properties for every solvent mixture was calculated 

for the liquid ingredients, e.g. boiling point of the vehicle. The effect of solid solutes 

(including the permeants) on boiling and melting points were calculated using the 

principles of the colligative properties (Sinko et al., 2011 ). Therefore, boiling point 

elevation ( � T b) and freezing point depression ( � T f) due to the dissolved material can 

be calculated by equations (7.1) and (7.2) respectively. 

� T b = molality * Kb * i (7 .1) 

�Tf= molality* Kf * i (7.2) 

In equation (7.1) and (7.2), Kb is ebullioscopic constant specific for the solvent and i 

is Van 't Hoff factor, Kf is cryoscopic constant, specific for the solvent. The 

ebullioscopic (Kb) and cryoscopic constant (Kf) were obtained from the literature 

(Moore, 1972) and was averaged for the solvent mixtures. 
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7.1.4. Development and Validation of models 

Logarithm of steady state flux showed normal distribution and therefore this was 

used for statistical analysis and development of the mathematical models. Before 

model development, the data were assessed using a simple semi-mechanistic model 

involving a linear relationship between log flux and simple parameters such as donor 

concentration (as in Fick's law of diffusion), partition coefficient and molecular size 

(as in Potts and Guy, 1992) and an index of molecular polarity. After establishing a 

preliminary linear relationship, the outliers were identified and, where appropriate, 

the identified outliers were removed from the dataset. 

The dataset was sorted according to log flux values and partitioned into training and 

test sets with the ratio of three to one for training and test sets. Two main methods 

were used to investigate the effect of experimental variables (indicator variables for 

skin pre-hydration, occlusion, and finite/ infinite dosing together with the values of 

skin thickness), mixture properties and the structural descriptors of the permeants on 

the flux. These were stepwise regression analysis using MINIT AB statistical 

software version 15.1.0.0 (Minitab Statistical Software, 201 0) and non-linear method 

of RT (Regression Trees) in STATISTICA Data Miner software 9.1 (StatSoft, Inc., 

2010). These methods can be considered as variable selection tools for the 

development of linear (stepwise regression) and non-linear (RT) models with best fit 

to the training set data. Each of these methods can also allow the user to manipulate 

the statistically selected variables. Therefore, interactive RT data-mining tool was 

utilised to evaluate the variables of experimental conditions for each split. 

In the RT method, several stopping criteria were examined, including the 

STATISTICA default settings. These included either the minimum number of 11, 22 

and 40 compounds, or the minimum fraction of 0.05, 0.02 and 0.01 to the total 

number of compounds for partitioning. The default values were used for the 

maximum number of levels set at I 0 and the maximum number of nodes at 1000. 

The V -fold cross-validation with default settings were used in which the v value was 

10. 

115 



In order to compare the validity of the RT and regression models, models were 

generated using training set compounds and the prediction accuracy was assessed by 

comparing the average error levels of the estimation of log flux for the test set 

compounds. The error criterion was Mean Absolute Error (MAE) calculated as the 

average of the absolute difference between observed and predicted log flux for the 

test set. 

7.2. Results 

7.2.1. The dataset 

The collated dataset comprised work reported in a wide range of literature where the 

skin permeation measurements pursued a large variety of goals ranging from in vivo 

I in vitro correlation studies (Dick et al., 1995) to the pharmaceutical formulation 

optimisation for systemic absorption of drugs (Dias et al., 1999) which could include 

chemical enhancers (Copovi et al., 2006; Patil et al., 1996). Furthermore, a large 

volume of the literature concerns the study of the effect of experimental conditions 

such as the skin type and area of the skin (Wilkinson and Williams, 2002), clothing 

(Wester et al., 2000), pH (Sznitowska et al., 2001 ), mixture components (Santos et 

al., 201 0), and receptor phase composition (Surber et al., 1991) on the in vitro 

absorption of drugs, pesticides, solvents and other compounds. Therefore large inter­

laboratory and inter-individual variations are very common. In the current exercise, a 

data set with the greatest internal consistency is required in order to investigate the 

effects of some of the variable experimental conditions as well as the vehicle and the 

permeant chemical structures. Therefore, the dataset was initially assessed through 

the use of a simple semi-mechanistic model and the extreme outliers were identified. 

In accordance with the Fick's Law of diffusion and the well-accepted model of Potts 

and Guy ( 1992), this initial semi-mechanistic model for flux was formulated to 

comprise donor concentration (according to Fick's Law of diffusion), a size 

descriptor and lipophilicity index (log P). In addition a polarity descriptor was also 

incorporated in the model as informed by previous studies (Tayar et al., 1991; Liou 

et al., 2009). Multiple regression analysis was used to fit the data and only the 
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Chemicals with standardised residuals greater than I.5 and less than -I.5 were 

marked as outliers; these are highlighted in Figure 7.1. Table 7.I provides the list of 

these chemicals and the corresponding references. The outliers reported in Table 7.I 

have been explained below and were removed from subsequent statistical analyses. 

In Table (7.I) chemicals I-9 are steroids with the flux values taken from Scheuplein 

et al. (1969) being much lower than what was expected according to equation (7.3). 

In fact the skin permeability measurements of Scheuplein et al have been reported to 

be consistently lower than those measured by other groups (Johnson et al., 1995). 

For example eight independent measurements of the permeability of estradiol are in 

good agreement with one another, but are greater than the value reported by 

Scheuplein et al. Therefore we decided not to use any flux values reported in 

Scheuplein et al. ( I969) in the analysis. 

Other compounds with lower than expected flux values are benzene, 

dibutylphthalate, cyclohexanol, mannitol and testosterone. In the dataset, there are 

three other sources reporting flux values for benzene of 2.4-4.4 times higher than this 

reference. The low flux of dibutylphthalate reported by Scott et al. (1987) may be 

due to the enzymatic degradation in the skin (Bey don et al., 201 0), although the skin 

flux reported by Beydon et al. (20 I 0) is eight times higher despite the use of full 

thickness as opposed to dermatomed skin. The small flux values of cyclohexanol in 

the two records (Table 7 .I) may be due to the unusually small duration of exposure 

of I 0 and 60 minutes (Fasano and McDougal, 2008). The flux value for mannitol by 

Patil et al. (1996) (reported in the table of outliers) is around four times lower than 

the value reported by Akhter et al. (1984) despite using full thickness as opposed to 

the dermatomed skin used by Patil et al. (1996). Average log flux value ( -2.I9) from 

Lee et al. (200I) was much lower when compared with other references (Patil et al., 

I996; Sznitowska et al., 200I; Buist et al., 20I 0) that had a log flux range of -0.74 to 

0.26. 

Flux values for triclosan, a nicotine derivative, propranolol oleate isomers and 

tetrahydrofuran, were higher than those estimated by equation (7.3). The log flux 

reported by Moss et al. (2000) for triclosan is quite high at 3.56 which is the highest 

flux in the dataset after tetrahydrofuran, dimethylformamide and water. The 
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deviation of the nicotinic acid derivative (C5H4NCOOR, R = 

(CH2CHCH30)7 .29H) could be due to the poly- disperse nature of this derivative 

which may lead to higher absorption of lower molecular weight molecules, not 

captured by the molecular model generated for the average molecule. There are four 

data points for propranolol oleate, namely (RS)-propranolol oleate and (S)­

propranolol oleate administered using saline or mineral oil (Cilurzo et al. 2010b), 

where the flux values are higher than those expected by equation (7.3). Although 

flux values for these chemicals were not available from other sources for a direct 

comparison, the log flux values for propranolol reported in this reference (1.26 and 

1.38 from saline or mineral oil respectively) is much higher than the value reported 

by Ritshel et al. (1989) of -1.517. It must be noted that the latter log flux value is 

measured using a lower donor concentration (Ritshel et al., 1989), but even after 

correction for the concentration using the coefficient of [donor] in equation (7.3), the 

corrected log flux ( -1.517) is still much lower than that in Cilurzo et al. (20 1 Ob). The 

log flux value of tetrahydrofuran reported by Fasano and McDougal (2008) was also 

quite high at 4.3 which is the highest log flux in the dataset. A possible change to the 

barrier property during the course of the experiment has been suggested in this 

publication. 
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Table 7.1. Outliers from equation (7.3). 

No. Chemical Vehicle St Reference 
Residual 

progesterone water -2.69 Scheuplein et al., 
( 1969) 

2 pregnenolone water -2.48 Scheuplein et al., 
(1969) 

3 testosterone water -2.69 Scheuplein et al., 
(1969) 

4 aldosterone water -4.97 Scheuplein et al., 
(1969) 

5 hydrocortisone water -4.33 Scheuplein et al., 
(1969) 

6 corticosterone water -3.38 Scheuplein et al., 
(1969) 

7 cortison water -4.48 Scheuplein et al., 
( 1969) 

8 cortexolone water -3.02 Scheuplein et al., 
(1969) 

9 17a-hydroxyprogesterone water -2.38 Scheuplein et al., 
(1969) 

10 Nicotinic acid derivative water 2.24 Dal Pozzo et al., (1991) 
(C5H4NCOOR, 
R =(CHzCHCH30h.z9H) 

11 benzene hexadecane -2.01 Blank and McAuliffe, 
(1985) 

12 dibuty I phthalate neat -2.46 Scott et al., (1987) 

13 (RS)-propranolol oleate saline 1.60 Cilurzo et al., (20 I Ob) 

14 (S)-propranolol oleate saline 1.59 Cilurzo et al., (2010b) 

15 (RS)-propranolol oleate mineral oil 1.61 Cilurzo et al., (20 1 Ob) 

16 (S)-propranolol oleate mineral oil 1.79 Cilurzo et al., (2010b) 

17 cyclohexanol neat -4.23 Fasano and McDougal, 
(2008) 

18 tetrahydrofuran water 2.20 Fasano and McDougal, 
(2008) 

19 cyclohexanol neat -3.42 Fasano and McDougal, 
(2008) 

20 triclosan 90% aqueous 2.50 Moss et al., (2000) 
ethanol 

21 mannitol water -2.48 Patil et al., ( 1996) 

22 testosterone (average) ethanol -2.03 Lee et al., (200 1) 
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7 .2 .2 . Parameters selected by linear and non-linear methods 

Indicator variables for experimental conditions of log flux measurement, namely 

skin pre-hydration, occlusion, finite/infinite dosing and also the skin thickness in mm 

were used in the stepwise regression analysis along with the molecular descriptors of 

the penetrants and properties of the vehicles. None of these indicator variables or the 

skin thickness was selected by stepwise regression analysis. However, donor 

concentration was the first variable to be selected (equation (7.5)). 

log flux = - 1.92 + 0.000001 [donor] - 0.00570 MW + 0.00235 BP-MP(mix) + 3.96 

vsurf_ G + 0.0137 SlogP _ VSA4- 1.93 fiAB - 0.343 VAdjMa (7.5) 

S = 0.948, r2 = 0.558, N = 454, F = 80.41, P = 0.000 

The parameters of equation (7.5) consist of donor concentration, a vehicle property 

representing the difference between boiling and melting points of the vehicle mixture 

(BP-MP(mix)), and five other parameters representing molecular descriptors of the 

permeants. Table 7.2 gives a brief d(;':scription of these parameters. 

The relevance of the donor concentration of the permeant to the flux is clear as the 

higher the concentration the higher the flux according to Fick's law of diffusion. The 

difference between the boiling and the melting points of the donor mixture has a 

positive effect on the flux. This had been observed previously for Riviere's dataset 

(Riviere and Brooks, 20 I 0) that involved various combinations of five different 

vehicle ingredients and 16 permeants (Ghafourian et al., 20 I Oa). The reason for this 

effect can be attributed to the better penetration of low melting point vehicles 

carrying the drug along into and out of the skin (Monene et al., 2005). For example, 

the formation of eutectic mixtures between drug and some vehicles has been 

proposed as the reason for skin penetration enhancement by some terpenes (Kapiun­

Frischoff and Touitou, 1997; Stott et al., I997). On the other hand, the magnitude of 

the gap between melting and boiling points indicates certain characteristics in the 

molecular structure as it is believed that more symmetrical molecules have larger 

melting points and decreased boiling points (Slovokhotov et al., 2007). Molecular 

weight of the permeants has been selected in agreement with the model proposed by 
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Potts and Guy ( 1992). The molecular descriptor vsurf_ G represents the molecular 

globularity (Cruciani et al., 2000), and with a positive coefficient, indicates higher 

flux values of non-spherical molecules that may be elongated or planar shaped. 

SlogP _ VSA4 is a lipophilicity descriptor for the permeants which is known to play a 

major role in skin permeation (Bouwman et al., 2008). FiAB is a molecular 

descriptor that describes the fraction of ionisation of molecules at pH 7 .4. In the 

lipophilic environment of the stratum corneum ionised molecules are expected to 

permeate more slowly than unionised molecules (Watkinson et al., 2009). The last 

molecular descriptor (VadjMa) of the permeant represents the number of strong 

bonds (ionic, covalent, polar covalent). The number of strong bonds is related to the 

size of the molecule therefore the larger molecules are expected to have low 

permeation rates. 

Table 7.2. Brief description of the parameters of regression and RT models 

Descriptors 

[donor] 

BP-MP(mix) 

chiO 

chiOv 

chilv C 

fiAB 

GCUT PEOE 1 
- -

GCUT _SLOOP _I 

GCUT SMR 0 
- -

GCUT_SMR_3 

Infinite/Finite 

Description 

donor concentration (f..Lg/ml) 

difference between the boiling and melting points of the 
mixture (donor phase) 

Atomic connectivity index (order 0). This is calculated as the 
sum of 1/sqrt(di) over all heavy atoms i with di > 0 

Atomic valence connectivity index (order 0). This is calculated 
as the sum of 1/sqrt(vi) over all heavy atoms i with Vi> 0 

Carbon valence connectivity index (order 1 ). This is calculated 
as the sum of 1/sqrt(viVj) over all bonds between carbon atoms 
i and} where i <j 

fraction of molecules ionised as anion and cation at pH 7.4 

The GCUT descriptors are calculated from the eigenvalues of a 
modified graph distance adjacency matrix. Each ij entry of the 
adjacency matrix takes the value 1/sqr(dij) where dij is the 
(modified) graph distance between atoms i and}. The diagonal 
takes the value of the PEOE partial charges. The resulting 
eigenvalues are sorted and the smallest, 1/3-ile, 2/3-ile and the 
largest eigenvalues are reported 

The GCUT descriptors usmg atomic contribution to log P 
instead of partial charge 

The GCUT descriptors using atomic contribution to molar 
refractivity using the instead of partial charge 

The GCUT descriptors using atomic contribution to molar 
refractivity instead of partial charge 

Indicator variable indicating infinite or finite exposures taking 
a value of 2 for finite and 1 for infinite dosing 
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Descriptors 

KierAI 

KierA3 

logS 

MW 

MV 

Occlusion 

PEOE RPC+ 

PEOE VSA POS - -

Pre-hydration 

SlogP_VSA4 

SMR VSA6 

Thickness 

VAdjMa 

vsa ace 

vsa hyd 

vsurf CW3 

vsurf D6 

Vsurf EWminl 

vsurf G 

vsurf HB5 

Description 

First order alpha modified shape index, also correlated with 
molecular size (Hall and Kier, 1991) 

Third order alpha modified shape index, informing centrality of 
branching with large values representing location of branching 
at the extremities of the molecule (Hall and Kier, 1991) 

Log of the aqueous solubility (mol/L) calculated by MOE from 
an atom contribution linear atom type model with r2 

= 0.90, 
-1 ,200 molecules 

molecular weight 

Molar volume 

Indicator variable for occlusion of the skin during in vitro test 

Relative positive partial charge: the largest positive atomic 
partial charge divided by the sum of the positive partial charges 

Total positive van der Waals surface area. This is the sum of 
the van der Waals surface area of atoms with non-negative 
partial charges 

Indicator variable for pre-hydration of the skin prior to the in 

vitro test 

sum of van der Waals surface area of atoms with log P 
contributions in the range of (0.1-0.15) 

Sum of the van der Waals surface area of atoms with atomic 
contribution to molar refractivity in the range (0.485, 0.56) 

Skin thickness 

vertex adjacency information which depends on the number of 
heavy-heavy bonds 

Approximation to the sum of VDW surface areas of pure 
hydrogen bond acceptors (not counting acidic atoms and atoms 
that are both hydrogen bond donors and acceptors such as -
OH) 

Approximation to the sum of VDW surface areas of 
hydrophobic atoms 

Capacity factor representing the ratio of the hydrophilic surface 
over the total molecular surface. These are calculated at eight 
different energy levels (from -0.2 to -6.0 kcal/mol) (Cruciani et 

al., 2000) 

Volume that can generate hydrophobic interactions. VolSurf 
computes hydrophobic descriptors at eight different energy 
levels (from -0.2 to -1.6 kcal/mol) (Cruciani et al., 2000) 

The lowest hydrophilic interaction energy 

The molecular globularity - how spherical a molecule is, 
where values above 1 is non-perfect spheres (Cruciani et al., 

2000) 

H-bond donor capacity, representing the molecular envelope 

which can generate attractive H-donor interactions with 

carbonyl oxygen probe. The descriptors are computed at six 
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Descriptors 

vsurf W1 

vsurf_ Wp2 

wienerPath 

Description 

different energy levels (from -1 to -6 kcal/mol) (Cruciani et al., 
2000) 

Hydrophilic volume describing the molecular envelope which 
is accessible to and attractively interacts with water molecules 
at eight different energy levels (from -0.2 to -6.0 kcal/mol) 
(Cruciani et al., 2000) 

Polar volume (Cruciani et al., 2000) 

Wiener path number: half the sum of all the distance matrix 
entries (Cruciani et al., 2000) 

It can be noted that skin thickness or the indicator variables for the experimental 

conditions, namely pre-hydration, finite/ infinite dosing or occlusion, are not selected 

by stepwise regression analysis (equation (7.5)). This indicates that, in comparison 

with some of permeant or vehicle properties, these experimental conditions are more 

minor contributors to the overall observed flux values from many sources. On the 

other hand, we may also attribute this to the incorporation of extremely high number 

of permeant molecular descriptors in stepwise regression analysis (a total of 375 

descriptors) in comparison with the few variables of experimental conditions, 

leading to inadequate variable selection by this statistical method. 

Similarly the model generated by RT did not include any experimental conditions, 

only donor concentration and three molecular descriptors for the penetrants (Figure 

7.2). The selected descriptors have been defined in Table 7.2. Table 7.3 gives the 

statistical parameters of the RT model. According to RT model (7.1), the 

requirements of a high skin flux are high donor concentration, small positively 

charged molecular surface area (PEOE_ VSA_POS), large surface area of non-acidic 

hydrogen bond acceptors such as ether and ketone groups (vsa_acc), with a complex 

effect of hydrophobic volume (vsurf-D6) probably indicating the negative effect of 

molecular size at nodes ID 4, 5, 14 and 15, and the positive effect of hydrophobicity 

at nodes ID 6, 7, 10 and 11. 
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Figure 7.2. The RT model (7.1), N is the number of data points, Mu is the average 

and V ar is the variance of log flux. 

Table 7.3. Statistical parameters ofRT models 

RT model MAE Risk Estimate Standard Error 

(7.1) 0.625 
0.643 0.047 Train 

0.828 0.057 V-fold 

(7.2) 0.638 
0.676 0.050 Train 
0.859 0.061 V-fold 

(7.3) 0.628 
0.655 0.051 Train 

0.859 0.061 V-fold 

0.597 
0.569 0.039 Train 

(7.4) 0.859 0.061 V-fold 

0.587 
0.585 0.046 Train 

(7.5) 0.859 0.061 V-fold 

(7.6) 0.573 0.552 0.041 Train 

0.859 0.061 V-fold 

125 



7.2.3. Effect of membrane thickness 

Skin thickness is thought to play a significant role in dermal absorption of chemicals. 

Permeation through viable full thickness skin membranes has been shown to be less 

than permeation through only the epidermis (Cnubben et al., 2002). The membrane 

thickness in the dataset varied between 0.2 for se and 2 mm for the full thickness 

human skin. The statistical significance of membrane thickness was investigated by 

linear and non-linear procedures. As membrane thickness was not automatically 

selected by stepwise regression analysis (equation (7.5)) it was manually 

incorporated in the regression analysis and the statistics were inspected. Regression 

analysis with inclusion of thickness (in mm) resulted in equation (7.6). 

Log flux=- 1.67 + 0.000001 [donor] - 0.00561 MW+ 0.0140 SlogP _ VSA4- 1.95 

fiAB + 0.00192 BP-MP(mix) + 3.82 vsurf_G - 0.312 VAdjMa - 0.201 Thickness 

(7.6) 

S = 0.943, r2 = 0.564, N = 454, F = 71.9, P = 0.000 

Although r2 of equation (7.6) shows only a moderate improvement to equation (7.5), 

the thickness parameter is statistically significant in this equation (P = 0.014). 

Wilkinson et al. (2004, 2006) studied the influence of skin thickness on percutaneous 

penetration using caffeine, testosterone, butoxyethanol and propoxur. They 

concluded that a complex relationship exists between skin thickness, lipophilicity of 

the penetrant, and percutaneous penetration and distribution. Therefore, due to the 

uneven effect of skin thickness on the penetration of different chemicals of varied 

lipophilicity (or other physicochemical properties), a linear relationship such as 

equation (7.6) cannot adequately represent the effect of thickness. 

Accordingly, skin thickness was incorporated in the RT analysis in the first split and 

the tree was allowed to select other parameters of highest statistical significance. RT 

model (7.2) presented in Figure 7.3 involves skin thickness, donor concentration and 

four molecular descriptors of the penetrants (see Table 7.2 for the description of 

parameters and Table 7.3 for the statistical parameters). According to this model, in 

vitro skin flux is higher with thin skin samples, large donor concentrations, low 

polarity index (high GCUT _ PEOE _I), small positively charged molecular surface 

126 



area (PEOE_ VSA_POL), small hydrophilic volume (vsurf_ W1) and molecular size 

(chi1 v_C). 

Tree graph for log Flux 

Num. of non-terminal nodes: 7. Num. of terminal nodes: 8 
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Figure 7.3. RT model (7.2) incorporating membrane thickness for the first 

partitioning, N is the number of data points, Mu is the average and V ar is the 

variance of log flux. 

7 .2 .4. Effect of finite or infinite dosing 

The dataset included in this work contained steady state and maximum flux obtained 

under finite and infinite dose exposures. In infinite dose, the concentration of the 

solution applied to the skin does not significantly change over time. Therefore a 

maximum flux can be achieved and maintained during the course of the experiment 

(steady state flux). However in finite dose exposures the amount of test preparation 

applied to the skin will reduce over time and therefore the maximum flux cannot be 

maintained. In order to incorporate the dose exposure condition, an indicator variable 

taking a value of 2 for finite and 1 for infinite condition was used. Out of 513 flux 
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The RT model with the inclusion of this indicator variable (RT (7.3)) is presented in 

Figure 7.5. The RT model indicates somewhat higher average flux for infinite 

exposure experiments. This tree also incorporates donor concentration and five 

molecular descriptors for the penetrants (descriptors explained in Table 7.2 and the 

statistical parameters of the tree in Table 7.3). According to this model, compounds 

will have higher in vitro flux values when applied in infinite doses, with high donor 

concentrations, and if they are more lipophilic (GCUT_SLOGP _1), have smaller 

molecular size (chiO and GCUT_SMR_3) with high polarisability (SMR_ VSA6) or 

hydrophilic surface ( vsurf _ CW3 ). 
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Figure 7.5. RT model (7.3) incorporating indicator variable for infinite or finite dose 

application, N is the number of data points, Mu is the average and Var is the variance 

of log flux. 
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7.2.5. The effect of skin pre-hydration 

The stratum corneum normally contains 5-20% water but, when hydrated, it can 

contain up to 50% water. Hydration can affect the permeability of the skin to 

chemicals (Scheuplein and Blank, 1971; Roberts and Walker, 1993; Rawlings and 

Matts, 2005). In many skin permeation studies, the experimental procedures involve 

pre-hydration of the skin before the start of the experiment. This is most common in 

infinite dose procedures in order to maintain the consistency of the membrane during 

the course of the experiment. In this dataset, 187 data points used pre-hydrated skin 

and 31 7 data points employed dry skin. An indicator variable was used for skin pre­

hydration taking the value of 1 when the skin was pre-hydrated for at least one hour 

prior to the experiment and the value of 0 when this procedure was not used. It can 

be seen in equation (7.5) that this indicator variable has not been selected by 

stepwise regression analysis. Figure 7.6 identifies the lines of best fit to the data 

obtained with pre-hydrated or dry skin. Comparing these lines by GLM (Table 7.4) 

shows that pre-hydration of the skin does not affect the slope of the line, although the 

intercepts are statistically different. When used in combination with descriptors of 

equation (7.5), the indicator variable for skin pre-hydration is not statistically 

significant at P<0.05. However, with a P value of 0.077 pre-hydration of skin has a 

positive effect on skin flux. 

