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ABSTRACT 

THE INTERACTION BETWEEN ROTARY VALVES AND 
PNEUMATIC CONVEYING PIPELINES 

by 

S R KESSEL 

The object of this work was to investigate the interaction between 
rotary valves and pneumatic conveying pipelines and the effect which this 
can have on overall system performance. 

A review of previous work and current industrial practice revealed 
that very little work has been published on this subject, although it 
was evident that some manufacturers of pneumatiC conveying systems do 
have preferred entrainment configurations. Consequently, a preliminary 
experimental investigation was undertaken with a transparent model of a 
rotary valve and drop-out box in order to observe the air and solid flow 
patterns inside the drop-out box. This provided the most important 
outcome of this work, that is, the discovery that two distinctly 
different modes of flow can exist in the chamber of a conventional 
drop-out box. The first of these is a turbulent swirling motion caused 
by the conveying airstream and is the most desirable operating condition 
because it results in the most effective entrainment of material into 
the conveying line. The second is a situation where the drop-out box 
is effectively 'choked' with product. 

Models to explain these two condidtions have been developed and 
subsequently tested against data obtained from a full size positive 
pressure conveying system specifically constructed for this purpose. 
An extensive experimental programme has been carried out in which the 
performance of this system was examined with a selection of different 
entrainment configurations and different test materials. The principal 
variables investigated were the height and volume of the drop-out box, 
the orientation of the rotary valve with respect to the pipeline and 
the conveying air velocity. 

Asa result of this work guidelines have been produced for inter­
faCing rotary valves with pneumatic conveying pieplines. These have 
been presented as a simple list of eight points and it is anticipated 
that they will enable systems to be designed with more confidence than 
has been possible previously. 
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CHAPTER ONE 

OUTLINE OF STUDY 

1.1 Introduction 

1.1.1 Rotary Valves and Feeders 

Rotary valves are volumetric feeders used for the feeding and metering 

of particulate solid materials. They are simple devices in both concept 

and construction; basically consisting of a bladed rotor which turns in 

a fixed housing. On top of this housing is an inlet port and on the 

bottom an outlet port, see Figure 1.1. As the rotor turns, material 

supplied to the inlet is transferred through the valve, in the pockets 

formed between the rotor blades, and discharged from the outlet. Thus 

rotor speed is the principal means of controlling feed rate and is set by 

the valve capacity and the throughput required. Normal operating speeds 

range from 5 to 50 rev/min. 

INLET PORT MATERIAL IN 

OUTLET PORT OUT 

Figure 101 Schematic diagram of a drop-through rotary valve 
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Chapter 1 Outline of Study 1.1.1 

Since they are volumetric devices the overall size of a valve is 

dictated by the maximum throughput needed. Rotors with capacities from 

100 m~ to more than 1000 ~ are produced; thus throughputs of a few 

kilogrammes per hour to several hundred tonnes per hour are possible. 

The rotor length is usually the same as its diameter and most manu­

facturers take the latter as the nominal size of the valve. The 

majority of valves made are between 150 and 300 mm. These are the 

sizes which are most compatible with the throughputs of systems used in 

the process industry, by far the largest users of rotary valves. 

The detailed construction and operation of a valve depends upon two 

main factors. These are the condition and bulk characteristics of the 

material to be handled and the situation in which the valve is to be 

used. Material conditions and characteristics influence the choice of: 

i) the shape and position of the inlet and outlet ports; 

ii) the shape of the rotor pockets; 

iii) the running clearances between the rotor and housing; 
and 

iv) the materials of construction and surface finishes 
with respect to wear, corrosion and adhesion. 

Consequently many variations to the basic design have been developed 

to cope with the diverse range of materials that are handled. 

of some common valve configurations are shown in Figure 1.2. 

Examples 

The situations in which rotary valves are used can be categorised 

into three groups: 

a) where the air pressure at the inlet and outlet ports is 
nominally the same; 

b) where the air pressure at inlet is less than that at 
outlet, that is,where the valve is used to feed 
against an adverse pressure gradient; and 

c) where the air pressure at inlet is greater than that 
at outlet, that is,where the valve is used to feed in 
the same direction a~ the pressure gradient. 

These categories can be used to make a distinction between rotary 

valves and rotary feeders. Rotary feeder is the name commonly used 

for applications where the air pressure at the inlet and outlet ports 

-2-



Chapter 1 Outline of Study 1.1.1 

OFFSET OUTLET 

FLEXIBLE ROTOR BLADES 

BRUSH OR SCRAPER 

ADJUSTABLE BLADE TIPS 
WATER COOLED HOUSING 

LOW FRICTION COATINGS 

SCALLOPED ROTOR SPRING LOADED BLADE TIPS 

Figure 1.2 Some Rotary Valve and Rotor Designs 
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Chapter 1 Outline of Study 1.1.1 

is the same. In such circumstances, the feeder is simply a .etering 

device and is not required to function as an air seal. Conversely, 

rotary valve is the name used in situations where the air pressures at 

inlet and outlet are different. Rotary valves are essentially the same 

as rotary feeders but perform the additional task of providing an air 

seal. In reality a perfect seal is impossible to achieve because of 

the running clearances which are necessary between the rotor blades and 

housing; however if these are small enough (typically 0.1 mm in a 

200 rom valve) the air leakage can usually be kept within acceptable 

limits. 

The practical maximum pressure ratio to which a single rotary valve 

should be subjected is about 2. When feeding material from atmospheric 

pressure against an adverse pressure gradient this corresponds to a 

pressure at the outlet port of about 1 bar gauge. At pressures 

greater than this the air leakage usually becomes excessive and can 

cause problems with pocket filling. 

1.1.2 Rotary Valves and Pneumatic Conveying Systems. 

Pneumatic conveying systems are used extensively by industry for the 

handling and transport of bulk particulate materials. As the name 

implies, air or another gas is used as the medium to carry material 

through a pipeline. This may be achieved by either suction, that is 

negative pressure, or blowing, that is positive pressure, see Figure 1.3. 

There are many different types of system but an important group are 

those which use a rotary valve as the solids feeding device; these 

account for about 50% of all pneumatic conveyors in current use. 

Rotary valves are used in this application because of their ability to 

transfer material between different pressures and at the same time 

provide an effective air seal. This is essential, since, by definition, 

the pressure in a pneumatic pipeline will be different to that of the 

surrounding atmosphere. 

Positive pressure systems work with pipeline pressures greater 

than atmospheri-c. Consequently, valves used to feed such systems 

operate in situation 'b' described in Section 1.1.1, that is,they 

deliver material into the system against an adverse pressure gradient. 

In this application the sealing characteristics of the valve are used 

to restrict the air loss at the feed point. This minimises the 

-4-
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BLOWER 

AIR 

INLET 

Figure 1.3a 

AIR 

INLET 

SUPPLY 
HOPPER 

Outline of Study 

AIR + SOLIDS 

AIR OUTLET 

FILTER 

RECEIVING 
HOPPER 

Schematic Diagram of a Positive Pressure Pneumatic 
Conveying System 

SUPPLY 
HOPPER 

AIR ___ --I 

OUTLET 

EXHAUSTER 

SOLIDS 

FILTER 

RECEIVING 
HOPPER 

Figure 1.3b Schematic Diagram of a Negative Pressure Pneumatic 

Conveying System 
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Chapter 1 Outline of Study 1.1.2 

demand on the air supply and allows the pipeline pressure to be main-

tained. Practical limitations usually restrict the pipeline pressure 

to a maximum of about 1 barge However, operation at higher pressures 

is sometimes achieved by using two valves connected in series, see 

Figure 1.4. 

Figure 1.4 Two Rotary Valves Connected in Series 

Rotary valves which are used to feed negative pressure systems 

operate under conditions corresponding to situation 'c' described in 

Section 1.1.1. Since the pressure gradient in this case is in the 

direction of product feed, the main function of the valve is simply to 

regulate the feed rate. Air leakage is not usually a problem in 

vacuum systems unless there is more than one feed point. In such 

cases the sealing function of the valve is important in order to 

maintain the depression in the pipeline. 

Most rotary valves used for feeding pneumatic conveying systems 

are of the conventional 'drop-through' type illustrated in Figure 1.1. 

To enable them to feed a pipeline a discharge adaptor, commonly called 

the 'drop-out box', is fitted to the outlet port. This is a simple 

transition section which forms a 'T' shaped junction with the pipeline 

and provides a mixing chamber for the air and SOlids, see Figure 1.5. 

As an alternative to this arrangement another type of rotary valve 

is available, specifically for use in pneumatic conveying systems. It 

is called a 'blowing seal' or 'blow through' valve and is connected 

directly into the pipeline, thus avoiding the need for a drop-out box. 
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Chapter 1 Outline of Study 1.1.2 

This allows the conveying airstream to blow through the discharging 

rotor pocket/s ensuring that they empty completely. 

shows a typical example of such a valve. 

Figure 1.6 

Blowing seals are used for materials which will not readily 

discharge from the pockets of a conventional drop-through valve. 

They require less headroom than a drop-through valve but are not as 

suitable for potentially abrasive products. 

DROP-OUT BOX 
ADAPTOR 

Figure 1 0 5 Rotary Valve and Drop-out Box 

Figure 1
0
6 Blowing Seal or Blow Through Type of Rotary Valve 
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Chapter 1 Outline of Study 1.1.3 

1.1.3 Industrial Problems and Reasons for the Research 

Despite their widespread acceptance, industrial experience has shown 

that rotary valves used to feed pneumatic conveying systems commonly 

suffer from operating problems. Indeed, this has prompted the Head 

of Research and Development of the largest industrial chemical company 

in the United Kingdom to remark: ' ..... rotary valves are often the 

Achille's heel of pneumatic conveying systems.' Dobie (1). Positive 

pressure systems are particularly troublesome because of the adverse 

pressure gradient in which the valve must work. However, these problems 

are not always the fault of the valve itself but of the components it is 

connected to, and the way in which it interacts with them. For 

convenience the feeding system of a pneumatic conveyor may be divided 

into three regions: 

i) the interface of the supply hopper and valve; 

ii) the rotary valve; and 

iii) the interface of the valve and pipeline, commonly 
called the entrainment region. 

In a well designed feeding system the performance of these must be 

matched such that each is capable of passing the required throughput 

under the particular conditions of airflow and pressure. The interface 

of the valve and supply hopper and the valve itself have both been the 

subject of considerable previous research. As a result, it is now 

possible to estimate the performance of these areas with a reasonable 

degree of certainty. Unfortunately, this is not the case for the 

entrainment region about which there are many unanswered questions. 

These include: 

a) 

b) 

c) 

d) 

e) 

Is there a 'best' orientation of the valve with 
respect to the pipeline? 

Is the direction of rotation of the rotor in 
relation to the pipeline important? 

Is the size and shape of the drop-out box important? 

Does the air velocity in the entrainment region 
affect feeding performance? 

In what way do the characteristics of the material 
t " ? to be handled affect answers to the preceeding ques lons. 

-8-



Chapter 1 Outline of Study 1.1.3 

With systems being 'designed' in the absence of satisfactory 

answers to these questions, it is not surprising to hear comments such 

as that quoted from Reference 1. Some system designers have their own 

preferred arrangements for the entrainment region, largely based upon 

practical experience. However, these are often contradictory and 

invariably based on rather dubious reasoning. Consequently, there is 

a clear need to investigate the interaction between valve and pipeline 

in order to provide an independent and co-ordinating assessment of the 

parameters which are believed to affect entrainment. The principal 

objective of this thesis is to describe the outcome of such an 

investigation. 

1.2 Object of the Research 

The object of the research is to provide an explanation of the process 

by which rotary valves feed particulate materials into positive pressure 

pneumatic conveying pipelines. In particular, attention is focussed on 

understanding the interaction between the air and solids which takes 

place at the interface of the valve and pipeline. This is a crucial 

part of a pneumatic conveyor because it can directly influence the over­

all system performance. 

It is envisaged that the research will ultimately lead to the 

formulation of guidelines for use by industry. These will allow 

systems to be designed with a greater degree of confidence than is 

currently possible. 

1.3 Synopsis of Thesis 

Recent investigations into rotary valve performance and~urrent 

industrial practice regarding the interface of the valve and pipeline 

are reviewed in Chapter 2. The current 'state of the art' for 

predicting the performance of rotary valves is appraised, thus 

identifying areas requiring further investigation. 

need for the research expressed in Section 1.1.3. 

This endorses the 

Some initial flow visualisation studies are described in Chapter 3. 

This work used a model rig to observe the nature of the air and solid 

flows in the entrainment region of a pneumatic conveyor. These 

observations were used to determine which parameters should be more 
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closely examined in further experiments and indicate approaches for 

modelling the interaction between the air and solids. Chapter 4 

describes the models which were sub~equently proposed .. 

On the basis of this initial work, further experimental investiga­

tions were conducted on an industrial size test rig. The significant 

features of this rig are described in Chapter 5 and the experimental 

plan and presentation of results are discussed in Chapter 6. Chapter 

7 details the results of these investigations which are then used to 

appraise the mathematical models developed in Chapter 4. 

The final chapter evaluates the contribution of this research to 

explaining the interaction between rotary valves and pneumatic 

conveying pipelines and discusses its value to industry. On the basis 

of this evaluation, guidelines are recommended for the selection of 

suitable entrainment configurations. 

The thesis concludes with recommendations for further work. 

-10-



2.1 Introduction 

CHAPTER TWO 

REVIEW OF RECENT WORK AND CURRENT 
INDUSTRIAL PRACTICE 

Although rotary valves have been in widespread use for many years, 

research with a view to providing a rigorous understanding of how they 

work has only taken place in cGmparati vely recent times. This is 

probably because they are essentially simple devices and as such were 

considered unworthy of detailed investigation. However, with the use 

of these valves in modern process plant and conveying systems it is 

becoming more important to understand their characteristics and the 

way in which they interact with other system components. 

This chapter reviews the progress made by recent studies 

in understanding the operation of rotary valves and their use for 

feeding pneumatic conveying pipelines. Current industrial practice 

regarding the interfacing of valves and pipelines is discussed with 

examples of some proprietary drop-out box designs. The chapter 

concludes with an appraisal of the current 'state of the art' for 

predicting the performance of rotary valves. 

2.2 The Performance of Rotary Valves 

2.2.1 The Effect of Hopper Discharge Characteristics on Valve 
Performance 

The most ~imple concept of the way in which a rotary valve or feeder 

works is that the rotor pockets completely fill and discharge at 

regular intervals with material fed to them by a supply hopper. In 

such circumstances the volumetric feed rate (V ) is directly 
s 

proportional to the rotor speed (n) and is given by: 

V s = 
n 
60 

v 
o 

-11-
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Chapter 2 Review of Recent Work and Current 
Industrial Practice 

where n has the units of rev/min. This represents a measurable 

2.2.1 

quantity for any feeder, since the constant of proportionality (V ) 
o 

is the volumetric c.apaci ty of the pockets per revolution of the rotor. 

Alternatively, multiplication of this equation by a representative bulk 

density (Pb ) of the material filling the pockets gives the feed rate . 
on a mass basis (m ), that is: 

s 

. 
m 

s = (2.2) 

In practice the actual bulk density of the material in the rotor pockets 

is difficult to determine and consequently the 'poured' value is 

commonly used as an alternative. 

Although this approach for predicting the feed rate suggests that 

it increases continually with rotor speed, in practice it is limited 

by the maximum discharge rate of product through the interface of the 

supply hopper and the rotary valve, see Figure 2.1. 

.> 
I 

Q) 

~ 
CIS 

c:t: 

'0 
Q) 
Q) 

~ 

() 
'1"'1 
M 
~ 

~ ::s 
r-i 
o 
> 

I1l 

/ 
/ 

HOPPER DISCHARGE / 

CHARACTERISTIC~~ ............ ~ 

ROTARY VALVE 
CHARACTERISTIC 

- . 
Rotor Speed-n 

Figure 201 The Limiting Effect of the Hopper Discharge 
Characteristics on Volumetric Feed Rate 

Since there are operational limitations to the rotor speed, the 

th the valve 1'S usually less than the unrestricted maximum roughput of 

discharge rate of the hopper, especially when the material being 
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Chapter 2 Review of Recent Work and Current 
Industrial Practice 2.2.1 

handled is coarse and of a free flowing nature. However, with fine 

particle products this is not always so, particularly if the outlet of 

the hopper is subjected to an adverse air pressure gradient. Such 

conditions can lead to a situation where the hopper discharge rate is 

considerably lower than that obtained with coarser particles of the 

same density, see Figure 2.2. Whilst this is an area of considerable 

ongoing research, a unified approach to predicting the discharge rate 

from hoppers for all types of materials has yet to be developed. 

notable work in this field is given in References 2 to 8. 

Some 

.> 
I 

Q) 
~ 
Cd 
et: 
~ 
Q) 
Q) 
~ 

C) 
..-I 
J.4 
~ 
Q) 

§ 
~ 
o 
> 

Ul 

ROTARY VALVE 

• 
Rotor Speed - n 

Decreasing 
particle size 
and/or increasing 
adverse pressure 
gradient 

Figure 202 The Effect of Particle Size and Adverse 
Pressure Gradient on the Feed Rate 
Characteristics of a Hopper and Rotary 
Valve 

AI-Din & Gunn (9) recognised that hopper discharge characteristics 

could limit the maximum throughput of a rotary feeder and conducted a 

series of small scale tests which demonstrated this. Their results' 

showed that the feed rate was dependent on the feeder characteristics 

up to a certain rotor speed and dependent on the hopper characteristics 

above this speed. This may be taken as confirmation of the ideas 

suggested earlier in Figure 2.1. Furthermore, they showed that the 

feed rate at high rotor speeds was dependent on the size of the inlet 

port. This is illustrated by Figure 2.3 which shows their results 

for three different widths of the inlet port. By using a modified 

form of the Bever100 equation (5) for estimating the 
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W = width of inlet port 
(see Figure 2.4) 

Equation 

10 20 

Q 

0000 

QW=4.5mm 

Ow 3,5 mm 

• W = 2.5 mm 

30 
Rotor Speed (rev/min) 

2.2.1 

40 

Figure 2.3 Experimental Results of AI-Din & Gunn (9) for 500 ~ 
Glass Ballotini 

OUTLET PORT 

Figure 2.4 Rotary Feeder used by AI-Din & Gunn (9) 
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Chapter 2 Review of Recent Work and Current 
Industrial Practice 2.2.1 

flow rate of solids through an orifice, they were able to correlate 

their results for two materials and produce a general equation for the 

performance of the feeder. Unfortunately, the proportions of the 

feeder which they used for their experimental work were very different 

to those of the proprietary feeders which are used by industry. In 

particular, the length of the rotor and the angular size of the inlet 

port were both very small compared with industrial feeders, see Figure 

2.4. Consequently, the application of their work to conventional 

rotary feeders and valves is difficult to justify. For instance, if 

the dimensions of a typical 200 mm rotary feeder handling a free flowing 

material of 1.0 mm mean particle size are SUbstituted into their model, 

it predicts that the maximum feed rate occurs at a rotor speed of only 

10 rev/min. However, it is known from work referred to in later 

sections of this chapter that, in practice, the feed rate with such a 

combination of valve and material would continue to increase up to 

speeds of the order of 100 rev/min. The significant implication of 

this is that in the majority of industrial situations the discharge 

rate of the hopper will be greater than the take-away rate of the 

rotary feeder. In such situations there are other factors which 

limit the maximum feed rate and these will be discussed in the following 

section. 

2.2.2 Valve Filling Characteristics and the Concept of eritical Rotor 
Speed 

The first notable academic study of rotary valves was published in 

1970 by Jotaki & Tomita (10). This was the first of a series of 

papers by these authors specifically concerned with this subject. 

The equipment they used for their investigation enabled them to examine 

the performance of a rot.ary valve feeding against an adverse pressure 

gradient. The purpose of this was to simulate the conditions to which 

these valves are often subjected when used in process plant and 

pneumatic conveying systems. 

A diagram of their experimental r~g is shown in Figure 2.5. It 

consisted of a 150 mm drop-through rotary valve mounted between a 

supply hopper and receiving/weighing vessel. The parameters which 

could be varied were: - the head of material above the valve, the 

pressure in the receiving vessel and the speed of the rotor. 
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Figure 2.5 Experimental Apparatus used by Jotaki & Tomita 

They investigated the relationship between throughput and rotor 

speed both with and without an applied pressure gradient. In each 

case their results showed that there was a linear relationship between 

these two variables up to a certain rotor speed. Beyond this speed, 

the throughput was observed to decrease in the manner shown by Figure 

2.6. They argued that this behaviour was the result of the reduced 

time available for material to enter the rotor pockets and proposed 

the concept of a 'maximum rotor speed'. This being the speed at which 

the pockets are exposed to the inlet port only just long enough to 

allow complete filling. In a later study Reed (11) called this the 
--

'critical rotor speed' (n
crit

) and this is the terminology which will be 

used throughout this thesis. 

To explain their reasoning Jotaki & Tomita used two mathematical 

models of the pocket filling process; one applicable to speeds below the 

critical value and the other applicable to speeds above this. At 

lower speeds they assumed that the pockets completely fill and calculated 

the mass throughput simply as the product of rotor speed, volumetric 

displacement of the rotor pockets per revolution and the bulk density of 

the material. That is, the relationship given by equation 2.2, namely: 
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m 

s 
= 

2.2.2 

(2.2) 

Above the critical speed they used the equation of motion for a single 

particle in free fall to calculate the volume of material which can 

enter a pocket during the time (to> that it is open to the inlet port. 

This produced the following expression for the mass throughput: 

. 
m s = 

30 
n 

(2.3a) 

where g is the gravitational constant, w is the width of the inlet port, 

2 its length and Z the number of rotor blad~s as defined in Figure 2.7. 

Unfortunately the value of t which Jotaki & Tomita used to 
o 

derive equation 2.3a is only correct for the particular case where the 

angular size of the inlet port is equal to the rotor pocket pitch, 

that is, 2TI/Z radians. They put t equal to 60/Zn seconds, which is 
o 

the time taken for the rotor to turn through an angle equal to the 

pocket pitch. However, if the angular size of the inlet port is not 

equal to the pocket pitch, as is usually the case, to will be equal 

to 602/TId n seconds. This is the time taken for the rotor to turn 
r 
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r 

Figure 207 Dimensions of the Rotary Valve used in the Models 
Developed by Jotaki & Tomita 

through an angle equal to the size of the inlet port and thus is the 

effective duration for which the pocket is open to the inlet port. 

Reed (11) realised this and proposed a pocket filling model based on 

the free fall simplification in which he put t equal to 60~/TId n o r 
seconds. Consequently, he proposed the following expression for the 

mass throughput above the critical rotor speed: 

. 
m 

S 
= 

30 
n 

(2.3b) 

This is of more general applicability than the Jotaki & Tomita expression 

because it does not presume that the dimensjons of the inlet port and rotor 

pocket pitch are the same. 

