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After a pest develops resistance to a pesticide, switching between different unrelated pesticides is a com-
mon management option, but this raises the following questions: (1) What is the optimal frequency of
pesticide use? (2) How do the frequencies of pesticide applications affect the evolution of pesticide resis-
tance? (3) How can the time when the pest population reaches the economic injury level (EIL) be esti-
mated and (4) how can the most efficient frequency of pesticide applications be determined? To
address these questions, we have developed a novel pest population growth model incorporating the evo-
lution of pesticide resistance and pulse spraying of pesticides. Moreover, three pesticide switching meth-
ods, threshold condition-guided, density-guided and EIL-guided, are modelled, to determine the best
choice under different conditions with the overall aim of eradicating the pest or maintaining its popula-
tion density below the EIL. Furthermore, the pest control outcomes based on those three pesticide
switching methods are discussed. Our results suggest that either the density-guided or EIL-guided
method is the optimal pesticide switching strategy, depending on the frequency (or period) of pesticide
applications.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Pesticide resistance is the adaptation of a pest population
targeted by a pesticide, resulting in decreased susceptibility of
the pest to the chemical. Pesticide resistance is increasing and
farmers’ and other pest managers’ dependencies on chemical
insecticides have led to a high frequency of insecticide resistance
in some crop systems [1]. In the 1940s, farmers in the USA lost
7% of their crops to pests. Since the 1980s, the percentage lost
has increased to 13%, even though more pesticides are being used,
this is because more than 500 species of pests have developed
resistance to pesticides since 1945 [2–4], and the situation is often
caused by the same classes of pesticides being used repeatedly for
a long time. Other problems ensue such as pest resurgence, acute
and chronic health problems, environmental pollution and uneco-
nomic crop production.

Therefore, knowledge of the mechanisms for the evolution of
pesticide resistance is important for developing strategies to avoid
the creation of resistance in pest populations, with the underlying
principle being the preservation of susceptible genes in pest popu-
lations. Therefore, in order to fight pesticide resistance and based
on a knowledge of the genetics of the development of pesticide
resistance, a number of principles have been proposed aimed at
delaying the emergence of resistance or avoiding it entirely. These
principles include pesticide rotation or switching, avoiding unnec-
essary pesticide applications, using non-chemical control tech-
niques [5], and leaving untreated refuges where susceptible pests
can survive, within the concept of integrated pest management
(IPM) [6–10].

When pesticides are the sole or predominant method of pest
control, resistance is commonly managed through pesticide rota-
tions or pesticide switches. This means after a pest species devel-
ops resistance to a particular pesticide, one method is to use a
different pesticide, especially one in a different chemical class or
family of pesticides that has a different mode of action against
the pest. So far, switching among unrelated insecticides in re-
sponse to detection of resistance has been the main method used.
For instance, during the WHO Onchocerciasis Control Programme
(OCP) in West Africa examples of different categories of pesticides
were used in rotation after the blackfly vectors of Onchocerciasis
developed resistance to the chemical of choice, the organophos-
phate temephos [11]. Similarly, in agriculture, insecticide rotation
has been widely used to combat resistance in a major pest of bras-
sica crops, the Diamondback Moth Plutella xylostella [12].

To achieve pest resistance management using pesticide
switches or rotations, the key problems that we are facing are:
What is the optimal frequency of pesticide use? How do the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2013.07.008&domain=pdf
http://dx.doi.org/10.1016/j.mbs.2013.07.008
mailto:sytang@snnu.edu.cn
mailto:sanyitang219@hotmail.com
http://dx.doi.org/10.1016/j.mbs.2013.07.008
http://www.sciencedirect.com/science/journal/00255564
http://www.elsevier.com/locate/mbs


250 J. Liang et al. / Mathematical Biosciences 245 (2013) 249–257
frequencies of pesticide applications affect the evolution of pesti-
cide resistance and when does the pest population reach the criti-
cal threshold value?

In order to address those questions, mathematical models can
be useful for determining the optimal frequency of pesticide appli-
cations, when is best to switch pesticides and for predicting how
fast pesticide resistance develops. To do this, we have developed
a novel pest population growth model concerning evolution of pest
resistance and pulse spraying of pesticides. The model incorporates
three different pesticide switching tactics for eradicating the pest
or maintaining its population density below a given critical level.

The first justification for stopping the use of a given pesticide
and switching a new type of pesticide (so called as pesticide
switching method throughout this paper) is based on the threshold
condition (the threshold condition-guided method) which ensures
the extinction of the pest population, i.e. the pesticide is switched
once the threshold value increases due to evolution of pesticide
resistance and exceeds one, which determines the stability of pest
eradication solutions.

The second pesticide switching method depends on the density
of the pest population just before the pesticide is applied (the den-
sity-guided method). This switching action occurs when the effi-
cacy of the pesticide begins to wear off, i.e. there is resurgence.