One reason for the insignificant effect of pre-hydration could be attributed to the fact 

that at least with infinite dose experiments, SC can quickly hydrate during the course 

of the experiment. Moreover, even in finite dose in vitro experiments many studies 

are conducted under occluded conditions, which may lead to some levels of 

hydration. On the other hand, the extent of the hydration-related permeability change 

for different chemicals is not well elucidated. For example, it has been shown that 

the increase of hydration (because of occluded conditions) does not always guarantee 

an increase in penetration rates (Bucks et al., 1991 ). Comparing the skin 

permeability measure obtained from a Fickian diffusion model and that obtained 

from the transient skin permeation profiles, Tang et al. (2002) reported significantly 

increased skin permeability due to hydration for highly hydrophilic compounds 

while skin permeation of lipophilic compounds were comparable between the 

hydrated and non-hydrated states of skin. 
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high polarisability (GCUT_SMR_O), if administered in a low boiling point vehicle 

are absorbed the least. 
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Figure 7. 7. R T (7 .4) incorporating indicator variable for skin pre-hydration for the 

first partitioning, N is the number of data points, Mu is the average and Var is the 

variance of log flux. 

7 .2 .6. Effect of occlusion of the skin 

Occlusion of the skin can lead to the gradual hydration of the skin during the course 

of the in vitro tests even during finite exposures where only a small volume of dose 

is applied. Therefore, as with hydration, flux values of various compounds are 

expected to be affected by occlusion of the skin. Out of 481 flux values with reported 

occlusion condition, 287 and 194 were performed under occluded and non-occluded 

conditions, respectively. Occlusion was represented by an indicator variable taking a 

value of 1 for occluded and 0 for non-occluded conditions. This indicator variable 
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was not selected by step wise regression or R T models. Moreover, when it was used 

in the regression analysis along with the descriptors of equation (7.5), this parameter 

was not statistically significant (P = 0.506). Also, the graph between observed and 

calculated log flux using equation (7.5) gives similar slopes but differing intercepts 

for the data obtained under occluded or non-occluded conditions (see Figure 7.8 and 

GLM results reported in Table 7.4). To explore the effect of the occlusion parameter 

further, it was incorporated in RT analysis and RT model (7.5) was obtained (Figure 

7.9). RT (7.5) indicates that the average flux obtained under occluded conditions is 

higher than the average flux measured under non-occluded conditions by 0.66 log 

units. This may be explained by the effect of occlusion on skin hydration, or 

evaporation of the volatile penetrants and/or the vehicles. In the study of Sartorelli et 

al. (2000) a 5 to 10 fold increase in permeability of the se was noted when the skin 

was occluded. In the dermal absorption study of Jung et al. (2003) where catechol 

was applied in ethanol, occluded conditions resulted in 78% of the applied dose 

permeating into the receptor fluid, compared with 55% in dermal samples that were 

not occluded. 

On the other hand, most finite-exposure skin absorption experiments are performed 

under non-occluded conditions and hence the lower flux values are expected to be 

achieved due to the lower available doses in the donor compartment. Therefore the 

statistical significance of occlusion may only represent the importance of donor 

concentration as in R T model (7 .1 ). 
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Other parameters of RT (7.5) indicate a higher flux from occluded skin samples for 

chemicals applied in higher concentrations having a small molecular size ( chiv _C), 

while those applied in lower doses will have low flux values especially if the 

molecules have a high hydrogen bonding donor capacity (vsurf_HB5). From the 

non-occluded skin samples, compounds with relatively high solubility (logS) applied 

in high doses also show high flux values, while those with low solubility, having a 

large sum of positive atomic charges (leading to low relative positive charge, 

PEOE_RPC+) or low polar volume (vsurf_ Wp2) show the least flux values. 

Table 7.4. Results of GLM comparing the regression lines for data obtained under 

various experimental conditions 

Parameter 

Hydration 
Occlusion 
Finite/ infinite dosing 

7.2.7. Effect of Vehicle 

Intercept 
F 
0.62 
1.25 
2.07 

p 

0.43 
0.264 
O.I5I 

Slope 
F 
7.7I 
6.42 
l.I5 

p 

0.006 
O.OI2 
0.285 

Stepwise regression analysis selected the difference between boiling and melting 

points of the vehicle mixtures to represent the effect of vehicle on the flux of the 

permeants (equation (7.5)). However, a vehicle descriptor is missing from most RT 

models with the exception of RT (7.4) which includes a vehicle descriptor (boiling 

point of vehicles). As with the other experimental parameters, effect of vehicle 

properties on the flux was further analysed by incorporating boiling point, melting 

point and the gap between these two in the interactive trees. The tree obtained using 

BP-MP(mix) was selected and reported in Figure 7.10 (RT model (7.6)), as it had the 

lowest standard error. The descriptors of the model have been described in Table 7.2. 

According to this model, flux is higher if the donor mixture has a higher gap between 

melting and boiling points and the molecular size of the permeant is small (large 

chiv _C), especially if applied in higher concentrations. If BP-MP( mix) is small, then 

molecules with small molecular size (KierA I) still have higher flux values than the 

large molecular size compounds specially if applied in higher concentrations (ID 13 

in figure I 0), or lower concentration when the KierA3 is large (ID I5). According to 
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Table 7.3, the RT (7.6) has the lowest mean absolute error amongst all RT models, 

which may indicate the high significance of the vehicle properties in the skin 

absorption. 

Tree graph for logFiux1_NoOutliers 

Nu m. of non-terminal nodes: 9, Nu m. of terminal nodes: 10 

Model: C&RT 

10=1 N=51· 

Mu=0.947338 
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<= 151 870000 

IO•o N=at 
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Var 1.529640 
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<= 9 772315 > 9.772315 <= 4 513263 

> 151.870000 
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> 4 513263 
IU=lU N= ID= N=lUO 1u=�u N=�Ul 0=21 N=64: 

Mu=t 058631 Mu=·O 325350 Mu=2 011226 Mu=·O 440906 
Var 1.276139 Var 0 806537 Var 0.968636 Var=O 972724 

- !donor) ?g/ml . tor neat (den_2 vsurf_EWm1n1 )donor)?g/ml . for neat (den_2 - - - - --
<• 67950 000000 > 67950 000000 <= -6 882523 > ·6 882523 < = 46825 000000 > 46825 000000 

IU=l� N= ... IU=tJ N=2' 10=18 N=2 IU=I� N=a< IU=<U N=�> IU=2J N=15i 

Mu=O. 763786 Mu=2 388974 Mu=· I 009727 Mu=·O 129814 Mu=O. 738329 Mu=2 331450 
Var 0.860772 Var=0.542841 Var=O 346129 Var=O 766027 Var=1.162249 Var. 0 504153 
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- -

<= 1 156567 >1.156567 <= 2 305904 > 2.305904 
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Figure 7.10. RT model (7.6) incorporating BP-MP(mix) as the first parameter for 

partitioning, N is the number of data points, Mu is the average and V ar is the 

variance of log flux. 

7 .2.8. Validation of the models 

Regression models (equations (7.5) - (7.7)) and RT models (7.1) - (7.6) were 

validated by developing the regression equations and RT trees for the training set, 

and then estimating the flux values for the test set using these models. The models 

obtained for the training set have been reported in the supporting material (Appendix 

11). Table 7.5 gives the mean absolute error of log flux estimation for the test set 

compounds and the number of test set compounds for which the models are able to 

provide the estimation. The lowest average error is achieved with RT model (7.5) 
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followed by the RT (7.4) and then regression equation (7.7) and RT (7.3). The most 

valid model, RT (7.5) involves the occlusion indicator variable, donor concentration, 

and five permeant descriptors implying the negative effects of molecular size and 

hydrogen bonding donor ability on flux from occluded skin, and positive effect of 

aqueous solubility, and polar volume and negative effect of relative positive charge 

when the skin is not occluded. It must be noted that the number of test compounds 

for which estimation has been made possible is different, depending on the 

availability of the model parameters. 

Table 7.5. Mean Absolute Error (MAE) for the test set using regression and RT 

models, N is the number of test set data estimated by the model 

Test Set Training Set 
Method Experimental Model MAE N MAE N 

Parameter 
Regression - Equation 0.689 112 0.761 342 

(7.5) 

Skin thickness Equation 0.697 112 0.754 342 

(7.6) 

Exposure type Equation 0.682 112 0.752 341 

(7.7) 

RT RT (7.1) 0.747 119 0.708 358 

Skin thickness RT (7.2) 0.807 119 0.731 358 

Exposure type RT (7.3) 0.682 119 0.653 357 

Pre-hydration RT (7.4) 0.607 110 0.610 335 

Occlusion RT (7.5) 0.578 108 0.589 336 

BP-MP(mix) RT (7.6) 0.722 112 0.650 343 

7.2.9. Conclusion 

Inter-laboratory and inter-individual variations are very common in the in vitro 

measures of skin permeation. This has been attributed to a number of experimental 

variables including skin samples' thickness differences, skin hydration, occlusion of 

the skin, infinite or finite dosing and vehicle ingredients. The dataset gathered here 

provided an excellent resource for investigating the effects of various parameters on 

the skin penetration flux from in vitro studies. The statistical analysis involved linear 

regression with stepwise variable selection and non-linear regression tree (RT in 

STATISTICA). The indicator variables for skin pre-hydration, occlusion, finite/ 
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infinite dose and skin thickness were not selected by the variable selection methods 

of stepwise regression or RT. The selected parameters were donor concentration, 

several molecular descriptors of the permeants and, in the case of stepwise 

regression, the difference between boiling and melting points of the donor mixtures. 

This could mean a higher impact of the permeant concentration and molecular 

structure. and the vehicle properties on the skin flux. 

The significance of each of the experimental conditions and BP-MP(mix) were 

studied further by inclusion of these parameters in regression and interactive RT 

models. Within the linear regression equations the order of significance of 

experimental variables, as deduced from the P-values, were BP-MP(mix), indicator 

variable for mode of exposure (finite or infinite) (P = 0.000), membrane thickness (P 

= 0.0 14), and skin pre-hydration (P = 0.077), with occlusion of the skin not being 

significant (P > 0.1 0). Moreover, validation of the models also revealed a lower 

average error (for test set) for the model incorporating mode of exposure as opposed 

to the skin thickness. 

According to the mean absolute error of the calculated values (reported in Table 7.3), 

the order of significance of the non-linear RT models is models incorporating: BP­

MP(mix), skin occlusion, skin pre-hydration, and mode of exposure. However, 

validation of these models indicated the highest validity of the model incorporating 

occlusion state of the skin (RT (7.5)) followed by the model incorporating both skin 

pre-hydration and boiling point of the donor phase as experimental parameter (RT 

(7.4)). It is interesting to note that linear and non-linear models incorporating mode 

of exposure (finite or infinite dosing) result in a similar level of estimation error. 

This conclusion, in association with the fact that experimental parameters of 

occlusion and pre-hydration states perform better in non-linear models, indicates that 

the effects of occlusion and skin pre-hydration on flux are complex and non-linear. 

In both regression and R T models donor concentration of the permeant is the first 

and the most important parameter related to the skin flux. This is expected since 

concentration is the driving force for passive diffusion of molecules across the skin. 

A variety of permeant parameters have been employed in the models, with majority 

implying the negative impacts of the large molecular size and hydrophilicity, while a 
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certain level of lipophilicity and polarisability has been indicated as a positive effect 

on the flux. 

The statistical analyses and models reported in this work provide a suitable method 

for homogenising the in vitro flux values measured under varying experimental and 

exposure conditions and will provide reasonable estimates of the flux values under 

other experimental conditions. It is expected that the results will benefit in vivo 

estimations using the in vitro flux estimates. 
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8. Validated models for estimation of in vitro flux through 

human skin 

Validation is an imperative part of QSAR studies. Although many QSAR specialists 

still apply internal validation approaches as an adequate and reliable measure of 

model predictivity (Hawkins et al, 2003; Kraker et al, 2006; Helma 2004), the 

predictive ability of the model for the external chemicals that have never been 

included for the training of the model cannot be verified. In fact, while a good 

performance in internal validation is a necessary condition for robustness of a model, 

it alone may not be sufficient indicator of model predictivity for external chemicals 

(Gramatica, 2007). 

The external validation set can be set aside at the beginning of the model 

development, so that they are not involved in variable selection. This procedure will 

provide a more robust measure of the model validity. The collated dataset (from 

EDETOX database and other sources) is large enough to allow external validation. 

Accordingly, in this current work, QSAR models were developed for the training set 

and validated externally. Several statistical techniques for variable selection and 

model development were examined. The methods included stepwise regression 

analysis, regression trees, boosted trees and support vector machines. The 

experimental conditions, vehicle properties and molecular descriptors, as explained 

in Chapter 7, were the model predictors. In addition two new scales were defined to 

account for the skin hydration level or, in case the donor phase was not aqueous, the 

level of skin wetting. 

8.1. Methods 

8.1.1. The dataset 

The dataset has been explained in depth in section 7 .1. The experimental parameters, 

vehicle properties and molecular descriptors have been explained in section 7 .2, with 

the addition of two parameters indicating the wetting and hydration states of the skin. 

The dataset contains information on whether the skin was hydrated before the 
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experiment, if it was occluded during the experiment, the type of the solvent 

(vehicle), and the volume of donor phase applied to the skin. So in order to estimate 

the extent of hydration and, in case the solvent is not water, the extents of wetting, 

two scales were developed as described below in Table 8.1. 

In order to assign the hydration levels, parameters such as pre-hydration, occlusion 

and volume applied were taken into account (Table 8.1 ). When the volume applied 

was less than 100 f.J.l and the skin was not pre-hydrated or occluded, a 0 value was 

assigned to both hydration and wetting scales. If the volume applied was between 

100 and 500 f.J.l and the skin was not pre-hydrated nor occluded, the scale was 1. 

When the volume applied was between 100 and 500 f.J.l and the skin was not pre­

hydrated but it was occluded, the wetting scale was given a value of 2. If the volume 

applied was 500 f.J.l or larger and the skin was not pre-hydrated, the wetting scale was 

given a value of 3 regardless of occlusion state. Finally if the skin was pre-hydrated 

before the experiment, its data points were given a 4 on the scale if it was also 

occluded, regardless of solvent volume. Table 8.1 provides the details of the rules. 

Table 8.1. Criteria for hydration estimation scale 

Pre-hydration occluded Applied volume Wetting scale Hydration scale 

Yes Yes Any 4 Same as the wetting 

No Both 500 or more 3 scale, unless the 

No Yes 100-500 2 vehicle contained less 

No No 100-500 1 than 25% water, m 

No Yes Below 100 1 which case the 

Yes No Below 100 1 hydration scale was 0 

No Both Below 100 0 

8.1.2. Development and validation of models 

The models were developed for log flux using the linear stepwise regression analysis 

in the MINITAB statistical software version 15.1.0.0 (Minitab Statistical Software, 

201 0). Furthermore, non-linear models were developed in ST ATISTICA Data Miner 

software version 9.1 (StatSoft, Inc., 201 0); these were general and interactive 
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regression trees (RT), boosted trees and support vector machines (SVM). For the 

development of predictive models, external validation was conducted. Therefore, the 

validation set was excluded from analysis from the beginning. Mean Absolute Error 

(MAE) values were calculated for the training and validation sets. 

Regression trees (RT) 

Stepwise regression and RT methods have been described in section 7.4. General 

RTs were made with log flux as the dependent variable and the predictors were 

selected by this statistical analysis. Several stopping criteria were examined, 

including the STATISTICA default settings. These included either, the minimum 

number of 1I, 22 and 40 compounds, or the minimum fraction of 0.05, 0.02 and 0.01 

to the total number of compounds for partitioning. The default values were used for 

the maximum number of levels set at I 0 and the maximum number of nodes at I 000. 

The V -fold cross-validation with default settings were used in which seed for 

random number generator was set to I and the V value to I 0. 

After the development of the general R T models, interactive R T models were 

examined where the experimental parameters, membrane thickness, wetting and 

hydration scales, indicator variables for finite or infinite dosing, pre-hydration and 

occlusion were manually selected as the first splitting parameter. With wetting and 

hydration scales as the partitioning descriptors, the splits were made at 3.5, 2.5, 1.5 

and 0.5 values. The stopping criteria were: Prune on variance, Min n 22, Min n in 

child node 22, Max n levels 3 and Max n nodes I 000. 

Boosted trees 

Boosted trees were developed using STATISTICA software. Each tree made only 

one split (stopping criterion of maximum number of nodes = 3). Various 

combinations of parameters, learning rate, number of additive terms, and subsample 

proportion, were examined and the best results were selected. The number of 

additive terms was adjusted to the values shown in the table, so that the errors for the 

training and the test sets were similar. 
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Support Vector Machines 

Machine learning using support vector machines was performed using ST A TISTICA 

software. The analysis was regression type E-SVM (type I). The parameters were 

capacity value of I 0, E value of O.I, and kernel type of RBF. Log flux was used as 

the dependent variable. Independent variables were selected based on the results of 

stepwise regression analysis, regression trees, and boosted trees. Combinations of 

some of the experimental parameters with the descriptors of the above models were 

also examined and their effect on the model and the errors associated with them were 

considered for the selection of the best SVM models. 

8.2. Results and Discussion 

8.2.1. Regression models 

Stepwise regression analyses using the training set data resulted in model (8.I ), and 

model (8.2) was obtained when molecular weight was manually incorporated in the 

analysis. The parameters of these models have been described in Table 8.2. 

Log flux = 3.65 + O.OOOOOI [donor] - 0.522 InfiniteFinite - 1.41 dens - 0.0359 

b_count- 0.0074I SlogP _ VSA5- 1.59 fiAB + 0.00188 BP-MP(mix) (8.1) 

S = 0.939, r2 = 0.567, N = 341, F = 62.4, P = 0.000 

Log flux= 2.10- 0.004I3 MW+ O.OOOOOI [donor]- 0.42I InfiniteFinite- 0.009II 

SlogP _ VSA5 - 1.49 glob + 0.00 I96 BP-MP( mix) - 1.8I fiAB - 0.00535 

SlogP _ VSA8 (8.2) 

S = 0.932, r2 = 0.57.5, N = 341, F = 56.1, P=O.OOO 

According to model (8.1 ), a donor mixture with high permeant concentration, high 

difference between boiling and melting points (BP-MP(mix)), and applied under 

infinite conditions will lead to increased flux values. In addition properties of the 

permeants for a high flux values are small molecular size as evidenced by the 

negative coefficient of b_count, low molecular density (which occurs in molecules 
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with low number of heteroatoms such as N and 0), low surface area of lipophilic 

groups (SlogP _ VSA5), and low fraction of molecules ionised as both anion and 

cation at pH 7.4 (fiAB). 

Model (8.2) employs the same parameters for the donor mixture as model (8. 1 ); 

these are [donor], lnfiniteFinite, and BP-MP(mix). The molecular descriptors are 

also similar, with molecular weight possibly replacing b _count in equation (8. 1  ), and 

addition of molecular globularity and highly lipophilic surface area (SlogP _ VSA8) 

instead of molecular density. The descriptor glob indicates that linear or planar 

molecules should have a higher flux values than spherical molecules. 

Table 8.2. Brief description of the parameters of regression and RT models 

Descriptors 

AMl_dipole 

AMI E 

AMI HF 

[donor] 

b count 

b rotN 

b rotR 

BP 

Bp-Mp(mix) 

chiO C 

chii v 

dens 

fiAB 

GCUT _ SLOGP _ 2 

GCUT_SLOGP _3 

Description 

The dipole moment calculated using the AMI Hamiltonian 

The total energy (kcal/mol) calculated using the AMI 
Hamiltonian 

The heat of formation (kcallmol) calculated using the AMI 
Hamiltonian 

donor concentration (J.Lg/ml) 

Number of bonds (including implicit hydrogens) 

Number of rotatable bonds. A bond is rotatable if it has order 1, 
is not in a ring, and has at least two heavy neighbours 

Fractions of rotatable bonds, it is calculated by dividing the 
number of rotatable bonds with the number of bonds between 
heavy atoms. 

Boiling point of the mixture 

difference between the boiling and melting points of the 
mixture (donor phase) 

Carbon connectivity index (order 0). This is calculated as the 
sum of 1/sqrt(di) over all carbon atoms i with di > 0 

Bond valence connectivity index (order 1) from (Hall and Kier, 
1991) and (Hall and Kier, 1977). This is calculated as the sum 
of 1/sqrt(vivj) over all bonds between heavy atoms i and j 
where i<j 

Mass density (molecular weight divided by molecular volume) 

fraction of molecules ionised as anion and cation at pH 7.4 

The GCUT descriptors using atomic contribution to log P 
instead of partial charge 

144 



Descriptors 

GCUT SMR 0 

glob 

- -

pre-Hydration 

InfiniteFinite 

Kier2 

KierA1 

LogD(5.5) 

LogS 

Thickness 

Occlusion 

PC+ 

PEOE VSA-4 

PEOE VSA HYD - -

petitjean 

PSA 

Q_VSA_POL 

SlogP_VSA5 

SlogP _ VSA8 

SMR VSA6 

Wetting scale 

VDistMa 

vsa_hyd 

vsurf CWI 

Description 

The GCUT descriptor using atomic contribution to molar 
refractivity instead of partial charge 

Globularity, value of 1 indicates a perfect sphere while a value 
of 0 indicates a two or one dimensional object. 

Indicator variable for pre-hydration of the skin prior to the in 
vitro test 

Indicator variable indicating infinite or finite exposures taking 
a value of 2 for finite and 1 for infinite dosing 

Second kappa shape index: ( n-1 )21m2 

First alpha modified shape index, also correlated with 
molecular size (Hall and Kier, I 991) 

Apparent partition coefficient (distribution coefficient) at pH 
5.5 

Log of the aqueous solubility (mol/L). This property is 
calculated from an atom contribution linear atom type model 
(Hou 2004) with r2 

= 0.90, to 1,200 molecules 

Skin thickness in millimetres (mm) 

Indicator variable for occlusion of the skin during in vitro test 

Total positive partial charge 

Sum of van der waals surface area where atomic charge is in 
the range ( -0.25, -0.2) 

Total hydrophobic van der Waals surface area. This is the sum 
of the van der waals surface area such that absolute value of 
atomic charge is less than or equal to 0.2 

Value of (diameter- radius) I diameter 

Polar surface area 

Total polar van der Waals surface area. This is the sum of the 
van der waals surface area such that absolute value of atomic 
charge is greater than 0.2 

sum of van der Waals surface area of atoms with log P 
contributions in the range of (0.15-0.2) 

sum of van der Waals surface area of atoms with log P 
contributions in the range of (0.3-0.4) 

Sum of the van der Waals surface area of atoms with atomic 
contribution to molar refractivity in the range (0.485, 0.56) 

Level of skin sample hydration 

If m is the sum of the distance matrix entries then VDistMa is 
defined to be the sum of log2 m - Dij log2 Dij I m over all i and j 

Approximation to the sum of van der waals surface areas of 
hydrophobic atoms (A2) 

Capacity factor representing the ratio of the hydrophilic surface 
over the total molecular surface. These are calculated at eight 
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Descriptors 

vsurf 01 
vsurf 03 
vsurf 04 
vsurf 05 

vsurf OW23 

vsurf HB5 

MW 

Description 

different energy levels (from -0.2 to -6.0 kcal/mol) (Cruciani et 
al., 2000) 

Volume that can generate hydrophobic interactions. VolSurf 
computes hydrophobic descriptors at eight different energy 
levels (from -0.2 to -1.6 kcal/mol) (Cruciani et al., 2000) 

Contact distances of lowest hydrophilic energy descriptors 

H-bond donor capacity, representing the molecular envelope 
which can generate attractive H-donor interactions with 
carbonyl oxygen probe. The descriptors are computed at six 
different energy levels (from -1 to -6 kcal/mol) (Cruciani et al., 
2000) 

Molecular weight (including implicit hydrogens) in atomic 
mass units 

Table 8.3 gives the predictive abilities of the regression models above and compares 

them with the internal validation of equation (7.5) where the descriptors were 

selected using all the data points (as opposed to only the training set used for 

equations (8.1) and (8.2)). According to this Table, equation (8.1) is the most 

accurate predictor of the log flux values of external validation set. 