Reasoning that both equation 2.2 and equation 2.3a are valid at 

the critical rotor speed (n ) Jotaki & Tomita equated them and 
crit ' 

solved for n to obtain an expression for that speed: 

n . 
cr1t 

= 

-18-
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Reed also proposed the same argument and hence produced the following 

alternative expression for n 't by the simultaneous solution of crl. 
equations 2.2 and 2.3b: 

2 i 
(1800 gwR. ) 
nd V 

r 0 
(2.4b) 

Although these expressiomsuggest that n . is only a function of 
crl.t 

valve geometry, Jotaki & Tomita's experiments showed it to vary with 

the type of material being handled and the pressure difference across 

the valve, see Figure 2.8. This discrepancy was the result of their 

decision to use a free fall model for speeds greater than the critical 

value. RealiSing this, they suggested that a coefficient be used to 

take account of the effects of air drag on the falling solids and the 

head of product above the valve. 

following modified relationships: 

Consequently, they proposed the 

and 

m 
s 

= 

n "t crl. 
= 

. . . . .. for n > n 
crit 

1800 gwR.)l 
(C1 ZV 

o 

(2.5) 

(2.6) 

Figure 2.9 shows how the critical rotor speed and throughput predicted 

by these relationships both vary with the coefficient Cl " Comparing 

this with the experimental results shown in Figure 2.8 it can be seen 

that the effect of reducing the value of Cl is broadly the same as 

increasing the pressure difference across the valve~ However, the 

precise shape of the characteristics is not predicted and the effect of 

pressure difference on throughput in the complete filling region is not 
4 

modelled, for example, see the results for glass beads, Figure 2.8b. 

This last effect results from the air leakage dilating the material 

entering the valve, thus reducing its bulk density and consequently the 

mass throughput. As the pressure gradient is increased so the air 

leakage increases, further exacerbating the problem. Jotaki & Tomi ta 

noted this behaviour but did not make any attempt to model it. The 

effect was not observed with soya beans, Figure 2.8a, presumably because 
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the large interstices between the particles of this material permits 

the air to escape without significant dilation. 

The usefulness of Jotaki & Tomita's modelling depends on the 

reliable determination of typical values for the coefficient C
1

. 

Unfortunately, this is Virtually impossible because it is a rather crude, 

all embracing factor, dependent on many variables. However, later work 

by these authors, References 12 and 13, showed that the critical rotor 

speed for granular materials is reasonably predicted by the simple free 

fall model. That is, putting C1 equal to unity in equation 2.6. This 

was confirmed by Reed (11), who conducted a similar investigation to 

Jotaki & Tomita. Reed's work suggested that the free fall model gives 

an upper limit to the value of the critical rotor speed which can only be 

attained with products having a mean particle size greater than about 

3.0 mm. For finer products he argued that it is necessary to consider 

the effect of other forces. In particular, that which results from 

the displacement of air by material as it fills the rotor pockets. 

This impedes pocket filling and thus reduces the critical rotor speed. 

Subsequently Reed developed a model which attempted to allow for this 

effect. 

Jotaki & Tomita also ~ecognised that the interaction between air 

and solids could restrict pocket filling, as evident from their decision 

to incorporate the coefficient C
1 

into their model. However, realising 

that this was an over simplistic approach, they later developed a 

refined model which avoided the need for such a coefficient. The 

following section describes this and also the model which was proposed 

by Reed. 

2.2.3 Pocket Filling Models which Consider the Interaction of 
Material with Air 

Jotaki & Tomita (12 & 13) produced a pocket filling model which 

considered the interaction of material and air by analysing the motion 

of a single particle falling under its own weight, in still air, and 

opposed only by air drag. 

is: 

m 
p = 

The equation of motion for such a particle 

m g - !p 
p a 
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where m is the mass of the particle, d is the particle diameter and p p 
Yp is the vertical distance fallen. By assuming the Stokes' law 

relationship for the drag coefficient they integrated this to obtain 

an expression for the distance which a particle falls in time t, that 

is,Yp(t): 

(2.8) 

The term t* is a function of the particle size, its density C: ) and 
p 

the dynamic viscosity of air (~). It is given by: 

= 

d 2 
~p 
18~ 

Since this has the unit of seconds, Jotaki & Tomita called it the 

particle relaxation time: 

(2.9) 

Making the questionable simplification that a body of particles 

will fall at the same rate as a single particle; they multiplied the 

expression for y (t) by the area of the inlet port (wi) in order to 
p 

calculate the volume (v) of material which enters a pocket as it passes 

the inlet. That is: 

v = wiy (t ) 
p 0 

(2.10) 

where t is the time that a pocket is open to the inlet port. Jotaki 
o * & Tomita put this equal to 60/Zn seconds. Further multiplying by 

Znp /60 they obtained the following expression for the filling rate, 
p 

and hence the mass throughput, ~f a valve operating above the critical 

rotor speed: 

* footnote: 

m = Zn p wigt t60 
- t (1 - exp (-60/znt*»1 

s 60 b * Zn * 

See discussion about t in section 2.2.2. 
o 
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Unlike their previous model, all the terms in this expression are, 

or can be derived from, measurable quantities. The material 

characteristics are taken into account by the particle relaxation 

time. 

Reed (11) used a similar method of analysis to Jotaki & Tomita 

but chose to consider the motion of a bed of particles displacing the 

air within a pocket rather than the air drag on a single particle. 

This approach is much closer to the situation in the real system. He 

wrote the equation of motion of the bed of particles as: 

P hAdC 
b dt 

= (2.12a) 

where C is the velocity of the bed of particles relative to a pocket 

of stationary air, ~h is the pressure difference across depth h of the 

bed and A is the horizontal area of flow. Re-arranging this equation 

he obtained a relationship for the acceleration of the bed: 

dC 
dt 

= (2.12b) 

Into this, Reed substituted an expression for the pressure drop per 

unit length (6P
h
/h), which had been formulated by Carman (14) for a 

fluid flowing through a bed of granular solids. This correlation was 

initially derived from considerations of the Hagen~oiseuilletreatment 

of laminar flow through circular ducts applied to the flow through 

homogeneous beds of stationary, granular, mono-sized solids. This 

allowed the expression to be written in the integrateable form: 

dC 
dt 

= g - KC (2.13) 

~ 

where K is a constant solely dependent on the characteristics of the 

solids and the dynamic viscosity of air. Reed called it the 'material 

characteristic factor', and it has an equivalent role in his analysis 

to that of the 'particle relaxation time' used by Jotaki & Tomita. 

The factor has the uni t of frequency and is given by: 

K = (2.14) 
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where £ is the voidage of the bed (1 - P /p ) and ~ is a particle 
b p 

shape factor. 

By integrating the equation for the acceleration of the bed , 

2.2.3 

Reed was able to obtain an expression for the vertical distance it 

travels in time t, that is Yb(t): 

(2.15) 

This is identical in form to the expression for Yp(t), equation 2.8, 

which was developed by Jotaki and Tomita, but with t. replaced by 

11K. This difference is very important because it means that yb(t) 

can be used to estimate the pocket filling rate without making the 

highly questionable simplification that a body of particles will fall 

at the same rate as a single particle. Consequently, Reed calculated 

the volume of material which enters a single pocket as: 

v = 
TId 

r 
w--

Z 
( 60R, ) 

Yb TId n 
r 

where d is the rotor diameter, TId /Z the rotor blade pitch and 
r r 

(2.16) 

60R,/TId n is the length of time that a pocket is engaged with the inlet 
r 

port. From this, he derived the following expression for the filling 

rate of a valve operating above the critical rotor speed: 

. Zn TIdr [60R, 1 60R,] 
m = 60Pb w - ~ --_ - - (1 - exp(- -- K» 

s Z K TId n K TId n 
r r 

(2.17) 

As with the free fall model, equating this or the equivalent Jotaki 

& Tomita expres~ion, equation 2.11, with the complete filling model 

enables the critical rotor speed to be predicted. Figure 2.10 shows 

how the predicted feedrate and critical rotor speed change with the 
. 

functions K and t •. From this it can be seen that when K is small, or 

t. is large, the critical rotor speed approaches that predicted by the 

free fall model. This is consistent with Reed's argument that the 

free fall model predicts an upper limit for the value of the critical 

rotor speed. 

The difference between feedrates, and hence critical rotor speeds, 

which are predicted by the Reed and Jotaki & Tomita models can be large. 
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This is illustrated in Figure 2.11 which compares the predictions of 

these models for similar materials. This difference occurs because 

t* and 11K are not the same for any given material. 

be demonstrated by comparing these two functions. 

This can easily 

Reed proposed that K could be calculated as: 

(2.18) 

This is based on the expression given earlier with E = 0.5, ~ = 1 
-5 2 

and ~ = 1.8 x 10 Ns/m. He justified this simplification on the 

basis that these represent typical values which are reasonable 

approximations for many different materials. If this is accepted and 

the same value of ~ is used to calculate t*, it can be shown that: 

= P d 2 /3 .24 x 10-4 
P P 

Hence, for any given material: 

= ~! K 

(2.19) 

(2.20) 

Consequently, for a given material, the critical rotor speed 

predicted by the Jotaki & Tomita model will always be greater than that 

which is predicted by the Reed model. 

2.2.4 Critical Rotor Speed Ratio (n ·t/n . max) 
cr1 cr1t 

The 'critical rotor speed ratio'was suggested by Reed (11) as a means 

of correlating experimental results obtained from different size 

feeders. It is the ratio of the actual or predicted critical rotor 

speed to the maximum critical rotor speed which is cbtained by equating 

the free fall and complete pocket filling models. 

Figure 2.12 shows the relationship between the critical rotor 

speed ratio and the material characteristic factor. Reed used this 

diagram to compare his model with the experimental data of four 

independent workers. From this he concluded that the model adequately 

predicts the critical rotor speed for coarse particle products which 

have a value of K < 1. That is, materials with a mean particle size 
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larger than about 3.0 mm and a typical particle density of about 
3 

1500 kg/m. For finer materials Figure 2.12 shows that the model 

fails to predict the behaviour of the real system. Reed attributed 

this to his decision to use the Carman equation in the derivation of his 

model. This equation is strictly only valid for the laminar flow of 

air through homogeneous beds of granular solids. Thus, it may well be 

considered to apply for materials with K < 10 but tor finer products 

with K > 10 such a-deCiSion is not justified. In this case the 

smaller interstices may only allow a limited amount of air to pass 

uniformly through the material; the excess air passing out of the 

system either in the form of a 'bubble' or through a preferential 

channel, depending on the cohesiveness of the material. If this 

happens, the resistance of the material to the displaced air would be 

less than that allowed for by the model. This, in turn, would result 

in a critical rotor speed higher than that predicted by the model and 

provide an explanation for the discrepancy between the experimental 

and predicted behaviour as shown in Figure 2.12. 

It is interesting to use a similar diagram to compare the model 

of Jotaki & Tomita (12 and 13) with the same experimental data. 

This is done in Figure 2.12, which shows the relationship between the 

critical rotor speed ratio and the particle relaxation time t*. As 

with the Reed model this shows that the agreement between the predicted 

and experimental behaviour is only satisfactory for large particle 

products. The reason for this is undoubtedly due to the decision to 

base the model on an analysis of single particle motion. As noted 

earlier such a simplification is highly questionable and Figure 2.13 

justifies this doubt. 

If Figures 2.12 and 2.13 are used to compare the predictions of 

the two models it will be seen that the Reed model is more conservative 

because it generally underestimates the actual critical rotor speed 

Whereas the Jotaki & Tomita model overestimates it. This is further 

confirmation of the earlier comment that the Jotaki & Tomita model 

predicts a larger critical rotor speed than the Reed model. 

Since neither of these models accurately describe the behaviour 

of the real system for all particle sizes, their use in industrial 

design is limited. Consequently, Reed proposed that a least squares 
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regression line could be drawn through the data pOints to form the 

basis of a design curve, see Figure 2.12. He argued that, if the 

experimental data is accepted as constituting a representative 

selection of materials, the curve can be used to predict the critical 

rotor speed ratio, and hence critical rotor speed, for any likely 

* combination of rotary feeder and material. 

2.2.5 Feed Rate below the Critical Rotor Speed 

Up to the critical rotor speed the feed rate characteristics of a 

rotary valve are broadly described by the complete pocket filling 

model. However, the use of this model alone generally leads to an 

overestimate of the actual feed rate. To obtain a better estimate, 

the usual method is to multiply the model by an empirical coefficient 

called the ~illing facto~ (a), that is: 

. 
m 

s 
(2.21) 

The filling factor is essentially a volumetric efficiency and 

varies with both rotor speed and material characteristics. Consequently, 

for equatio~ 2.21 to be of any practical use it is necessary to 

understand the dependence of a on these variables. 

Reed (11) showed that, in the case of rotary feeders, the filling 

factors for different materials could be correlated by plotting them 

against the rotor speed ratio (n/ncrit), see Figure 2.14. This is 

the ratio of the actual rotor speed to the critical rotor speed for a 

particular combination of material and valve. He proposed that this 

correlation could be used as a design curve to predict a for rotor 

speeds up to the critical value. 

* footnote: 

It should be noted that this design curve is strictly only applicable 
to rotarv feeders. This is because the original modelling only 
consider~d the displacement of air from the rotor pockets and did not 
allow for the additional retarding effect of the air leakage which 
occurs when the valve is used to feed across an adverse pressure 
gradient. A possible method of allowing for the effect of air leakage 
will be discussed in Chapter 4. 
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For rotary valves the situation is more complicated because a is 

known to vary with the pressure ratio across the valve; for example, 

see Jotaki & Tomita's results for glass beads shown in Figure 2.8b. 

The relationship between filling factor and pressure ratio is complex 

and particularly dependent on material characteristics. As a result, 

it is not possible to obtain a simple correlation such as that shown 

for rotary feeders in Figure 2.14. However, Reed demonstrated by 

experiment that the feed rate for a representatove selection of 

materials is a maximum at unit pressure ratio. Since the correlation 

curve of Figure 2.14 corresponds to this situation it may be taken as 

indicating the maximum likely performance of a rotary valve. 

To estimate the filling factor of a valve operating at pressure 

ratios between 1.2 and 1.6 Reed proposed the use of the diagram shown 

in Figure 2.15. This was constructed using test data which he obtained 

-30-



Chapter 2 
Review of Recent Work and Current 

Industrial Practice 2.2.5 

from experiments on four different materials. Arguing that similar 

materials handle in a similar way, he suggested th at this could be used 

to estimate the filling factors of th o er materials by classifying them 

by size and visual appearance against one of the test materials. 
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Figure 2.15 The Relationship between the Filling Factor and 
Rotor Speed for a Range of Materials as obtained 

by Reed (11) 

In their trade literature, rotary valve manufacturers sometimes 

show how to estimate the filling factor or their equiv~lent volumetric 

efficiency term. Often this is simply no more than an average 

efficiency curve drawn on a throughput versus rotor speed diagram. The 

information published by Westinghouse Systems Ltd (15) for their range 

of valves is a good example of this, see Figure 2.16. This states 

that: ' ..... The average efficiency curve is shown for guidance only and 

is for an "average" powder which is neither sluggish nor very free 

flowing and for a system with an adverse pressure differential across 
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2 1 
the rotor of 5 (lbf/in ). 

2.2.5 

A more complica~ed, bu~ not necessarily more accurate, method is 

used by the Smoot Co (16). They propose that the volumetric 

efficiency is calculated as the product of five different factors which 

are each dependent on one of the following parameters: 

i) product flowability, 

ii) pressure ratiO, 

iii) method of discharging product from the rotary valve, 

iv) type of rotor, and 

v) rotor speed. 

The values of these factors are determined by the use of the design 

graphs and tables shown in Figure 2.17. Although this appears to be 

a very comprehensive method of evaluating the volumetric efficiency, 

the simplicity of the design graphs and tables is somewhat disconcerting 

and probably underestimates the actual performance. This suspicion is 

confirmed by Figure 2.18 which compares the filling factor predicted 

by the Smoot Co method against the experimental results obtained by 

Reed. Also drawn on this figure is a line corresponding to the average 

efficiency curve suggested by Westinghouse Systems Ltd. This 

corresponds reasonably well with the results obtained for fine particle 

products and, when taken with the 100% filling efficiency line, forms 

a band which encompasses most of the experimental results. However, 

because the band is very broad, its use for predicting the filling 

factor for any specific material and operating conditions is limited. 

From the foregoing discussion it is apparent that although there 

are methods for estimating the filling factor of a rotary valve, it is 

very difficult to do-this with any degree of precision. Consequently, 

the use of these methods must be treated with considerable caution. 

Furthermore, it must be concluded that the only certain method of 

accurately predicting the feed rate of a rotary valve below the 

critical rotor speed is to test the particular combination of material 

and valve in question at specific operating conditions. 
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Figure 2.17 Tables used by the Smoot Co to size rotary valves 
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2.2.6 The Effect of Geometrical Configuration on Performance 

2.2.6 

Despite the many different shapes and sizes of rotary valves and feeders 

which are available, only two published works have included any 

information about the effect which geometrical configuration can have 

on performance. One of these has already been discussed in section 

2.2.1, that is, the work of AI-Din & Gunn (9) who investigated the 

effect of changing the size of the inlet port. However, as stated in 

that discu~sion, the proportions of the feeder which they used for their 

work were not typical of those used by industry. The other work on 

this subject was undertaken by Finkbeiner (17), who made and tested 
-several rotary feeders of similar capacity but with different geometries. 

The main parameters which he investigated were the size and position of 

the inlet port and the shape of the rotor blades. 

The dimensions of the basic feeder which Finkbeiner used for his 

work are shown in Figure 2.19. This shows that it was simi lar to the 

feeder used by AI-Din & Gunn, Figure 2.4, in the respect that it had 

a very short rotor; but in all other respects was of similar proportions 
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to the proprietary feeders used by industry. To obtain different 

configurations, the size and position of the inlet and outlet ports 

were adjustable and the rotor was interchangeable. The test material 

which he used was Summer Rape Seed. This is a free flowing material 

with a mean particle size of 2.0 mm and a bulk density of 675 kg/m
3

. 

The purpose of using such a material was to minimise the effect of 

material characteristics on the experimental results. 

Figure 2.19 The Rotary Valve used by Finkbeiner 

Finkbeiner's first experiments were designed to show how through-

put is affected by the size of the inlet port. For these he used 

the rotary feeder having a centrally positioned inlet. By varying 

the width of this inlet from 20 to 143 mm (12
0 

to 90
0

) he was able 

to demonstrate that the critical rotor speed, and hence the maximum 

potential throughput, could be increased as shown in Figure 2.20. This 

diagram also shows that the feed rate for speeds greater than the crit­

ical value inc~eases in approximate proportion with the size of the 

inlet. Both of these effects are consistent with the pocket filling 

models of Reed and Jotaki & Tomita which predict a similar trend if the 

term for the inlet port length (~) is varied. They are also consistent, 

but not directly comparable, with the findings of AI-Din & Gunn. 

Finkbeiner's experiments also demonstrated that the angular 

position of the inlet port is important in determining the critical 
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Figure 2.20 The Variation of the Volumetric Feed Rate with 
Rotor Speed and Inlet Port Length as obtained 

by Finkbeiner (17) 
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rotor speed and the maximum potential throughput. Figure 2.21 shows 

the effect of changing the angular position (~) of the inlet relative 

to the vertical centreline of the valve. Positive values of ~ refer 

to displacement of the inlet in the direction of rotation and negative 

values to displacement in the opposite direction. From this figure it 

is clear that the critical rotor speed and maximum throughput are both 

increased significantly when the inlet is offset in the direction of 

rotation. Finkbeiner attributed this improvement to a reduced level 

of collisions between the particles and rotor blades and the smaller 

acceleration forces needed to transfer material through a valve of 

this configuration. 

With regard to the shape of the rotor blades, Finkbeiner attempted 

to determine their optimum form by analysing mathematically the paths 

of single particles entering a rotor pocket. From this he concluded 

that curved blades would maximise the filling rate by minimising their 

obstruction to the material entering the pockets. To verify this he 

undertook an experimental study to compare the performance of a 

conventional straight bladed rotor and his curved bladed design, see 

Figure 2.22. 

Figures 2.20a and 2.20b compare the experimental results which he 

obtained with these two rotors when fitted in a housing with a central 

These show that for any given inlet port length, the 

critical rotor speed and maximum throughput are largest for the curved 

bladed rotor. This is more clearly illustrated in Figures 2.23 and 

2.24 which show respectively the variation of critical rotor speed and 

the variation of maximum throughput with respect to the inlet port 

length. From these figures it can be seen that, for an otherwise 

identical valve, the critical rotor speed and maximum throughput 

obtained with the curved bladed rotor are approximately 25% larger than 

those obtained with the straight bladed rotor. 

The comparative results which Finkbeiner obtained for the two 

rotors when fitted in a housing having an offset inlet are shown in 

Figures 2.2la and 2.21b. These show that although the feeder's 

performance with the curved bladed rotor can be improved by offsetting 

the inlet, the improvement is not as large as that obtained for a 

straight bladed rotor with the same offset. For 1 arge offsets (~> 30
0

) 
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Figure 2.22 The Straight Bladed and Curved Bladed Rotor Designs 
tested by Finkbeiner 
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this difference is such that there is little to choose between the 

performance of the two rotors. This observation is interesting 

because it indicates a practical and cheaper alternative to the curved 

bladed rotor for maximising the performance of a rotary feeder or valve. 

2.2.7 Air Leakage 

As discussed briefly in Chapter 1, there will always be air leakage 

through rotary valves as a consequence of the pressure gradient to which 

they are subjected. For valves which are used to feed positive 

pressure pneumatic conveying systems, this leakage represents a loss of 

air from the system. Consequently, it is important to be able to 

predict the leakage so that the air supply equipment can be adequately 

sized. 

Most rotary valve manufacturers publish figures for air leakage 

losses in their trade literature, but these are usually for one specific 

rotor speed and invariably for the valve running empty; that is, not 

transferring any product. For the more usual situation, where the 

valve is not running empty, the information is far more vague. A 

typical example is the trade literature of the Smoot Co (16) which 

states that the actual leakage may be between 50% and 100% of the 

figures they quote for the valve running empty, depending on the product 

being handled. 

With the aim of providing a better general understanding of the 

parameters which affect air leakage, Reed (11 & 18) conducted an 

experimental investigation. From this he concluded that the air 

leakage: 

i) increases with increasing pressure ratio; 

ii) may be considered independent of rotor speed; 

iii) is a maximum when the valve is running empty; 

iv) reduces if the number of rotor blades is increased; 

v) reduces if the running clearances between the rotor 
and housing are made smaller. 

