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ABSTRACT

Prognostics is an engineering process of diagnosing, predicting the

remaining useful life and estimating the reliability of systems and

products. Prognostics and Health Management (PHM) has emerged

in the last decade as one of the most efficient approaches in failure

prevention, reliability estimation and remaining useful life predictions

of various engineering systems and products. Light Emitting Diodes

(LEDs) are optoelectronic micro-devices that are now replacing tra-

ditional incandescent and fluorescent lighting, as they have many ad-

vantages including higher reliability, greater energy efficiency, long

life time and faster switching speed. Even though LEDs have high

reliability and long life time, manufacturers and lighting systems de-

signers still need to assess the reliability of LED lighting systems and

the failures in the LED.

This research provides both experimental and theoretical results that

demonstrate the use of prognostics and health monitoring techniques

for high power LEDs subjected to harsh operating conditions. Data

driven, model driven and fusion prognostics approaches are developed

to monitor and identify LED failures, based on the requirement for the

light output power. The approaches adopted in this work are validated

and can be used to assess the life of an LED lighting system after their

deployment based on the power of the light output emitted. The data

driven techniques are only based on monitoring selected operational

and performance indicators using sensors whereas the model driven

technique is based on sensor data as well as on a developed empirical

model. Fusion approach is also developed using the data driven and

the model driven approaches to the LED. Real-time implementation

of developed approaches are also investigated and discussed.
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Chapter 1

Introduction

Prognostic and health management (PHM) is a process of diagnosing, predicting

the remaining useful lifetime (RUL) and estimating the reliability of systems and

products. PHM has emerged in the last decade as one of the most efficient pro-

cesses in failure prevention, predicting engineering reliability and useful life time

of various engineering systems and products. Prognostics of engineering systems

and products have become very important as malfunction or failure may cause

severe damage to the system, environment and users, and may result in significant

costly repairs. Prognostics process depends on the continuous monitoring of the

key performance parameters and detecting anomalies in their “normal” values.

It will be more accurate if the parameters are monitored in real-time, especially

in the case of safety critical and emergency applications.

Modern engineering systems and products increasingly depend on some sort

of electronics such as control systems, sensors, communications, etc. These elec-

tronic components play a crucial role to control, monitor and interact. For exam-

ple a modern automotive car uses engine control unit (ECU) which is a micropro-

cessor and software, for its main operations such as ignition timing, fuel control,

engine oil management, etc. Some systems such as modern aircraft is completely

dependent on electronics for every single operation (i.e., engine control, autopi-

lot, environmental monitoring, landing gear, etc.,). Malfunctions, failures, and

reliability of any individual electronic hardware and software components inde-

pendently affect the systems and product as a whole. Hence it is important to

assess reliability of these individual electronic components to ensure the safety of
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the operation and increase the maintainability of the systems and products.

Traditional critical systems used a special device called fail-safe components

to protect the systems and personnel from a failure. Some critical systems such

as avionic systems and computer servers use redundant systems to continue the

normal operation in the event of failures. This increases the reliability and surviv-

ability of the system. But the growing demand for high reliability, survivability

and maintainability, and shortage of skilled labours lead to the development of

fault-tolerant control (FTC) systems and PHM which is a proactive FTC system

[19; 20; 21]. In addition, increasing sophistication and multi-mode functionality of

many units that limit the usefulness of the functional trouble shooting, provisions

for output regulation that prevent observation of the decreasing performance and

hardware/software interaction are other motivating factors for the development

of PHM for electronic systems [20; 21]. As the complexity of electronics increases,

maintenance workload, required skill level for troubleshooting, and maintenance

cost will increase. PHM can help to reduce the maintenance requirement and

convert the need for unscheduled maintenance into a predictable and controllable

activity [20; 21].

1.1 Research Motivation

Compared to the traditional light sources, applications of high power light emit-

ting diodes (LED) lighting systems are continuously increasing as they have many

advantages including high reliability, greater energy efficiency, long lifetime, small

in size, no mercury and faster switching speed. Even though high power LEDs

have high reliability and long life time, manufacturers and lighting systems de-

signers still need to assess the reliability of LED lighting systems and the failures

in the LED. This is very important with respect to the maintainability of the

LED lighting systems after their deployments. In particular assessing the relia-

bility of the LED lighting systems which are used for safety critical and emergency

applications is a requirement to ensure the light output meets the standards all

the time. In this case, lighting systems designers and users face challenges in as-

sessing the quality of the light of high power LEDs subjected to harsh operating

conditions such as high and low temperature, etc.
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One of the main challenges is measuring optical characteristics of LEDs which

directly indicates the failure of the high power LEDs (i.e., luminance and chro-

maticity). This is very difficult in the field and prevents accurate assessment of

the reliability and estimation of the remaining useful lifetime of the high power

LEDs after it is deployed. However the identification of failure precursors, which

are driving the failure and degradation in the light output, is possible. Electrical

characteristics can be used to estimate or predict the light output power of an

LED lighting system as there is a close correlation between degradation of the

light output power and degradation of electrical characteristics [22]. Sensors are

available to monitor these parameters in real-time and therefore assessing the reli-

ability and estimating the remaining useful lifetime are possible using appropriate

PHM tools and approaches. Hence developing a real-time health monitoring sys-

tem for high power LEDs improve the overall quality of the lighting systems and

improve the lifetime. In addition to the overall reliability and remaining useful

lifetime (RUL) estimation, PHM approach to the high power LEDs will enable

to issue advance failure warnings, provide fault detection capability, avoid un-

scheduled maintenance via evidence based scheduled maintenance, and help to

improve future designs.

Environmental conditions such as high and low temperature affect electrical

and optical properties of the LEDs [23]. It implies that environmental conditions

have direct impact on the reliability and lifetime of an LED lighting systems. This

makes huge impact on the lifetime and reliability of the LED lighting systems

which are used in many different temperature ranges such as aircraft exterior

lighting systems, automobile lighting systems etc. Assessing the reliability and

predicting the reliability of such LED systems needs real-time monitoring of the

LED electrical characteristics.
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1.2 Problem Description

LED lighting systems are identified as the future lighting source because of its

several advantages. Although the lifetime of the LED light sources is very high,

typical lifetime is 50000 hours (approximately 11.5 years for a 50% calendar time

usage), half of the LED light sources will fail before that period and half of the

LED light sources will operate well over that period. It is observed that the failed

LED light sources continue to emit light but their light output goes below a re-

quired level after a certain period. Research shows how different commercial LEDs

performed under similar operating conditions [24]. Six arrays of white LED pack-

ages form different manufacturers were tested under their rated conditions (350

mA drive current and 35◦C ambient temperature) and results showed that the

different commercial white LEDs degrade at different rates hence demonstrated

different life values [24]. These behaviours of the LED light sources indicate the

difficulties in assessing and maintaining LED lighting systems particularly in the

case of safety critical, emergency and harsh environment applications. Main prob-

lems identified for the LED health monitoring and maintenance are as follows:

1. Light sensors are required to identify the failures in the LED lighting sys-

tems hence labour and additional equipment are required for the mainte-

nance;

2. Lumen degradation of the LED lighting systems cannot be represented by

a specific model;

3. Colour shift of the LED lighting systems cannot be represented by a specific

model;

4. Although LED engine exhibited very long lifetime with high reliability, LED

lighting systems have significantly less lifetime and less reliability since the

LED lighting systems reliability depends on components such as power sup-

ply and driver, and housing;

5. Placing a light sensor inside the luminaries to monitor the luminance or

colour shift (i.e., chromaticity) is difficult.

4



1.3 Objectives of the Research

Primary objective of this research is to develop a real-time PHM approach to

assess the reliability and predict the failures and remaining useful lifetime (RUL)

of a LED light source in the field after their deployment. Develop a real-time

PHM approach for the LED following research objective is identified:

1. Develop a methodology for accelerated life test (ALT) – Since LED packages

have very long lifetime, it is useful to have accelerated testing methodology

which can be used to test the LED degradation within a short period of

time. ALT can also be used to test the developed PHM approaches and

their capabilities under developed accelerated conditions. ALT can also be

used to provide failure data for the development of the PHM approaches.

2. Develop data driven approach – Data driven approach can be easily devel-

oped without having any specific knowledge about the product or systems

although they do require certain failure data. In addition, data driven

approach can be easily implemented in low cost microcontroller based real-

time systems to monitor the health of LEDs.

3. Develop model driven approach – Although it is difficult to establish a

mathematical model to represent the light degradation, some of the p-n

characteristics can be derived from the first principle or from the empirical

data sets. The model represents the p-n junction characteristics which can

be used to assess the p-n junction for any anomalies and hence can be used

to monitor the health or assess the reliability of the LEDs.

4. Develop fusion approach – Fusion approach can be used to incorporate

remaining useful lifetime (RUL) predictions from data driven and model

driven approaches. This will improve the overall performance of the PHM

approach.

5. Validate the developed approaches – Further similar ALT tests can be car-

ried out to collect the data for validate the developed techniques. These test

data can be used to validate the developed approaches for LED prognostics

and health monitoring.
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6. Compare the developed techniques for LED health monitoring and identify

the suitable approach for LED health monitoring application.

7. Investigate the implementation strategies in different real-time hardware

platforms. For this work LabVIEW real-time platform and LabVIEW

FPGA platform can be used to investigate the implementation strategies.

1.4 Novelty and Contribution

The proposed real-time PHM approaches will provide robust assessment of the

reliability and predict the failures and remaining useful lifetime (RUL) for LEDs

based on the sensor data. Thesis presents novel approaches that can be used in

real-time health monitoring and RUL prediction applications for LED packages

and products. Some of the main novelties and contributions are:

1. Strategy for LED life test under accelerated voltage condition is investi-

gated. Accelerated voltage test is used to provide data for the PHM ap-

proach development, testing and validation. Two different accelerated volt-

age tests are investigated:

(a) Forward voltage is increased in steps from typical minimum voltage to

typical maximum voltage;

(b) Forward voltage is kept constant at the typical maximum voltage.

Accelerated voltage test is used to elevate forward current and junction

temperature which are key damaging parameters of the LED.

2. A novel methodology based on distance measure techniques for data driven

PHM approach for LEDs is investigated under the accelerated voltage con-

dition. Diagnostics and prognostics capability of two distance metrics:

(a) Euclidean; and

(b) Mahalanobis Distance;

have been investigated and a comparative analysis on their performance

is undertaken. Diagnostics and prognostics parameters are developed for
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distance measure techniques based on developed accelerated test conditions.

Primary advantage of the developed distance metrics based approach is that

they can be implemented using low cost microcontrollers with minor/no

modifications for LED health monitoring. In addition, distance metrics can

reduce the higher dimensional data into one dimensional value which can

be easily monitored and used for PHM purposes.

3. Logistic regression and Kalman filter (LRKF) is investigated for the real-

time health monitoring of LED packages and products. None of the current

data driven approach uses both logistic regression and Kalman filter for

data driven PHM approach of electronic systems or products. Compared

to other existing techniques, proposed LRKF approach not only uses range

of monitoring parameters that can indicate degradation or failures but also

makes very accurate consistence predictions. Primary disadvantage of this

approach is that the logistic function needs to be approximated in order to

be implemented in a microcontroller based real-time system.

4. A novel approach based on neural network and Kalman filter (NNKF) is

investigated for the real-time PHM of the LED packages and products. This

approach makes similar prediction as the LRKF approach. Single hidden

layer with two hidden neuron is investigated in this work and it is obvious

NN can be further developed by increasing the neurons and hidden layers.

Primary advantage of this approach is that activation functions for the NN

can be selected as linear or logistic functions. Linear activation function

NN can be more suitable for the microcontroller based real-time health

monitoring systems for LED packages and products.

5. An empirical model driven approach is investigated for the health monitor-

ing of the LEDs. Diagnostics and prognostics capability of the developed

empirical model shows empirical model can be used to predict the system

behaviour and hence use to monitor the health. The main advantage of the

investigated empirical model is that it can be easily programmed into a low

cost microcontroller based real-time monitoring system.

6. LED accelerated voltage test data is used to evaluate the developed ap-
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proach. This thesis also gives a comparative study of different novel ap-

proaches developed for the real-time PHM of other electronic systems or

products.

1.5 Outcome and Impact

Increasing use of LED packages and products for the lighting applications and

uncertainty of their failures identification make the manufacturers and lighting

system designers difficult to design and maintain reliable LED lighting systems.

In particular lighting systems used in safety and emergency applications and

lighting systems used under harsh environmental conditions. Undertaken research

proposes a real-time health monitoring and prognostics system for LED packages

based on different approaches. In addition, undertaken research proposes an

accelerated voltage test to collect the data to train, validate and test the developed

approaches for LED health monitoring. This research allows manufacturers and

lighting system designers to enhance their design by embedding temperature and

current sensors, and real-time health monitoring and prognostics component with

LED driver to monitor the health of LED packages and products. The following

papers have been published as a result of the undertaken research programme:

1. Sutharssan, T.; Stoyanov, S.; Bailey, C.; Rosunally, Y.; ‘Data Analysis

Techniques for Real-Time Prognostics and Health Management of Semi-

conductor Devices’, in Proceeding of 18th European Microelectronics and

Packaging Conference (EMPC), Brighton, UK, 12-15 September 2011

2. Sutharssan, T.; Bailey, C.; Stoyanov, S.; Rosunally, Y.; ‘Prognostics and

Reliability Assessment of Light Emitting Diode Packaging’, in Proceeding

of 12th International Conference on Electronic Packaging Technology and

High Density Packaging (ICEPT-HDP), Shanghai, China, 8-11 August 2011

3. Sutharssan, T.; Stoyanov, S.; Bailey, C.; Rosunally, Y.; ‘Prognostics and

Health Monitoring of High Power LEDs’, Micromachines 2012, 3, 78-100

4. Sutharssan, T.; Bailey, C.; Stoyanov, S.; ‘A Comparison Study of the Prog-

nostics Approaches to Light Emitting Diodes under Accelerated Ageing’,
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in Proceeding of 13th International Conference on Thermal, Mechanical,

and Multi-Physics Simulation and Experiments in Microelectronics and Mi-

crosystems, Lisbon, Portugal, 16-18 April, 2012

1.6 Structure of the Thesis

This thesis is organised into 9 chapters. Literature reviews of prognostics and

health management approaches, real-time PHM, PHM applications for high power

light emitting diodes, and accelerates life test for LEDs are given in chapter 2.

Review of PHM is based on three main approaches and related work carried out

under each approach is discussed in this chapter. Work carried out based on

real-time aspect is discussed under real-time PHM. Only few researches reported

in LED prognostics and most of the suitable publications and the outcomes are

presented under PHM for high power light emitting diodes. Reported accelerated

life tests for LEDs are also discussed in this chapter.

Chapter 3 presents the development of the high power light emitting diodes,

their market growths, applications, LED lamp configurations, lifetime, and failure

modes and mechanisms.

Detail review of algorithms for PHM approaches is presented in chapter 4.

Review is presented under three different approaches for PHM. Statistical and

machine learning algorithms are investigated and presented in under data driven

approach. System models and physics of failure models are investigated and

presented under model driven approach. Methodologies for fusion approach is

also investigated and presented.

In chapter 5 proposed approaches to the high power white LED light source

are given. Identification of the failure precursors using the failure mode and three

different approaches to the real-time PHM of the LED are explained.

Accelerated life test is selected as the testing methodology to collect the data

for this research. Detailed explanation of the accelerated life test, experimental

setup and data collections under two different testing conditions (normal and

accelerated) are given under chapter 6.

Chapter 7 discusses the results with validation examples for each approach.

Real-time implementation of the developed approaches are discussed and ex-
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plained in chapter 8 using National Instruments PXI systems as the real-time

platform and LabVIEW FPGA. Conclusion and future work direction of this

work are discussed in chapter 9.
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Chapter 2

Literature Review

2.1 Introduction

A review of Prognostics and Health Management (PHM) and real-time PHM,

and review of PHM application to high power LEDs are given here. This chap-

ter is organised into four sections. Second section describes the development of

the PHM technology and general overview of the researches carried out in the

field of PHM connected to many different fields and applications. Based on the

approaches to PHM technology, PHM is divided into three different categories

and literature reviews were also done based on these approaches. Third section

describes the work carried out related to the real-time aspect of the diagnostics,

prognostics and health management. Fourth section describes the research car-

ried out with regard to LED reliability assessment and application of the PHM

technology to high power light emitting diodes.

2.2 Prognostics and Health Management (PHM)

2.2.1 Data Driven Approach

Prognostics and health management is a technology used to monitor degradation

in engineering systems, understand when failure may occur, and provide a cost

effective strategy for scheduled maintenance. Prognostics and health manage-

ment of engineering systems or products has become very important as failures
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may cause severe damage to the system, environment and users, and may re-

sult in significant costly repairs. Adopting PHM techniques require continuous

monitoring of key performance parameters and detecting any anomalies in these

parameters. There are three different approaches to PHM applications and nu-

merous researches have been carried out for many different systems, products and

in many different fields. Three different approaches to PHM system are:

1. Data driven approach

2. Model driven approach

3. Fusion approach

Concept of PHM was initially developed to monitor failures and diagnose

the cause of failures in the safety critical systems. Nowadays it has become

an essential part of many different systems and products. Numerous research

papers have been published and numerous applications have been developed on

PHM technology. Most of the real PHM applications use fusion approach as they

are based on both data driven and model driven approaches i.e., generally data

driven approach is used to predict the anomalies and then combined with model

driven technique to predict the life time. However this review is divided into

three sections based on PHM approaches. Selected suitable publications are used

for the literature reviews of the different approaches.

2.2.2 Data Driven Prognostics Approach

Since data driven approach has many advantages: it is easy to implement, it

does not require systems specific knowledge, considerably cheap, etc., many PHM

research studies carried out are based on data driven approach. There are many

data driven techniques available and some of the research work carried out based

on different data driven techniques are reviewed for this thesis.

Data driven approach is used to detect the anomalies, diagnose the failures

and estimate the remaining useful lifetime (RUL) using historical data and oper-

ational data. Most of the existing data driven PHM applications use the extent of

deviation or degradation from its expected typical operating performance as the
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health measure [25] or failure precursors [26]. Health measure or failure precur-

sor is a parameter which used to indicate the state of the system. By monitoring

operating performance data, degradation from the normal operating performance

can be estimated. This helps to issue early warning of failures, forecast necessary

maintenance, avoid scheduled maintenance and extend maintenance cycles, assess

the potential life extensions, reduce the amount of redundancy, provide guidance

for system re-configuration and self-healing, provide efficient fault detection and

identification, and improve future designs and qualification methods [25].

Anomaly detection in any operational performance data is the first step in the

diagnostics and failure prognostics. Most of the anomaly detection techniques

use the sensor data collected from the system or product. An anomaly detection

technique has been developed in the case of absence of unhealthy data and based

on one class (healthy data) support vector machine (SVM) [27]. It is called

CALCESVM and it was used to test and validate the result. Lockheed Martin

server data and another simulated correlated data set, consisting of three random

variables were used to test the developed CALCESVM . Results were compared

with the open source SVM software LibSVM which is developed by Chih-Chung

Chang and Chih-Jen Lin [27]. For both data sets (i.e. Lockheed Martin server

data which is real data and the simulated data set), CALCESVM performed

better than the LibSVM . CALCESVM novelty anomaly detection capabilities

are limited and it depends on user specified threshold value if the number of

training samples are too small and the choice of the decomposition detail [27].

Celaya et al., presented an accelerated life testing system for Power MOS-

FETs1 under power cycling to induce the die-attach degradation due to thermal

over stress [28]. Drain to source ON-resistance (RDS(on)) was established as a pre-

cursor for the die-attach failure mechanism. It was established that the RDS(on)

and the junction temperature has a quadratic relationship and RDS(on) is propor-

tional to the damage magnitude of the device. Hence junction temperature could

be used for a data driven prognostics approach for an in-situ health monitoring of

the power MOSFETs [26]. Using collected data for the ON-resistance (RDS(on))

data driven approach based on Gaussian Process Regression (GPR) was devel-

oped and compared with model driven approach. Although the GPR approach

1Metal oxide semiconductor field effect transistors
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does not have the benefit of a model for the degradation, the prediction made

by GPR approach becomes more accurate at a considerably later time compared

with model driven techniques [28].

A comparison study of three different data driven techniques were discussed

using a set of time series data obtained from rotating equipment in an aerospace

setting [29]. Relevance Vector Machine (RVM) which is a Bayesian treatment of

Support Vector Machine (SVM), Gaussian Process Regression (GPR) and Neural

Network (NN) were studied in this work and reported by Goebel et al. Although

the general prediction accuracy was within the acceptable limit, remaining use-

ful lifetime estimations varied considerably. Unstable prediction resulted due to

the sensitivity to state estimation in the NN approach and due to sensitivity to

training coherence in the RVM approach [29].

Many of the existing data driven prognostics systems were developed based

on the Artificial Neural Network (ANN) [30; 31]. Roy and Ganguli developed and

analysed neural network filters to reduce the noise in the health monitoring sig-

nals [32]. A weighted recursive median (WRM) filter and a radial basis function

(RBF) neural network filter were developed and tested for helicopter rotor blade

damage detection. 54-76% and 59-75% noise reduction were achieved by the op-

timally WRM filter and RBF neural network filter, respectively. Performances

were compared with unweighted recursive median filter and finite impulse re-

sponse (FIR) filter, and established that much better performances were achieved

by the developed WRM and RBF filters based on soft computing methods [32].

Sohn et al., presented a novelty detection technique for computer hard disk un-

der changing environmental and operational conditions based on auto-associative

neural network [33]. Technique is demonstrated using a simplified computer hard

disk model from MathWorks. From the simplified computer hard disk model,

discrete transfer function of the model was obtained using Laplace transforma-

tion and discretising the continuous transfer function. The auto-associative neural

network was trained using coefficients of the discrete transfer function of the com-

puter hard disk model under different environmental and operational conditions.

Novelty index (NI) was defined as the distance between the target output and

output of the auto-associative neural network. Although no threshold values were

presented in the paper and several issues needed to be addressed, the presented
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work demonstrated some progress in the anomaly detection under changing en-

vironmental and operational conditions using proposed novelty index (NI) and

auto-associative neural network [33].

A systematic data driven approach using the knowledge from the signal pro-

cessing and statistical domain had been developed to detect and diagnose the

faults in automotive engines [34; 35]. Experiment was conducted and data for

five different faults under various operating conditions was collected from the

engine. This data was used to test the applicability of the data driven diagnos-

tic approach. This approach had been applied to a Toyota Camry engine with

manual transmission and experimental result has been reported [34; 35].

Degree of randomness (DoR) measure and Laplace test were used to develop a

diagnostics and prognostics method for roller bearing based on the vibration sig-

nal [36]. Shannon entropy was used to estimate the DoR. Any trends associated

with the estimated DoR was demonstrated as the abnormal event in the systems.

Laplace test statistic was applied to the abnormal event detected from the DoF

estimate to predict the failure of the roller bearing systems. Roller bearing data

from the NASA prognostic data repository was used to test the approach. Pre-

dicted result illustrated that the proposed approach can predict the failures 10

days before they occur [36].

2.2.3 Model Driven Prognostics Approach

The model driven prognostics approach is based on accurate mathematical mod-

els. It is used in many different applications where the system model can be

derived from first principles or an empirical model represents the system dynam-

ics and damage accumulation. Such models can be determined from test data.

Numerous papers have been published based on the model driven technique for

PHM [28; 37; 38; 39; 40]. Luo et al., presented a step by step approach to de-

velop a model driven prognostics technique for an automotive suspension system

adopted from a half-car two degree of freedom model [41; 42]. The system models

were simulated with a standard 4th order variable-step-size Runge-Kutta algo-

rithm and Monte-Carlo algorithm for three different road conditions. Simulated

results presented in the paper showed that fair and very good road conditions
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produced 35% and 80% increase in the life time compared to the severe road

conditions. Expected life of a suspension for a 10% calendar time usage under

severe, fair and good road conditions were estimated at 4.5, 6 and 8 years, re-

spectively. An interacting multiple model (IMM) estimator was used to estimate

the degradation measure and the time-averaged mode probabilities were used to

predict the remaining useful lifetime of the automotive suspension system with

a drifting parameter. Accuracy of this model was not reported. It was reported

however that the implementation of this model in a real automotive suspension

system would be achieved in the future [41; 42].

Vichare et al., monitored following parameters of a notebook to develop a

model driven PHM techniques for the notebook computer based on thermal loads

[25]: central processing unit (CPU) heat sink temperature; hard disk drive (HDD)

temperature; ambient temperature; percentage of CPU utilised; and fan condition

(on/off). The absolute temperature data then processed by 3-parameter Rain-

flow Counting method to identify the complete and half cycles, amplitude, mean

temperature and ramp rate of each cycle. Collected data and stress and damage

models were used to estimate the degradation and remaining useful lifetime of the

notebook computer. Data reduction and load parameter extraction algorithms

were used to utilise the less on-board storage and power consumption. More than

90% data reduction produced less than 1% error in damage accumulation in the

notebook in-situ health monitoring [25]. Details of the stress and damage model

were not discussed in the paper. Accuracy of this in-situ health monitoring based

on model driven approach was not reported in the publication.

Saha et al., developed a framework for estimating the remaining useful lifetime

(RUL) of batteries based on an empirical model [43]. Battery model was adopted

from a lumped parameter model of a battery cell. Batteries internal parameters

of the battery model were estimated from the sensor data comprising of voltage,

current, power, impedance electro-chemical impedance spectrometry (EIS), fre-

quency and temperature readings and applying relevance vector machine (RVM)

regression. Estimated parameters then fed into extended Kalman filter (EKF)

and particle filter (PF) algorithms to estimate the remaining useful lifetime of

lithium-ion battery. In the case of EKF, constant model parameters were consid-

ered throughout the estimation. In the case of PF, constant model parameters
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were incorporated with the internal battery parameters as components of the

state vector and values learned from the RVM were used as the initial values for

the constant model parameters. A purely data driven technique Autoregressive

integrated moving average (ARIMA) was also studied based on the capacity of the

battery which is derived from the sensor data. The Bayesian statistical approach,

RVM-PF framework demonstrated significant advantage over both ARIMA and

EKF [43].

Celaya et al., presented an empirical model based prognostics approach to elec-

trolytic capacitors based on electrical overstress accelerated aging [44]. Empirical

degradation process model for the capacitor was developed from the percentage

loss in the capacitance. The percentage loss in the capacitance established as the

precursor of the failure from the lumped parameter model for a real capacitor

and the frequency response of the capacitor impedance measured with electro-

impedance spectroscopy. Constant model parameters were estimated from the

accelerated aging experiments. A nonlinear least-square regression algorithm was

used to estimate the model parameters from the test data for five different capac-

itors. The model description then fed into the Kalman filter framework to predict

the remaining useful lifetime (RUL) of the capacitor. The results presented in the

paper were based on the accelerated life time conditions and on the accelerated

life timescale and RUL prediction were within the acceptable limit [44].

2.2.4 Fusion Approach

Many of the real world prognostics system are based on fusion approach. Fusion

approach is the combination of both data driven and model driven approaches.

Typical sensor PHM systems use data driven approach as a first level of anomaly

detection based on the sensor data and then use both model and data driven

approaches to predict the remaining useful lifetime.

Cheng and Pecht developed a step by step approach to implement the fusion

prognostics approach to multilayer ceramic capacitors (MLCCs) [45]. Failure

modes, mechanisms, and effect analysis (FMMEA) was used to identify the fail-

ure precursors of the MLCCs. Insulation resistance was established as the main

failure precursors based on the silver migration and overall degradation of the
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dielectric of MLCCs as both caused a lowering of insulation resistance. Capac-

itance and dissipation factor of the MLCCs were also monitored based on the

function of the capacitor. Multivariate state estimation technique (MSET) was

used to estimate values for each monitored parameter (i.e. insulation resistance,

capacitance and dissipation factor) and residual was calculated from the esti-

mated values and observed values. Statistical probability ratio test (SPRT) was

used to detect the anomalies in the calculated residuals. When an anomaly was

detected, RUL was estimated. Physics of failure approach was used to identify

the failure mechanisms and data driven approach was used to detect the anoma-

lies in the residual. Linear extrapolation technique was used to estimate the RUL

and reasonable prediction was made [45].

A fusion approach for insulated gate bipolar transistors (IGBTs) was pre-

sented by Nishad et al. FMMEA analysis was performed to identify the failure

precursors [46]. IGBT threshold voltage (VGE(th)), transconductance (gm) and

gate leakage current (Ige) were established as the failure precursors for the dielec-

tric breakdown and hot electron failure mechanisms. Collector-emitter saturation

current (ICES) and collector-emitter ON voltage (VCE(ON)) were established as

the failure precursors for the latch-up failure mechanism. Collector-emitter ON

voltage (VCE(ON)) was established as the failure precursors for the failures re-

lated to the wire bond flexure and solder die attach. Physics of failure models

for time dependent dielectric breakdown and solder die attach fatigue model were

developed. Rainflow counting method was used to analyse the loading profile and

output of the analysis was used to predict the remaining life in real-time. Data

driven approach was proposed based on trending of the collector-emitter ON volt-

age (VCE(ON)) drop to failure threshold. Fusion approach was proposed in the

paper based on discussed physics of failure models and data driven approach [46].

Xu and Xu proposed a fusion based PHM approach for avionic systems. Fusion

approach was developed from an optimal linear combination forecast model and

three different approaches were used to predict the remaining useful lifetime of

the avionic systems. Data driven, model driven and knowledge based approaches

were used as the baseline prognostics approaches. Fusion approach was developed

based on avionic systems conceptual health management architecture and under

the post flight condition. RUL estimation was achieved through the following
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step by step approach [47].

