
Exploring Adaptation & Self-Adaptation in Autonomic Computing Systems

M.T.Ibrahim1, R.J.Anthony1, T. Eymann2,
A.Taleb-Bendiab3 and L.Gruenwald 4 **

1University of Greenwich UK, 2University of Bayreuth Germany,
3University of Liverpool John Moore’s UK, 4NSF USA

m.t.ibrahim@gre.ac.uk, r.j.anthony@gre.ac.uk, torsten.eymann@uni-bayreuth.de,
A.Talebbendiab@livjm.ac.uk, lgruenwa@nsf.gov

Abstract
This panel paper sets out to discuss what self-adaptation
means, and to explore the extent to which current
autonomic systems exhibit truly self-adaptive behaviour.
Many of the currently cited examples are clearly
adaptive, but debate remains as to what extent they are
simply following prescribed adaptation rules within pre-
set bounds, and to what extent they have the ability to
truly learn new behaviour. Is there a standard test that
can be applied to differentiate? Is adaptive behaviour
sufficient anyway? Other autonomic computing issues are
also discussed.

** Acknowledgement: “Le Gruenwald’s work is partially
supported by (while serving at) National Science Foundation."

1. Introduction and background
As the autonomic concepts and terminology are

starting to reach critical mass, having pervaded into many
corners of computer science research and application
development, this paper attempts to consider some
fundamental questions concerning the nature and state of
the art of some aspects of adaptivity in autonomic
computing systems (ACS).

Autonomics certainly is a popular buzzword
nowadays. There are a large number of autonomics
conferences, several autonomics research groups, and a
large number of self-* applications under development.
However, to what extent is the autonomics label a
marketing ‘hype’ for adaptive behaviour that pre-dates the
latest jargon, and to what extent have applications become
truly self-adaptive? In answering this very general
question, in the next paragraph, we define a number of
more clearly scoped questions.

How adaptive are current Autonomic Computing
Systems? Do ACS adapt or self-adapt? To what extent are
they simply following prescribed adaptation rules within
pre-set bounds or do they have the ability to truly learn
new behaviour?

2. Panel contributions
A panel of active academics/practitioners debate these

and other related questions. The workshop audience (and
readers) are expected to actively participate in the debate
and bring their own experiences to bear on the panel
discussions.

2.1 Ibrahim believes that this paper, as all means of
communication do, aims primarily to communicate a
message to its readers. It’s hoped that its message, or
rather perhaps many messages, are understood.
Unfortunately, it is not always true that communicated
messages are understood for obvious reasons [1].

Over the recent past, many conferences addressed
topics relating to communication and understanding.
More recently, much research work and standardisation
efforts has been directed towards ontology, semantics and
metadata [6, 7, 8]. No wonder then that, in common with
many other disciplines and domains, the Information/IT
community including Autonomic Computing fraternity
are badly in need of open standards [9] to enable concepts
and terms such as those appearing in the title and section
1 as well many others to be properly communicated and
understood.

Having made the above observations, and given that
there is no universal agreement on autonomic ontology, I
further believe that whether a computing system is
adaptive or self-adaptive is, in this author’s view, not one
of primary concern at a high level of abstraction and/or
architectural layers.

Adaptive features, as well as many other self-* ones
associated with autonomic computing, are solutions to
one or more real world problems in one or more domains
spanning intra or inter-domain applications. It all depends
on the different stakeholders’ roles in the development
process and their own perspective. The issue of
communicating messages and understanding between
parts of a system (user-user, user-computer or computer-
computer) need to be carefully considered if

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

we are to achieve the ultimate aim of the fully mature
autonomic level 5, [9], see Figure 1 below. This part,
from now on, focuses mainly on computing systems and
not natural systems unless specifically stated.

Figure 1: Levels of Autonomic Maturity [9]

Nowadays, the overwhelming majority of systems, if
not all, have many ‘sub’systems including computing
(sub)systems as well as communication (sub)systems and
so on. For clarity, it should be pointed out that I am using
the term ‘computing system’ in this part, to mean an
integrated system inclusive of computing and
communication systems and not just the former. If a
computing system can be designed to be adaptive then it
is possible, in most if not all cases, to be designed to be
self-adaptive. A question we are addressing is where are
we now? Well, we are not at level 5 yet, but and to the
best of my knowledge, I posit that we are beyond maturity
level 2. This may not be the agreed position by all
authors.