As a re?ult of his work Reed proposed a method for estimating the 

air leakage for any size of valve handling any product. His approach 

was to define a parameter called the 'leakage velocity' (u). This is 
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a notional velocity and is given by: 

2.2.7 

u = (2.22a) 

where VL is the volumetric leakage rate for a valve running empty, 

L is the rotor length and c is the clearance between rotor and 

housing. Using the leakage velocity, Reed was able to correlate his 

results with the design data of two rotary valve manufacturers 

(References 15 & 19) to produce the diagram shown in Figure 2.25. 

this it can be seen that the leakage velocity is only dependent on 

From 

pressure ratio and the number of rotor blades. Since the data from 

which this diagram is constructed was obtained from three independent 

sources and from many different sizes of valve with different internal 

clearances, Reed proposed that it could be used as a general design 

diagram for estimating valve leakage velocities. If this is accepted 

then the volumetric leakage rate for a valve running empty may be 

calculated from: 

(2.22b) 

This expression sets an upper limit to the leakage rate. To 

determine the actual leakage when the valve is transferring material 

Reed suggested that an empirical coefficient, called the 'material 

blockage factor' (b), be incorporated into the expression, that is: 

= buLc (2.23) 

Figure 2.26 shows the relationship between the blockage factor and 

particle size which Reed determined from his experimental results. The 

use of this, together with the leakage velocity diagram shown in Figure 

2.25, probably represents the best general method for estimating air 

leakage which is currently available. 
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2.3 The Performance of Rotary Valves used as Feeders for Pneumatic 
Conveying Systems 

All of the research discussed in section 2.2 was concerned with 

explaining the isolated performance characteristics of rotary valves. 

That is, their performance when unrestricted by inlet and outlet 

conditions. However, when these valves are used as feeders for 

pneumatic conveying systems it seems reasonable to expect that their 

performance will be modified by the interaction with the supply hopper 

and with the conveying line. 

With regard to the interaction with the supply hopper, this has 

already been discussed in section 2.2.1 where it was stated that, 

at the present time, there is no unified approach for predicting the 

discharge rate of hoppers with all materials. The situation is further 

complicated if the rotary valve is being used as a feeder for a positive 

pressure conveying system because of the air leakage through the valve, 

and hence through the interface with the supply hopper. Reed (11) and 

Jotaki & Tomita (12 & 13) considered the effect of the interaction 

between material and air with respect to the pocket filling process of 

rotary feeders, but did not extend their modelling to consider 

the case of a rotary valve operating in an adverse pressure gradient. 

In this situation it seems reasonable to argue that the air leakage will 

complicate the interaction between the material and air. 

considering this effect will be discussed in Chapter 4. 

A method for 

The interaction of rotary valves with pneumatic conveying lines is 

even less well understood than the interaction with the supply hopper. 

The work of the authors previously mentioned did not consider this 

problem and their experimental rigs did not adequately simulate the 
-

feeding of a conveying line. For example, see Figure 2.5 which shows 

the rig used by Jotaki & Tomita. 

Masuda et al (20) studied the mechanism of material discharge from 

a rotary feeder, but their analysis and experiments were only 

applicable to the case of a feeder discharging into free air space. 

Ne~ertheless, for this situation, they were able to demonstrate that 

the rotor pockets do not always discharge completely and proposed a 

method for estimating the discharge efficiency. It is interesting to 

cocpare this discharge efficiency, which is dependent on valve geometry 
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and material characteristiCs, with the 'filling factor - 'rotor speed 

ratio' correlation obtained by Reed (11), see Figure 2.27. From this 

it can be seen that the agreement between the two is very good and 

this may be taken to indicate that below the critical rotor speed it 

is the discharge process which limits the performance of the valve. 

This is reasonable, since, by definition, there is time for the pockets 

to completely fill when the rotor speed is less than the critical value. 

Consequently, the Masuda model could be used as an alternative method 

to Reed's correlation (Figure 2.14) for estimating the volumetric 

efficiency of a rotary feeder operating below the critical rotor 

speed. If this is accepted then it seems reasonable to suggest that 

the filling factor would be more correctly termed the discharge 

efficiency or discharge factor. However, since the term filling factor 

is widely accepted, it is the terminology that will be used throughout 

this thesis. 

Apart from published work by the author (21) the only other 

reported study which relates to the interaction between a rotary 

valve and a pneumatic conveying pipeline is that by Moseman & Bird (22). 

They were conducting tests on a new type of polypropylene powder which 

was to be pneumatically conveyed in a positive pressure system. In the 

course of this work they found that the interface of the rotary valve 

and conveying line was restricting the feed rate of the polypropylene. 

In order to quantify the magnitude of this problem they tested a range 

of different drop-out box configurations and rotary valve to conveying 

line orientations, see Figure 2.28. 

The results of this investigation indicated that the depth of the 

drop-out box strongly influenced the throughput which could be achieved 

by the system. The deeper boxes giving greater potential throughput. 

Changing the orientation of the valve to the pipeline was found to have 

no perceptive influence on performance. In a private communication 

Moseman (23) stated that the throughput of the system with drop-out box 

'e' was 7% better than with drop-out box 'B'. He also stated that the 

performance of drop-out box 'A' was considerably worse than either 'B' 

or 'C' although the difference was not quantified. 

It is clear from this review that little research has been under­

taken with the aim of understanding the interaction between rotary 
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Figure 2.27 Comparison of the Discharge Efficiency Curve 
Predicted by Masuda's modelling with the Filling 
Factor Correlation obtained by Reed 

valves ~d pneumatic conveying pipelines. Despite the lack of 

quanti-tative information, the" work of Moseman & Bird is interesting 

because it confirms that the interface of the valve and pipeline is a 

potential problem area. This is also clear from the number of 

differentdro~out box designs which are m~ufactured. Current 

industrial practice with regard to the interfacing of rotary valves 

with pneumatic conveying pipelines is discussed in the next section. 
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2.4 Current Industrial Practice with respect to the Interfacing of 
Rotary Valves and Pneumatic Conveying Pipelines 

Over the years many articles have been published by industrialists 

about the selection and application of rotary valves, see References 

24 to 30. However, these articles have generally contained very little 

information regarding the interfacing of these valves with pneumatic 

conveying pipelines. Consequently, it is useful to examine current 

industrial practice in order to assess their approach to this problem. 

The first, and most obvious, distinction which is appareLt between 

the different methods of interfacing rotary valves with pipelines is 

the use of two different types of valves. These are, the conventional 

'drop-through' valve and the 'blowing seal'. As described in Chapter 

1, the drop-through valve must be fitted with a 'drop-out box' in order 

to make the junction between its outlet and the pipeline, whereas the 

blowing seal is connected directly into the pipeline, see Figures 2.29a 

and 2 .29b. 

The blowing seal is normally used for cohesive or adhesive products 

which will not readily fallout of the pockets of a drop-through valve. 

Since the airstream is directed through the rotor pockets, this type of 

valve can only be arranged with the rotor shaft parallel to the 

conveying pipeline. However, there is at least one variant of the 

blowing seal in which the conveying air is supplied through the valve 

end plates. Such a valve is the subject of a United States patent 

(Reference 31) originally held by the Atkinson Bulk Transport Co. 

The C.E.A. Carter Day Co (32) now manufacture a valve of this 

configuration and, as can be seen from Figure 2.29c, it could be 

considered as a combination of the blowing seal and drop-through valve. 

An interesting variation between the blowing seals produced by 

different manufacturers is the level at which the pipeline intersects 

the rotor pocket chambers. Figure 2.30 illustrates this poict. 

Figure 2.30a shows a configuration where the complete cross-sectional 

area of the discharging rotor pockets are exposed to the airstream. 

This arrangement is used by Westinghouse Systems Ltd (15) for their 

d ·t h the obv1'ous advantage that all the air blows range of val ves an 1 as 

through the pockets, thus maximising the chances of completely 

discharging the product. 
However, it also has the disadvantage that 

high velocity air will pass over the internal surfaces of the valve. 
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Figure 2.29a Conventional Drop-through Rotary Valve and Drop-out 
Box 

Figure 2.29b Blowing Seal 

Figure 2.29c Combination of the Drop-through and Blowing Seal 
Types 
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If abrasive products are being handled this could lead to severe wear 

problems, particularly on the end plates. Consequently, some other 

manufacturers prefer a compromise whereby not all the air passes through 

the pockets, see Figure 2.30b. The blowing seals produced by Rota­

Val Ltd (33) are a good example of this. The other configuration 

which is sometimes seen is that shown in Figure 2.30c. In this 

arrangement the pipeline passes completely underneath the rotor and 

the airstream does not directly purge the pockets. Bush and Wilton 

Val~es Ltd (34) produce a blowing seal of this deSign, which could be 

considered to be a drop-through valve with an integral drop-out box. 

Blowing seals which are used for feeding abrasive products are 

sometimes designed with a rotor and connecting pipeline similar to that 

shown in Figure 2.30d. This arrangement has the advantage that the 

conveying air is kept clear from the end plates and shaft seals. 

Markham (35) use a valve of this type for their ash handling and 

pneumatic stowing equipment and a development of this has been used for 

a system which pumps structural concrete, (References 36 & 37). 

To~achev et al (38) have also produced a similar design for the handling 

of dry construction mixes. 

While the mode by which material is discharged from the pockets of 

a blowing seal seems fairly obvious, that is by air purging, the same 

cannot be said for the drop-through valve. This uncertainty about the 

discharge and entrainment processes has led to a diverse range of 

drop-out boxes for use with these valves. For the same reason, the 

orientation of the valve with respect to the pipeline is also a matter 

about which there is little concensus of opinion. 

Figure 2.31 shows some of the drop-out boxes which are currently 

produced. The most common of these is probably the simple transition 

section shown in Figure 2.31a. This is usually about two pipe 

diameters deep and is no more than a fabricated junction box between 

the valve and pipeline. An example of this type of box is that pro-

duced by the Mucon Co (39). 

A variation to this basic design is to rake either or both the 

inlet and outlet faces of the box, Figure 2.31b. Presumably the reason 

. t guide the material in the direction of the for this design feature 15 0 

airflow. The 'F & R line loader' which is produced by Bush and Wilton 

-50-



Chapter 2 Review of Recent Work and Current 
Industrial Practice 

) 
Configuration 'a' 

) 
Configuration 'b' 

) 
Configuration 'c' 

2.4 
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Fi gure 2.30 Blowing Seal Configurations 
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Figure 2.31 Some Common Types of Drop-Out Boxes 
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Valves Ltd (40) is a typical example. Buhler Miag (41) also produce 

a drop-out box of this configuration but with the addition of a 

horizontal plate across half the length of the pipe opening, see 

Figure 2.3lc. The reason for this plate is not clear and it must be 

assumed that it has been developed as a result of practical experience. 

Another interesting drop-out box is the 'air blast' design 

produced by the Smoot Co (16), see Figure 2.31d. This uses a deflector 

plate to divert the airstream up into the rotor pockets. They claim 

that this improves the discharge of products which are sluggish and non-

free flowing. Waeshle (42) also produce a drop-out box which seems to 

have been designed through similar reasoning. Instead of the deflector 

plate they use a pipe to direct air towards the rotor pockets, see 

Figure 2.31e. 

If the air pressure at the outlet of the valve is considered to be 

a problem, a drop-out box which is designed on the venturi principle 

is often used. The purpose of this is to cause a local reduction in 

pressure in the drop-out box chamber and hence relieve the pressure on 

the valve. However, in practice, the reduction which can be obtained 

is restricted if an acceptable pressure recovery is to be achieved. 

Figure 2.31f shows a drop-out box produced by Bush and Wilton Valves Ltd 

(34) which is loosely based on the venturi principle. Rldmark UK Ltd (43) 

also produce a drop-out box of this type for their coal handling 

equipment. 

With regard to the orientation of the valve with respect to the 

pipeline and the direction of rotation of the rotor, individual 

companies have their own preferred arrangements but there does not 

_ appear to be any general agreement on this matter. The three basic 

orientations which are used are shown in Figure 2.32. Obviously some 

drop-out boxes are only intended for use in one particular configuration, 

the Smoot Co 'air blast' box is an example of this, but for others the 

best arrangement is not immediately clear. This situation is 

aggravated by the fact that there do not appear to be any methods for 

predicting the effect on performance of changing-the drop-out box 

and/or the valve orientation. The only published information on this 

subject is that contained in the Smoot Co catalogue, see Figure 2.17. 

In calculating the overall volumetric efficiency of their valves they 
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Figure 2.32 The Three Basic Rotary Valve 0 . rl.entations 
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critical rotor 
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Rotor Speed -
Figure 2.33 Current Models for Predicting the Performance of 

Rotary Valves 
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take into accout the method of discharging the product. Figure 2.17, 

Table V3 shows that for: blowing seals; drop-through valves fitted with 

their 'air blast' drop-out box; and drop-through valves with no drop-out 

box they use a discharge efficiency of 95%. For drop-through valves 

fitted with a conventional drop-out box (Figure 2.13a) they use a 

discharge efficiency of 90%. These figures appear to be rather 

arbitrary and the only other quantitative information which we have on 

this subject is the previously quoted statement of Moseman (23) that a 

deep drop-out box allowed a 7% higher throughput than a shorter design, 

see section 2.3. However, this finding is contradicted in a statement 

by Perkins & Wood (29), who state in an article about operational 

factors affecting rotary valves: 'Particularly when the material being 

handled is a powder, the drop from the feeder into a pressure system 

should be as short as possible. An excessive drop encourages 

entrainment of material and re-cycling to the rotor.' These conflict-

ing opinions are typical of the disagreement among the manufacturers of 

rotary valves and system designers. Consequently, it must be concluded 

that, in current industrial practice, there are no generally accepted 

methods for evaluating the effect on performance of valve orientation 

and drop-out box shape. 

2.5 The Current 'State of the Art' for Predicting the Performance of 
Rotary Valves 

From the discussions in the foregoing sections it is apparent that a 

considerable amount of research has been undertaken with respect to 

rotary valves and feeders. However, the majority of this research 

has concentrated on understanding the performance characteristics of 

these valves in isolation from downstream conditions. Their 

performance when used as feeders for pneumatic conveying systems has not 

been as extensively researched. Since this is prorrably the most 

common single use for these valves it is clear that there is a definite 

need for further research in this area. 

Figure 2.33 illustrates the current 'state of the art' for predict-

f rotary valves and feeders using the throughput­ing the performance 0 

rotor speed diagram. Curve A represents the typical characteristics 

of a rotary feeder which is not restricted by inlet or outlet conditions. 

From this it is clear that there is a maximum throughput which can be 
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achieved and two distinct operating regions; that is, where the 

throughput is proportional to rotor speed and where the throughput is 

inversely proportional to rotor speed. Line B represents the complete 

pocket filling model and curve C the incomplete pocket filling models as 

suggested by Reed (11) and Jotaki & Tomita (10, 12 & 13) for describing 

the valve performance in these two regions. The intersection of these 

two curves gives a prediction of the 'critical rotor speed' at which 

the throughput is a maximum. As can be seen,the actual feedrate below 

the critical rotor speed is overestimated by line B and curve D ~ives 

a better model of the performance. This is obtained by multiplying 

the complete pocket filling model by either the filling factor (a), 

which can be obtained from Reed's correlation shown in Figure 2.14; 

or the volumetric discharge efficiency determined by Masuda et al (20), 

Figure 2.27. The intersection of curves D and C then gives a better 

prediction of the critical rotor speed. 

The typical performance characteristics of a rotary valve are 

indicated by curve A' on Figure 2.33. As can be seen, this falls 

below curve A which is the corresponding characteristic for a rotary 

feeder. The difference between these two curves is the reduction in 

performance due to the air leakage through the valve. This leakage 

can be estimated by the method suggested by Reed, see section 2.2.7, 

but its effect on throughput is more difficult to determine. 

If the pressure ratio across the valve is in the range 1.2 to 1.6, 

the filling factor below the critical rotor speed can be estimated by 

Reed's design curves, see Figure 2.11. For other pressure ratios the 

method of calculation suggested by the Smoot Co (16) could be used, but, 

as has already been shown, this tends to un~erestimate the actual 

performance, see Figure 2.18. 

At present there is no adequate method for estimating the critical 
-

rotor speed of a rotary valve because there is no reliable model for 

predicting the feedrate above this speed. For large particle free 

flowing products the pocket filling models for rotary feeders could be 

used; but for finer products this will almost certainly lead to an 

actual feedrate because these models do not allow overestimate of the 

retardat ion effect which results froe the air for the additional 

leakage. 
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The erfect oi the hopper discharge characteristics on performance 

is shown by lines E and E' on Figure 2.33. If the discharge rate of 

the hopper is greater than the maximum take-away rate of the valve the 

hopper characteristic lies above the valve characteristic as indicated 

by line E. On the other hand, if the discharge rate of the hopper is 

less than the maximum take-away rate of the valve the feedrate will be 

restricted. This is represented in Figure 2.33 by the intersection 

of line E' and curve A' . At the present time there is no unified 

me:~od for predicting the discharge rate of hoppers, consequently 

accurate determination of the relative positions of the hopper and 

valve characteristics is difficult. However, in most practical 

situations the unrestricted discharge rate of the hooper is usually 

se¥eral times greater than the maximum take away rate of the valve 

and thus does not restrict the feedrate. 

The effect on performance of interfacing a rotary valve with a 

conveying pipeline is at present completely unknown. This, and a 

better understanding of the effects of air leakage on the pocket filling 

process, are the two areas which require further investigation before 

we can confidently predict the performance of a rotary valve used for 

feeding a pneumatic conveying pipeline. 
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FLOW VISUALISATION STUDY 

3.1 Introduction 

As a preliminary to any full scale test work and attempting to model 

the process of entrainment, an experimental study of the air and solid 

flows in a drop~out box was undertaken. This was considered essential 

because of the lack of published information and conflicting opinions 

on the subject, as discussed in Chapter 2. The presence of 'turbulence' 

in the drop-out box has often been reported by engineers involved in the 

installation and operation of rotary valves in pneumatic conveying 

systems. However, the exact nature of this turbulence and, more 

importantly, its effect on the performance of the conveying system, has 

never been quantified. 

The investigation took the form of a series of flow visualisation 

experiments. A transparent Perspex rotary valve and a small pneumatic 

conveying rig were specially constructed for this purpose. The aim of 

the investigation was to identify the nature of the air-solid flows in 

a drop~out box with a view to understanding the mechanism(s) of 

entrainment. It was anticipated that this would indicate the parameters 

which significantly influence the entrainment of material and thus 

suggest approaches for modelling this process. 

3.2 Description of the Experimental Rig 

A photograph and schematic diagram of the experimental rig used for this 

study are shown in Figure 3.1. Essentially it consisted of a small 

pneumatic conveyor incorporating a low pres~ure centrifugal fan to 

provide the air supply and a rotary valve as the solids feeding device. 

This valve was of the conventional 'drop-through' type and consisted of 

a transparent Perspex housing with a six pocket aluminium rotor 140 rom 

in diameter, see Figure 3.2. The valve was supplied with 
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Figure 3.1a Photograph of Flow Visualisation Rig 
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Figure 3.1b Schematic diagram of Flow Visualisation Ri g 
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Figure 3 . 2 Photograph of the Rotary Valve used for the 
Flow Visualisation Study 
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material from a variable speed screw feeder, which permitted the solids 

mass flow rate to be varied independently of the rotor speed. The 

material was fed into the conveying line through a drop-out box which 

fitted to the outlet of the rotary valve as shown in Figure 3.2. 

This was also constructed from transparent Perspex and was designed so 

thatit could be altered easily or changed to permit various entrain-

ment configurations to be obtained. The conveying line was a 5.5 m 

circuit of 50 mm nominal bore Perspex pipeing, arranged in a closed-loop 

with two bends in the vertical plane. This allowed the conveyed 

material to be returned to the screw feeder, thereby enabling the 

system to operate continuously. 

Tea leaves were used as the test materia l throughout all of the 

work. The principal characteristi c s of this product are shown in 

Figure 3.3. Being a soft material it minimised potential damage to the 

Perspex components. Also, its dark colour provided good contrast for 

video-tape recording of the flow patterns. 

Particle Size Distribution 30-1000 ~m 

Mean Particle Size 450 ~ 
3 

Particle Density 1420 kg/m 
3 

Poured Bulk Density 500 kg/m 
o 

Poured Angle of Repose 42 

Free Flow Handling Characteristics 

Photomicrograph 

F · 3 3 Pr1'ncipal Characteristics of the Tea Leaves used 19ure . 
as the test material 

Since the rig was primarily intended only for flow visualisation studies, 

the instrumentation was basic and did not allow accurate measurements of 

pressures and flow rates to be taken. However, the pick-up velocity 

could reasonably be determined to within ±0.5 m/s in a range of 0 to 

20 m/s and the solids mass flow rate to within ±O.Ol kg / s in a range of 

o to 0.15 kg/s 
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3.3 Description of the Entrainment Configurations Examined 

Four basic configurations of drop-out box were used for this work and 

these are illustrated in Figure 3.4. Box 'A' is the most simple of 

these and probably represents the most common design in current 

industrial use. It is a straightforward transition section with an 

overall depth of two conveying pipe diameters. Box 'B' is also a 

design which is in widespread use. It is similar to 'A' except for 
o the 45 rake on the downstream face. By the introduction of a 

partition into box 'B' , box 'e' could be produced. 

representative of designs which are in common use. 

Again, this is 

Box 'D' was 

obtained by fitting an extension piece between the flanges of the 

rotary valve and the drop-out box, thereby increasing the box depth 

to 5.5 pipe diameters. The inclusion of this arrangement in the 

experimental programme was prompted by the :work of Moseman & Bird 

(22 & 23), who reported that the drop-out box depth was an important 

variable with regard to maximising the throughput of their particular 

conveying system. 

By using drop-out boxes A, -B, C and D with the three basic rotary 

valve to conveying line orientations, see Figure 2.32, the nine 

different entrainment configurations shown in Figure 3.5 were 

obtainable. The flow patterns in each of these configurations were 

examined for a range of pick-up velocities (0 to 20 m/sec), rotor 

speeds (0 to 50 rev/min) and solids feed rates (0 to 0.15 kg/sec). 

3.4 Experimental Observations 

3.4.1 Air Swirl 

Entrainment flow patterns were recorded on video-tape and then studied 

in slow motion for the purpose of analysis. This revealed that 

although there are small differences between the flows in the different 

configurations, there is one dominant feature common to them all, that 

is, the presence of a very strong air swirl in the drop-out box chamber. 

Figure 3.6 shoWS a photograph illustrating this point. It is proposed 

that this swirl results from the shearing action of the fast moving 

airstream in the bottom of the chamber interacting with the captive air 

volume above it. If this is accepted, then it follows that the strength 

of the swirl will depend upon the magnitude of the air velocity in the 
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.. __ .J BOl 'A' 

Al A2 A3 

BOX 'B' 

Bl B2 

BOX 'C' 

Cl C2 

BOX 'D' 

Dl D2 

Figure 3.5 Entrainment configurations examined in flow 
visualisation experiments 
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Figure 3.6 Photograph of flow pattern in drop-out box . 
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pipeline just upstream of the drop-out box; commonly referred to as 

the 'actual pick-up' velocity, see Figure 3.7a. This can be considered 

to be analagous to a constrained wheel in contact with a moving belt as 

shown in Figure 3.7b. This concept of the method by which the air swirl 

is driven appeared to be confirmed by the experimental observations, which 

revealed that the flow pattern of the tea leaves was more strongly 

influenced by the air swirl as the pick-up velocity was increased. 