An important concept in IPM is that of the economic threshold
(ET), which is usually defined as the number of pests in the field
when control actions must be taken to prevent the economic injury
level (EIL) from being reached and exceeded. The EIL is defined as
the lowest pest population density that will cause economic dam-
age [6,8–10]). For an IPM strategy, action must be taken once a crit-
ical density of pests is observed in the field so that the EIL is not
exceeded. Thus, the third switching action is instigated when the
pest population reaches the EIL (the EIL-guided method).

We provide analytical formulae for the optimal times to switch
between different unrelated pesticides for all of the above three
methods. Based on different situations, the optimal choices for each
of these three methods, with the intention of eradicating the pests or
maintaining their population density below a tolerable level, are
discussed. Our results suggest that either the density-guided or
the EIL-guided method is the optimal pesticide switching strategy,
depending on the frequency (or period) of the pesticide applications.
2. Pest growth model with evolution of pesticide resistance

In this section, we will develop a simple pest population growth
model concerning the evolution of pest resistance. In particular,
the effects of the frequency of pesticide applications are modelled
and investigated. One of our main purposes is to investigate how to
implement a chemical control strategy and manage pest resistance
such that the pest population dies out eventually or its density is
maintained below the EIL. In order to address this topic, we focus
on the threshold condition which guarantees the extinction of
the pest population and discuss optimal strategies for pesticide
switches.
2.1. Simple pest growth model with pesticide resistance

Throughout this study, the pest population is assumed to grow
logistically with an intrinsic growth rate r and a carrying capacity
parameter g. Then the pest population follows

dP
dt
¼ rPð1� gPÞ:

In the following, the total pest population is divided into two
parts: susceptible pests (denoted by PS) and resistant pests
(denoted by PR), and the proportion of susceptible pests in the
population is denoted by a fraction x, the remaining fraction
1�x is resistant, so we have PS ¼ xP and PR ¼ ð1�xÞP. Suscep-
tible pests are those that have not developed resistance to the pes-
ticide. That is to say, x may be thought of as the stock of
effectiveness of the pesticide, and it is the proportion of the pest
population to which the toxin is lethal. Naturally, the susceptible
pests are assumed to die with a higher mortality rate, d1, and the
resistant pests are assumed to die with mortality rate, d2, when
chemical control is implemented. Then the growth of susceptible
and resistant pests can be modelled as follows:

dPS
dt ¼ xrPð1� gPÞ � d1PS;

dPR
dt ¼ ð1�xÞrPð1� gPÞ � d2PR:

(
ð1Þ

However, for simplification we assume that the resistant pests dis-
play near-complete resistance to the pesticide, which means that
d2 � 0 [13]. Consequently, the evolution of the total pest population
follows

dP
dt
¼ dPS

dt
þ dPR

dt
¼ rPð1� gPÞ �xd1P: ð2Þ

Since x ¼ PS=P, then the evolution of the fraction of the susceptible
pests in the total pest population is

dx
dt
¼ d

dt
PS

P

� �
¼ dPS

dt
P � PS

dP
dt

� �
=P2 ¼ d1xðx� 1Þ: ð3Þ

Note that this resistance evolution equation has been widely used
recently in different fields [13–17].

Therefore, the model (1) can be written as

dP
dt ¼ rPð1� gPÞ �xd1P;
dx
dt ¼ d1xðx� 1Þ:

(
ð4Þ

In reality, the pesticides are applied instantaneously. Thus the
model (4) can be developed by introducing an impulsive spraying
of pesticide at a critical time and modelling the consequences of
population densities changing very rapidly.

If the pesticides is applied at time point si�1 for i 2 N with
s0 ¼ 0, where N ¼ f1;2;3; . . .g and 0 ¼ s0 < s1 < s2 < � � �, then
the number of pests killed at time si�1 is d1xðsi�1ÞPðsi�1Þ. There-
fore, we have the following impulsive differential equation

dPðtÞ
dt ¼ rPðtÞð1� gPðtÞÞ; t – si;

Pðsþi Þ ¼ ð1�xðsiÞd1ÞPðsiÞ; t ¼ si;
dxðtÞ

dt ¼ d1xðtÞðxðtÞ � 1Þ;

8><
>: ð5Þ

where Pðsþ0 Þ ¼ P0 and xðs0Þ ¼ x0. This indicates that the initial
condition of the pest population in model (5) is chosen as the pop-
ulation density after the first application of pesticide at time s0.

It is clear from model (5) that the efficacy of the pesticide on the
target pest population depends on the evolution of pest resistance,
as the killing efficacy will decrease as pest resistance develops. A
detailed analysis of model (5) will be given in the coming sections.