In figure 2 we show a simplified layered architectural
of an ACS with only one Autonomic Manager (AM) and
one Managed Resource (MR) are shown. Collectively, all
autonomic managers and their managed components
constitute an ACS. To be truly self-adaptive, both
managers and managed must exhibit such behaviour. So,
a question arises as to where is the system boundary
delineating an adaptive system is in this case?

Following on from [2], we consider an illustrative
example from aviation, a flight control system. Such a
system includes a computer system as a subsystem. It also
has a human in the loop. How adaptive or self-adaptive do
‘stakeholders’ wish that system to be?

NASA recently [3] proposed advanced concepts for the
airspace system as a complex, highly integrated system of
systems. This necessitates deploying autonomic
computing system technologies. It is claimed that the
autonomic vehicle concept is similar to the autonomic
computing paradigm initiated by IBM to make future
computing systems self-managing and self-optimizing, to
eliminate the expensive management services needed
today. The computing systems considered in that activity
consist of large collections of computing engines, storage
devices, visualization facilities, operating systems,
middleware, and application software.

An autonomic air vehicle [3] can be piloted or
uninhabited, and will exhibit a number of advanced
characteristics. The vehicle will be self-defining, in that it
will have detailed knowledge of its components, current
status, internal constraints, ultimate performance, and its
relation to other vehicles and to the airspace system. It
will be able to reconfigure itself under varying and
unpredictable conditions. For example, it will reconfigure
wing and airframe geometry to satisfy requirements for a
wide range of flight speeds and manoeuvres.

The concept of autonomic vehicles can be extended to
hierarchical autonomic transportation systems, with the
autonomic vehicle being the first level. The second level
is the airspace system—a complex collection of
networked subsystems, including facilities, vehicles, and
ground support. The third level in the hierarchy is an
integrated intermodal system, covering space, air, land,
and water transportation. It will function as one seamless
whole, maximizing options for convenience, efficiency,
and reduced cost. [3, 4]

Flight Control Systems (FCS) software [3,4,5] will
incorporate self-learning concepts to enable it to discover
problems and to reconfigure the system to keep
functioning smoothly. The vehicle will collect, analyze,
and share information about itself and its local
environment with other crafts in the air and with
supervisors on the ground to enable a coordinated and
optimized airspace system.

Other examples of current systems are taken from
IBM’s ETTK (Emerging Technologies Toolkit), e.g.
Policy Management for Autonomic Computing (PMAC),
due to space limitations this is best demonstrated at the
workshop.

Figure 2: Layered Architecture of ACS

Autonomic Manager

Managed resource

MR Touchpoint

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

2.2 Anthony finds that the current use of terminology
is inconsistent. A very broad spectrum of systems are
being described as having self-properties. Such claims can
be ambiguous or misleading; terms such as self-
configuring (which is part of the autonomics terminology)
and self-adaptation are being used to describe widely
diverse levels of behavioural sophistication.

There is a need for more-precise classification, based
on criteria which include:-

1. The aspect of a system that is adapted:
Externally visible behaviour;
Internal configuration, such as threshold values;
Internal logic or semantics, such as using a meta-
policy to dynamically select the most appropriate
rule or business policy;
Internal structure or architecture, such as
dynamically creating new rules and/or policies.

2. Over what time-frame adaptation is effected:
Immediate, having a one-off effect, such as dealing
with an unexpected anomaly;
Short term, changes remain in force until further
changes occur, or the policy instance terminates;
Long-term, changes are persisted to future policy
instances.

3. Whether adaptation has local or global effects:
Local changes affect a single node or agent;
Global changes are propagated to other nodes.

Based on these criteria, the author proposes a new
‘adaptation taxonomy’, comprising four levels of
sophistication as follows:

Adaptive: Immediate action effect, as a reaction to
environmental or contextual change. Here the externally
visible behaviour is modified, but there is no internal
change of policy or of stored state that will be used to
inform future decisions. Thus the system cannot learn in
even the most rudimentary way. The system adapts its
instantaneous behaviour, but not itself (i.e. it does not
change its configuration or logic).

Self-Configuring: Internal configuration is changed.
Such as changing a threshold value which subsequently
impacts on the way in which rule(s) are evaluated. This
type of change affects subsequent decisions. Longer-term
adaptation may be achieved if the new configuration is
persisted over several instantiations of the policy’s
container application.