Table 8.3. The statistical parameters of regression equations 

Model Validation Training set Validation set 

MAE n MAE n 

Eq (7.5) Internal 0.761 454 0.689 112 

Eq (8.1) External 0.736 341 0.667 112 

Eq (8.2) External 0.718 341 0.688 112 

8.2.2. Regression Trees (RT) analyses 

Several regression trees were generated using a combination of descriptors. The 

selected trees have been described in Table 8.4. RT (8.1) was obtained with the 

stopping criteria of: prune on variance, minimum number for splitting 40, and 

minimum number in child node 11. RT (8.2) was obtained when the stopping criteria 

were relaxed to allow expansion of the tree: prune on variance, minimum number for 

splitting I 0, and minimum number in child node 11. RT (8.3)-(8.5) were obtained 

using the descriptors of equations (7 .5), (8.1) and (8 . 2). Using RT analysis, the 
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experimental parameters such as the indicator variables for finite or infinite dosing or 

the wetting or hydration scales were not selected as a splitting variable. Hereafter, 

interactive trees were generated with the manual selection of these parameters. In 

this way, RT models (8.6)-(8.13) are the regression trees obtained when an 

experimental parameter was manually selected as the first partitioning descriptor. It 

must be noted that the hydration scale was not significant. Table 8.4 gives the 

statistical parameters of the models. 

Table 8.4. Description of regression trees, risk estimates and standard error for both 

training and test set; RT is regression trees and SWR is stepwise regression analysis 

Model Parameters Manually selected Variable Risk estimate Standard error 
experimental parameter selection Train Test train 

RT (8.1) All None RT 0.471 0.726 0.042 
RT (8.2) All None RT 0.429 0.719 0.040 
RT (8.3) Eq (7.5) None SWR 0.714 0.877 0.061 
RT (8.4) Eq (8.1) None SWR 0.733 0.941 0.061 
RT (8.5) Eq (8.2) None SWR 0.721 0.891 0.058 
RT (8.6) All Finitelnfinite RT 0.725 0.955 0.060 
RT (8.7) All Thickness RT 0.508 0.831 0.042 
RT (8.8) All Pre-hydration RT 0.720 0.887 0.056 
RT (8.9) All Occlusion RT 0.540 0.720 0.051 
RT(8.10) All Wetting scale (split at 3.5) RT 0.679 0.851 0.058 

RT(8.11) All Wetting scale (split at 2.5) RT 0.622 0.868 0.051 

RT(8.12) All Wetting scale (split at 1.5) RT 0.667 0.960 0.057 

RT (8.13) All Wetting scale (split at 0.5) RT 0.582 0.832 0.053 

For regression-type problems with a continuous dependent variable, risk is 

calculated as the residual variance (Breinman et al., 1984). Standard error is the 

standard deviation of a mean and is calculated by the square root of the (sample 

variance i when divided by the sample mean. 

Table 8.5 gives a summary of the models and the Mean Absolute Error (MAE) for 

the training and validation sets using these models. According to Table 8.5, all RT 

models have lower MAE values for the training set than for the test set. RT models 

with the lowest MAE for the validation set are RT (8.9), (8.1 ), (8.2), followed by RT 

(8.13). RT models (8.2), (8.9) and (8.13) have been presented in Figures 8.1-8.3, 

respectively. RT (8.1) is a shorter version of RT (8.2). 
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Table 8.5. Statistical parameters of the models; RT is regression trees and SWR is 

stepwise regression analysis 

Model Parameters Manually selected Variable Training set validation set 
experimental parameter selection MAE n MAE 

RT (8.1) All None RT 0.533 343 0.659 

RT (8.2) All None RT 0.500 343 0.660 

RT (8.3) Eq (7.5) None SWR 0.664 342 0.730 

RT (8.4) Eq (8.I) None SWR 0.668 34I 0.765 

RT (8.5) Eq (8.2) None SWR 0.664 34I 0.735 

RT (8.6) All Finite/Infinite RT 0.654 357 0.726 

RT (8.7) All Membrane thickness RT 0.567 343 0.715 

RT (8.8) All Pre-hydration RT 0.666 350 0.742 

RT (8.9) All Occlusion RT 0.551 336 0.624 

RT (8.IO) All Wetting scale {split at 3.5) RT 0.637 341 0.732 

RT(8.11) All Wetting scale (split at 2.5) RT 0.6I8 341 0.697 

RT (8.I2) All Wetting scale (split at 1.5) RT 0.631 34I 0.759 

RT (8.13) All Wetting scale (split at 0.5) RT 0.581 341 0.686 

RT (8.2) is the second most accurate RT for the estimation of the flux of the external 

validation set. According to RT (8.2) presented in Figure (8.1 ), flux is much higher 

with higher donor concentration ([donor]) and low value of Kier2 (indicating small 

molecular size) especially if GCUT_SLOGP _3 is small. Otherwise if the 

concentration is low then a combination of low GCUT_SLOGP _3, high vehicle 

boiling point (BP), low polarity (PSA, which can also indicate molecular size), high 

Kier2 and small lipophilicity (vsurf_DW23) are needed for a high Flux. 
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Tree graph for logFiux1_NoOutliers 
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Figure 8.1. RT model (8.2) using all parameters with the stopping criteria set at 

minimum number of splitting I 0 and minimum number in child node: 11. 

RT(8.9) is the lowest error regression tree for the estimation of flux. According to 

this model (presented in Figure 8.2), flux is much higher when the skin is occluded 

and combined with a high donor concentration and high ratio of hydrophilic surface 

to the total surface area (vsurf_ CWI) it leads to highest average flux. Otherwise in 

case of low donor concentration a combination of low hydrogen bonding donor 

ability (vsurf_HB5), high flexibility (b_rotN) and low polar surface area 

(Q_ VSA_POL) is required for high flux through occluded skin. If un-occluded then 

for permeants with low hydrophobic volume (vsurf_D5) high flux values are still 

possible if the skin is pre-hydrated. Pre-hydration of the skin is most common with 

infinite exposures where the donor phase is appliedin high volumes, hence gradual 

hydration of the skin during the course of the occlusion state. 
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Figure 8.2. RT model (8.9) usmg indicator variable for occlusion as the first 

parameter for splitting the data 

Figure 8.3 shows the third best RT for the estimation of flux (RT 8.13). RT (8.13) 

shows that the wetting scale is also a good descriptor which aids the estimation of 

flux values. From amongst several cut-off points for this scale, the best MAE was 

achieved by the interactive tree which used the cut-off value of 0.5 for splitting the 

data. Since only applied volumes of less than 100 score 0 on the scale, splitting the 

data at wetting scale of 0.5 could be an indirect method for splitting finite from 

infinite dosing. The scale, however, also takes into account pre-hydration and 

occlusion, since pre-hydration and occlusion would give a higher score on the scale 

regardless of the applied volume. Other parameters of RT (8.13) indicate that high 

donor concentration and small molecular size (ChiO _C) would result in high flux 

values when the wetting scale is 1, 2, 3, or 4. When the donor concentration is low 

and the wetting level of the skin is 1, 2, 3, or 4 in the scale, a relatively high flux can 

still be achieved for small size (KierAl) flexible molecules (b_rotR) (see ID 71 in 

figure 8.13 ). In case of low wetting scale of 0, there are 41 cases of low total positive 
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charge (which can indicate low hydrogen bonding donor ability according to 

Dearden and Ghafourian (1999)) which can have high flux values (according to 

descriptor PC+). 
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Figure 8.3. RT model (8.13) using wetting scale as the first parameter for splitting 

the data at the value of0.5. 

8.2.3. Boosted trees 

The boosted tree module allows multiple tree models to be generated for prediction. 

It computes a sequence of simple trees, where each successive tree is built for the 

prediction of the residuals of the preceding tree. For each predictor variable in the 

database the sum of squares regression is calculated and the best predictor variable is 

used for the split (Friedman, 1999a, b). 

In boosted trees analysis using ST A TISTICA, many trees were generated each 

containing only 1 split (stopping criterion was maximum nodes of 3). To avoid over 
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training in this analysis, the number of additive terms was selected at the point where 

the error for the training and test set was similar. 

The statistical properties and parameters of the selected boosted trees have been 

presented in Table 8.6. Also presented in this table are accuracy estimates of the 

models. The lowest MAE for the test set was calculated for model (8.4) using 90 

trees, a learning rate of 0.05 and a subsample proportion of 0.5. Further reduction of 

the learning rate and increasing the number of additive terms did not significantly 

reduce error, but did increase computing time. The second lowest estimation error 

was for model (8.6). In general there was little difference in the error of the selected 

boosted trees. 

Table 8.6. Parameters used for boosted tree analyses and the resulting risk estimates, 

standard error, and MAE of log flux estimation for training and test sets 

Mode Learnin Numbe Subsampl Risk Standard MAE 
1 g rate r of e Estimate Error 

additiv pro portio train test train test Trai Test 
e terms n n 

8.1 0.67 0.67 0.05 0.10 0.64 0.63 

0.1 40 0.5 1 6 0 4 3 8 

8.2 0.66 0.66 0.04 0.10 0.63 0.62 

0.005 800 0.5 2 0 9 2 7 7 

8.3 0.65 0.65 0.04 0.10 0.63 0.62 

0.005 800 0.4 6 8 8 2 8 7 

8.4 0.65 0.63 0.04 0.09 0.63 0.61 

0.05 90 0.5 5 5 9 8 2 2 

8.5 0.65 0.65 0.04 0.10 0.63 0.62 

0.05 90 0.45 0 6 7 0 5 8 

8.6 0.65 0.65 0.04 0.10 0.63 0.62 

0.005 800 0.55 6 6 8 1 5 4 

Boosted trees analysis may employ many predictor variables in the trees. It can also 

provide a variable importance table where the variables are sorted according to the 

importance in the boosted tree model. Variable importance (predictor importance) is 

calculated as the relative (scaled) average value of the predictor statistic over all 

trees and nodes; hence these values reflect on the strength of the relationship 

between the predictors and the dependent variable of interest, over the successive 

boosting steps (STATISTICA Help file, StatSoft Inc.). 
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The top 10 highly important predictors in the best and the second best boosted tree 

models are shown in Table 8. 7. Most of these predictor variables were different from 

those selected by other methods (stepwise regression and regression trees analyses). 

For example the donor concentration, which was consistently selected by RT and 

step wise regression methods, is not amongst the top 1 0 most important descriptors of 

the boosted trees models. The variables that were selected as the most important 

were all (indirectly) related to molecular size and/or hydrophobicity. On the other 

hand, the important descriptors of the two boosted trees models were similar, but not 

the same, as can be seen in the table. 

Tabel 8.7. The most important variables of the best and second best boosted trees 
and their order of importance. 

predictor 

AMI HF 
GCUT SMR 0 

- -

KierA1 

vsa_hyd 

LogS 

AMI E 

chi1v 
PEOE VSA HYD 

- -

GCUT_SLOGP _3 

VDistMa 

vsurf D5 

vsurf D4 

vsurf D3 

vsurf D1 

LogD(5.5) 

Order of importance 

Model (8.4) Model (8.6) 

1 1 
2 2 

3 7 

4 12 

5 3 

6 17 

7 14 
8 6 
9 20 

10 27 

26 4 

16 5 

29 10 

30 8 

50 9 

Table 8.8 shows the order of importance for some selected parameters. Out of all the 

descriptors of experimental conditions, membrane thickness has the highest 

importance according to this table. 
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Table 8.8. Importance of experimental conditions and some selected mixture 

properties in the selected boosted trees 

Predictor 

Hydration 
Occlusion 

Wetting scale 

Membrane thickness 

[Donor] 

Bp( mix) 

Mp(mix) 
Finite/infinite dosing 

Support Vector Machines 

Order of importance 
Model (8.4) Model (8.6) 

289 292 
293 295 

177 165 

67 

141 

148 

171 

251 

47 

157 

148 

160 

212 

Various methods were used to select variables to feed into E-SVM as the predictor 

variables. Table 8.9 describes the different combinations of variables that were used 

for the analysis. The table also shows the MAE values of log flux estimations for the 

test and training sets. 

According to Table 8.9, the MAE for the SVM model developed using variables 

from equation (7.5) (SVM (8.5)) was 0.627 for the test set and 0.688 for the training 

set. Different descriptors of experimental conditions and log P were added to this set 

of variables to study their effect on the predictive capabilities of the models. Adding 

Finite/lnfinite and occlusion reduced the MAE for the test set to 0.622 and 0.624 

respectively. Addition of the pre-hydration indicator, the wetting scale and 

membrane thickness increased the error to 0.648, 0.635 and 0.640 respectively. 

The parameters of equation (7.3) gave poorer prediction of the log flux for the test 

set, with MAE of 0.738. These variables included the donor concentration, the polar 

surface area divided by the total surface area (PSA/SA) and molecular volume. 

Addition of the variables of experimental conditions lowered the error. Addition of 

the difference between the boiling and melting points of the donor mixture and log P 

gave the lowest error with MAE of 0.686 for the test set. This value however is still 

much higher than the one achieved by the analysis using the variables of equation 

(7.5). 
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Although boosted trees had very low MAE, the incorporation of the top 1 0 variables 

of the selected boosted tree models listed in Table 8.7 in SVM analysis gave a model 

with a very poor prediction of log flux (SVM (8.11 )). Boosted trees employ many 

variables and not just the 10 highly ranked in the importance scale. It seems that for 

the variable set to show an acceptable performance in SVM, all these variables may 

need to be incorporated. On the other hand, the number of descriptors that can be 

incorporated in SVM is restricted. 

The descriptors of selected RTs did not perform well in SVMs. MAE values of log 

flux estimation for test set using RT (7.1) and RT (7.4) are 0.747 and 0.607 

respectively (Table 7.3). The latter is an interactive tree with pre-hydration manually 

selected as the first partition. The estimation error of the SVM developed using the 

variables of RT (7.1) were very similar to the original tree (MAE of 0.746). The 

SVM using descriptors ofRT (7.4) was much higher than the original at 0.693. 

In conclusion, Table 8.9 shows that the SVM developed using the parameters of 

equation (7.5) and Finite/Infinite dosing variable leads to the lowest MAE of 

estimation for the test set (MAE of 0.622). Parameters of equation (7 .5) are donor 

concentration, molecular weight, the difference between the boiling and melting 

points of the donor mixture, and four molecular descriptors of the permeants, 

vsurf G, SlogPVSA4, fiAB and VadjMa. The latter four variables are chemical 

parameters related to molecular size and hydrophobicity. 
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Table 8.9. MAE of log flux estimation for the test and training sets using E-SVM 

regression models 

SVM 
Parameters 

MAE 
Model Train Test 
8.1 Top 10 important variables of boosted trees model (8.4) 0.804 0.885 
8.2 RT (8.13) 0.679 0.723 
8.3 RT (7.1) 0.741 0.746 
8.4 RT (7.4) 0.683 0.693 
8.5 eq (7.5) 0.688 0.627 
8.6 eq (7 .5) + Infinite/Finite 0.657 0.622 

8.7 eq (7 .5) + wetting scale 0.664 0.635 
8.8 eq (7 .5) + Occlusion 0.687 0.624 
8.9 eq (7 .5) + Hydration 0.676 0.648 

8.10 eq (7.5) +Membrane 0.678 0.640 

8.11 eq (7.3) 0.744 0.738 

8.12 eq (7.3) + BP-MP(mix) 0.722 0.697 

8.13 eq (7.3) +log P 0.740 0.734 

8.14 eq (7.3) + Bp-Mp(mix) +Infinite/Finite 0.708 0.706 

8.15 eq (7.3) +Bp-Mp(mix) +log P 0.721 0.686 
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The selected models 

A diverse selection of models with high predictive power has been summarized in 
Table 8.10. 

Table 8.1 0. The selected models, their errors, N, number of outliers and Earameters 
Train 

Model Descriptors 

Eq 7.5 All 

Eq 8.1 All 

Eq 8.2 All 

RT 8.1 All 

RT8.9 All 

RT8.13 All 
Boosted 

All 
trees 8.4 
Boosted 

All 
trees 8.6 

SVM 8.5 ���m RT 

From Eq 
SVM 8.6 7.5 + 

finitelnfinte 

SVM 
From Eq 
7.3 +Bp-

8.12 
ME (mix) 

MAE N 

0.761 342 

0.736 341 

0.718 341 

0.533 343 

0.551 336 

0.581 341 

0.632 383 

0.635 383 

0.683 343 

0.657 341 

0.722 343 

Test No. Outliers 
MAE MAE> Description 

MAE N 
> 1.5 2.0 

0.689 112 50 19 Stepwise regression on all data 

0.667 112 48 15 
Stepwise regression on training 
set 

0.688 112 48 15 
Stepwise regression on training 
set 

0.659 112 20 9 General interactive tree 

0.624 108 31 11 
First partition based on 
occlusion 

0.686 109 28 11 Scale split at 0.5 as first partition 

0.612 111 34 10 
Learning rate 0.05, 90 trees, 
subsampling rate 0.5 

0.624 111 34 11 
Learning rate 0.005, 800 trees, 
subsampling rate 0.55 

0.693 112 50 12 
number of support vectors 231 
(207 bounded) Gamma= 0.125 

number of support vectors 230 
0.622 112 39 16 

(20 1 bounded) Gamma= 0.125 

number of support vectors 253 
0.697 112 40 13 

(235 bounded) Gamma= 0.250 

The selection of the models above was based mostly on the MAE of log flux 

estimation for the external validation set. The table also shows the number of data 

points with high estimation errors using these models (data with Absolute Error (AE) 

above 1.5 and 2.0). The lowest mean absolute error in the table is achieved by 

boosted trees (8.4) with MAE of 0.612. In addition, the boosted trees models were 

able to provide estimations for a higher number of (test and training set) data. 

Inclusion of 383 training data in these models compared to 336-343 training data 

used in the remaining models may have resulted in a better model training and hence 

lower prediction error. Figure 8.4 shows the graph of log flux against the absolute 

error of log flux estimation using boosted trees (8.4). The figure shows that most 

compounds have been predicted with AE<1. It can be observed that test and training 

sets show similar levels of error (no over-fitting). 
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found, Support Vector Machines can exhibit a large degree of flexibility in handling 

classification and regression tasks of varied complexities. However, SVMs using the 

variables from RTs are not as accurate. 

The outliers 

It can be seen in Table 8.10 that log flux estimations by the models for a number of 

data points can deviate by more than 1.5 (absolute error) from the observed values. 

Table 8.11 shows the outliers (AE> 1.5) in 8 or more of the 11 selected models, from 

test or training tests. 

Interestingly most outliers (except for zidovudine and terbinafine) are those flux 

values that have been measured after very low applied dose (volume applied is 

below 30 f.J.l). It must be noted that many entries with low donor volumes are not 

outliers; for examples refer to the graph between absolute error of estimation by 

boosted tree (8.4) and the donor volume at Figure 8.5. The error in the prediction of 

log flux at these extremely low exposure quantities could be a result of limitations of 

the models or limitations in the dermal absorption measurements. When the 

quantities of applied chemicals are small the experimental error may also be more 

significant, resulting in a larger variation in the observed flux values. In cases where 

the database contains other entries of the same compounds which are not outliers, it 

is unlikely that the large errors are a result of the chemical structure of these 

compounds or the way these compounds interact with human skin. 

Tabel 8.11. Data with log flux estimation absolute error of> 1.5 in 8 or more of the 

11 selected models 

Chemical Log flux Number of models Reference 

Propoxur -2.036 10 van de Sandt et al. ( 1993) 

Benzoic acid -0.789 9 Patil et al. ( 1 996) 

Salicylic acid (average) -0.921 8 Ademola et al. (1993) 

Zidovudine (AZT) 2.701 10 Narishetty et al. (2005) 

Zidovudine (AZT) 2.890 10 Narishetty et al. (2005) 

Terbinafine -2.000 8 Schmook et al. (200 1) 

Methyl-Parathion -1.979 9 Sartorelli et al. ( 1997) 
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other salicylic acid entries was much higher at 1.864 in comparison with the outlier 

value listed in Table 8.11. 

Four log flux entries were found in the database for zidovudine. The average log flux 

of the two values which were not outliers was 1.368, ranging from 1.068 to 1.668. 

Two entries were outliers with much higher observed log flux values than the 

predicted values. This may be due to the presence of permeation enhancers, namely 

!-menthol and 1.8°/o cineole. Both these compounds are terpenes which are known 

penetration enhancers (Williams and Barry, 2004) and were present at 5% (w/v) 

concentration in the vehicle (66% ethanol in water). In the other entries for 

zidovudine same vehicle was used without the penetration enhancers, explaining 

their lower log flux values. Importantly this observation indicates that the effect of 

these penetration enhancers was not accurately predicted by the models, even though 

the models used various parameters for the vehicles (such as the difference between 

boiling and melting points of the vehicle). This may be due to the specific mode of 

action of these penetration enhancers such as specific interactions with stratum 

corneum lipids (Corn well et al., 1996) or proteins (Barry, 1991 ), which is not fully 

understood. It must be noted that are other entries with penetration enhancers in the 

donor phase that are not outliers. Other mixtures containing various terpene 

penetration enhancers show AE values of 0.655-1.15 using boosted tree (8.4). 

Terbinafine is an outlier in 8 out of 11 models. The original paper by Schmoock et 

al. (200 I) describes that the flux value of <0.0 1 Jlg/cm2 
/h was below the detection 

limit of the used analytical method. However the predicted value of terbinafine in the 

models is higher than the observed value. The log P value of terbinafine is 5.58. It 

seems that the log flux of chemicals with high log P values (above 5) is less well 

predicted by the models. The average percentage of outliers for chemicals with log P 

above 5 is 10.7o/o while the average in the rest of the database is 5.7%. The 

discrepancy between observed and predicted values could also be due to the 

epidermal metabolism of terbinafine. Although the skin biotransformation of 

terbinafine has not been investigated (Web of Science records, September 2011 ), this 

drug is extensively distributed in human and the systemic clearance of orally 

administered terbinafine is primarily dependent on biotransformation (Humbert et 

al., 1995) with at least seven CYP enzymes being involved in terbinafine, most 

importantly CYP2C9, CYP1A2, and CYP3A4 (Vickers et al., 1999). 
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Immunohistochemical studies and catalytic activity measurements have indicated 

cutaneous cytochrome P450 (CYPs), as the most important phase I enzymes that are 

mainly localised in the epidermis hair follicles, and sebaceous glands (Baron et al., 

2008; Zhang et al., 2009). 

Estimated absorption for methyl-parathion is much higher than the actual reported 

value by Sartorelli et al. ( 1997). The log kp value corresponding to this flux is in 

accordance with the average log kp value reported by Riviere and Brooks (20 1 0). In 

both investigations the volume applied to the skin is quite low at 30 or 10 Ill and the 

skin is not occluded. The low absorption could result from solvent evaporation (in 

this case acetone) and precipitation of the permeant at the top of the skin or at the 

upper layers of se cells. 