1. Parameter selection

2. In-situ monitoring and data acquisition

3. Threshold creation

4. Health assessment

5. Parameter isolation

6. Diagnostics and failure definition

7. Prognostics and fusion

Autoregressive moving average (ARMA), support vector machine (SVM) and

fuzzy neural network (FNN) were used to represent the three approaches. A

case study was carried out based on the collected time to failure data values

of fifty avionic radar magnetrons. Comparison study was made between indi-

vidual approaches as well as fusion approach based on prediction error indexes

such as sum of squared error (SSE), mean square error (MSE), mean absolute

error (MAE), mean absolute percentage error (MAPE) and mean squared per-

centage error (MSPE). Predictions based on the fusion approach were improved

significantly and all the prediction error index measures indicated better values

for fusion approach compared with individual approach. Detail explanations of

model developments for baseline approaches (i.e. model driven, data driven and

knowledge based) were not given in the paper [47].

2.3 Real-Time Prognostics and Health Manage-

ment

Real-time prognostics and health management are used to predict the remaining

useful lifetime in real-time using in-situ sensors for health monitoring. Most of

the safety critical and mission critical systems have some sort of health moni-

toring systems based on sensors and will be able to issue early warnings, predict

19



and diagnose the failures in advance. For example modern cars have on-board

health monitoring systems to monitor the health and reliability of the various

components using sensor data.

A neural network real-time predictive maintenance system was developed by

Bansal et al. Experiment was carried out to collect motion signatures to classify

five distinct motor loads [48]. Five readings of motion signatures were collected

for a unique configuration. The p-gain (proportional gain) and i-gain (integral

gain) were used to change the configurations. Altogether 5000 readings were col-

lected with a sample size of 900. Collected data grouped into training data (1/2

patterns), validation data (1/6 patterns) and testing data (1/3 pattern). These

group data were then normalised to zero mean and unit variance. Based on the

principal component analysis (PCA), neural network with 14 inputs, 15 hidden

units and 5 outputs was selected. The confusion matrix which is used as an eval-

uation tool, showed 97.59% of the test data classified correctly. Implementation

of this approach or real-time system requirements (i.e. CPU or microcontroller)

for the implementation was not discussed in the paper [48].

Raptis and Vachtsevanos developed an adaptive particle filtering framework

for real-time fault diagnosis and failure prognostics of environmental control sys-

tems [49]. Evaporator modelling was carried out based on mass balance and

energy balance equations. Refrigerant leakage model was developed based on the

mass flow rate at the crack surface. Particle filter (PF) algorithm was selected

and non-linear time growth model (i.e. refrigerant leakage model) was imple-

mented using PF to predict the expected leaked mass flow rate. A prognostic

of the environmental control system was achieved through recursive Bayesian es-

timation techniques from the information for fault growth model and real-time

data from the sensors. This approach was tested with numerical simulations and

result showed this approach provided very accurate estimate of the fault pro-

gression, crack growth and RUL prediction. A real-time systems requirement to

implement this approach was not discussed in the paper [49].

Health monitoring approach for lithium-ion batteries in the electrical vehicles

was developed based on on-board internal resistance estimation by Remmlinger

et al. Data collected from inner-city driving of a hybrid vehicle was analysed

for degradation index [50]. Suitable features were selected as degradation index
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for the lithium-ion batteries. These features were then used to test the batteries

in a laboratory battery testing system inside a climate chamber to control the

environmental temperature from -20◦C to 50◦C. A battery model also adopted

from the general equivalent circuit of a battery and internal resistance values

were identified for several different temperatures with reference current pulse

excitation. Processing power and the memory capacity of the engine control unit

(ECU) were considered as limiting factors for deciding the algorithm to estimate

the internal resistance. Regressive formulation of the linear least square algorithm

was used to estimate the internal resistance [50].

Prognostic of ball grid array (BGA) is a hot topic of research as the use

of BGA is increasing as they have many advantages which include lead free and

smaller in size, and modern electronic design requires high reliability, less package

size and small interconnection height. Particularly, in-situ monitoring and built

in test (BIT) were discussed in recent publications. Voutilainen et al., proposed a

prognostic method for embedded health monitoring of BGA interconnections with

1149.4 test bus architecture [51]. Test modules (15mm x 15mm) with 9x9 matrix

and 1.5mm pitch were fabricated using standard multilayer low-temperature co-

fired ceramic (LTCC) processing with thick-film screen-printed conductors. These

ceramic BGA modules were attached on a FR-41 printed circuit board (PCB).

A measurement system was developed using traditional Wheatstone bridge mea-

surement technique. Prognostics corner balls, centre ground ball, and external

resistors (100) were together used to build an embedded measurement circuit for

in-situ monitoring. Thermal cycling test (TCT) was carried out using the temper-

ature range of -40◦C to 125◦C, one cycle per hour, with a ramp rate of 11◦C/min.

DC voltage was applied to the embedded circuit and voltage measurement was

performed in every 3 min using a data logger. During the thermal cycling break

electrical measurements were performed using a IEEE 1149.42 compliant compo-

nent. Unbalancing voltage reading was observed and due to crack in a corner ball.

This unbalance voltage level was increasing as the corner ball crack was increas-

ing with the thermal cycling process. Such an unbalance was established as the

1A grade designation assigned to glass-reinforced epoxy laminate sheets, tubes, rods and
printed circuit boards

2An IEEE standard for mixed-signal test bus
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precursor of the solder interconnect breakdown. Scanning acoustic microscopy

and X-ray measurements were also made in addition to the in situ monitoring.

Solder interconnect breakdown was observed with developed approach well earlier

than the actual breakdown occurred [51].

2.4 PHM for High Power Light Emitting Diodes

(LEDs)

Even though typical life time of a high light emitting diode (LED) is very high,

typically specified in the order of 50000 hours, statistics show that half of the

light emitting diodes fail before this limit is reached. The reason for this is

that this specification is not based on individually measured characteristics of

LEDs. Therefore, manufacturers and lighting system designers still need to mon-

itor the health of assembled LEDs and predict their failures, especially for safety

emergency critical applications in sectors such as aerospace, medical, energy and

others.

Numerous papers have been published that characterise the reliability and

thermal behaviour of LEDs [24; 52; 53; 54; 55; 56; 57; 58; 59; 60]. Recent publica-

tions have detailed the importance of temperature on the reliability of LEDs and

the need for suitable packaging to ensure that appropriate heat is extracted [24].

Physics of Failure Models for high power LEDs have also been developed where

thermomechanical models have been used to characterise a number of failure

modes [61]. At present there is no reported work on real-time monitoring of LED

degradation and the use of data driven or physics of failure or fusion models to

predict degradation and remaining useful life of the LEDs in real-time. And there

are few high temperature (or accelerated) LED tests [23; 62], some accelerated hu-

midity test [63], some accelerated humidity and accelerated temperature test [64]

and some accelerated electrical stress based on DC and DC pulsed [65; 66] were

reported in the literature. But there are no work reported on accelerated life test

for LED packaging based both on current (electrical overstress) and temperature

(thermal overstress).

List of recommendations were developed to assess the LED lifetime for general
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lighting by the Alliance of Solid-State Illumination Systems and Technologies

(ASSIST) [58]. LED lifetime was defined based on two performance criteria:

1. L70% – Time to 70% lumen maintenance (i.e., 30% depreciation in the light

output power) for general lighting applications;

2. L50% – Time to 50% lumen maintenance (i.e., 50% depreciation in the light

output power) for the applications where light output is not critical.

Within this period the LED system should not exhibit greater chromatic shift

bounded by a four-step MacAdam ellipse [58]. Lifetime measurements should

be taken after a seasoning period of 1000 hours of operation at the rated oper-

ating conditions. Since the LEDs have a very long life time, the LED should

be monitored for minimum of 5000 hours of operation at rated conditions after

the seasoning period (1000 hours) under three different temperature conditions.

Temperature measurements should be taken at a nearest point to the junction

and manufacture should indicate the point where the temperature was measured.

Recommended temperatures for the test are 45◦C, 65◦C and 85◦C for the high

power LEDs (rated current above 100mA), and 35◦C, 45◦C and 55◦C for the low

power LEDs (rated current below 100mA). A functional fit to data between 1000

and 6000 hours can be used to extrapolate to 70% and 50% lumen maintenance.

Since LED’s light output increases in the initial period were observed for most of

the LEDs, the initial 1000 hours operation should not be used to find the func-

tional fit. A common data sheets format for high power and low power LEDs,

and LED systems were also provided [58; 59].

Failure analysis of white LEDs was reported by Narendran et al. Experi-

ment was carried out to understand the long term performance of white LEDs

and establish the relationship between the degradation of light output power and

junction temperature, and the amplitude of short-wavelength radiation [53]. It

was established that the yellowing of the epoxy was caused by the junction tem-

perature and the amplitude of short-wavelength radiation and hence the light

output degradation rate of the white LEDs also affected. Presented experimental

results showed that the junction temperature had more influence in the light out-

put degradation rate of the white LEDs than the amplitude of short-wavelength

radiation. Results presented also showed that the lumen maintenance of the white
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LEDs could be enhanced by removing the heat from the junction more efficiently

by using the epoxy materials which have lower photodegradation characteristics

[53].

Experimental assessment of the life of white LED was presented by Narendran

and Gu. First experiment was carried out for the LED from the same manufac-

turer for their rated current 350mA and for different ambient temperatures [24].

Test was run for several thousand hours. The failure mode was selected as the

30% reduction in the light output from the initial light level. As the LEDs require

several years to reach this criterion, collected data was used to extrapolate further

to estimate the lifetime of the LEDs. It was observed the light output decreases

and follows the exponential decay curve, and also is a function of temperature i.e.

the life decreased with the temperature. Lifetime of this type of white LEDs was

established as more than 50 000 hours at room temperature 25◦C. Since there

are many different manufacturers for the LEDs, a second experiment was carried

out to compare the lifetime of the white LEDs from different manufacturers. All

LEDs were operated at the rated current of 350mA and ambient temperature of

35◦C. For the same operating conditions, all the LEDs indicated different tem-

perature readings at their T-point, the point where the temperature measured

in the LEDs. Although the light output decrease followed the exponential decay

curve, the lifetimes of the LEDs were much different from each other [24].

High temperature storage effects on degradation of Gallium nitride based high

brightness LED was reported by Meneghini et al. Two different families of devices

were selected for the temperature stress test ranging from 180 to 230◦ C which is

significantly higher than the maximum recommended by the manufacturer [62].

In order to detect the pure thermal effects, no bias was applied during the accel-

erated test period. Device electrical and optical measurements were made at each

step of the storage test. Presented results showed that the applied thermal stress

induced an optical power decrease and an operating voltage increase. Spectral

characteristics of the light output showed that the thermal stress induced a wors-

ening of the chromatic properties of the device. Presented microscopic analysis

showed that the thermal stress induced the carbonization of the white plastics

which reflected as a reduction in the package reflective properties (i.e. darkening

of top contact layer) [62].
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Humidity effects on the degradation of high power white LEDs was reported

by Tan et al. High temperature-humidity (85◦ C – 85% RH) ageing test based

on IPC/JEDEC1 industry standard was carried out and non-destructive failure

analysis tools were used to analyse the data [63]. Physics of failure used to ver-

ify the failure mechanism obtained by the non-destructive failure analysis tools.

Results indicated a degradation of optical power when the LEDs subjected to

high temperature-humidity ageing test (accelerated test). Non-destructive fail-

ure analysis tools showed that the degradation rate of two failure mechanisms

(related to chip failure and degradation of phosphor) followed log-normal distri-

bution. Based on the physics of failure analysis tools failure mechanism related

to chip failure was caused by high reverse saturation current due to the mechan-

ical damage of the GaN2 based LED. Failure mechanism related to degradation

of phosphor was caused by diffusion of Zn activator and dissolution of phosphor

[63].

A new concept of metal package was proposed by Kang et al., to estimate the

lifetime of GaN based blue LED chips (i.e. LED die) with high accuracy [22].

Since the degradation rate of the surrounding components of the chip such as

pate, silicone-gel, phosphor and package body are different and typically higher

than the chips, accurate estimation of the degradation rate of the chips was dif-

ficult. To overcome this, metal package was introduced based on the materials

which have less degradation rate and have high thermal conductivity and efficient

heat dissipation characteristics. Accelerated life test was carried out to test the

proposed metal package to estimate the lifetime of the GaN based blue LED chips.

Three chambers with three different temperature (40, 60 and 80◦ C) were used

to test the metal package and in each chamber, three different metal packages

with three different operating drive currents (500, 700 and 1000 mA) were placed.

Measurements of light output power and package temperature were made for an

ageing time of 5000 hours with the interval of 100 hours and 500 hours. Three

different chips from three different manufacturers were investigated in this work.

Only chip from a manufacturer produced light output power with enough degra-

1Association Connecting Electronics Industries and Joint Electron Devices Engineering
Council standard for microelectronics and connecting electronics

2Gallium Nitride
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dation to estimate the lifetime and not enough degradation of the light output

power was observed in the other two chips within the ageing period of 5000 hours.

Degradation about 20-40% was observed in all three control groups (from three

manufacturers) of LED chips with conventional plastics packages. It indicated

that metal package could be used to estimate the lifetime of the GaN based blue

LED chips with high accuracy, excluding other degradation factors which have

higher rate of degradation than the LED chips. Estimated lifetime of the chips

which showed enough degradation was 45000 hours based on extrapolation of the

exponential decay function [22].

Fan et al., developed physics of failure based prognostics approach for the high

power white LEDs. Failure modes, mechanisms and effective analysis (FMMEA)

was used to identify the failure modes and mechanisms [61]. System circuit open

(i.e. lighting off), lighting chromatic changes and power efficiency degradation

(i.e. luminous flux degradation) were identified as the failure modes. Failure

mechanisms were divided into three main categories:

1. Chip level degradation;

2. Package level degradation;

3. System level degradation.

Chip level degradation was caused by the increasing non-radiative recombi-

nation process. Defects in the active layer (i.e. die) of the LEDs and diffusion

of dopants were established as the main contributors to the chip level degrada-

tions. Interface delamination failures, epoxy lens and silicone glue darken failure,

and phosphor coating degradation were established as the key failure mechanisms

in the package level. Degradation in SMT (surface mount technology) module

and degradation in the active cooling systems were identified as the main cause

for the system level degradation of a LED lighting system. Empirical model for

lumen maintenance for thermal induced luminous degradation was established

as a function of the junction temperature and junction temperature-dependent

light output degradation rate. Linear relationships between junction temperature

and input power, and junction temperature and input current were established
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using finite element method simulations for the junction temperature under differ-

ent driving powers. Coffin-Manson-Basquin model which is a plastic and elastic

strain driven model for the fatigue failures and Engelmaier model for cyclic fre-

quency effects, temperature effects and elastic-plastics strain were proposed for

the thermal cycle induced solder interconnect failures [61].

A detailed review of failure mechanisms and reliability study of the high power

LEDs was carried out by Chang et al. Analysis presented in the study was based

on three different groups of failures [67]. Failure mechanisms related to three

groups are given below:

1. Semiconductor related

(a) Defect and dislocation generation, and movements

(b) Die cracking

(c) Dopant diffusion

(d) Electromigration

2. Interconnect Related

(a) Electrical contact metallurgical inter-diffusion

(b) Electrostatic discharge

3. Package Related

(a) Carbonization of the encapsulant

(b) Delamination

(c) Encapsulant yellowing

(d) Lens cracking

(e) Phosphor thermal quenching

(f) Phosphor thermal quenching

(g) Solder joint fatigue
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High temperature and low temperature effect on degradation of high power

LED’s characteristics were studied and reported by Weling et al. High power

LEDs based on InGaN1 (blue) and AlGaInP2 (red) were selected for the test

[23]. These LEDs were driven at rated conditions and placed into an oven. Oven

temperature was increased from -30 to 100◦C with the step on 10◦C and forward

voltage, relative light intensity, wavelength and spectral bandwidth were mea-

sured. Results showed that the temperature has great influence in both GaN3

based blue and AlGaInP based red LEDs. When the environment temperature

was low (i.e. junction temperature low), relative light intensity and forward volt-

age were increased and peak wavelength was blue-shifted. On the other hand

when the temperature was high (high junction temperature) relative light in-

tensity and forward voltage were dropped and peak wavelength was red-shifted.

Properties of AlGaInP based red LEDs were more affected by the temperature

increases compared with GaN based blue LEDs [23].

Accelerated life test of high power white LEDs based on package failure mecha-

nisms was reported by Chan et al. Commercially available high power LED (peak

wavelength 455nm, rated current 350 mA and rated power 1W) from a leading

manufacturer was selected for the test [64]. The LED specimen composed of a

chip, a phosphor layer, a reflector, a metal ring and an optical lens. Silicone

encapsulant was used to fill the gap between LED chip and optical lens. This

LED specimens were subjected to an unbiased highly accelerated temperature

and humidity test. Based on the IPC/IEC4 standard, 110◦ C – 85% RH and 130◦

C – 85% RH were set as the test conditions. Normal operating conditions was set

at 25◦ C – 50% RH. Results indicated light output of both accelerated life test

degraded faster than the light output of normal operating condition and induced

similar degradation mechanisms in terms of following failure modes:

1. Light output decay;

2. Spectral property modification;

1Indium gallium nitride
2Aluminium gallium indium phosphide
3Gallium nitride
4Association Connecting Electronics Industries and International Electrotechnical Commis-

sion standard for microelectronics and PCB
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3. Discolouration of the encapsulating material and bubble in the package;

4. Increased thermal resistance due to the yellow-brown of phenyl silicon resin

in package [64].

2.5 Accelerated Life Test for LED

LED has a very long life time and high reliability. Testing LEDs for failure is

a hot topic of research and only few work carried out. Accelerated test using

different accelerated parameters is one of the best option to test LED within a

short period of time.

Accelerated life test is applied to LEDs by different researchers for different

purposes. ALT based on high current electrical test with pulse amplitudes be-

tween 1–7 A and voltage between 10–70 V with a pulse width of 100 ns and 1 KHz

repetition rate is used to perform a degradation study of AlGaN1/InGaN/GaN

green high brightness LEDs [65]. X. A. Cao et al., reported an ALT under high

injection current (150 A/cm2) and reverse bias (-20 V) conditions to investigate

the electrical and optical degradation of GaN/InGaN single quantum well LEDs

[68]. M. Meneghini et al., used ALT based on high DC (direct current), pulse

current and high temperature conditions to analyse the electro-optical degrada-

tion of high brightness GaN based LEDs [62; 66]. LED backlight module used

for the front display in the refrigerator was tested based on high temperature

cycle and humidity by J -S Jeong et al. Low power LEDs with 5 mA typical

forward current were used in this test [69]. Using ALT based on temperature

and humidity E. Nogueira et al., reported main failure mechanisms for the lower

power LEDs with typical forward current of 20 mA, which are frequently used

in many outdoor applications. Pressure cooker was used as climate chamber for

the test. Additionally high temperature accelerated tests with different forward

current were also performed to identify the failure mechanisms [70]. Degradation

of GaN based high power (1 W) white LEDs caused by humidity was investigated

using humidity ALT [63]. Degradation of AlInGaP based low power red LEDs

with typical forward current of 20 mA, was investigated using different levels

1Aluminium gallium nitride
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temperature and current [71].

2.6 Summary

The detail literature review on undertaken research on different PHM approaches

for different applications, real-time PHM, PHM for high power LED and ALT for

high power LEDs have been conducted and reported in this chapter. Many data

driven techniques are used to develop PHM applications. Some research work

are based on more than one data driven techniques. Classification techniques are

used to detect the anomalies in the system and then forecasting techniques are

used to predict the remaining useful lifetime. Support vector machine and neu-

ral network demonstrated better performance as anomaly detection techniques.

Gaussian process regression is one of the best forecasting for remaining useful

lifetime estimation. Although models are used in model driven approach to esti-

mate the damage, data driven techniques are also used to forecast the remaining

useful lifetime. Kalman filters and Particle filters are identified as the other best

forecasting techniques.

It is established from the conducted review that there are no evidence of an

existing real-time prognostics and health monitoring systems for LEDs currently

available. Two problems are identified to solve. The first problem is to test

the LEDs in a short period so that the algorithm can be developed, tested and

deployed within an acceptable period of time. The second problem is to identify

the suitable approach for the real-time health monitoring for the LEDs. Chapter

5 will present the approaches taken into account for the health monitoring of

LEDs.

30



Chapter 3

High Power Light Emitting

Diodes (LEDs)

3.1 Introduction

A high power LED is an optoelectronic device which consists of a p-type region, n-

type region and a p-n junction. For many years LEDs were only used as indicator

lights after introduced to the market as electronic components which emit light,

in early 1962 by Nick Holonyak Jr. Early LEDs emitted light with limited colours

and intensity. LEDs have evolved from indicator lights to a high brightness light

source as modern LEDs produce lights in all colours with high brightness. A

high power LED, sometime referred as power LED and high brightness LED, is

defined as an LED with electrical power equal or greater than 1 Watt or as an

LED driven by 350mA or higher current. Figure 3.1 shows the electrical notation

of an LED.
 

 

 

Anode/ (+) Cathode/ (-) Terminal 

Figure 3.1: Electronic representation of an LED

When the current passes through the p-n junction (i.e., forward biased con-
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dition), electrons recombine with holes and release energy in the form of photons

and this process is referred as radiative recombination process. This process some-

times referred as electroluminescence or luminescence in which light is produced.

This light is not produced due to heating. Like other semiconductor devices, p-n

junction in an LED is created by doping impurities into intrinsic semiconductor

material. Introduction of impurity atoms into an intrinsic semiconductor changes

the concentration of electron and hole as they add more valence electrons into

the semiconductor. This allows the semiconductor to conduct the current from

anode to cathode when there is a voltage difference between anode and cathode

terminals. A schematic cross-section of a LED assembly with typical construction

is shown in Figure 3.2.
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Figure 3.2: Cross section of LED assembly

LED devices undergo three different processes until light comes out of the

devices. First, LEDs undergo injection or excitation process when the LEDs are

connected to a forward voltage. During the injection process carrier’s energy is

increased by the forward voltage. In other words, carriers in p-n junction are

injected by an external energy. After that a recombination process takes place.

In the recombination process most of the energised carriers emit their excess

energy gained through injection or excitation process. This emitted energy is

in the form of photons or light. Finally emitted photons are removed from the

devices and it is called extraction process. Each of these processes has their

own efficiency based on the devices structure and package types. Overall device
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efficiency depends on these individual processes and their efficiency. The overall

efficiency can be estimated using the following equation:

ηov = ηinηreηex (3.1)

where ηin, ηre and ηex are the efficiency in the process of injection, recombination

and extraction, respectively, and ηov is the overall efficiency of the device.

3.2 Semiconductor Materials for LEDs

Since the first invention of red LED based on GaAsP semiconductor material

by Holonyak in 1962, semiconductor material research became a hot topic and

many developments took place. First red LED demonstrated very low luminous

efficiency of about 0.1 lm/W. Exponential growths in the semiconductor mate-

rial developments improved the luminous efficiency and light output power of the

LEDs exponentially. Figure 3.3 [1] illustrates the graph of the historical develop-

ment of the LEDs. The graph also illustrates the luminous efficiency of different

LEDs based on different material and other light sources.

Figure 3.4 [1] demonstrates the band-gap energy, corresponding wavelength

and forward voltage for different materials. Visible spectrum of the light wave-

length is between 0.35 and 0.70 m which corresponds to the band-gap energy

between 3.5 and 1.8 eV. Most of the LEDs are made of III-V compound semicon-

ductor materials (i.e., elements which have 3 electrons in the last orbit such as

Boron, Aluminium, Gallium, Indium etc., and elements which have 5 electrons in

the last orbit such as Nitrogen, Phosphorus, Arsenic, Antimony, Bismuth etc.,)

such as AlGaAs, AlGaInP, GaInN, etc., [72]. Some LEDs are made of II-VI and

IV semiconductor materials such as ZnCdSe1, ZnTeSe2 etc., [72].

1Zinc cadmium selenium
2Zinc tellurium selenium
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Figure 3.3: Luminous efficiency of visible-spectrum LEDs and other light sources
with time [1]

 

 

 

Figure 3.4: Diode forward voltage with bandgap energy for LEDs made from
different materials [1]
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3.3 Market of High Power LEDs

Market for LED lighting is growing rapidly as the LED becomes a promising can-

didate for the future lighting. Many different positive attributes of the LED such

as long lifetime, versatility, power efficiency, robustness, high reliability, small in

size, design freedom and stylish attribute, faster switching speed and durability

are the motivation factors for future lighting. The LED lighting started captur-

ing strong market positions in many applications such as automotive, industrial,

aviation, commercial etc. Market for white LEDs accounted for just over 50% of

the total LED lighting market [73] and white LED lighting into general illumi-

nation application will increase if high performance white LEDs are available at

affordable price. According to the Strategies Unlimited, an LED market research

company, market forecast in 2009, LED lighting market will exceed $5 billion

by 2012 and will have a growth rate of 28% from 2008 to 2012. But the global

market of the LED reached $5.6 billion in 2009 and almost doubled in 2010 to

$10.8 billion. According to the latest report of Strategies Unlimited and iSuppli

in 2011, the total global LED market has been forecast to $90 billion in 2011.

Governments’ strict policies and regulations are effectively motivating the

replacement of the LEDs as the modern world faces energy crisis and global

warming. Governments all over the world are forced to look for alternative energy

sources as well as to use the available energy more effectively. This scenario is

worsening as the global population and standard of living increases, and as the

natural resources such as fossil fuel run out. Therefore the demand for the energy

efficient lighting such as high power LED will increase further in future. Mass

production of LEDs will bring the cost down and also the revolutions in the LED

technology will enhance the efficiency of the LED lighting further. R Haitz et al

predicted the LED’s future market and future development in 1999 for the first

time in a comprehensive manner [2]. This forecast triggered the development as

well as the investment in the LED lighting industries. Figure 3.5 [2] illustrates the

Haitz prediction in 1999 for the LED technology and it is widely known as Haitz’

law similar to the Moore’s law for the integrated circuit technology. Two curves

are shown in Figure 3.5. One shows LED technology developments (flux/package

- lm) increases almost 30 times every decade. Another curve indicates almost 10
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times cost reduction every decade (cost/Lumen - $/lm).
 

 

 

Figure 3.5: Haitz’ law [2]

Latest update version of the Haitz law as of early 2010 is shown below in

Figure 3.6 [3]. Red points represent the data for the red LED and white data

points represent the data for the white LED. Based on the Haitz law the flux per

lamp increased from 10 lm in 1999 to 6 klm in 2010 and cost per lumen dropped

from $150/klm in 2000 to $5/klm in 2010 for cool white LEDs. LED technology

needs significant further development to supply the same flux and quality of the

light with energy efficient at low cost. Haitz also predicted that power lamps in

the 0-10 klm range with an efficacy of 150-200 lm/W are necessary to supply the

same flux and quality of the light at a better efficiency [2; 3].

Early 2011 Cree Inc., reported a white LED die component with best efficacy

of 231 lm/W and test was carried out at the standard room temperature and

350 mA drive current conditions [74]. This proved that the LED technology will

further develop and become an ultimate light source of the next generation.
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Figure 3.6: Latest version of the Haitz’ law [3]

3.4 LED Applications

Applications of high power LEDs are continuously increasing as they are energy

efficient (typically 85%), green (e.g. no mercury), have demonstrated longer

life than traditional lighting sources, and emits low UV radiation [67]. Single

colour LEDs are over ten time more efficient than the incandescent lamps and

white LEDs are more over two times more efficient than the incandescent lamps

[67]. LED lighting systems are already replacing the lighting applications in

many sectors such as automobile, aviation, retail, medical, traffic signals, street

lightings, machine vision applications, interior and decorative lightings etc., where

incandescent and fluorescent were used for many years.

3.4.1 Automobile Lighting

Automotive signal, break and interior lights were successfully replaced with high

power LEDs in many automotive vehicles more than ten years ago. Required

colours and lumen for these applications were achieved successfully [75]. High

power LEDs attributes such as fast switching speed, smaller size, high reliability,

energy efficient, long lifetime, robustness and stylist design are the main driving
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factors of the widespread adoption of LEDs into automotive signalling and interior

lighting. However applying the high power LED to the head lamp was under study

for few years and successfully deployed in the Lexus LS and Audi R8 in 2007 and

2008 respectively [76]. Although the advantages of the high power LEDs are

understood, required light levels, thermal management and cost of the LED head

lamps for an automotive vehicle are the main limiting factors. Compared to the

signal lights, head lamps require high level of light output and operation for long

hours, which results in increase of the heat generated in the lamps. In addition,

LED head lamps need to operate in high temperature environment and require

additional design consideration for the heat sink or the cooling systems. Figures

3.7 to 3.10 illustrate the Audi R8 head lamp, Audi Q5 headlight assembly, Audi

Q5 rear lamp assembly and Audi Q5 head lamp, respectively. Figure 3.11 shows

a Lexus LS head lamp. 

 

 

Figure 3.7: Audi R8 head lamp [4]

3.4.2 Aviation Lighting

Adoption of the high power LEDs for both civil and military aviation has been

taking place for long time in many different applications such as cabin interior,

aircraft exterior and ground lighting applications. High power LED lights are suc-

cessfully replacing commercial aircraft interiors lights since they are more flexible

for design as they are small in size, very stylish and available in different colours.

In addition, higher power efficiency of the LEDs allows less power consumption

and therefore less fuel energy for interior lights. Perfect dimmable characteristics
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Figure 3.8: Audi Q5 head lamp assembly [4]

 

 

 

Figure 3.9: Audi Q5 rear lamp assembly [4]
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Figure 3.10: Audi Q5 head lamp [4]

 

 

 

Figure 3.11: Lexus LS head lamp [5]
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of the LED lighting systems further enhance the customer in-cabin experience.