The presence of the air swirl is significant because it suggests 

that the conditions beneath a rotary valve which is used to feed a 

pneumatic conveyor are complex. Certainly it is clear that they are very 

different from the conditions in the experimental apparatus used to obtain 

most of the previous research data. That is, the rigs of Jotaki & Tomita 

Reed, Finkbeiner and Masuda (References 10, 11, 12, 13, 17 & 20). The 

swirl may also be an explanation for the 'turbulence' reported by 

industrialists and referred to in the introduction to this chapter. 

3.4.2 Observations - Box A 

The flow patterns observed in drop-out box A are shown in Figure 3.8. 

As previously mentioned the entrainment process was dominated by a strong 

air swirl. Even at low pick-up velocities (less than 12 m/s) , this 

swirl was strong enough to reCirculate and hold tea leaves in the box 

chamber for a significant period of time. The swirl was not significantly 

influenced by the direction of rotation of the rotor when the valve was 

mounted in configurations A1 and A2. However, in configuration A3 a 

twist was imparted to the swirl as shown in Figure 3.9. The sense of 

this twist was found to be dependent on the direction of rotation of the 

rotor. It is proposed that it is induced because the air leaks 

preferentially through the returning 'empty' rotor pockets. 

At pick-up velocities between 15 and 20 mls the air swirl was strong 

enough to lift large quantities ~f tea into the upper regions of the drop-

out box. With certain configurations, especially Al and A3, this led 

to recapture of tea in the returning empty pockets as shown in Figure 

3.10. This reduces the volumetric efficiency of the valve and results 

in less material being supplied to the conveying line. Recapture was 

not observed with configuration A2, that is, where the valve is arranged 

so that it initially discharges tea over the downstream half of the drop-

out box. A possible reason for this is that in this arrangement the 
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CONVEYING AIR 

Figure 3.7a 

Figure 3.7b 

AIR IN DROP-OUT BOX 
CHAMBER TURNED BY 
CONVEYING AIR IN 
PIPELINE BELOW . 

WHEEL IN CONTACT WITH 
MOVING BELT MADE TO 

ROTATE 

Figure 3.7 Air Swirl in the Drop-out Box 
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) Rotation 

Air & Tea ------- _Air 

Al 
Figure 3.8a 

Rotation 

Air & Tea Air --------
A2 

Figure 3.8b 

Figure 3.8 Air and Solids Flow Patterns observed 
in Drop-out Box A 
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Rotation 

Tea caught by 

Figure 3.9 Twist imparted to air swirl in configuration A3. 

Tea thrown 
back into 
pocket by 
air swirl 

Tea 

Figure 3.10 Recapture of tea in rotor pockets. 
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swirling airstream tends to carry the tea leaves away from the rotor 

pockets. Also the tea flows into the box chamber in the form of a 

sheet, see Figure 3.Sb, thus effectively shielding the returning rotor 

pockets from particles in the air swirl. 

3.4.3 Observations - Box B 

The flow patterns observed in the entrainment configurations using 

drop-out box B were essentially similar to those already described for 

box Ao The only significant difference was that the angled outlet face 

distorted the air swirl and caused the tea to be deflected back across 

the box at an acute angle. As a result of this it appeared that less 

material was recaptured by the returning rotor pockets. However, 

because of the limited instrumentation, this observation could not be 

quantified. 

3.4.4 Observations - Box C 

The flows observed in configurations C1 and C2 proved to be very 

interesting. At solids feed rates less than about 0.05 kg/sec the air 

was observed to set up a swirl in the drop-out box chamber similar to 

that previously described for the other configurations, see Figure 3.11a. 

However, at solids feed rates above 0.05 kg/sec and pick-up velocities 

greater than 15 m/s the method of entrainment was quite different. 

Under these conditions the tea leaves were observed to build-up on the 

ramp formed by the raked inlet face, eventually filling the drop-out 

box chamber and forming a bridge across the box outlet. In this 

situation the mode of entrainment is for small quantities of material 

to break-away from the unqerside of the bridge as shown in Figure 3.11c. 

The feed rate of the valve is then restricted because the material in 

the box obstructs the discharge of that in the rotor pockets. In this 
-Situation, reducing the rotor speed and/or the pick-up velocity was 

found to cause the drop-out box to blow clear. The mode of entrainment 

then reverts to that where the air swirl is dominant as illustrated in 

Figure 3.11a. These observations are interesting because they indicate 

that, in some circumstances, a drop-out box can restrict the throughput 

of a rotary valve. If this happens, the performance of the conveying 

system as a whole will suffer. 
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Rotation 
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Figure 3.11a 
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Figure 3.11b 

Figure 3.11 Flow Patterns in Drop-out Box C 
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An indication that this situation may sometimes arise in industrial 

systems is contained in a communication from Tyrrell (44). He stated 

that during commissioning trials of a rotary valve system for handling 

sugar, the required feed rate could not be initially achieved. 

Subsequent investigation suggested that the pick-up velocity being used 

was too high. When this was reduced the feed rate was found to 

increase. Tyrrell went on to say that in his mind there is:' •• little 

doubt that material can indeed be held up inside a drop-out box if the 

air velocity in the pipe beneath the box is too high' . While this is 

by no means conclusive evidence that the conditions in a drop-out box 

can restrict the performance of a conveying system, it is certainly 

consistent with the behaviour observed in drop-out box C. 

3.4.5 Observations - Box D 

When the deep drop-out box configurations, DI and D2,were tested the 

dominant air swirl was still found to be present. However, the flow 

patterns differed slightly from that observed in the shorter boxes 

because the air swirl was removed from the immediate vicinity of the 

valve discharge port, as illustrated in Figure 3.12. This had the 

effect of minimising the quantity of tea recaptured by the valve 

pockets. As previously mentioned, Moseman & Bird (22 & 23) found that 

a deep drop-out box was more effective than shorter designs and these 

observations provide a possible explanation for this. 

3.4.6 Valve Orientation and Direction of Rotor Rotation 

The effect of these variables has been briefly mentioned in the fore-

going sectiQns o Nevertheless, because they were observed to have a 

significant influence on the entrainment process they will now be 

discussed individually. 

For the deep drop-out box the observations revealed that valve 

orientation and direction of rotation had no apparent effect on through-

put. This was also the~conclusion reached by Moseman & Bird with 

regard to short drop-out boxes. However, the visual observations of 

this study appear to contradict their findings and suggest that there 

is a 'best' configuration for short boxes which can optimise the 
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Rotation 

Air Air 

Tea 

Figure 3.12 Flow Pattern in Drop-out Box D 

-73-



Chapter 3 Flow Visualisation Study 3.4.6 

feeding capacity of the system. To illustrate this point consider 

the diagrams shown in Figures 3.8 and 3.9. 

When the rotary valve was mounted with the rotor pockets parallel 

to the conveying line, Figure 3.9,. there was no preferred direction of 

rotation and product was easily recaptured ·in the rotor pockets. 

However, when the valve was mounted with its axis at 900 to the 

conveying line the preferred direction of rotation was as shown in 

Figure 3.8a, that is, configurations A2 and B2. This appeared to 

minimise the amount of product recaptured, for the reasons discussed in 

section 3.4.2. It is interesting to note here that an experienced 

designer of pneumatic conveying systems for a leading American company 

also favours this configuration, Gerchow (45 & 46). Gerchow does not 

give any reasons for this preference, but it is reasonable to assume 

that it has been arrived at through practical experience. 

3.4.7 Rotor Speed 

It is clear from the work discussed in Chapter 2 that rotor speed is 

the principal means of controlling throughput. However, in terms of 

entrainment performance it was found to be of little importance. In 

the case of the tea leaves used in this study, it was clear that the 

momentum imparted to the particles by the rotational motion of the valve 

rotor was swamped by the aerodynamic forces resulting from the swirling 

air. Consequently, the rotor speed had little effect on the material 

flow pattern in the drop-out box chamber. T~e following analysis 

demonstrates that this is likely to be the case for all materials if 

they are discharged from the rotor pockets as discrete particles. (The 

analysis is not valid for materials which discharge 'en masse'). 

Consider a particle of mass m 
p 

in a valve pocket rotating at an 

angular velocity of Wr as shown in Figure 3.13. On falling free from 

the constraints of the pocket and surrounding material the particle will 

1 2 2 l' f th have a component of kinetic energy equal to 2m W r resu t1ng rom e 
p r 

rotational motion. NOW, the largest radius at which the particle could 

still have been influenced by the motion of the pocket is that of the 

rotor (rr)' Therefore, the maximum kinetic energy which could be 

imparted to a particle by the valve rotor is given by: 

= 
2 2 im W r 

p r r 
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~particle of mass m 

Figure 3.13 Analysis of a single particle falling from a rotary 
valve pocket. 

The kinetic energy of the same particle when it has become 

entrained into the swirling air of the drop-out box is: 

(K. E ')b = 

where v is a typical particle velocity in the air swirl. 
p 

It is 

(3.2a) 

clear that v is difficult to determine exactly but it seems reasonable 
p 

to assume that it must have the same order of magnitude as the pick-up 

velocity. Therefore, for the sake of simplicity, let v = sV , 
p pu 

where V is the nominal pick-up velocity and s is the slip ratio, that 
pu 

is, the particle to air velocity ratio. We can then write: 

(K.E. )b = (3.2b) 

The ratio of the kinetic energies (K.E')r and (K.E')b will give an 

indication of the relative magnitudes of the forces acting on the 

solid particles in the valve pocket and in the drop-out box chamber. 
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where n = valve rotor speed in rev/min. 

3.4.7 

(3.3a) 

(3.3b) 

For the rotary valve used in this work r = 70 mm. Substituting 
r 

this into equation 3.3b and using a conservative value for the slip 

ratio of 0.1, the graph shown in Figure 3.14 was constructed. This 

shows how the kinetic energy ratio (K.E')b/(K.E')r varies with rotor 

speed and pick-up velocity. Despite the fact that the value used for 

the slip ratio is smaller than might be anticipated, the diagram shows 

clearly that, for the majority of conditions examined in the flow 

visualisation rig, the kinetic energy of a particle in the air swirl 

is at least an order of magnitude greater than that imparted to the 

particle by the rotor blades. Using a higher value for the slip 

ratio, say 0.8 as measured by Birchenough (47) for alumina particles in 

a vertical pipeline, would suggest that the difference is at least two 

orders of magnitude. Consequently, it is not surprising to find that 

the rotor speed has little effect on the material flow pattern in the 

drop-out box chamber. 

If similar calculations are performed for a size of valve commonly 

used in industry,. say 200 mm, it can be shown that the kinetic energy 

ratio would be about 2000:1 for a typical rotor speed of 30 rev/min and 

a pick-up velocity of 20 mise Therefore, it is reasonable to conclude 

that the effect of rotor speed on the material flow pattern in drop-out 

boxes fitted to such valves will be minimal, as was observed in the flow 

visualisation rig. 

This work, although simplistic in its approach, demonstrates 

conclusively that the forces acting on the product in the drop-out box 

chamber are overwhelmingly due to the interaction with the air swirl. 

Thus, it follows that it is not practicable to utilise the momentum 
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imparted by the rotor to 'throw' material in a preferential direction. 

The practical implication of this is that rotor speed cannot be used 

to significantly influence the trajectory of materials which are fine 

and easily entrained by the air swirl. However, this may not be the 

case with products that consist of large dense particles. 

~ 

'"' 

10 
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Figure 3.14 Variation of Kinetic Energy Ratio (K.E·)B/(K.E·)R 
with Rotor Speed and Pick-up Velocity for Rotary 
Valve used in Flow Visualisation Rig. 
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3.4.8 Air Velocity 

The 'pick-up' velocity of the conveying airstream was observed to 

influence both the product and the air flows within the drop-out box 

in two distinct ways. Firstly, when the velocity was less than about 

8 a/s the material was not entrained properly into the airstream. 

Operation below this velocity led to a build up of material in the box 

chamber, eventually causing a blockage. This behaviour is not 

surprising since the prediction of minimum air velocities for pneumatic 

con\"eying has long been the subject of considerable research. Some 

recent papers on this subject are given in References 48, 49 and 50. 

The second effect of 'pick-up'velocity is its direct influence on 

the strength of the air swirl in the box chamber. As the velocity was 

increased so the strength of the air swirl was also observed to 

increase. At high velocities it was noted that some of the tea 

particles collected in the extremities of the box chamber as a result 

of the swirl. In the case of drop-out box C this eventually led to 

the box becoming choked as was previously described in section 3.4.4. 

A possible explanation for this is discussed in Chapter 4. 

3.5 Concluding Remarks on and Implications of the Entrainment Flow 
Observations 

The most significant outcome of these experiments was the discovery of 

the swirling air flow pattern which dominates the entrainment of 

material into the conveying line. This swirl was present in all of 

the drop-out box configurations tested and its strength was found to be 

dependent on the 'pick-up velocity' of the air. In some cases it was 

found to cause recapture of product in the returning 'empty' valve 

pockets. However, the observations suggested that this could be 

minimised by the correct choice of drop-out bOX, valve orientation and 

direction of rotation. With the deep drop-out box recapture could be 

avoided almost completely. 

The implication of these observations is that both the geometry of 

the entrainment section and the conditions within it can have a 

significant effect on product feed rate and hence on the performance of 

the conveying system as a whole. This was taken as a justification for 

extending the research in order to quantify the effect of these 
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parameters on the performance of industrial systems. To achieve this, 

mathematical models of the entrainment process have been developed and 

further experiments performed using an industrial size rig capable of 

handling a wide range of materials. This work and the subsequent 

conclusions are detailed in the following chapters. 
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CHAPTER FOUR 

MODELLING OF THE INTERACTION BETWEEN ROTARY VALVES 
AND PNEUMATIC CONVEYING PIPELINES 

4.1 Introduction and Synopsis of Chapter 

This chapter proposes some methods for modelling the interaction between 

rotary valves and pneumatic conveying pipelines. The purpose of these 

models is to provide a means of quantifying the effect of this interaction 

on the performance of rotary valves and hence on the performance of the 

conveying system as a whole; thereby enabling the feed rate to be 

predicted with more confidence than is currently possible. A method of 

accounting for the effect of air leakage on the pocket filling character-

istics of rotary valves is also proposed. This is important to consider 

because valves which are used to feed positive pressure conveying systems 

are subject to an adverse pressure gradient. As discussed in Chapter 1, 

this gives rise to an air leakage which opposes the transfer of product 

and, therefore, should be taken into account when predicting the feed 

rate. 

The chapter is divided into three main sections. The effect of air 

leakage on the pocket filling characteristics of a rotary valve is 

discussed in section 4.2. This is considered first because it 

determines the maximum feed rate which can be achieved assuming that all 

the material which enters the pockets can be completely discharged. 

The performance of a conventional drop-through valve used with a 

drop-out box transition section is considered in section 4.3. The 

reasoning behind much of this work is based on the flow visualisation 

experiments described in Chapter 3. A simple model is proposed for 

estimating the volumetric entrainment efficiency of a given combination 

of rotary valve and drop-out box and a method for determining the 

conditions that lead to the drop-out box becoming choked is developed. 

Section 4.4 deals briefly with the interaction between the blow-through 

type of rotary valve and pneumatic conveying pipelines. 
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and Pneumatic Conveying Pipelines 4.1 

The chapter concludes with section 4.5 which summarises the models 

that have been proposed and their contribution to understanding the 

interaction between rotary valves and pneumatic conveying pipelines. 

4.2 The Effect of Air Leakage on the Pocket Filling Characteristics 
of a Rotary Valve 

4.2.1 The Problem 

Air leakage has long been recognised as having a limiting effect on the 

performance of rotary valves. However, to date, there are no accepted 

methods for evaluating this effect and consequently valves are often 

oversized in order to ensure that the desired feed rate can be achieved. 

For instance, Fischer (23) states that: 'In selecting a feeder which 

must serve as an airlock it should be sized so as to be capable of 

carrying out at least twice its theoretical rate.' This is obviously 

a very simplistic approach, but it serves to illustrate the lack of 

confidence which system designers have in predicting the performance of 

rotary valves. To emphasise this point, Stoess (51) gives an example 

which shows that even a valve 'oversized' by 100% will not necessarily 

guarantee an adequate feed rate. 

Reed (11) and Jotaki & Tomita (12 & 13) have both proposed models 

for the pocket filling characteristics of rotary feeders and these have 

been already discussed in detail in Chapter 2. Unfortunately, these 

models cannot be applied to rotary valves because they do not consider 

the situation where there is an adverse pressure gradient to cause an 

air leakage opposing the transfer of solids. In this section a method 

of evaluating the effect of air leakage on the pocket filling 

characteristics of a rotary valve is proposed. Essentially it is a 

more general form of the model which was developed by Reed for a rotary 

feeder. The important difference being the inclusion of a term which 

allows for the effect of air leakage. The implication of the model is 

that, depending upon the characteristics of the material being handled, 

increasing the pressure ratio across a rotary valve can significantly 

reduce the maximum potential feed rate and even cause a feed stoppage. 

This is consistent with the experience of industry and is the reason 

why proprietary rotary valves are often fitted with vents to divert 

the leakage air away from the inlet port. 
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and Pneumatic Conveying Pipelines 

4.2.2 The Model 

4.2.2 

It is known that when a rotary valve is used to feed material against 

an adverse pressure gradient, there is an inevitable flow of leakage 

air through the internal clearances. If the rotor shaft seals are 

effective and there is no means of diverting the air by venting, then 

it seems reasonable to assume that it will pass out of the system at 

the inlet port by percolating through the interstices of the material 

in this region. Furthermore, it is reasonable to envisage that this 

flow of air will impede the flow of solids into the rotor pockets and 

hence impede the pocket filling process. 

In an attempt to model this situation, the simplifying decision 

is made. that the air leakage is the only restriction to the flow of 

solids. The equation of motion for a bed of solids entering a rotary 

valve can then be written as: 

(4.1a) 

where ~Ph is the pressure difference across depth h of the bed and A is 

the horizontal area of flow as defined in Figure 4.1 
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Valve 
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and Pneumatic Conveying Pipelines 4.2.2. 

By re-arranging equation 4.1a a relationship for the acceleration 

of the bed with respect to the pocket can be obtained: 

dS 
dt 

= 
1 

g - (6P /h) -
h P p 

(4.1b) 

These two equations are the same in form as equations 2.l2a and 2.12b 

which were used by Reed. The difference being that S, the velocity of 

the solids bed relative to the pocket, is used instead of C, the 

relative velocity of the air and solids. This difference is important 

because it distinguishes the present general model from the version 

derived by Reed specifically for rotary feeders. Since there is no 

air leakage through a rotary feeder, Reed made the simplifying decision 

that the bed of solids could be considered as falling through stationary 

air in which case G = 0 and hence C = S. Consequently, it is clear to 

see that equations 2.12a and 2.12b are special cases of the general 

equations 4.1a and 4.1b. 

As previously discussed in Chapter 2, Reed substituted an expression 

for the pressure drop per unit length (6P
h
/h) into equation 2.12b in 

order to put it into an integrable form. The expression which he used 

was derived by Carman (14) for a flow flowing through a bed of granular 

solids. That is: 

l1p 
h 

h 
= 18011 C' (4.2) 

where E is the voidage of the bed (1 - p /p ), II is the dynamic viscosity 
b p 

of the interstitial air and ¢ is a particle shape factor which is unity 

for a sphere and less than unity for all non-spher~cal particles. Since 

this correlation was initially derived for fluid flow through homogeneous 

beds of stationary particles, the term C' refers to the velocity of the 

fluid relative to a fixed bed. However, for the purpose of this analysiS 

C' may be considered to be the same as the relative velocity of the air 

and solids in the moving bed above the inlet of the rotary valve. If 

this simplification is accepted then the Carman expression may also be 

used to write equation 4.1b in an integrable form,which then gives: 

dS 
dt 

= g - K(G + S) (4.3) 
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where (G + S) is the relative velocity of the air and solids above the 

inlet port and K is the 'material characteristic factor' which was 

defined by Reed as: 

K = 18011 (1 - £) 

Pp £3(d 4»2 
p 

(2.14) 

or alternatively in the simplified form, 

K = 1. 296 x 10-2/d2 

P Pp (2.18) 

From these expressions it can be seen that K is solely dependent on 

the characteristics of the bulk solid and the interstitial fluid. 

Therefore, provided that the air temperature, and hence the dynamic 

viscosity (11), are constant, K may be treated as a constant in equation 

4.3. The velocity of the air relative to the rotor pockets (G) may also 

be treated as a constant because it is dependent on the air leakage 

through the valve; which itself is constant for a given material, rotary 

valve, applied pressure ratio and head of solids. G can be estimated 

by dividing the equation proposed by Reed (11) for the air leakage rate, 

equation 2.23, by the effective horizontal area of flow, that is, the 

product A£. Thus: 

G = buLc/A£ (4.4) 

Integrating equation 4.3 twice, with the boundary conditions*: 

i) t = 0, S = 0 and 

ii) t = 0, Yb = 0 

gives the vertical distance yb(t) travelled by the bed of solids in 

time t. That is: 

yb(t) = : K£ [t - ~(1 - exp(-Kt»] (4.5) 

If this is compared with the equivalent expression derived by Reed for 

a rotary feeder, equation 2.15, it can be seen that they are identical 

except for the term K£. This is the term which allows for the effect 

* footnote: See Appendix II 
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of air leakage and is given by the relationship: 

= 1 - GK/g 

or substituting for G from equation 4.4 

= 1 - buLcK/A£g 

4.2.2 

(4.6a) 

(4.6b) 

If equation 4.6b is analysed it can be seen that the air leakage factor 

K~ is dependent on the characteristics of the material being handled 

(b, £ and K), the dimensions of the valve (L, c and A) and the notional 

leakage velocity (u) which is a function of the pressure ratio across 

the valve, see Figure 2.25. Since all of these parameters are readily 

obtainable it is a simple matter to calculate K~ for any particular 

combination of material, valve and pressure ratio. 

For a pressure ratio of unity, which is the operating condition for 

a rotary feeder, Figure 2.25 shows that the notional leakage velocity is 

zero. Substituting this into equation 4.6b gives the value of K~ as 

unity. Equation 4.5 then becomes equal to Reed's expression for a 

rotary feeder, that is, equation 2.15. This agreement between the two 

models is to be expected because of the similarity between the original 

propositions from which they are derived. It is also confirmation of 

the earlier statement that the Reed model is a special case of that 

proposed here. 

Having obtained equation 4.5 for determining Yb(t), the volume of 

material which enters a rotor pocket may be calculated using equation 

2.16, that is: 

-

v = [~l TId n 
r 

(2.16) 

From this, the following expression for the filling rate of a rotary 

valve operating above its critical rotor speed may be derived: 

m 
s 

= 
TId [ Zn r g 60£ 1 

- P w- - .K - - (1 - exp 
60 b Z K~ TId n K 

x., r 
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Below.the critical rotor speed m can be estimated by the following , s 
relationship: 

m 
s = (2.21) 

The use of these expressions then enables the relationship between 

feed rate and rotor speed to be predicted for any given combination of 

rotary valve, material and pressure ratio. Equating the expressions 

leads to a prediction of the critical rotor speed. 