8.3. Conclusion 

In this investigation, out of 514 flux entries, 131 entries were set aside as the external 

validation set from beginning of the analysis and the remaining 383 entries were 

used as the training set for the development of models. Many of the resulting models 

showed mean absolute error of prediction at an acceptable range 0.612-0.697. The 

best model in terms of the MAE for test set was the boosted tree model employing 

90 trees at a learning rate of 0.05. This model also had one of the lowest number of 

outliers (absolute error of >2) in test and training sets. RT model (8.9) and SVM 

(8.6) were the other selected models based on MAE for the validation set. The RT 

model employed occlusion and pre-hydration indicator variable as well as donor 

concentration and several permeant properties. The SVM model employed the donor 

concentration, boiling and melting point gap of the vehicle, the indicator of finite or 

infinite dosing and several molecular descriptors of the permeants. The donor 

concentration was the most important descriptor of flux values in most models, 

selected as first choice in simple regression and RTs. 

Non-linear models generally perform better than the linear regression models. The 

non-linear relationship is especially evident with the descriptors of experimental 

conditions, occlusion, pre-hydration and wetting scale. These descriptors play 
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important roles in the RT models, while being less significant in linear regression 

models (not selected by stepwise regression analysis). The importance of occlusion 

is emphasised through the RT model (8.9) which also agrees with the conclusion 

from chapter 7. 

The outlier analysis identified seven entries with absolute error of more than 2 using 

8 or more out of 11 selected models. The majority of the outliers were flux values 

measured with small donor volumes and non-occluded conditions implying that 

models may fail to take the solvent evaporation into account. It was also concluded 

that models perform less well for highly lipophilic compounds (log P > 5) and the 

applications involving specific penetration enhancers in the donor mixtures. 

As a general conclusion of this study, the need for a widely accepted wetting scale to 

indicate the effect of skin hydration/wetting on the skin absorption is outlined. The 

scale should be derived from the experimental conditions, such as occlusion, pre­

hydration, application volume, and the type of the vehicle. 
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9. Conclusion 

This investigation aimed at modelling the effect of formulation factors and mixture 

ingredients on the skin penetration of compounds. A major obstacle with these 

studies is the availability of reliable and consistent data. In vivo skin permeation data 

are scarce and, in addition, they are affected by several other factors, apart from the 

skin absorption, including pharmacokinetics behaviour of the permeant, e.g. 

metabolism and stability, distribution and excretion. This has led to in vitro measures 

to be employed as acceptable skin absorption assessment criteria. Most modelling 

efforts have also been directed at the estimation of the in vitro measures of the skin 

permeation such as flux and permeability coefficient. In this project Quantitative 

Structure-Activity Relationship (QSAR) techniques were employed to model the in 

vitro measures of skin absorption. Chapters 3 and 4 use two very consistent datasets 

where skin absorption is measured under the same experimental conditions in the 

same laboratory. The dataset in Chapter 3 is the flux enhancement of a model drug, 

formoterol, by the use of solvents alternative to water from excised rat skin. The 

dataset in Chapter 4 consisted of permeation coefficient of the model drug 

haloperidol, under the effect of terpenes and terpenoids through excised human skin. 

QSAR analyses in these two chapters were limited to the use of linear regression and 

Support Vector Machines, as they are more suitable for smaller datasets. The results 

of analysis showed that solvents with lipolar (surfactant like) structure, containing 

aliphatic rings and non-linear structures that are lipophilic in nature result in the 

highest flux values for formoterol (Chapter 3). On the other hand, terpene enhancers 

required different characteristics to perform as good skin penetration enhancers for 

haloperidol. These characteristics involve hydrogen bonding acceptor abilities, 

branched or cyclic structures, low dipolarity, and hydrogen bonding donor ability; 

while lipophilicity expressed by log P has no effect (Chapter 4). The differing 

structural requirements observed in these two studies can be attributed to the 

differing experimental set up; studies in Chapter 3 used different liquids including 

terpenes as the vehicle while studies in Chapter 4 used only 5% solutions of the 

liquids (mainly terpenes) in propylene glycol. The other important difference is the 
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chemical space of the two datasets. Compounds in Chapter 3 contain alcohols, esters, 

fatty acids and terpenes with a wide range of molecular weights from ethanol to 

dodecanol and isopropyl palmitate to toluamide. On the contrary, compounds in 

Chapter 4 are comprised of terpenes mostly. Also, the model drugs in these two 

studies are different, although they have similar chemical structure, molecular 

weight, and pka values. According to Karande et al. (2005), chemical enhancers that 

work through fluidisation of SC lipids are more potent if they are more lipophilic. 

The findings of Chapter 3 agree well with this definition of fluidisers. The results 

obtained for terpene enhancers in Chapter 4 are not consistent with the expectations 

from fluidisers, but with extractors according to Karande et al. definition. 

The remaining chapters are dedicated to complex mixtures of permeants and several 

varying mixture components. The use of such datasets meant that concomitant 

effects of mixture components and chemical structures of the penetrants could be 

analysed. Chapters 5 and 6 employed the dataset of Riviere and Brooks (20 1 0), 

where the effects of certain solvent mixtures and a surfactant on permeation of 

several compounds from excised porcine skin has been investigated. The limited 

number of penetrant/vehicle systems led to the conclusion that more experimental 

measurements of skin permeation rates were necessary to obtain an appropriately 

validated QSAR model. After analysing the chemical space, four permeant 

molecules were selected for in vitro permeation studies from the same formulation 

mixtures. The QSAR models using the expanded dataset showed good prediction 

abilities with improved mean absolute error of 0.45 for the internal validation sets. In 

these models, the effect of vehicles were modelled by the difference between their 

melting and boiling points, a property related to molecular symmetry, and the 

difference between melting points of the permeant and the vehicle. The selected 

permeant descriptors in these linear models showed the negative impact of permeant 

molecular size, dipolarity and presence of electron rich nucleophilic groups on the 

skin permeability coefficients. 

Inter-laboratory and inter-individual variations are very common in the in vitro 

measures of skin permeation. This has been attributed to a number of experimental 

conditions including sin thickness, pre-hydration, and occlusion. The last dataset 

used for QSAR studies in Chapter 7 and 8 allowed for the effect of experimental 
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conditions to be investigated, as well as the effects of mixture components and 

permeant descriptors. From the EDETOX database, the in vitro skin flux data from 

excised human skin were extracted. This dataset was updated with more recent 

publications (2001-November 2010). Experimental conditions of the flux 

measurements were extracted from original publications. These included membrane 

thickness, type of exposure (Finite/Infinite), pre-hydration and occlusion of the skin, 

donor concentration, volume and dose applied. The dataset was large enough to 

allow more sophisticated data mining tools for the analysis. As the first step, the 

effect of experimental conditions were analysed on the in vitro skin flux by 

incorporating appropriate indicators of these conditions (Chapter 7). Linear 

regression and non-linear Regression Trees (RT) showed the substantial 

dependability of flux on donor concentration. The effects of the remammg 

experimental factors, although significant, were not as considerable. The results 

indicated a higher impact of the permeant concentration and molecular structure, and 

the vehicle properties on the skin flux in comparison to the experimental variables of 

skin thickness, finite or infinite dosing, occlusion or pre-hydration. The effect of 

occlusion was more pronounced than the other experimental conditions, but this was 

only evident in the non-linear analysis. 

The importance of external validation of QSAR models is well recognised for the 

applicability of the models to real-life prediction scenarios. This latter dataset was 

large enough to allow for a set of entries to be excluded from the QSAR 

development and serve as the external validation set (Chapter 8). The training set of 

3 83 data-points was used in several statistical methods. Some of the resulting models 

showed good prediction abilities for the external validation set. The best model, in 

terms of the MAE for the validation set and the number of outliers, was the boosted 

tree model employing 90 trees at a learning rate of 0.05. Regression Tree model (8.9) 

and SVM (8.6) were the other selected models. The RT model employed occlusion 

and pre-hydration indicator variable as well as donor concentration and several 

permeant properties. The SVM model employed the donor concentration, boiling and 

melting point gap of the vehicle, the indicator of finite or infinite dosing and several 

molecular descriptors of the permeants. 
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Non-linear models generally perform better than the linear regression models. The 

non-linear relationship is especially evident with the descriptors of experimental 

conditions, occlusion, pre-hydration and wetting scale. These descriptors play 

important roles in the R T models, while being less significant in linear regression 

models (not selected by stepwise regression analysis). 

Finally, based on the current results it can be concluded that modelling can aid the 

understanding of the mechanisms involved in the skin penetration of compounds and 

with the appropriate data it can lead to validated models with acceptable prediction 

accuracy. The in silica prediction of skin penetration can aid drug formulators and 

regulatory risk assessment bodies. It is expected that the results of this work may 

benefit in vivo estimations using the in vitro flux estimates. 

167 



10. Future Work 

Following the research carried out so far, QSAR modelling can be continued. Many 

investigators employ different animal skin types in in vitro assessments. Despite 

random comparisons available in the literature, a systematic comparison of the 

animal data with human skin and that with in vivo results is required. The EDETOX 

database has a wealth of in vitro and in vivo data that can be updated and analysed. 

Such investigations can aid validation of various in vitro and in vivo techniques. 

Undoubtedly, availability of large datasets, either in vivo or in vitro, along with 

cutting edge QSAR software and data-mining tools can provide better models for the 

prediction of relationships between chemical properties and skin permeation 

potential. 

The dataset can be populated with the constituents of the receptor phase. It has been 

suggested that permeation may be limited from skin to the receptor phase for 

compounds with low aqueous solubility. Researchers often use varying pH levels, 

eo-solvent mixtures and albumin in the receptor phase, in order to aid the sink 

conditions. Moreover, the constituents of the receptor phase may affect the skin 

itself. Therefore it is essential, especially with static diffusion cells, to study the 

effect of receptor phase ingredients. 

168 



11. References 

Abdi, H., 2003. PLS-Regression; Multivariate analysis. In: M. Lewis-Beck, A. 
Bryman, & T. Futing (Eds): Encyclopedia for research methods for the social 
sciences. Thousand Oaks: Sage. 

Abraham, M.H., Chadha, H.S., Martins, F., Mitchell, R.C., Bradbury, M.W., 

Gratton, J.A., 1999. Hydrogen bonding part 46. A Review of the correlation and 

prediction of transport properties by an LFER method: Physicochemical properties, 

brain penetration and skin permeability. Pestic. Sci., 55, 78-88. 

Abraham, M.H., Chadha, H.S., Mitchell, R.C., 1995. The factors that influence skin 

penetration of solutes. J. Pharm. Pharmacol., 47, 8-16. 

Abraham, M.H., Martins, F., 2004. Human skin permeation and partition: General 
linear free-energy relationship analyses, J. Pharm. Sci. 93, 1508-1523. 

ACD/ChemSketch Freeware, version 12.01, Advanced Chemistry Development, 
Inc., Toronto, ON, Canada, www.acdlabs.com, 2010. 

ACD/logD version 11, Advanced Chemistry Development, Inc., Toronto, ON, 
Canada, www.acdlabs.com, 2008. 

ACD/logD version 12.01, Advanced Chemistry Development, Inc., Toronto, ON, 
Canada, www.acdlabs.com, 2009. 

Ademola, J.I., Bloom, E., Maczulak, A.E., Maibach, H.I., 1993. Skin Penetration and 
Metabolism - Comparative - Evaluation of Skin Equivalent, Cell Culture, and 
Human Skin. J. Toxicol., Cutaneous Ocul. Toxicol. 12, 129-138. 

Akhter, S.A., Bennett, S.L., Wailer, I.L., Barry, B.W., 1984. An Automated 
Diffusion Apparatus For Studying Skin Penetration. Int. J. Pharm. 21, 17-26. 

Akrill, P., Cocker, J., Dixon, S., 2002. Dermal exposure to aqueous solutions of N­
methyl pyrrolidone, Toxicol. Lett. 134, 265-269. 

Anderson, B.O., Higuchi, W.I., Raykar, P.V., 1988. Heterogeneity effects on 

permeability-partition coefficient relationships in human stratum corneum. Pharm. 

Res., 5, 566-573. 

Anigbogu, A.N.C., Williams, A.C., Barry, B.W., Edwards, H.G.M., 1995. Fourier 
transform raman spectroscopy of interactions between the penetration enhancer 
dimethyl sulfoxide and human stratum corneum. Int. J. Pharm. 125, 265-282. 

Anissimov, Y.G., Roberts, M.S., 2001. Diffusion modelling of percutaneous 
absorption kinetics. 2. Finite vehicle volume and solvent deposited solids. J. Pharm. 

Sci. 90, 504-520. 

169 



Attwood, D., 2007. Disperse systems. In: M. E. Aulton (Ed.). Aulton's 
Pharmaceutics, The Design and Manufacture of Medicines, Churchill Livingstone, 
Elsevier, 85-90. 

Aungst, B.J., Rogers, N.J., Shefter, E., 1986. Enhancement of naloxon penetration 
through human skin in vitro using fatty acids, fatty alcohols, surfactants, sulfoxides 
and amides. Int. J. Pharm. 33, 225-234. 

Baker, H., 1986. The skin as a barrier. In: Rock, A., (Ed.). Textbook of dermatology. 
Oxford, Blackwell Scientific, 355-365. 

Baroli, B., 2010. Penetration of nanoparticles and nanomaterials in the skin: Fiction 
or reality? J. Pharm. Sci. 99,21-50. 

Baron, J.M., Wiederholt, T., Heise, R., Merk, H.F., Bickers, D.R., 2008. Expression 
and function of cytochrome p450-dependent enzymes in human skin cells. Curr. 
Med. Chem. 15, 2258-2264. 

Barry, B.W., 1983. Properties that influence percutaneous absorption, in 
Dermatological Formulation, Percutaneous Absorption. Marcel Dekker, New York, 
127-233. 

Barry, B.W., 1987. Mode of action of penetration enhancers in human skin. J. Cont. 
Rei. 6, 85-97. 

Barry, B.W., 1991. Lipid-protein-partititioning theory of skin penetration 
enhancement, J. Controlled. Release 15,237-248. 

Barry B.W., 2001. Review: Novel mechanisms and devices to enable successful 
transdermal drug delivery. Eur. J. Pharm. Sci. 14, 101-114. 

Barry, B.W., 2007. Transdermal drug delivery. In: M. E. Aulton (Ed.). Aulton's 
Pharmaceutics, The Design and Manufacture of Medicines, Churchill Livingstone, 
Elsevier Chapter 38, 580-585. 

Barry, B.W., Williams, A.C., 1995. Permeation enhancement through skin. In: 
Swarbrick, J., Boylan, J.C. (Eds.). Encyclopedia of Pharmaceutical Technology, Vol. 
11. Marcel Dekker, New York, 449-493. 

Bartow, R.A., Brogden, R.N., 1998. Formoterol. An update of its pharmacological 
properties and therapeutic efficacy in the management of asthma. Drugs 55, 303-322. 

Bashir, S.J., Chew, A.L., Anigbogu, A., Dreher, F., Maibach, H.l., 2001. Physical 
and physiological effects of stratum corneum tape stripping. Skin. Res. Technol. 7, 
40-48. 

Bataller, R., Bragulat, E., Nogue, S., Gorbig M., N., Bruguera, M., Rodes, J. 1999. 
Prolonged cholestasis after acute paraquat poisoning through skin absorption. Am. 1. 

Gastroenterol. 95, 1340-1343. 

170 



Baynes, R.E., Brooks, J.D., Mumtaz, M., Riviere, J.E., 2002. Effect of chemical 
interactions in pentachlorophenol mixtures on skin and membrane transport. Toxicol. 
Sci. 69, 295- 305. 

Belsey, N.A., Cordery, S.F., Bunge, A.L., Guy, R.H. 2011. Assessment of dermal 
exposure to pesticide residues during re-entry. Environ. Sci. Technol. 45,4609-4615 

Benfeldt, E., Groth, L., 1998. Feasibility of measuring lipophilic or protein-bound 
drugs in the dermis by in vivo microdialysis after topical or systemic drug 
administration. Acta. Derm. -Venereol. 78, 274-278. 

Beydon, D., Payan, J.P., Grandclaude, M.C. 2010. Comparison of percutaneous 
absorption and metabolism of di-n-butylphthalate in various species. Toxicol. m 

Vitro 24, 71-78. 

Bezema, F.R., Marttin, E., Roemele, P.E.H., Brussee, J., Bodde, H.E., de Groot, 

H.J.M., 1996. H-2 NMR evidence for dynamic disorder in human skin induced by 

the penetration enhancer Azone. Spectrochim. Acta. Mol. Biomol. Spectros., 52, 
785-791. 

Blank, I.H., McAuliffe, D.J., 1985. Penetration of benzene through human skin. J. 
Invest. Dermatol. 85, 522-526. 

Bouwman, T., Cronin, M.T.D., Bessems, J.GM., van de Sandt, J.J.M., 2008. 
Improving the applicability of (Q)SARs for percutaneous penetration in regulatory 
risk assessment. Hum. Exp. Toxicol. 27:269-276. 

Bouwstra, J.A., de Graaff, A., Gooris, G.S., Nijsse, J., Wiechers, J.W., van Aelst, 
A.C., 2003. Water distribution and related morphology in human stratum corneum at 
different hydration levels. J. Invest. Dermatol. 120, 750-758. 

Bouwstra, J.A., Honeywell-Nguyen, P.L., Gooris, G.S., Ponec, M., 2003. Structure 
of the skin barrier and its modulation by vesicular formulations. Pro g. Lipid Res. 42, 
1-36. 

Brain, K.R., Waiters, K.A., Watkinson, A. C., 1998. Investigation of skin permeation 
in vitro. In: Roberts, M.S., Waiter, K.A., (Eds.). Dermal absorption and toxicity 
assessment. Drugs and the Pharmaceutical Sciences Vol. 91. New York, Marcel 
Dekker, 161-187. 

Bronaugh, R.L., 2004. Methods for in vitro percutaneous absorption. In: Zhai, H., 
Maibach, H.l., (Eds.). Dermatotoxicology, 6th ed. New York, CEC Press, 520-526. 

Bronaugh, R.L., Maibach, H.l., 1985. Percutaneous absorption of nitroaromatic 
compounds: in vivo and in vitro studies in the human and monkey. 1. Invest. 
Dermatol. 84, 180-183. 

Bronaugh, R.L., Stewart, R.F., Congdon, E.R., 1983. Differences in permeability of 
rat skin related to sex and body site. J. Sot. Cosmet. Chem. 34, 127-135. 

171 



Bro�augh, R.L., Stewart, R.F., 1985. Methods for in vitro percutaneous absorption 
studtes IV: the flow-through diffusion cell. J. Pharm. Sci. 74, 64-67. 

Bronaugh, R.L., Stewart, R.F., Simon, M., 1986. Methods for in vitro percutaneous 
absorption studies. VII: Use of excised human skin. J. Pharm. Sci. 75, 1094-1097. 

Brooks, J.D., Riviere, J.E., 1996. Quantitative percutaneous absorption and 
cutaneous distribution of binary mixtures of phenol and para-nitrophenol in isolated 
perfused porcine skin. Fundam. Appl. Toxicol. 32, 233- 243. 

Bucks, D., Guy, R., Maibach, H., 1991. Effects of occlusion. In: Bronaugh, R.L., 
Maibach, H.I., (Eds.). In vitro percutaneous absorption: principles, fundamentals, 
and applications. Boca Raton, FL, CRC Press, 85-114. 

Buist, H.E., de Heer, C., Bessems, J.G.M., Bouwman, T., Chou, S., Pohl, H.R., van 
de Sandt, J.J.M., 2005. Dermal absorption in risk assessment: the use of relative 
absorption versus permeation coefficient (Kp ). Occupational and environmental 
exposures of skin to chemicals - 2005. Abstract for Poster 25, URL: 
http://www.cdc.gov/niosh!topics/skin/OEESC2/AbPost025Buist.html. 

Buist, H.E., van Burgsteden, J.A., Freidig, A.P., Maas, W.J.M., van de Sandt, J.J.M., 
20 I 0. New in vitro dermal absorption database and the prediction of dermal 
absorption under finite conditions for risk assessment purposes. Regul. Toxicol. 
Pharmacol. 57, 200-209. 

Burbidge, R., Trotter, M., Buxton, B., Holden, S., 2001. Drug design by machine 
learning: support vector machines for pharmaceutical data analysis. Comput. Chem. 
26(1 ), 5-14. 

Cambridge Soft, 2009. ChemBioFinder, http:/ /www.cambridgesoft.com/databases, 

Retrieved September 2009. 

CambridgeSoft, 2011. ChemBioFinder, http://www.cambridgesoft.com/databases, 
retrieved November 2010 - February 2011. 

Carrupt, P.A., Testa, B., Gaillard, P., 1997. Computational Approaches to 
Lipophilicity: Methods and Applications. In Lipkowitz, K.B., Boyd, D.B., Eds. 
ReViews in Computational Chemistry, Wiley, New York, Vol. 11,241-315. 

Challapalli, P.V.N., Stinchcomb, A.L., 2002. In vitro experiment optimization for 
measuring tetrahydrocannabicol skin permeation. Int. J. Pharm., 241, 329-339. 

Chang, S., Riviere, J.E., 1993. Effect of humidity and occlusion on the percutaneous 
absorption of parathion in vitro. Pharm. Res. 10, 152-155. 

ChemSpider Home Page. http://www.chemspider.com/ (accessed Sept 2010). 

Chen, H.F., 2008. Quantitative predictions of gas chromatography retention indexes 
with support vector machines, radial basis neural networks and multiple linear 
regression. Anal. Chim. Acta 609, 24-36. 

172 



Cheng, T.J., Zhao, Y., Li, X., Lin, F., Xu, Y., Zhang, X.L., Li, Y., Wang, R.X., Lai, 
L.H., 2007. Computation of octanol-water partition coefficient by guiding an 
additive model. J. Chem. Inf. Model. 47,2140-2148. 

Chilcott, R.P., Barai, N., Beezer, A.E., Brain, S.I., Brown, M.B., Bunge, A.L., 
Burgess, S.E., Cross, S., Dalton, C.H., Dias, M., Farinha, A., Finnin, B.C., 
Gallagher, S.J., Green, D.M., Gunt, H., Gwyther, R.L., Heard, C.M., Jarvis, C.A., 
Kamiyama, F., Kasting, G.B., Ley, E.E., Lim, S.T., McNaughton, G.S., Morris, A., 
Nazemi, M.H., Pellett, M.A., du Plessis, J., Quan, Y.S., Raghavan, S.L., Roberts, M., 
Romonchuk, W., Roper, C.S., Schenk, D., Simonsen, L., Simpson, A., Traversa, 
B.D., Trottet, L., Watkinson, A., Wilkinson, S.C., Williams, F.M., Yamamoto, A. 
Hadgraft, J., 2005. Inter- and intra-laboratory variation of in vitro diffusion cell 
measurements: An international multi-centre study using quasi-standardised methods 
and materials. J. Pharm. Sci. 94, 632-638. 

Chu, K.A., Yalkowsky, S.H., 2009. An interesting relationship between drug 
absorption and melting point. Int. J. Pharm. 373, 24-40 

Cilurzo, F., Alberti, E., Minghetti, P., Gennari, C.G.M., Casiraghi, A., Montanari, L., 
2010a. Effect of drug chirality on the skin permeability of ibuprofen, lnt. J. Pharm. 
386, 71-76. 

Cilurzo, F., Minghetti, P., Alberti, E., Gennari, C.G.M., Pallavicini, M., Valoti, E., 
Montanari, L., 20 I Ob. An investigation into the influence of Counterion on the RS­
Propranolol and S-Propranolol skin permeability. J. Pharm. Sci. 99, 1217-1224. 

Clowes, H.M., Scott, R.C., Heylings, J.R., 1994. Skin absorption: Flow-through or 
static diffusion cells. Toxicol. in Vitro, 827-830. 