Commercial aircraft manufacturers such as Airbus and Boeing are using the cur-

rent LED technology to enhance the aircraft interiors. Figures 3.12 to 3.14 show

the interior lighting of Airbus A320, Boeing 747-8 intercontinental, and Boeing

737, respectively. These interiors are developed based on high power LEDs. 

 

 

Figure 3.12: Airbus A320 economy class enhanced cabin with LED lighting [6]

In addition to the interior and exterior lighting of the aircraft, there are many

lighting applications used in aviation such as runway lights, taxiway lights and

signalling. Main attributes that motivate the LED replacement in the aviation

lightings are versatility, reliability, durability, long lifetime and low power con-

sumption. Some of the typical ground lighting (air traffic control room and

runway) of the aviation applications are shown in Figures 3.15 and 3.16.

3.4.3 Retail Lighting

Retail applications are the other main application of the high power LEDs. LED

technology is demonstrated how the lighting systems can be used attractively to

enhance the business using less power consumption. In particular, LEDs are very
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Figure 3.13: Interior lighting effect by the LED in the Boeing 747-8 interconti-
nental [7]

 

 

 

Figure 3.14: 737 Boeing sky interior a soft blue “sky” created with LEDs [8]
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Figure 3.15: Airport ground lighting systems [9]
 

 

 

Figure 3.16: Airport runway lighting systems [9]
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efficient and have very long lifetime in low temperature environment. August

2009, a retail store in Lianhua, Shanghai replaced the refrigerators lights by T8

LED tube and saved up to 60% of electricity in refrigeration lighting [10]. Figure

3.17 shows the implemented refrigeration lighting in the retail store in Lianhua,

Shanghai. UK’s biggest two retailers, Sainsbury’s and Tesco PLC, have switched

to Philips LED cooling and freezer systems and reported 75% and 60% energy

saving respectively and 150% improvement in lighting effects [11]. Implemented

refrigerator lighting systems in Sainsbury’s is shown in Figure 3.18. Further

high power LEDs are used for billboard and display board lighting to attract the

customers using less energy.

 

 

 

Figure 3.17: Refrigeration lighting [10]

3.4.4 Medical Lighting

Surgical operation requires highest quality and quantity of light throughout the

operation. LED technology is the right candidate for the operating room. Nowa-

days most of the medical lighting equipment is successfully replaced by the LED

based power source as the LED can provide brighter, cold and cooler lights with

very less power compared with traditional halogen lights. Other advantage is

LED lights can be controlled by microprocessor precisely to get the accurate
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Figure 3.18: Sainsbury’s freezer lighting [11]

level of the light output required for the operating theatre environment. Most of

the equipment can be controlled 0-100% of their light output. Freedom of design

flexibility allows the designer to arrange the individual LEDs to achieve a good

design. For example iLED provides shadow free lights which cleverly focus the

light on the surgical area. Since the LED lighting systems have the design flexi-

bility, smooth surface for the lights can be achieved and therefore equipment can

be cleaned easily. iLED system for operating theatre is shown below in Figure

3.19.

3.4.5 Traffic Lighting

Traffic lights, road signs and traffic message boards are some of the most typical

application fields for the LED lighting technology. LED traffic lights are devel-

oped from arrays of LEDs spread around a circle or area which result in better

visibility and higher brightness from long distance compared to the traditional

lighting systems. In addition, LED lighting systems take less energy to operate,

have high reliability and very long lifetime. This significantly reduces the op-

erational, and maintenance cost, and reduces the down time considerably. Fast

switching speed of the LED lighting systems provides better performance to a

fast moving traffic situation. Figure 3.20 shows the traffic signals lights based on

LEDs. Figures 3.21 and 3.22 show the traffic message boards created from the
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Figure 3.19: iLED the first operating light with LED technology [12]

LED lighting systems.
 

 

 

Figure 3.20: Traffic signals using LEDs [13]
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Figure 3.21: Traffic message board using LEDs [14]

 

 

 

Figure 3.22: Traffic message [15]
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Measures Before After

Total Nominal Watts 6,244 KW 2,648 KW
Estimated Energy Saving 40% 57.6%
Annual CO2 Reduction 0 8,674 MTons
Annual Energy Saving 0 14,688 MWh
Annual Energy Saving 0 $ 1, 297, 173

Table 3.1: Project evaluation results for the city of Los Angeles LED street light
replacement project

3.4.6 Street Lighting

There are lots of energy wasted every day by street lights all over the world.

Street lighting is one of the main areas where the LED replacement is taking

place very slowly. City of Los Angeles LED street light replacement project

was identified as the first project in the world which will replace high number

of street lights (140,000) in 2013 by LED lights [16]. Table 3.1 illustrates the

project evaluation summary. At the time of the evaluation in February 2011,

36,500 lights were replaced successfully and total estimated cost of the project is

$57 million. Figure 3.23 shows the implemented LED street lights in the City of

Los Angeles.

This trial project clearly demonstrates the benefit of replacing the street lights

with modern LED technology. There are three other trial projects reported in

China where more than 8800, 8700 and 5200 street lights are successfully replaced

by the LED lights so far [17]. Figure 3.24 shows the LED street implementation

in Australia.

3.4.7 Machine Vision Applications

Machine vision applications required to have a homogeneous and bright light to

capture the features clearly so that it can be processed easily. High power LEDs

are frequently used for these type of application as the LEDs can provide a homo-

geneous and bright light. Robustness of LEDs give designers great flexibility and

array of LEDs can be manufactured in any shape and size to focus the light exactly

where it should focus. This design flexibility is not available with other lighting

systems such as fluorescent and incandescent. Many machine vision applications
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Figure 3.23: Implemented LED street lights in the city of Los Angeles [16]

 

 

 

Figure 3.24: Implemented LED street lights in Australia [17]

49



require cold light which will not change or affect the appearance or property of

the objects which need to be captured. LEDs emit cold lights and this attribute

provides better lighting solution to machine vision applications. In addition to

the LED’s high efficiency and long lifetime, less maintenance requirement is the

other promoting factor for the LEDs in the machine vision applications. Figure

3.25 shows a sample machine vision application which uses LED lights.
 

 

 

Figure 3.25: A machine vision system using LED lighting systems

3.4.8 Interior and Decorative Lighting

LED lighting systems are used as interior and decorative lighting systems increas-

ingly nowadays as LEDs provide many advantages. Introduction of the LEDs to

the interior and decorative market provide very high flexibility with the light-

ing systems design and enhance the development of the new architectural designs

such as variety of designs in wall mounted, celling mounted etc., in many different

colours. Less power consumption and the long lifetime with high reliability are

the main motivating factors of the LEDs for the interior and decorative lighting

applications.
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3.5 High Power LED Drivers

Single power LED requires direct current (DC) to operate and in many cases

the amount of direct current should be very specific to drive the LED perfectly.

Hence LEDs require an electronic driver circuit to achieve that. LED driver circuit

generally convert AC power into required DC power which can be controlled very

accurately. Different applications may have very different requirements and there

is no specific LED driver to achieve that. For example an automobile rear light

may have 20 LEDs whereas a front light may have 15 LEDs. Both of these lights

require very different electrical power supply and hence need different types of

LED drivers to match the requirement of the LED lighting systems. There are

many aspects that need to be considered when designing a LED driver and some

of the important factors are listed below:

1. Available input power source (i.e., AC main, Battery, etc.,);

2. Required voltage output of the driver;

3. Required power output;

4. Special requirements such as controllable lights (dimmer), colour change-

able, etc.

One simplest and cheapest way to drive the LEDs is to use a rectifier to

convert the alternating current (AC) into direct current (DC) and then use a

voltage divider to get the required voltage output. A full wave rectifier with

smoothing capacitor and LEDs is shown in Figure 3.26. Figure 3.27 shows the

simple potential divider which can be used to power the LED.

However, in order to get required performance, different applications require

unique driver designs with specific configurations. There are various LED drivers

available to achieve specific electrical output from an input source. Some of the

frequently used configurations are listed below:

1. Buck configuration;

2. Boost configuration;

3. Buck-Boost configuration.
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Figure 3.26: Full-wave rectifier with smoothing capacitor for LED application
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Figure 3.27: Voltage/potential divider with LEDs
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3.5.1 Buck Configuration

Buck configuration is an efficient voltage converter which converts a high voltage

into a low output voltage. Pulse width modulation (PWM) switching technique

between voltage source and ground is used to convert the high voltage into a

low voltage. When the switch is connected to the voltage source, high current

is achieved in the circuit. This current is used to charge the capacitor and some

energy stored in the inductor as magnetic field because of the high current. When

the switch is connected to the ground, the current starts to reduce to zero using

the energy stored in the inductor. When the current reaches zero, switch is

connected to the voltage source. The smoothing capacitor converts the full-wave

rippled output into a smooth DC output voltage. When the current from the

voltage source goes below certain level, capacitor starts to discharge and keeps

the load current almost constant. Based on the different PWM speed, inductance

and capacitance, various output currents are achieved. Figure 3.28 illustrate a

basic buck configuration driver circuit. PWM switching speed is mostly controlled

by the microcontrollers precisely. This simple buck configuration driver circuit

can be used to power the LEDs.
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Figure 3.28: A simple buck configuration to power the LEDs
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3.5.2 Boost Configuration

Boost configuration is used to step up the lower voltage into a high voltage. PWM

technique is used as the switching method to achieve the high voltage from a low

voltage input. In the boost configuration inductor is used to store the energy

when the PWM switch is connected to the ground and LED will be powered

by the capacitor. When the PWM switch is connected to the load, battery and

stored energy in the inductor are used to power the load as well as recharge

the capacitor. To achieve a steady state operation the energy removed from

the capacitor during the discharge period must be replaced during the recharge

period. Boost configuration driver is shown below in Figure 3.29. PWM switching

operation is controlled by a microcontroller accurately.
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Figure 3.29: A boost configuration

3.5.3 Buck-Boost Configuration

Buck-boost configuration is used if the available supply voltage is above or below

the required power supply for the LEDs. A general configuration of a buck-boost

driver is shown in Figure 3.30. Like buck and boost drivers, buck-boost driver’s

switching is controlled by a microcontroller accurately.
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Figure 3.30: A buck-boost configuration

3.6 LED Lamps

A single LED is not enough to create an LED lamp. Most of the LED lamps

consists of many individual LEDs connected together. These LEDs are connected

in many different configurations and powered using LED drivers. There are var-

ious ways to power these LEDs from a LED driver. Some of the frequently used

configurations are discussed below.

3.6.1 Series/String Connection Lamps

This is the simplest way to power the LEDs from constant current LED driver.

LEDs are connected in series with each other to make a string connection. In this

case required output of the LED driver is determined by the number of LEDs

which are connected in series. Same current flows through each LED. Primary

disadvantage of this configuration is an open circuit in the string because of the

open LED (i.e., LED failed and circuit becomes open) or failure in the connection

causes the complete failure in the LED lamp. Another disadvantage is if an LED
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fails short, current through the other LEDs will increase and accelerate the failures

in other LEDs. In addition, required output voltage of the LED driver for large

number of LEDs is very high hence this has become a safety issue. Achievable

maximum LED driver output voltage is the deciding factor of the number of

LEDs which can be connected in series. A typical string connection of the LEDs

is shown in Figure 3.31.
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Figure 3.31: Series/String configuration of LEDs

3.6.2 Parallel String Connection Lamps

Parallel string connection overcomes the maximum string voltage limit and in-

creases the reliability of the LED lamp overall. In particular required LED driver

output voltage reduces in factor of number of parallel strings and if an LED is

failed open or any open connection in one string will not affect the operation of

the lamp completely rather affects the brightness of the lamp. A parallel string

connection of LEDs is shown in Figure 3.32. Parallel string connection introduces

current imbalance between strings i.e., current is divided between strings based
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LEDs in each strings. Generally a resistor in each string is introduced to correct

the current imbalance in the parallel strings. These resistors affect the overall

energy efficiency of the LED lamp. In addition if an LED failed short, current

through the particular string will increase and lead to accelerated failures in other

LEDs.
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Figure 3.32: A parallel string connection

3.6.3 Matrix Connection Lamps

A typical matrix connection of LEDs is shown in Figure 3.33. Matrix connec-

tion introduces more connections between LEDs and creates parallel connections

between the LEDs in same rows, i.e., all the LEDs in the same rows are operat-

ing parallel in addition to the parallel string connection. The LEDs are in fact

arranged into a matrix form i.e., rows and columns. This configuration reduces

the current imbalance between strings and increases the overall reliability of the

LED lamp. Primary disadvantage of this configuration is if an LED fail short, all

the LEDs in the same row will not operate as the effective voltage across the row

is zero. Hence brightness of the lamp will reduce. On the other hand if an LED

failed open, all the other LEDs in the matrix connection will operate as normal.
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Figure 3.33: A matrix configuration

3.6.4 Multi-Channel Connection Lamps

In multi-channel connection, complexity of the driver is increased as individual

string of LEDs powered by independent constant current drivers. This feature

adds more sophistication to the LED lamp in terms of preciously controlled cur-

rent to the individual strings. Multi-channel connection overcomes the current

imbalance problem in the parallel string connection. A typical multi-channel

connection configuration circuit is shown in Figure 3.34.

3.7 Lifetime of High Power LEDs

Lifetime of the LEDs is defined based on the light output power depreciation and

colour shift. For example, when an LED starts to operate below the acceptable

limit of the light output power or outside the colour spectrum, then the LED will

be defined as failed LED. The time it takes to reach one of the limits (light power

output or colour spectrum) is the lifetime of the particular LED. For the first time,

ASSIST1 developed comprehensive recommendations for the manufacturers and

1The alliance for solid-state illumination systems and technologies
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Figure 3.34: A multi-channel configuration

lighting systems designers to assess and document the lifetime of LEDs. Although

different applications require different light output power, for general lighting light

output power should not get below 70% of the initial light output power of the

LED. For decorative lighting light output power should not get below 50% of the

initial light output of the LED. These two performance criteria are defined as

L70% (i.e., time to 70% lumen maintenance) and L50% (i.e., time to 50% lumen

maintenance) hours by the ASSIST. Hence, the useful life of a LED for general

lighting is given by the time which it takes for the luminance to reduce by 30%

from its initial value. For some safety critical and emergency applications, the

amount of luminance reduction allowed may be less than 30%.

Lifetime of high power LEDs is very high compared to traditional lighting

sources such as fluorescent, halogen and incandescent light sources. For example,

typical LEDs can operate for 50,000 hours (approximately 11.5 years for a 50%

calendar time usage) provided the drive current and p-n junction temperature

remain within the limits specified by the manufacturer. In particular, for the

Philips Luxeon Star warm white LEDs, the maximum values recommended for
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the DC forward current and junction temperature are 350 mA and 135◦C respec-

tively. Although this information is available to the customers, it is based on

very little data. Generally, these typical operating conditions specified by the

manufacturers are not tested for other environmental and stress conditions. Dif-

ferent manufacturers report different lifetimes for their LED and these reports

also show their lifetime estimations are based on few hard facts, very little pub-

lished data and also little consistency. Reputable manufacturers have thousands

of hours data under varying conditions for their LED packages, hence package

level reliability and lifetime information can be derived but not based on enough

data set [77].

It should also be noted that the lifetime specified by the manufacturer is the

average life time of LEDs, and some LEDs would fail before this specified life time

due to variations in individual characteristics, manufacturing quality and envi-

ronmental conditions. Hence the actual reliability and lifetime of individual LED

lighting systems cannot be assessed exactly for many reasons. The true reliability

and lifetime generally do not depend only on lumen depreciation. LED lighting

systems consist of a number of other interdependent components and parts which

demonstrated different reliability and lifetime [77]. A typical LED lighting system

has LED engine or package alone with power supply, control circuit and housing.

Generally, these components and parts have less reliability and lifetime values

compared to the individual LED package or LED engine. Failures in any of these

components or parts will lead to total failure in LED lighting systems. Hence the

LED lighting systems require maintenance that involving labour and the use of

measuring instruments.

Since LEDs started to replace the traditional lighting systems there is a huge

interest in developing standards defining the failure of an LED light sources and

luminaries, measurement procedures etc. Illumination Engineering Society (IES)

have developed some standard documents for LED packages and luminaries. IES

LM-791 is an approved standard for electrical and photometric measurements of

solid state lighting products (SSL) such as luminaries and integrated LED lamps.

This document covers the measurements of luminous flux (lumen - lm), luminous

1IES standard for electrical and photometric measurements of solid-state lighting products

60



efficacy (lm/W), chromaticity and luminous intensity distribution. IES LM-801

is an approved standard for measuring lumen maintenance for LED light sources

such as packages, arrays and modules. Purpose of this standard is to make

the manufacturers follow the same standard procedures for the life prediction of

their product. IES TM-212 is the standard for lifetime prediction on an LED

light source such as package, array and module. This standard describes how

the collected data can be used to project the lifetime of an LED light sources.

All these standards need to be followed and tests need to be carried out by

an independent laboratory to get the Energy star approval from Department of

Energy in United States.

3.8 Failure Modes

Light emitting diodes have very limited failure mechanisms and generally LEDs

are not subjected to sudden failures. The most common mode of failure is the

depreciation of the light output power or lumen, because of failure mechanisms of

the LED chip and surrounding components. Typically individual LED package

or LED engine is considered as failed based on the light requirement for the

particular application. In particular general applications require less than 30%

depreciation, decorative applications require less than 50% depreciation and some

special application such as safety critical or emergency application may require

less than 10% or 20% depreciation. Hence the failure mode based on light output

power or lumen depends on the required light output power of the application.

In addition to gradual light depreciation, discolouration of the LEDs or LED

die encapsulate is another mode of failure. In this mode of failure, specified

light colour of the LED light changes with the time before the light output of

an LED depreciates to a certain level which is discussed as above (i.e., 30%

depreciation or 50% depreciation). This colour shift in the light output is called

as chromaticity shift. Maximum allowable limit of this chromaticity shift for both

L70% and L50% performance criteria is recommended by the boundary of a four-

step MacAdam ellipse [58; 78]. Even though for some application colour shift

1IES standard for measuring lumen maintenance of LED light sources
2IES standard projecting long term lumen maintenance of LED light sources
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might be a failure, there is no standard or document which provides a recognised

way to project the failure based on colour shift in the light output. IES LM-80

only provides requirements for the test report to include chromaticity shift during

the recommended test period. In addition, system colour shift is not very well-

understood, well-studied, or even commonly used as a metric, even for incumbent

technologies. Great progress has been made by the LED manufacturer to improve

the colour stability [77]. Hence, failures in LED lighting system can be defined

as the overall lumen output degradation as measured by IES LM-80.

The third failure mode is the catastrophic failures i.e., LED is stopped emit-

ting the light suddenly. These types of failure are very rare and generally occur

because of the mechanical breakdown or permanent damage in the device. This

affects the other LEDs in the circuit as the failed LED may act as an open circuit

or closed circuit because of the damage.

3.9 Failure Mechanisms

Failure mechanisms of LED lighting systems can be classified into three different

groups:

1. Failures related to driver;

2. Failures related to housing;

3. Failures related to the LED engine.

Figure 3.35 [77] shows the causes of the failure in 29 failed lighting systems out

of installed 5400 outdoor LED lighting systems reported by Appalachian Lighting

Systems [77]. Figure 3.35 indicates 59% of failures identified in the driver, and

31% failures identified in housing and only 10% of failures actually identified in

the LED engine.

This information indicates that most of the failures in LED lighting systems

are not related to the LED engine. Although the LED engine’s failures are nor-

mally distributed with the mean of 50,000 hours, LED lighting systems failure

are mainly driver and housing related. A sample failure probability of LED light-

ing systems based on LED engine and driver is shown in Figure 3.36 [77]. In
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Figure 3.35: Percentage of failures

this case, the LED engine has lower failure rate compared to the driver. Since

lighting systems depend on driver and LED engine, system failure rate becomes

a combination of the LED driver and LED engine.

This section intends to discuss the failure mechanisms related to LED engine.

LED engine failures can be divided into three main categories:

1. Failure related to semiconductor;

2. Failure related to interconnects;

3. Failure related to package. [67]

Semiconductor related failure mechanisms are defects and diffusion in the

active region, and electro-migration. Interconnect related failure mechanisms

are fractures in the bond wires and die attach, diffusions on the bond wires

and electrostatic discharge. Package related failure mechanisms are lens damage,

solder joint damage, encapsulant yellowing, carbonisation in the encapsulant,

delamination, etc., [67].
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Figure 3.36: Simple example of LED system failure probability based on driver
and LED engine
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3.9.1 Semiconductor Related Failure Mechanisms

Semiconductor related failure mechanisms are usually related to the property of

the material used in the active region (i.e., p-type and n-type). Carrier generation

and recombination are the processes in the active region of a semiconductor LED

leading to generation of energy in the form of light. Although there are differ-

ent recombination processes, Radiative recombination is the process which emits

energy in the form of light. Other recombination processes such Shockley-Read-

Hall (SRH) recombination and Auger recombination do not only emit photons

but also reduce the rate of radiative recombination processes because of some

failure mechanisms related to the semiconductor. These recombination are also

sometimes referred as non-radiative recombination processes. In SRH recombi-

nation energy is exchanged in the form of lattice vibration or thermal energy and

in Auger recombination energy is exchanged to a third carrier. Figure 3.37 (a)

[1] shows a radiative recombination and Figure 3.37 (b) shows a non-radiative

recombination.
 

 

 

Figure 3.37: (a): Radiative recombination (b): Non-radiative recombination

Crystal defects are one of the main failure mechanisms in the semiconductor.

Crystal defects have two forms (1) dark line defect (DLD) and (2) dark spot defect

(DSD) in the active region. These defects are caused by the dislocation network

and created in the process of the manufacturing because of the contamination,

dislocation, etc., [79]. When the LED starts to operate this defect grows and

creates new defect and finally damage the die/LED engine completely. Defects
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lead to other failure mechanisms such as current crowding and diffusion, and

hence accelerate the LED failures. When the junction temperature increases,

defects start to increase and lead to trigger other failure mechanisms. Finally

this will lead to complete failure in the die. Defects are also one of the reasons for

the increase of non-radiative recombination which emits heat instead of photons

or light. This failure mechanism is reported in many articles [18; 61; 67; 79].

Figure 3.38 [18] shows a sectioned image of a LED with a large die crack which

causes the catastrophic failures in LEDs. Figure 3.39 [18] illustrates a crack in

LED dies which causes failure in LEDs.
 

 

 

Figure 3.38: A large die crack causing a catastrophic failure in LED [18]

Diffusion in the active region is another mechanism which increases the non-

radiative recombination process. High temperature accelerates the process of the

diffusion in the active region [61; 67]. High temperatures cause many semicon-

ductor related failures in LED, such as Shockley-Read-Hall (SRH) recombination

and carrier leakage from the active region [80]. Defects and diffusion in the active

region further increase the SRH recombination and carrier leakage from the ac-

tive region. Light output power reduction (23.4%) is reported by Meyaard et al.,
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Figure 3.39: A die crack as the cause of the catastrophic LED failure [18]

based on SRH recombination (accounts for 10.4%) and carrier leakage (accounts

for 13%) at high temperature (450K).

Another failure mechanism which is related to the semiconductor is the electro-

migration. It is an electrically induced movement of the metal atoms in the active

region. Electro-migration causes the current crowding and thermal runway. Cur-

rent crowding and thermal runway increase the junction temperature to very

high levels and hence reduce the light output power. Poor thermal management

increase the electro-migration [67].

3.9.2 Interconnect Related Failure Mechanisms

Failures related to interconnects are well-known in electronic packages. An inter-

connect is the part which connects two different micro-structures of an electronic

package. Sometimes these failures are referred to as delamination at the inter-

connect. There are many layers of micro-structures from board to LED die (see

Figure 3.2 in page 32) and interconnect wires which connect the LED die with

cathode and anode terminals of the LEDs. These layers and interconnect are
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made from different materials with considerably different properties. When the

operating condition is changed the materials used in the devices respond to the

conditions differently. In particular, they undergo different thermo-mechanical or

mechanical stresses and lead to failures driven by different forces associated with

the individual parts of the structures. Poor thermal and electrical management

of the device causes thermo-mechanical stress and failures. Interconnect related

failures create a short circuit or open circuit in the device which cause the de-

vice to stop operating completely. Failures related to interconnect are reported

in many articles [18; 61; 67]. Figure 3.40 [18] shows a bright-field optical image

illustrating a broken bond wire at the wedge bond. Figure 3.41 [18] shows a die

attach failed due to mechanical stress caused by a lead bending operation. 

 

 

Figure 3.40: A broken bond wire at the wedge bond [18]

Figure 3.42 [18] shows a custom LED package with significant lead (bending)

strain and associated damage to the glass feed-through seals. This caused the

die attach to fail [18]. Figure 3.43 [18] shows a LED which exhibited degradation

in light output power after humidity and rapid decompression testing. It shows

damage to the die/die-attach interface [18]. Figure 3.44 [18] shows very fine crack

in the lens material. The wire bond apparently failed in shear at the heel of the

wedge bond. This explains the intermittent nature of the failure [18].

Some of the identified problems at interconnect level are illustrated in Figures
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Figure 3.41: A die attach failure due to mechanical stress caused by a lead bending
operation [18]
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Figure 3.42: A die attach failure [18]
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Figure 3.43: A damage to the die/die-attach interface [18]

 

 

 

Figure 3.44: A wire bond failure in shear at the heel of the wedge bond [18]
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3.45 and 3.46 [18]. Figure 3.45 shows a poor bond alignment to the pad. The

probe marks on the post (right) suggest that a problem was identified prior to

encapsulation [18]. Figure 3.46 shows a picture of an LED which verified as dim

on the test fixture. The dark area on the die surface is an area of delamination

of the encapsulant from the die. The delamination is evidence of displacement

and is likely related to a high resistance bond [18].
 

 

 

Figure 3.45: A poor bond alignment to the pad [18]

 

 

 

Figure 3.46: A dark area on the die which is delamination [18]
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3.9.3 Package Related Failure Mechanisms

LED package plays critical role in removing the heat from the junction and ex-

tracting the emitted light from the semiconductor surface. Encapsulants are

designed to extract the emitted light efficiently from the surface of the semicon-

ductor. Figure 3.47 [1](a) shows a planar LED without an epoxy dome. Figure

3.47(b) shows a planar LED with an epoxy dome. Figure 3.47(c) shows a graph of

extraction efficiency ratio versus refractive index of encapsulating epoxy material.

Encapsulant also designed to protect the LED from the mechanical and thermal

shock and humidity-induced corrosion. Transparent epoxy resins are used to

design the encapsulant [67]. This encapsulant is exposed to the environmental

conditions such as humidity and temperature, and other harsh operating condi-

tions such high temperatures and thermal cycling. Hence encapsulant undergoes

degradation based on these different conditions. Some of the failure mechanisms

associated with the encapsulant are carbonisation and yellowing. These failure

mechanisms reduce the amount of light output extracted from the surface of the

active region and reduce the amount of heat removed from the active region.

Delamination can also occur at package level, between the package materials.

Thermal cycles and electrical overstress can cause the materials to separate from

each other. This will increase the thermal resistance and increase the tempera-

ture in the active region. High temperature in the active region will induce other

failure mechanisms such as semiconductor and interconnect related failures. De-

lamination can also lead to permanent breakdown of the devices [67]. Figure 3.48

[18] shows a high magnification view of a ball bond failure caused by delamination

of the encapsulant from the die surface [18].
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Figure 3.47: (a) LED without and (b) with dome-shaped epoxy encapsulant and
(c) Calculated ratio of light extraction efficiency emitted through the top surface
of a planar LED with and without an epoxy dome [1]
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Figure 3.48: A ball bond failure caused by delamination of the encapsulant from
the die surface [18]
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3.10 Summary

This chapter has presented a detailed review on LEDs and their market, applica-

tion domains, driver configurations, lamp configurations, lifetime, failure modes

and mechanisms. It is evident that the market penetration of the LEDs is in-

creasing exponentially since many lighting applications benefit form the LEDs

and their advantages compared to the traditional light sources. It is also pre-

dicted that the price of the LED lighting systems will decrease with time. This

will further increase the market for the LEDs.

LEDs do not stop emitting light, rather their light output power (lumen) de-

grade with time. Hence the failures in the LEDs are very difficult to identify.

Therefore LED lighting systems need to be monitored for their failures, even

though they have very long lifetime and very high reliability. As a new technol-

ogy, LEDs have evolved from the simple indicator into a more advanced form of

lighting systems recently, there is a need for research on their reliability, lifetime

etc. In particular, there is a need for real-time health monitoring of LED light-

ing systems which are used in emergency, safety applications and under harsh

operating conditions.
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Chapter 4

Prognostics and Health

Management Approaches and

Algorithms

4.1 PHM Classification

Prognostics and health management (PHM) is an engineering process of fail-

ure prevention, and predicting reliability and remaining useful life-time. It has

emerged in the last few years as one of the most efficient approaches in fail-

ure prevention and predicting reliability and useful life time of various engineer-

ing systems and components. PHM of engineering systems have become very

important as a malfunction or failure may cause severe damage to the system,

environment and users, and may result in significant repair on un-scheduled main-

tenance costs. Severe damages can be prevented by providing advance warning

message and alarm. Repair and maintenance costs can be reduced by converting

the scheduled maintenance tasks into evidence based un-scheduled maintenance

tasks. Evidence based un-scheduled maintenance strategy will reduce the inspec-

tion cost, required number of skilled labours, system down time, life-cycle cost

of the system and emergency un-scheduled maintenance [81]. PHM is identified

as the best candidate to improve the maintenance cycle, reduce the maintenance

cost and extend the overall life time through evidence based un-scheduled main-
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tenance strategies. PHM can also provide support to improve the qualification

approach and improve the design of the future systems [81].