Self-Adapting: In addition to the self-configuring
capabilities as described above, internal logic or
semantics are changed permanently, for example
changing the priority, and/or execution order of rules. The
extent of reorganisation capability is limited by the
flexibility of the adaptation mechanisms themselves, and
the foresight of the system developer. The adaptation is
effectively pre-programmed at a meta-level. For example
consider the situation where two rules work together to
change both the managed system and their own future

behaviour: (within the meta-policy) “If external event X is
sensed at a faster rate than event Y, over a period P, make
PolicyZ the active policy and increment the count of
PolicyZ substitutions (NZ)” and (within PolicyZ) “If NZ
exceeds a threshold NT, increase P by 10%”.

Evolvable: New behaviour is ‘learnt’. For example a
completely new rule or policy is devised, tested and found
to be superior to the current setup (at least in the context
of the ambient conditions), and is thus incorporated
automatically. The inclusion of this category avoids
making the self-adaptation category too broad and open-
ended. The term ‘self-adaptation’ does not encompass the
full range of possible ways in which a system may change
its own behaviour, some desirable behaviours in which
systems learn truly new behaviour, are clearly beyond
reorganising existing logic.

Several research projects are targeting evolvable
systems; see for example [10]. However, current state-of-
practice spans the first three categories of the taxonomy.
Consider contemporary ‘autonomic’ systems: a manager
sub-component adapts or configures a managed sub-
component (which performs the actual business logic) but
does not change itself (at the level of its control program).
It endlessly runs the same adaptation logic (so it is
typically adaptive). Whether an autonomic component
(when viewed externally, i.e. the manager and managed
sub-components are treated as a single entity) exhibits
self-adaptive behaviour depends on the internal
sophistication. The autonomics model supports true self-
adaptation, but many current systems seem to be
fundamentally self-configuring.

Anthony [11] is concerned with policy-based systems
in which policies can modify their own behaviour as well
as adapting the controlled system. There are several ways
in which a policy can change its own behaviour. For
example the action carried out as a result of evaluating a
rule is permitted to include policy-updating statements
that change the way in which the same, or another, rule
behaves in the future. This is self-adaptive because
semantic changes can be written into persisted policy files
and templates and thus can have long-term and global
effects. Significant re-organisation is possible; the system
can make changes to its own configuration and internal
logic, but not to its own structure or architecture.

A self-adaptive system is restricted to making changes
that were designed in (implicitly, at least), and thus is not
capable of evolving in a true sense, although the
cumulative effect of many individually predictable
changes can be sufficiently complex as to be ‘surprising’.
A key question is: after many self-adaptation iterations,
do systems remain fundamentally the same or is it
possible for completely new behaviour to emerge?

Evolvable systems offer the promise of effectively
automatically re-inventing themselves as a result of

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

optimisation to their execution context. This may lead to
superior systems, but it also represents significant risk.

2.3 Torsten asserts that Autonomic Computing uses a
biological paradigm as a design and control metaphor, the
autonomic nervous system. The core CHOP properties of
the Autonomic Computing concept are intended to be an
electronic realization of the respective mechanisms of the
human body. Self-organization can be found in other parts
of our natural environment as well, e.g. biological
evolution, social group behaviour, market dynamics
phenomena and other complex adaptive systems. It is not
surprising that projects labelled Autonomic Computing
are thus manifold, coming from diverse backgrounds and
academic habitats, and aiming at a variety of
technological and scientific knowledge increase.

To get a clearer look at the prospects and hurdles,
chances and risks of Autonomic Computing, let me divide
the complex concept into three spheres: the technological
infrastructure, the services infrastructure and the policies
infrastructure. The computing technology infrastructure
describes the technological progress, the software and
hardware modules and the engineering processes to build
these. Having the technology in place is a prerequisite for
creating new products and services which benefit from
self-organizing computing. In their entirety, these new
products and services build up the services infrastructure
of potential Autonomic computing business.

Business however needs rules, for protecting legitimate
rights and properties of the participants. The policies
infrastructure describes a joint understanding acceptance
of rules, norms and laws as well as agreed-on measures to
regulate and enforce compliance.
F.A. von Hayek’s claim was that such a coordination
mechanism already exists in economic markets, and we
may only have to realize that and transfer concepts like
money and price signals into the realm of information
systems [T1].