2.2. The effects of frequency of pesticide applications on evolution of
resistance

The formula (3) indicates how the pest resistance develops with
respect to time. However, it does not involve the effects of the fre-
quency of pesticide applications, the pesticide application period
or the dosage of the applications on the evolution of resistance,
and those factors do influence resistance patterns. Although it is
difficult to involve these factors in the model (3), we note that
the speed with which resistance develops depends on several
factors including the rate, timing and number of applications
made. Based on this fact, we assume that at each time point
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si�1; i 2 N , one pulse of pesticide is applied, which yields the fol-
lowing equation for the fraction of susceptible pests

dxðtÞ
dt

¼ d1x xqi � 1ð Þ; si�1 6 t 6 si; i 2 N ð6Þ

with initial value xðsi�1Þ at each time interval si�1 6 t 6 si and
xðs0Þ ¼ xð0Þ ¼ x0 is given, where qi should be a function of the
number of pesticide applications, dosage Di of the ith pesticide
application and time interval Dsi ¼ si � si�1 between the ith and
ði� 1Þth pesticide applications. For simplification, we assume that
each time the same dosage of pesticide is applied, i.e. Di is a con-
stant and without loss of generality we let Di ¼ 1 for all i 2 N . Thus
the simplest formula for qi could be defined as qi ¼ i=Dsi. For exam-
ple, if i ¼ 1, then the differential equation

dxðtÞ
dt

¼ d1x xq1 � 1ð Þ; s0 6 t 6 s1; xð0Þ ¼ x0

describes the evolution of the fraction of susceptible pests at time
interval s0 6 t 6 s1 after the first pesticide is applied at time s0.
Numerical investigations clarify that the model (6) does describe
the effects of the timing and number of pesticide applications on
the development of resistance, as shown in Fig. 1.

In order to show how the frequency of pesticide applications (or
the period of pesticide application) affects the evolution of pest
resistance, we let Dsi be a constant T (i.e. pesticide applied period-
ically) and show the effects of different periods on the evolution of
x. In Fig. 1 four curves for xðtÞ are plotted with respect to
qi ¼ i; i=2; i=3 and constant 1, from which it is clear how the fre-
quency of pesticide applications and different qi functions affect
the evolution of pest resistance, i.e. the higher the frequency of
pesticide applications, the faster the evolution of pest resistance.
For simplicity, we will focus on the periodical applications of pes-
ticides in the rest of this work.

The analytical solution of Eq. (6) can be solved as

xðtÞ ¼ 1þ eqid1ðt�si�1Þ ðxðsi�1ÞÞ�qi � 1
� �� ��1=qi

; si�1 6 t 6 si; ð7Þ
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Fig. 1. The effects of frequency of pesticide applications on the evolution of x with d1 ¼
which indicates that

xðsiÞ ¼ 1þ eid1 xðsi�1Þ�qi � 1
� �� ��1=qi

: ð8Þ

If we apply pesticide periodically, i.e. Dsi ¼ T for all i 2 N , then the
evolution of x at each time point nT can be expressed as

xðnTÞ ¼ 1þ end1 xððn� 1ÞTÞ�n=T � 1
� �� ��T=n

; n 2 N : ð9Þ

In particular, if qi ¼ 1, i.e. the evolution of xðtÞ satisfies Eq. (3), then

xðtÞ ¼ x0

x0 þ ð1�x0Þed1t
; t P 0: ð10Þ
3. Threshold conditions and justifications and the optimal time
to switch pesticides

3.1. Threshold condition for pest extinction

If we take into account the effects of the frequency of pesticide
applications on the evolution of pest resistance, then model (5) be-
comes the following periodic control model

dPðtÞ
dt ¼ rPðtÞð1� gPðtÞÞ; t – nT;

PðnTþÞ ¼ ð1�xðnTÞd1ÞPðnTÞ; t ¼ nT;
dxðtÞ

dt ¼ d1xðtÞðxðtÞqn � 1Þ;

8><
>: ð11Þ

where T is the period of pesticide application and
qn ¼ n=T; Pð0þÞ ¼ P0; xð0Þ ¼ x0.

Note that the third equation of model (11) is independent of the
pest population, and then xðtÞ can be analytically solved which is
given by (9).

Furthermore, the density of the pest population in the first
equation of model (11) can be solved as

PðtÞ ¼ ð1�xðnTÞd1ÞPðnTÞerðt�nTÞ

1þ ð1�xðnTÞd1ÞPðnTÞgðerðt�nTÞ � 1Þ ð12Þ
0 12 14 16 18 20

0:8. Four curves for xðtÞ are plotted with respect to qi ¼ i; i=2; i=3 and constant 1.
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Fig. 2. The effects of period of pesticide applications on the density of the pest population of model (11) and threshold condition R0ðn; TÞ for
T ¼ 0:4ð��Þ; T ¼ 1:8ð��Þ; T ¼ 3:4ð��Þ, respectively. Here we integrate Eq. (11) until the density of the pest population exceeds a given threshold value TH, and the
baseline parameter values are fixed as follows: d1 ¼ 0:8; r ¼ 0:5; x0 ¼ 0:99; g ¼ 0:01; P0 ¼ 20 and initial value Pð0þÞ ¼ 20. (a) density of pest populations; (b) the threshold
condition R0ðn; TÞ corresponding to three solutions shown in (a). Note that we choose same initial values for the three solutions with different periods of spraying pesticides,
so the first times of spraying pesticide for three different periods lie on the same curve in (a).
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for any pulse interval nT < t 6 ðnþ 1ÞT; n ¼ 0;1;2; . . . . Therefore,