PHM applications can be classified into two main categories based on how the

PHM is applied to the system or product:

1. Real-time PHM (sometimes referred as online PHM);

2. Off-line PHM.

Most of the safety critical and mission critical applications require real-time

PHM (refereed to as on-board health monitoring). Modern aircrafts, automobiles,

etc., have a large range of on-board monitoring that is based on the use of real-

time sensors. For example, an electric car provides the range distance which

can be achieved with battery operation based on real-time PHM of the battery.

Another example is autonomous unmanned vehicles which have embedded real-

time on-board PHM, use to re-plan the mission and reconfigure the controls based

on the health diagnostic and prognostic information. This includes the current

state of the health and predicted state of the health [19].

Off-line PHM is deployed where the system safety is not critical and likeli-

hood of failures is very small. Data are collected from the system and then used

off-line to predict the remaining useful lifetime and to perform the maintenance.

One main advantage of the off-line PHM is that complex systems models can

be used to perform the PHM using computer simulations whereas, in real-time

PHM, computer simulations may not be achievable as there might be limitation

in the available on-board computational power and efficiency. Main advantage

of the real-time PHM relates to the capability to detect failures and anomalies

in the systems in a fraction of second whereas in the off-line PHM this is not

possible. Real-time PHM for electronic systems is sometimes known as built-in

test (BIT) or self-scanning where the electronic system tests itself. Such embed-

ded diagnostics and prognostics allow to perform test to verify if all parts of the

electronic systems work as expected.

PHM is also applied in development and deployment stages of a systems or

product. PHM methodology can be applied in the design stage to optimise the

design and to get the expected performance from the systems or products given

certain reliability requirements. Physics of Failure (PoF) based models are used
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to optimise the product design based on failure modes, mechanisms and effects

analysis (FMMEA). Products and systems undergo different life-cycle loads such

as thermal, electrical, mechanical, chemical, etc. These life-cycle loads vary at

different stages and under different conditions of the product life such as manufac-

turing, storage, shipment, harsh operating, non-operating, etc. These parameters

are considered at the product design stage to optimise the product design and get

the best performance from the product for a certain period of time without failure.

These life-cycle loads are also monitored, and used with the PoF based damage

models to assess the reliability and degradation of the product in the field after

it has been deployed [82]. Anomaly detection is the starting point of the PHM in

the field. Anomaly detection and failure prevention can be achieved effectively by

monitoring the life-cycle loads and performance parameters of the system. It will

be more accurate if the life-cycle loads and parameters are monitored in real-time,

especially in the case of critical applications. Many safety critical systems and

mission critical systems consist of electronic hardware and software that control

the electronic hardware and also interacts with the user. Most of these elec-

tronic hardware devices use thousands of individual semiconductor components

to perform their operation. Malfunction or failure of any individual semiconduc-

tor component, electronic hardware or software module independently affects the

system as a whole.

Health of a system is defined as the extent of deviation or degradation from its

expected typical operating performance [27]. This extent of deviation or degra-

dation of the expected typical operating performance has to be determined ac-

curately to prevent the failures. It is also necessary to determine the parameters

which operating parameters are contributing to this extent of deviation or degra-

dation. There are two different approaches available. They are: (1) Data-driven

approach and (2) Model-driven approach. Fusion approach incorporates the ad-

vance features from both data-driven and model-driven approach to perform the

PHM. Most of the real world PHM applications are based on the fusion approach.

Figure 4.1 illustrates the different prognostic approaches and their relationships.

Based on the techniques used for data-driven and model-driven approaches,

PHM can be further classified into different approaches. For example, data-
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driven approach can be classified into statistical based approach and machine

learning approach. Model-driven approach can be classified into Physics of failure

approach and system model based approach. Figure 4.2 shows the classification
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This chapter divided into three main sections where data driven, model driven

and fusion approaches are discussed. In this thesis PHM techniques for LEDs are

investigated. Main focus of the research is to investigate suitable data driven tech-

nique for real-time health monitoring of LEDs after their deployment. Distance

measure techniques such as Euclidean distance (ED) and Mahalanobis distance

(MD), logistic regression (LR), neural network (NN) and Kalman filter (KF) are

investigated for data driven approach. Detail investigation of these techniques in

the context of LED health monitoring are discussed in next chapter. Equivalent

circuit model of LED for model driven approach and Kalman filter for fusion

approach are also discussed in next chapter.

4.2 Data Driven Approach

Data driven approach is considered as a black box approach to PHM as it does

not require system models or system specific knowledge to start the prognostics

[82]. Monitored and historical data are used to learn the system behaviour and

to perform the prognostics. Hence the data driven approach is suitable for the

systems which are complex and whose behaviour cannot be assessed and derived

from first principles. The implementation of data driven techniques for the pur-

pose of health monitoring and prognostics is generally based on the assumption

that the statistical characteristics of system performance will not change until

fault occurs [82]. Therefore, the main advantage of data driven approach is that

the underlying algorithms are quicker to implement and computationally more

efficient to run compared to other techniques. However, it is necessary to have

historical data and knowledge of typical operational performance data, the asso-

ciated critical threshold values and their margins. Data driven techniques rely

completely on the analysis of data obtained from sensors and exploit operational

or performance related signals that can indicate the health of the monitored sys-

tem. Data driven strategies for diagnostics and prognostics have been applied in

a number of different Prognostics and Health Management (PHM) applications

[28; 29; 36; 83; 84; 85; 86; 87].

The principal disadvantage of the data driven approach is that the confidence

level in the predictions depends on the available historical and empirical data (i.e.,
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healthy and failure data). Availability of run-to-failure data sets for a particular

system or component is the main issue of data-driven PHM, as running a system

or a component to failure might be time consuming and expensive [88]. These

data are required in the data-driven approach to define the respective threshold

values. In some instances it is difficult to obtain or have historical data avail-

able, for example in the case of a new system or device that may require long

time and/or expensive tests to failure to generate this data. However, there are

techniques and procedures available that can be used to achieve this [26; 89; 90].

Three of the strategies which can be used to address this challenge are based on

the use of:

1. Hardware-in-the-Loop simulations (HiL):- Hardware-in-the-Loop is a com-

puter simulation which is used to test a real product or system by connecting

its hardware that applies simulated loads as in real application. It is very

fast and cheap to implement. In addition, several failure parameters (i.e.,

operational and environmental) can be controlled independently. HiL can

also be used to algorithm development, testing and validation, benchmark-

ing and development of metrics for prognostics [89; 90].

2. Accelerated Life Test (ALT):- Accelerated load test is designed to cause

the product to fail more quickly than under normal conditions by applying

accelerated (elevated) stress conditions resulting in the same failure mecha-

nisms. ALT becomes an important methodology in the development of the

PHM for electronics. Several environmental and loading conditions can be

applied independently to accelerate the failure [26].

3. Online Training:- Online training is based on the assumption that a new

system performance data defines the healthy system and they do not fail

for a certain period of time. This type of approach can also be called

semi supervised learning as only healthy data is available. Reinforcement

learning approach is also suitable for this strategy.

Data-driven approach for PHM can be classified into (1) Statistical approach

and (2) Machine learning approach [87]. Statistical approach uses statistical pa-

rameters such as mean, variance, median, etc., to make prediction based on the
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known or unknown underlying probabilistic distributions. Statistical approach

might be simple if the underlying statistical property (i.e., probability distribu-

tion) is known and this type of approach is called parametric approach. Statistical

parameter estimation techniques and hypothesis testing that belong to that prob-

abilistic class can be applied to detect the anomalies in the data [91]. Statistical

distance measure is another simple way to estimate the deviation of the new

sample data from the expected mean data (i.e., how many standard deviations

away from the mean) [91]. Outlier rejection technique is another way to detect

data anomalies based on the box plot parameters such as lower extreme and

upper extreme [91]. Unfortunately, most of the reliability data and their statis-

tical properties are unknown and hence probability functions representing these

data need to be constructed first. This type of approach is called non-parametric

approach and it introduces more flexibility into the computations. Therefore a

non-parametric approach can be viewed as a generalised approach. One of the

widely used techniques for non-parametric approach is histogram analysis. A

better way to estimate the probability density function is to use kernel methods

[91].

Machine learning approach makes predictions based on acquired data (such as

healthy and failure data) by converting the acquired data into useful information

which then can be used in conjunction with sensor data to achieve the future

predictions. Machine learning approach is more data-driven and typically no

statistical assumptions are made. One of the well-known approaches in the field of

machine learning is the neural network [92]. Another machine learning approach

is support vector machine (SVM) which separates the data into different classes

using hyper-planes, after they are transformed by a kernel function [93]. SVM uses

linear combination of kernel functions centred on the subset of the training data

which is known as support vectors [94]. PHM application may require more than

one algorithm for different tasks such as anomaly detection, parameter isolation,

parameter trending, damage estimation, life time estimation, etc. Hence different

types of algorithms can be used to achieve these individual tasks based on the

performance of those algorithms.
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4.2.1 Statistical Approach

Statistical approach is based on the underlying statistical property of the data.

If a new observation is not representing the statistical property of the data then

the observation is considered as an anomaly. Statistical techniques fit the typical

expected operating condition data and then apply statistical inference test to

determine if the new observation belongs to the fitted statistical model. For

example, if the data representing the normal operating condition is modelled as

the probability density function (PDF) p(x) then new observation data can be

tested against the developed PDF (i.e., if P (xnew) < ε flag anomaly and if

P (xnew) ≥ ε flag normal). There are two different ways available to fit the data

into a statistical model (i.e., develop a PDF, p(x)) (1) parametric approach and

(2) non-parametric approach [95]. Statistical models have different computational

complexity and require different computational powers based on the complexity

of the statistical models.

Main advantage of the statistical approach is, if the assumed statistical char-

acteristics are true, then the result from the statistical inference test for the new

observation will be statistically valid. In addition, statistical approach can pro-

vide a confidence interval and this can be used in the decision making in relation

to the new observation data. Statistical approaches can be based on an unsu-

pervised technique which does not require labelled training data, thus offering

a robust statistical approach [95]. On the other hand, statistical approach com-

pletely depends on the assumed statistical characteristics of the data and hence if

the assumption is not true, they will not detect the anomalies accurately. Typi-

cally the assumption may not be true in particular for high dimensional real data

sets. In addition, even if the assumed statistical characteristics are true, there

are many statistical inference tests available and selecting the suitable one might

be difficult [95].

4.2.1.1 Parametric Approach

Parametric approaches are based on assumed underlying statistical properties

(typically normal, Weibull, exponential, etc.,) of the expected data. Based on

the assumed underlying probability distribution of the data, parameters associ-
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ated with that probability distribution are calculated from the data. Typically

these data will represent a healthy system performance under expected typical

operating conditions. Healthy or normal operating data then will be defined by

these parameters assuming a probability distribution. This model can be used

to detect the anomalies and predict the remaining useful life. Once the system

healthy or normal operating data are defined by a probability distribution and

parameters associated with that probability distribution are estimated, new mon-

itored data can be gathered and analysed. The new data can be classified using

different methods and different probability distributions. Some of the methods

available are listed below:

1. Distance Measures – These techniques are based on the assumption that

the variables follow the normal distribution. Namely, there are many dif-

ferent distance measure techniques available. Distance measure techniques

have been considered for this research work as one of the data driven PHM

approach to LED prognostics. In particular, Mahalanobis distance and

Euclidean distance are investigated for this research program. The Maha-

lanobis distance have been reported in some research work related to PHM

[96; 97; 98]. Detail information about these methods has been reported in

next chapter and is based on the work reported by R. De Maesschalck et

al., [99].

2. Hypothesis Testing – Hypothesis testing is one of the simplest statistical

procedures which can be used to test the data whether they come from the

same population as the training data or not [91]. It can also be used to

test if the mean of a sample is equal to µ when the standard deviation σ

is known [100]. Hypotheses are always statements about the sample pop-

ulation parameters instead of sample population data. There will be two

types of error which may occur in the hypothesis testing (1) Type I Error

and (2) Type II Error. Type I Error (false positive – α) is defined as re-

jecting the null hypothesis when null hypothesis is actually true. Type II

Error (false negative – β) is defined as the accepting the null hypothesis

when the hypothesis is actually false. It is not possible to eliminate these

errors completely. Typically the hypothesis test decision is taken by fixing
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an acceptable value for σ and by minimising the β. Standardised difference

between the population and sample statistics is compared with the decision

rules before making the decision. Most of the hypothesis tests use under-

lying probability density function as normal. Figures 4.3 and 4.4 illustrate

the normal and Weibull fits respectively to a sample current data. Fig-

ures 4.5 and 4.6 illustrate example of normal and Weibull fits to a sample

temperature data.
 

 

 

Figure 4.3: Normal fit to sample data set

3. Analysis of Variance (ANOVA) – It is a method to analyse the means of

several groups of samples which can be affected by different types of factors.

Simplest form is one-way analysis and it is an extension of the t-test. Simple

form of ANOVA can be used to compare different groups of sample data

[100]. ANOVA can be applied to groups of data based on the following

assumptions: (1) values are normally distributed in every group and (2)

variance are equal. Decision will be made based on the variability among
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Figure 4.4: Weibull fit to sample data set
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Figure 4.5: Normal fit to another sample data set
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Figure 4.6: Weibull fit to another sample data
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the groups. If the variability among the group is small compared to the

variability within the group, then this will lead to the decision that groups

can be treated as identical. If the variability among the groups is large

compared to the variability within the groups, then the groups can‘t be

treated as identical.

4. Extreme Value Theory – Extreme Value Theory (EVT) is a branch of statis-

tics and analysis for data belonging to the tails of the distribution. EVT

can be used to set the threshold values for anomaly detection where EVT

explicitly models the tails of the distribution of normal data [92; 101; 102].

5. Maximum Likelihood (ML) Estimation – It is an approach to estimate

the most likely value related to other values in the population data. Log-

likelihood which is the logarithm of the likelihood function is typically used

to estimate the MLE by maximising the log-likelihood [87]. If the maximum

likelihood is the mutually-independent observations x = {x1, x2, x3, . . . , xn}
which is an instance of the random sample {X1, X2, X3, . . ., Xn}, the joint
probability density function (PDF) equals to the product of marginal PDF.

Therefore the likelihood L and the maximum likelihood for a parameter θ

will be estimated as follows [103]

L (θ|x) = P (x|θ) (4.1)

L(θ|x) = P (X1 = x1, X2 = x2, X3 = x3, . . . , Xn = xn) (4.2)

L(θ|x) =
n∏

i=1

PXi
(xi|θ) (4.3)

θ∗ = argmax
θ

L(θ|x) (4.4)

6. Maximum-A-Posteriori (MAP) Estimation – MAP estimation is considered

as a Bayesian version of ML estimation [87]. This estimation technique can
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be used to estimate the parameters of a process or system based on prior

knowledge of the system. This prior knowledge typically comes from the

historical data of this system. Such prior information can be included in

the estimation in the form of probability density function (PDF). Parameter

θ which need to be estimated are considered as random variable and the

associate probability P(θ) is called the prior probability. Bayes’ theorem

can be applied to incorporate the prior information into the estimation

[103]:

P (θ|x) = P (x|θ)P (θ)

P (x)
(4.5)

The term on the left hand side of the equation is called the posterior and

represent the predicted probability. On the right hand side, the numerator

is the product of the likelihood term and the prior term. The denominator

serves as a normalization term so that the posterior PDF integrates to unity.

Therefore, Bayesian inference produces the maximum-a-posteriori (MAP)

estimate [103]:

argmax
θ

P(θ|x) = argmax
θ

P (x|θ)P (θ) (4.6)

7. Expectation-Maximisation (EM) Algorithm – EM algorithm is used to es-

timate the ML or MAP of parameters using an interactive process. These

parameters are from a statistical model which depends on some hidden

variable. The iterative process switches between two different steps in the

process: (1) estimating the expectation (E-step) and (2) maximisation (M-

step). The E-step is used to compute the expectation of the log-likelihood

based on the current estimate for the parameters. The M-step is used to

compute parameters which maximise the computed log-likelihood in the E-

step. Estimated parameters values are used to compute the expectation of

the log-likelihood in the next E-step and this have to be repeated until the

log-likelihood of the parameter remains constant [87; 103].

8. Gaussian Mixture Modelling (GMM) – It is widely used for density estima-
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tion and to form the hidden space of radial-basis function networks [101].

GMM uses fewer kernels than the number of pattern in the training set

and model parameters are estimated by maximising the log likelihood of

the training set with respect to the model. Optimisation algorithms such

as conjugate gradients are used to maximise the log-likelihood of the train-

ing set with respect to the model. One of the disadvantages is in the very

large number of the samples that are necessary to train the model if the

dimensionality of the data is high [91].

4.2.1.2 Non-Parametric Approach

Non-parametric approach is not based on any assumption of underlying statistical

property of the population data. Non-parametric approach gives more flexibility

than the parametric approach and can be used to fit the data more accurately.

Non-parametric approach is more suitable where the underlying probability dis-

tribution is not known or not a standard distribution. Most of the real world

data may require a non-parametric approach to estimate the density function

as they do not follow a standard density function. There are many approaches

available to solve non-parametric problems. Some of the approaches based on

non-parametric approach are listed below:

1. Parzen-Window Density Estimation – This non-parametric probability den-

sity function estimation technique was introduced by Emanuel Parzen.

Probability density is estimated such that all the observation data be-

long to a window function that can contribute to the density estimation

based on selected window kernel function which is a weighting function

used in non-parametric techniques [87; 91; 104]. For a given data set

D = {x1, x2, . . . , xn} of n independent and identically distributed (i.i.d)

example drawn from p(x) which is the density function that needs to be

estimated, the Parzen-window estimate of p (x) based on the n example in

the D is given by [104]:

p (x) =
1

n

n∑
i=1

δn(x− xi) (4.7)
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where δn (.) is the kernel function and its exact form depends on n. Typically

Gaussian kernel is used in many situations as they are: (1) very smooth and

(2) symmetrical about the centre. Hence the estimated density function

will also be smooth and can be a mixture of radially symmetrical Gaussian

kernel with a common variance σ2 [104].

p (x) =
1

n(2π)d/2σd

n∑
i=1

exp

{
−∥x− xi∥2

2σ2

}
(4.8)

where d is the dimensionality of the feature space. For example in PHM,

d can be represented by the number of sensors which are used to mon-

itor health of a system. There are many different kernel functions and

some of the commonly used functions are Gaussian, uniform, box, triangle,

Epanechnikov, etc. Kernel functions are generally selected based on the re-

quired property of the function and the available computational power [81].

Non-parametric fitting for temperature sample data is shown below. Fig-

ures 4.7, 4.8 and 4.9 illustrate the non-parametric fitting to current sample

data using Gaussian, box and triangle kernel window functions, respectively.

2. Histogram Based Approach – The simplest non-parametric approach is the

histogram based approach. It involves two steps: (1) building the histogram

based on available data typically under normal operating conditions and (2)

test the new observation data against the developed histogram. If the data

does not belong to any of the bin of the histogram then observed data is

an anomaly. Size of the bins plays a critical role in this approach. If the

size of the bins are small then many normal test instances will fall in empty

or rare bins, which lead to a high rate of false alarm. If the size of the

bins is large then many fault instances will fall in frequent bins which lead

to high false negative rate. An optimum size for the bin is necessary to

construct the histogram which will maintain a low false alarm rate and a

low false negative rate [95]. Accuracy of the histogram based approach can
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Figure 4.7: Non-parametric fit using Gaussian kernel
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Figure 4.8: Non-parametric fit using box kernel
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Figure 4.9: Non-parametric fit using triangle kernel
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be estimated using integrated square mean error (ISME) as follows [81].

IMSE =

∫
E[g (x)− f(x)]2dx (4.9)

where g(x) is the estimated density and f(x) is the true density. Optimum

bin size was estimated by Scott in 1979 [81].

h∗
n =

[
6

1
3

(∫ ∞

−∞
f

′(x)2dx

)− 1
3

]
n− 1

3 (4.10)

Since this equation requires the derivative of the unknown PDF f(x), an

estimate of f (x) (i.e., g(x)) can be used to estimate the h∗
n. Optimal bin

size for the Gaussian density estimation is [81]:

h∗
n = 3.49 sn−1/3 (4.11)

where s is the standard deviation and n is the sample size. For non-Gaussian

density estimation Freedman and Diaconis suggested another bin size [81].

h∗
n = 2 (IQR)n−1/3 (4.12)

where IQR is inter-quartile rage of the data. If the bins size is estimated

then the histogram can be defined as [81]:

g (x) =
1

nh
(number of Xi in the same bin as x) (4.13)

3. k-Nearest Neighbour (k-NN) Approach – It is another technique which can

be used to estimate the density function. It does not require a smoothing

parameter. It requires however a width parameter which sets the position

of the data point in relation to other data points. Main disadvantage of

this method is that it requires large number of computations [87; 91]. k-

NN approach assumes the normal operating instances occur in the dense

neighbourhoods, while the anomalies occur far from their closest neighbour-

hoods [95]. This approach requires a similarity or distance measure between
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two data points. This distance or similarity can be calculated in many

different ways such as Euclidean distance, Mahalanobis distance, Manhat-

tan distance, cosine angle distance, etc. Distance measure is also used in

many other tasks such as clustering (k-mean), distance-based outlier de-

tection, classification (SVM) and several other machine learning techniques

[105]. k-NN anomaly detection approach can be divided into two groups:

(1) approach which uses the distance of a data instance to its kth nearest

neighbour as the anomaly and (2) approach which computes the relative

density of each data instance [105]. The basic k-NN approach is based on

the assumption that the anomaly score of a data instance is defined as its

distance to its kth nearest neighbour in a given data set. k-NN approach

based on relative density estimates the density of the neighbourhood of all

data instances. New data instance (observation) with low density is marked

as anomaly and data instance with high density is marked as normal [105].

Main disadvantage of k-NN approach is computational complexity which

is O(n2). Although sampling techniques try to address the computational

complexity by considering nearest neighbours within a limited sample of

the data set, they might end up in incorrect anomaly scores if the sample

size is very limited [95]. Main advantage of this approach is the k-NN does

not make any assumption about the distribution of the data.

4. Wilcoxon-Mann-Whitney Test – The test is used to compare two groups of

sample data. Wilcoxon-Mann-Whitney test is also called as Wilcoxon rank

sum test [87; 106]. This is a hypothesis test on the two different samples.

Main advantage of this rank test is that rank can be estimated in advance

hence run time computation will be less. In addition, noise effects will be

reduced using the rank instead of the raw data [87].

4.2.2 Machine Learning Approach

Although there is no explicit definition for machine learning, Arthur Samuel de-

fines the machine learning as a field of study that gives computers the ability

to learn without being explicitly programmed [107]. Tom Mitchell defines the

machine learning problem as a computer program which is said to learn from
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experience E with respect to some task T and some performance measure P, if its

performance on T, as measured by P, improve with experience E [108]. Machine

learning is a proved approach in many different fields such as speech recognition,

computer vision (i.e., face, hand writing and object recognitions), information

retrieval, robotics, medical diagnosis, financial prediction, target tracking, bio-

logical predictions, etc. There are mainly three types of learning approaches: (1)

Supervised learning (2) Unsupervised learning and (3) Reinforcement learning.

Machine learning approaches can be used in the PHM applications to learn the

behaviours of the systems and make predictions based on the learned models.

Since PHM problems can be formulated as classification or clustering techniques

of a machine learning approach, it can be used to classify or cluster the data into

different groups (i.e., healthy, anomaly, etc.,). Hence, with the help of machine

learning new data can be classified into healthy or anomaly and then can be

used to isolate the anomalies and faults. Further this information can be fed into

prediction algorithm to predict the reaming useful life time of a system [87].

4.2.2.1 Supervised Learning Approach

If the algorithm is given with the labelled outputs for a set of input, then the

learning is called supervised learning. Its goal is to predict a correct output for

a new input data. Most of the PHM problems can be treated as a supervised

learning problem where the sets of healthy and failure data are available. Some

of the frequently used supervised learning techniques are discussed below.

1. Linear Regression – Linear regression is the simplest way to model a rela-

tionship between input variable and output variable. Generally the linear

regression coefficient are estimated by minimising the squared error function

for a set of training data [109].

y(x,w) = w0 + w1x1 + ...+ wnxn (4.14)

where x0, x1, ..., xn are the input variables, y(x,w) is the output variable

and w0, w1, ..., wn are the regression coefficients. Gradient decent algorithm

is generally used to estimate the regression coefficient by minimising the

99



mean squared error function. Mean square error function sometimes is

referred as cost function in machine learning.

2. Logistic Regression – Logistic regression is another simplest approach to

model the relationship between the input variables and output variable.

This is similar to the linear regression but provides the output between 0

and 1. Hence logistics regression is used a classification technique. This

approach is discussed in chapter 5 in detail. Logistic regression is used in

medical diagnosis and also in industrial diagnosis [109; 110].

3. Neural Networks – Many data-driven PHM approaches are based on artifi-

cial neural networks [29; 30; 31]. Neural network is a graph based on some

interconnected numerical values attached to each node. It also has set of

input nodes, output nodes and hidden layers. Neural networks are trained

with a set of training data to optimise the network parameters to get the

desired output. This can be achieved by minimising the output error. For

the PHM application, a neural network can be used as a statistical mod-

elling and prediction algorithm which can be achieved in two different ways:

(1) density estimation and prediction, and (2) classification and regression.

For a statistical modelling and prediction problem the neural network can

be trained to produce a statistical model which can be used to predict the

output for a new input data. Density estimation is achieved by modelling

the unconditional distribution of the training data. In the case of an in-

put vector , neural network is trained to model the density function (X).

Based on the labelled target variable threshold value of the probability of

anomalies will be determined. Classification is achieved by arranging the

input data into different groups based on the output classes. In the case

of an input vector , a neural network classifies the input vector into one of

the different classes C1, C2, . . . , Cn represented by the labels of the output

variable [111].

For example in the case of PHM application the labels of the output variable

can be healthy, anomaly, etc. Then the regression can be used to extrap-

olate the damage or failure precursor to estimate the remaining useful life

time of a system. Main advantage of the neural network is that a very small
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number of parameters need to be optimised for training networks and no

prior assumptions on the property of the data are made. There are many

different types of architectures available for neural networks such as multi-

layer perceptron (MLP) networks, self-organised maps (SOM), radial basis

function (RBF) networks, support vector machines (SVM), Hopfield net-

works, oscillatory networks, etc., [91]. Figure 4.10 [111] illustrates a neural

network for density estimation. Figure 4.11 [111] shows a neural network

for classification problem. 

 

 

Figure 4.10: Neural network for density estimation problem

4. Support Vector Machines (SVM) – Support Vector Machine was introduced

by Vapnik in 1998. SVM is described as a function estimation problem for

a given set of measurement data with noise. Idea behind the approach is to

map the low dimensional data (input space vector X ) into high dimensional

vectors of the features space (feature space Z ) such that the input vectors

can be grouped based on the label of the target variable by an optimal

unique hyper plane [93]. Initially SVM was applied for pattern recognition

problems but became a popular approach in many different fields because
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Figure 4.11: Neural network for classification problem

of its performance. SVM has been applied to anomaly detection problems

as a one class learning technique. Set of normal data are used to learn

a region using kernel functions. This region can be defined as a normal

operating region. If the new observation data belongs to the normal region,

it is flagged as normal or otherwise it is flagged as anomaly [95].

For a set of training data xi, yi, i = 0, 1, . . . , n, yi ∈ −1, 1}, xi ∈ Rd, there

are some hyper-planes which separate the positive (+1) from the negative

(-1) training data. Figure 4.12 illustrates some of the hyper-planes which

can be used to separate two classes of the sample data. Shortest distances

to the closest negative and closest positive points from the hyper-plane are

d− and d+ and this distance will be defined as the margin of separating

hyper-plane. In the case of linearly separable, the hyper-plane with the

largest margin will be selected by the SVM. The closest points from the

hyper-plane are called the support vectors [112]. Figure 4.13 shows the

hyper-plane with the largest margin and the support vectors.
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Figure 4.12: Linearly separable data with several hyper-planes

Linear support vector machine can be formulated as follows [112]:

xi.w + b ≥ +1 for yi = +1 (4.15)

xi.w + b ≤ −1 for yi = −1 (4.16)

These two constrains can be combined together as one inequality:

yi (xi.w + b)− 1 ≥ 0 for all i (4.17)

Largest margin will be 2
∥w∥ (i.e., in the above case, d− + d+). Hence pair of

hyper-planes which gives the largest margin can be obtained by minimising

∥w2∥ subject to the constraints [112].

Relevance Vector Machine (RVM) is a Bayesian treatment model of iden-

tical functional form of the SVM. RVM overcomes a number of practical

disadvantages faced by the SVM. In particular, RVM uses dramatically
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Figure 4.13: Linearly separable data with support vectors and hyper-plane with
largest margin
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fewer kernel functions, in the meantime the performance comparable to an

equivalent SVM model [29; 113].

5. Gaussian Process Regression (GPR) – A Gaussian process (GP) is a col-

lection of random variables, any finite number of which have (consistent)

a joint Gaussian distributions [114]. Gaussian process can be used with

more flexibility for the non-linear regression problem. A set of n + 1 ran-

dom variables (Z1, Z2, . . . , Zn, Znew) has a joint Gaussian distribution with

mean 0 and covariance matrix K+ and covariance matrix K+ is partitioned

as follows [115]:

K+ =

(
K k

kT knew

)
(4.18)

where K is n× n matrix, k is n× 1 matrix and knew is a scalar. After first

n observations, i.e., Z1 = z1, . . . , Zn = zz, the conditional distribution for

new observation Znew is a Gaussian with [115]:

E[Znew] = kTK−1z (4.19)

V ar [Znew] = knew − kTK−1k (4.20)

where zT = (z1, z2, . . . , zn). Covariance matrix plays a critical role in the

GPR as GPR requires a prior knowledge in the form of covariance matrix

[29]. Figure 4.14 shows Gaussian process regression to a sample set of light

output data at four different times.