4.2.3 Discussion 

Figure 4.2 shows how the relationship between feed rate and rotor speed 

varies with the leakage factor (K~), as predicted by equation 4.7. 

Also shown on this figure is the relationship between feed rate and 

rotor speed as predicted by equation 2.21 for various values of the 

filling factor (a). Since, for a given rotary valve and bulk solid, 

K~ is only a function of the air pressure ratio across the valve and a 

is only a function of the pressure ratio and rotor speed; Figure 4.2 

may also be regarded as showing how the feeding characteristics of a 

rotary valve vary with the adverse pressure gradient imposed by a 

positive pressure conveying system. From Figure 2.25 it can be seen 

that as the pressure ratio is increased so the notional leakage velocity 

increases. The effect of this is to reduce the value of K~ and hence 

the critical rotor speed as shown by Figure 4.2. 

Ultimately, if the pressure ratio is continually increased, K~ will 

become equal to zero and eventually take a negative value. The 

implication of this is that ~here is a critical pressure ratio at which 

the air leakage through the valve is sufficient to maintain a stationary 

bed of solids above the inlet port and thus stop the pocket filling 

process altogether, see the line for K~ = o in Figure 4.2. This is 

consistent with the experience of Stacey (52), who has stated that feed 

stoppages in rotary valve systems handling P.V.C. powder and Soda Ash 

are not uncommon. 

Experimental evidence that such a si~uation can occur is contained 

in a paper published by Jotaki et a1 (53). In this paper the authors 

report that a feed stoppage occurred in a rotary valve system handling 
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P.V.C. powder (d = 166 ~m) when the pressure ratio reached a critical p 
value. Figure 4.3 illustrates the actual relationship between feed 

rate and pressure ratio which they obtained. From this it can be 

seen that the feed rate was only zero at one particular pressure ratio, 

that is, approximately 1.05. Increasing the pressure ratio beyond this 

caused the feed rate to recover. A possible reason for the recovery is 

that the increased air leakage associated with the increased pressure 

ratio was sufficient to fluidize the P.V.C. and thus render it more 

free-flowing. If this is the case, it might also explain why the results 

indicate that the feed rates at pressure ratios above that corresponding 

to the stoppage condition are generally higher than those which were 

obtained at lower pressure ratios. In this situation the model proposed 

in section 4.2.2 is no longer applicable because the premise on which it 

was based is not valid; that is, that the air leakage impedes the flow 

of solids into the rotor pockets. 

Jotaki et al state that when the feed stoppage occurred the 

superficial air velocity through the cross-sectional area of the supply 

hopper was 0.017 m/s. They also give information about the bulk and 

particle characteristics of the P.V.C. from which it is possible to 

calculate the minimum fluidising velocity (U
mf

). For materials with 

a mean particle size between 50 and 500 ~m Woodcock (54) has suggested 

the following simple correlation for the minimum fluidising velocity: 

= 

where U
mf 

is measured in mis, Pp in 

correlation the calculated value of 

3 
kglm and d in m. 

p 
U

mf 
for the P.V.C. 

Using this 

* is 0.016 mls . 

Since this is almost exactly the same as the superficial air velocity 

measured by Jotaki et al at the feed stoppage condition, it suggests 

that fluidization was almost certainly the reason for the observed 

recovery of feed rate. This argument is strengthened by the fact that 

the P.V.C. is on the borderline between groups A and B in the Geldart 

classification for fluidization (55), which suggests that it will fluidize 

readily. 

* footnote: See Appendix III. 

-89-



Chapter 4 Modelling of the Interaction between Rotary Valves 
and Pneumatic Conveying Pipelines 4.2.3 

From the information given by Jotaki et al it is also possible to 

calculate the value of K£ for their system at the feed stoppage condition.* 

This should be equal to zero if the model accurately predicts the 

performance of the system. When the calculation is performed it shows 

that the value of Ki is approximately 0.05. Consequently, it may be 

argued that the model is in reasonable agreement with the actual 

performance of the system for this condition because 0.1 is close to the 

lower limit of the range of values which Ki may take, that is, 0 < K£ < 1. 

Ho~ever, it is evident from Figure 4.3 that this is not the case for 

other conditions because the characteristics of the P.V.C. are such that 

the actual variation of feed rate with pressure ratio is very abrupt and 

not gradual as the model suggests. 

To assess the usefulness of the model for materials which exhibit 

a more gradual variation of feed rate with pressure ratio Figure 4.4 

has been constructed. This compares the model predictions with 

experimental data obtained by Jotaki & Tomita (10) for soya beans. 

To determine the predicted characteristics the following procedure 

was used. Firstly, line A was constructed using equation 2.21. The 

feeding factor was taken as being 0.7, which is the value suggested by 

the work of Reed (11) and Masuda et al (20) for unit pressure ratio and 

unit rotor speed ratio, see Figure 2.27. Consequently, the intersection 

of this with curve B, which was obtained from equation 4.7 with Ki = 1.0, 

gives a prediction of the critical rotor speed at unit pressure ratio. 

For rotor speeds up to this critical value the throughput is predicted 

by curve C. This was constructed with the use of Figure 2.27 which 

shows how the filling factor varies with rotor speed ratio. Thus, the 

curve C-'B is the predicted characteristic for unit pressure ratio. 

For other pressure ratios the characteristics are obtained by 

putting the appropriate values of a and Ki into equations 2.21 and 4.7. 

However, as discussed in Chapter 2, there are no proven methods for 

determining a at pressure ratios other than unity. Consequently, 

curve C has been used for all the pressure ratios considered in Figure 

4.4. It is argued that this is justified because the experimental data 

with which the models are being compared was only obtained for relatively 

low pressure ratios, that is 1.1 or less. 

* footnote: See Appendix III. 
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It is immediately obvious from Figure 4.4 that, for pressure ratios 

up to about 1.05, the overall magnitude of the predicted characteristics 

is larger than that of the actual characteristics. This discrepancy is 

not surprising because it is consistent with predictions of the pocket 

filling model developed by Reed (11), equation 2.17, on which the present 

model is based. Reed's model overestimated the actual maximum feed 

rate by as much as 50% for large particle products. At pressure ratios 

greater than 1.05, Figure 4.7 shows that the leakage factor over-

compensates for the effect of air leakage. Consequently, the model 

underestimates the actual feed rate and predicts a feed stoppage at a 

pressure ratio of about 1.08. 

This inconsistency between the predicted and actual results suggests 

that the inclusion of the leakage factor into the pocket filling analysis 

does not produce an accurate model of the variation of feed rate with 

pressure ratio. However, if the relationship which defines the leakage 

factor, equation 4.6, is examined it will be seen that it includes two 

terms which are difficult to quantify with any degree of certainty; 

these are, the horizontal area of flow (A) and the voidage of the material 

entering the valve (E). The horizontal area of flow is difficult to determine 

because the junction between the supply hopper and valve does not usually 

have a uniform cross-section. It is interesting to note here that, in 

the case quoted previously for P.V.C. powder, the supply hopper used was 

a cylinder only slightly larger in diameter than the inlet port of the 

valve. This might explain why the model was in satisfactory agreement 

with the actual performance at the feed stoppage conditions. The 

voidage is important to determine precisely because the variation of the 

leakage factor with this parameter is significant. Unfortunately this 

is difficult to do because it is an implicit function of the air pressure 

gradient over the material and the interstitial air velocity, see 

equation 4.2. 

The evaluation of the leakage factor is further complicated because 

it is a function of the material characteristic factor (K). In Chapter 

2 it was" explained that the Carman equation, from which the material 

characteristic factor is derived, can only be considered valid for 

material which have a value of K < 10. That is, those which have a 

mean particle size greater than about 1.0 mID and a typical particle 
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3 density of about 1500 kg/m . The implication of this is that there is 

a limit to the range of materials for which the leakage factor can be 

determined. A possible means of overcoming this limitation is to use 

a more generally applicable equation for the pressure drop per unit 

length in a bed of solids in the development of the pocket filling model; 

for instance, that proposed by Ergun (56). 

= 
2 

150 (1 - E) 
3 

E 
+ 1.75 (1 - E) 

3 
E 

U 2 
Pa mf 

d 
p 

The problem with using such an equation is that it would not lead to a 

single simple material characteristic factor such as that obtained when 

the Carman equation is used. 

The inevitable conclusion of the foregoing discussion is that the 

present model cannot be used to reliably evaluate the effect of air 

leakage on the performance of rotary valves. Nevertheless, the trends 

which it predicts appear to be in good agreement with the observed 

performance of actual systems, see Figures 4.2 and 4.4. This may be 

taken as an indication that the form of the model is a reasonable and 

sound basis for further development. The derivation of alternative 

expressions for the material characteristic factor (K) and the leakage 

factor (K t ) are seen as the most likely methods of achieving this; 

possibly by using the Ergun equation as suggested above. However, 

further development of the model will not be discussed here because it 

falls outside the scope of this thesis. The justification for 

including the work presented so far is that the influence of air leakage 

on the filling characteristics of a rotary valve is a secondary effect 

of the interaction with a pneumatic conveying line and, under some 

circumstances, will be the limiting effect on system performance. 

This is particularly the case for the blow-through type of rotary valve, 

as will be discussed in section 4.4. Consequently, the development of 

an understanding in this subject is closely allied to the aims of the 

research, as stated in Chapter 1. 

-93-



Chapter 4 Modelling of the Interaction between Rotary Valves 
and Pneumatic Conveying Pipelines 

4.3 The Interaction between Air and Solids in a Drop-out Box 

4.3.1 The Two Different Modes of Entrainment 

4.3 

When a drop-through rotary valve is used as a feeder for a pneumatic 

conveying system the initial mixing of the air and solids takes place 

in the chamber formed by the drop-out box. In Chapter 3 experiments 

to identify the nature of the air and solid flow patterns in this 

chamber were discussed. These established that there are two distinctly 

different processes by which solids are entrained into the conveying air-

stream. 

i) 

These are: 

where a strong swirl dominates the interaction between 

air and solids; and 

ii) where the drop-out box becomes 'choked' with material 

and thus restricts the discharge rate of the rotary 

valve. 

Since many proprietary drop-out boxes are of similar design to those 

examined in this study, it is reasonable to assume that these modes of 

entrainment are typical of those which occur in many industrial 

systems. If this is accepted then it is important to quantify their 

effect on system performance. In this section two models are proposed 

which attempt to do this. The first proposes a method of quantifying 

the effect of the drop-out box volume on performance when the air 

swirl dominates the entrainment process. The second explains why the 

drop-out box can become 'choked' with material and provides a method 

of determining the conditions that lead to this situation. 

4.3.2 The Effect of Drop-out Box Volume on the Entrainment Process 

As a result of the flow visualisation experiments it is now known that, 

for a wide range of operating conditions and drop-out box configurations, 

the flow pattern in the drop-out box is dominated by a strong air swirl. 

In this situation material is entrained by the swirl and distributed 

throughout the box chamber. If the simplification is made that this 

distribution is uniform, it is possible to estimate an entrainment 

efficiency which is based on the comparative volumes of the drop-out 

box and of the comparative volumes of the drop-out box and of the rotor 
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pocket(s) which are open to the drop-out box when material is being 

discharged. 

Air 
Air 

---1_-. Sotids 

- Figure 4.5 Comparative volumes of the drop-out box 
and the rotor pockets open to the drop­
out box 

Consider Figure 4.5, which shows a section through a typical 

rotary valve and drop-out box. Two volumes, Vb and Vp are defined 

in this figure, Vb as the volume of the drop-out box and Vp as the 

volume of the rotor pocket(s) which are open to the drop-out box. 

The total volume of the drop-out box chamber is given by the sum of 

these individual volumes, that is, (Vp + Vb)' 

When the system is operating ideally, the contents of each rotor 

pocket are completely entrained into the airstream before the pocket 

closes. However, in practice this is unlikely to happen because 

material is held inside the drop-out box chamber by the air swirl. 

Furthermore, since the rotor pockets form part of this chamber, some of 

the material will be retained in them when they close. If the 

simplification is made that the distribution of material is uniform, 

then it follows that the quantity which is retained in the pockets, as 

a proportion of the total amount in the drop-out box chamber, will be 
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given by: 

v = oR 

v 
p 

(4.8) 

where V
R 

is the 'volume ratio' of the rotary valve and drop-out box 

combination. If the further simplification is made that steady state 

conditions exist in the drop-out box, the entrainment efficiency (n ) 'Ie 

may be calculated as: 

11 = (1 - V
R

) 100% (4.9a) 
e 

or alternatively, 

11 
Vb 

100% (4.9b) = e V + Vb P 

If steady state conditions do not exist, because the concentration of 

material in the drop-out box fluctuates significantly, this model will 

probably give an underestimate of the actual entrainment efficiepcy. 

It may also underestimate the performance of systems which have very deep 

drop-out boxes. In such cases it seems reasonable that gravity will 

cause a higher concentration of material in the bottom of the box chamber. 

Consequently, the decision to assume a uniform distribution of material 

is then questionable and less material is likely to be retained in the 

rotor pockets than the model predicts. Furthermore, the model can only 

be justified for those materials which are easily entrained by the air 

currents in the drop-out box. 

is unlikely to be correct. 

For other materials the initial premise 

Despite these limitations the significant implication of this 

analysis is that the rotary valve and drop-out box must be considered as 

one unit as far as the entrainment process is concerned. A possible means 

of classifying rotary valve and drop-out box combinations is provided by 

the volume ratio (V
R
), which is defined by equation 4.8. For a typical 

rotary valve and drop-out box two pipe diameters in depth, V
R 

usually has 

a value of 0.1 and thus the entrainment efficiency which can be expected 

is about 90%. 
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Another important implication of this analysis is that, for a 

given size of rotary valve, the throughput can be maximised by making 

the volume of the drop-out box (Vb) as large as possible; see equation 

4.9b. This is consistent with the observations of the flow visualisation 

study, Chapter 3, and the results obtained by Moseman & Bird (22 & 23). 

Indeed, it is interesting to use equation 4.9b to determine the 

entrainment efficiencies of the rotary valve and drop-out box combinations 

which were examined by Moseman & Bird. Illustrations of these are shown 

in Figure 4.6 along with their calculated volume ratios and entrainment 

efficiencies. As previously discussed in Chapter 2, Moseman & Bird 

found that the throughput of their system was improved by increasing the 

depth of the drop-out box. Thus, box 'C' was better than box 'B' and 

box 'B' was better than box 'A', which is in agreement with the predicted 

trend. Furthermore, Moseman (23) stated that the throughput obtained 

with box 'C' was 7% better than that obtained with box 'B'. This 

figure is very interesting because it is exactly the difference between 

the calculated entrainment efficiencies of these two arrangements. 

Unfortunately, Moseman did not quantify the performance obtained with box 

'A', only to say that it was considerably worse than with either box 'B' 

or box 'C'. On the basis of the analysis this comment is surprising, 

because there is only a 3% difference between the calculated entrainment 

efficiencies of boxes 'A' and 'B'. However, there are other factors 

which could make box 'A' a poor arrangement and these will be discussed 

in the next section. 

In conclusion, the proposed model appears to provide a simple method 

for estimating the discharge efficiency of a rotary valve and drop-out 

box combination. The only information which is needed in order to use 

the model are the volumes of the drop-out box and the rotor pockets. 

Despite this simplicity, the agreement with the only available 

experimental data, that is Reference 23, is very encouraging. However, 

this alone is not sufficient evidence to justify confidence in the model 

and hence further experimental data is needed for comparison. The 

results of an investigation to provide such information will be discussed 

in Chapter 7. 
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4.3.3 Explanation and Model for the Choked Flow Mode of Entrainment 

The flow visualisation work discussed in Chapter 3 showed that, under 

certain conditions, it is possible for the drop-out box to become 

'choked' with material and thus restrict the discharge rate of the 

rotary valve. The initial operating conditions which were found to 

result in this situation were a combination of high solids feed rate 

and high air velocity. Under these conditions the previously discussed 

air swirl was observed to restrict the rate at which material could be 

entrained into the airstream. Consequently, the material collected 

inside the drop-out box chamber and eventually led to the box becoming 

choked. In the discussion that follows a model is proposed to explain 

this behaviour and provide a method for determining the minimum air 

velocity which will cause choking. 

To explain the phenomenon of choking, take as a starting pOint the 

situation shown in Figure 4.7a, that is, where an air swirl dominates 

the flow pattern in the drop-out box. In Cha.pter 3 it was proposed 

that the interaction between this swirl and the conveying airstream 

could be likened to a constrained wheel in contact with a moving belt. 

Thus, increasing the velocity of the airstream will increase the angular 

velocity of the swirl. If this analogy is accepted, then it seems 

reasonable to propose that there will be an air velocity at which the 

centripetal force acting on the particles in the swirl will be sufficient 

to hold them in suspension. This will restrict the rate at which 

material is entrained into the airstream and thus result in a higher 

concentration of particles in the drop-out bOX, as shown in Figure 4.7b. 

If the concentration increases sufficiently this may lead to the drop­

out box becoming choked. However, for this to happen there must be a 

* transition from the rotational motion to a relatively static condition, 

see Figure 4. 7c. Consequently, the material must either have sufficient 

interparticulate strength to hold up inside the drop-out box, or, the 

air which percolates through the material as a consequence of the 

pressure difference across the valve must be sufficient to hold it in 

suspension. This point is important because it suggests a means of 

* footnote: The word 'relatively' is used because the material is not 

completely static in the choked condition. 
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classifying materials into two groups; that is, those which are, and 

those which are not, capable of choking. 

If the above reasoning is accepted as the correct explanation for 

why a drop-out box can become choked, then it is of value to know the 

minimum air velocity at which this will happen. The following analysis 

proposes a method of calculating this for any given drop-out box and 

bulk material. 

Consider a particle of mass m rotating with the air swirl inside 
p 

a drop-out box as shown in Figure 4.8. 

particle will be: 

The forces acting on the 

i) the centripetal force (F ) resulting from the rotational 
c 

ii) 

iii) 

motion; 

the air drag force (F
d
); and 

the weight of the particle (W ). 
P 

Figure 4.9 shows the two alternative paths of the particle when it 

crosses the boundary between the drop-out box and pipeline. If the 

resultant force acting on it is sufficient to hold it in suspension, it 

will follow path A and be lifted back into the drop-out box. However, 

if the resultant force is insufficient to hold it in suspension, then 

it will follow a path similar to B and become entrained into the conveying 

airstream. Mathematically, the conditions for these two alternatives 

may be written as: 

a) to follow path A, 

b) to follow path B, 

J
8

A 
sin8.d8 > W .d8 

-8 p 
A 
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These conditions are derived by resolving the forces acting on the particle 

in the vertical direction and integrating to sum the effect of the 

resultant along path Aj e is the angle between the particle and the 

radius vector R , as defined in Figure 4.9. p 
Now, since the particle is rotating with the air swirl, its velocity 

relative to the air will be very small and hence the drag term in the 

above expressions will be at least one order of magnitude smaller than 

the other two terms. Consequently, the following simplified conditions 

may be written: 

a) to follow path A, 

leA leA 
F cosS.dS > W .dS 

S c -S P 
A A 

(4.11a) 

b) to follow path B, 

rA 
A 

J \;d8 F cosS.dS < (4.11b) 
S c -S P 

A A 

2 
If the integrations are now performed with F replaced by m R wand c p p p 

W replaced by m g the conditions become: 
p p 

a) to follow path A, 

R 
2 

sin SA > gSA (4.12a) w 
p p 

b) - to follow path B, 

R 
2 

sin SA < gSA w p p 
(4.12b) 

is the angular velocity of the particle. 

~ 
w > (gS /R sin SA) 
pAP 

(4.13) 
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From the above expression it is clear that w is dependent on the 
p 

radial position (R ) of the particle. 
p For choking to occur, all the 

particles crossing the boundary between the drop-out box and pipeline 

must follow path A. Therefore, in order to determine the minimum 

angular velocity required for the drop-out box to choke (Wc ) it is 

necessary to consider the case where w is a maximum. 
p 

This will occur 

when the particle only just crosses the boundary between the drop-l..out 

box and pipeline, as shown in Figure 4.10. R is then a minimum and 
p 

w = c 

Consequently, W is given by: 
c 

where R is as defined in Figure 4.10. 
p min 

AIR & 

SOLIDS 

H 

Boundary between / 
:-----drop-out box 

and pipeline 

R . = HI'2 pm1n 

~ 
2 

R = H + 
pmax 4 

H/2 

Figure 4.10 Definition of drop-out box dimensions 
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To determine the conveying air velocity which is required to drive 

the mixture of air and solids at an angular velocity of w , it is c 
necessary to consider the geometry of the drop-out box and the energy 

transfer from the conveying airstream to the rotating mixture. The 

geometry of the box dictates where the centre of rotation will be and 

hence the maximum radius of rotation. If these are known, the kinetic 

energy of the rotating mixture may be calculated for any given angular 

velocity. Thus, by considering the energy transfer from the conveying 

airstream to the rotating mixture, the conveying air velocity which is 

needed to maintain an angular velocity of w may then be determined. c 
For simple drop-out boxes of the type shown in Figure 4.10 it is 

reasonable to suppose that the centre of rotation will be close to the 

intersection of the horizontal and vertical centrelines. If this is 

accepted, the maximum radius of the rotating mixture will be: 

R 
P max 

= 

2 ! 
+ a ) 
4 

where H is the height of the drop-out box and a is its length, as 

(4.15) 

defined in Figure 4.10. At this radius the peripheral velocity of the 

rotating mixture must be equal to w R if choking is to occur. 
c p max 

Thus, for any given drop-out box there will be a critical peripheral 

velocity (P ), above which the bQx will choke, that is: 
c 

or 

P c 
= 

P = c 

max 

min 

2 i 
g (H

2 
+ a ) 

2 H 

(4.16a) 

(4.16b) 

From these equations it can be seen that P is solely dependent on the 
c 

dimensions of the drop-out box. Consequently, it provides a means of 

comparing different shaped drop-out boxes in respect of their tendency 

to choke. In Chapter 3 it was proposed that the rotating mixture and 

conveying airstream could be likened to a constrained wheel in cODtact 

with a moving belt. If this analogy is accepted then it follows that 

a drop-out box with a high value of Pc will need a higher conveying 

air velocity to cause it to choke than will a box with a low value of 

P . 
c 
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Figure 4.11 shows the variation of Pc with drop-out box height 

(H) and length (a). This clearly shows that, for any given box 

height, Pc increases with increasing box length. Furthermore, it is 

clear that there is a minimum value of P for any given box length. 
c 

By integrating equation 4.16b with respect to H and equating the 

resultant to zero, it can be shown that this minimum occurs when the 

box height and length are the same, that is, H = a. Therefore, the 

analysis suggests that boxes of this shape will choke at lower conveying 

air velocities than boxes of other shapes. For any given box length 

the minimum value of P (P .) will be given by putting H equal to a 
c c m1n 

in equation 4.16b, hence: 

i 
Pc min = (ga) (4.17) 

Figure 4.12 shows the variation of P . with the drop-out box length 
c m1n 

(a) as predicted by the above equation. This definition of P . is 
c m1n 

useful because it can be used to normalize equation 4.16b. Consequently, 

a dimensionless form of the critical peripheral velocity may be defined: 

= 
1 H a i 
~(a+H) (4.18) 

where P* is the dimensionless critical peripheral velocity and is equal 

~P~ 
c c min 

From this equation it can be seen that P* is only a 

function of the ratio H/a, which could be thought of as a shape factor 

or aspect ratio for drop-out boxes. Figure 4.13 shows the variation 

of P* with the ratio H/a and provides confirmation of the earlier 

statement that the conveying air velocity which is needed to cause 

choking will be a minimum when H is equal to a. This diagram is useful 

because it provides a basis for comparison of experimental data obtained 

with different size drop-out boxes. 