Pððnþ 1ÞTÞ ¼ ð1�xðnTÞd1ÞerT PðnTÞ
1þ ð1�xðnTÞd1ÞgðerT � 1ÞPðnTÞ : ð13Þ

Denote Yn ¼ PðnTÞ, then we have the following non-autonomous
difference equation

Ynþ1 ¼
ð1�xðnTÞd1ÞerT Yn

1þ ð1�xðnTÞd1ÞgðerT � 1ÞYn
; ð14Þ

this is similar to the well-known Beverton–Holt model [18–20].
Note that the difference Eq. (14) is very dynamic since xðnTÞ de-
pends on the third equation of model (11), which indicates that
the difference equation discussed in present work is much more dif-
ficult than those in references [21–23]. In fact, the non-autonomous
or impulsive Beverton–Holt difference equations have been studied
extensively. For example, the asymptotic properties of Beverton–
Holt difference equation have been discussed by Berezansky and
Braverman [21] and Kocic [22,23]. In this work, based on our prac-
tical problem we are interested in the stability of zero solution of
Eq. (14). It is seen that the inequality

Ynþ1 < ð1�xðnTÞd1ÞerT Yn

holds true for all n 2 N . So we can define the dynamic threshold va-
lue R0ðn; TÞ as follows

R0ðn; TÞ¼: 1� d1xðnTÞð ÞerT : ð15Þ

with xðnTÞÞ is given by (9). Therefore, if R0ðn; TÞ < 1 for all n 2 N ,
then the zero solution of Eq. (14), i.e. non-autonomous difference
Eq. (14), is globally asymptotically stable.

This indicates that the pest population will die out if the thresh-
old value R0ðn; TÞ < 1 for all n 2 N . The threshold value is very dy-
namic and depends on the number of pesticide applications, and
we will show this in more detail later.
In particular, if qn ¼ 1 for n 2 N (i.e. xðtÞ satisfies Eq. (3)), then

R0ðn; TÞ ¼ 1� d1x0

x0 þ ð1�x0Þed1nT

� �
erT¼: R1

0ðn; TÞ: ð16Þ

Note that, in reality, R0ðn; TÞ < 1 may hold true for the first few
pesticide applications and then it will increase and exceed 1 due to
the evolution of pest resistance. Fig. 2 provides an example to show
how the density of the pest population and the threshold value
R0ðn; TÞ change as the number of pesticide applications increases.
If we fixed all parameter values as those in Fig. 2 and let period T
vary, Fig. 2(a) gives three numerical solutions with different period
T. Here we stop to integrate Eq. (11) until the density of the pest
population exceeds a given threshold value TH (such as EIL). It is
seen that the density of the pest population at time points nT de-
creases firstly due to the high efficacy of the pesticides, and then
increases because of the evolution of pest resistance. For more de-
tails, see Fig. 3. The threshold value R0ðn; TÞ corresponding to three
solutions in Fig. 2(a) at each time point nT is given in Fig. 2(b).

It is interesting to note that resurgence by the pest population
can occur very quickly once the pest resistance develops.
Fig. 2(a) also shows that the less frequent (larger period T) are
the pesticide applications, the higher the level that pest outbreaks
can reach. However, as mentioned before, the higher the frequency
of pesticide applications, the faster the evolution of pest resistance.
Therefore, the question is how to manage the pest resistance, i.e.
what is the optimal time to switch to a new type of pesticide?
We address this question in the following subsection.
3.2. Justifications and the optimal time to switch pesticides

As mentioned in the introduction, the density of resistant pests
will grow quickly if one kind of pesticide is sprayed frequently (as
shown in Fig. 2(a)), and it will lead to a pest outbreak or
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resurgence. Therefore, people usually switch pesticides at some gi-
ven time and how to choose the optimal time for a switch is an
important practical question. In the following, we will provide
three different methods based on our model (11) to choose the
optimal time for switching pesticides according to different justifi-
cations. We should emphasize that for each new type of pesticide,
we assume that the evolution of pesticide resistance, i.e. x, follows
the same equation and has the same initial condition x0.

Method 1 Optimal time for switching pesticides with R0ðn; TÞ as
a guide.