6. Bayesian Networks (BN) – Bayesian networks is a directed acyclic graph

which represents the joint probability distribution of the variables [109]. In

other words a directed graph which does not have any closed paths within

the graph such that following the direction we will not end up in the starting

node again. In the example graph (Figure 4.15), there are three nodes which

represent three events (example . Node c has two parent nodes (i.e., a, b),

node b has only one parent (i.e., a) and node a does not have any parents
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Figure 4.14: Gaussian process regression to sampled data set
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nodes.

 

a 

b 

c 

Figure 4.15: A Bayesian network with three events

Joint distribution for the above BN can be formulated using the product

rule of probability as follows [109]:

p (a, b, c) = p (c|a, b) p (a, b) (4.21)

p (a, b, c) = p (c|a, b) p (b|a) p(a) (4.22)

In general for a graph with K nodes, joint distribution is given as follows

[109]:

p (x) =
K∏
k=1

p(xk|pak) (4.23)

where pak denotes the set of parents of xk, and x = {x1, x2, . . . , xK}. The

above equation for the Bayesian network shows the factorisation property

of the joint distribution.

Generally BN is used to estimate the conditional probability of one node,

given values for other nodes. Since BN is used to estimate the posterior

probability of one node given the values for other nodes, BN can be used

as a classifier. Nodes represent the dataset attributes when BN learns from

the datasets [45]. Nave-Bayes (NB) classifier is a simple Bayesian network

where the classification node represented by the parent node to all the other
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nodes and no other connections are allowed in the Nave-Bayes classifier.

Main advantages of the NB classifier are easy to construct and classification

process is very efficient, hence NB has been used as an effective tool for

many classification problems [45]. A general Nave-Bayes network is shown

in Figure 4.16 [109].

 

…...

z 

�� �� 

Figure 4.16: A graphical representation of Nave-Bayes classifier

7. Hidden Markov Model (HMM) – Markov models (MM) assume the future

predictions are independent of all but the most recent observations [109].

Hidden Markov models are one of Markov models in which latent variable

are discrete. HMM is widely used to model sequential data [116]. Figure

4.17 [109] shows a HMM as specific instance of the state space model where

the latent variables are discrete. It can be viewed as a mixture model with

component densities given by p(x|z). State of the latent variable depends

on the state of the previous latent variable and therefore p(zn|zn−1). Initial

latent node has specialty as it does not have a parent node and therefore

it has a marginal distribution p(z1). Other important distribution is the

conditional distribution of the observed variables p(xn|zn). Sometime these

are known as emission probabilities. This is a special case of Bayesian

network called as dynamic Bayesian network (DBN).

4.2.2.2 Unsupervised Learning Approach

Unsupervised learning is used where there are no labelled data available (i.e.,

target variable). It is used to discover the similar groups within the data based
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Figure 4.17: A graphical structure of hidden Markov model

on clustering techniques or estimate the distribution of the data within the input

space or maps the high dimensional input space into a low dimensional space for

the purpose of visualisation [109]. In the case of PHM application unsupervised

learning approach can be used to classify the data into different groups and

identify the healthy and normal data or learn the healthy systems or learn the

failure data based on what types of data available. For most of the new systems,

only normal operating data will be available and these data can be used to learn

a healthy system under different settings. Then this learned information can be

used to detect the anomalies in the new observation and predict the reliability and

the life-time. Some of the supervised learning approaches can also be used under

unsupervised setting. Some of the frequently used techniques for unsupervised

learning approach are listed below:

1. Principal Component Analysis (PCA) – PCA is a widely used method for

dimensionality reduction, data compression, feature extraction and data

visualisation via mapping the data into a lower dimensional linear space also

called principal subspace. The goal of this approach is to map the higher

dimensional data into a lower dimension while maximising the variance of

the mapped data. Alternatively PCA can be performed by minimising the

sum-of-squares of the projection errors [109]. Figure 4.18 illustrates the

mapping of two dimensional data into a one dimension.

2. K -means Clustering – K -mean clustering is to group the data into K num-

ber of clusters such that the inter-point distance are small compared to the

distance to the points outside of the cluster. Every cluster centres around a
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Figure 4.18: Principal component analysis for 2-D data set

centre point µk where k = 1, 2, . . . , K. Data point needs to be assigned

to these clusters such that the sum of the squares of the distances of each

data point to its closest centre is minimum [109].

3. Neural Networks – Neutral network can also be used in the unsupervised

setting where labelled data is not available. Self-organising Maps (SOM)

are the type of neural network used for unsupervised learning and it was

proposed by Kohonen. It is an alternative approach to the statistical clus-

tering. In most of the SOM, every cluster is identified by a threshold value

and based on these threshold data points are assigned to the particular

cluster [91]. This technique can be used for the PHM of a new system or

product.

4. Kalman Filters (KF) – R E Kalman proposed a technique to solve the

problems such as (1) Prediction of random signal (2) Separate the ran-

dom signal from the random noise and (3) Detection of signals of known

form (i.e., pulses, sinusoids, etc.,) in the presence of random noise [117].

110



The Kalman filter is based on the assumption that the posterior density

at every time step is Gaussian and hence parameterised by the mean and

covariance [118]. The Kalman filter (KF) is frequently used as an opti-

mised estimation technique for systems state. It is a recursive approach to

estimate the system state based on the prior knowledge of the state of the

system and the measured information. The Kalman filter is also used to

fuse the measurements for same variable from different sensors. The KF

is used in PHM application of electrical components based on changes in

resistance [44; 119]. Figure 4.19 shows sample measured sensor data and

filtered data using the Kalman filter.
 

 

 

Figure 4.19: Kalman filter for sample data set

5. Particle Filter (PF) – Particle filters also referred as sequential Monte Carlo

(SMC) are used to handle model non-linearity or non-Gaussian process or

observation noise [120]. PF was developed based on the concept of sequen-

tial important sampling (SIS) and Bayesian theory. PF has been applied
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in many fields such as economics, biostatistics, target tracking, time series

analysis, signal processing, etc., [118].

There are many different particle filters based on different sampling tech-

niques such as sampling important resampling (SIR) particle filter, auxiliary

particle filter, regularised particle filter, etc. PF have been applied success-

fully in number of PHM applications [89; 90; 121; 122].

4.3 Model Driven Approach

The model driven approach uses mathematical equations that predict the physics

governing failures and therefore is sometimes referred to as the Physics-of-Failure

(PoF) approach. It requires knowledge of the failure mechanisms, geometry of the

system, material properties and the external loads being applied to the system.

An accurate mathematical model can benefit the prognostics process, where the

difference between the output from a mathematical model and the real output of

the system can be used to find the anomalies, malfunctions, disturbance, etc., [44].

Using the difference between model and data values for a performance parameter,

the early warnings for failures and remaining useful life can be predicted. PHM

research based on model-driven approach has been undertaken in recent years for

a number of different applications [28; 38; 39; 40; 44; 85; 86; 87; 123].

A block diagram of a typical model based approach is shown in Figure 4.20.

Fault is identified and diagnosed using the model and sensor data. Sensors are

used to assess the actual state of the system and then compared to the output

of the model. The different between the model output and sensor data is called

residual which then used to estimate the damage in the system. Appropriate

extrapolation technique is used to predict the useful life. Estimated damage and

remaining useful life are then used for the purpose of maintenance.

Physics-of-Failure (PoF) approach is developed based on underlying physical

behaviour which causes the failure (physics-based degradation model) or is based

system models which represent the dynamic of the systems (sometime referred

as state space models). These models are often developed from first principles.

An empirical model is developed when it is difficult to derive a model from first
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Figure 4.20: Block diagram of model driven approach
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principles.

4.3.1 System Models

System model represent the system dynamic accurately and sometimes is referred

to as a state space model. System models have many different subsystems and

individual components. System models are derived by assembling the subsystem

models and component models. Subsystems and individual components are need

to be modelled. For example most of the electronic components have equiva-

lent circuit models which are used to represent their operation/dynamic. Figure

4.21 shows three different equivalent circuit models for a capacitor. Figure 4.21

(a) represents a capacitor model with an equivalent series resistance (ESR) and

it ignores the parallel resistance associated with the capacitor. Figure 4.21 (b)

represents a capacitor model with an equivalent parallel resistance (EPR) and it

ignores the serial resistance of the capacitor. Figure 4.21 (c) represents a capac-

itor model with an equivalent parallel resistance (EPR) and an equivalent series

resistance (ESR) and it can be used to represent a capacitor more accurately.

A lumped parameter model which is shown in Figure 4.21 (c), for a real capac-

itor has been used by J R Celaya et al as a model for model-driven PHM for

electrolytic capacitors under electrical overstress accelerated ageing.

An important task in the modelling process is the estimation of the model

parameters accurately. For example, in the case of the capacitor models, model

parameters are Rc, Xc, and C. This can be achieved in two different ways: (1)

estimate from the first principle or (2) from empirical data. Values of these model

parameters depend on the type of material, geometry, size of the device, etc.

Therefore it might be difficult to estimate the values for these parameters from

first principles. In principle, it is easier to estimate parameters from empirical

data which are collected from a test designed for that purpose.

Another example is a simple equivalent circuit model for lithium-ion battery

(LIB) cell as reported by B Y Liaw et al. This is based on equivalent circuit

model for Ni-MH cells which is developed by Verbrugge and Conell [37]. Figure

4.22 shows the equivalent circuit model for LIB cell. Typically model parameters

are estimated from the empirical data collected from the experiments.

114



 

C 

(a) 
RESR 

C 

(b) 

REPR 

C 

(c) 

RESR 

REPR 

Figure 4.21: Equivalent circuit models of an electrolytic capacitor

115



 

C 

R2 

R1 
V0 

Load 

Source 

+ 
- 

- 
+ 

I 

Figure 4.22: Equivalent circuit model for a Lithium-ion battery cell

System models can be used to do the prognostics with the help of sensors or

measuring equipment. Based on the sensor or measured data and output from

the model data, potential damage can be estimated. Estimation techniques such

as Kalman filters (KF) and particle filters (PF) are typically used to estimate

the damage from the sensor output and model out [82]. Fault can be diagnosed

by isolating the parameter which causes the failure. Then the estimated damage

is used to forecast the remaining useful life time as shown in block diagram for

model driven approach in Figure 4.20.

4.3.2 Physics-of-Failure Models

Physics-of-Failure (PoF) approach is developed based on Failure Modes, Mech-

anisms and Effects Analysis (FMMEA) of the device [82; 87]. Potential failure

modes and corresponding failure mechanisms based on different life-cycle load-

ing conditions need to be identified to develop a PoF approach. The maximum

stress for each failure mechanisms that a device can withstand is obtained as a

function of life-cycle loading. This information is then fed into an appropriate
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damage model to estimate the RUL. Some of the frequently used damage models

are listed below:

1. Arrhenius Relationship Based Models – Arrhenius relationship is a relation-

ship between a chemical reaction and temperature. In reliability, Arrhenius

relationship is used to establish the time to failure (T failure) of a semicon-

ductor device for which a failure is based on temperature assuming all other

parameters are constant [124].

Tfailure ∝ e
Ea
kT (4.24)

where Ea is the activation energy of the failure mechanisms in electron volts

(eV), k is the Boltzmann’s constant and T is the operating temperature in

Kelvin. Activation energy Ea will vary based on the failure mechanisms

and Arrhenius model is valid only for the failure mechanisms which depend

on the temperature while all the other parameters are constant.

2. Black’s Equation – J R Black developed an empirical relationship to esti-

mate the time to failure of a wire because of electro-migration. Electro-

migration is one of the important failure mechanisms in the semiconductor

devices. Black’s equation was developed further and widely used to esti-

mate the time to failure of semiconductor devices because of the failure

mode caused by the electro-migration [124].

Tfailure = AEM (J − Jcrit)
−n e

Ea
kT (4.25)

where AEM is an empirically determined constant, J is the current density

in the interconnect, Jcrit is the critical current density required for the

electro-migration, Ea is the activation energy for the electro-migration in

electron volts (eV), k is the Boltzmann’s constant (8.62 × 10−5 eV
K
), T is

the operating temperature in Kelvin and n is an empirically determined

constant which typically depends on the interconnect material. n = 1.1 is

used for copper interconnect. Activation energy Ea depends on the material

used in the interconnect.
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3. Stress Migration Model – Stress migration is the process of migration of the

atoms in the interconnect due to the thermo-mechanical stress. Damage

model for stress migration is given as follows [124]:

Tfailure = ASM σ−n e
Ea
kT (4.26)

where ASM is an empirically determined constant, σ is the mechanical stress

caused due to different expansion rate, n is an empirically determined con-

stant and Ea is the activation energy for the stress migration. Activation

energy Ea depends on the material used in the interconnect. Since the me-

chanical stress σ is proportional to the changes in the temperature from the

stress free temperature, damage model based on operating temperature is

given as follows [124]:

Tfailure ∝ |T0 − T |−n e
Ea
kT (4.27)

4. Coffin-Manson Model – Coffin-Manson model initially developed to model

the damage in the aircraft frame due to large thermal cycles. It has been

modified and used frequently in the semiconductor industries to assess the

reliability of semiconductor devices. The Coffin-Manson equation for the

thermal cycle is given by [124]:

Nf = C0 (δT )−q (4.28)

where Nf is the number of thermal cycle to failure, C0 is an empirically

determined constant which depends on the material, δT is the temperature

range experienced by the device and q is the Coffin-Manson constant which

needs to be determined empirically.

4.4 Fusion Approach

The fusion approach is based on the advanced features of the both data driven

and model based approach. This approach will require an accurate mathematical
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model of the system for physics based failure approach and enough historical data

and knowledge of typical operational performance data for data driven approach.

The aim of the fusion approach is to overcome the limitations of both the model

and data driven approaches to estimate the remaining useful life (RUL) [87].

Therefore the accuracy of the fusion approach should be high, although for real-

time analysis it may not be suitable due to the computational resource required.

Fusion approach to PHM has been demonstrated for a number of applications

but remains an open research area [45; 47; 125].

A block diagram of a typical fusion approach is shown in Figure 4.23. Data

driven approach is added to detect the anomalies and then extrapolate the anoma-

lous data to predict the remaining life. Model driven approach predicts the re-

maining life based of the system or failure model and sensor data. Remaining

useful life predicted from model driven and data driven approaches are then fused

together to make a better prediction.

A typical PHM application consists of many different tasks, from sensing

to prediction. Each task benefited from different techniques hence the real world

PHM application does not necessarily depend on a single approach. Many model-

driven approaches use data-driven techniques for the RUL prediction based on

the state-space or PoF models. Some data-driven techniques such as Kalman

Filter and Particle Filter can be used to sequentially estimate the system state

based on a model and sensor data. In particular, they are capable of correcting

the predictions based on their outer feedback correction loops. Particle Filter

demonstrated its robustness in online (real-time) estimation of the remaining

useful lifetime of a system [121].

4.5 Summary

This chapter has presented detail review of many different techniques available for

data driven, model driven and fusion PHM approaches. Generally PHM problem

cab be formulated as anomaly detection and extrapolation (prediction) problems.

To detect the anomalies in the system, it is required to have latest data about the

system. Anomalies can be detected using probability of an event or using suitable

threshold. Prediction problem requires some previous data to make prediction or
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Figure 4.23: Block diagram of fusion approach

extrapolate the data to estimate future state of the systems.

PHM also requires different techniques to achieve different tasks such as sig-

nal conditioning, noise reduction, damage estimation, parameter trending, RUL

prediction etc. Data driven techniques achieve most of these tasks. Model driven

and fusion approaches often benefit from data driven techniques such as Kalman

filter, regression etc., for noise reduction, extrapolation etc.

This research investigates suitable techniques for real-time PHM. In particu-

lar, this programme investigates suitable techniques which can be easily imple-

mented in low cost microcontrollers.
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Chapter 5

PHM Approaches to High Power

LEDs

5.1 Introduction

Light emitting diodes are identified as future light sources since they have many

advantages such as high reliability, long lifetime, faster switching speed, energy

efficient, small in size etc., compared to traditional lighting systems. A high power

LED is defined as an LED with power equal or greater than 1 Watt. When the

LED is forward biased and current passes through the p-n junction, electrons

in the n-region get sufficient energy to move across the p-n junction into the

p-region and holes are injected into the n-region from the p-region through the

p-n junction [67]. Some of the electrons and holes recombine in the active region

(p-n junction) where electrons move one energy band to another. This process is

known as the radiative recombination process. When the radiative recombination

takes place, energy is released in the form of photons with the wavelength related

to the change in the energy band. This process is illustrated in Figure 5.1. Light

output power of an LED light source is determined by the radiative recombination

process. When the efficiency of the radiative recombination process reduces (i.e.,

rate of non-radiative recombination process increases), degradation of the LED

performance starts taking place.

Reliability and lifetime of LED lighting systems are established as very high
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Figure 5.1: Radiactive recombination process in the p-n junction (LED die) where
the photon emitted in the form of light
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under normal operating conditions. Lifetime specified by the manufacturers is

typically based on the average lifetime of a group of individual LED packages.

This average reliability might vary from the reliability of an individual LED

package. When the operating conditions change the reliability and lifetime of

the LEDs also change. In particular, reliability and lifetimes of the LEDs greatly

influenced by the heat generated in the junction and the drive current. Although

the reliability and life time of LED packages are very high, LED lighting systems

show considerably lower reliability compared with the individual LED packages.

The reason is that LED lighting systems reliability depends on other parts such

as driver and housing.

Most of the manufacturers perform reliability tests and publish these data for

their products. These reliability tests are conducted under a controlled environ-

ment specified by the current available standards such as LM-791, LM-802, and

IES TM-213 etc. Lifetimes of the LEDs are estimated based on these reliability

tests data. Generally, lifetime is statistically estimated time of average or median

useful lifetime. Real application environments and operating conditions are very

different and vary compared to the tested conditions. Lifetime of different LEDs

and from different manufacturers have different reliability and lifetime as their in-

dividual characteristics such as die structure, chemical composite of the die and

the encapsulant, mechanical structure of the device, quality of manufacturing

practice etc., vary.

Monitoring the reliability of the light of LED lighting systems in the field

requires light sensors and labour. This maintenance task can be converted into a

predictable evidence based maintenance strategy using PHM techniques in real-

time if they are embedded with the LED controller. Applying PHM techniques

to LED lighting systems requires additional sensors and real-time computational

power. Real-time PHM to LED lighting systems can be implemented in two dif-

ferent ways: (1) measure the light output power using a light sensor in real-time

and forecast the maintenance task based on light sensor reading or (2) measure

other parameters such as forward voltage, forward current and temperature using

1IES standard for electrical and photometric measurements of solid-state lighting products
2IES standard for measuring lumen maintenance of LED light sources
3IES standard for projecting long term lumen maintenance of LED light sources
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specialised sensors and do the forecasting. The first approach is very straight-

forward since the exact light output power is known; it can be used to schedule

the maintenance activity. Although the light sensors are available in the market,

placing the sensors into the luminaries is very difficult. The second approach is

based on other parameters such as forward voltage, forward current and board

temperature. Prediction and maintenance forecast need to be made from these

parameters. This work is carried out based on sensor data for forward voltage,

forward current and board temperature measurements to perform the prognostics

and health monitoring of the LEDs, and based on the lifetime recommendation for

LED lighting systems by Next Generation Lighting Industry Alliance (NGLIA),

in 2011. NGLIA recommends lifetime of LED lighting systems can be estimated

using only light output power reduction since colour shift of any lighting systems

is not well-understood and there is no accepted standard to define the lifetime

based on colour shift. In this research, the 30% reduction in the light output is

used as the failure criteria, and any LED which operates below this limit (i.e.,

70%) is defined as a failed LED.

There is no life time model developed and reported in the literature so far for

LEDs [78; 126; 127]. Manufacturers need to work toward understanding the issues

surrounding true lifetime and reliability, and also need to develop models for the

underlying failure mechanisms [77]. The main cause of the failure in the LEDs

is the heat generated at the p-n junction [24]. Under the forward bias condition

the p-n junction carries a current which is almost an exponential function of

the applied voltage which means if there is an increase in the applied voltage,

the current through the p-n junction increases exponentially. This characteristic

is explained by the Shockley’s Equation [128]. The modified version Shockley’s

equation for the p-n junction characteristics is given in equation 5.1. An increase

in the current will cause the temperature to increase dramatically which means

the heat generated in the p-n junction increases.

Jf = Js

[
exp

(
eVf

nidealkT

)
− 1

]
(5.1)

where Jf is the forward current density, Js is the saturation current density, Vf is

the junction voltage, k is the Boltzmann constant, T is the absolute temperature
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of the pn junction and nideal is the diode ideality factor or quality factor. The

saturation current density Js is not constant for given devices and it increases with

temperature T . Hence the forward current density Jf increases with temperature

increase.

5.2 LED Health Monitoring

Measuring the light output of an LED in real-time (i.e., in the field) is difficult.

Instead, performance indicators of the LEDs such as forward current, and the

p-n junction temperature, can be used to measure any deviations in performance

and to realise any prognostics assessment. Forward current can be measured

using power resistors (i.e., current sensor) as the ordinary resistors cannot handle

the typical expected current through the LEDs which is 350mA. Forward voltage

across the LED can also be measured. It is impossible to measure the p-n junction

temperature directly as it is impossible to reach the p-n junction. However, it is

possible to estimate this value by measuring the temperature at a nearest point

to the p-n junction, and then use the following one-dimensional heat conduction

equation to estimate the junction temperature [56; 57]:

Tj = Tb +Rθjb × V × I (5.2)

where Tj is the p-n junction temperature, Tb is the board temperature, Rθjb is

the p-n junction to board thermal resistance coefficient, V is the input voltage

and I is the input current. Thermal resistance coefficient depends on the power

dissipation at the junction, ambient temperature, amount of heat sink and the

orientation of the heat sink [56; 57].

For the purpose of real-time health monitoring and prognostics, we assume the

average power dissipation of the LED remains constant and ambient temperature,

amount of heat sink and orientation of the heat sink remain the same. If the power

dissipation, ambient temperature and heat sink remain same, board temperature

and junction temperature will vary linearly [57]. In addition a large heat sink is

used in the experiment and hence the junction temperature can be estimated with

the board temperature [57]. Y Xi et al also showed that the junction temperature
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and input power for GaInN UV LED and AlGaN UV LED have linear fit for

the experimental data [129]. It implies the thermal resistance coefficient remain

constant for these particular LEDs. For the Philips Luxeon star, the LED used

in this research study, the thermal resistance co-efficient is 20◦C/W which can be

assumed as a constant. This allows us to monitor the board temperature and use

this temperature to train the investigated data driven PHM approach instead of

the p-n junction temperature.

The real-time health monitoring and prognostics approach adopted in this

study is based on the output from both thermocouple data for board temperature

and current sensor data for forward current. This data is then fed into the data

driven techniques to predict the anomalies in LED performance. The test data

was obtained using a National Instruments’ (NI) PXI1 real-time platform which

gathered data for the studied high power Luxeon star LEDs under accelerated

voltage conditions.

5.3 Data Driven Approach

The health of a product or system is defined as the extent of deviation or degra-

dation from its expected typical operating performance. This extent of deviation

or degradation from the expected typical operating performance has to be deter-

mined accurately to assess the reliability of a product and predict its remaining

useful life.

In the case of High power LEDs which are semiconductor devices, overall

reliability depends on several factors such as properties of p-n junction, band gap

energy, internal quantum efficiency (i.e., product of current injection efficiency

and radiative efficiency), light extraction efficiency, cavities or defects in the active

region etc. Modeling these individual LED characteristics for the purpose of

prognostics and health monitoring is difficult. Data-driven approach for PHM

has been identified as the best strategy as they do not require system specific

knowledge. However, in this case there is a requirement for historical and failure

data. Data-driven approach is also easy to implement, in particular in a real-time

environment.

1The peripheral controller interface (PCI) eXtensions for instrumentation
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Light output power degradation is caused by high temperature at the p-n

junction due to the heat generated at the p-n junction. Heat generated depends

on the current through the p-n junction. Injection current (current through the

p-n junction) and the p-n junction temperature can be used as the performance

indicators of the LEDs. Monitoring the current and temperature at the p-n junc-

tion and relating them to the drop in output lumens (i.e., power) will provide the

ability to monitor the degradation of the LED in real time. To achieve this, two

distance measure techniques have been assessed (1) Euclidean Distance and (2)

Mahalanobis Distance. Logistic regression technique has also been investigated

based on sensor data for the forward current and the board temperature. Neural

network (NN) is used to predict the light output based on the sensor data for the

forward current and the board temperature.

5.3.1 Distance Measures

Distance measures are used in many classification and clustering techniques. Each

cluster can be defined by a center point and a threshold distance (i.e., outlier).

In the case of PHM application for LED lighting systems, we define a healthy

region by a cluster with center point as the typical operating data and the outlier

as threshold value. This cluster defines a healthy operating region for LEDs and

LED operating beyond this region can be considered as being abnormal condition.

The strategy which is followed here is to train the algorithms first off-line for

a certain number of training data sets in order to identify the healthy and failure

threshold values, regression coefficients etc. These identified values and equations

can be then programmed into a real-time system (i.e., LED driver) to assess the

reliability and predict the remaining useful lifetime.

5.3.1.1 Euclidean Distance

Euclidean distance (ED) is the physical distance between two data points and

it is the most commonly used distance measure in many different fields. It is

defined as the distance that examines the root of square differences between any

data sets i.e., it can be in any dimension. For a data matrix X which contains n

objects measured by p variables (i.e., n× p matrix), ED can be calculated in the
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vector space as follow:

EDi =
√

(Xi − X̄)(Xi − X̄)T (5.3)

Here X̄ is the mean vector. In the case of prognostics and health monitoring

of high power LEDs, C̄ and T̄ are the mean values of current through the p-n

junction and p-n junction temperature under typical operating conditions respec-

tively. Ci and Ti are the new observation data. EDi will be computed for the

new observation data as follows (i.e., two dimensional data):

EDi =
√
(Ci − C̄)2 + (Ti − T̄ )2 (5.4)

The ED value will give an estimate of LED’s deviation or the degradation from

the typical healthy LED. Higher values for the ED will indicate anomalies in

the performance and prognostics of LED can be achieved by monitoring the ED

values. Figure 5.2 shows Euclidean distance for random data generated from

multivariate normal distribution with same standard deviation in both directions.

5.3.1.2 Mahalanobis Distance

Mahanobis distance (MD) is another physical distance measure. Although sim-

ilar to the Euclidean distance, the Mahalanobis distance takes into account the

actual correlations of the data sets hence having a potential advantage over ED.

Since the health of the system is defined as the deviation from expected typical

operating performance, Mahalanobis distance is useful in determining the similar-

ity/distance between the typical operating performance and monitored operating

performance. For a data matrix X which contain n objects measured by p vari-

ables as above MD can be estimated in the vector space as follows:

MDi =
√

(Xi − X̄)Cov−1
X (Xi − X̄)T (5.5)

Here X̄ is the mean vector and Covx is the variance-covariance matrix of data

matrix X. In the case of prognostics and health monitoring of LEDs, C̄ and T̄ are
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Figure 5.2: Euclidean distance for random data
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the mean values of current through the p-n junction and p-n junction temper-

ature, and CovCT is the variance-covariance matrix of current and temperature

under the typical operating conditions.

Ci and Ti are the new observation data. MD for two dimensional data can be

calculated whenever new data becomes available as follows:

MDi =
√
(Ci − C̄)Cov−1

CT (Ti − T̄ )T (5.6)

In the case of 2 monitored parameters, the MD formula for two dimensional

data is using the following variance-covariance matrix:

CovCT =

[
σ2
C

ρCTσCσT

ρCTσCσT

σ2
T

]
(5.7)

where σ2
C and σ2

T are the variance of current and temperature and ρCTσCσT is

the covariance of current and temperature under the typical operating conditions.

Using these variables MD can be derived as follows:

MDi =

√√√√(Ci − C̄

σC

)2

+

[{(
Ti − T̄

σT

)
−ρCT

(
Ci − C̄

σT

)}
1√

1− ρ2CT

]2
(5.8)

The MD value will give an estimate of LED’s deviation or the degradation

from the typical healthy LED. Higher values for the MD will indicate anomalies

in the performance and by tracking the MD values prognostics of LED can be

achieved. Figure 5.3 shows Mahalanobis distance for random data generated

from multivariate normal distribution with different standard deviation in both

directions.

The advantage of the above techniques is that they transform multi-dimensional

sensor readings into a single performance parameter. In addition, fault param-

eters can also be isolated in the event of faults or anomalies in the ED or MD

estimate by monitoring the individual sensors data. This can be used to analyse

the fault and to find the root cause of the anomaly or the fault. Using MD or ED

techniques for the purpose of health monitoring and prognostics of LEDs require

historical data to establish the threshold values representing when the LED is
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Figure 5.3: Mahalanobis distance for random data
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performing outside its safe limits. To generate this data we use an accelerated

voltage as condition to stress the components to failure. As a result of this, the

current and the temperature also increase.

5.3.2 Logistic Regression

Logistic regression is used to predict the probability of occurrence of an event

based on the parameters the event depends on. Logistic sigmoid function is

investigated and used to fit the parameters which control the occurrence of the

event. Logistic sigmoid function is given by the following equations:

f (z) =
1

1 + exp(−z)
(5.9)

where z = β0+β1x1+ . . .+βnxn, x1, x2, . . . , xn are the parameters which control

the occurrence of the event z and β0, β1, . . . , βn are the regression coefficient

of the parameters. In the case of LED’s health monitoring, forward current and

board temperature are identified as the key parameters which control the LED

reliability and health. Hence the parameter z in the logistic regression equation

is reduced to z = β0 + β1I + β2T . Regression coefficient β0, β1 and β2 need to

be determined from the training data set and this can be achieved using the

following formulation and subsequent derivation of the result:

exp (−z) =
1− f(z)

f(z)
(5.10)

z = log

(
f(z)

1− f(z)

)
(5.11)

β0 + β1I + β2T = log

(
f(z)

1− f(z)

)
(5.12)

Equation 5.12 is in the form of a linear equation and it can be written as:

bX = y (5.13)
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where b is the regression coefficient column vector with β0, β1, β2 elements, X is

the input matrix with columns of [1IT ] data and y is the output column vector.