From the definition of P*, it follows that: 

P = P* Pc c min 
(4.16c) 

This expression is interesting because it shows that Pc can be regarded 

as the product of two different terms, one of which is dependent on the 
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shape of the drop-out box (P.) and the other dependent on the size of 

the box (P .). 
c ml.n 

The implication of this is that it should be possible 

to scale experimentally obtained values of P for identicall\"" sha~. ed c . 

drop-out boxes. 

As a function of the critical peripheral velocity (Pc) and the 

maximum radius of rotation (R ) the kinetic energy of the air-solids 
p max 

mixture rotating at an angular velocity of Wc is: 

1 
p2 

c 
K.E. = -I 

as 2 as 
R 

2 
(4.19a) 

P max 

where I as is the moment of inertia of the rotating mixture. However, 

I = M K 
2 

as as as 

and 

K N R 
2 

= as as p max 

where M is the mass of the rotating mixture, K is the radius of 
as as 

gyration of the same and N is a numerical constant dependent on the 
as 

shape of the rotating mixture. 

simplified to: 

Consequently, equation 4.19a can be 

K.E. as 
(4.19b) 

Similarly, when air only is flowing through the drop-out box, it can be 

shown that the kinetic energy of the resultant air swirl is given by: 

or 

where I 
a 

K.E. a 

K.E· a 

g2V 2 
.!I p. 1,1. 

2 a R 2 
= 

P max 

1 2 2 = - M N s \' 
2 a a p.u. 

(4.20a) 

(4.20b) 

is the moment of inertia of the air swirl, M is the mass of a 
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the same, Na is a numerical constant dependent on the shape of the air 

swirl, V is the conveying air velocity and s is a slip ratio p.u. 
relating the peripheral velocity of the air swirl to V 

p.u. 

In order to determine the conveying air velocity at which the 

transfer of energy to the rotating air-solids mixture is sufficient to 

maintain an angular velocity wc ' the following simplification is 

proposed. For any given conveying air velocity, the energy transferred 

from the conveying airstream to the contents of the crop-out box 

chamber is always the same, regardless of whether the contents are an 

air-solids mixture or air only. If this is accepted, then it can be 

argued that the conveying air velocity at which K.E. is equal to 
a 

K.E. is that which is needed to rotate the air solids mixture at an as 
angular velocity of W. Equating the right hand sides of equations 

c 
4.19b and 4.20b and re-arranging gives the following expression for this 

value of the conveying 

V = c 

air velocity (V): 
c 

P [M N] i ~-~~ 
s M N 

a a 
(4.21a) 

In most cases the mass ratio M 1M will be satisfactorily 
as a 

approximated by the density ratio Pas/Pa because the size and shape of 

the air-only swirl and the rotating air-solids mixture will be similar. 

Unfortunately, it is not easy to see how the value of P could be as 
determined and therefore it is suggested that the poured bulk density 

(P
b

) be used as an alternative. This is not unreasonable because the 

drop-out box must be closely packed with material in order to choke. 

Consequently, the expression for V may be written: c 

V = P c [Pb N a$ ]' 
c s P N a a 

(4.21b) 

It could be argued that the expression be further simplified by 

assuming that the ratio N IN is unity. as a 
At first sight this seems 

reasonable if the size and shape of the air-only swirl and rotating 

air-solids mixtures are similar. However, because the rotating masses 

are not rigid bodies, there may be significant internal shearing taking 

place; particularly if the shape of the drop-out box chamber is not 
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square, that is, H ~ a. The effect of this would be to increase the 

energy required to maintain the rotational motion. Since the energy 

dissipated in the shearing will undoubtedly be greater in the air­

solids case than the air-only situation, the ratio N IN will probably 
as a 

be greater than unity. However, it is very difficult to see how its 

value could be determined with any degree of certainty. Consequently, 

the simplification that N IN is equal to unity cannot be justified, 
as a 

except perhaps for the case of a 'square' drop-out box (H = a) which 

would minimise the internal shearing. 

Since the value of the slip ratio (s) is also difficult to 

determine and the Simplification of putting Pals equal to P
b 

may not be 

completely correct, the following expression for V is suggested: 
c 

v 
c = C P (Pb/P ) c c a (4.2lc) 

where C is a dimensionless coefficient which allows for the internal 
c 

shearing in the rotating air-solids, the slip between the conveying 

airstream and the air swirl and the discrepancy in substituting P
b 

for 

Pas' It is proposed that if typical values of Cc can be determined 

experimentally for different shaped drop-out boxes and bulk materials, 

then equation 4.2lc could be used to predict V for similar 
c. 

arrangements. For the drop-out box which was found to choke during 

the flow visualisation experiments, that is box C in Figure 3.4, Cc is 

approximately 0.9. To ascertain whether or not this is a typical 

value for C further experimental data is needed. In Chapter 7 
c 

experiments to provide more data will be discussed as well as further 

development of the model proposed here. 

4.4 Blowing Seals 

The interaction between a blowing seal and a pneumatic conveying pipeline 

will be, in most cases, completely different to that previously discussed 

for the drop-through type of rotary valve. This is because the inter-

face between the rotor and pipeline is such that the conveying airstream 

is directed through the length of the rotor pockets rather than underneath 

them. There are a few exceptions to this, for instance the configuration 

shown in Figure 4.l4c. This type of blowing seal could be considered 
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as a drop-through type with an integral drop-out box. Therefore, the 

method proposed in section 4.3.2 for determining the entrainment 

efficiency of drop-through valve/drop-out box configurations could be 

reasonably applied to estimate the discharge efficiency of this type of 

blowing seal. For the more conventional types of blowing seal, 

Figures 4.14a, band d, this model cannot be used because the rotor 

pocket is part of the pipeline. Consequently, the drop~out box 

chamber volume (Vb) is effectively zero and hence the entrainment 

efficiency (n ) predicted by equation 4.19 will be zero. This is e 
obviously not the case and hence some other method of predicting the 

discharge efficiency must be found. 

One approach is to consider the distance which a pocket full of 

material moves during the time that it is engaged with the conveying 

pipeline, see Figure 4.15. If this is more than the length of the 

pocket the discharge efficiency will be 100%. 

discharge efficiency (nd) will be given by: 

= 
1 - x 

L 
100% 

If it is less, the 

(4.22) 

where L is the length of the rotor pockets and x is the distance which 

the material moves during the time interval that one pocket is engaged 

with the pipeline. 

L 

ROTOR 

.. ~ __ -+~.otation 

x PIPELINE 

Figure 4.15 Simple discharge model for a blowing seal 
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Unfortunately x is difficult to determine because it is unlikely 

that the material will move as a solid slug. Also, the pocket is not 

exposed to the pipeline instantaneously, but progressively as the rotor 

turns. Nevertheless, the following simple analysis is proposed to 

demonstrate that for most operating conditions nd is likely to be very 

close to 100%. 

First of all the simplification is made that the material will be 

instantaneously accelerated to the pick-up velocity of the conveying 

air (V ) when the pocket is engaeed with the pipeline. 
p.u 

The minimum 

time which a pocket must be engaged with the pipeline in order to dis­

charge all its contents (t . ) can then be estimated by dividing the 
m1n 

length of the rotor by the pick-up velocity, that is: 

t . m1n = L 
V 

p.u 
(4.23) 

The duration which a pocket is engaged with the pipeline (t ) can e 

be determined by considering the geometry of the valve and the rotor 

speed. For most proprietary blowing seals the angular size of the 
o 0 

outlet port is between 10 and 30. Consequently a conservative 

estimate for t will be given by: 
e 

t e 
= 

60 
n 

30 

360 

where n is the rotor speed in rev/min. 

(4.24) 

Equating these expressions for t. and t will give an expression 
m1n e 

for the maximum rotor speed that can be used if complete discharge is 

to be achieved (n ) as a function of the pick-up velocity,-that is: 
max 

n 
max = 

5V 
p.u 

L 
(4.25) 

Now, the minimum safe pick-up velocity for many materials is usually 

greater than 15 m/s. Therefore for a very large blowing seal with a 

length of say 1.0 m, n max 
would be of the order of 75 rev/min. This is 

far in excess of normal operating speeds because of pocket filling 

considerations. For the more common smaller sizes n is even larger, max 

for instance 375 rev/min for a 200 mm seal. Consequently, despite the 
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very simplified approach used in this analysis, it can be safely 

concluded that in most normal situations the discharge efficiency of 

a blowing seal will be very close to 100%. If this is the case, other 

factors will limit the performance characteristics; for instance, the 

effect of air leakage on the pocket filling process as previously 

discussed in section 4.2. In Chapter 7 experimental results which 

confirm this conclusion will be discussed. 

4.5 Summary 

In this chapter various models have been proposed for describing the 

interaction between rotary valves and positive pressure pneumatic 

conveying pipelines. On the whole these are rather simplistic in 

approach because of the simplifying decisions which are used in their 

derivation. These decisions were necessary in order to make any 

progress in modelling the complicated flow patterns revealed by the flow 

visualisation experiments. Even then the resulting expressions 

incorporate terms for which it will be very difficult to obtain any 

realistic values. However, despite these obvious limitations, the 

models indicate trends which appear to be in reasonable agreement with 

the limited amount of experimental data that is available and provide 

plausible explanations for some hitherto unexplained observations. As 

such it is considered that they provide a positive contribution to 

understanding the interaction between rotary valves and pneumatic 

conveying pipelines. 

In Chapter 7 the models will be examined further in the light of 

the results obtained from a purpose built experimental rig and in Chapter 
-

8 the application of the models to practical system design will be 

discussed. 
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CHAPTER FIVE 

INDUSTRIAL SCALE EXPERIMENTAL RIG 

5.1 Basic Concept 

In order to obtain reliable quantitative data on the interaction between 

rotary valves and positive pressure pneumatic conveying systems an 

experimental rig of industrial proportions was constructed. The need 

to use a rig of this size was considered essential because the results 

of the experimental work were intended to be of direct use to industry. 

A smaller rig would have necessitated scaling the experimental results 

in order to render them useful, but this was not regarded to be a 

satisfactory approach because the application of scaling factors to the 

entrainment process is not an established procedure. Although the 

models proposed in Chapter 4 suggested ways in which results could be 

scaled, these procedures cannot be applied until the validity of the 

models is proven. 

Following discussions with the industrial organisations collaborating 

in the research programme, it was decided that the rig should be a 

* positive pressure conveying system with the air supplied by a Roots-

type blower. This is probably the most common type of system in which 

rotary valves are used as the solids feeding device. Other requirements 

of the rig were versatility, in order to permit a range of entrainment 

configurations and operating conditions to be examined and, reliable 

comprehensive instrumentation. This chapter contains the salient details 

of the rig which was finally constructed. 

* footnote: See definition in Chapter I 
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5.2 General Description of Rig 

The rig which was constructed for the experimental part of this research 

was of a small industrial size, see Figures 5.1 and 5.2. The essential 

elements were a 175 mm rotary valve feeding a 70 mm bore pipeline 52 m 

long. 

At the point where air is drawn into the system a paper cartridge 

filter was used to prevent the ingestion of dust into the Roots-type 

blower. Between this filter and the inlet silencer of the blower was 

a 100 mm diameter pipeline containing two orifice plate flow ceters. 

These were used to measure the air flow into the system and are described 

in detail in section 5.4.1. 

The blower was driven by a 37 kW DC motor, the speed of which could 

be controlled by a proprietary thyristor rectified/controller unit. 

This enabled the air mass flow rate to be set to any required level 

within the performance range of the blower. The air was ducted from 

the blower through an outlet silencer into a small tank which was used 

as a distribution manifold. From this manifold the air could be routed 

in one of three ways: 

a) to supply air to a short conveying system which was used 
to load the supply hopper with new materials, line A in 
Figure 5.3; 

b) to supply air to a pipeline which was used to return 
material from the receiving hopper to the supply hopper 
after a test run, line B on Figure 5.3; and 

c) to supply the main conveying line, line C on Figure 5.3. 

Air entering the main conveying line flows through a non-return 

valve and then into a short length of pipe which connects with the inlet 

side of the drop-out box. Bulk solids are introduced into the drop-

out box by the rotary valve which is mounted beneath the supply hopper. 

These solids mix with the air in the drop-out box chamber and are then 

entrained into the conveying line. 

The overall length of the conveying line was 52m. This ~as made 

up of a 12 m horizontal acceleration run followed by a 4 m vertical 

lift and a further 36 m of horizontal pipe, see Figure 5.2. There were 

six bends in the system, two in the vertical and four in the horizontal 

plane. These were all right angled bends with a bend radius to pipe 
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Figure 5.1 Photograph of experi mental rig. 
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bore ratio of approximately 11. 

At the end of the conveying line the air and material were 

discharged into a receiving hopper. This was mounted on load cells to 

enable the total mass of solids conveyed to be monitored. The output 

from these load cells was recorded by a pen recorder and the solids . 
mass flow rate (ms ) was determined by measuring the slope of the 

resulting trace. The conveying air was exhausted to atmosphere through 

a bag filter unit which was mounted on top of the receiving hopper. 

At the end of an experimental run the test material was transferred 

from the receiving hopper back into the supply hopper by means of a 

short conveying line. A rotary valve on the bottom of the receiving 

hopper was used to feed the material into this pipeline, see Figures 

5.1, 5.2 and 5.3. 

5.3 Detailed Description of Key Components 

5.3.1 The Supply Hopper and Constant Head Tank 

The supply hopper for the rotary valve and drop-out box under test was 

a composite device. It consisted of a conventional cylindricalj 

conical hopper on to which was bolted a smaller cylindrical bin. The 

hopper was used to hold the main bulk of the test material (approximately 

2 m
3

) and had an included cone angle of 40
0

. This angle was chosen so 

as to encourage a mass flow type discharge pattern for a wide range of 

materials. The smaller bin was a device called the 'constant head 

tank' . As its name suggests its purpose was to provide an effectively 

constant head of material above the rotary valve. Jotaki & Tomita (51) 

demonstrated that the air leakage through a rotary valve is dependent 

on both the type of material being handled and the head of material above 

the valve. For this work it was decided that the air leakage should, 

if possible, be made invariant of the quantity of material in the hopper; 

thereby eliminating a variable which would otherwise complicate the 

analysis of the experimental results. 

necessity for a constant head device. 

This requirement led to the 

The concept of the constant head tank was quite simple. Where it 

was attached to the main hopper the diameter of the truncated cone was 

500 mm, see Figure 5.4. From this junction a cylindrical section, 

also 500 mm diameter, extended into the constant head tank to a depth 
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of 300 mm where it was cut off square. The purpose of this was to 

make the material flowing out of the cylindrical section dilate and 

expand to the 800 mm diameter of the constant head tank. This produced 

an annulus of material, the surface of which was approximately one metre 

above the rotary valve inlet. Since the air which leaks through the 

rotary valve will seek the line of least resistance through the head of 

material above it, it was argued that the preferential leakage path 

would be through the annulus in the constant head tank, rather than 

through the main bulk of material in the supply hopper, see Figure 5.4. 

Consequently, it was argued that this would enable an apparently constant 

head of material to be maintained throughout the duration of an 

experiment. The ratio of the annulus area to that of the outlet from 

the supply hopper was 1.2:1. 

A hose connected the space above the annulus to a bank of rotameters. 

This enabled the air leakage through this head of product to be measured. 

Another hose connected the air volume in the top of the main hopper to 

the rot ameters . The purpose of this was to measure the small amount ?f 

air which inevitably will leak through the main core of the material. 

Thus, the sum of these two air flows was the total air leakage through 

the rotary valve. 

At the base of the constant head tank was a hopper discharge device 

of the vibrating cone type (Reference 57). The purpose of this was to 

ensure a consistent supply of material to the rotary valve. The design 

of this device also contributes to the effectiveness of the constant head 

tank because the vibrating cone forces leakage air to flow radially 

outwards before it can percolate up through the material, see Figure 5.4 

_Another important feature of the supply hopper and constant head tank 

assembly was that it could be jacked up or down to accommodate different 

combinations of rotary valves and drop-out boxes without the necessity 

-to alter the configuration of the conveying pipeline. This was achieved 

by the use of four screwjacks in the legs of the supporting framework. 

The total vertical movement was 680 mm. 

5.3.2 The Receiving .Hopper 

The receiving hopper was of similar geometry to the cylindrical/conical 

section of the supply hopper. In common with the supply hopper it was 
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designed to accept a vibrating cone discharge device to ensure a 

consistent supply of material to the rotary valve used for discharging, 

see Figure 5.1. On the top of the hopper was mounted a bag filter unit. 

This discharged to atmosphere inside the laboratory and had a nominal 
2 

filtration area of 22.7 m , whichwas'more than adequate to handle the 

maximum capacity of the blower (18.5 m3/min at * o 1.013 bar absolute, 15 C) 

Both the supply and receiving hoppers were fitted with dust explosion 

vents. These consisted of large diameter ducts which extended out 

through the roof of the laboratory. In each of these ducts .as a cork 

tile,. the purpose of which were to act as sacrificial membranes in the 

event of a dust explosion. 

5.3.3 The Blower 

The air supply for the conveying system was provided by a Roots-type 

blower, manufactured Wade Engineering Ltd (59); type number SYR 113/ 

6369/HP, serial number 5400. This was driven by a 37 kW DC motor which 

allowed a maximum volumetric capacity of approximately 18.5 m
3

/min at 
o 

1.013 bar absolute and 15 C to be achieved at a pressure ratio of 1.8 1. 

The speed of the blower could be infinitely varied between 0 and 

2200 rev/min by means of a proprietary thyristor rectified/controller 

unit. This enabled the blower to be operated at any point within its 

normal operating envelope, thus permitting specific conveying conditions 

to be set up and examined. 

Figure 5.5 shows the performance characteristics for the blower 

which were obtained by the author during quality control trials at 

Wade Engineering Ltd. 

5.3.4 The Rotary Valves 

Two types of rotary valve were used for the experimental work. One of 

these was a conventional drop-through valve, the other was a blowing 

seal, as shown in Figures 5.6 and 5.7 respectively. These tTo valves 

were selected because, apart from the obvious differences bet~een a 

blowing seal and drop-through type, they have identical inte~~al 

3 2 * footnote: This gives a maximum air to cloth ratio of 0.81 ~ /min/m 
which is within the maximum values usually reco§Fe~ded2by 
the manufacturers of filter units; that is, 1 ~mln/~ 
for fine particles and dusty materials and 2 m /rin/m 
for coarse particles and granular materials (Reference 

58) . 
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dimensions. They were both standard proprietary designs manufactured 

by Westinghouse Systems Ltd (15). The drop-through valve was a type 

AS-175, serial nUmber HS0782 and the blowing seal was a type AS-175, 

serial number HS0782. The drive for these valves was provided by a 

550W electric motor fitted with a mechanical variable ratio reduction 

gearbox. Rotor speeds in the range 7 to 42 rev/min were obtainable 

with this arrangement. 

5.4 Instrumentation 

5.4.1 The Measurement of Air Mass Flow 

The measurement of air mass flow (m ) was achieved by the use of two 
a 

orifice plate, differential pressure meters. These were only chosen 

after careful deliberation. The reason for concern being the presence 

of pressure fluctuations in the air flow. These fluctuations are a 

result of the mechanical operation of the Roots type blower which 

causes four pressure fluctuations per revolution. It is well known 

that such disturbances affect the operation of orifice plate meters and 

can lead to erroneous results (References 60 & 61). However, after 

studying the available alternatives it was decided that orifice plates 

would be no less reliable than any other device used in this situation. 

Rallis & Marcus (62) reported the presence of two pressure pulses in 

a Roots-type blower/rotary valve conveying system. These were a low 

frequency, high amplitude pulse generated by the rotary valve and a 

high frequency, low amplitude pulse generated by the blower. For this 

reason it was decided to place the orifice meters on the inlet side of 

the blower. This effectively shielded them from the disturbances 

generated by the rotary valve, although they stillhad to operate in the 

presence of the disturbances generated by the blower. 

Jeffery (63) suggested the method of using two orifice plate meters 

of different area ratios and mounted in series. He said that if the 

disturbances generated by the blower were going to be a problem then 

there would be a significant difference between the flow rates indicated 

by these two meters. Consequently, it was decided to incorporate such 

a system into the experimental rig in order to assess the degree of 

confidence in the measurement of the air flow rate. 
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The use of two orifice plate meters with different area ratios 

also permitted a wider range of flow rates to be measured. To extend 

the measurement range further three orifice plates were made with orifice 

sizes of 40, 70 and 80 mm. These had area ratios of 0.155, 0.475 and 

0.620 respectively when fitted in the 101.6 mm (4 inch) bore inlet pipe. 

The orifice plates were of the corner tapping type and were manufactured 

and installed according to BS 1042 (64). 

Initial results showed a wide discrepancy between the flow rates 

indicated by the two meters. However, experimentation revealed that 

this was attributable to the use of long connecting tubes between the 

orifice plates and their respective manometers. These tubes were 

subsequently shortened and as a consequence the disagreement between the 

indicated flow rates was reduced to 5% or less over the useful range of 

air flows. Figures 5.Sa and 5.Sb illustrate the improved results. 

These are a plot of the percentage difference between the indicated mass 

flow rates of the two orifice plates as a function of the arithmetic 

mean of the two indicated flows. Figure 5.Sa compares the 40 mm and 

70 mm meters which are intended for the range 1 to 6 m
3

/min and Figure 

5.Sb compares the 70 mm and SO mm meters which are intended for the 

range 5 to 15 m
3

/min. 

5.4.2 The Measurement of Solids Mass Flow . 
The solids mass flow rate (m ) was not obtained by direct measurement 

s 
but by monitoring the mass of product in the receiving hopper. This 

was achieved by recording the output of the load cell system on a 

displacement - time pen recorder. The solids mass flow rate over a given 

time interval was obtained by measuring the slope of the resulting trace. 

Since the load cells were fitted to the receiving hopper the time delay 

between any change in feed rate at the rotary valve and that subsequently 

recorded at the receiving hopper had to be allowed for. 