It follows from Fig. 2(b) that R0ðn; TÞ is increasing with respect
to n. Therefore, in order to eradicate the pest population we should
maintain R0ðn; TÞ < 1 to hold true for all n 2 N . This clarifies that
we need to switch the pesticide once the threshold value R0ðn; TÞ
goes to one. Without loss of generality, we assume that the thresh-
old value R0ðn; TÞ will exceed one unit after nð1Þ1 pesticide applica-
tions, i.e.

nð1Þ1 ¼maxfn : R0ðn; TÞ 6 1g: ð17Þ

In order to find nð1Þ1 , we let R0ðn; TÞ ¼ 1, then

xðnTÞ ¼ 1� e�rT

d1
;

where xðnTÞ is given by (9). Therefore,

nð1Þ1 ¼ n : xðnTÞ ¼ 1� erT

d1

� 	
 �
;

and [a] denotes the greatest integer no larger than a.
In particular, if qn ¼ 1 then R0ðn; TÞ ¼ R1

0ðn; TÞ. Let R1
0ðn; TÞ ¼ 1,

we can solve the above equation with respect to n and yield the
optimal switching time nð1Þ1 T , where

nð1Þ1 ¼
1

d1T
ln

x0 � ð1� d1Þx0erT

ð1�x0ÞðerT � 1Þ


 �
:

If we switch pesticides according to this decision strategy, i.e. a
threshold condition-guided method, then the pest population can
be completely eradicated after several pesticide switches. To show
this, Fig. 4(a) depicts numerical simulation under this strategy. It
follows from Fig. 4(a) that the pest population will die out eventu-
ally, where nð1Þ1 ¼ 2. That is after three pesticide applications of one
kind of pesticide (note that the first pesticide application is at time
t ¼ 0), the farmers must switch to another kind of pesticide to
eradicate the pest quickly.

Method 2 Optimal time for switching pesticides with PðnTÞ as a
guide.

Note that xðnTÞd1 represents the instant killing rate of the pes-
ticide at time nT, and DPðnTÞ ¼ PðnTÞ � PðnTþÞ ¼ xðnTÞd1PðnTÞ de-
notes the number of pests killed after spraying pesticide at time nT.
It follows from Fig. 2(a) and the evolution of x that if the spraying
period is fixed, fDPðnTÞg is a monotonically decreasing sequence,
and DPðnTÞ ! 0 as n!1 due to xðnTÞ ! 0. However, PðnTÞ is
not monotonic, which indicates that the effects of the pesticide
wear off naturally with increasing spraying times because of the
increasing pest resistance.
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Based on the observations from Figs.2(a) and 3(a), we denote
the sequence fPðnTÞgn2N as the density of the pest population at
time points nT, and for each fixed period T, there exists an integer
n1 2 N such that

PðTÞ > Pð2TÞ > � � � > Pððn1 � 1ÞTÞ

and

Pððn1 � 1ÞTÞ < Pðn1TÞ < Pððn1 þ 1ÞTÞ < � � � ;

where the sequence fPðnTÞgn2N satisfies the following iteration
equation

PðnTÞ ¼ 1�xððn� 1ÞTÞd1ð ÞPððn� 1ÞTÞerT

1þ ð1�xððn� 1ÞTÞd1ÞPððn� 1ÞTÞgðerT � 1Þ

¼
P0enrT

Qn�1
j¼1 1�xðjTÞd1ð Þ

1þ P0gðerT � 1Þ 1þ
Pn�1

j¼1 ejrT
Qj

k¼1ð1�xðkTÞd1Þ
� �� � :

ð18Þ

Since the efficacy of the pesticides wears off with increasing
spraying, the pesticide should be changed once the efficacy of
the pesticide decreases to the level at which it cannot kill enough
pests and fPðnTÞg begins to increase. That is, farmers or other pest
managers should switch pesticide when the pest density first sat-
isfies the condition PðnTÞ > Pððn� 1ÞTÞ, as shown in Figs.2(a) and
3(a). Therefore, the optimal time for switching pesticide is nð2Þ1 T ,
where Pððnð2Þ1 � 1ÞTÞ is the minimum value of sequence fPðnTÞgn2N .

In order to show how to determine nð2Þ1 , we denote

f ðnÞðxÞ ¼ 1�xðnTÞd1ð ÞerT x
1þ ð1�xðnTÞd1ÞgðerT � 1Þx¼

: aðnÞx
1þ bðnÞx ;

where aðnÞ ¼ 1�xðnTÞd1ð Þ expðrTÞ ¼ R0ðn; TÞ; bðnÞ ¼ ð1�xðnTÞ
d1ÞgðexpðrTÞ � 1Þ. Then for fixed n, there is an autonomous differ-
ence equation determined by function f ðnÞ, i.e. we have
PðnTÞ ¼ f ðnÞðPðn� 1ÞTÞ ¼ APððn� 1ÞTÞ
1þ BPððn� 1ÞTÞ ;n 2 N ð19Þ

with A ¼ aðnÞ; B ¼ bðnÞ. For example, if we only apply the pesticide
N1 times, then we have