For a given set of data set X and y, the coefficient vector b can be solved using

following equation:

b = (XTX)
−1
XTyT (5.14)

where b is the regression coefficient matrix (3×1),X is the input matrix (3×n) and

y is the output matrix (1×n). For a set of healthy data and failure data regression

coefficients can be determined. Then logistic regression function can be used to

classify the new sensor data into healthy or failure i.e., if the logistic regression

returns 1, LED is healthy and probability of the failure is 0. If the logistic

regression return 0 for a new set of sensor data, LED is failed and probability of

failure is 1. If the output from logistic function starts to reduce, that indicates

the start of the degradation and hence the probability of failure will increase

while the probability of healthy state will decrease. Figure 5.4 shows a logistic

regression function for random input data.

5.3.3 Neural Network

The exploitation of neural network for the purpose of PHM in this research is

motivated by the advantages of this technique discussed in chapter 4. Neural

network is used here to classify the light output values based on the sensor data

for the forward current and board temperature. In this case neural network is op-

timised for the training data such that the mean square error is minimum. Sensor

data for the forward current and board temperature are used as the input data.

A simple neural network consists of three layers of neurons, namely input, hidden

and output. Typical output of a neuron in the hidden layer can be expressed

using the following equation, if the neuron has n inputs:

hj = f(
n∑
1

wixi + bj) (5.15)
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Figure 5.4: Logistic regression plots for random data

where f is called activation function, wi is the weight of the ith input xi, xi is

the ith input to the jth neuron in the hidden layer, and bj is the bias to the jth

neuron in the hidden layer. Output of the neurons in the hidden layer will act as

the input to the neurons in the output layer. Output of a neuron in the output

layer can be expressed using the following equation, if the neuron has m inputs:

yk = f(
m∑
1

mjhj + bk) (5.16)

where f is called activation function, mj is the weight of the jth input, hj is jth

input to the kth neuron in the output, and bk is the bias to the kth neuron in the

output layer. For the purpose of prognostics and health monitoring of LED, a

simple neural network with five neurons is investigated. The output value from

the neural network can be used to diagnose the LEDs. This approach is similar to

the logistic regression technique approach. Each node can be represented by the

logistic regression function if the activation function of the neural network is a
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sigmoid function. If the output of the neural network is 1 then the LED is healthy

and if the output of the neural network is 0 then the LED is defined as failed.

Output of the neural network can also be interpreted as the healthy probability

of an LED. Figure 5.5 shows the simple neural network for LED prognostics.

In this neural network h1 and h2 represent the two neurons in the hidden

layer. Inputs from the input layers are multiplied by the weight parameters and

fed into the neurons in the hidden layer. For example, current and temperature

sensor data are multiplied by w1,1 and w1,2, respectively and fed into the neuron

h1 where these data then used as input of the logistic function (i.e. activation

function of this case). Output of this neuron m1 is the output from the logistic

function. Finally outputs from both neurons (i.e. m1 and m2) is fed into output

neuron y where logistic function is used. Output from this layer then is used as

the probability of failure.

 

I 

T 

h1 

h2 

y 

w1, 2 

w1, 1 

w2, 1 

w2, 2 

b1 

b2 

m1 

m2 

b3 

Figure 5.5: A simple neural network for the prognostics of LEDs

5.4 Model Driven Approach

Model driven approach can be adopted different ways as discussed in chapter

4. For the purpose of the LED health monitoring, we developed an empirical

model in this work. This model is based on voltage-current characteristics and is

developed with data obtained under accelerated life conditions. Figure 5.6 shows

the linear model of the LEDs for small signal simulations.

135



 

+ 
- 

+  V

F

  - 

R I

LED

 

V

LED

 

Figure 5.6: A linear model for LED

The above linear model shown in Figure 5.6 can be represented by the follow-

ing equation:

VLED = VF + ILED ×R (5.17)

where VLED is the voltage across the LED (forward voltage), VF is the forward

junction potential, ILED is the current through the LED (forward current) and

R is forward resistance of the LED. Typically the forward resistance of the LED

is infinity until the forward voltage reaches the forward junction potential i.e., no

current flows, after that the current rapidly increases as the forward resistance is

very small i.e., small increase in the voltage results in high increase in current.

Figure 5.7(a) shows V-I characteristics of an ideal LED with no forward junction

potential and forward resistance, Figure 5.7(b) shows V-I characteristics of a

LED model with only forward junction potential and Figure 5.7(c) shows the

V-I characteristics of a LED model with forward junction potential and forward

resistance. The empirical model developed in this work is based on the V-I

characteristics shown in Figure 5.7(c). Test data is used to determine the model

parameters R and VF .
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Figure 5.7: (a) An ideal V-I characteristics (b) V-I characteristics with froward
junction potential (c) V-I characteristics with forward junction potential and
forward resistance
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5.5 Fusion Approach

We propose a fusion approach based on one of the developed data driven approach

and the empirical model driven approach. We also propose to estimate the RUL

using Kalman filter. In this case, we assume the data driven approach estimate

has an error and it follows Gaussian distribution with mean µ1 and standard

deviation σ1. Similarly we assume the model driven approach has an error and

it also follows the Gaussian distribution with mean µ2 and standard deviation

σ2. We use Kalman filter to estimate a single RUL by combining data driven

and model driven approach RUL estimation. For example, if the RUL values

from data driven and model driven approaches are equally good (i.e., σ1 = σ2),

we can take average of the estimated RULs from data driven and model driven

approaches. If data driven approach is far more accurate than the model driven

approach we should give more weight to the RUL estimated from the data driven

approach. Kalman filter is an estimation technique which uses previous data and

estimate best value for RUL based on assign error parameters for data driven and

model driven approaches (i.e., σ1 and σ2). Sometimes these error parameters are

called accuracy of the models used for the fusion.

5.6 Summary

This chapter has presented developed PHM approaches to the LED health moni-

toring and prognostics. Euclidean distance, Mahalanobis distance, logistic regres-

sion and Kalman filter (LRKF) and neural network and Kalman filter (NNKF)

approaches have been proposed and developed for the data driven PHM of the

LEDs. An empirical model based approach for the model driven PHM has been

developed and discussed. A fusion approach is proposed and developed based

on Kalman filter to estimate best RUL from the estimated RULs from the data

driven and model driven approaches.
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Chapter 6

Experimental Setup and Data

Collection

6.1 Introduction

There are standards developed by the Illuminating Engineering Society of North

America (IES/IESNA) to test the LED lighting systems for the purpose of qual-

ifications. IES LM-79-081 is developed as a standard to measure electrical and

photometric characteristics of solid state lighting products such as LED lumi-

naries and integrated LED lamps. IES LM-80-082 is developed as a standard to

test the solid state light sources such as LED packages, arrays and modules (not

luminaries) for lumen maintenance. IES TM-21-113 is developed to estimate the

lifetime of the LED packages, arrays and modules based on the test procedures set

out by the LM-80-08. TM-21-11 is a technical memorandum which specifies the

approach to extrapolate the test data beyond the LM-80-08 test time. Purpose

of these standards is to allow all the manufacturers to follow a common mea-

suring procedure so that the users can compare the performance of the different

products in the market. These tests need to be carried out and reported for the

products by an independent laboratory. This is also a requirement of the Energy

Star which is international standard for energy efficient products.

1IES standard for electrical and photometric measurements of solid-state lighting products
2IES standard for measuring lumen maintenance of LED light sources
3IES standard projecting long term lumen maintenance of LED light sources
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The Alliance for Solid State Illumination Systems and Technology (ASSIT)

has also developed standard for life test of the LED based on 50% light output

degradation (L50) and 30% light output degradation (L70). Manufacturers are

performing tests and producing the result based on these standards and tests.

These standards and testing procedures provide the data for comparing the life

expectancy of the different solid state lighting products but does not provide

detailed information on the failure modes and mechanisms hence it will not help

to estimate the life time of an LED in the field. Test times set out by these

standards (i.e., ASSIST and IES) are generally too long. Therefore the use of

accelerated life test (ALT) is investigated in this work to test the LEDs for the

failure and collect data to develop an approach to assess degradation and predict

the remaining useful lifetime of LEDs in the field.

6.2 Accelerated Life Test (ALT)

Accelerated life tests are widely used to assess the reliability, and develop and

test the prognostics approach for electronic systems, mechanical systems etc. ALT

is designed to elevate the stress conditions individually or as a combination to

accelerate the failure. ALT is also used for various tasks in the process of PHM.

For example, ALT is used to generate the failure data set for different failure

modes or mechanisms and normal data set etc. under different normal operating

conditions. In addition, ALT is used to develop and test the PHM algorithms

under the ALT conditions. Published research work on ALT for LEDs or LED

lighting systems is discussed in chapter 2 section 5.

In this work ALT is used to accelerate the failures based on both drive current

and junction temperature. In particular, this test is designed to accelerate the

failures which are caused by power supply breakdown or driver breakdown. If

the power supply or driver breaks, LEDs in the circuit will undergo electrical

overstress. This electrical overstress will induce the thermal overstress since the

electrical overstress increases the junction temperature of the LEDs. When the

LEDs are deployed in the field, there are many known and unknown factors which

affect the performance of the LED lighting systems and increase the possibility

of catastrophic failures. For example LED lighting systems under the harsh op-
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erating environments such as automobile exterior lighting, lighting applications

in the factories etc., need to operate under extreme environmental temperature

conditions. Such systems will have a short lifetime and in many case they have to

be monitored. The experiment below is designed to capture such failures caused

by voltage and current fluctuations, driver break down, temperature increases,

etc.

The objective of adopting the ALT here is to develop and assess the perfor-

mance of the proposed PHM for high power LEDs. In the experiments detailed

below, the current through the p-n junction and the p-n junction temperature

can be defined as the performance indicators of the LED. Therefore, any accel-

erated test can use the current or the temperature as the stress parameter of the

LED. Generally LEDs are controlled by controlling constant current through the

sense voltage (analogue dimming) or pulse width modulated switching (digital

diming). In this experiment, the constant current required to operate the LED is

controlled by controlling the forward voltage across the LED and the experiment

is designed to test a single LED at a time. Since the failures based on current

and the temperature need to be accelerated, the forward/applied voltage is used

as an accelerating damage condition in the experiments. The acceleration of the

applied voltage results in the elevation of both stress parameters (e.g. the drive

current and the junction temperature). Test strategy based on forward voltage

is shown in Figure 6.1.

Figure 6.2 (a) shows a Luxeon star LED from Philips Lumileds lighting and

Figure 6.2 (b) shows a fitted LED on a holder that represents the LED test set up.

Figure 6.3 details the experimental test setup, which consists of a data acquisition

system (National Instruments PXI), a voltage regulator and sensors, and a single

High Power Philips Luxeon Star LED. For the purpose of light measurement, the

LED is placed within a semi spherical enclosure which also contains a photodiode

light sensor.

The National Instruments PXI platform can be connected to both analog and

digital input modules providing the ability to measure voltage levels for different

types of signals. For this experiment we use a 24-bit universal analog input

module (NI 9219) to measure the applied voltage, and the voltage across the

three sensors (current, temperature, and light).
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Figure 6.1: LED test strategy

 

 

 

Figure 6.2: (a) Luxeon star LED from Philips (b) Luxeon star LED with holder
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Figure 6.3: Test bench – Experiment setup with NI PXI systems

The applied voltage is measured by connecting the anode and cathode ter-

minals of the LED and sensors for current, light and temperature are connected

to the data acquisition platform. Voltage is measured for all three sensors, for

example to measure light output we use a photodiode which converts light into

voltage and is calibrated to convert the light into voltage in a proportional man-

ner. To measure temperature we use a thermocouple which generates very small

voltage (mV) related to the temperature on the board. For current we measure

the voltage across the power resistor and this is converted into current. Figure

6.4 shows all three sensors used in this experiment. Figure 6.4 (a) is the light

sensor (Photodiode TSL250R-LF) which converts the light proportionally into

volts. Figure 6.4 (b) is the thermocouple (NI readymade J type thermocouple)

which converts the temperature into millivolts. Figure 6.4 (c) is the current sen-

sor (Power resistor, MHP 100-0.25 Ω) which converts the current into voltage.

Therefore the measured sensor data from the sensors for current, light and tem-

perature reported in the remaining part of the this these is given in row format

and in units of volts or millivolts (V or mV). For the purpose of PHM algorithms,

it is not required to post process into the relevant parameter specific units (e.g,

A for current, ◦C for temperature etc.,).
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(a) 
(c) 

(b) 

Figure 6.4: (a) Photodiode TSL250R-LF (b) NI readymade J type thermocouple
(c) Current sensor (Power resistor, MHP 100-0.25 Ω)

6.3 Data Collection – Normal Operating Con-

dition

Although normal operating values for voltage, forward current and junction tem-

perature are given in the LED manufacturer’s data sheet, these values are based

on the test carried out under control environment. For example, the technical

datasheet DS23 for power light source Luxeon Star gives the optical and electri-

cal characteristics data based on the junction temperature 25◦C. In real world

applications, it is difficult to maintain the junction temperature at 25◦C. It is

also necessary to establish the corresponding sensor values (i.e, in V or mV) for

normal operation of the LED. Therefore it is necessary to run a test under normal

operating condition.

The sensor data obtained under normal operating condition specified by the

LED manufacturer, is used to determine the mean values of the voltage readings

for the three sensors (current, temperature and light). Sensor data are collected

when the LED is operating under normal conditions i.e., forward voltage 3.42 V

and environment temperature is equal to room temperature 20◦C. This data is

then analysed to identify the mean values for the sensors data when the LED

is operating normally. One LED is tested under the normal operating condition

for 96.5 hours. Figure 6.5 shows the collected data under the normal operating

condition. Table 6.1 details the mean values and variance of the data collected for

all three sensors, when the applied voltage is 3.42 V. Hence the normal operating

conditions can be defined in terms of sensor reading using the tabulated mean

values.
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Parameters Mean Sensor Values Variance Real Values

Applied Voltage 3.42 V 0.00034 3.42 V
Light Output 1.18 V 0.00502 Not Available

Board Temperature 2.2 mV 0.0088 42.7 ◦C
Forward Current 0.09 V 0.000069 0.35 A

Table 6.1: Mean sensor readings for normal operating condition

Only one LED can be tested at a time using the available setup and the

voltage needs to be adjusted manually to control the forward voltage to the LED.

LEDs are very sensitive to the applied voltage and they also behave significantly

different to each other. Figure 6.6 shows how the LED current profile changes

with a small increases in the applied voltage. Almost a constant voltage of 3.37

V is applied to the LED and at time 46.5 hours the voltage is increased to 3.42

V. This shows at the normal operating conditions 0.05 V variation corresponds

to more than 0.028 mV in the current sensor data which is equal to the actual

value of 100 mA. These are the challenges of this experiment.

6.4 Data Collection – Accelerated Voltage Test

Accelerated life test (ALT) is carried out for the LEDs using the voltage as the

acceleration parameter. Accelerated voltage is applied to LEDs in two different

ways. First the applied voltage is increased in steps from the rated minimum

voltage to the rated maximum voltage. In addition, constant level voltage of

rated maximum voltage is applied from the start. These two different sets of

data are used to develop and test the PHM approaches for the LEDs.

6.4.1 Voltage Increased in Steps

Figure 6.7 shows the sensor data for accelerated voltage test carried out for an

LED. Applied voltage is increased with a step of 0.2 V every half an hour. Forward

voltage profile of the LED is shown by the black straight line curve. As the

voltage increases, all other sensor readings also increase. When voltage reaches

a maximum value, LED starts to degrade gradually at a constant rate which is

indicated by the light sensor reading in Figure 6.7 (blue double line). The test
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shows that the LED starts to degrade after the forward voltage reaches 3.69 V. It

should be noted that this voltage is 0.3 V less than the maximum rated voltage

specified by the manufacturer. In this case, gradual light degradation is observed

from 212 min and light output level reaches the failure value of 0.826 V. This

failure value of 0.826 V for the light output is calculated from the 30% drop of

the typical light output value (1.18 V) under normal operating condition which

is reported in the Table 6.1.

A few LEDs demonstrated also catastrophic failures after a certain voltage

level. The tests reveal that LEDs are very sensitive to voltage increases and

absolute maximum rating varies for different LEDs. Hence, different LEDs can

exhibit degradation at different forward voltage levels. Some LEDs failed before

the applied voltage reaches the absolute maximum voltage of 3.99 V while some

other LEDs operated above absolute limit specified by the manufacturer.

6.4.2 Maximum Rated Voltage Condition

In this test, the LEDs are supplied with the voltage which is very close to the ab-

solute maximum rated voltage and data was collected for different LEDs. Figure

6.8 shows the data of an LED test carried out under a constant elevated volt-

age condition. LED starts to fail quickly as the forward current starts to drop

gradually. Although similar voltages were applied to the LEDs, different LEDs

exhibited different degradation and hence time taken to failure is different for

different LEDs. Figure 6.8 shows that this particular LED failed at 108 minutes

from the start of operation under the accelerated voltage condition. Failure is

reported when the light output reaches its failure value of 0.826 V. Figure 6.9

shows the data for another LED tested under similar conditions. This particu-

lar LED failed at 170 minutes from the start of operation since the light output

reaches the failure value of 0.826 V.
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6.5 Summary

This chapter has presented the experimental setup, detail account of the exper-

iments and data collection. Data collected and presented in this chapter shows

variations in the data based on applied voltage and failure time. It is also found

out that the LEDs are very complex small systems which also behave significantly

differently to each other.
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Chapter 7

Results and Validation

7.1 Introduction

This chapter presents the results and validations for the techniques developed in

chapter 5. Distance measures, logistic regression and neural network are inves-

tigated for data driven approach and results are reported. An empirical model

for LED is developed and results are discussed. A fusion methodology to use

the predictions from data driven and model driven approaches, to estimate RUL

more accurately, is discussed and results are presented in this chapter. Results

are presented under three different sections:

1. Data driven approach

2. Model driven approach

3. Fusion approach

7.2 Data Driven Approach

In this section we present the results from the data driven approaches and the

respective validations. The following three approaches are developed and reported

in chapter 5 for the diagnostics, prognostics and health monitoring of LEDs:

1. Distance measures
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2. Logistic regression

3. Neural network

In particular these developed approaches can be used as a real-time prediction

tools in the case when sensor data are available. The real-time implementations of

these techniques for PHM are discussed in next chapter (chapter 8). Comparison

of these approaches based on the accelerated ageing is also provided.

7.2.1 Distance Measure Approach

Data is obtained under both normal and accelerated stress conditions. Data

collected from the normal operating voltage test is used to estimate the normal

operating values in terms of the sensor readings and also used to estimate the

respective distance measures such as Euclidean Distance (ED) and Mahalanobis

Distance (MD). The data obtained from the accelerated voltage test is used to

identify the threshold values for the ED and MD techniques, above which the

LED will start to degrade. Figure 7.1 shows the ED and MD estimation based on

the current and temperature sensor data under the normal operating voltage and

temperature conditions. The normal operating conditions have been discussed in

section 3 of chapter 6. The ED and MD calculations are based on equations 5.4

and 5.8 in chapter 5. The current and temperature sensor data used are from

the data set shown in Figure 6.5 in page 145 in chapter 6. Since the weight of

the current is very small compared to the weight of temperature sensor data, we

propose a normalisation technique which is suitable to real-time systems. Current

sensor data is normalised such that its mean value matches the mean value of the

temperature data. Therefore the current sensor data in mV is divided by a factor

of 40. This normalisation is more suitable to implement in real-time systems.

What is interesting in the above is the sensitivity of the MD method to small

changes in the sensor readings. It is observed that the MD values increases when

there is less correlation between the current and temperature sensor data. Table

7.1 summarises the observed minimum, maximum and mean values for both ED

and MD under normal operating conditions. Under these conditions an LED

typical lifetime will be an average of 50,000 hours. High values for ED and MD
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Figure 7.1: ED and MD estimation for normal voltage and temperature conditions

Distance Measure Minimum Maximum Mean Value

Euclidean Distance (ED) 0.042 1.1 0.21
Mahalanobis Distance (MD) 0.45 3.55 1.8

Table 7.1: Observed minimum, maximum and mean values for ED and MD for
normal conditions

are observed for first ten hours as the temperature and current start to stabilise

in that period. As soon as current and temperature reach a stable value, both ED

and MD become more stable. In this case, current sensor reading increases to 90

mV (i.e., 350 mA) which is the normal operating current, and temperature sensor

reading increases to 42◦ C which is the normal operating board temperature.

To start the diagnostics and prognostics based on available sensor data, it is

required to derive parameters that can be used to indicate different health state

of the LED. For that purpose, we introduce the following parameters for the ED

and MD methods:

1. Early warning threshold (EDEWT and MDEWT )

2. Maximum values (EDMAX and MDMAX)
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3. Failure threshold (EDFT and MDFT )

Early warning threshold (EWT) is used to indicate the starting of the degrada-

tion in the light output and failure threshold (FT) is used for the prognostics

purpose. Maximum values are used to calculate the FT (i.e., EDFT and MDFT )

for different LEDs. This allows to compute different EDFT and MDFT values for

different LEDs based on their observed corresponding maximum values (EDMAX

and MDMAX). If the ED or MD starts to decrease when the applied conditions

are not changed, this process indicates the actual light degradation is taking

place. For example, if ED and MD decreases from an observed maximum value

of EDMAX and MDMAX receptively when the applied voltage condition is un-

changed, this indicates the degradation in the light output. If ED and MD reaches

FT values of EDFT and MDFT receptively, it can be assumed that the LED has

failed (i.e., in this case, light output goes below the minimum require values of

0.826 V). This novel approach helps to incorporate the individual strength of the

LEDs against the accelerated test conditions. Figure 7.2 shows the follow diagram

of the developed distance measure approach for the real-time health monitoring

of LEDs.

7.2.1.1 Early Warning Threshold (EDEWT and MDEWT )

Data collected from the accelerated test is used to identify the EWT for MD and

ED methods under accelerated ageing conditions, triggering light degradation.

In this test the applied voltage is increased in steps from the initial of 3.29 V

to a maximum of 3.99 V. This maximum voltage is also the absolute maximum

forward voltage of the LED specified by the manufacturer. Note that the normal

operational voltage that is required for the LED is 3.42 V. Data from the sen-

sors are then analysed to identify the EWT for ED and MD (i.e, EDEWT and

MDEWT ).

Figure 7.3 shows the voltage applied to a single LED and the readings from

the current, light and temperature sensors. In addition to this, the graph also

shows a horizontal red line at 0.826 V which represents a 30% drop in the light

sensor from what its value would be when operating normally (i.e, light sensor

reading should be around 1.18 V when the applied voltage is 3.42 V). Therefore if
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Figure 7.2: Distance measure approach for real-time health monitoring of LEDs
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the light sensor reading goes below this horizontal line then we have a reduction

in light output over 30% and hence a failure can be assumed.

In this case, the light sensor data starts to decrease with a gradual rate when

the applied voltage increases to 3.99 V. This take places at 525 min and light

sensor data reaches the 30% drop limit at 725 min. This reduction in the light

sensor data is witnessed by the associated current and temperature reduction.

In particular, when applied voltage is kept at an elevated level, current starts to

decrease when actual degradation in the LED is taking place. This is because of

the heat generated at the p-n junction.
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ED values are estimated using the current and the temperature sensor data

shown in Figure 7.3. The light sensor readings are only used to observe the reduc-

tion in the light output power from the LED. Early warning threshold (EDEWT )

for this particular test data is 2.7. We would expect the light output to increase

as the voltage increases. Hence, to calculate the EWT for the ED parameter we

identify the point at which the light output starts to decrease continuously. This

EWT represents the point in time at which the LED starts to degrade. There-

fore, once a value for ED goes above this EDEWT the degradation in light output

is taking place. Hence by monitoring the ED parameter we can diagnose when

light output is degrading based on the monitored data from both temperature

and current sensors. ED values are very high compared to the normal operating

condition (see Table 7.1) and this indicates how far the LED is operating from

its normal operating condition (i.e., overstress conditions). Figure 7.4 shows the

estimated ED values graph for the data shown in Figure 7.3.

Similar analysis for MD approach is carried out to identify the EWT (i.e.,

MDEWT ). The same data set shown in Figure 7.3 is used for MD analysis.

Figure 7.5 shows the estimated MD values graph for the data shown in Figure

7.3. For the MD method the light output is observed to decrease continuously

from the MD value of 19, onwards. Hence the EWT for MD is 19, above which

the light output is degrading. So, as with the ED method, by monitoring changes

in current and temperature, we can use the MD calculation and its EWT to

diagnose when light degradation starts.

The above was undertaken on ten different LED under the ALT (voltage

increased in steps) and early warning threshold values (EWT) are calculated

separately for each. From the calculated EWT for ED and MD for ten LEDs,

early warning thresholds (EDEWT and MDEWT ) are selected as the minimum

from the tested batch of 10 LEDs. Therefore for the following validation cases we

use the minimum EWT from Table 7.2, which are EDEWT = 2.5 and MDEWT

= 17.
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LED No EDEWT MDEWT

1 2.6 20
2 2.6 22
3 2.5 17
4 2.5 18
5 2.5 17
6 2.6 18
7 2.5 17
8 2.7 19
9 2.8 23
10 2.7 22
Min 2.5 17

Table 7.2: Early warning threshold for batch of 10 LEDs

7.2.1.2 Maximum Values (EDMAX and MDMAX)

The values for ED and MD can be used to make predictions for the remaining

useful life of LEDs. During light degradation both current and temperature values

that are monitored decrease with time when the applied voltage to the LED does

not change. This observation is made from the experiments. This will correspond

to ED and MD parameters also decreasing over time (i.e., reach a maximum value

and start to decrease). The observed maximum values for ED and MD vary for

different LEDs, and they indicate different individual characteristics. In the case

of the LED lighting systems, the extent of deviation or degradation (i.e., ED or

MD) will not continuously increase until LED completely fails (i.e., light output

drops to 70% which is light sensor reading of 0.826 V). As light output degrades

to 70%, current will also decrease and this implies that the ED or MD should

decrease to a certain level. Continuous constant rate of degradation in the light

output can be observed in the rate of reduction in the ED and MD.

The approach proposed and developed here, the gradient of the ED and MD

curves can be used to forecast the remaining useful life (RUL). To estimate the

RUL using these gradients, it is required to have start and end values for ED and

MD. The start ED and MD values for the prognostics are proposed as the observed

maximum values, i.e., EDMAX and MDMAX under accelerated test condition.

After these observed maximum values, ED and MD show gradual degradation
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which corresponds to the light degradation in the LED. This is shown in Figure

7.4 for ED and Figure 7.5 for MD. Different values for EDMAX and MDMAX

observed from the different tests.

7.2.1.3 Failure Threshold (EDFT and MDFT )

ED and MD values that correspond to the failure of LEDs, i.e., when light output

drops below 70% from the typical value, are defined using experimental data and

referred as failure threshold (FT), i.e., EDFT and MDFT , respectively. Almost

linear reduction in the ED and MD is observed during the tests when the LED un-

dergoes degradation process. Linear extrapolation of the ED and MD decreasing

trend when light degrades, can be applied and used with the EDFT and MDFT

to calculate the remaining useful life (RUL). This prediction for the RUL can be

undertaken at any particular time point if the ED and MD curves are above the

EWT (indicating possible degradation takes place) and the trend is decreasing

when the applied voltage is unchanged. As new data becomes available over time,

and ED and MD are re-calculated, their trends are adjusted and RUL predictions

are re-calculated.

Test data obtained using ten LED devices are used to observe the respective

values of ED and MD at the time when the power light output drops below 70%

from the initial value (i.e., LED failure). Each LED was tested under slightly

different accelerated voltage tests where the applied voltage was set to be in the

range of 3.6 to 3.99 V. The aim is to obtain data for the relationship between the

maximum ED and MD values (denoted by EDMAX and MDMAX respectively)

observed at accelerated test conditions and the respective ED and MD failure

thresholds (denoted by EDFT and MDFT respectively). It is observed that the

values of ED and MD at LED failure, i.e., EDFT and MDFT , are dependent

on the elevated applied voltage level, respectively on the associated maximum

value of ED and MD at that voltage level (i.e., EDMAX and MDMAX). To

capture the existing relationships between the maximum values of ED and MD,

and the related ED and MD failure threshold, power law approximations from

the available datasets are derived as follows:

EDFT = 1.0912 × EDMAX
0.8086 (7.1)
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MDFT = 2.3105 ×MDMAX
0.6746 (7.2)

7.2.1.4 Real-Time Sequential Estimation of RUL

Since the data is collected periodically, RUL is estimated sequentially by estimat-

ing the mean trend of the ED and MD curves over time period when they exhibit

decreasing trend and are over the respective early warning threshold. If EDt and

MDt denote the ED and MD values obtained at the discrete time step t, then

mean trend mED
t of ED is calculated sequentially using the following equation:

mED
t =

t− 1

t
mED

t−1 +
1

t
(EDt − EDt−1) (7.3)

where mED
t is the mean trend at a given time step t and the time step t = 0, 1, 2,

. . . , n starting with t = 0 at the time when EDMAX and MDMAX are detected.

In this study, the time steps are defined over intervals of one minute, i.e., the

mean trend for ED and MD is calculated every minute following the observation

of a decreasing trend of the ED and MD curves when ED and MD are above their

respective threshold values.