5.4.3 The Measurement of Rotary Valve Air Leakage 

The air leakage through the rotary valve was measured by means of a bank 

of rotameters. The air was ducted from the constant head tank and 

supply hopper to a manifold which distributed it to four rotameters, as 

shown in Figure 5.9. By opening and closing valves in this manifold, 
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the required combination of rotameters for the expected leakage flow 

could be used. 

5.4.4 Other Measurements 

Instrumentation for measurements other than those already discussed 

was quite conventional. Pressure measurements were made with both 

manometers and electronic transducers. Initial measurements of the 

rotary valve speed were made with a stopwatch and then later by means of 

an optical switch and incremental encoder disc fitted to the output 

shaft of the variable speed gearbox. Temperature measurements were made 

with both mercury-in-glass and thermocouple instruments. 

An interesting measurement was that of the electrical power consumed 

by the blower drive motor. This was achieved by the use of a pair of 

galvanometers to measure the voltage and current being drawn by the 

drive motor for the blower. While strictly outside the scope of this 

thesis, this has resulted in the accumulation of a considerable amount 

of interesting data regarding the specific power consumption in pneumatic 

conveying systems. Some of this information has been published in two 

separate papers (References 65 and 66) . 

-130-



CHAPTER SIX 

EXPERIMENTAL PLAN AND PRESENTATION OF DATA 

6.1 Introduction 

The principal objectives of the experimental work using the industrial 

size rig were: 

a) to assess whether or not the flow patterns and modes 
of entrainment observed in the flow visualisation rig 
are also typical of those which occur in industrial 
systems; and, if so, 

b) to provide reliable quantitative data for testing the 
models developed in Chapter 4; and also 

c) to provide a set of reference data for estimating the 
performance of similar systems. 

To achieve these objectives, eight basic entrainment configurations 

and six different bulk materials were selected for experimentation. The 

plan was to examine the performance of the conveying system for each 

combination of material and entrainment configuration. The purpose of 

incorporating six different materials into the experimental programme 

was to obtain information about the effect of material characteristics on 

the entrainment process. This was essential if the work was to be of any 

practical value because of the diverse range of materials which are handled 

in industrial pneumatic conveying systems. A serious shortcoming of 

the flow visualisation work was that only one test material had been used. 

This chapter describes the entrainment configurations and materials 

used for the experimental work; outlines the experimental procedure; and 

explains the methods used for the presentation of the resulting data. 
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6.2 Description of the Entrainment Configiurations Used in the 
Experimental Programme 

6.2 

The eight basic entrainment configurations which were selected for 

experimentation were: 

A. conventional drop-through type of rotary valve which 
feeds material into the conveying line via a simple 
transition shaped drop-out box one pipe diameter in 
depth, Figure 6.1a; 

B. as configuration A but with a simple transition shaped 
drop-out box two pipe diameters in depth, Figure 6.1b; 

C. as configuration A but with a simple transition shaped 
drop-out box three pipe diameters in depth, Figure 6.1c; 

D. as configuration A but with an extension tube added 
between the flanges of the rotary valve and drop-out 
box to give a total depth of nine pipe diameters, Figure 6.1d; 

E. a conventional drop-through type of rotary valve which feeds 
material into the conveying line via a drop-out box 
consisting of a cylindrical chamber 110 mm in diameter 
and two pipe diameters deep, Figure 6.1e; 

F. as configuration E but with a cylindrical chamber 150 mm 
in diameter, Figure 6.1f; 

G. as configuration E but with a cylindrical chamber 180 mm 
in diameter, Figure 6.1g; amd 

H. a blowing seal type of rotary valve as shown in Figure 6.lh. 

L-...I ______ 1----. 
~D 

Figure 6.1a 

• 
2 

, I 

1 D 

- - -

• 
I 

Figure 6.1b 

Figure 6.1 Experimental drop out boxes 
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Figure 6.1h Blowing Seal 

Drop-out Box Box Aspect Box Volume Entrainment Critical 
box Length Height Ratio Volume Ratio Efficiency Peripheral 
config. Velocity 

a H H
/a Vb V

R T)e p* 

(mm) (mm) (-) (mL) (-) (%) (m/s) 

A 180 60 0.33 2590 0.29 71 1.72 

B 180 130 0.72 4020 0.23 77 1.36 

C 180 260 1.44 7100 0.15 85 1.37 

D 180 560 3.11 16740 0.07 93 1.74 

E 110 130 1.18 2930 0.29 71 1.05 

F 150 130 0.87 4070 0.23 77 1.22 

G 180 130 0.72 5160 0.19 81 1.36 

H nla nla nla nla nla nla nla 

Figure 6.2 Table of defining parameters ~or the eight drop-out 
box configurations used in the experimental programme. 

Figure 6.2 tabulates the defining parameters of these eight configurations 

as proposed in Chapter 4. For configurations A to G the rotary valve 

used was the 175 mm drop-through type described in Chapter 5 and 

illustrated in Figure 5.5. The blowing seal which was used for 
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configuration H is also described in Chapter 5 and illustrated in 

Figure 5.6. 

6.2 

The blowing seal and configurations A, Band C probably represent 

the most common arrangements in current industrial use, hence the reason 

for their selection. In addition to this, configurations Band Care 

similar to those used for the flow visualisation study and thus enable 

a direct comparison to be made with that work. Also in keeping with 

the flow visualisation work, the rotary valve could be mounted in one of 

three different orientations as shown by Figure 6.3. With the exception 

of the blowing seal, this enabled three variations to each of the basic 

configurations to be obtained which allowed the effect of different valve 

orientations to be investigated. 

Configuration D was obtained by fitting a 500 mm long tube between 

the flanges of the rotary valve and drop-out box. This gave an overall 

drop-out box depth of about nine pipe diameters and an aspect ratio of 

3.11. The reason for selecting this particular configuration was that 

it is approximately the same as that which maximised the performance of 

the system tested by Moseman & Bird (22 & 23); see drop-out box 'e' 

in Figure 2.28a of Chapter 2. 

The drop-out boxes used for configurations E, F and G were 

significantly different in shape from those used for the other configur-

ations described above. Instead of being a transition section they 

consisted of a simple cylindrical chamber two pipe diameters in depth. 

The purpose of testing these was to obtain information about the effect 

of changing the volume of the drop-out box chamber (Vb) while keeping 

the depth of the box (H) constant. By comparing this with the 

information obtained-from the exp~riments with configurations A, B, C 

and D, which have different volumes by virtue of their different depths, 

it was argued that the relative importance of Vb and H with regard to 
-

the entrainment efficiency could be established. 

6.3 Description of the Test Materials Used in the Experimental 

Programme 
The test materials used in the experimental programme were chosen to be 

a representative selection of the type of products that are typically 

. t ms which use a rotary valve as the handled in pneumatic convey1ng sys e 

solids feeding device. 
In order to ensure that this objective was 
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Figure 6.3 The three basic rotary valve orientations 
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achieved the industrial companies supporting the h researc were consulted. 

On the basis of their advice the following group of materials were 

selected: 

a) Polyethylene Pellets 

b) Polyethylene Powder 

c) Wheat Flour 

d) Ordinary Portland Cement 

e) Coal - 'singles' grade, and 

f) Coal - 'pulverised' grade 

All of these materials are well known and as a group probably represent 

the range of physical characteristics which are likely to be encountered 

with materials that are handled pneumatically. Consequently it was 

argued that the incorporation of these into the experimental programme 

would enable a comprehensive set of reference data to be established. 

If presented in a suitable way this would then enable the performance 

of similar systems handling other products to be estimated by inter-

polation. However, in order to do this it is essential that both the 

bulk and the particle characteristics of the six reference products are 

known. To satisfy this requirement photomicrographs and details about 

the bulk and particle characteristics of these products are given in 

Figures 6.4 to 6.9. 

6.4 Experimental Procedure 

The experimental plan was to test each combination of material and 

entrainment configuration for a range of rotor speeds and pick-up 

velocities. To achieve this five set rotor speeds were used, 7, 15, 20, 

30 and 40 rev/min and the pick-up velocity was varied between the 

minimum required to prevent the pipeline from blocking and a maximum of 

about 50 m/s. The procedure which was used is shown by the flow chart 

in Figure 6.10. By following this a complete set of measurements was 

obtained for each combination of material, entrainment configuration; 

rotor speed and pick-up velocity. The measurements recorded ~ere: 

i) the conveying air mass flow rate (ma ); 

ii) the solids mass flow rate (ms ); 
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iii) the rotary valve speed (n); 

iv) the conveying line pressure drop (~P~); 

v) the conveying air temperature at the solids pick-up point 
(Ta); and 

vi) the air leakage through the rotary valve (V
L

) 

To process these measurements a computer programme was written. 

This ensured consistency in the calculations and enabled the procedure 

reco~mended in B.S. 1042 (64) for the calculation of the air mass flow 

rate to be followed exactly. 

6.5 Presentation of the Experimental Data 

In considering the most appropriate method for presenting the experimental 

data attention was paid to the methods used by the manufacturers of 

rotary valves and blowing seals. They invariably present the 

performance charac~eristics of their valves in the form of graphs which 

sho~ the relationship between the volumetric throughput and the valve 

rotor speed. This is also the approach which has been used by previous 

researchers; for example, see the experimental results of Jotaki & 

Tomita (10) which are shown in Figure 2.8 of Chapter 2. 

Figure 6.11 shows an example of the performance characteristics which 

are published by Westinghouse Systems Ltd (15) for their range of valves. 

These are quoted as an example because the AS-175 and GS-175 curves on 

these diagrams refer respectively to the rotary valve and blowing seal 

used in this investigation. A 100% filling efficiency line and an 

average filling efficiency curve are shown for each size of valve. The 

100% lines are based on the assumption of complete pocket filling and 

emptying as modelled by equation 2.1 in Chapter 2, that is: 

v = V n 
o 

(2.1) 

The purpose of showing the average efficiency curves is to indicate 

the likely effect of the material characteristics and operating 

conditions on the performance of the valve. However, as explained in 

Chapter 2, these curves should be treated with considerable caution 

because the actual efficiency is dependent on many factors which are not 

adequately represented by a single curve of the type shown in Fi~re 
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From the relationship between the volumetric throughput and rotor 

speed another diagram may be derived. This is the relationship between 

the filling factor and rotor speed as used by Reed (11). The filling 

factor (U) is sometimes called the volumetric efficiency and as such is 

always equal to or less than unity. It is the ratio of the actual 

volumetric throughput to the maximum capacity of the valve at the same 

rotor speed. In other words, it is the outcome of dividing the average 

efficiency curve by the 100% efficiency line shown in Figure 6.11. 

Figure 6.12 shows the filling factor versus rotor speed curves for 

a range of different materials. This figure was produced by Reed for 

a 200 mm drop-through rotary valve. It indicates clearly that rotary 

valves do not handle all materials with equal effectiveness and emphasises 

the point made earlier that manufacturers' average efficiency curves 

should be treated with caution. 

In Chapter 7 the results obtained from the experimental work 

conducted with the industrial scale rig are presented in a similar way 

to those shown in Figure 6.12. The significant difference being that 

the term 'feeding' factor (y) is used instead of the term filling factor 

(U). The reason for this difference is that these results reflect the 

overall effectiveness with which material can be entrained into the 

conveying line. This distinguishes it from previous studies (References 

10, 11, 12, 13, 17 & 53) which concentrated only on understanding the 

pocket filling process and looked at this aspect of performance in 

isolation. Consequently, the feeding factor is a function of the 

entrainment configuration and conditions existing in the drop-out box 

as well as the parameters which determine the filling factor; namely, 

mater~al characteristics, rotor speed and the air pressure ratio across 

the valve. Graphs which show the variation of the feeding factor with 

entrainment configuration and pick-up velocity are also used in the 

analysis of the experimental results. 

Another important aspect regarding the presentation of results 

which must be clearly understood, is that the volumetric throughput of 

the rotary valve was not obtained by direct measurement-. To obtain the 

volumetric throughput for any given set of conditions the solids mass 

flow rate (~ ) must be divided by the appropriate bulk density for the 
s 

material in question. This step is not as straightforward as it first 

. t bulk density, that near the inlet region appears because the appropr1a e 
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of the rotary valve, is not known and not easily measured. To overcome 

this problem the 'poured' value of the bulk density was used to calculate 

the volumetric throughput. As a consequence of this decision the 

feeding factors which were subsequently calculated are almost certainly 

in error. However, this approach is justified because the derived data 

is readily usable; the poured' bulk density being a quantity which is 

easily measured using simple equipment. With the exception of the Singles 

Coal, the poured bulk densities quoted in Figures 6.4 to 6.9 were 

determined by pouring the material through a funnel into a one litre 

measuring flask. The poured bulk density was then calculated from the 

measured weight and volume of this sample. In the case of the Singles 

Coal the figure quoted was obtained from the National Coal Board. Their 

method of determining the bulk density is to fill· a 1m3 box with coal and 

then measure its weight. 

The final method which is used for the presentation of the 

experimental results is as shown in Figures 6.13 to 6.18, that is, the 

conveying system characteristics for each material. Since these were 

to be independent of the entrainment configuration, they may be 

considered as further information characterising the test materials; 

thus complementing the details given in Figures 6.4 to 6.9. The 

envelopes shown by broken lines on these diagrams indicate the range of 

conveying conditions that were examined with each material. 

As a consequence of the experimental procedure which was used, that 

is, fixing the rotor speed and then varying the air mass flow rate, the 

curves on the graphs relating the conveying line pressure drop and the 

air mass flow rate were obtained directly. 

graph is shown in Figure 6.13a. 

An example of such a 

The graphs relating the solids mass throughput and the air mass 

flow rate, for example Figure 6.l3b, were obtained by interpolating 

the data to draw curves which represent a constant conveying line 

Th1's method of presentation is useful because it shows pressure drop. 

the range of solids loading ratios which were examined with each material. 

The solids loading ratio (IDs/IDa> is a useful parameter because it 

indicates the nature of the gas-solid flow in a pipeline. 
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3.5mm 

Figure 6.4 

B P RIGIDEX POLYETHYLENE PELLETS 

MATERIAL CHARACTERISTICS 

Bulk density 529 kg/m3 

3 
Packed density 573 kg/m 

3 
Particle density 909 kg/m 

Monosized 3.5 mm particles 

HANDLING CHARACTERISTICS - Free flowing 
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Figure 6 . 5 

B.P CHEMICALS RIGIDEX 

POLYETHYLENE POWDER 

3 Bulk density 504 kg/m 
3 Packed density 567 kg/m 

3 
Particle density 951 kg/m 

Mean p a rticl e size 1.0 mm 

HANDLING CHARACTERISTICS 

Free flowing, prone to 

static charging 

Size analysis technique: Stack Sieving 
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Figure 6.6 

RANK HOVIS MINARET WHEAT FLOUR 

MATERIAL CHARACTERISTICS 

Bulk density 440 kg/m
3 

Packed density 644 kg/m
3 

3 
Particle density 1461 kg/m 

Mean particle size 65 ~m 

HANDLING CHARACTERISTICS 

Cohesive 
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Size analysis techniques: Malvern Laser Diffractometer. 
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Figure 6.7 

BLUE CIRCLE ORDINARY PORTLAND 

CEMENT 

MATERIAL CHARACTERISTICS 

Bulk density 1138 kg/m3 

Packed density 1563 kg/m3 

3 Particle density 3166 kg/ m 

Mean particle size 12.5 ~m 

HANDLING CHARACTERISTICS 

Free flowing when aerated, 

cohesive when compacted 

I 
50 IJm 

Size analysis technique: Malvern Laser Diffractometer 
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Figure 6.8 

NATIONAL COAL BOARD 'SINGLES' GRADE COAL 
3 

Bulk density 641 kg/m 
3 

Particle density 1295 kg/m 

Size range: Maximum 25mm Minimum 12.5mm 
(every thing that will pass through 

a 25mm sieve and be retained on a 
12 . 5mm sieve) 
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Figure 6.9 

PULVERISED COAL 

Supplied but not milled 
by Blue Circle. 

MATERIAL CHARACTERISTICS 

Bulk density 587 kg/m
3 

3 
Particle density 1457 kg/m 

Mean particle size 44~m 

HANDLING CHARACTERISTICS 

Free flowing when aerated 
Very cohesive when compacted 

100 fJm 

6.4 

Size analysis technique: Wide Angle Scanning Photosedimentometer 
Blue Circle (slilppliers) data. 
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A 

B 

G c 

o 

yes no 

A - Sele~t rotary valve/drop-out box configuration 
B - Select valve rotor speed 
C - Start test - Initially at high air flowrate 

(i.e. at high pick-up velocity) 

F 

D - Allow conditions to settle and then take measurements 
E - Repeat cycle D-E-F until minimum safe pick-up velocity 

has been reached 
F - Reduce air flow rate 
G - Change rotor speed and repeat cycle C-D-E-F etc. 

Figure 6.10 Experimental procedure 
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CAPACITY I SPEED CURVES FOR 

AS 150 AND AS 175 VALVES 

II.I'!"'. 

Figure 6.11 Performance characteristics published 
by Westinghouse Systems Ltd 
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Figure 6.12 The relationship between the filling factor 
and rotor speed for a range of materials as 
obtained by Reed (11) 
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Figure 6.13 Conveying characteristics of polyethylene pellets 
as obtained from testwork using rotary valve 
research rig. Pipeline configuration 
70 mm bore x 52 metre long x 6 bends 
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Figure 6.14 Conveying characteristics of polyethylene powder 
as obtained from testwork using rotary valve 
research rig. Pipeline configuration 
70 mm bore x 52 metre long x 6 bends 
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Figure 6.15 Conveying characteristics of 'Minaret' wheat 
flour as obtained from testwork using rotary 
valve rsearch rig. Pipeline configuration 
70 mm bore x 52 metre long x 6 bends 
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Figure 6.16 Conveying characteristics of ordinary portland 
cement as obtained from testwork using rotary 
valve research rig. Pipeline configuration 
70 mm bore x 52 metre long x 6 bends 
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Figure 6.17 Conveying characteristics of singles coal as 
obtained from testwork using rotary valve 
research rig. Pipeline configuration 
70 mm bore x 52 metre long x 6 bends 
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CHAPTER SEVEN 

EXPERIMENTAL STUDY 

7.1 Introduction and Synopsis of Chapter 

This chapter presents the results of the experimental work undertaken 

with the industrial sized rig described in Chapter 5. For the purpose 

of analysis· the discussion of these results has been divided into five 

sections; each of which is concerned with one particular aspect of the 

interaction between rotary valves and pneumatic conveying pipelines. 

Sections 7.2 to 7.4 discuss the performance of a system consisting 

of a conventional drop-through rotary valve and fabricated drop-out box. 

Section 7.2 looks specifically at rotary valve orientation and its effect 

on the material entrainment process. The purpose of this is to 

establish whether or not the orientation of the valve relative to the 

pipeline is an important parameter.. The effects of changing the 

drop-out box size and shape are discussed in section 7.3. The results 

of this work are used to assess the validity of the model proposed in 

Chapter 4 for estimating the entrainment efficiency of a ·gi ven rotary valve 

and drop-out box combination. An investigation of the choked flow 

condition is discussed in section 7.4. This confirms the relationship 

between choking and the conveying air velocity and compares the predicted 

and actual results. 

An investigation into the performance of the blow-through type of 

rotary valve is described in section 7.5. This compares the performance 

of a blow-through valve with that of a conventional drop-through type 

of similar internal dimensions and shows that, for the range of 

materials and conveying conditions that were examined, the performance 

of the blowing seal was at least as good as and generally better than 

that of the drop~through type of rotary valve. 
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Air leakage and its effect on rotary valve performance are 

discussed in section 7.6. Evidence is presented which indicates that, 

for a given pressure ratio, the air leakage through a rotary valve used 

to feed a pneumatic conveying line is less than that through a valve 

which is used to feed a simple pressurised container. 

7.2 Rotary Valve Orientation 

7.2.1 Purpose of Experiments 

The purpose of this work was to obtain experimental data to enable the 

effect of rotary valve orientation on the material entrainment process 

to be investigated. The objective was to determine whether or not 

there is an 'optimum' orientation and, if so, whether the difference 

in performance between this and other orientations is significant. The 

work was a development from thlrt undertaken wi th the flow visualisation 

rig which had indicated that orientation may be significant. 

7.2.2 Experimental Plan and Method 

The experimental plan was to examine the performance of the conveying 

systems with the rotary valve mounted in the three different orientations 

shown in Figure 7.1. These are the orientations which are most commonly 

used in industry and are the three most different arrangements which can 

be obtained with a conventional rotary valve and drop-out box. In 

each case the drop-out box used was a simple transition section two 

pipe diameters in depth, as shown in Figure 7.2. The primary reason 

for using this drop-out box was that it is typical of the most common 

type in current industrial use and therefore of immediate practical 

interest. Also, the use of such a box gives a relatively short 

entrainment configuration. This last point is important because if the 

orientation of the valve does have a significant effect on the entrainment 

process, then it,is reasonable to expect that this will be 

most noticeable in configurations where the valve discharge port and 

the conveying pipeline are in close proximity to one another. The 

flow visualisation work discussed in Chapter 3 provided some evidence 

to support this reasoning. 

The initial experiments were conducted using the Polyethylene 

Pellets and the Wheat Flour as the test products. These are, 
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respectively, the most free-flowing and the most cohesive of the six 

selected test materials. Consequently, it was argued that experiments 

using these two materials would indicate the range of performances to 

be expected. Then, on the basis of the results obtained from these 

experiments, a judgement could be made whether or not to include any 

of the other four materials in this part of the experimental programme. 

As a result only one other material was tested in all three orientations. 

This was the Polyethylene Powder. 

The actual experimental method used was tha~ outlined in Chapter 6. 

This enabled a complete set of data to be obtained for the envelope of 

conveying conditions which are indicated on the conveying characteristics 

sh~n in Figures 6.13, 6.14 and 6.15. 

7.2.3 Results 

The experimental results obtained from following the plan described in 

section 7.2.2 are presented in Figures 7.3 to 7.14. Each of these 

figures consists of two graphs. The upper graph shows the relationship 

between the measured solids mass feed rate (m ) and the valve rotor s 
speed (n) and was derived from the raw data. 

The lower graph shows the relationship between the feeding factor 

(y) and the valve rotor speed (n). The feeding factor indicates the 

overall effectiveness with which material is fed into the conveying line 

and this can be used to compare the performance of different feeding/ 

entrainment configurations~ It is obtained by dividing the actual 

volumetric feed rate of solids, based upon the poured bulk density of 

the material, by the maximum theoretical volumetric throughput of the 

valve, that is: 

y = 
60V 

s 
nV o 

(7.1) 

To provide a simple quantitative means of comparing the 

experimental results obtained with the three rotary valve orientations, 

the arithmetic mean of the ffeding factor (y) and the standard deviation 
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of the experimental po~nts about this mean (cry) were calculated. The 

appropriate values of y and cr for each combination of valve orientation y 
and test material are given in Figures 7.3 to 7.14. 