PðTÞ ¼ f ð1ÞðPð0ÞÞ; Pð2TÞ ¼ f ð2ÞðPðTÞÞ; . . . ; PðN1TÞ
¼ f ðN1�1ÞðPððN1 � 1ÞTÞÞ:

Therefore, for a given Pð0Þ, the time series PðTÞ; Pð2TÞ; . . . can be
obtained. In order to investigate how the period T and the qn func-
tion affect the time of pesticide switching, i.e. the value nð2Þ1 T, we
carry out dynamic cobweb analysis, as shown in Fig. 5. To do this,
we fixed all parameter values as those in Fig. 5 and chose different
period T and qn functions for each subplot. Here we assume
N1 ¼ 10, i.e. the same pesticide is applied 10 times periodically,
and the development of the sequence fPðnTÞgn2N with an initial va-
lue Pð0Þ ¼ 90 for given period T and qn function are given in Fig. 5.
The colors from light blue to mauve with n from 1 to 10 provide the
iteration function f ðnÞ; n ¼ 1;2; . . . ;10. It is clear that the sequence
fPðnTÞgn2N reaches its minimum value and then increases. This
also clarifies the number of pesticide applications (i.e. nð2Þ1 þ 1) be-
fore the pest can be resurgent for a given initial population size
(Pð0Þ ¼ 90 in all simulations) and how fast the pest can reach its
carrying capacity (here ðaðnÞ � 1Þ=bðnÞ in Fig. 5, see more details
in the following discussion). All these results confirm that the va-
lue nð2Þ1 depends on the period T and function qn.

In order to get an analytical expression of nð2Þ1 for this decision
strategy, we employ results on the well-known Beverton–Holt
model again. For any fixed n, we have the following Beverton–Holt
difference equation

xk ¼ f ðnÞðxk�1Þ ¼
Axk�1

1þ Bxk�1
; k 2 N
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Fig. 5. Dynamic coweb methods to show the relationship of PðnTÞ and Pððnþ 1ÞTÞ, where f ðnÞ;n ¼ 1;2; . . . 10 and the rest points (n > 10) are determined by function f ð11Þ. The
baseline parameter values are fixed as follows: d1 ¼ 0;8; r ¼ 0:5; x0 ¼ 0:99; g ¼ 0:01 and Pð0Þ ¼ 90. (a) T ¼ 1; qn ¼ 1; (b) T ¼ 2; qn ¼ 1; (c) T ¼ 1; qn ¼ n; and (d)
T ¼ 2; qn ¼ n=2.
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which has two steady states, x�1 ¼ 0 (it is stable if A < 1) and
x�2 ¼ ðA� 1Þ=B (it is stable if A P 1), and xk > xk�1 holds true if
xk�1 < ðA� 1Þ=B and A > 1.

Based on this fact and the relationship of Pððn� 1ÞTÞ and PðnTÞ,
we have

PðnTÞ > Pððn� 1ÞTÞ () Pððn� 1ÞTÞ < aðn� 1Þ � 1
bðn� 1Þ ð20Þ

with aðn� 1Þ ¼ R0ðn� 1; TÞ > 1.
Therefore,

nð2Þ1 ¼ n : Pððn� 1ÞTÞ ¼ aðn� 1Þ � 1
bðn� 1Þ ;R0ðn� 1; TÞ > 1

� 	
 �
: ð21Þ

It follows from (17) and (21) that we have nð2Þ1 > nð1Þ1 . This im-
plies that the switching time with the threshold condition-guided
method is less than the switching time with the pest population
density-guided method.

Fig. 4(b) and (c) give numerical simulations with pesticide
switching tactics. Fig. 4(b) shows that the pest population dies
out eventually and nð2Þ1 ¼ 4. However, if the pesticide application
period T is larger than some critical values, the pest population will
oscillate periodically under this pesticide switching strategy (see
Fig. 4(c)). This indicates that if the pesticide application period T
is too large, the pest population may have an outbreak and exceed
the EIL. If so, we need to combine the method with other feasible
decision switching options in order to determine the pesticide
application period properly.

Method 3 Optimal time for switching pesticides with EIL as a
guide.

Farmers and other pest managers usually control pests such
that they cannot exceed the EIL. From Fig. 2(a) we can see that
the pest population grows very quickly and even exceeds the EIL
(denoted by TH) after repeated spraying with one type of pesticide,
because of the accumulation of the pest’s resistance to it. There-
fore, what we want to address is if the switch action is only initi-
ated when the pest population’s size reaches a given level TH,
how can the time when the pest population reaches TH be deter-
mined and how frequently do we need to switch the pesticides?
Without loss of generality, assume that the component of PðtÞ of
any solution of model (11) with initial value P0 will reach TH at
time s, then from (12) we get