Similarly, mean trend in the case of MD distance measure is defined as follows:

mMD
t =

t− 1

t
mMD

t−1 +
1

t
(MDt −MDt−1) (7.4)

Once the mean trends above are available, they can be used to predict the future

time point when the trends of the ED and MD intercept the respective failure

threshold. This extrapolation of the trend provides a prediction for the remain-

ing useful life. Using the approximations for computing the failure threshold

(equations 7.1 and 7.2), and using sequential mean estimation for the ED and

MD trends (equations 7.3 and 7.4), the RUL can be estimated from the following

equations:

RULED =
EDt − 1.0912 × EDMAX

0.8086

mED
t

(7.5)
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RULMD =
MDt − 2.3105 ×MDMAX

0.6746

mMD
t

(7.6)

7.2.1.5 Validation of Diagnostics Capability

This subsection details the validation of the diagnostics capability of the devel-

oped data driven PHM approach based on the distance measure techniques. As

a first example, an accelerated voltage test data set (voltage increased in steps)

is used for the demonstration here. Sensor data shown in Figure 7.6 is collected

from the ALT and used to demonstrate both distance measure techniques in

terms of their diagnostics capability. This data is collected from an accelerated

voltage test, where the applied voltage is increased from the normal value and

above the normal operating value over time. The LED used for this test is a

Philipis Luxeon star, but from a different batch than that the batch of ten used

to derive the EWT and FT. In this accelerated test the applied voltage is in-

creased every 30 minutes by 0.2 V, i.e., we validate the PHM against a different

voltage profile from the one used for establishing the threshold values in the two

methods, i.e., EWT (EDEWT and MDEWT ) and FT ((EDFT and MDFT ). In

this test we can observe the light output has degraded by 30% after 485 minutes.

We can also observe when the light begins to degrade which is after 145 minutes

approximately. Note that the light sensor data here is used as benchmark against

which the prediction from the methods will be judged.

Figure 7.7 demonstrates the ED technique for the data shown in Figure 7.6. It

shows that using the defined EWT for ED (EDEWT ), an early warning for having

a LED operating at conditions that lead to failure is given. ED is gradually

increasing after it maximum healthy value of 1.1 (see Table 7.1 in page 155) as

the applied voltage is increased gradually. In this case, the ED reaches the value

of 2.5 which predicts the start of degradation in the light output. This is at time

approximately 145 min. It takes another 340 minutes to degrade completely, i.e.,

to reach the light sensor reading of 0.826 Volts (i.e., 30% drop from the normal

value of 1.18 V).

MD analysis of the test data shown in Figure 7.6, for the validation of the

diagnostics capability of the MD method is shown in Figure 7.8. It shows that,
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an early warning can be given using established EWT for MD (MDEWT ). MD

increases above the maximum values of 3.55 (see Table 7.1 in page 155) which is

observed under normal operating conditions as the applied voltage is increased

above the normal limit. In this case the MD reaches its EWT of 17 at 121 min

indicates the start of degradation in the light output. It takes another 370 minutes

to degrade completely. It is also noted that the MD values are very sensitive to the

variations in the current and temperature values. When the voltage is increased

to the next step, current reaches an almost stable value but temperature takes

time to reach a stable value. This is observed in the variations in the MD values.

At time 443 min there is an increase in ED which corresponds to the tem-

perature increases even though the current continuously decreases. But the MD

continuously capture the degradation in the current even though the tempera-

ture is increased. Parameters which cause the degradation can be identified by

monitoring the individual sensor readings (i.e., current or temperature) and their

variation from the typical values. This can be done soon after anomalies detected

in the ED and MD values. This information can be used further to analyse and

identify the corresponding failure mechanism and the root cause of the degrada-

tion. Such study is not undertaken as part of this work as the main focus is on

the data driven techniques and their diagnosis/prognostics capability.

Data collected under the constant elevated voltage test is used as the second

example to validate approach for the constant voltage accelerated condition. For

this case data shown in Figure 7.9 is used. In this case, voltage is kept constant

at 3.83 V. Light sensor data starts to degrade from 1.77 V and reaches the fail-

ure criteria of 0.826 V after 248 min. Current sensor readings also show gradual

reduction as the degradation in the LED continue. Temperature sensor read-

ings start to increase initially and then start to reduces with the current sensor

readings.

ED values for the data shown in Figure 7.9 is calculated using the normalised

current and temperature sensor values. ED starts to increases suddenly as the

higher voltage of 3.83 V is applied from the start. ED reaches its early warning

threshold (EDEWT ) of 2.5 at 3 min after the LED is switched ON and hence the

early warning can be provided when there is an abnormality is observed in the
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ED values (i.e., after 3 min). ED reaches a maximum value of 3.62 and starts

to reduces with the time. At the time of failure ED value reaches to 3.1. This

reduction corresponds to the degradation in the light sensor output. Figure 7.10

shows the ED values and early warning threshold for accelerated voltage test data

shown in the Figure 7.9.

MD value for test data shown in Figure 7.10 is calculated using the normalised

current and sensor data. It shows the MD value goes above the early warning

threshold (MDEWT ) of 17 soon after the LED is switched ON to the elevated

voltage of 3.83 V. Therefore the early warning can be provided soon after the

LED is switched ON. It also shows the MD value reaches a maximum values of

36 and reduces gradually to 23.2 when the LED fails. Figure 7.11 shows the MD

values and early warning threshold for accelerated voltage test data shown in

Figure 7.9.

7.2.1.6 Validation of Prognostics Capability

To demonstrate the predictions for RUL of an LED, the LED test data used

for validation of diagnostics capability (see Figure 7.6) is used here as a first

example. This data is collected from accelerated voltage test based on voltage

increased in steps. Figures 7.7 and 7.8 illustrate how the ED and MD parameters

change with time for the studied LED. In this case the EDMAX and MDMAX

values used in the prognostics calculations are 3.28 and 28.81, respectively. The

respective failure thresholds are: (i) EDFL = 2.85 and (ii) MDFL = 21.7. The

failure thresholds are obtained from the approximations given in equations 7.1

and 7.2.

Sequential estimation of the mean of gradient of the ED and MD curves are

carried out using the equations 7.3 and 7.4. This estimation starts when the ED

and MD show a gradual reduction after a maximum values is observed under

the voltage conditions is unchanged. These trends associated with ED and MD

indicate the trend in the light output. Therefore these trends (i.e., for ED and

MD) are used to predict the RUL. For example, RUL from the ED curve is the

time taken to reach the failure threshold (EDFL) of 2.85 and RUL from the MD

curve is the time takes to reach the failure threshold (MDFL) of 21.7 for Figures
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Time at which RUL RUL from RUL from True RUL
prediction is made (min) ED (min) MD (min)

300 134 73 181
350 108 75 131
400 73 57 81
450 34 25 31

Table 7.3: RUL estimation from distance measures for voltage test (steps)

7.7 and Figure 7.8, respectively.

Table 7.3 shows a summary of prediction results for RUL at five different time

points based on both ED and MD curves and using equations 7.5 and 7.6. For

example, the predictions for RUL of the LED made at time 400 min estimate 73

min (Total lifetime = 473 minutes) and 57 min (Total lifetime = 457) from ED

and MD data, respectively. The actual total lifetime for this LED is 481 min (i.e.,

true RUL at 400 min is 181 min). It is evident from Table 7.3 that with time the

predictions become more accurate as more data is used in the calculation of the

mean trends of ED and MD. In this case the results using ED data curve provide

better predictions with time. On the other hand, the predictions based on the

MD produce some fluctuation because MD is very sensitive to the correlation

between the current and temperature data used to calculate the MD.

To demonstrate the predictions for data collected from the accelerated con-

stant voltage test, an LED was subjected to this test. Drive voltage and sensor

data shown in Figure 7.9 is used as the second example. Figures 7.10 and 7.11

detail the change with time of ED and MD values for the tested LED. In this case

the EDMAX and MDMAX values used in the predictions are 3.63 and 36.1 respec-

tively. The respective failure thresholds are: (i) EDFL = 3.10 and (ii) MDFL

= 25.5. The failure thresholds are obtained from the approximations given in

equations 7.1 and 7.2.

Sequential estimation of the mean of gradient of the ED and MD curves are

carried out when the ED and MD show a gradual reduction after a maximum

values is observed under the voltage conditions is unchanged. These trends asso-

ciated with ED and MD indicate the trend in the light output. Therefore these

trends (i.e., for ED and MD) are used to predict the RUL. For example, RUL
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Time at which RUL RUL from RUL from True RUL
prediction is made (min) ED (min) MD (min)

50 260 39 196
100 109 19 146
150 82 Failed 96
200 51 Failed 46

Table 7.4: RUL estimation from distance measures for elevated constant voltage
test

from the ED curve is the time takes to reach the failure threshold (EDFL) of

3.10 and RUL from the MD curve is the time takes to reach the failure threshold

(MDFL) of 25.5 for Figures 7.10 and 7.11, respectively. The observed maximum

values for ED and MD (EDMAX and MDMAX) are different for the test data

shown in Figure 7.6 and Figure 7.9, hence the failure threshold values (EDFL

and MDFL) for ED and MD are also different.

Summary of the prognostics predictions is shown in the Table 7.4 for RUL at

four different time points. This is based on both ED and MD curves and using

equations 7.5 and 7.6. The actual lifetime of this LED is 246 min. It is again

showed from Table 7.4 that with time the ED predictions become more accurate

as more data is used in the calculation of the mean trends of ED. But in the case

of the MD, predictions are not much accurate as MD is sensitive to the correlation

between the current and temperature sensor data in this case. Hence the results

using ED data curve provide better predictions with time.

7.2.2 Logistic Regression Approach

Logistic regression approach is reported in chapter 5. Sensor data from the cur-

rent and temperature are used for the logistic regression approach, hence three

regression coefficients associated with the bias (constant), current and tempera-

ture have to be established. After these coefficient are estimated from a training

data set, logistics regression can be used to predict the probability of an event.

In this case, logistic regression is used to predict the probability for the event

that the LED is healthy. Figure 7.12 shows both logistic regression and neural

network approach for the real-time health monitoring of LEDs.
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Figure 7.12: Logistic regression and neural network approaches for real-time
health monitoring of LEDs
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Regression Coefficient β0 β1 β2

Values 33.6788 181.6766 -21.4621

Table 7.5: Estimated logistic regression coefficients

7.2.2.1 Regression Coefficients (β0, β1 and β2)

Logistic regression technique is trained using 918 data sets from the normal op-

erating condition test and accelerated voltage test. Normal operating data sets

are used to train the healthy status (1) and data sets from the failed LED (accel-

erated voltage test) are used to train the failed status (0). From these training

data set the regression coefficients β0, β1 and β2 of the logistic regression can

be determined. In this case, the healthy light output data is classified and for-

matted as 0.99 and the failed light output data is classified and formatted as

0.01. Input data set (current and temperature sensor data for four LEDs) and

corresponding target data (formatted LED status, i.e., 0.99 or 0.01) are solved for

the regression coefficients using the equation 5.13. Table 7.5 shows the estimated

regression coefficients for the logistic regression technique based on a regression

model that takes current and temperature sensor data. Logistic regression model

that takes the current and temperature sensor data as the input and provides the

probability of an LED is to be healthy is shown by the following equation:

P (healthy) =
1

1 + exp(−(33.6788 + 181.6766I − 21.4621T ))
(7.7)

where I and T are current and temperature sensor data. Probability of an LED

is to be healthy, is estimated when new sets of data from the current and tem-

perature sensors are available.

7.2.2.2 Real-Time Sequential Estimation of RUL

We developed a real-time sequential RUL estimation approach based on the ob-

served exponential decay phenomenon. Although the LRKF provides probability

of the healthy status of the LED, experimental result based on 10 LEDs shows

that the LED fails when the LED’s healthy status probability reaches 0.15 on

average. This finding is used to estimate the remaining useful lifetime of the
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LED under the accelerated voltage condition. Exponential decay can be fitted

with the following equation:

R0 = Rte
−At (7.8)

where the R0 is the failure threshold value based on the filtered logistic regression

output, Rt is the starting value for the exponential decay, A is the decay positive

constant and t is RUL. In this case we start the prognostics when the filtered

logistic regression goes below the decision boundary which is 0.5. R0 is determined

from the average value of the failure thresholds for ten different LED tests. R0 is

established as 0.15. Hence the equation 7.7 can be modified as follow to estimate

the RUL:

t =
ln Rt

0.15

At

(7.9)

where t is the RUL, Rt is the output from the logistic regression at the time of

estimation (i.e., t) and At is the mean exponential decay constant at the time

step t. Exponential decay constant is determined for every time step and mean

value of the exponential decay constant is estimated using the following equation:

At =
t− 1

t
At−1 +

1

t
ln

Rt−1

Rt

(7.10)

7.2.2.3 Validation of Diagnostics Capability

Test data set shown in Figure 7.13 is used to validate the logistic regression

technique. This particular LED is failed after 625 minutes in operation. Current

and temperature sensor data are fed into the logistic regression model and output

is shown in Figure 7.14. Since noisy output is observed from the logistic regression

model, we introduce a novel approach by introducing Kalman filter to filter the

output data from the logistic regression model. Kalman filter is used to filter

the noise and smooth the output of the logistic regression. Filtered output of

the logistic regression using the Kalman filter is also shown in Figure 7.14. It is

evident from Figure 7.14 that the Kalman filter is filtering the output data from

the logistic regression model very effectively and provides a better approximate
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curve for the diagnostics and prognostics of the LEDs.

Figure 7.15 shows voltage profile, light output, the filtered output from the

logistic regression and the decision boundary. Output from the logistic regression

is fed into first order Kalman filter to smooth the output. Filtered output from

the logistic regression can be defined as the reliability number or the probability

for the healthy LED. For example in Figure 7.15, at the start of the operation

the probability is almost 1 (i.e., probability of healthy) and it starts to reduce

when the degradation in the light output starts to take place (i.e., after 230

min). Probability reaches almost zero value when the LED completely fails. We

also define a decision boundary where healthy probability is 0.5. It can also

be used to indicate the probability of failure is 0.5. This decision boundary is

used to indicate the probability of failure becomes greater that the probability

of healthy. Figure 7.15 also shows that the logistic regression output reduces

steeply from 230 minute and it reaches the decision boundary at 340 minute.

This is because of the start of the degradation. Degradation in the light output

is also observed from 230 minute onwards. After logistic regression reaches the

decision boundary, it exhibits exponential decay. This phenomenon can be used

to predict the remaining useful lifetime. The key advantage of this approach is

that the prediction can be expressed in terms of probability.

7.2.2.4 Validation of Prognostics Capability

An accelerated test based on the gradually increased voltage is used as the first

example to predict the RUL of the LED. This test case is discussed in Figure 7.3.

Figure 7.16 shows the graph of the filtered logistic regression, voltage profile, light

sensor output and decision boundary. The filtered output of the logistic regression

reaches the decision boundary at 570 min and reaches the failure threshold at

715 min. Actual failure is observed at 725 min based on the light sensor output

reading when reaches 0.826 V. Table 7.6 shows the predicted RUL of the LED,

actual RUL and time of the prediction. Results show the logistic regression makes

consistent prediction with the help of an appropriate filter and accurate threshold

value for failure.

Data shown in Figure 7.6 is used as the second example to validate the re-
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Time at which RUL RUL from True RUL
prediction is made (min) Logistic Regression (min)

580 135 145
630 86 95
680 36 45

Table 7.6: RUL estimation from logistic regression and Kalman filter (LRKF)
approach for the data shown in Figure 7.3

Time at which RUL RUL from True RUL
prediction is made (min) Logistic Regression (min)

460 21 21
470 11 11
480 3 1

Table 7.7: RUL estimation from logistic regression and Kalman filter (LRKF)
approach for the data shown in Figure 7.6

sults of the developed logistic regression and Kalman filter (LRKF) approach for

the LED’s health monitoring. Purpose of this demonstration is to compare the

result with other techniques such as distance measures and neural network. This

particular result shows that, although the degradation in the light output is not

properly identified, failure can be predicted accurately. This approach uses two

different techniques (i.e., logistic regression and Kalman filter) and both these

techniques need to be trained properly to make more accurate diagnostics to

identify the degradation on time. In additions to this we also have limited test

data. Figure 7.17 shows the logistic regression graph for the data shown in Figure

7.6. In this case the steep reduction is observed in the later stage. LRKF shows

the LED is healthy (with a probability of ≥ 0.9) until 436 min. LRKF output

suddenly drops to decision boundary of 0.5 at 456 min and drops to the failure

threshold of 0.15 at 484 min. Actual failure is observed at 481 min. Table 7.6

shows the predicted and actual RUL at three different time interval at the last

stage. It is evident from the Table 7.6 logistic regression with the help of an

appropriate filter can used to predict the RUL more accurately.
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7.2.3 Neural Network

A neural network based approach is developed for the prognostics and health

monitoring of LEDs and results are discussed here. A simple neural network with

one hidden layer and two hidden neuron is developed and discussed in chapter 5.

Figure 5.5 shows the developed neural network configuration for the prognostics

and health monitoring of LEDs. Sensor data from the current and temperature

are used as the input for the neural network approach. Hidden layer consists of

two neurons and therefore 4 weight parameters and two biases need to be estab-

lished. Output layer consists of one neuron and therefore two weight parameters

and one bias need to be established. After these parameters are estimated from

a training data set, neural network can be used to predict the probability of an

event like logistic regression. In this case, neural network is used to predict the

probability for the LED healthy status.

7.2.3.1 Network Parameters

Data set used for the logistic regression is used to train the neural network in

the Matlab environment. Built in neural network toolbox is used to develop

and train the neural network in the Matlab environment. Figure 7.18 shows

the neural network design in the Matlab environment using the built in neural

network toolbox. In this case linear function is selected as the activation function

of the hidden layer and sigmoid (logistic) function is selected as the activation

function of the output layer. Number 2 in the input block indicates this neural

network has two input parameter (i.e., current sensor and temperature sensor).

Number 2 in the hidden layer indicates the hidden layer has two neurons. Each

neuron in the hidden layer has a bias (which is a constant), weight parameters for

the current sensor and the temperature sensor. Output from these two hidden

neurons then fed into the neuron in the output layer, which also has its own

weight parameters for the input and a bias.

After the neural network is trained in the Matlab environment, following

weight parameters and bias parameters for the two neurons in the hidden layer

and one neuron in the output layer are established (see Figure 5.5 in page 135) :
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Figure 7.18: Neural network design in the Matlab environment

1. Weight matrix for the hidden layer is:[
w1,1

w1,2

w2,1

w2,2

]
=

[
−2.2104

1.0512

3.123

−5.7427

]
(7.11)

2. Weight matrix for the output layer is:[
m1

m2

]
=

[
−0.84

5.9476

]
(7.12)

3. Bias matrix for the hidden layer is:[
b1 b2

]
=
[
−0.25563 0.85434

]
(7.13)

4. Bias to the output layer:[
b3

]
=
[
0.44004

]
(7.14)

Data set used to train the logistic regression technique is used to train the neural

network. This data set consists of 918 sample data. Input data has two columns

for current and temperature sensor data (i.e., input data 918× 2 matrix). Target

data which indicates the healthy status of the LED, is formulated as healthy

0.99 and not healthy = 0.01 (i.e., target data is a column vector). These two

data uploaded into the Matlab environment and neural network is trained using
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neural network toolbox. Input and target data then divided into three groups

using a random selection process which is a built in process in the neural network

toolbox. 70% of the data is assigned as the training data set, 15% of the data is

assigned for test and another 15% is assigned for the validation. Training data

set is only used to established the network parameters such as the weights and

biases. Test and validation data set are used to evaluate the performance of the

network using the parameters which established from the training.

Mean squared error (MSE) is calculated for every iteration based on the cal-

culated weights and biases. Forward and back propagation algorithms are used in

the neural network toolbox to estimate the weights and biases such that MSE is

minimised for a set of weights and biases. For every iteration weights and biases

are adjusted. Figure 7.19 shows the performance measure of the neural network

for every iteration (or epoch) based on the mean squared error. Figure 7.19 shows

that the mean squared error is minimised to 6.0737× 10−7 for the set of weights

and biases reported in the equations 7.11 to 7.14.

Figure 7.19: Performance of the neural network for every iteration or epoch
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7.2.3.2 Real-Time Sequential Estimation of RUL

Similar to the LRKF approach, we developed a real-time sequential RUL estima-

tion approach based on the observed exponential decay phenomenon. Although

the NNKF provides probability of the healthy status of the LED, experimental

result based on 10 LEDs shows that the LEDs fail when the LED healthy status

probability reaches 0.03 on average. This finding is used to estimate the remain-

ing useful lifetime of the LED under the accelerated voltage condition. Equations

from 7.8 to 7.10 are used here to estimate RUL in real-time.

7.2.3.3 Validation of Diagnostics Capability

Figure 7.20 shows the neural network output for the LED test data shown in

Figure 7.13. Neural network output is also filtered by the Kalman filter to get

a smooth output like in the case of logistic regression technique. This particular

neural network performs like the logistic regression technique discussed in the

above section since the logistic regression is acting like a single neuron with an

activation function of sigmoid (logistic) function. In the case of neural network,

layers and neurons in a single layer can be increased to get a better performance.

Activation function can also be selected such that the neural network gives bet-

ter performance for the training data. This particular neural network has one

hidden layer and hidden layer have two neurons with linear activation function.

Activation function of the output layer is selected as the sigmoid function.

Similar to the logistics regression, the neural network output shows an expo-

nential decay and this phenomenon can be used to estimate the remaining useful

lifetime in real-time. Light output degradation can be diagnosed using neural net-

work output. In Figure 7.20 the degradation starts to take place after 230 min

and reaches the decision boundary of 0.5 at 317 min from the start of operation

under the accelerated voltage condition.

Validation of Prognostics Capability Sequential estimation technique which

is used for the logistics regression approach is used here to estimate the RUL

based on filtered neural network output. When the neural network output goes

below the decision boundary of 0.5, RUL estimation is carried out based on the

estimated positive decay constant (equation 7.10).
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Time at which RUL RUL from True RUL
prediction is made (min) Neural Network (min)

580 132 145
630 79 95
680 32 45

Table 7.8: RUL estimation from neural network and Kalman filter (NNKF) ap-
proach for the accelerated test data shown in Figure 7.3

Failure threshold value for the filtered neural network output is 0.03 observed

from the ten LEDs tested under the accelerated voltage conditions (steps). Accel-

erated test data shown in Figure 7.3 is used as the first example to demonstrate

the prognostics capability of the developed NNPF approach. Figure 7.21 shows

the neural network output values for the test data shown in Figure 7.3. Steep

reduction in the neural network output is observed after 485 min which indicates

the start of the degradation in the light output.

Predicted RUL and true values for the RUL at three different time interval

is tabulated in the Table 7.8. Result shows that the NNPF approach provides

reasonable predictions for this particular test data based on the trained network

parameters and Kalman filter settings.

Accelerated test data shown in Figure 7.5 is used as the second example

to demonstrate and compare the results with other developed data driven ap-

proaches. Figure 7.22 shows the filtered neural network output for the data shown

in Figure 7.5. Output graph shows similar performance to the logistic regression

because similar settings are used to the Kalman filter. NNKF approach shows

that the LED is healthy until 438 min (i.e., healthy probability is ≥ 0.9) and

drops to decision boundary which has the probability of 0.5 at 455 min. Healthy

probability for LED failure criteria based on NNPF approach is 0.03 and output

of NNPF approach drops to 0.03 at 478 min. Actual failure is observed based on

the light output which drops to 0.826 V at 481 min.

RUL predictions are made at three different time intervals similar to other

data driven approach developed in this work, and reported in the Table 7.9. It is

evident from the Table 7.8 and Table 7.9 neural network can be used to estimate

the RUL accurately with the help of an appropriate filter and accurate failure
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Time at which RUL RUL from True RUL
prediction is made (min) Neural Network (min)

460 18 21
470 7.5 11
480 Failed 1

Table 7.9: RUL estimation from neural network and Kalman filter (NNKF) ap-
proach for the accelerated test data shown in Figure 7.5

threshold value. Neural network can also be further improved with the number

of neurons in the hidden layer and also with number of layers in the network.

Selection of activation function also plays critical role in optimising the neural

network for the better performance.

7.2.4 Comparison of Data Driven Approach

Overall the data driven approaches developed and discussed above, provide good

predictions for the anomaly detection and prognosis for the LEDs under the

accelerated test conditions. Distance measure techniques (i.e., ED and MD)

monitor the variation of the operating parameters from the typical operating

values and use those values for the anomaly detection and failure predictions.

MD uses the correlation between the data sets to compute the distance and

hence MD shows sensitive variations particularly when there is a change in the

operating condition. This behaviour sometime limits the prediction capability of

the MD. ED on the other hand shows less variation compare to MD, in particular

when the applied condition is changed.

Logistic regression based approach (LRKF) and neural network based ap-

proach (NNKF) provide consistent predictions particularly in the last stage of

the LED’s life. Neural network can be further improved by increasing the num-

ber of neurons in the hidden layer and increasing the number of layers between

the input and output layers. In addition to this, both LRKF and NNKF can ben-

efit from regularisation. Regularisation is a technique used in machine learning

and statistical techniques to prevent the over fitting by introducing additional

information into the error function. Further LRKF and NNKF can also be ben-

efited by additional parameters such as applied voltage, power (i.e., V × I) etc.
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Hence both LRKF and NNKF are better approaches and they can be used to in-

corporate other operating or environmental conditions to get an optimised RUL

estimations.

One dimensional Kalman filter is used in both approaches to smooth the

output of the logistic regression and neural network. This provides benefit in

terms of accurate predictions based on observed exponential decay. Statistically

established setting for Kalman filter will provide better performance in terms of

accuracy in predictions. Because of the time limitation, this work was limited to

develop and demonstrate the approaches. Future work will focus on comparing

the developed data driven approaches using a statistically accepted method.

7.3 Model Driven Approach

An empirical model based on V-I characteritics has been developed and discussed

in chapter 5. Figure 5.8 shows the fitted model for the empirical data collected

from the LED test under normal operating condition. In other words healthy

LED can be defined by the emprical model fitted to the normal operating data.

The empirical model can be expressed by the following equation:

ILED = 1.84VLED − 5.9432 (7.15)

LEDs can be considered as a micro system which takes voltage as input. Current

can be computed using the empirical model 7.10. Using the current sensor actual

current through the LED can be determined. The difference between the model

predictions for current and the actual current gives the residual. Residual can

be used to estimate the damage in the LEDs. Based on acclerated voltage tests

threshold value for the residual can be determined and used to diagnose and

predict the failure in LEDs.

7.3.1 Failure Threshold

Failure threshold for the residual is established from ten tested LEDs. These

LEDs are tested under accelerated voltage conditions that the voltage is increased
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LED No Residual (V) at Residual (V) at Deviation
Normal Condition Failure (V)

1 0.03 0.18 0.13
2 0.03 0.15 0.12
3 -0.01 0.11 0.12
4 -0.04 0.09 0.13
5 -0.02 0.11 0.13
6 -0.01 0.12 0.13
7 0.01 0.13 0.12
8 -0.01 0.11 0.11
9 0.01 0.14 0.13
10 -0.01 0.10 0.11

Average -0.002 0.124 0.126

Table 7.10: Residual values under normal operating conditions (initial stage of
the ALT) and at failures, and deviation in the residual

in steps of 0.2 V. Variation in the residual at the normal operating conditions

and at the failure indicates the different characteristics of the LEDs. The devi-

ation between the normal operating condition and the failure is estimated. An

average value of this residual deviation between the normal operating condition

and failure, is proposed as the maximum allowable deviation for the model driven

approach developed in this work. Table 7.10 shows the different residual values

and the deviations observed from the ten LEDs test under the accelerated test

conditions where the voltage is increased in steps. The average deviation for

the residual is established as 0.123 V. This maximum allowable deviation for the

residual is used with the initial residual for the normal operating conditions to

estimate the residual threshold. For example, for the LED no 1 the initial residual

is observed as 0.05 and hence the residual threshold is estimated by adding the

maximum allowable deviation of 0.123 V to the initial residual of 0.05, which is

0.128 V.

7.3.2 Sequential Mean Trend Estimation

From the experimental results, the almost a linear trend is observed in the residual

curve under the accelerated test conditions. This finding is used to estimate the
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RUL in real-time by estimating the trend of the curve every time. For a period

of 10 min (i.e., using 10 sample data) the mean gradient is estimated sequentially

using following equation:

mt =
t− 1

t
mt−1 +

1

t
(Rt −Rt−1) (7.16)

Where mt is the mean gradient at time step t and Rt is the residual at time step

t. RUL can be estimated using following equation:

RUL =
RFT −Rt

mt

(7.17)

where the RFT is the failure threshold of the residual which is calculated from

the maximum allowable deviation and the initial residual under normal operating

conditions. This initial residual varies within the LED and hence incorporating

the initial residual will be an advantage to the real-time RUL estimation.

7.3.3 Validation of Diagnostics Capability

Accelerated test data shown in Figure 7.3 is used to validate the diagnostics

capability of the developed model driven approach. Residual is estimated and

graph is shown in Figure 7.23. Residual graph shown in Figure 7.23, indicates

the residual is kept at an almost constant value at 0.01 V at the initial stage

when the LED is under normal operating voltage. This constant residual is the

expected mean residual for this particular LED. Since the voltage is increased

with the time, the residual is also increased because of the damage caused by the

accelerated voltage condition. When the residual is increased, the light output

degradation is observed and hence the residual is used as a damage estimator for

the LED under the accelerated voltage condition. For this particular test data,

the initial residual is 0.01 V and therefore the residual threshold is established as

0.136 V (i.e., 0.01+0.126). Figure 7.23 shows the degradation in the light output

is detected using the continuous increase in the residual values. This particular

LED residual value reaches the threshold of 0.136 V at 695 min. Actual failure

is observed at 725 min.
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Time at which RUL RUL from True RUL
prediction is made (min) the Model (min)

500 77 119
550 32 69
600 29 19

Table 7.11: RUL estimation from empirical model driven approach for the accel-
erated test data shown in Figure 7.13

7.3.4 Validation of Prognostics Capability

Accelerated test data shown in Figure 7.13 is used to validate the prognostics

capability of the developed empirical model driven approach for the LEDs. Figure

7.24 shows the residual graph for the test data shown in Figure 7.13. Under the

accelerated stress conditions residual increases almost linearly and this behaviour

is used to estimate the RUL. In this case (i.e., Figure 7.13), initial residual at the

normal condition is observed as -0.01 V. Hence the failure threshold value for the

residual is 0.116 V (i.e., −0.01+ 0.126). Predictions for RUL are made using the

sequential mean gradient/trend estimation and linear extrapolation. Mean trend

of the curve is estimated using 10 sample data.