Figure 3 [13] shows a framework on how the self-
coordination aspect of the Catallaxy leads to a
spontaneous order. To achieve such an ordered whole, the
software designers of the original system adapt the
element's behaviour to changing environments and
participants. By way of a cultural evolution, rules of
acceptable behaviour get refined and give way to the next
version of system inhabitants, who will be released in the
information system and shape it to their needs.

The final open question is, whether the spontaneous
order provides “acceptable behaviour” of the system – in
principle, spontaneous order has no conscience.
It is, however, similarly possible to disrupt the self-
coordination through targeted violation of the “regulatory
framework“. The automated pursuit of the individual
goals does not alone produce an acceptable behaviour of
the entire system, e.g. in terms of robustness,

controllability and the adherence of security criteria for
the individual participant.

Cultural
Evolution

Regulation Order:
-Rules of the Game

- Rules of Acceptable Behavior

Spontaneous Order

Catallaxy:
-Self Coordination

- Self Control

Automated/
Autonomic Action

Feedback to
Software Design

Acceptable Behavior
of the System in total?

leads to

influences

Cultural
Evolution

Regulation Order:
-Rules of the Game

- Rules of Acceptable Behavior

Spontaneous Order

Catallaxy:
-Self Coordination

- Self Control

Automated/
Autonomic Action

Feedback to
Software Design

Acceptable Behavior
of the System in total?

leads to

influences

Figure 3: Policies framework for self-organizing IT

The question is raised as to whether these perceptions
can be generalized and used for the design of
decentralized information systems (or information
systems in a decentralized environment) and lead to more
efficient paradigms for the implementation of computers.
The question remains open as to which is the most
effective framework to achieve spontaneous order. The
necessary regulation framework required can ex ante only
be specified as trial and error. However, we hope that
more cost-effective design processes and general
conditions befitting the new technology can be found.
Self-organization will, in our opinion, then become the
main principle for decentralized coordination of multi-
component information systems.

2.4 Taleb-Bendiab’s view that in nature; self-
adaptation is often cited as a principal mechanism for
evolution. The differences in architecture between
software systems and natural systems can lead to
confusion over the terms adaptive and self-adaptive, with
respect to the micro and macro level actions of a system
and its participants. For example natural organisms are
largely dependent on individuality, where only their own
self determines their response to environmental signals.
This is in contrast to traditional software systems where
direct actions of an overseeing administrator and thus
obfuscate the exact definition of self-adaptive behaviour.

Much established research focuses on the relationship
between evolution and self-adaptation. SA, a self-
adaptation model developed by Schwefel & Rudolph [14],
in a generalized form, relates individual components to
evolvable strategies. To be self-adaptive the system is
required to gain knowledge of previously unknown events
or results that have an impact on the system at run time.
What is required is a method whereby signals are
grounded by the system in order to have intrinsic meaning
to the system [15].

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

Signal Grounding: Adaptive vs Self-Adaptive:
What's the difference,

For a comparison to be made between adaptive and
self-adaptive behaviours, in software systems, a clean
distinction is needed. Adaptive behaviour can be thought
of as encompassing any action that results in a change to
the operation of the problem domain being viewed. This
can include external influences that, whilst not directly
referencing the domain, adapt its behaviour, and therefore
are critical to its continued operation.

Self-adaptive behaviour, however, is limited to actions
taken by the software itself, without direct human
involvement. Indeed, whilst these actions must take
inspiration from human input (in terms of configuration,
execution and human adaptation of the domain), the
distinction is made because self-adaptive behaviour
cannot have been pre-planned or pre-configured: it is
emergent, based on perceived signals within the system,
in its current configuration. Emergent behaviour, by its
very nature, has the property that it cannot be foreseen or
pre-planned, and as such, quantifying its construction can
be difficult. The signals, emanating from the system,
possess an underlying and intrinsic meaning within the
context of the functioning system. The difficulty arises in
endowing the system with the necessary cognitive
facilities to have knowledge of the meaning of these
emergent signals, as it is not sufficient to simply prescribe
reactions to signals [16]. Again these signals need a
ground within the system so that they acquire an intrinsic
meaning for the system.

Signal Grounding
 In outline the signal grounding problem has three strands:
1) What signals ought to be monitored, 2) When and how
to adapt existing thresholds for action for a given signal
and, 3) How to determine, completely and automatically
within the system, new signals of interest in supplying an
autonomic response.