Cnubben, N.H., Elliot G.R., Hakkert, B.C., Meuling, W.J., van de Sandt, J.J., 2002. 
Comparative in vitro - in vivo percutaneous penetration of the fungicide ortho­

phenylphenol. Regul. Toxicol. Pharmacol. 35, 198-208. 

Collier, S.W., Sheikh, N.M., Sakr, A., Lichtin, J.L., Stewart, R.F., Bronaugh, R.L., 
1989. Maintenance of skin viability during in vitro percutaneous 
absorption/metabolism studies. Toxicol. Appl. Pharmacol. 99, 522-533. 

Commission of the European Communities. 2003. Proposal for a Regulation of the 

European Parliament and of the Council Concerning the Registration, Evaluation, 

Authorisation and Restriction of Chemicals (REACH), establishing a European 

Chemicals Agency and amending Directive 1999/45/EC and Regulation (EC) {on 

Persistent Organic Pollutants}. 

http://europa.eu.int/comrnlenterprise/chemicals/chempol/whitepaper/reach.htm. 

Cooper, E.R., 1984. Increased skin permeability of lipophilic molecules. J. Pharm. 

Sci. 73, 1153-1155. 

Cooper, E.R., 1985. Vehicle effects on skin penetration, In:. Bronaugh, R.L., 
Maibach, H.l., (Eds.). Percutaneous Absorption. Marcel Dekker, New York, 525-

530. 

173 



Cooper, E.R., Berner, B., 1987. In: Kydonieus A.F., Berner, B., (Eds.). Penetration 
enhancers, in Transdermal Delivey of Drugs, Vol. 2. CRC Press, Boca Ratom, FL, 

57-62. 

Copovi, A., Diez-Sales, 0., Herraez-Dominguez, J. V., Herraez-Dominguez, M., 

2006. Enhancing effect of alpha-hydroxyacids on "in vitro" permeation across the 

human skin of compounds with different lipophilicity. Int. J. Pharm. 314,31-36. 

Cornwell, P.A., Barry, B.W., Bouwstra, J.A., Gooris, G.S., 1996. Modes of action of 

terpene penetration enhancers in human skin; differential scanning calorimetry, 
small-angle X-ray diffraction and enhancer uptake studies, Int. J. Pharm. 127, 9- 26. 

Cronin, M.T.D., Dearden, J.C., Moss, G.P., Murray-Dichinson, G., 1999. 
Investigation of the mechanism of flux across human skin in vitro by quantitative 
structure permeability relationships. Eur. J. Pharm. Sci. 7, 325-330. 

Crowther, J.M., Sieg, A., Blenkiron, P., Marcott, C., Matts, P.J., Kaczvinsky, J.R., 
Rawlings, A. V., 2008. Measuring the effects of topical moisturizers on changes in 
stratum corneum thickness, water gradients and hydration in vivo. Br. J. Dermatol. 
159, 567-577. 

Cruciani, G., Crivori, P., Carrupt, P.A, Testa, B., 2000. Molecular fields in 
quantitative structure permeation relationships: the VolSurf approach. J. Mol Struct. 

- THEOCHEM 503, 17-30. 

Cumming, K.I., Winfield, A.J ., 1994. In-vitro evaluation of sodium carboxylates as 
dermal penetration enhancers. Int. J. Pharm. 108, 141-148. 

Czerminski, R., Yasri, A., Hartsourgh, D., 2001. Use of Support Vector Machine in 
pattern classification: Application to QSAR studies. Quant. Struct.-Act. Relat. 20, 

227-240. 

Dal Pozzo, A., Donzelli, G., Liggeri, E., Rodriguez, L., 1991. Percutaneous 
absorption of nicotinic acid derivatives In vitro. J. Pharm. Sci. 80, 54-56. 

Davis, A.F., Gyurik, R.J., Hadgraft, J., Pellett, M.A., Waiters, K.A., 2002. 

Formulation strategies for modulating skin permeation. In Waiters, K. A., ed. 

Dermatological and transdermal formulations. New York, Marcel Dekker, pp 271-

317 (Drugs and the Pharmaceutical Sciences Vol. 119). 

Dearden, J.C., Cronin, M.T.D., 2005. Quantitative structure-activity relationships 
(QSAR) in drug design. In: Smith H.J., (ed.) Smith and Williams' Introduction to the 
Principles of Drug Design and Action. 4 th Edition. Taylor and Francis, Boca Raton 
FL, USA, 185-209. 

Dearden, J. C., Cronin, M.T.D., Patel, H., Raevsky, O.A., 2000. QSAR prediction of 
human skin permeability coefficient. J. Pharm. Pharmacol. 52 (S), 221. 

174 



Dearden, J.C., Ghafourian, T., 1999. Hydrogen bonding parameters for QSAR: 
Comparison of indicator variables, hydrogen bond counts, molecular orbital and 
other parameters. J. Chem. Inf. Comp. Sci. 30, 231-235. 

Degim, T., Hadgraft, J., Ilbasmis, S., Ozkan, Y., 2003. Prediction of skin penetration 
using artificial neural network (ANN) modeling. J. Pharm. Sci. 92, 656-664. 

De Vito, S. C., 2000. Absorption through cellular membrane. In Boethling, R.S., 
Mackay, D., (Eds.). Handbook of Property Estimation Methods for Chemicals. CRC 
Press, Boca Raton, 261. 

Dias, M., Farinha. A., Faustino. E., Hadgraft. J., Pais, J., Toscano, C., 1999. Topical 
delivery of caffeine from some commercial formulations. Int. J. Pharm. 182 41-47. 

Dick, LP., Blain, P.G., Williams, F.M., 1997. The percutaneous absorption and skin 
distribution of lindane in man. I. In vivo studies. Hum. Exp. Toxicol. 16, 645-651. 

Dick, LP., Blain, P.G., Williams, F.M., 1997. The percutaneous absorption and skin 
distribution of lindane in man. 11. In vivo studies. Hum. Exp Toxicol 16, 652-657. 

Dick, D., Ng, K.M.E., Sauder, G.N., Chu, 1., 1995. In Vitro and In Vivo 
Percutaneous Absorption of 14C-Chloroform in Humans. Hum. Exp. Toxicol. 14, 
260-265. 

Diudea, M.V., Gutman, 1., 1998. Wiener-type topological indices. Croat. Chem. Acta 
71,21-51. 

Dreher, F., Arens, A., Hostynek, J.J., Mudumba, S., Adem6la, J., Maibach, H.l., 
1998. Colorimetric method for quantifying human Stratum corneum removed by 
adhesive-tape stripping. Acta. Derm. Venereol. 78, 186-189. 

Du, H.Y., Wang, J., Yao, X.J., Hu, Z.D. 2009. Quantitative Structure-Retention 
Relationship models for the prediction of the reversed-phase HPLC gradient 
retention based on the heuristic method and Support Vector Machine. J. Chromatogr. 
Sci. 47, 396-404. 

ECB Technical Guidance Document on Risk assessment in support of commission 
Directive 93/67/EEC on Risk Assessment for new substances and Commission 
Regulation (EC) No. 1488/94 on Risk Assessment for existing substance. EUR 
20418 EN/I. 

ECETOC, 1993. Percutaneous absorption. Brussels, European Centre for 
Ecotoxicology and Toxicology of Chemicals, 1-80 (Monograph No. 20). 

EDETOX, 2010. Database created by the University of Newcastle 
(http://edetox.ncl.ac.uk/), accessed June 2010. 

Elias, P.M., 1983. Epidermal lipids, barrier function and desquamation. J. Invest. 

Dermatol. 80, 44-49. 

175 



Engstr�m, K., Husman, K., Riihimaki, V., I 977. Percutaneous absorption of m­
xylene m man. Int. Arch. Occup. Environ. Health 39, I 8 I - I 89. 

Environmental Protection Agency of U.S., I 992. Risk assessment forum. Guidelines 
for exposure assessment Published on May 29, I992, Federal Register 
57(104):22888-22938. Washington, DC, URL: 
http:/ I cfpub.epa.gov /ncea/cfm/recordisplay .cfm ?deid= 15263#Download 

Eros, D., Kovesdi, 1., Orfi, L., Takacs-Novak, K., Acsady, G., Keri, G., 2002. 
Reliability of log P predictions based on calculated molecular descriptors: A critical 
review. Curr. Med. Chem. 9, 1819- 1829. 

Escuder-Gilbert, L., Martinez-Pla, J.J., Sagrado, S., Villanueva-Camanas, R.M., 
Medina-Hemandez, M.J., 2003. Biopartitioning micellar separation methods: 
modelling drug absorption. J. Chromatogr. 797, 2I-35. 

European Chemicals Bureau, Ispra, Italy, website accessed March 2008, 
http://ecb.jrc.it/reach/reach-legislation/. 

European Commission, 2002. Guidance Document on Dermal Absorption 
Directorate E 1 -Plant Health. Sanco/333/2000, Rev. 6, November 2002. 

Fang J.Y., Tsai T.H., Lin Y.Y., Wong W.W., Wang M.N., Huang J.F., 2007. 
Transdermal delivery of tea catechins and theophylline enhanced by terpenes: A 
mechanistic study. Bioi. Pharm. Bull. 30, 343-349. 

Fasano, W.J., McDougal, J.N., 2008. In vitro dermal absorption rate testing of 
certain chemicals of interest to the Occupational Safety and Health Administration: 
Summary and evaluation of USEP A's mandated testing. Regul. Toxicol. Pharmacol. 
5 I , I 81 -1 94. 

Faulds, D., Hollingshead, L.M., Goa, K.L., 199I .  Formoterol. A review of its 
pharmacological properties and therapeutic potential in reversible obstructure 
airways disease. Drugs, 42, I 15 - I 3  7. 

Fedors, R.F., 1974. Methods for estimating both solubility parameters and molar 
volumes of liquids. Polym. Eng. Sci. I 4, 47-154. 

Fitzpatrick, D., Corish, J., Hayes, B., 2004. Modelling skin permeability in risk 
assessment- the future. Chemosphere 55, 1309- 1314. 

Flynn, G. L., 1990. Physicochemical determinants of skin absorption. In: Gerrity, 
T.R. Henry, C.J. (Eds.). Principles of route to route extrapolitation for risk 
assessment extraction for skin assessment, Elsevier, NewYork, NY, 93- I 27. 

Forslind, B., Engstrom, S., Engblom, J., Norlen, L., 1997. A novel approach to the 
understanding of human skin barrier function. J. Dermatol. Sci. I 4, 115-125. 

Friend, D.R., 1992. In vitro skin permeation techniques. J. Controlled Release 18, 

235-248. 

176 



Ghafourian, T., Fooladi, S., 2001. The effect of structural QSAR parameters on skin 
penetration. Int. J. Pharm., 217, 1-11. 

Ghafourian, T., Samaras, E.G., Brooks, J.D., Riviere, J.E., 2010a. Modelling the 
effect of micture components on permeation through skin. Int. J. Pharm. 398, 28-32. 

Ghafourian, T., Samaras, E.G., Brooks, J.D., Riviere, J.E., 2010b. Validated models 
for predicting skin penetration from different vehicles. Eur. J. Pharm. Sci. 41, 612-
616. 

Ghafourian, T., Zandasrar, P., Hamishekar, H., Nokhodchi, A., 2004. The effect of 
penetration enhancers on drug delivery through skin: a QSAR study. J. Controlled 
Release 99, 113-125. 

Goudarzi, N., Goudarzi. M., 2009. Prediction of the acidic dissociation constant 
(pka) of some organic compounds using linear and nonlinear QSPR methods. Mol. 
PhyS. 107(14), 1495-1503. 

Gramatica, P., 2007. Principles of QSAR models validation: internal and external. 
QSAR Comb. Sci. 26, 694-701. 

Gramatica, P. A short history of QSAR evolution. QSAR Research Unit in 
Environmental Chemistry and Ecotoxicology, DBSF, Insubria University, Varese, 
Italy. Obtained online from: 
http://www.gsarworld.com/Temp Fileupload/Shorthistoryofgsar.pdf Accessed July 
2011. 

Gramatica, P., Pilutti, P., Papa, E., 2002. Ranking of volatile organic compounds for 
tropospheric degradability by oxidants: a QSPR Approach. SAR QSAR Environ. 
Res. 13, 743-753. 

Greaves, L.C., Wilkinson, S.C., Williams, F.M., 2002. Factors Affecting 
Percutaneous Absorption of Caffeine in Vitro. Toxicology, 178, 65-66. 

Gutman, I., Kortvelyesi, T., 1995. Wiener indices and molecular surfaces. Zeitschrift 
fiir Naturforschung. A, A journal of physical sciences 50 a, 669-671. 

Hadgraft, J., Lane, M.E., 2009. Transepidermal water loss and skin site: A 
hypothesis. Int. J. Pharm. 3 73, 1-3. 

Hadgraft, J., (2004). Review article: Skin deep. Eur. J. Pharm. Biopharm. 58, 291-
299. 

Hadjmohammadi, M.R., Fatemi, M. H., Kamel, K., 2007. Quantitative structure­
property relationship study of retention time for some pesticides in gas 
chromatography. J. Chromatogr. Sci. 45, 400-404. 

Hall L.H., Kier L.B., 1977. The nature of Structure-Activity Relationships and their 
relation to molecular connectivity. Eur. J. Med. Chem 12, 307. 

177 



Hall L.H., Kier L.B., 1986. Molecular Connectivity in Structure-Activity Analysis, J. 
Wiley and Sons, New York. 

�al.l, L.�., Kier, L.B., 1991. The molecular connectivity chi indices and kappa shape 
mdtces m structure-property modeling. In: Boyd, D., Lipkowitz, K., (Eds.). Reviews 
in Computational Chemistry, VCH, New York, 384-385. 

Hansch, C., Clayton, J.M., 1973. Lipophilic character and biological-activity of 
drugs .2. Parabolic case. J. Pharm. Sci., 62, 1-21. 

Hansch, C., Leo, A., 1995. Exploring QSAR: Fundamentals and Applications in 
Chemistry and Biology; American Chemical Society: Washington DC. 

Hansen, C.M., 1967. The three dimensional solubility parameter - key to paint 
component affinities I. Solvents, plasticizers, polymers and resins. J. Paint Technol. 
3 9' 1 04-11 7. 

Hawkins, D.M., Basak, S.C., Mills, D., 2003. Assessing model fit by cross­
validation. J. Chem. Inf. Comp. Sci. 43, 579-586. 

Helma, C., 2004. SAR QSAR Environ. Res. 15, 367-383. 

Henning, A., Schaefer, U.F., Neumann, D., 2009. Potential pitfalls in skin 
permeation experiments: Influence of experimental factors and subsequent data 
evaluation. Eur. J. Pharm. Biopharm. 72, 324-331. 

Ho, N.F.H., Park, J.Y., Morozowich, W., Higuichi. W.l., 1997. Physical model 
approach to the design of drugs with improved intestinal absorption. In: Roche E.B. 
(Ed.) Design of Biopharmaceutical Properties through Prodrugs and Analogues, 
AphA/APS, Washington, 136. 

Hou, T.J., Xia, K., Zhang, W., Xu, X.J., 2004. ADME Evaluation in Drug 
Discovery. 4. Prediction of Aqueous Solubility Based on Atom Contribution 
Approach. J. Chem. lnf. Comput. Sci. 44. 266-275. 

Humbert, H, Cabiac M.D., Denouel, J., Kirkesseli, S., 1995. Pharmacokinetics of 
terbinafine and of its five main metabolites in plasma and urine, following a single 
oral dose in healthy subjects. Biopharm. Drug Dispos. 16, 685-694. 

Hueber-Becker, F., Nohynek, G.J., Meuling, W.J., Benech-Kieffer, F., Toutain, H., 
2004. Human systemic exposure to a [140]-para-phenylenediamine-containing 
oxidative bair dye and correlation with in vitro percutaneous absorption in human or 
pig skin. Food Chem. Toxicol. 42, 1227-1236. 

Hunter, J., Savin, J., Dahl, M., 2002. Clinical Dermatology. In: Elliot, J. (Ed.) 3rd ed. 
Oxford: Wiley-Blackwell. 

Idson, B., 1983. Vehicle effects in percutaneous absorption. Drug Metab. Rev. 14, 
207-222. 

178 



Jain, A.K., Thomas, S.N ., Panchagnula, R., 2002. Transdermal drug delivery of 
imipramine hydrochloride. I. Effect of terpenes. J. Controlled Release 79, 93-1 01. 

Jakasa, I., Mohammadi, N., Kruse, 1., Kezic, S., 2004. Percutaneous absorption of 
neat and aqueous solutions of 2-butoxyethanol in volunteers. Int. Arch. Occup. 
Environ. Health 77, 79-84. 

Jewell, C., Heylings, J.R., Clowes, H.M., Williams, F.M., 2000. Percutaneous 
absorption and metabolism of dinitrochlorobenzene in vitro. Arch. Toxicol. 74, 356-
365. 

Johnson, M.E., Blankschtein, D., Langer, R., 1995. Permeation of steroids through 
human skin. J. Pharm. Sci. 84, 1144-1146. 

Jones, A.D., Dick, I.P., Cherrie, J.W., Cronin, M.T.D., Van De Sandt, J.J.M., 
Esdaile, D.J., Lyengar, S., ten Berge, W., Wilkinson, S.C., Roper, C.S., Semple, S., 
de Heer, C., Williams, F.M., 2004. CEFIC Workshop on methods to determine 
dermal permeation for human risk assessment. Held in Utrecht 13-15th June. 
Research Report TM/04/07. 

lung, C.T., Wickett, R.R., Desai, P.B., Bronaugh, R.L., 2003. In vitro and in vivo 
percutaneous absorption of catechol. Food Chem. Toxicol. 41, 885-895. 

Kakubari, 1., Nakamura, N., Takayasu, T., Yamauchi, H., Takayama, S., Takayama, 
K., 2006. Effects of solvents on Skin Permeation of Formoterol Fumarate. Bioi. 
Pharm. Bull. 29, 146 - 149. 

Kai, T., Mak, V.H.W., Potts, R.O., Guy, R.H., 1990. Mechanisms of percutaneous 
penetration enhancement: effect of n-alkanols on the permeability barrier of hairless 
mouse skin. J. Control. Release 12, I 03-112. 

Kang, L., Yap, C.W., Lim, P.F.C., Chen Y.Z., Ho, P.C., Chan, Y.W., Wong, G.P., 
Chan, S.Y., 2007. Formulation development of transdermal dosage forms: 
Quantitative structure-activity relationship model for predicting activities of terpenes 
that enhance drug penetration through houman skin. J. Controlled Release 120, 211-
219. 

Kanikkannan, N., Kandimalla, K., Lamba, S.S., Singh, M., 2000. Structure-activity 
relationship of chemical penetration enhancers in transdermal drug delivery. Curr. 
Med. Chem.7, 593-608. 

Kaplun-Frischoff, Y., Touitou, E., 1997. Testosterone skin permeation enhancement 
by menthol through the formation of a eutectic with drug and interaction with skin 
lipids. J. Pharm. Sci. 86, 1349-99. 

Karande, P., Jain, A., Ergun, K., Kispersky, V., Mitragotri, S., 2005. Design 
principles of chemical penetration enhancers for transdermal drug delivery. Proc. 

Natl. Acad. Sci. U. S. A. 102, 4688-4693. 

179 



Kat, t:J·, Poulsen, B.J., 1971. In: Brodie B.B., Gillette J., (Eds.). Handbook of 
Expenmental Pharmacology, Vol. 28. Springer-Verlag, New York, Part 1, 103. 

Katritzky, A.R., Dobchev, D.A., Fara, D.C., Hur, E., Tamm, K., Kurunczi, L., 
Karelson, M., Varnek, A., Solov'ev, V.P., 2006. Skin Permeation Rate as a Function 
of Chemical Structure. J. Med. Chem. 49, 3305-3314 

Kezic, S., 2008. Eurotox Article: Methods for measuring in-vitro percutaneous 
absorption in humans. Hum. Exp. Toxicol. 27, 289-295. 

Kier, L.B., Hall, L.H., 1999. Molecular Structure Description: the Electrotopological 
State; Academic Press: San Diego. 

Kligman, A.M., 1983. A biological brief on percutaneous absorption. Drug Dev. Ind. 
Pharm. 9, 521-560. 

Knutson, K., Potts, R.O., Gusek, D.B., Golden, G.M., McKie, J.E., Lambert, W.J., 
Higuchi, W.I., 1985. Macro- and molecular physical-chemical considerations in 
understanding drug transport in the stratum corneum, J. Controlled Release 2, 67-87. 

Kou, J.H., Roy, S.D., Du, J., Fujiki, J., 1993. Effect of receiver fluid pH on in Vitro 
skin flux of weakly ionizable drugs. Pharm. Res. 10, 986-990. 

Korinth, G., Schaller, K.H., Drexler, H., 2005. Is the permeability coefficient kp a 
reliable tool in percutaneous absorption studies? Arch. Toxicol. 79, 155-159. 

Kraker, J.J., Hawkins, D.M., Basak, S.C., Nataralan, R., Mills, D., 2006. Chemom. 
Intell. Lab. Syst., online: doi:10.1016/ j.chemolab.2006.03.001. 

Krishnaiah, Y.S.R., Bhaskar, P., Satyanarayana, V., 2004. Penetration-enhancing 
effect of ethanol-water solvent system and ethanolic solution of carvone on 
transdermal permeability of nimodipine from HPMC gel across rat abdominal skin. 
Pharm. Dev. Technol. 9, 63-74. 

Krishnaiah, Y.S.R., Satyanarayana, V., Karthikeyan, R.S., 2002. Effect of the 

solvent system on the in vitro permeability of nicardipine hydrochloride through 

excised rat epidermis. J. Pharm. Pharmaceut. Sci. 5, 123-130. 

Kubinyi, H., 1977. Quantitative structure-activity-relationships 7. Bilinear model, a 

new model for nonlinear dependence of biological-activity on hydrophobic 

character. J. Med. Chem., 20, 625-629. 

Laugel, C., Yagoubi, N., Baillet, A., 2005. 'ATR-FTIR spectroscopy: a chemometric 
approach for studying the lipid organisation of the stratum corneum.' Chem. Phys. 
Lipids, 135, 55-68. 

Laughlin, R.G., 1978. Relative hydrophilicities among surfactants hydrophilic 
groups. In: Brown, G.H. (Ed.). Advances in Liquid Crystals. Academic Press, New 
York. 

180 



Lee, F.W., Earl, L., Williams, F.M., 2001. Interindividual variability in the 
percutaneous penetration of testosterone through human skin in vitro. Toxicology 
168, 63. 

Leo, A.J. 1993. Calculating logPoct from Structures. Chem. ReV. 93, 1281-1306. 

Leveque, N., Makki, S., Hadgraft, J., Humbert, P., (2004). Comparison offranz cells 
and microdialysis for assessing salicylic acid penetration through human skin. Int. J. 
Pharm. 269, 323-328. 

Lien, E.J., Gao, H., 1995. QSAR analysis of the skin permeability of various drugs 
in man as compared to in vivo and in vitro studies in rodent. Pharm. Res. 4, 583-587. 

Linusson, A., Elofsson, M., Andersson, I.E., Dahlgren, M.K., 2010. Statistical 
molecular design of balanced compounds libraries for QSAR modelling. Curr. Med. 
Chem. 17, 2001-2016. 

Liou Y.B., Ho, H.O., Yang, C.J., Lin, Y.K., Sheu, M.T., 2009. Construction of a 
quantitative structure-permeability relationship (QSPR) for the transdermal delivery 
ofNSAIDs. J. Controlled Release 138, 260-267. 

Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J., 1997. Experimental and 
computational approaches to estimate solubility and permeability in drug discovery 
and development settings. Adv. Drug Del. Rev., 23, 3-25. 

Liron, Z., Cohen, S., 1984. Percutaneous absorption of alkanoic acids. 1: A study of 
operational conditions. J. Pharm. Sci. 73, 534-537 

Liron, Z., Cohen, S., 1984. Percutaneous absorption of alkanoic acids 11. application 
of regular solution theory. J. Pharm. Sci. 73, 538-542. 