Table 7.11 shows the three different predictions at three different times. It is

evident from the Table 7.11 that the accuracy of the prediction increases with

the time as more data and latest trend become available.

7.4 Fusion

Predictions made by the data driven approach and model driven approach are

used to make best estimate for the RUL based on developed fusion approach.

Kalman filter is used as discussed in chapter 5. Figure 7.25 shows estimated

RUL curves for data driven, model driven and fusion approaches for the test data

shown in Figure 7.15. In this example, RUL estimated from LRKF approach is

used for the data driven approach. RUL estimated from the empirical model is

used for the model driven approach. Kalman filter (see Appendix A) is used to

estimate the best value for the RUL based on the estimated RULs from the data

driven approaches. In this particular case, we assumed 20% error associated the
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Time at which RUL RUL from the RUL from the True RUL
prediction is made (min) LRKF (min) empirical model (min) (min)

500 49 65 52
550 19 43 23
600 7 24 10

Table 7.12: RUL estimation from the data driven (LRKF), empirical model driven
and fusion approaches for the accelerated test data shown in Figure 7.15

RUL estimated by the data driven approach and 80% error associated with the

RUL estimated by the model driven approach. It should be noted that these

assumptions needs to be further investigated based on more tests. This has been

identified as one of the potential future work.

Primary advantage of the fusion approach is that it can incorporate the pre-

dictions for RUL from both data driven and model driven approaches, and hence

estimate a best value for RUL. Table 7.12 shows predicted values for RUL at

three different intervals. Although the error parameters associated with the RULs

estimated by the data driven and model driven approaches are not established

theoretically and empirically, tabulated result in the table 7.12 shows the Kalman

filter can be used to make best estimate for RUL, if the RUL estimates from the

data driven and model driven approaches are available.
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7.5 Summary

In this chapter we presented the results and validations for the developed ap-

proaches. Accelerated test data are used to validate the approaches. The vali-

dation results show that these approaches can be applied well in practice. Nev-

ertheless, developed approaches can be further improved by doing more tests

and establishing statistically proved diagnostics and prognostics parameters. For

instance, early warning thresholds and failure thresholds for the ED and MD

approaches can be further improved by doing more tests. Logistic regression and

neural network based approaches can be further improved by introducing an ad-

ditional regularisation parameter, adding more features, and collecting more data

for training. Failure threshold value for the model driven approach can be fur-

ther validated form more test data. Fusion approach can be used to make better

prediction for RUL, if the error parameters associated with the RUL estimates

made by the data driven and model driven approaches are available.

However, this chapter presented the details of the developed approaches to the

data driven and model drive PHM for the LEDs with the validations and results.

The developed approaches perform well under the presented accelerated test con-

ditions. Incorporating two or more approaches together is another way to improve

the performance. This integration of data and model driven approaches into a

single fusion approach is out of scope but we attempted to demonstrate fusion

approach using Kalman filter. Fusion approach which incorporates data driven

and model driven approach can be developed further to get better performance.
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Chapter 8

Real-Time Implementations

8.1 Introduction

Real-time systems are not just a high performance and fast computing systems.

They are very deterministic and reliable computing system which meets its dead-

line with highest determinism for an extended period of time with high reliability.

For example, if an event needs a response with an action exactly after one second,

it can be achieved using a real-time system. Real-time system will respond to

a particular event exactly after a certain time by programming the system. A

passenger car airbag system is a good example for a real-time system which needs

to activate the airbag within few microseconds after an accident occurred.

Real-time systems are designed to do certain things in particular operational

and environmental conditions, no further performance or operations are necessary

and therefore one real-time system will not be suitable for all applications. So the

physical hardware design and the software design process should take account of

all these aspects of an application. A real-time system can be a super computer to

a low cost microcontroller. The flight control system (fly-by-wire) in an aircraft

can be a super computer which needs to monitor many different things in real-

time and at the same time actuate different actuators within a time limit to

achieve its goals. On the other side a car airbag system for example can be

programmed in microcontroller which needs to monitor few things and actuate

the airbag. Again, it all depends on the application, requirements and operating
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conditions.

Real-time systems are classified into four main categories:

1. Periodic real-time systems;

2. Non-periodic real-time systems;

3. Hard real-time systems;

4. Soft real-time systems.

Periodic real-time systems will have a continuous deterministic task. Acquiring

sensor data is a periodic real-time task where sensor data is normally collected

in every millisecond or nanosecond. Non periodic real-time systems will not have

continuous tasks to respond but will have to respond to an event deterministically.

Actuating the airbag is a non-periodic real-time task which is a time critical task.

Airbag system is a perfect example for periodic and non-periodic tasks of a real-

time system. It has to sense the accident periodically and actuate the airbag

soon after the accident occurs. Hard real-time systems must meet the deadline

precisely and failure to meet the deadline considered as a system failure and may

lead to deaths, injuries, damage to environment and money lost. On the other

hand soft real-time systems can tolerate the latency. This is often considered as

poor quality of service.

Sometimes real-time systems are referred as embedded systems. Embedded

systems are generally real-time systems which are embedded to other systems

to control or monitor those particular systems. Engine control unit of a car is

a real-time system and also an embedded system which is embedded into a car

engine and performs real-time tasks.

In this work, PHM approaches are investigated for real-time implementation

to make real-time assessment in the LEDs and make real-time RUL predictions.

Implementation platforms for the realisation of the discussed PHM approaches

in this work are divided into three main categories:

1. National Instruments’ (NI) PXI real-time platform

2. National Instruments’ (NI) FPGA
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3. Microchip PIC32 Microcontroller

The remaining part of this chapter presents the details of the undertaken

implementations and summary of the findings.

8.2 National Instruments’ PXI Real-Time Plat-

form

8.2.1 Hardware

National Instruments has developed many programmable controllers and sys-

tems for rapid prototyping and for the measurement and controls. PXI (PCI

eXtensions for Instrumentation) is one of the rugged PC-based high performance

platform for measurement and automation systems. These systems are used in

many different applications such as manufacturing test, military and aerospace,

machine monitoring, automotive, and industrial test. Figure 8.1 shows NI PXI

system which consists of chassis, controller and modules. Implementation of the

PHM approaches is carried out in the embedded controllers (NI PXI-8110) with

a real-time OS (LabVIEW Real-Time). This particular embedded controller has

2.26 GHz Intel Core 2 Quad Q9100 quad-core processor. Figure 8.2 shows the NI

PXI-8110 embedded controller.

8.2.2 Software

National Instruments also provides graphical systems to integrate the their soft-

ware and hardware platforms. LabVIEW is the powerful system design software

developed and patented by the National Instruments. There are many more

tools developed over the years to achieve different tasks such as signal process-

ing and control, mathematics, robotics, RF communication, sound and vibration,

etc. LabVIEW environment enable add the hardware platforms into the projects.

Software can be designed based on the added hardware platform and developed

software can be deployed into the hardware platform very easily.

There are many tools developed into the LabVIEW environment which enable

engineers to design, prototype and test the systems very easily. Figure 8.3 shows
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Figure 8.1: NI PXI system which consists of chassis, controller and modules [130]

 

 

 

Figure 8.2: NI PXI-8110 embedded controller [130]
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the signal analysis tools which are provided with the LabVIEW environment. For

example histogram tool can be used to analyse the signal and get the results such

as mean, standard deviation etc., for the input signal. Figure 8.4 shows most

of the available tool categories. For example mathematical tool have many sub

tool sections such numeric, fitting, probability and statistics etc., for particular

mathematical tasks. These sub categories have many individual tools which can

be used in the block diagram of the design. Developers can also develop their

own tools and used in their applications.

Figure 8.3: LabVIEW signal analysis tools

LabVIEW real-time software is the tool used to program the LabVIEW real-

time hardware platforms such as embedded controller. Executable code then is

transferred into the embedded controller. After that this real-time embedded

controller can run as a standalone system.

8.2.3 Implementation of Data Driven Approach (Euclidean

Distance)

The details of the data driven approach based on the Euclidean distance were

discussed in chapters 5 and 7. This approach is required to estimate the ED
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Figure 8.4: Various LabVIEW tools for mathematics, signal processing, robotics
etc.
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from the current and temperature sensors. This approach also requires the mean

values for these sensor readings under normal operating conditions. From the

sensor signal and mean values for current and temperature sensors (i.e., 0.09 and

0.00022 respectively), ED is calculated. Calculated ED data is then monitored for

the early warning threshold (EDEWT ) of 2.5. Observed recent maximum value

for ED is kept. If the ED goes above the early warning threshold, early warning

is provided. If the ED goes above the early warning threshold and trend of the

ED curve is negative, then the ED estimate at time step t, (EDt) and observed

maximum values for ED (EDMAX) is passed into a loop to estimate the RUL.

Failure threshold is estimated from the EDMAX and using the equation 7.1. Using

the sequential mean trend for ED (mED
t), EDt and EDFT , the RUL is estimated.

Figure 8.5 shows the implementation of the ED approach in the LabVIEW real-

time environment using the NI PXI-8110 as the real-time embedded hardware

platform.

8.2.4 Implementation of Data Driven Approach (Maha-

lanobis Distance)

Mahalanobis distance based data driven approach was discussed in chapters 5 and

7. MD is estimated for current and temperature sensor data using the mean and

standard deviations for the current and temperature sensor data under normal

operating conditions. Estimated MD is then monitored for the early warning

threshold (MDEWT ) of 17 and for a maximum value. If the MD goes above the

early warning threshold of 17, early warning is provided. If the MD goes above

the early warning threshold and trend of the MD curve is negative, then the MD

estimate at time step t, (MDt) and observed maximum values for MD (MDMAX)

is passed into a loop to estimate the RUL. Failure threshold for MD is estimated

using equation 7.2. RUL is estimated using equation 7.6. Figure 8.6 shows the

implementation of the MD approach into LabVIEW real-time environment.
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8.2.5 Implementation of Data Driven Approach (LRKF)

Development of logistic regression based PHM approach was discussed in chap-

ters 5 and 7. Logistic regression function is implemented for the current and

temperature sensor data using the established regression coefficients reported in

the Table 7.5. Output from the logistics function then filtered using Kalman

filter with the noise coefficients of 11 and 0.022. Filtered signal from the logistics

regression function is then monitored for the decision boundary. If the LRKF

goes below the decision boundary of 0.5, output from the LRKF is passed into

the loop which handling the RUL estimation. Mean exponential decay constant is

estimated using built in mean function. Using this mean and failure threshold for

logistic regression of 0.15, RUL is estimated. Main advantage of this approach is

that probability of failure is reported with the estimated RUL. Figure 8.7 shows

the implemented logistic regression and Kalman filter (LRKF) based data driven

PHM approach in the LabVIEW real-time environment using the NI PXI-8110

as the real-time embedded hardware platform.

8.2.6 Implementation of Data Driven Approach (NNKF)

Neural network based PHM approach was developed and reported in chapters 5

and 7. Figure 5.5 shows the developed neural network. Weight and bias param-

eters are established from the training and reported in the equations 7.11, 7.12,

7.13 and 7.14. Using these neurons weights and biases, and selected activation

functions (i.e., linear function for hidden layer and logistic (sigmoid) function for

output layer) for hidden and output layers, neural network is implemented in the

LabVIEW real-time environment. Output from the neural network is then passed

into the Kalman filter with the noise coefficients of 11 and 0.022 to smooth the

output. Filtered output from the neural network then monitored for the decision

boundary of 0.5. If the output goes below the decision boundary early warning is

provided and RUL loop is triggered for the lifetime estimation. Figure 8.8 shows

the implemented neural network and Kalman filter (NNKF) based data driven

PHM approach in the LabVIEW real-time environment using the NI PXI-8110

as the real-time embedded hardware platform.
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8.2.7 Implementation of Model Driven Approach

The developed empirical model is discussed in details in chapters 5 and 7. This

empirical model uses sensor data for forward voltage and current. Developed

model is used to predict the current using the forward voltage sensor value. Ac-

tual current value is known from the current sensor. Residual is then estimated

from the model predicted value and actual sensor values for the forward current.

Failure threshold for the residual is estimated by adding the maximum allowable

deviation of 0.126 V to the initial observed for the particular LED. These data

is then fed into RUL loop for the lifetime estimation. Mean trend of the residual

curve, current residual and failure threshold for the residual are used to estimate

the RUL using equation 7.17. Figure 8.9 shows the implemented linear model for

the model driven PHM approach in the LabVIEW real-time environment using

the NI PXI-8110 as the real-time embedded hardware platform.

8.3 National Instruments’ FPGA

FPGA (Field Programmable Gate Arrays) is a reprogrammable or reconfigurable

silicon chip which contains millions of logic gates. This enable engineers to pro-

gram FPGA into different hardware block as required. For example, it can be

programmed to work as a memory, digital filter, controller etc. Once it is pro-

grammed it does not need any software or operating system to run it. FPGAs

configuration is generally defined by Hardware Description Language (HDL) or a

schematic design. Then a bitfile is generated using electronic design automation

(EDA) tool and a place-and-rout tool. Together the electronic design automa-

tion and the place-and-rout tools are called compiler which is FPGA company’s

proprietary. Figure 8.10 shows a sample structure of an FPGA. Figure 8.10 illus-

trates the key function blocks of the FPGA. Programmable interconnect is used

to electronically program the logic cells. Most of the FPGAs have array of config-

urable logic blocks (CLB), programmable interconnects, I/O blocks, lookup tables

(LUT) and flip-flops. Compiler will find the required number of CLB, I/O, LUT

etc and compile the HDL into bitfile to map the circuit into the FPGA. Finally

FPGA will run like configured hardware. Manufacturers also supply compilers,
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Figure 8.10: Sample structure of an FPGA [130]
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development tools and very high level graphical tools which enable the designers

not to worry about HDL or any low level programming. For this thesis, Na-

tional Instruments’ LabVIEW FPGA is used to program the PHM approaches

discussed in this work. Figure 8.11 shows a traditional real-time system which

consists of operating system, driver APIs and application software. Figure 8.12

shows a LabVIEW FPGA systems which shows all the calculations are performed

at the hardware level. Because all the calculations and processes are handled by

the hardware cells, FPGA is more reliable than the traditional real-time system.

This is the main advantage of the FPGA over a traditional real-time system. 

 

 

Figure 8.11: Traditional real-time systems [130]

 

 

 

Figure 8.12: LabVIEW FPGA system [130]

Another key advantage of the FPGA is the parallelism, which enables an

FPGA to run several parallel loops at the same time. Two independent parallel
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loops are shown in Figure 8.13. In this exapmple, loop one has three inputs A, B

and C. At the first logic cell A and B are added together and passed to the next

logic cell to multiply with C. Result from this manipulation is then transferred

to the output pin F. Second loop also have three inputs X, Y and M. X and Y

are added in the first cell and result is passed to the second cell. At the second

cell the result from the first cell and M are added together. Final manipulation

results from the second logic cell from the second loop which is sent to the output

pin Z. First and second loops shown in the Figure 8.13 do not depend each other,

hence both loops are executed simultaneously.

Main disadvantage of the the FPGA is that it does not support floating point

arithmetic and therefore we have to rely on fixed point arithmetic. LabVIEW

FPGA is designed to handle floating point arithmetic using the fixed point arith-

metic. This has been already built in by the NI. But it requires more logic cells

to convert a floating point into fixed point and do the manipulations. Developed

approaches for data driven and model driven PHM of the LEDs require floating

point arithmetic. This is one main limiting factor for the implementation of these

approaches in the LabVIEW FPGA environment. In this work, NI PXI-7851R

multifunction reconfigurable input output (RIO) with Virtex-5 LX30 FPGA is

used to implement the PHM approaches developed in this thesis.

8.3.1 Implementation of Data Driven Approach (Euclidean

Distance)

Euclidean distance based data driven approach is implemented in the FPGA

using the LabVIEW FPGA module. The implementation is similar to the im-

plementation in the real-time system (NI PXI), but here fixed point arithmetic

is used using built in functions. Each arithmetic function block has two inputs

and one output. These inputs and output are configured such that they represent

the number of bits for before the digit and after the digit. Figure 8.14 shows the

implemented Euclidean distance based data driven PHM approach in LabVIEW

FPGA environment.

Figure 8.15 shows the summary of device utilisation for the Euclidean distance

based approach. Summary shows that 56.2% of the DSP48s blocks are used for
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Figure 8.13: Parallel implementation in FPGA using separate logic cells [130]

this implementation (i.e., 18 out of 32 DSPs are used). DSPs are the most utilised

devices in the FPGA. Other devices used for this implementation are total slices

30.1%, registers 15.0% and LUTs 17.6%. None of the block RAMs are used for

this implementation. Clock speed used by the components and maximum clock

speed are also shown in Figure 8.15. Compilation time for this design is 11.01

minutes.

8.3.2 Implementation of Data Driven Approach (Maha-

lanobis Distance)

Mahalanobis distance based data driven approach is designed and implemented

in the LabVIEW FPGA environment. Figure 8.16 shows the implemented Maha-

lanobis distance based data driven PHM approach in LabVIEW FPGA. Number

of arithmetic blocks required for this design is high compared to the design of

the ED approach discussed and implemented in the above section. When the

designed is compiled for the LabVIEW hardware, compiler finds difficult to fit

this design into the available FPGA logic cells. Figure 8.17 shows the summary
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Figure 8.15: Device utilisation summary for the implemented ED approach

of device utilisation for the Mahalanobis distance based approach. Error message

says that too many DSPs are required to accommodate this design.

This shows that the PHM algorithms need to be considered with respect to the

available hardware platform. For example, in this case ED based approach can

be deployed into the LabVIEW FPGA system and MD based approach can not

be deployed in the LabVIEW system. Hence hardware platform plays a critical

role in selecting a suitable algorithm for a PHM system.

Other two data driven approaches for LED’s PHM can not be implemented

in the LabVIEW FPGA platform as they (i.e., LRKF and NNKF) require more

block functions (such as addition, multiplication ec.,) compare to that of the MD

approach. This is another disadvantage of the FPGAs. FPGA’s space are limited

and they can accommodate certain number of functions as their logic cells are

limited to a certain number. Because of this disadvantage FPGAs are called

space limited devices.

8.3.3 Implementation of Model Driven Approach

Developed empirical model was discussed in details in chapters 5 and 7 and imple-

mented in the LabVIEW FPGA. Design of this approach is similar to the design
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Figure 8.17: Device utilisation summary for the implemented MD approach
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in the LabVIEW real-time system but the fixed point arithmetic is used. Figure

8.18 shows the implemented linear model for the model driven PHM approach in

the LabVIEW FPGA system.

Device utilisation summary illustrates that 30.9% of total slices, 15.1% of reg-

isters, 19.1 of the LTUs and 21.9% of the DSPs are used for this LabVIEW FPGA

design. Total compilation time for this implementation is 11.44 minutes. Figure

8.19 shows the device utilisation summary for the model driven implementation

in the LabVIEW FPGA.

8.4 PIC Microcontroller

Generally microcontroller is considered as a small computer on a single integrated

circuit. They consist of CPU, memory, I/O interface etc. Microcontrollers are

used in embedded systems which monitor and control other systems such as

automobiles, remote control, medical devices etc. There are many different types

microcontrollers available in the market. Some applications are developed using

the real-time operating systems (RTOS) such VxWorks, RTLinux, QNX, etc.

Embedded C is mostly used to develop the applications.

Figure 8.20 shows typical microcontroller architecture which consists of CPU,

ROM, RAM, I/O peripherals, timbers, counters and other interfaces. There are

also application specific microcontrollers which are used for specific applications.

PIC microcontrollers are manufactured by Microchip and is one of the widely

used microcontrollers. Figure 8.21 shows a PIC32 microcontroller architecture.

In this work, PIC18F4550 is investigated to implement the developed approaches.

Application can be developed using embedded C in the MPLAB environment

which is designed to program the PIC microcontrollers. C18 compiler is used to

convert the embedded C into the assembly code then into the machine code.
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Figure 8.19: Device utilisation summary for the implemented model driven ap-
proach

 

 

 

ROM     RAM 

I/O 

CPU 

 

Subsystems: 

Timers, Counters etc. 

RF, USB interfaces etc. 

Figure 8.20: Microcontroller architecture
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Figure 8.21: PIC32 architecture [131]

8.5 Summary

This chapter discussed the implementations of the developed PHM approaches in

the different hardware platforms. Developed approaches are implemented in Lab-

VIEW real-time platform which is NI PXI-8110 embedded controller and details

are presented in this work. LabVIEW FPGA is also used for implementations

but only ED and model driven approaches are implemented because of the space

limitation of the particular FPGA (Vertex-5) used in this work.

Another popular implementation option is the microcontrollers. PIC micro-

controllers have been investigated for the implementation of the developed ap-

proaches. Although it understood most of the developed approaches could be

implemented with no or small modifications. For instant, logistic (sigmoid) func-

tion used in the logistic regression and neural network need to be approximated

to a linear function. This approximation may under-perform the approaches.

However, this should be considered for the future work.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

This thesis has discussed data driven and model driven PHM approaches for

real-time health monitoring and prognostics of high power LEDs. The PHM

framework developed in this programme relies on sensor data such as forward

voltage, forward current and temperature. The results from the undertaken ex-

periments show that both data driven and model driven techniques for PHM can

be used to detect when unusual changes in the expected performance of an LED

start to take place, and can successfully provide an early warning if light output

degrades and approaches the failure limit. In addition to the diagnostics capa-

bilities of the data driven and model driven approaches, prognostics capability

was also developed and demonstrated. The potential of the studied approaches

to predict remaining useful life of an LED was established.

For the distance measure techniques, the accuracy of the prognostics calcu-

lations improves with time as more data to perform the sequential estimation of

the ED and MD trends becomes available. In addition, embedding the temper-

ature sensors very close to the junction has shown to improve the temperature

measurement in all situations; hence the approach will become more accurate.

The ED technique is found to be more suitable for this application as it involves

less mathematical operations and requires less computational time compared to

the MD technique. The undertaken tests have indicated that the ED curves are

generally less sensitive to noise in the monitored parameters and when test condi-

230



tions (i.e. applied voltage) change. This is an important finding as manipulation

of noisy data would otherwise require additional filtering.

For the logistic regression approach, the accuracy of the prediction depends

on the Kalman filter and the proposed decision boundary. The filtered output of

the logistic regression gives the probability of healthy state of the LED, which

is a great advantage. Logistic regression based approach makes better consistent

predictions than the distance measure approach. In addition to the RUL predic-

tion capability, logistic regression can also be used to detect the anomalies i.e.,

when unusual changes in the expected performance starts to take place.

Neural network approach discussed in this thesis is similar to the logistic

regression approach but have the advantage of choice for activation function and

number of neurons. This gives the neural network more flexibility to fit the

training data more accurately. Every neuron in the neural network can be treated

as a logistic regression function and hence neural network can be considered as a

combination of many logistic regression with different set of regression coefficients.

But the activation function of the neurons in a particular layer can be selected

from a number of different functions such logistic function, linear function etc.

The developed neural network and Kalman filter (NNKF) based approach for the

LED PHM makes similar consistent predictions to the logistic regression and the

Kalman filter (LRKF) based predictions. Similarly logistic regression approach,

accuracy of the neural network approach discussed in this work depends on the

Kalman filter and the established threshold.

Model driven approach for the LED PHM discussed in this work was also

demonstrated. Accuracy of the predictions depends on the failure threshold based

on evaluated residual values. Linear extrapolation technique is used to predict

the RULs. The techniques discussed in this work are shown to have good pre-

dictive and detection capability. The accuracy of the predictions can be further

improved by establishing statistically proved threshold values for the failure, and

by increasing the sample size used in the derivation of sensor data.

Real-time implementation of the discussed approaches show both data driven

and model driven approaches discussed in this work can be implemented in real-

time platforms to monitor the health of the systems or products based on sensor

data and empirical models. In the case of the LED application, data driven
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approaches can be implemented in microcontroller based real-time systems with

minor approximations and model driven approach can be implemented in mi-

crocontroller based real-time system directly to monitor the health of the LED

lighting systems. For example, logistic regression and neural network based ap-

proaches might require approximation for the sigmoid or the logistic function to

implement in the microcontroller, if it is possible to make reasonable predictions

based on the approximations. The neural network can be further improved by

adding more neurons and hidden layers.

The data driven PHM presented in this paper can be applied to other semi-

conductor devices such as microprocessors to monitor the real-time health and do

the prognostics by embedding suitable sensors (i.e., temperature, accelerometer,

vibration, humidity etc.,) into those semiconductor devices. This will allow the

semiconductor devices to have a built-in embedded health and usage monitoring

capabilities.

9.2 Future Work

Further study is required to generalize this result for harsh operating conditions

which are not considered in this work such as high and low room temperatures

which will affect the board temperature etc. This will require controlling the cur-

rent and temperature independently. Further experiments are also necessary to

integrate other parameters which affect the LED life, into a generalized approach

of LED health monitoring under harsh operating conditions.

Studied data driven and model driven prognostics algorithms can be imple-

mented in any LED lighting systems along with the LED driver to monitor the

reliability and report the risk of failure in advance. Future research in this real-

time data driven prognostics systems will focus on the development and deploy-

ment of an intelligent LED driver to monitor and improve the remaining useful

life of LEDs based on discussed data driven and model driven approaches. In

particular, motivation of the future research is to implement and test these ap-

proaches in a microcontroller. Embedding temperature and current sensors into

an LED package will make this implementation possible and will also make the
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temperature measurement more accurate.

Future work can also focus on improving the accuracy of the studied data

driven and model driven approaches by establishing statistically proved threshold

values for each approach, and smoothing constant for the logistic regression and

the neural network based approaches. Future research in these real-time PHM

systems will aim at the development of hybrid or fusion approach for real-time

health monitoring and prognostics of LEDs based on developed data driven and

model driven approaches.

A specific topic that requires further studies is the failure related to discoloura-

tion of the LED die or LED encapsulate. More tests need to be carried out to

establish the relationship between the sensor values and light colour.
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Appendix A - Algorithms and

Programs

Kalman Filter

General form of KP is given below [132]: Prediction step based on physical or

process model:

x−
k+1 = Axk + v (1)

where A is the state transition matrix, x̂k is the state of the system at time step

k, v is the Gaussian noise with zero mean and x̂−
k+1 is the predicted state of the

systems based on the state transition matrix and Gaussian noise. Covariance

matrix of the state estimate x̂−
k+1 is given by:

P−
k+1 = AP kA

T +Q (2)

where Pk is the covariance matrix of the state estimate at time step k and Q is

the covariance matrix of the noise v. The measurement is linearly related to the

state of the system by the matrix H and associated with some error is given by:

zk+1 = Hxk +R (3)
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where R is the measurement error/noise covariance matrix. Kalman gain for the

time step k+1 is then estimated as follows:

Kk+1 = P−
k+1H

T [HP−
k+1 HT +R]

−1
(4)

Then the state of the system is updated from the estimated Kalman gain as

follows:

xk+1 = x−
k+1 +Kk+1 [zk+1 − Hx−

k+1] (5)

Covariance matrix of the state estimate is updates as follows:

Pk+1 = (1− Kk+1H)P−
k+1 (6)

Particle Filter

A pseudo code of particle filter algorithm based on sequential important sampling

(SIS) is given below [118]:

[{
xi
k, w

i
k

}Ns

i=1

]
=SIS

[{
xi
k−1, wi

k−1

}Ns

i=1
, zk

]
(7)

for i = 1 : Ns

− Draw xi
k ∼ q(xk|xi

k−1, zk) (8)

− Assign a weight, wi
k

END for

{xi
k, w

i
k}

Ns

i=1is a randommeasure which characterise the posterior density, p(x0:k|z1:k),
where {xi

0:k, i = 0, . . . , Ns} is a set of support points with associated weights
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{wi
k, i = 0, . . . , Ns} and x0:k = {xj, j = 0, . . . , k} is the set of all states up to

time k. The weights are normalised such that
∑

iw
i
k = 1. The weight is cho-

sen using the principle of important sampling and q(.) is the important density.

Weight is assigned such that [118]:

wi
k ∝ wi

k−1

p (zk | xi
k) p(x

i
k|xi

k−1)

q(xi
k|xi

k−1, zk)
(9)

Matlab Code – Kalman Filter

clear

norcur = csvread(filename);

length = 1361;

Q = 1;

R = 1; % Adjust R for Degree of Damping

for n = 1: 1: length;

z(n) = norcur(n);

end;

for n = 1: 1: length;

index(n) = n;

end;

Pmin1 = 0;

K = 1

Xhat(1) = norcur(1) + K*(z(1) - norcur(1))
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P = (1-K)*Pmin1

Pmin = P + Q

Xhatmin(1) = Xhat(1)

for n = 2: 1: length;

K = 1/(n+1);

Xhat(n) = Xhatmin(n-1) + K*(z(n) - Xhatmin(n-1));

P = (1-K)*Pmin;

Pmin = P + Q;

Xhatmin(n) = Xhat(n);

end;
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