TH ¼
1�xðnð3Þ1 TÞd1

� �
Pðnð3Þ1 TÞerðs�nð3Þ1 TÞ

1þ ð1�xðnð3Þ1 TÞd1ÞPðnð3Þ1 TÞgðerðs�nð3Þ1 TÞ � 1Þ
;

where nð3Þ1 > 0 is the minimum spraying number such that the den-
sity of the pest population Pððnð3Þ1 þ 1ÞTÞ exceeds TH firstly, and nð3Þ1

can be calculated from Eq. (18). Solving the above equation with re-
spect to s yields

s ¼ 1
r

ln
TH 1� ð1�xðnð3Þ1 TÞd1ÞPðnð3Þ1 TÞg
� �

1�xðnð3Þ1 TÞd1

� �
Pðnð3Þ1 TÞð1� gTHÞ

þ nð3Þ1 T:

Fig. 3 provides an example to show how the different spraying
periods affect the density of the pest population, the time s and
spraying number nð3Þ1 . Fig. 4(d) gives the numerical simulation
under this tactic of switching pesticides, from which we can see
that the control action will tend to periodic control after a certain
number of times that the pesticides are switched, where nð3Þ1 ¼ 5. It
follows from Fig. 3(b) that the time s is not a monotonic function of
the spraying period, while the minimum number of pesticide
applications nð3Þ1 is decreasing as T increases (see Fig. 3(c)). In prac-
tice, one of the main purposes of pest resistance management is to
delay the evolution of resistance under condition of eradication of
the pest population or maintaining its density below EIL. Our
results presented in Fig. 3 show that the relationship between s
and T is complex. Thus, how to choose the spraying times and
how to manage pest resistance such that the pest control is cost-
effective is a challenge.

4. Comparison of the three methods for deciding the optimal
time to switch pesticides

From the above discussion, we know that the pest population
dies out under the threshold value-guided method, and it follows
from Fig. 4(b) and (c) that the pest population either dies out or
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tends to a periodic solution under the PðnTÞ guided method,
depending on the period of pesticide applications, while the pest
population oscillates with a maximum value TH under the EIL
guided method. The question is which method is an optimal choice
in practice? We discuss this question below.

We first would like to derive the conditions to determine if the
pest population dies out or oscillates periodically under the density
of pest population PðnTÞ guided method.

Let ni be the number of effective pesticide applications of the ith
pesticide switches and PðiÞðkTÞ is the pest population at time kT
after the ith pesticide switch, that is PðiÞðkTÞ ¼ Pðð

Pi
j¼1nj þ kÞTÞ

and PðiÞð0Þ ¼ Pði�1Þðni�1TþÞ ¼ ð1�xðni�1TÞd1ÞPði�1Þðni�1TÞ. Accord-
ing to Eq. (18) we have

PðiÞðniTÞ¼
ð1�xðni�1TÞd1ÞPði�1Þðni�1TÞeni rT

Qni�1
j¼1 1�xðjTÞd1ð Þ

1þð1�xðni�1TÞd1ÞPði�1Þðni�1TÞgðerT �1Þ 1þ
Pni�1

j¼1 ejrT
Qj

k¼1ð1�xðkTÞd1Þ
� �� � :

ð22Þ

Denote Y ðiÞ ¼ PðiÞðniTÞ, then we have the following difference
equation

Y ðiÞ ¼
ð1�xðni�1TÞd1ÞY ði�1ÞenirTQni�1

j¼1 1�xðjTÞd1ð Þ

1þð1�xðni�1TÞd1ÞY ði�1ÞgðerT �1Þ 1þ
Pni�1

j¼1 ejrT
Qj

k¼1ð1�xðkTÞd1Þ
� �� � :

ð23Þ

Again this is the well-known Beverton–Holt model, which has a
zero equilibrium Y�1 ¼ 0. It is stable provided that

gðTÞ¼: ð1�xðni�1TÞd1ÞenirT
Yni�1

j¼1

1�xðjTÞd1ð Þ < 1: ð24Þ

If gðTÞ > 1, then (23) has a stable positive equilibrium

Y�2¼
ð1�xðni�1TÞd1ÞenirTQni�1

j¼1 1�xðjTÞd1ð Þ�1

ð1�xðni�1TÞd1ÞgðerT �1Þ 1þ
Pni�1

j¼1 ejrT
Qj

k¼1ð1�xðkTÞd1Þ
� �� � :

Let T1 be the solution of equation gðTÞ ¼ 1, then if T < T1, the
pest population will die out after several pesticide switchings,
and if T > T1, the pest population will fluctuate periodically.

Therefore, if we aim to eradicate the pest population and the
period of pesticide applications must satisfy T < T1, our results
support the density guided method (i.e. method 2) because of
nð2Þ1 > nð1Þ1 , as shown in Fig. 4(b).