Liu, P., Long, W., 2009. Current mathematical methods used m QSAR/QSPR 

studies. Int. J. Mol. Sci. 10, 1978-1998. 

Liu, H.X., Zhang, R.S., Yao, X.J., Liu, M.C., Hu, Z.D., Fan B.T., 2003. QSAR study 
of ethyl 2-[(3-Methyl-2,5-dioxo(3-pyrrolinyl))amino]-4-(trifluoromethyl)pyrimidine-
5- carboxylate : an inhibitor of AP-1 and NF-kB mediated gene expression based on 
support vector machines. J. Chem. Inf. Comput. Sci. 43, 1288-1296. 

Livingstone, D.J., 2000. The characterization of chemical structures using molecular 
properties. A survey. J. Chem. lnf. Comput. Sci. 40, 195-209. 

L6pez, A., Faus, V., Diez-Sales, 0., Herraez, M., 1998. Skin permeation model of 

phenyl alcohols: comparison of experimental conditions. lnt. J. Pharm., 173, pp.183-

191. 

Lotte, C., Wester, R.C., Rougier, A., Maibach, H.l., 1993. Racial differences in the 
in vivo percutaneous absorption of some organic compounds: a comparison between 
black, Caucasian and Asian subjects. Arch. Dermatol. Res. 284, 456-459. 

181 



Luan, F., Liu, H.T., Wen, Y.Y., Zhang, X.Y., 2008. Classification of the fragrance 
properties of chemical compounds based on support vector machine and linear 
discriminant analysis. Flavour Fragrance J. 23, 232-238. 

Lundh, T., Boman, A., Akesson, B., 1997. Skin absorption of the industrial catalyst 
dimethylethylamine in vitro in guinea pig and human skin, and of gaseous 
dimethylethylamine in human volunteers. lnt. Arch. Occup. Environ. Health 70, 

309-313. 

Ma, Q.H., Hao, X.Z., Zhou, H.F., Gu, N., 2007. Effect of surfactants on preparation 
and skin penetration of tea polyphenols liposomes. IEEE/ICME International 
conference on complex medical engineering, Vol. 1-4, 209-212. 

MacGrath, J.A., Uitto, J ., 201 0. Anatomy and organization of human skin. In: Bums, 
T., Breathnack, S., Cox, N., Griffitshs, C., (Eds.). Rook's Textbook of Dermatology, 
8th edn., eh. 3. Blackwell, Oxford. 

Magnusson, B.M., Pugh, W.J., Roberts, M.S., 2004. Simple Rules Defining the 
Potential of Compounds for Transdermal Delivery or Toxicity. Pharm. Res. 21, 
1047-1054. 

MDL QSAR, 2.3.0.0.12, Symyx Technologies Inc. merged with Accelrys, Inc. in 
2009, Accelrys Software Inc., San Diego, http://accelrys.com. 

Mehta, M., Kemppainen, B. W., Stafford, R.G. 1991. In vitro penetration of tritium­
labelled water (THO) and [3H]PbTx-3 (a red tide toxin) through monkey buccal 
mucosa and skin. Toxicol. Lett. 55, 185-194. 

Michaels, A.S., Chandrasekaran, S.K., Shaw J.E., 1975. Drug permeation through 
human skin: theory and in vitro experimental measurement. Am. Inst. Chem. Eng. J. 
21, 985-996. 

Mills, P.C. Cross, S.E., (2006) Transdermal drug delivery: Basic principles for the 
veterinarian. Vet. J. 172, 218-233. 

Mini tab 13 .1.0.0 Statistical Software (2008). [Computer software]. State College, 
PA: Minitab, Inc. (www.minitab.com) 

Minitab 15.1.0.0 Statistical Software (2010). [Computer software]. State College, 
PA: Minitab, Inc. (www.minitab.com) 

MOE version 2011.10. Chemical Computing Group Inc. Montreal, Quebec, Canada, 

http://www.chemcomp.com/, 2011. 

Monene, L.M., Goosen, C., Breytenbach, J.C., Hadgraft, J., 2005. Percutaneous 
absorption of cyclizine and its alkyl analogues. Eur. J. Pharm. Sci. 24, 239-244. 

Monteiro-Riviere, N.A., 1986. Ultrastructural evaluation of the porcine integument. 

In: Tumbleson, M.E. (Ed.), Swine in Biomedical Research, vol. 1., Plenum, New 

York, pp. 641-655. 

182 



Monteiro-Riviere, N.A., lnman, A.O., Mak, V., Wertz, P., Riviere, J.E., 2001. Effect 
of selective lipid extraction from different body regions on epidermal barrier 
function. Pharm. Res., 18, 992-998. 

Moody, R.P., 2000. Automated in vitro dermal absorption (AIVDA): predicting skin 
permeation of atrazine with finite and infinite (swimming/bathing) exposure models. 
Toxicol. in Vitro 14, 467-474. 

Moody, R.P., 1997. Automated in vitro dermal absorption (AIVDA): A new in vitro 
method for investigating transdermal flux. Altern. Lab. Anim. 25, 347-357. 

Moody R.P., Nadeau, B., Chu, Ih. 1995. In vivo and In vitro dermal absorption of 
benzo[a]pyrene In rat, quinea pig, human and tissue-cultured skin. J. Dermatol. Sci. 
9, 48-58. 

Moore, W.J., 1972. Physical Chemistry. 5th edition, Longman publishing, Prentice­
Hall. 

Moss, G.P., Cronin, M.T.D., 2002. Quantitative structure-permeability relationships 
for percutaneous absorption: re-analysis of steroid data. Int. J. Pharm. 23 8, 105-109. 

Moss, P.G., Dearden, J.C., Patel, H., Cronin, M.T.D., 2002. Quantitative structure­
permeability relationships (QSPRs) for percutaneous absorption. Toxicol. In-Vitro 
16, 299-317. 

Moss, T., Howess, D., Williams, F.M., 2000. Percutaneous penetration and dermal 
metabolism of triclosan. J. Pharmacol. Exp. Ther. 38, 361-370. 

Narishetty, S.T.K., Panchagnula, R., 2004. Transdermal delivery of zidovudine: 
Effect of terpenes and their mechanism of action. J. Controlled Release 95, 367-379. 

Narishetty, S.T.K., Panchagnula, R., 2005. Effect of L-menthol and 1,8-cineole on 
phase behaviour and molecular organization of SC lipids and skin permeation of 
zidovudine. J. Controlled Release 102, 59-70. 

Nathan, D., Sakr, A., Lichtin, J.L., Bronaugh, R.L., 1990. In vitro skin absorption 
and metabolism of benzoic-acid, p-aminobenzoic acid, and benzocaine in the hairless 
guinea-pig. Pharm. Res. 7, 114 7-1151. 

Neumann, D., Kohlbacher, 0., Merkwirth, C., Lengauer, T., 2006. A Fully 
Computational Model for Predicting Percutaneous Drug Absorption, J. Chem. Inf. 
Model. 46, 424-429. 

Nielsen J.B., Nielsen, F., Sorensen, J.A., 2004. In vitro percutaneous penetration of 
five pe�ticides - Effects of molecular weight and solubility characteristics. Ann. 
Occup. Hyg. 48, 697-705. 

Nokhodchi, A., Sharabiani, K., Rashidi, M.R., Ghafourian, T., 2007. The effect of 

terpene encentration on the skin penetration of diclofenac sodium. lnt. J. Pharm. 335, 

97-105. 

183 



Nokhodchi, A., Shokri, J., Barzegar-Jalali, M., Ghafourian, T., 2003. The 
enhancement effect of surfactants on the penetration of Iorazepam through rat skin, 
lnt. J. Pharm. 250, 359-369. 

OECD, 2004a. OECD Guidance Document No.28: Guidance Document for the 
Conduct of Skin absorption studies, OECD Paris, 2004. 

�ECD, 2004b. OECD guideline for the testing of chemicals. Skin absorption: in 

vztro method. 428. Adopted: 13 April 2004. Paris, Organisation for Economic Co­
operation and Development. 1-8. 

Okabe,
. 

H., Obata, Y., Takayama, K., Nagai, T., 1990. Percutaneous absorption 
enhancmg effect and skin irritation of monocyclic monoterpenes. Drug Des. 
Delivery 6, 229-238. 

Opdam, J.J., 1991. Linear systems dynamics in toxicokinetic studies. Ann. Occup. 
Hyg. 35, 633-649. 

Otzen, D.E., Sehgal, P., Westh, P., 2009. a-Lactalbumin is unfolded by all classes of 
detergents but with different mechanisms, J. Coli. lnt. Sci. 329, 273-283. 

Parisis, S.A., Maniati, M.A., Kyriakidis, V., Constantopoulos, S.H., 1995. 
Pulmonary damage due to paraquat poisoning through skin absorption. Respiration 
62, 101-103. 

Patil, S., Singh, P., Szolar-Platzer, C., Maibach, H.I., 1996. Epidermal enzymes as 
penetration enhancers in transdermal drug delivery. J. Pharm. Sci. 85, 249-252. 

Pedretti, A., Villa, L., Vistoli, G., 2002. Modeling of binding modes and inhibition 
mechanism of some natural ligands of farnesyl transferase using molecular docking. 
J. Med. Chem. 45, 1460-1465. 

Pendlington R.U., Sanders, D.J., Bourner, C.B., Saunders, D.R., Peace, C.K., 2004. 
Development of a repeat dose in vitro skin penetration model. In: Brain, K.R., 
Waiters, K.A. (Eds. ). Perspectives in Percutaneous Penetration vol. 9a. Abstracts of 
presentations at the ninth international perspectives in percutaneous penetration 
conference held in La Grande Motte, April 2004. Cardiff, STS Publishing, 79-92. 

Potts, R.O., 1989. Physical characterization of the stratum corneum: the relationship 
of echanical and barrier properties to lipid and protein structure. In: Hadgraft, J., 
Guy, R.H., (Eds.). Transdermal Drug Delivery. Marcel Dekker, New York, 23-58. 

Potts, R.O., Guy, R.H., 1992. Predicting skin permeability. Pharm. Res. 9, 663-669. 

Potts, R.O., Guy, R.H., 1995. A predictive algorithm for skin permeability - The 
effects of molecular size and hydrogen bond activity. Pharm. Res. 12, 1628-1633. 

PubChem Home Page. http://pubchem.ncbi.nlm.nih.gov/ (Accessed Sep 2010). 

184 



Pugh, W.J., �obe�s, M.S., Hadgraft, J., 1996. Epidermal permeability - penetrant 
structure relatwnshtps: 3. The effect of hydrogen bonding interactions and molecular 
size on diffusion across the stratum corneum. Int. J. Pharm. 138, 149-165. 

Pugh, W.J., Wong, F.F., Michniak, B.B., Moss, G.P., 2005. Discriminant analysis as 
a tool to identify compounds with potential as transdermal enhancers. J. Pharm. 
Pharmacol. 57, 1389-1396. 

Qiao, G.L., Brooks, J.D., Baynes, R.E., Monteiro-Riviere, N.A., Williams, P.L., 
Riviere, J.E., 1996. The use of mechanistically defined chemical mixtures (MDCM) 
to assess component effects on the percutaneous absorption and cutaneous 
disposition of topically-exposed chemicals: I. Studies with parathion mixtures in 
isolated perfused porcine skin. Toxicol. Appl. Pharmacol. 141, 4 73- 486. 

Rajadhyaksha, M., Gonzalez, S., Zavislan, J.M., Anderson, R.R., Webb, R.H., 1999. 
In vivo confocal scanning laser microscopy of human skin 11: Advances in 
instrumentation and comparison with histology. J. Invest. Dermatol. 113, 293-303. 

Rawlings, A.V., Matts, P.J., 2005. Stratum corneum moisturization at the molecular 
level: an update in relation to the dry skin cycle. J. Invest. Dermatol. 124, 1099-
1110. 

Raykar, P.V., Fung, M.C., Anderson, B.D., 1988. The role of protein and lipid 

domains in the uptake of solutes by human stratum corneum. Pharm. Res., 5, 140-

150. 

Reddy, M.B., Stinchcomb, A.L., Guy, R.H., Bunge, A.L., 2002. Determining dermal 
absorption parameters in vivo from tape stripping. Pharm. Res. 19, 292-298. 

Rerek, M.E., Wyck, D.V., Mendelsohn, R., Moore, D.J., 2005. 'FTIR spectroscopic 
studies of lipid dynamics in phytosphingosine ceramide models of the stratum 
corneum lipid matrix.' Chem. Phys. Lipids, 134, 51-58. 

Ritshel, W.A., Sabouni, A., Hussain, A.S., 1989. Percutaneous absorption of 
coumarin, griseofulvin and propranolo across human scalp and abdominal skin. 
Methods Find. Exp. Cl in. Pharmacol. 11, 643-646. 

Riviere, J.E., Baynes, R.E., Brooks, J.D., Yeatts, J.L., Monteiro-Riviere, N.A., 2003. 
Percutaneous absorption of topical diethyl-m-toluamide( -DEET): effects of exposure 
variables and coadministered toxicants. J. Toxicol. Environ. Health A 66, 131-151. 

Riviere, J.E., Brooks, J.D., 2005. Predicting skin permeability from complex 
chemical mixtures. Toxicol. Appl. Pharmacol. 208, 99-110. 

Riviere, J.E., Brooks, J.D., 2007. Prediction of dermal absorption from complex 
chemical mixtures: incorporation of vehicle effects and interactions into a QSPR 
framework. SAR QSAR Environ. Res., 18, 31-44. 

Riviere, J.E., Brooks, J.D. 2010. Chemical mixture absorption dataset, 
http://www.lib.ncsu.edu/resolver/1840.2/2297 

185 



Rivie�e, J.E.,
. 

Brooks, J.D., 2011. Predicting skin permeability from complex 
chen:ucal 

. 
mtxtures: Dependency of quantuitative structure permeability 

relat1onsh10ps (QPSR) on biology of skin model used. Toxicol. Sci. 119, 224-232. 

Riviere, J.E., Monteiro-Riviere, N.A., 2002. Gulf War related exposure factors 
influencing topical absorption of 14C permethrin. Toxicol. Lett. 135, 61-71. 

Riviere, J.E., Papich, M.G., 2001. 'Potential and problems of developing transdermal 
patches for veterinary applications.' Adv. Drug Delivery Rev. 50, 175-203. 

Riviere, J.E., Qiao, G.L., Baynes, R.E., Brooks, J.D., Mumtaz, M., 2001. Mixture 
component effects on the in vitro dermal absorption of pentachlorophenol. Arch. 
Toxicol. 75, 329- 334. 

Roberts, D.W., Patlewicz, G., 2002. Mechanism based structure-acttvtty 
relationships for skin sensitisation - The carbonyl group domain. SAR QSAR 
Environ. Res. 13, 145-152. 

Roberts, M.S., Cross, S.E., Pellett, M.A., 2002. Skin transport. In: Waiters, K.A., 
(Ed.). Dermatological and transdermal formulations. New York, Marcel Dekker, 89-
195. 

Roberts, M.S., Walker, M., 1993. Water- the most natural penetration enhancer. In: 
Waiters K. A., Hadgraft J., (Eds.). Pharmaceutical skin penetration enhancement. 
New York, Marcel Dekker. 1-30. 

Rolf, D., 1988. Chemical and physical methods of enhancing transdermal drug 
delivery, Pharm. Technol. 12, 131-140. 

Rosado, C., Cross, S.E., Pugh, W.J., Roberts, M.S., Hadgraft, J., 2003. Effect of 
vehicle pretreatment on the flux, retention, and diffusion of topically applied 
penetrants in vitro. Pharm. Res. 20, 1502- 1507. 

Rosen, M. 2005. Technology, Applications and Formulations (Personal Care and 
Cosmetic Technology). In Rosen, M., (Ed.). Delivery System Handbook for Personal 
Care and Cosmetic Products. New York, USA: William Andrew, Inc. 

Roskos, K.V., Maibach, H.I., Guy, R.H., 1989. The effect of aging on percutaneous 
absorption in man. J. Pharmacokinet. Biopharm. 17, 617-630. 

Rowe, R.C., Sheskey, P.J., Quinn, M.E., 2009. Handbook of pharmaceutical 
excipients. 6th edition. Pharmaceutical press. 

Roy, K., Sanyal, 1., Roy, P.P., 2006. QSPR of the bioconcentration factors of non­
ionic organic compounds in fish using extended topochemical atom (ET A) indices. 
SAR QSAR Environ. Res. 17, 563-582. 

Santos, P., Watkinson, A.C., Hadgraft, J., Lane, M.E., 2010. Oxybutynin permeation 
in skin: The influence of drug and solvent activity. Int. J. Pharm. 384, 67-72. 

186 



Sartorelli, P., Andersen, H.R., Angerer, 1., Corish, J., Drexler, H., Goen, T., Griffin, 
P., Hotchkiss, S.A.M., Larese, F., Montomoli, L., Perkins, J., Schmeiz, M., van de 
Sandt, J., Williams, F., 2000. Percutaneous penetration studies for risk assessment. 
Environ. Toxicol. Pharmacol. 8, 133-152. 

Sartorelli, P., Aprea, C., Bussani, R., Novelli, M.T., Orsi, D., Sciarra, G., 1997. In 
vitro percutaneous penetration of methyl-parathion from a commercial formulation 
throiugh the human skin. Occup. Environ. Med. 54, 524-525. 

SCCNFP, 2003. Basic criteria for the in vitro assessment of dermal absorption of 
cosmetic ingredients, updated October 2003, adopted by the SCCNFP during the 251h 

plenary meeting of 20 October 2003. Scientific Committee on cosmetic products and 
non-food products intended for consumers, pp 1-9 (SCCNFP/0750/03). 

Scheuplein, R.J ., Blank, I. H., 1971. Permeability of the skin. Physiol. Rev. 51, 702-

747. 

Scheuplein, R.J., Blank, I.H., Brauner, G.J., MacFarlane, D.J., 1969. Percutaneous 
Absorption of Steroids. J. Invest. Dermatol. 52, 63-70. 

Schmook, F.P., Meingassner, J.G., Billich, A., 2001. Comparison of human skin or 
epidermis models with human and animal skin in in-vitro percutaneous absorption. 
lnt. J. Pharm. 215, 51-56. 

Scott, R.C., Dugard, P.H., Ramsey, J.D., Rhodes, C., 1987. In vitro absorption of 
some o=phthalate diesters through human and rat skin. Environ. Health Perspect. 74, 

223-227. 

Shah, P. Vinod., 1994. Skin Penetration Enhancers: Scientific Perspectives. In Hsieh 
D.s., (Ed.). Drug Permeation Enhancement Theory and Applications, Center for 
Drug Evaluation and Research, Food and Drug Administration, Rockville, Maryland, 

Decker, Vol 62, 19-24. 

Shokri, J., Nokhodchi, A., Dashbolaghi, A., Hassan-Zadeh, D., Ghafourian, T., 
Barzegar-Jalali, M., 2001. The effect of surfactants on the skin penetration of 

diazepam. lnt. J. Pharm. 228, 99-107. 

Sigma-Aldrich Home Page. http://www.sigmaaldrich.com/sigma-aldrich/home.html 

(Accessed Sep 201 0). 

Sinko, P.J., 2011. Martin's Physical Pharmacy and Pharmaceutical Sciences, 61h 

edition, Lippincott Williams & Wilkins publications 226. 

Skelly J.P., Shan, V.P., Guy, R.H., Wester, R.C., Flynn, G., Yacobi, A., 1987. FDA 

and AAPS report of the workshop on principles and practises of in vitro 

percutaneous penetration studies: relevance to bioavailability and bioequivalence. 

Pharm. Res. 4, 265-267. 

187 



Sloan, K.B., Koch, S.A., Siver, K.G., Flowers, F.P., 1986. Use of solubility 
parameters of drug and vehicle to predict flux through skin. J. Invest. Dermatol. 87, 
244-252. 

Slovokhotov, Y.L., Batsanov, A.S., Howard, J.A.K., 2007. Molecular van der Waals 
symmetry affecting bulk properties of condensed phases: melting and boiling points. 
Struct. Chem. 18, 477-491. 

Soyei, S., Williams, F., 2004. A database of percutaneous absorption, distribution 
and physicochemical parameters. In: Brain, K.R., Waiters, K.A. (Eds.). Perspectives 
in percutaneous penetration. Vol. 9a. Abstracts of presentations at the ninth 
international perspectives in percutaneous penetration conference held in La Grante 
Motte, April 2004. Cardiff, STS Publishing, 84. 

StatSoft, Inc. (201 0). STATISTICA (data analysis software system), version 9.1. 
www.statsoft.com. 

Steiling, W., Kreutz, J., Hofer, H., 2001. Percutaneous penetration/dermal absorption 
of hair dyes in vitro. Toxicol. in Vitro 15, 565-570. 

Stinecipher, J., Shah, J., 1997. Percutaneous permeation ofN,N-diethyl-m-toluamide 
(DEET) from commercial mosquito repellents and the effect of solvent. J. Toxicol. 
Environ. Health, 52, 119-135. 

Stott, W., Williams, A.C., Barry, B.W., 1997. Transdermal delivery from eutectic 
systems: Enhanced permeation of a model drug, ibuprofen. J. Controlled Release 50, 
297-308. 

Stoughton, R.B., 1982. In: Farber, E.H., (Ed.). Psoriasis, Grune and Stration, New 
York, 346-398. 

Surber, C., Wilhelm, K.P., Maibach, H.I., 1991. In-Vitro Skin Pharmacokinetic Of 
Acitretin: Percutaneous Absorption Studies In Intact And Modified Skin From Three 
Different Species Using Different Receptor Solutions. J. Pharm. Pharmacol. 43, 836-

840. 

Syracuse Research Corporation, 2009. SRC PhysProp 

http://www.syrres.com/what-we-do/databaseforms.aspx?id=386, 

September 2009. 

Syracuse Research Corporation, 2009. SRC PhysProp 

http://www.syrres.com/what-we-do/databaseforms.aspx?id=386, 

November 201 0 - February 2011. 

database, 

Accessed 

database, 
retrieved 

Sznitowska, M., Janicki, S., Baczek, A., 2001. Studies on the effect of pH on the 
lipoid al route of penetration across stratum corneum. J. Controlled Release 76, 327-
335. 

188 



Tang, �·' 
. .  

Blankschtein, D., Langer, R., 2002. Prediction of steady-state skin 
permeabthtles of polar and nonpolar permeants across excised pig skin based on 
measurements of transient diffusion: Characterization of hydration effects on the 
skin porous pathway. J. Pharm. Sci. 91, 1891-1907. 

Tanojo, H., Bouwstra, J.A., Junginger, H.E., Bodde, H.E., 1997. In vitro human skin 
barrier modulations by fatty acids: skin permeation and thermal analysis studies. 
Pharm. Res. 14, 42-49. 

Tayar, N.El., Tsai, R.S., Testa, B., Carrupt, P.A., Hansch, C., Leo, A., 1991. 
Percutaneous penetration of drugs - A quantitative structure permeability 
relationship study. J. Pharm. Sci. 80, 744-749. 

Thakur, A., Thakur, M., Khadikar, P.V., Supuran, C.T., Sudele, P., 2004. QSAR 
study on benzenesulphonamide carbonic anhydrase inhibitors: topological approach 
using Balaban index. Bioorg. Med. Chem. 12, 789-793. 

Todeschini, R., Consonni, V., 2000. Handbook of molecular descriptors. Wiley­

VCH 

Trauer, S., Patzelt, A., Otberg, N., Knorr, F., Rozycki, C., Balizs, G., Buttemeyer, 
R., Linscheid, M., Liebsch, M., Lademann, J., 2009. Permeation of topically applied 
caffeine through human skin - a comparison of in vivo and in vitro data. Br. J. Clin. 
Pharmacol. 68, 181-186. 

TSAR 3D, Release 3.3, 2008. Accelrys Software Inc., San Diego, 
http://accelrys.com. 