Each of these is a major research topic both in the area
of autonomic systems and in the engineering of artificial
immune systems in allowing the mapping of sensing to
actions and providing anticipatory functions to a system.
The first two are equally applicable to adaptive and self-
adaptive systems. However the third is a necessary
condition for a system to be self-adaptive. The precise
formulation of how an autonomic system grounds its own
symbols is still dependent on human level systems.
However various methods have been proposed for
automated cognitive facilities, within the system, to be
used to provide a notion of signal grounding. That is the
system may be able to use existing grounded signals to
infer or deduce novel, previously unrecognisable signals
so that the meaning (effect) of these signals to the system
becomes known.

Using the grounded signals a logical approach allows
the evolution of a dynamic self through deliberation on

the results of actions. Reasoning, using deduction,
abduction, induction or inference, can then be performed,
on the logical representation, to supply receptors for
perceived autonomic trigger signals, whether these are for
system gain or its protection [Ref]. For example, in the
situation calculus [17], the action history represented by:

do(a,do(a1,do(a,s))) with SR(a,s) SR(a, do(a1,do(a,s)))

(where a=sensef for some fluent f, SR(a, s) is the result of
performing sensing action a in situation s and a1 is some
deterministic action) can be used to provide a new
prediction for the results of action a1 where the values of
other fluents in situation s form the action precondition
axioms for a1 as a context. In this way the signal for f is
grounded by occurring in the context of situation s when
action a1 happens. So a signal may be grounded by the
system, or a trigger for autonomic response, can be
adapted at runtime through a suitable implementation
system.

This implementation consists of a representation of the
state in which a system must find itself before the
transition can occur, and a defined action ontology may
then be applied to yield the transition. In essence, an
unplanned transition can be thought of as an evolution of
a state, triggered by a change in the operating
environment, and can be modelled in the same form as a
planned transition, using concepts to provide the
abstracted action ontology needed for the evolution to
occur.
 The CA-SPA (Concept-Aided Situated Prediction
Action) policy format [18] provides just such behaviour.
By providing a situation and a prediction of the required
behaviour (or the state to move to), CA-SPA uses
introspective functions to determine the actions that need
to take place to provide the transition. Modelling the
reactions to the system after the application of the action,
and sensing whether this moves the system towards the
predicted situation, formalises the required ontology.
Representing these within the CA-SPA therefore allows
the actions required for the transition to complete to be
computed, with the direct consequence being that the
system moves to the state required.

Signal grounding is still an open question in
Information Theory. For a truly self-adaptive system it is
necessary that the system has an intrinsic knowledge of
the signals known at design time and of those arising at
run time. It is for this reason that further research is
required to provide means and methods to ascertain signal
epistemologies, for autonomic response, throughout the
life cycle of the system.

2.5 Gruenwald suggests that the term self-Adaptive has
been used quite loosely to mean different things by
different computing research communities. The most
common definition of this term is that it is the ability of a

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

system to adapt itself to the new environment. With this
in mind, we can now examine how it is related to
Autonomic Computing Systems. There are eight
characteristics that make a computing system Autonomic:
self-defining, self-protecting, self-optimizing, self-
healing, self-configuring, contextually aware, open, and
anticipatory [19, 20]. One can see that a combination of
many of these characteristics forms the definition of Self-
Adaptive. For example, for a system to be able to adapt
itself to a new environment/situation, it must be self-
defining so that it can realize its components inside out
with respect to the new conditions. Similarly, the system
must be self-configuring, self-optimizing and contextually
aware. This means that one cannot really separate self-
adaptive from autonomic computing systems. With that
understanding, the question of "how adaptive are the
current autonomic computing systems?" may be
rephrased as "how autonomic are current computing
systems?" or "what autonomic feature do the current
computing systems have?"

Ideally, an autonomic computing system should be
designed in such a way that the system administrator does
not need to interfere with the system's operation in order
for it to adjust or react to the new environment. However,
current systems have not yet reached this ideal state; most
of them are semi-autonomic with only some of the
required characteristics implemented. This is partly
because it would need to involve research from many
different fields, such as data management, distributed
computing, and artificial intelligence, which have yet to
produce mature results in the autonomic computing arena.