If the period of pesticide applications T is larger than T1, then
the periodic switching of pesticides will result in oscillating of
the pest population periodically under the density guided method,
as shown in Fig. 4(c). However, for this case the amplitude of the
pest population could be very large and its maximum value can ex-
ceed EIL (i.e. Y� > TH), which will result in great economic loss.
These results confirm that if T P T1, the tactic of switching pesti-
cides with the EIL-guided method is better than the tactic of
switching pesticides with the density guided method, because
the EIL-guided method is in good agreement with the aims of an
IPM strategy, that is control action must be taken once a critical
density of the pests is observed in the field so that the EIL is not ex-
ceeded [6,8–10].

5. Discussion

Chemical methods in IPM are the most direct and effective
[6,8–10]. However, frequent use of one kind of pesticide in the
long-term may create selection pressure for evolution of pest resis-
tance to the pesticide. If too large a proportion of a pest population
develops resistance to the pesticide toxin, the susceptibility of the
entire pest population to the pesticide toxin will be lost eventually,
leading to pest resurgences and outbreaks.
Natural enemies may keep a pest population relatively stable in
the absence of any pesticide application. Indeed, a key component
of an IPM strategy is often biological control [24,25], which is de-
fined as the reduction of pest populations by natural enemies. It
typically involves impulsive perturbations, such as the release of
natural enemies at a critical time of the season when insufficient
reproduction of the natural enemies already present is likely to oc-
cur and pest control will be achieved exclusively by the released
individuals themselves (augmentation) [26,27].

Pulse-like pest management actions such as spraying pesticides
and killing a pest instantly and the release of natural enemies at
critical times can be modelled with impulsive differential equa-
tions. Recently, many mathematical models with impulsive chem-
ical control tactics and releases of natural enemies have been
proposed to model an IPM strategy such as spraying of pesticides
[25,28–33] or releases of natural enemies at critical times
[27,34–41]. Those studies mainly focused on the effects of chemi-
cal control and biological control on the permanence or extinction
of pest populations, and did not consider the effects of pesticide
resistance. In particular, they paid no attention to questions such
as (1) how to determine the period of pesticide switches? (2) What
is the optimal justification for switching from one kind pesticide to
another, unrelated, new kind pesticide? And (3) how to determine
the time when the density of the pest population reaches or ex-
ceeds EIL? All these questions are key issues for the management
of pesticide resistance and applying cost-effective pest control
strategies in practice.

To answer such questions, we developed a pest population
growth model including pesticide resistance. In particular, we
investigated how the number of pesticide applications or the fre-
quency of pesticide applications affects the evolution of pesticide
resistance, and consequently affects the success or failure of pest
control.

In particular, we have provided three possible methods which
can help us to judge when we should switch pesticides: the
threshold condition-guided method; the density of pest popula-
tion-guided method and the EIL-guided method. If we want to
completely eradicate the pest population, then the threshold con-
dition-guided method or density-guided method can be employed
to determine the frequency of pesticide switches. However, our re-
sults confirm that if we properly choose the period of pesticide
application, the density-guided method is better than the thresh-
old condition-guided method in terms of the timing for pesticide
switching. Moreover, the method for determining the period of
pesticide applications is also provided. We also would like to point
out that this guided method may be easily implemented in prac-
tice, because we only need to record the density of the pest popu-
lation at the time of each pulse spraying of pesticides and monitor
the density at the most recent time of pulse spraying. But we
should emphasize here that the period of pesticide applications
must be carefully designed based on our method.

If we want to maintain the density of pests below some prede-
fined threshold value such as EIL rather than eradicating the pest
population, then the density-guided method or EIL-guided method
can be employed to determine the frequency of pesticide switches.
Our results confirm that the EIL-guided method should also be
used to determine the timing of pesticide applications, due to the
uncertainties involved in the density-guided method, i.e. the
amplitude of the pest population may be very large (vast pest
outbreaks may occur, e.g. in locust populations) if the period of
pesticide applications is not chosen properly. Moreover, the EIL-
guided method can maintain the density of pest populations below
the EIL forever, which is one of the main purposes of IPM strategies
[6,8–10,42]. Note that the time when the pest population grows
and reaches the EIL is not monotonic with respect to the frequency
of the pesticide applications. This indicates that although the
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effects of the pesticide naturally wear off with the increasing of
spraying times, the effects of the period of pesticide applications
on their timing s shown in Fig. 3 is complex.

To avoid multiple resistance, we need to adopt the IPM ap-
proach [7]. Therefore, we will extend our single pest population
growth model to include natural enemies in the future. Due to
the pesticide wearing off, repeated releases of the same number
of natural enemies is either insufficient as they no longer suppress
the pest population once the pest resistance develops, or the num-
ber released is too large which is not cost effective and may cause
secondary outbreaks or pest resurgence. If so, how should one
determine the new number of natural enemies to be released at
each control action? This question will be addressed in future
research. Meanwhile, the growth rate of a pest population can be
strongly impacted by environmental conditions, thus the pest
control strategies should be adaptable to changing conditions.
Therefore, both stochasticity in growth rate and the ability to adapt
control methods in response to changing conditions will be also
addressed to make the model more realistic and practical.
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