Tuppurainen, K., Korhonen, S.P., Ruuskanen, J., 2006. Performance of multi 
component self-organizing regression (MCSOR) in QSAR, QSPR, and multivariate 
calibration: comparison with partial least-squares (PLS) and validation with large 
external data sets. SAR QSAR Environ. Res. 17, 549-561. 

Tur, E., Maibach, H., Guy, R.H., 1991. Percutaneous penetration of methyl 

nicotinate at 3 anatomic sites - evidence for an appendageal contribution to 

transport. Skin Pharmacol., 4, 230-234. 

USEPA, 1998. Health effects test quidelines. OPPTS 870.7600. Dermal penetration. 
Washington, DC, United States Environmental Protection Agency, Office of 
Prevention, Pesticides and Toxic Substances, 1-12 
(http://www.epa.gov/opptsfrs/publications/OPPTS_Harmonized/870_Health_Effects 
_Test_ Guidelines/Series/870-7600.pdf). 

Vaddi, H.K., Ho, P.H., Chan, Y.W., Chan, S.Y., 2002. Terpenes in ethanol: 
haloperidol permeation and partition through human skin and stratum corneum 
changes. J. Controlled Release 81, 121-133. 

van der Merwe, D., Riviere, J.E., 2005. Comparative studies on the effects of water, 

ethanol and water/ethanol mixtures on chemical partitioning into porcine stratum 

corneum and silastic membrane. Toxicol. in Vitro, 19, 69-77. 

189 



van de Sandt, J.J.M., van Burgsteden, J.A., Carmichael, P.L., Dick, 1., Kenyon, S., 
Korinth, G., Larese, F., Limasset, J.C., Maas, W.J.M., Montomoli, L., Nielsen, J.B., 
Payan, J.P., Robinson, E., Sartorelli, P., Schaller, K.H., Wilkinson, S.C., Williams, 
F.M., 2004. In vitro predictions of skin absorption of caffeine, testosterone, and 
benzoic acid: a multi-centre comparison study. Regul. Toxicol. Pharmacol. 39, 271-

281. 

van de Sandt, J.J.M., Rutten, A.A.J.J.L., Van Ommen, B., 1993. Species-Specific 
Cutaneous Biotransformation of the Pesticide Propoxure during Percutaneous 

Absorption in Vitro. Toxicol. Appl. Pharmacol. 123, 144-150. 

Vapnik, V., 1998. Statistical learning theory. Wiley, NewYork, 1998. 

Vapnik, V., 1999. The support Vector method of function estimations. U.S. Patent 

5,950,146. 

Vickers, A.E.M., Sinclair, J.R., Zollinger, M., Heitz, F., GHinzel, U., Johanson, L., 
Fischer, V., 1999. Multiple cytochrome p-450s involved in the metabolism of 
terbinafine suggest a limited potential for drug-drug interactions, Drug Metab. 
Dispos. 27. 1029-1038. 

Wagner, H., Kostka, K.H., Lehr, C.M., Schaefer, U.F., 2000. Drug distribution in 
human skin using two different in vitro test systems: comparison with in vivo data. 
Pharm. Res. 17, 1475-1481. 

Waiters, K. A., 1989. Penetration enhancers and their use in transdermal therapeutic 
systems, in Transdermal Drug Delivery. In Hadgraft, J., Guy, R.H., (Eds.). Marcel 
Dekker, New York, 197-246. 

Watkinson, R.M., Herkenne, C., Guy, R.H., Hadgraft, J., Oliveira, G., Lane, M.E., 
2009. Influence of ethanol on the solubility, ionization and permeation 
characteristics of ibuprofen in silicon and human skin. Skin Pharmacol. Physiol. 22, 
15-21. 

Whitehead, T., 1975. Letter: long-acting phenothiazines, Br. Med. J. 2, 502. 

Weaver, S., Gleeson, M.P., 2008. The importance of the domain of applicability in 

QSAR modeling. J. Mol. Graph. Model., 26, 1315-1326. 

Wegener, M., Neubert, R., Rettig, W., Wartewig, S., 1997. Structure o! stratum 
corneum lipids characterized by FT-Raman spectroscopy and DSC. Ill. Mixtures of 

ceramides and cholesterol. Chem. Phys. Lipids 88, 73-82. 

Wester, R.C., Maibach, H.l., Melendres, J., Sedik, L., Knaak, J., Wang, R., 1992. In 

vivo and In vitro percutaneous absorption and skin evaporation of isofenphos in 

man. Fundam. Appl. Toxicol. 19, 521-526. 

Wester, R.M., Tanojo, H., Maibach, H.l., Wester, R.C., 2000. Predicted chemical 
warfare agent VX toxicity to uniformed soldier using parathion in vitro human skin 
exposure and absorption, Toxicol. Appl. Pharmacol. I 68, 149-152. 

190 



Wiechers, J. W., 2005. Optimizing Skin Delivery of Active Ingredients From 
Emulsions. In: Rosen M. R., (Ed.). Delivery system handbook for personal care and 
cosmetic products. William Andrew, 410-433. 

Wilkinson, S.C., Mass, W.J.M., Nielsen, J.B., Greaves, L.C., van de Sandtt J.J.M., 
Williams F.M., 2004. Influence of skin thickness on percutaneous penetration in 

vitro. In: Brain K.R., Waiters K.A., (Eds.). Perspectives in percutaneous penetration. 
Vol. 9a. Abstracts of presentations at the ninth international perspectives in 
percutaneous penetration conference held in La Grande Motte, Appril 2004. Cardiff, 
STS Publishing, 83. 

Wilkinson, S.C., Mass, W.J., Nielsen, J.B., Greaves, L.C., van de Sandt J.J., 
Williams F.M., 2006. Interactions of skin of skin thickness and physicochemical 
properties of test compounds in percutaneous penetration studies. Int. Arch. Occup. 
Environ. Health 79, 405-413. 

Wilkinson S.C., Williams, F.M., 2002. Effects of Experimental Conditions on 
Absorption of Glycol Ethers Through Human Skin In Vitro. Int. Arch. Occup. 
Environ. Health 75, 519-527. 

Williams, A .C, Barry, B.W., 1991. Terpenes and the lipid-protein-partitioning 
theory of skin penetration enhancement. Pharm. Res. 8, 17-24. 

Williams, A.C., Barry, B.W., 2004. Penetration enhancers. Adv. Drug Delivery Rev. 
56, 603-618. 

Williams, F .M., 2006. In vitro studies - how good are they at replacing in vivo 
studies for measurement of skin absorption? Environ. Toxicol. Pharmacol. 21, 199-
203. 

Wilschut, A., Berge, W.F., Robinson, P.J., McKone, T.E., 1995. Estimating skin 
permeation. The validation of five mathematical skin permeation models. 
Chemosphere, 30, 1275-1296. 

Xia, X.R., Baynes, N.A., Monteiro-Riviere, N.A., Riviere, J.E., 2007. A system 
coefficient approach for quantitative assessment of the solvent effects on membrane 
absorption from chemical mixtures. SAR and QSAR Environ. Res. 18, 579-593. 

Yao, X.J., Panaye, A., Doucet, J.P., Zhang, R.S., Chen, H.F., Liu, M.C., Hu, Z.D., 
Fan, B.T., 2004. J. Comparative study of QSAR/QSPR correlations using support 
vector machines, radial basis function neural networks and multiple linear 
regression. Chem. lnf. Comput. Sci. 44, 1257-1266. 

Zhai, H., Maibach, H.I., (200 1 ). Effects of skin occlusion on percutaneous 
absorption: an overview. Skin Pharmacol. Appl. Skin Physiol. 14, 1-10. 

Zhang, Q., Grice, J.E., Wang, G., Roberts, M.S., 2009. Cutaneous metabolism in 
transdermal drug delivery, Curr. Drug Metab. I 0, 227-235. 

191 



Zefirov, N.S., Palyulin, V.A., 2001. QSAR for boiling points of ·small' sulphides. 
Are the 'high-quality structure-property-activity regressions' the real high quality 
QSAR models? J. Chem. Inf. Comput. Sci. 41, 1022-1027. 

Zendian, R.P., 2000. Dermal absorption of pesticides in the rat. Am. Ind. Hyg. 
Assoc. J. 61,473-483. 

Zinke, S., Gemer I., and Schlede, E., 2002. Evaluation of a rule base for identifying 
contact allergens by using a regulatory database: Comparison of data on chemicals 
notified in the European Union with 'structural alerts' used in the DEREK expert 
system. A TLA, Altem. Lab. Ani m. 30, 285-298. 

192 



Appendix I. (Chapter 4) 

Table of Observed and Predicted values of log k using selected models ( 4.2) ( 4.3) 
and(4.6) P ' 

Terpene Observed log Calculated log Calculated log Calculated log 
kl! k11 eg. 4.2 k11 eg. 4.3 k11 eg. 4.6 

(±)-linalool -8.97 -8.2507 -7.41963 -9.06905 
( + )-dihydrocarveol -8.71 -8.4224 -8.31341 -7.26405 

Carvacrol -8.44 -7.4005 -7.59137 -7.17269 
Cyclohexanemethanol -8.08 -8.324 -8.10577 -6.88104 

Eucarvone -7.6 -7.8927 -7.54669 -7.96921 
longifolene -7.42 -6.1803 -6.45695 -6.83037 

( + )-dihydrocarvone -7.17 -8.3596 -8.31665 -7.20122 
(-)-caryophyllene oxide -6.78 -5.7301 -6.15407 -6.56110 

(S)-(-)-perillaldehyde -6.59 -5.7767 -5.90326 -7.28409 
Mycrene -5.43 -5.9501 -6.07925 -5.58414 

Octisalate -5.19 -5.5916 -5.10692 -6.40621 
a-phe llandrene -4.96 -6.0948 -6.46148 -5.61650 
Retinoic acid -12.13 -10.2614 -9.99137 -8.86625 

�-carotene -11.15 -9.6582 -9.97142 -9.60389 

(-)-guaiol -8.88 -6.5885 -6.53369 -7.10427 

(-)-dihydrocarveol -8.87 -8.423 -8.31393 -7.21064 

Menthone -8.72 -7.8591 -7.80519 -7.17515 

squalene -8.56 -9.5242 -9.48878 -7.01425 

isolongifolol -8.55 * * -8.41447 

(-)-a-thujone -8.52 -7.6361 -7.67455 -8.40008 

(-)-isopulegol -8.35 -7.4614 -7.41958 -7.13739 

Thymol -8.29 -7.0478 -7.29079 -7.25570 

(I R)-(-)-myrtenol -8.28 -7.2154 -7.07304 -7.27875 

(+)-cedrol -7.96 -6.9266 -6.67125 -8.26703 

Nerol -7.8 -7.0573 -6.85331 -6.52506 

J3-citronellol -7.66 -7.1314 -6.84855 -6.45056 

(-)-a-santonin -7.58 -8.0124 -8.14328 -7.21100 

( R)-(-)-carvone -7.56 -8.2472 -8.3026 -7.12701 

Geraniol -7.43 -7.1316 -6.91752 -6.71124 

( + )-aromadendrene -7.4 -7.6803 -8.08491 -7.14859 

L-(-)-menthol -7.34 -7.709 -7.64647 -7.01487 

(-)-trans-caryophy llene -7.28 -6.7815 -7.09781 -6.56528 

( + )-�-cedrene -7.01 -7.5759 -7.84226 -7.52366 

Terpinolene -7.01 -6.2493 -6.63375 -5.46699 

(-)-a-cedrene -6.89 -7.3558 -7.65221 -7.20580 

Famesol -6.72 -6.5146 -6.40013 -6.57075 

Retinol -6.71 -9.1062 -8.88538 -8.25553 

( R)-( + )-pulegone -6.63 -6.9729 -7.16196 -6.58421 

(-)-carveol -6.45 -8.4006 -8.38836 -7.14288 

a-humulene -6.23 -7.3645 -7.31997 -6.53951 

( + )-cedry I acetate -5.52 -5.0876 -4.95672 -7.06468 

Ocimene -5.41 -5.4926 -5.71284 -5.64836 

(I R)-(-)-myrtenal -5.29 -5.5196 -5.53068 -6.83553 

(±)-a-bisabolol -5.25 -6.477 -6.47828 -7.22693 

Phytol -5.13 -5.6963 -5.55615 -6.84787 

Citral -5.08 -4.8277 -4.87863 -6.016113 

(S)-(-)-citronellal -4.83 -5.1049 -4.99207 -5.90627 

(±)-nerolidol -4.59 -7.0292 -6.46598 -6.71934 

(-)-eEiglobulol -4.41 -6.0449 -6.13801 -6.75915 
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Appendix 11. Training Set Models (Chapter 7) 

Models obtained for the training set have been presented here. These models were 

used for the estimation of log flux for the test set and the Mean Absolute Error 

(MAE) of estimation for test set was calculated (Table 5 in the paper). 

Model based on equation (7 .5) 

Log flux=- 1.35 + 0.000001 [donor] -0.00489 Weight+ 0.0140 SlogP _ VSA4- 1.73 
fiAB + 0.00254 BP-MP(mix) + 3.69 vsurf_ G- 0.435 V AdjMa 

N=342, S = 0.962649, r2 = 0.544, F = 56.8, P = 0.000 

Model based on equation (7 .6) 

Log flux = - 1.09 + 0.000001 [donor] - 0.00478 Weight + 0.0142 SlogP _ VSA4 -
1.74 fiAB + 0.00197 BP-MP(mix) + 3.54 vsurf_G - 0.391 VAdjMa - 0.228 
Thickness 

N = 342, S = 0.955921, r2 = 0.551, F = 51.2, P = 0.000 

Model based on equation (7. 7) 

Log flux = - 0.52 + 0.000001 [donor] - 0.00510 Weight + 0.0107 SlogP _ VSA4 -
1.72 fiAB + 0.00239 BP-MP(mix) + 3.26 vsurf_G - 0.382 VAdjMa - 0.358 

Infinite/Finite 

N = 341, S = 0.953, r2 = 0.555, F=51.8, P = 0.000 
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Tree graph for log Flux 

Num. of non-terminal nodes: 4, Nu m. of terminal nodes: 5 

Model: C&RT 
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Figure I. Model based on C&RT (7.1) 
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Tree graph for log Flux 

Num. of non-terminal nodes: 4, Num. of terminal nodes: 5 

Model: C&RT 

<= 121900 

<= 0.850 

0=2 N=29 

Mu=1.174 

Var: 1.790 

[donor) 

0=1 N=38.: 

> 121900 

Mu=0.941 

Var: 2.027 

Thickness 

> 0.850 

0=3 N=9C 

<= -0.370 

Mu=0.184 

Var: 2.049 

GCUT _PEOE_1 

> -0.370 

0=4 N=16< 0=5 N=111 0=6 N=� 0=7 N=3E 

<= 855.190 

Mu=0.945 

Var=0.947 

Mu=0.523 

Var: 1.235 

vsurf_W1 

0=9 

> 855.190 

Mu=-0.044 

Var=1.062 

N=7( 

Mu=2.280 

Var=0.729 

Mu=-0.677 

Var=0.686 

Mu=1.476 

Var=1.311 

Figure 2. Model based on C&RT (7.2) 
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prot�in d?�ains of se. solubility and therefore the thermody­
namic act1v1ty of the penetrant in the mixture, and partitioning of 
the penetrant from the vehicle into the SC. Chemical enhancers, 
for example, can cause a dynamic structural disorder in the se 

lipid domain that will lead to enhanced transdermal permeation 
(Bezema et al., 1996). 

A problem that emerges at this stage is the difficulty of accu­
rately predicting the diffusivity and partitioning as they are both 
ultimately dependent on the skin structure, changes to the skin 
caused by various solvents and permeants, changes of the for­
mulation containing the permeant, and the effect of metabolizing 
enzymes on permeants. From the above, given also the almost 
unlimited possible combinations of solvent mixtures and perme­
ants. it can be assumed that the accurate prediction of diffusion 
and partition from permeant and solvent chemical data is uncer­
tain (Van der Merwe and Riviere, 2005). On the other hand large 
sets of empirical data provide us with valuable certainty in the pro­
cess of identifying characteristics of permeant and vehicle systems 
that have consistent effects across a wide range of experimental 
conditions. 

Empirical data of permeant and solvent has been used exten­
sively with success in predicting skin permeability. This is often 
carried out through the use of QSAR where skin permeation pro­
file is related to the molecular properties of compounds, given that 
the skin permeation is measured at consistent experimental con­
ditions. QSAR has been efficiently used to model skin permeation 
of chemicals from simple systems such as saturated aqueous solu­
tions (El Tayar et al., 1991: Abraham et al., 1995, 1999; Ghafourian 
and Fooladi. 2001: Moss and Cronin, 2002). Potts and Guy (1992) 
developed the first widely accepted QSAR model for predicting 
skin permeability coefficient (kp). a linear regression model that 
consisted of lipophilicity measured by octanolfwater partition coef­
ficient and molecular weight. The Potts and Guy model is based on 
the data collated by Flynn (1990) consisting in vitro skin perme­
ability coefficients of 94 compounds from aqueous solutions. On 
the other hand, a systematic approach to investigate the effect of 
mixture components is essential. This is not only due to the fact 
that most chemicals that the skin is exposed to are in mixtures, 
but also because of the impact of such mixture constituents on the 
skin absorption. Despite the availability ofQSAR models represent­
ing the effect of chemical enhancers on the permeation of drugs 
(Ghafourian et al., 2004; Pugh et al., 2005), due to the lack of suffi­
cient high quality data, such models for the effect of other mixture 
ingredients such as solvents are not available in the literature. 

In a recent work. Riviere and Brooks (2005, 2007) investigated 
in vitro permeation of several chemicals from chemical mixtures 
containing various concentrations of different solvents, a surfactant 
(sodium lauryl sulfate. SLS) and a vasodilator(methyl nicotinic acid) 
(Tur et al., 1991 ). This comprehensive dataset provides an oppor­
tunity for understanding the effect of mixture components on the 
skin permeation through QSAR modelling. The aim of this investi­
gation was to develop QSAR models to study the effect of mixture 
components on skin absorption of penetrants. The model will help 
identify the mechanisms involved in the permeation through skin 
and the effect of formulation factors. 

2. Methods 

2.1. The dataset 

Skin permeation data of 12 different penetrants (Table 1) each 
blended in 24 different solvent mixtures (Table 2 ), were used in this 
investigation. Experimental details are fully described in Riviere 
and Brooks ( 2005 ). The permeability data consisted of

_ 
appar�nt 

skin permeation rate constants (kp) in cm/h measured usmg �mte­
dose in vitro porcine skin flow through diffusion cells. The skm was 

Table 1 
Penetrants. 

Atrazine 

Chlorpyrifos 
Ethyl parathion 
Fenthion 
Methyl parathion 
Nonylphenol 

Pentachlorophenol 

Phenol 
p-Nitrophenol 
Propazine 

Simazine 
Triazine 

perfused using a Krebs-Ringer bicarbonate buffer spiked with dex­
trose and bovine serum albumin, and topically dosed nonoccluded 
with 20 ILL of one of the 12 marker penetrant compounds (target 
dose of 10-20 1Lgfcm2) formulated in one of the 24 specified mix­
tures (Table 2). Trace amounts of methanol and toluene were used 
to solubilize radiolabelled penetrants before dilution with nonra­
diolabelled compounds. 

This dataset was compared in terms of the chemical space of 
the penetrants with the combined datasets of Flynn ( 1990) and 
Wilschut et al. (1995). The combined dataset contains in vitro 

human skin permeability data (logkp) for 112 compounds. 

2.2. Structural descriptors 

The predictors (descriptors) of penetrants included connectivity 
indexes, quantum molecular descriptors, and group counts cal­
culated using TSAR 3D software (Accelrys Ltd. version 3.3). The 
physicochemical properties of mixture components including boil­
ing point, melting point, solubility, vapour pressure and Henry's law 
constant were obtained through ChemBioFinder (CambridgeSoft, 
2009) online software and the SRC PhysProp database (Syracuse 
Research Corporation, 2009). Log P for solvent components and for 
the penetrants was calculated by the ACD/Iabs log D Suite (7.0.5 
release). Averages of physicochemical properties for solvent mix­
tures were calculated using the fractions of each component e.g. 
boiling point of the mixture. 

2.3. Development and validation of QSARs 

Stepwise regression analysis was used to develop the models 
in MINITAB (version 15.1.0.0). The predictability of the models was 

Table2 
Mean Composition of the 24 mixtures. 

Mixture %EtOH %Water %PG %MNA %SLS 

Et 99.67 0 0 0 0 
Et+MNA 99.51 0 0 0.16 0 
Et+SLS 62.59 26.53 0 0 10.61 
Et+MNA+SLS 62.50 26.49 0 0.13 10.60 
Et+Wa 42.66 55.86 0 0 0 
Et+Wa+MNA 43.79 55.78 0 0.14 0 
Et+Wa+SLS 39.44 50.25 0 0 10.05 
Et+Wa + MNA+SLS 39.39 50.18 0 0.13 10.04 
Wa 0 99.75 0 0 0 
Wa+MNA 3.03 96.59 0 0.13 0 
Wa+SLS 0 90.70 0 0 9.07 
Wa+MNA+SLS 2.75 87.77 0 0.12 9.13 
Et+PG 42.99 0 56.73 0 0 
Et+PG+MNA 42.92 0 56.65 0.14 0 
Et+ PG+SLS 28.39 24.15 37.54 0 9.66 
Et+ PG+ MNA + SLS 28.36 24.13 37.50 0.12 9.65 
PG 0 0 99.75 0 0 
PG+MNA 2.93 0 96.70 0.12 0 
PG+SLS 0 22.13 68.79 0 8.85 
PG+MNA+SLS 2.69 22.29 65.76 0.11 8.92 
Wa+PG 0 48.99 50.76 0 0 
Wa+PG+MNA 2.98 47.46 49.18 0.13 0 
Wa+PG+SLS 0 44.62 46.23 0 8.92 
Wa+PG+MNA+SLS 2.71 43.20 44.76 0.11 8.98 

EtOH, ethanol; PG. propylene glycol; MNA. methyl nicotinate; SLS. sodium lauryl 
sulfate. 
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examined by a leave-many-out procedure. As such, chemicals were 
sorted according to the ascending log kp values; for each set of 4 
solvents, the first compound was allocated to group a, the second 
to group b, the third to group c and the fourth to group d. This 
ensured that each group covered similar ranges of the skin per­
meation kinetics. The regression was carried for the chemicals in 
groups a, b and c (as the training set), and the resulting equation was 
used to calculate the skin permeation parameter for the remaining 
group d (as the test set). The procedure was carried on to leave one 
group out at a time (all the possible combinations of groups making 
the training set). The mean absolute error (MAE) of prediction was 
calculated as a measure of the model accuracy. 

The chemical space of the present dataset was compared with 
that of the skin permeability dataset drawn from Flynn ( 1990) and 
Wilschut et al. ( 1995 ). The comparison was made using descriptor 
spaces of Potts and Guy (1992) model (i.e. molecular weight and 
octanol/water partition coefficient), principal component analysis 
(PCA) scores plot with all the descriptors being included in the anal­
ysis and PCA scores plot using the descriptors selected by stepwise 
regression analysis for the Flynn ( 1990) and Wilschut et al. ( 1995) 
dataset. PCA was carried out using MINITAB statistical software. 

3. Results and discussion 

The combined effect of chemical structures of the penetrants 
and the properties of the mixture components on the permeation 
rate through porcine skin was studied using QSAR. Stepwise regres­
sion analysis performed on the dataset of 288 penetrant/mixture 
component combinations resulted in Eq. (1 ), in which the descrip­
tors were limited to two penetrant descriptors and one solvent 
mixture descriptor. 

Logkp = -0.909-0.610 logP + 2.62 9Xp 

-0.00917(SoiBP- SoiMP) 

S = 0.438, r2 = 0.729, F = 255.2, P = 0.000, N = 288 

( 1) 

In Eq. ( 1 ). log kp represents permeation rate constant of com­
pounds dissolved in various solvent mixtures from porcine skin, 
log P is the octanolfwater partition coefficient of the solute (the 
penetrant), 9 Xp is the 9th order path molecular connectivity index 
of the penetrant, and Sol BP- So IMP is the difference between the 
boiling point and the melting point of the solvent system. 