For example, in the data management system area,
Microsoft with its auto-admin project has developed auto-
indexing techniques that allow its database system, SQL-
Server, to tune and recommend indexing structures based
on workloads. Similarly, IBM's SMART DB2 system has
features providing autonomic index determination and
continuous monitoring and alerting the database system
administrators about the system's status. In addition, a
number of research projects on autonomic optimization
using data mining have recently been proposed [22].
However, existing commercial as well as research
systems require certain parameters/rules to be predefined
and are not easy to use/modify.

This is not to say that not much progress has been
made; in fact, the contrary is true. As reviewed in [21]
which examines the state of the art research in autonomic
computing, good results have been achieved in many
areas, including prediction and optimization, knowledge
capture and representation, monitoring and root-cause
analysis, and policy-based management. In addition, a
number of commercial/prototype products have been
developed with inclusion of some autonomic features.
Besides SMART DB2 and SQL-Server, one can name
systems, such as Q-Fabric, OceanStore, and Oceano [23].

In Q-Fabric, self-configuration with continuous online
quality management of applications is implemented. In
OceanStore, all four issues of self-healing, self-
optimization, self-configuration and self-protection are
addressed, while in Oceano, only self-optimization and
self-defining (or self-awareness) are available. As
classified in [23], there are also systems that, even though
are not autonomic computing systems themselves,
actually provide supporting environments for the
development of such systems. Examples include
Kinesthetics, eXtreme, Autonomia, and AutoMate.

Although much progress has been made, an observation
one can make is that not only that existing systems do not
address all eight autonomic characteristics satisfactorily,
but also, as pointed out in [21] much of autonomic
computing research focuses more on self-optimization
than anything else. Even though performance
improvement is important, it is only one of the eight
elements constituting autonomic computing systems.
This leads us to the conclusions that current systems are
not really self-adaptive, and research on the remaining
seven properties needs be conducted with the same focus
and earnest as we have witnessed with that on self-
optimization.

Summary

The paper’s authors set out to express their views on
questions relating to current autonomic computing
systems work in general and in particular their adaptive or
self-adaptive features. Ibrahim gave examples from
NASA’s Aeronautics and IBM’s ETTK to illustrate his
views and position. Anthony proposed a novel taxonomy
of adaptation and discussed projects currently exploring
evolvable and emergent behavioural systems. Torsten
took the view that we need to examine three overarching
spheres, viz technological infrastructure, the services
infrastructure and the policies infrastructure. He used a
system called Catallaxy developed with collaborators to
illustrate. Taleb-Bendiab pointed out distinctions between
natural and software system when it comes to discussing
issues relating adaptive behaviour. He suggests that signal
grounding is a means for distinguishing adaptive
behaviour. Finally, Gruenwald takes the position that
adaptive behaviour pervades many autonomic features
and thus the question, in her view, should be how
autonomic are current ACS. The author then goes on to
explore autonomic features present in some current
autonomic computing products and research work e.g.
MS SQL Server, Smart DB2, Q-Fabric, OceanStore, and
Oceano, Kinesthetics eXtreme, Autonomia, and
AutoMate.

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

Conclusions & Future work

It is clear from perspectives the authors outlined above
that there is a long way to go to reach level 5 of
autonomic maturity as defined by IBM.

This paper has made some contributions to ACS work.
Anthony has proposed a novel taxonomy for adaptive
systems and outlined a new higher level in the hierarchy –
evolvable systems. Taleb-Bendiab proposed ‘adapting’
signal grounding as a means for clarity in communicating
between kinds of users. The question of how autonomic
are current ACS was also addressed with example given
from industry and academia. Gruenwald showed that most
current autonomic systems focus mainly on self-
optimisation than anything else. It is concluded therefore
that current systems are not self-adaptive, but using
whose definition of that term is a matter for debate.

There is much future work that needs to be done not
only in ACS but in many related domains including e.g. to
establish many open standards, to use common ontology,
metadata and semantics in order to enable communication
and understanding between the many parts of a complex
autonomic system. Much autonomic and other related
research work (computing and otherwise) in many
domains and along many dimensions still needs to be
done.

References

[1] Marcelo Dascal, Interpretation and Understanding, John
Benjamin’s Publishing Company, 2003.