LogP was the most significant descriptor of the equation (the 
first to be selected by the stepwise regression analysis). It can be 
seen in Eq. ( 1) that log P of penetrants has a negative effect on the 
skin permeation rate. This is opposite to the common knowledge 
that lipophilic compounds have higher skin permeation profiles, 
as evidenced also in Potts and Guy's model ( 1992). The negative 
relationship between log kp and log P could be due to the fact that 
most of the drugs in this particular dataset are more lipophilic than 
the compounds in the datasets normally used in QSAR studies of 
skin permeability. Fig. 1 shows a graph between log kp and log P for 
the penetrants of this study and the penetrants of Wilschut et al. 
(1995) and Flynn (1990). The opposite trends of the relationships 
between logkp and logP for the two datasets are evident despite 
the poor correlations. The figure also shows that compounds of 
the present dataset have relatively higher logP values than com­
pounds in the combined data sets ofWilschut et al. ( 1995) and Flynn 
(1990). This follows the well established nonlinear relationship of 
biological activity with lipophilicity described by parabolic ( Hansch 
and Clayton, 1973) or bilinear (Kubinyi, 1977) models. Compounds 
with extreme lipophilicity can be expected to partition into the skin 
and remain there, with little permeation to the aqueous recept�r 
phase. This has been shown for example for tetrahydro�annab1� 
no! (Challapalli and Stinchcomb, 2002), with extremely h1gh log P 
value of 6.84 as calculated by ACD log D/Suite. L6pez et al. ( 1998) 
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Fig. 1. Comparison of the lipophilicity of the drugs in the two datasets of Riviere's 

(solid circles) and Flynn (1990) and Wilschut et al. (1995) dataset (empty circles). 

showed a bilinear relationship between lipophilicity of phenyl alco­
hols and the permeability coefficient through rat skin, where the kp 
was reduced for compounds with log Pvalues higher than around 5. 

There are a number of other factors that may have contributed to 
the observed negative relationship between log kp and lipophilic­
ity. One is the finite-dose nature of the experiments with skin dosed 
with a limited amount of drug. The limited availability of the com­
pound could result in a large fraction of the lipophilic compounds 
being concentrated in the skin according to their skin/water par­
tition coefficients. A second factor is the differing nature of the 
receptor phase which contained albumin. 

9 Xp is the second most significant descriptor of Eq. (2). This 
molecular connectivity descriptor indicates the presence of nine­
atom chains in the molecules. The positive coefficient of this 
descriptor indicates a better permeation of compounds contain­
ing long chain fragments. The penetrants with the highest 9 Xp 
values were chlorpyrifos, fenthion and nonylphenol. These pen­
etrants have the maximum molecular weight of 350 Da which is 
still smaller than the size expected to limit the absorption. Accord­
ing to Barry (2007) a molecule's ideal molecular mass, in order to 
penetrate the se is less than 600 Da. In addition, according to Lipin­
ski's rule of five, chemicals with molecular weight of above 500 Da 
may have biological membrane penetration problems (Lipinski et 
al., 1997). 

The third descriptor of the equation, SolBP-SolMP, represents 
the difference between melting and boiling points of the sol­
vent mixtures, where the higher the difference, the lower the 
skin absorption of compounds from the vehicle. It is therefore 
expected that compounds formulated in vehicles with small boiling 
and melting point gaps will have better permeation through skin. 
The difference between these two properties has been attributed 
to the molecular symmetry, with highly symmetrical molecules 
having much larger melting points and decreased boiling points 
(Siovokhotov et al., 2007). In the solvents used in this study, the 
biggest difference in the melting and boiling points is for propylene 
glycol. Therefore the vehicles containing higher concentrations of 
this solvent will lead to lower permeation of the penetrants studied 
in this investigation. 

In order to validate the reported QSAR, a leave-many-out pro­
cedure as explained in Section 2 was used and mean absolute error 
calculated. Fig. 2 is the graph between observed and predicted 
log kp. The r2 between observed and predicted log kp and the MAE 
were 0.654 and 0.396, respectively. 

The level of uncertainty in predictions made by any QSAR is char­
acterized by the validity tests, but it also depends on the diversity of 
the training set which defines the domain of applicability. Any QSAR 
model is expected to perform best for the chemicals that are similar 
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Fig. 2. Plot of observed Jog kp against predicted Jog kp. 

to those in the training set (Weaver and Gleeson, 2008). Applica­
bility of Eq. ( 1) will be limited to the prediction of Jog kp for new 
molecules that are similar to those of our dataset. Therefore, the 
chemical space of the penetrants included in this dataset was com­
pared to that of the combined data sets ofFiynn ( 1990) and Wilschut 
et al. (1995). Comparison of the physicochemical properties of the 
penetrants in the two datasets above were made first by looking 
at the molecular descriptors of the widely accepted Potts and Guy 
model (1992) consisting of logP and molecular weight (MW) as 
in Fig. 3a. The figure shows that our dataset does not include any 
hydrophilic chemicals and log P values are all above 1.5. The other 
limitation of the data set is the relatively low molecular weights of 
the chemicals in comparison with datasets of Flynn and Wilschut 
et al. Therefore, a few high molecular weight and low Jipophilicity 
chemicals can be identified for future measurements. Examples are 
hydrocortisone octanoate, caffeine and methanol, as it can be seen 
in the figure. 

As a second strategy, the two datasets were compared using all 
the calculated molecular descriptors, a total of 128. This was made 
possible through the use of principal component analysis (PCA). 
PCA is a data reduction method which takes the information from 
original molecular descriptors and generates the same number of 
new descriptors (PCs), with the first PC containing the maximum 
information of the original dataset, and the second PC being the 
second most informative. Therefore, the plot between PC1 and PC2 
(the scores plot) provides a good overview of the information con­
tent of the data set. The first two principal component score vectors, 
PC1 and PC2, are plotted in Fig. 2b. The figure shows that the chem­
icals of the current dataset are located in the bottom left quarter of 
the plot, with relatively low PC1 and PC2 values. By visual inspec­
tion of the graph, several groups of chemicals belonging to datasets 
of Flynn and Wilschut et al. were identified in the plot to cover var­
ious ranges of PC1/PC2. These are chemicals with high PC1 and PC2 
values such as codeine and morphine, compounds with high PC1 
and varying values of PC2 including steroids such as testosterone 
and hydrocortisone octanoate, and compounds with very low PC1 
and PC2 values such as octanol. 

The third method for comparison of the datasets involved the 
use of a selection of molecular properties that are specifically 
involved in the skin permeation of compounds. To this end, step­
wise regression analysis was used for the selection of molecular 
descriptors affecting compounds' absorption through skin. In this 
analysis, the dataset of Flynn and Wilschut et al. containing the 
skin permeation rate constant through human skin using the sa�u­
rated aqueous solutions as the donor phase was used. In stepw1se 
regression analysis, the skin permeation rate constant (Jog kp) was 
the dependent variable and all the molecular descriptors were the 
independent variables. Stepwise regression analysis selected three 
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Fig. 3. Plots comparing chemical diversity of the penetrants of the present dataset 

(solid circles) with that of the combined dataset of Flynn (1990) and Wilschut et 
al. (1995) (empty circles). (a) Plot between JogP and molecular weight; (b) scores 

plot between the first and the second principal components of PCA using all the 

descriptors; (c) scores plot between the first and the second principal components 

of PCA using descriptors of Eq. (2). 

descriptors and resulted in Eq. (2) below. 

Logkp = -2.91 +0.62 log P+5.2110Xp - 1.646Xp 
S = 0.548, r2 = 0.757, F = 140, P = 0.000, N = 139 

(2) 

In Eq. (2), logP is the octanol/water partition coefficient, 1oXp 
and 6 Xp are 1Oth and 6th order valence corrected path molecu­
lar connectivity indexes of the penetrants, respectively. Molecular 
connectivity indexes are topological descriptors of molecular struc­
tures indicating the frequencies of occurrence of certain fragments 
in the molecules. Path molecular connectivity indexes indicate 
the frequency of non-branched chains of certain lengths, in this 
case six-atom and ten-atom chains as shown in Scheme 1 below 
(Todeschini and Consonni, 2000). 



32 T. Ghafourian et al. 1 Intemationaljoumal of Pharmaceutics 398 (2010) 28-32 

Scheme 1. Six-atom and ten-atom fragments for the calculation of path molecular 
connectivity indexes, 6 x� and 10 x�. respectively. 

The three descriptors selected by stepwise regression analysis 
were used in PCA and the scores plot between the first and the 
second PCs (Fig. 3c) was used to compare the datasets. Fig. 3c is 
similar to Fig. 3b in identifying certain compounds from the dataset 
ofFiynn and Wilschut et al. such as steroids, narcotic analgesics and 
small polar molecules such as caffeine and methanol which are not 

present in the current dataset. 
Therefore. an overview of Fig. 3a and b can identify several areas 

of the chemical space that are missing from the present dataset. 
From these groups of chemicals, caffeine, 1-octanol, testosterone 
and codeine were selected for further studies and the in vitro mea­
surements are currently being undertaken. 

4. Conclusion 

In conclusion skin permeation of drugs from different vehicle 
systems can be modelled using QSAR given the availability of an 
appropriate dataset containing diverse permeants and vehicles. 

Vehicle effects were well predicted in this work. However, rigor­
ous validation of such models for estimation purposes will require 
a large volume of data. In this study, the negative relationship was 
obtained between log kp and log P. This was attributed to the fact 
that most of the drugs in this particular dataset are more lipophilic 
than the compounds in the common permeability datasets used in 
QSAR studies of skin permeability. Therefore, it can be envisaged 
that these highly lipophilic agents concentrate in the se with little 

ability to partition into the aqueous receptor phase. This scenario is 
relevant for many pesticides and lipophilic contaminants encoun­
tered in environmental exposure scenarios. For further validation of 
this model, skin permeation of the compounds identified through 
the comparison of the datasets is necessary to be determined in 
similar solvent mixtures. 
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penetration enhancers. Surfactants are used in the pharmaceuti­
cal/c�smetic

. 
preparations, agrochemical products (e.g. herbicides) 

and mdustnal solutions. In industry surfactants are added to 
form

.
ulations in order to solubilise lipophilic active ingredients, 

and m transdermal drug delivery to solubilise lipids within the 
stratum corneum. Penetration enhancers may increase the diffu­
sion

.
coefficient of drugs in the stratum corneum (i.e. disrupt the 

barner nature of the stratum corneum), may act to increase the 
effective concentration of the drug in the vehicle (for example, 
acting as an anti-solvent), could improve partitioning between the 
formulation and the stratum corneum (perhaps by altering the 
solvent nature of the skin membrane to improve partitioning into 
the tissue) or, less likely, by decreasing the skin thickness (perhaps 
by providing a permeation 'shortcut' as opposed to a tortuous 
pathway for a permeant) (Williams and Barry, 2004). 

The effect of mixture/formulation components on the skin pen­
etration of a compound depends on the nature of the component, 
i.e. its chemical structure and physicochemical properties. In other 
words, chemical structure of a formulation component can deter­
mine the effect that it will have on the stratum corneum or on 
the partitioning of the penetrant, leading to the observed changes 
in the skin penetration profile of the penetrant. The relation­
ship between chemical structures of the formulation ingredients 
and the skin penetration modification can be studied quantita­
tively using Quantitative Structure-Activity Relationship (QSAR) 
techniques. QSAR has been previously applied to study the effect 
of structural variation of chemical enhancers on the skin pen­
etration of various drugs (Ghafourian et al., 2004; Moss et al., 
2002). 

Most mechanistic studies on skin penetration are based on 
the penetration of individual chemicals (Flynn, 1990), with only 
few attempts towards a comprehensive investigation on the effect 
of chemical mixtures. Such a systematic study requires a large 
volume of tedious experimental measurements involving various 
penetrant/mixture-component combinations. Riviere and Brooks 
{2005, 2007) have determined skin permeation coefficient of 
12 compounds from a mixture of several solvents, a surfactant 
and methyl nicotinic acid (288 combinations). A QSAR analy­
sis of the data revealed several penetrant/solvent properties that 
are significant contributors to the skin permeation coefficients 
(Ghafourian et al., 2010). The study also revealed several gaps 
in the chemical space of Riviere's penetrants in comparison with 
the well-established datasets of Flynn ( 1990) and Wilschut et al. 
(1995) which contain skin penetration data of aqueous solutions 
of over 100 compounds. In this investigation, four chemicals were 
selected from Flynn and Wilschut et al. datasets for further skin 
penetration studies using Riviere's experimental protocol which 
involves blending of each chemical with 24 mixture combinations. 
The selections were made from the identified gaps in the chem­
ical space and the compounds are expected to add a high level 
of diversity to the dataset. These new measurements facilitated 
the development of statistically validated QSAR models. Statisti­
cally validated QSAR models can be used for the estimation of skin 
penetration of new compounds or the effect of new mixture com­
ponents on the penetration of a penetrant. The models can aid the 
understanding of the mechanisms involved in skin penetration of 
compounds and the effect of mixture components. 

2. Materials and methods 

2.1. Materials 

Caffeine (8-14C) specific activity: 50-60 mCi/mmol, 1.85-2.22 
GBq/mmol, n-octanol [1-14C[ specific activity: 2-10 mCi/mmol, 
74-370 MBqfmmol, testosterone (4-14C[ specific activity: 

Table 1 
Composition of the 24 mixtures. 

EtOH 

EtOH+MNA 
EtOH +Sl.S 
EtOH + MNA + Sl.S 
EtOH+Water 
EtOH+Water+MNA 
EtOH +Water+ Sl.S 
EtOH +Water+ MNA +Sl.S 
EtOH +PG+ Water 
EtOH+PG+Water+ MNA 
EtOH +PG +Water+Sl.S 
EtOH +PG +Water+ MNA+Sl.S 

PG 

PG+MNA 
PG +Sl.S 
PG+ MNA + Sl.S 

PG+Water 
PG+Water+MNA 
PG+ Water+ Sl.S 
PG+ Water+ MNA + Sl.S 
Water 
Water+MNA 
Water+Sl.S 
Water+MNA+Sl.S 

EtOH-ethanol; PC-propylene glycol; MNA-methyl nicotinate; Sl.S-sodium lauryl 
sulphate. 

50-60 mCi/mmol 1.85-2.22 GBq/mmol, codeine [ N-methyi-14Cj, 
obtained from American Radiolabeled Chemicals, Inc., St. Louis, 
USA. Absolute ethyl alcohol was obtained from Aaper Alcohol and 
Chemical Co., Shelbyville, I<Y, USA. Propylene glycol (purity= 99%), 
sodium lauryl sulphate (purity=99%), and methyl nicotinic acid 
(purity=99%) were obtained from Sigma Chemical Co., St. Louis, 
MO, USA. Water was distilled in our in-house still. 

2.2. Skin penetration studies 

Apparent permeability coefficient (kp) of caffeine, codeine, 
octanol and testosterone each blended in 24 different mixtures, as 
presented in Table 1, were obtained through flow-through diffu­
sion cell using porcine skin. The flow-through diffusion cell was 
used to perfuse skin obtained from the dorsal area of weanling 
female Yorkshire pigs according to protocols approved by the North 
Carolina State University Institutional Animal Care and Use Com­
mittee. Skin was dermatomed to a thickness of 500 1-1-m with a 
Padgett dermatome. Each circular skin disk was punched to provide 
a dosing surface area of 0.64 cm2 and then placed into a two­
compartment Teflon Bronaugh flow-through diffusion cell. Skin 
was perfused using a Krebs-Ringer bicarbonate buffer spiked with 
dextrose and bovine serum albumin, and topically dosed nonoc­
cluded with 20 1-1-l of one of the four marker penetrant compounds 
( 10 j.l.g/cm2) formulated in one of 24 specified mixtures listed in 
Table 1. This resulted in a total of 96 treatments with n = 4-5 
replicates/treatment designed as a randomized complete factorial 
experiment. 

2.3. QSAR studies 

The kp values measured in this study for caffeine, codeine, 
octanol and testosterone were merged with the previous dataset 
of kp values for 12 other compounds blended with the same mix­
ture components as Table 1 (Riviere and Brooks, 2005). These kp 

values are measured using the same experimental procedures as 
in this study. Therefore, the dataset used for the QSAR studies 
consisted of a total of 384 unique measurements of kp for the 
penetrant/components combinations. Table 2 is the list of the 16 
penetrants used in QSAR study. 

For the development of QSAR models, properties of the pen­
etrants and the solvent mixtures were assembled. The molecular 
descriptors (properties) of the penetrants were calculated using 
two software packages of ACD labs/LogD Suite (7.0.5 release) and 
TSAR 3D (Accelrys Ltd. version 3.3 ). The molecular descriptors 
included octanol/water partition coefficient, molecular connectiv­
ity indexes, quantum molecular descriptors, and various atom and 
group counts. The physicochemical properties of mixture com­
ponents including boiling point, melting point, solubility, vapour 



614 T. Ghafourian et al. 1 Eurapeanjoumal of Pharmaceutical Sciences 41 (2010) 612-616 

Table2 
Penetrants. 

Atrazine 

Chlorpyri fos 
Ethylparathion 
Fenthion 
Methylparathion 
Nonylphenol 
Caffeine 
Codeine 

Pentachlorophenol 

Phenol 
p-Nitrophenol 
Propazine 
Simazine 
Triazine 
Octanol 
Testosterone 

pressure and Henry's law constant were obtained through Chem­

BioFinder (CambridgeSoft, 2009) on line software and SRC PhysProp 
database (Syracuse Research Corporation, 2009). Hildebrand solu­

bility parameters (<5) were obtained from Hansen (1967) for the 
solvents and calculated according to Fedors group contribution 
method {1974) for the penetrants. As there was a mixture of a 
number of solvents in the vehicles, averages of physicochemical 
properties for solvent mixtures were calculated using the fractions 

of each component. 
Stepwise regression analysis was performed between log kp as 

the dependant variable and the molecular descriptors of the pene­
trants and the mixture components as the predictors. This enabled 
the identification of the significant molecular descriptors affecting 

skin penetration of chemicals. Several stepwise regression analyses 
using various sets of penetrant molecular descriptors and solvent 
properties were perfonned and several regression models were 
generated. In order to minimise the risk of chance correlations, the 
number of descriptors in the regression models was limited to four. 

The models were validated for penetrants using a leave-many­
out cross validation procedure. To do this, the penetrants were 
divided into four groups with similar ranges of lipophilicity (log P 
values) in each group. Regression analyses were performed four 
times, each time leaving one group out. The log kp values of the test 
sets were estimated using the equations obtained for the training 
sets and the mean absolute error was calculated from the differ­
ence between the observed and the predicted log kp values of the 
test sets. 

3. Results and discussion 

Skin penetration of drugs is controlled by the molecular struc­
tures and physicochemical properties of the intended penetrants 
and the mixture ingredients in the vehicle. In order to rationalize 
the combined effect of structural characteristics of the penetrants 
and the physicochemical properties of the mixture components, 
this investigation focused on the QSAR model development for a 
dataset of skin permeation of chemicals dissolved into a combi­
nation of several solvents, surfactant and methyl nicotinic acid. 
Permeation coefficients were measured for four compounds that 
were rationally selected in order to add a high level of diversity to 
the existing dataset (Ghafourian et al., 201 0). Tables 1 and 2 provide 
the list of the vehicles and the permeants, respectively. The kp data 
measured in this investigation (n "'96) was merged with the pre­
viously obtained dataset of kp (n "'288) and the resulting dataset 
was used for the QSAR development (Riviere and Brooks, 201 0). 

Stepwise regression analysis of different combinations of solvent 
properties and molecular descriptors of the penetrants resulted in 
a number of QSAR models from which four were selected based 
on the goodness of fit (R2 values). In order to reduce the risk 
of chance correlations, only four descriptors were allowed in the 
equations. The selected equations have been listed in Table 3. In 
Eqs. (1 )-(4), the letter in the brackets indicates if the variable is 
a descriptor for the penetrant (P) or for the vehicle (V). It can be 
seen that each equation consists of 2-3 penetrant descriptors and 
1-2 vehicle descriptors, with Eqs. (1)-(3) containing 1 combined 
vehicle-penetrant descriptor. In Eqs. ( 1 )-( 4), L\mp is the differ­
ence between the melting point of the penetrant and that of the 
solvent, W is the Wiener topological index (the sum of distances 
between all pairs of vertices in the molecular graph of an alkane 
(Diudea and Gutman, 1998)), <5 is the Hildebrand solubility param­
eter, EHoMo is the energy of the highest occupied molecular orbital, 
BP is the boiling point, Natoms is the total number of atoms in the 
molecules, BP- MP is the difference between the boiling and melt­
ing points of a compound, and Lipole is the total lipole moment of 
the penetrants. 

Considering that Naroms and W(Diudea and Gutman, 1998) can 
be regarded as size descriptors, it can be seen from Table 3 that all 
QSAR models indicate the negative effect of the penetrant's molec­
ular size on the log kp. Moreover, there is a negative contribution 
by total lipole of the penetrants in Eqs. ( 1 )-( 4). Total lipole is a mea­
sure of lipophilicity distribution calculated as sum of local values of 
log P, like dipole moment (Pedretti et al., 2002).1t shows lipophilic­
ity of the molecule in a specific direction. Surfactants are expected 
to have high total lipole values and they are known enhancers of 
drug skin penetration (Ma et al., 2007). Thus, according to these 
equations, the less lipolar penetrants will have higher permeation 
rates. Chlorpyrifos has the highest total lipole value of 10.0 and 
caffeine has the lowest value of 0.19. 

The other penetrant descriptor, which can be seen in majority 
of the equations, is EHoMO· This molecular descriptor represents 
the energy of the highest occupied molecular orbital. EHoMo mea­
sures the nucleophilicity of a molecule. The negative relationship of 
this descriptor with the logarithm of the permeation rate indicates 
that the electron rich neucleophilic compounds such as those con­
taining aromatic rings are the least permeable. In Eqs. (2) and (3), 
the product of the penetrants' EHoMo and the vehicles' solubility 
parameter is used. 8(V)·EHoMo(P) is a solvent/penetrant interaction 
term. This descriptor indicates that a highly nucleophilic penetrant 
will have a lower penetration from highly associated vehicles, i.e. 
those vehicles with high intermolecular interaction forces such as 

hydrogen bonding. 
The most persistent vehicle descriptor in the QSARs is the boil­

ing point, with a negative effect on permeation rate of chemicals. 
Solubility parameter is also present in some equations. Both solu­
bility parameter and boiling point can represent the intermolecular 
interaction energy of the vehicle which can result from the polar­
ity of the solvents. Therefore the negative relationship indicates a 
higher skin permeation rate with the less polar vehicles. Similar 
results have been shown previously where the permeation coeffi­
cients of highly lipophilic compounds, nicardipine and nimodipine 
was increased in the less polar solvent mixtures of ethanol-water 

Table 3 
. . . 

n· N a's the number of datapoints {penetrant/vehicle combinations); S, the standard deviation; R2• the squared correlation 
QSAR models obtaaned from stepwase regressao . 

coefficient. 

logkp _ -0 956 _ 0 00322 6mp- 0.000320 W(P)- 0.0121 BP( V) 0.114 Lipole(P) 
. 

lo k ::: -3i o _ O 000315 W(P)- 0.00771 .S(V). EHoMo(P)- 0.0102 BP( V)- 0.0750 La�ole(P) 

lo
g

/ ::: _2 48 _ 0 0474Naooms(P)- 0.00798 c5(V). EHoMo(P)- 0.0102 BP( V)- 0.0723 �apole(P) 

lo:k�
-

4:29 o :o474Nmms(P) 0.00904 BP- MP( V)- 0.345 EHoMo(P)- 0.0790 Lapole(P) 

N 

(1) 384 

(2) 384 

(3) 384 

(4) 384 

s R2 

0.478 0.701 

0.494 0.681 

0.516 0.653 

0.522 0.644 
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