[2] Ibrahim, M.T, Telford, R, Dini, P, Lorenz, P, Vidovic, N,
Anthony, R, “Self-Adaptability and Man-in-the-Loop: A
Dilemma in Autonomic Computing Systems”, 15th
International Workshops, DEXA'04, 2004, pp. 722-729

[3] Samuel L. Venneri and Ahmed K. Noor “plenty of room in
the air”, ASME, 2002, http://www.asme.org/ &
http://www.memagazine.org/backissues/nov02/features/fea
t_toc.html

[4] NASA, “Designing the 21st Century Aerospace Vehicle”
2003,
http://www.nasa.gov/vision/earth/improvingflight/morphin
g.html

[5] NCARAI, Intelligent Systems “Adaptive & Autonomous-
Systems”,2003,
http://www.nrl.navy.mil/aic/iss/aas/index.php

[6] W3C, “SemanticWeb”, 2001, http://www.w3.org/2001/sw/
[7] IEEE P1600.1 , Working Group (SUO WG) ,

“SUMO,Standard Upper Ontology”, 2003,
http://suo.ieee.org/

[8] W3C, “Metadata and RDF”, 2001
http://www.w3.org/Metadata/

[9] IBM, “Open standards driving the development of
autonomic technologies”, 200? http://www-
03.ibm.com/autonomic/open-standards.shtml and

http://www.alphaworks.ibm.com/demo/flash/display/
pmac0

[10] H. Liu, M. Parashar and S. Hariri, “A Component Based
Programming Framework for Autonomic Applications”,
ICAC’04, IEEE, New York, 2004 pp. 10-17.

[11] R. Anthony, “Generic Support for Policy-Based Self-
Adaptive Systems”, SAACS '06 (DEXA), IEEE, Krakow,
Poland, 2006 [this publication]

[12] T. Eymann, M. Reinicke, O. Ardaiz, P. Artigas, F. Freitag,
L. Navarro, “Self-Organizing Resource Allocation for
Autonomic Networks”, DEXA 2003, Prague, Czech
Republic. IEEE Computer Society Proceedings, 2003, pp.
656–660.

[13] T. Eymann, S. Sackmann, G. Müller, I. Pippow, “Hayek’s
Catallaxy - A Forward-looking Concept for Information
Systems?” Proc. of America’s Conference on Information
Systems (AMCIS-2003), Tampa, USA August 2003,.
http://aisel.isworld.org/proceedings/amcis/2003/article.asp?
Author=4704]

[14] H. Schwefel,, G. Rudolph, “Contemporary Evolution
Strategies”. Advances in Artificial Life. Third ECAL
Proceedings, 1995(1): p. 893-907.

[15] L. Floridi, “Open Problems in the Philosophy of
Information”, Metap hilosophy vol 35, 2004, pp:554-582,

[16] J.R. Searle, “Mind, Brains and Programs”, Behavioral and
Brain Sciences, vol.3, 1980, pp:417-457,

[17] H. J. Levesque, F. Pirri and R. Reiter , ‘Foundations for the
Situation Calculus’. Linköping Electronic Articles in
Computer and Information Science, Vol. 3, 1998 #18.
http://www.ep.liu.se/ea/cis/1998/018/

[18] P. Miseldine, A. Taleb-Bendiab, “CA-SPA: Balancing the
Crosscutting Concerns of Governance Autonomy in
Trusted Software”, in the Proceeding of the IEEE
International Workshop on Trusted and Autonomic
Computing Systems within AINA 2006. Vienna, Austria.
April 2006.

[19] Paul Horn, "Autonomic Computing: IBM Perspective on
the State of Information Technology," 2001,
http://www.research.ibm/com/autonomic/

[20] Xiangdong Dong; Hariri, S.; Lizhi Xue; Huoping Chen;
Ming Zhang; Pavuluri, S.; Rao, S., "Autonomia: an
autonomic computing environment," IEEE International
Conference on Performance, Computing, and
Communications, April 2003, pp. 61-68.

[21] Sterritt, R., "Autonomic Computing," Innovations Systems
Software Engineering, 2005, pp. 79-88.

[22] Sylvain Guinepain and Le Gruenwald, , "Research Issues in
Automatic Database Clustering," SIGMOD RECORD,
2005, Vol. 34, No. 1, pp. 33-38.

[23] Manish Parashar and Salim Hariri, "Autonomic
Computing: An Overview," Title: Unconventional
Programming Paradigms: International Workshop UPP,
2004, pp. 257-269

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