Figures 7.3 to 7.5 show the results obtained for the Polyethylene 

Pellets which each of the three rotary valve orientations. Figure 7.6 

then compares these on one diagram. A similar set of results for the 

Wheat Flour are shown in Figures 7.7 to 7.10 and for the Polyethylene 

Powder in Figures 7.11 to 7.14. The analysis and discussion of these 

results is given in the following section. 

7.2.4 Analysis and Discussion of Results 

Figures 7.3 to 7.6 present the experimental results which were obtained 

with the Polyethylene Pellets. These show that the ability of the 

rotary valve to feed material into the conveying system was, in all 

practical respects, identical for each of the three orientations. 

Also, for the range of rotor speeds and conveying conditions which were 

examined, the solids throughput was approximately the same as the 

theoretical maximum based upon the volumetric capacity of the rotor 

pockets and the poured bulk density of the Polyethylene Pellets. In 

one respect this last result is not surprising because the Polyethylene 

Pellets are very free flowing, however, compared with the results obtained 

* by Reed (11) for a similar grade of polyethylene , the performance was 

slightly better than might have been expected, see Figure 7.6. It seems 

reasonable to propose that the disagreement between the two sets of 

results is due to the differences between the two rigs. The most 

significant of these differences being that in the present rig the rotary 

valve interfaces with a pneumatic conveying line, whereas in the rig 

used by Reed the rotary valve interfaced with a pressurised weighing 

vessel. This implies that the comparatively better performance of the 

current rig is a consequence of the interaction between the rotary valve 

and the conveying line. This would be consistent with the argument 

** expressed in Chapter 2 that below the critical rotor speed it is the 

pocket discharge process which limits the performance of a rotary valve. 

* footnote: 5.5 mm pellets 

** footnote: See section 2.3 of Chapter 2; comparison of the work of 
Reed (11) and Masuda et Al (20) 
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Furthermore, it would appear that in the case of the Polyethylene Pellets 

the interaction between the rotary valve and the conveying line has a 

positive effect on the pocket discharge process. 

The experimental results forthe Wheat Flour are shown in Figures 

7.7 to 7.10. As with the results for the Polyethylene Pellets, these 

do not show a clearly identifiable difference between the performance of 

the system with each of the three rotary valve orientations. This 

sicilarity between the results is significant because of the very 

different characteristics of the Wheat Flour and Polyethylene Pellets. 

This implies that the effect of rotary valve orientation on system 

performance is not likely to be significant for most materials. In 

order to confirm this implication a further series of experiments were 

conducted with Polyethylene Powder. The results which were subsequently 

obtained are shown in Figures 7.11 to 7.14 and these confirm that the 

effect of valve orientation on system performance is negligible. 

Further evidence to support this conclusion is given in the 

previously quoted paper of Mosemand & Bird (22), who examined the 

performance of a rotary valve system handling Polypropylene Powder. 

They reported that no perceptive change in throughput could be obtained 

by changing the rotary valve orientation. Furthermore, they also showed 

that this was the case for three different designs of drop-out bOX, 

see Figure 2.28 boxes A, B and C. 

7.3 The Size and Shape of the Drop-out Box 

7.3.1 Purpose of Experiments 

The purpose of this part of the experimental programme was to investigate 

the effeot of the size and shape of the drop-out box on the entrainment 

process. The intention was to determine whether or not these are 

significant p~rameters with regard to entrainment and, if so, to 

quantity their effect. Also, it was reasoned that this would provide 

data with which to assess the ideas and model proposed in Chapter 4 for 

estimating the volumetric entrainment efficiency (ne ) of a given 

combination of rotary valve and drop-out boxes. This model proposed that 
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the entrainment efficiency was a function of the relative volumes of the 

rotor pockets and the drop-out box chamber. 

7.3.2 Experimental Plan and Method 

The experimental plan was to examine the performance of the conveying 

system with seven different drop-out boxes and six different materials. 

Three of these drop-out boxes, see Figures 7.15 a, band c, are similar 

in shape to many which are used in industry, essentially consisting of a 

siEple transition between the flange of the outlet port and the inter­

section with the pipeline. Box A had a depth of one pipe diameter, 

box B two pipe diameters and box C three pipe diameters. The drop-

out box shown in Figure 7.15d was obtained by using box B with an 

extension tube. This resulted in a box having a very large chamber 

volume and an overall depth of nine pipe diameters. 

The purpose of examining the performance of the system with boxes 

A, B, C and D was to investigate the effect of changing the volume of 

the drop-out box chamber by changing the depth of the drop-out box. 

To complement this work another series of experiments were undertaken 

using three drop-out boxes of the same depth but different internal 

volumes; these are i~ustrated in Figures .7.15 e, f and g. It was 

reasoned that comparison of the results obtained from these two sets of 

experiments would enable the relative importance of the depth and 

volume of the drop-out box to be established. 

The six different materials which were used for this work were 

those described in Chapter 6, that is: Polyethylene Pellets, 

Polyethylene Powder, Wheat Flour, Ordinary Portland Cement, 'Singles' 

Coal, 'Pulverised Coal. 

The actual experimental method which was used was that outlined 

in Chapter 6. This enabled a complete set of data to be obtained for 

the envelope of conveying conditions which are indicated in Figures 

6.13 to 6.18. The rotary valve orientation used for all of these 

experiments was that shown in Figure 7.1c, that is, with the rotor 

pockets parallelto the conveying pipeline. 

7.3,3 Results 

The experimental results are presented in Figures 7.16 to 7.47. These 

follow the same format as the figures used to present the results in 
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section 7.2. Each figure shows the results obtained for one particular 

combination of material and drop-out box. Where necessary, these are 

complemented by figures which compare the performance of the system with 

the different drop-out boxes. An analysis and discussion of these 

results is given in the following section. 

7.3.4. Analysis and Discussion of Results 

Figures 7.16 and 7.17 show the results obtained for the Polyethylene 

Pellets with drop-out boxes Band D. This was the first material to 

be tested and, at the time, these were the only two drop-out boxes 

available. However, because these boxes represent the opposite extremes 

in respect of volume and depth, it was reasoned that the results obtained 

with them should indicate the range of performance for the Polyethylene 

Pellets. 

Figures 7.16 and 7.17 show that the performance of the system with 

these two drop-out boxes was, in all practical respects, identical. 

The implication of this is that for materials like Polyethylene Pellets, 

the volume and depth of the drop-out box are not significant parameters 

with regard to entrainment. Probable reasons for this are: 

i) that the Polyethylene Pellets are free-flowing and so 
discharge easily from the pockets of the rotary valve; and 

ii) that the size and mass of the pellets are sufficient for 
gravitational force acting on them to be significant. 

A consequence of this last point is that such materials would not be 

uniformly distributed by the air currents, but concentrated towards the 

bottom of the drop-out box. From this it_follows that very little 

material would be retained in the rotor pockets when they close on the 

outlet port; and thus the volume and depth of the drop-out box would 

not be significant parameters with regard to entrainment. 

,If the above reasoning is sound then similar results should also be 

obtained with other products consisting of large, heavy particles. This was 

confirmed by the limited number of results obtained with the Singles Coal. 

However, before discussing these results in detail they require some 

explanation. 

Because coal is a very friable product it was easily degraded by 

the action of the rotary valve and by attrition in the pipeline. 
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Consequently, only a limited number of experiments could be made with 

each batch before it had to be changed. As a result of this and the 

limited quantity of coal which was available, only three entrainment 

configurations were examined. These were drop-out boxes A and Band 

the blowing seal. Even then the rate of degradation was such that 

little useful information was obtained. This is illustrated by 

Figure 7.19 which shows how the poured bulk density of the coal changed 

with both the number of passes through the rotary valve and the distance 

conveyed. This information enabled the feeding factor - valve rotor 

speed relationships shown in Figures 7.20 and 7.21 to be constructed 

by selecting the value of the bulk density relevant to the previous 

number of passes of the coal through a rotary valve and the previous 
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distance conveyed. The resulting relationships are shown as bands 

rather than individual data pOints in order to indicate the degree of 

uncertainty which is associated with using this method of analysis. 

Furthermore, it is important to realise that because of the rapid 

degradation, the results presented in Figures 7.20 and 7.21 represent 

the performance of the system with degraded coal and not with virgin 

material. 

In view of the above mentioned limitations, comparison of Figures 

7.20 and 7.21 show that the performance of the system with drop-out 

boxes A and B was identical. This result supports the argument 

expressed earlier that for large particle products the volume and depth 

of the drop-out box are not significant parameters with regard to 

entrainment. However, this is not the case with finer particle 

products as demonstrated by the results for Wheat Flour, Cement and 

Polyethylene Powder. 

Consider first of all the results obtained with the Wheat Flour 

which are shown in Figures 7.22 to 7.29. The experiments with the 

Wheat Flour were conducted at two separate times because of the 

availability of the drop-out boxes. The performance of the system with 

drop-out boxes Band D were examined first and then later the experiments 

were repeated with boxes A, Band C. Unfortunately, as a result of 

unloading and then reloading, the flour became contaminated and the bulk 
3 3 

density increased from 440 kg/m to 470 kg/m. Although this did not 

alter the general trend of the results, it did have the effect of 

reducing the overall magnitude of the feeding factor for any given 

rotor speed. This can be seen from Figure 7.22 which compares the 

results obtained from the two sets of-experiments cannot be compared 

directly, but only with respect to those obtained for drop-out box B. 

Figures 7.23 and 7.24 show the results obtained from the first set 

of experiments with drop-out boxes Band D respectively. These results 

are combined in Figure 7.25 to compare the performances obtained with 

these two boxes. This shows that the feeding factor characteristic 

for drop-out box D is approximately 7% greater than that for drop-out 

box B. While this result is consistent with the idea postulated in 

Chapter 4, that the entrainment efficiency of a drop-out box with a 

large volume will be better than that of a drop-out box with a small 
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volume, the actual difference in performance is less than expected. 

Equation 4.9, which is the model proposed for determining the entrain­

ment efficiency of a given combination of valve and drop-out box (n ), 
e 

gives the value of ne for box B as 77% and for box D as 93%; that is, 

a 16% difference. This discrepancy is undoubtedly due to the over 

simplistic decisions made to derive this model. 

Vb 
= 100% (4.9b) 

The results of the second set of experiments with the Wheat Flour 

are presented in Figures 7.26 to 7.29. These show respectively the 

individual performances obtained with drop-out boxes A, Band C and 

their comparative performances. From Figure 7.29 it is clear that the 

throughputs obtained with drop-out boxes B and C were similar and 

significantly better than those obtained with box A, particularly at 

high rotor speeds. However, as with the comparison between boxes 

B and D, the differences in performance were not in the same proportion 

as the entrainment efficiencies of these configurations calculated from 

equation 4.9. 

Similar results were obtained with drop-out boxes A, B and C when 

Cement was used as the test material, see Figures 7.30 to 7.33. As 

with the flour, the largest throughput was obtained with box C, but 

there was no significant difference betwen the performance of boxes 

A and B. 

The results obtained with the Polyethylene Powder are presented in 

Figures 7.34 to 7.40. As with the results for the Wheat Flour and 

Cement, these show that increasing the volume of the drop-out box by 

increasing~he depth did lead to a small improvement in throughput 

over the range of rotor speeds examined. This is shown most clearly 

by Figure 7.37 which compares the performance of the system with drop-

out boxes A, Band D. 

In view of these findings it is interesting to look at the results 

obtained for the Polyethylene Powder with drop-out boxes E, F and G; 

* that is, Figures 7.38, 7.39 and 7.40 respectively. Each of these boxes 

* footnote: Results were only obtained for a limited range of rotor 
speeds with drop-out box E because of its tendency to 
become choked. This point will be discussed further in 

section 7.4. 
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are the same depth but different internal volumes as shown by Figure 

7.15. Thus, they provide a means of assessing how the throughput of 

the system is affected by changing the volume of the drop-out box with-

out also changing the box depth. Figure 7.41, which compares the 

feeding factor characteristics obtained for boxes E, F and G, clearly 

shows that the performance of the system with each of these boxes was, 

in all practical respects, identical. 

The only reasonable conclusion to draw from these results is that, 

for Polyethylene Powder, the depth of the drop-out box is a more 

important parameter with regard to entrainment than the volume of the 

drop-out box. This is consistent with the argument that the gravitational 

force acting on the particles in the drop-out box is significant; which 

was the supposition proposed to explain the results obtained with both 

Polyethylene Pellets and Singles Coal. 

To provide further information about the effect of the depth and 

volume of the drop-out box on system performance, the experiments 

conducted with the Polyethylene Powder were repeated with the 

Pulverised Coal. However, unfortunately the pocket filling characteristics 

restricted the throughput which could be achieved with this material and 

thus prevented any meaningful comparison of the performances obtained with 

the different drop-out boxes. Despite this the results are presented in 

Figures 7.42 to 7~47 becuase they do highlight the importance of consider-

ing every aspect of the design of a rotary valve feeding system. They 

also justify the inclusion in Chapter 4 of the model for estimating the 

effect of air leakage on the pocket filling characteristics of a rotary 

valve. 

In conclusion, the results presented in this section show that: 

i) for coarse particle products the depth and volume of the 
drop-out box are not significant parameters with regard 
to entrainment; and 

ii) for fine particle products, increasing the volume of the 
drop-out box by increasing its depth leads to a general 
improvement in throughput. 

Furthermore, there is evidence which suggests that the depth of the 

t than the volume in maximising drop-out box is a more important parame_ er 
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the entrainment efficiency. Also, it is evident from the results that 

the model proposed in Chapter 4 for estimating the entrainment efficiency 

of a given combination of rotary valve and drop-out box, does not 

accurately predict the difference in throughput obtained with different 

drop-out boxes. A more accurate model would need to take account of 

the characteristics of the material being handled as well as the geometry 

of the rotary valve and drop-out box. However, it is difficult to see 

how this could be done and any such model would certainly be very 

complicated o 

In view of these difficulties it is suggested that the most practical 

approach to the design of a pneumatic conveyor is to make the depth and 

volume of the drop-out box as large as is possible within the constraints 

of the system. The results of this work suggest that the normal 

transition shaped drop-out box between two and three pipe diameters in 

depth is adequate for most materials o 
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7.4 Investigation of the Choked Flow Condition 

7.4.1 Purpose of Experiments 

7.4 

The purpose of the experiments described in this section was to 

investigate the choked flow condition which had been observed previously 

in the flow visualisation rig. It was considered important to ascertain 

whether or not choking is likely to occur in conventional industrial 

systems and, if so, to quantify the consequences of this with regard to 

overall system performance. In addition, data was needed to assess the 

ideas and model proposed in Chapter 4 for determining the conditions 

likely to lead to choking. These were based upon the supposition that 

choking occurs because material is held up inside the drop-out box by an 

* air swirl which is induced by the conveying airstream. The development 

of this led to the concept of a critical pick-up velocity at which 

the transfer of energy to the mixture of air and solids within the drop­

out box is just sufficient to hold the solids in suspension (V ). The c 

following expression was proposed for evaluation (V ) for any given c 

combination of rotary valve, drop-out box and material: 

= (4.21c) 

where P
b 

and P
a 

are respectively the poured bulk density of the material 

and the air density in the drop-out box chamber; Pc is the 'critical 

peripheral velocity' which is a function of the drop-out box size and 

shape; and C is a dimensionless constant requiring empirical evaluation. 
c 

One of the reasons for the experiments described here was to determine 

typical values for the constant C
c 

and thus allow equation 4.21c to be 

used for predicting the value of Vc for similar entrainment configurations. 

7.4.2 Experimental Plan and Method 

The experimental plan was to see if choking occurred during the 

experiments described in sections 7.2 and 7.3, and if so, to investigate 

This was argued to be the bes t approach 
each occurence more thoroughly. 

because these experiments covered the range of conveying conditions 

* footnote: 
Evidence for the existence of this air swirl was reported 

in Chapter 3. 
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normally used in industrial systems. Hence, if choking was found to 

occur, it would be reasonable to assume that it could be a genuine 

industrial problem and hence worthy of further investigation. 

As a result of using this procedure two of the test materials were 

found to choke in the conventional transition shaped drop-out boxes; 

these were the Wheat Flour and the Polyethylene Powder. Having 

established this, further experiments were conducted to investigate 

specifically the phenomenon of choking. To do this the system was 

operated at a fixed rotor speed and the pick-up velocity was increased 

gradually until the drop-out box became choked. During this procedure 

the conveying conditions were monitored regularly and the output from 

the load cells was recorded continuously on a chart recorder. This 

permitted the change in feed rate to be identfied when the drop-out 

box became choked. A typical trace from the chart recorder is shown 

in Figure 7.48; this was obtained for the Wheat Flour being handled in 

drop-out box B at a valve rotor speed of 30 rev/min. After repeating 

this procedure several times in order to obtain sufficient data and 

confidence in the repeatability of the results, the experiment was 

repeated at other valve rotor speeds. As with the previous work, rotor 

speeds of 7, 15, 20, 30 and 40 rev/min were used. 

t 

"C 
Q) 
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Q) 

::­
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o 
u 
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s 
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~ 
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% :0 

~ 
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Figure :7 .48 A TYP1'cal Chart Recorder Trace of the Load Cell Output. 
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The data obtained by this method were used to plot graphs showing 

the relationship between the feeding factor <y) and the pick-up velocity 

<Vp . u .) for each combination of rotary valve, drop-out box and test 

material at each of the five set rotor speeds. It was reasoned that these 

graphs would provide a means of determining the actual values of Vc which 

could be used to evaluate the coefficient C in equation 4.21c. 
c 

In parallel with this work the nature of the air and solid flow 

patterns inside a drop-out box, just before and just after choking, 

were investigated. To do this one of the drop-out boxes was fitted with 

Perspex Windows. A photograph of this drop-out box is shown in Figure 

7.49. 

7.4.3 Visual Observations of the Entrainment Process 

It has already been stated that choking was only found to occur with the 

Wheat Flour and Polyethylene Powder, and even this only ha-ppened 

when the simple transition shaped drop-out boxes A, Band C were used. 

Of these, box B probably represents the most common type of drop-out box 

in current industrial use. Consequently, the drop-out box fitted with 

Perspex windows was made to the same dimensions as this, see Figures 

7.2 and 7.49. 

Figure 7.50 shows a series of graphs which represent the feeding 

characteristics typically obtained with drop-out boxes A, Band C for the 

Wheat Flour and Polyethylene Powder. When conveying at the conditions 

represented by point A on these graphs the flow pattern was very compli-

cated. The swirling motion previously seen in the flow visualisation 

* experiments was present, but difficult to see because of the large 

quantity of material in the drop-out box chamber. The most significant 

feature of the flow for these conditions was that the material and air 

were thoroughly mixed and there were no air pockets or regions of 

-
stagnant material. An illustration of this flow pattern is shown in 

Figure 7.51a. 

Changing the conditions to those represented by point At did not 

alter the flow pattern or feed rate. The flow pattern also remained the 

same when the feed rate was increased by increasing the rotor speed to 

follow the path, A to B. The only noticeable change was the denser 

nature of the flow as a result of the higher solids loading ratiO 

* footnote: See Chapter 3. 
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Figure 7.49 Photographs of the Drop-Out Box fitted 
with Perspex windows. 
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(~s/m~). However, when the air mass flow rate (m ) was increased from 
a 

initial conditions at point B to follow the path, B-B'-C then changes 

were observed in both the flow pattern and the solids feed rate. From 

B to B' there was no change, but increasing ~ a small amount further 
a 

caused the conditions to change to those represented by point C. 

box chamber; that is, the choked flow condition previously observed in 

the flow visualisation rig. This change in conditons occurred within 

a second or so, as indicated by the specimen chart recorder trace 

reproduced in Figure 7.48. 

In contrast to the highly turbulent flow that was seen before,the 

drop-out box became choked with material and there was very little 

mixing, particularly in the top half of the box chamber, see Figure 7.51b. 

The conveying air appeared to tunnel underneath the material which formed 

a stable arch between the inside surfaces of the drop-out bOX, as 

shown in Figure 7.51c. Subsequently the method of entrainment was for 

material to fall away from the underside of the arch into the conveying 

airstream. This always resulted in a reduced solids feed rate, as shown 

by Figure 7.50. In this condition the geometry of the drop-out box and 

the characteristics of the material dictated the feed rate and not the 

rotary valve speed. 

Figure 7.52 is a photograph of the flow pattern in the drop-out box 

in the choked condition· in this particular case the material being handled 

was Wheat Flour and the pick-up velocity was approximately 40 m/s. From 

this it can be seen that the material is being held in the top half of the 

drop-out box. This situation could be considered analogous to that of 

a hopper outlet in which a stable arch has formed. However, it is more 

complicated than this because the air beneath the arch in the drop-out box 

is not static. Also, the reasons for the arch forming are not clear, 

but the most probable are that it is held in place by the leakage air 

which percolates through it and subsequently, through the internal 

clearances of the valve; and/or it is held in place by interparticulate 

forces. 

An explanation for the arching may be obtained by considering the 

behaviour of the system in the choked condition. In all cases it was 

found that the choked condition was very stable and there was no tendency 
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for the system to revert back to the turbulent mode of entrainment, as 

illustrated in Figure 7.51a. In order to make the system return to the 

turbulent mode of entrainment the air mass flow rate had to be reduced 

to below that which was needed for the initial change to the choked 

condition. This is shown by thepathC-C'D on Figure 7.50. 

From this and the previous observations it is clear that the air 

mass flow rate is an important factor in determining the mode of 

entrainment which will prevail. The two parameters which vary signif­

icantly with the air mass flow rate and which are most likely to affect 

the entrainment process are the pick-up velocity of the conveying air­

stream and the pressure of the air in the drop-out box. 

The pressure of the air in the drop-out box will almost certainly 

influence the performance of the feeding system because, as discussed 

in Chapter 2 and 3, the difference between this and the pressure at 

the inlet side of the rotary valve causes a leakage of air through the 

valve clearances. Both Jotaki & Tomita (10, 12, 13 & 53) and Reed (11) 

have demonstrated that this leakage can affect the flow of material into 

the rotor pockets and, in Chapter 4 of the present study a model was 

proposed for estimating this effect. However, with regard to the 

entrainment process, it seems unlikely that air leakage is the cause 

of choking or is responsible far-maintaining the arch of material in the 

drop-out box. To explain this it is necessary to consider the conveying 

characteristics shown in Figure 7.50 and the performance characteristics 

of the Roots-type blower given in Figure 7.53. 

From the conveying characteristics it can be seen that for a given 

air mass flow rate the conveying line pressure drop (~P£). and hence the 

pressure difference across the rotary valve, will decrease if the solids 

mass flow rate is decreased. This point is important because of its 

implication with regard to the response of the Roots-type blower to a 

step change in solids feed rate, such as that which occurs when a 

drop-out box chokes. For a fixed operating speed these machines have 

a relatively flat relationship between volumetric air flow rate and 

pressure ratio. Therefore, when the drop-out box chokes and the solids 

feed rate reduces, the air flow rate will remain approximately the same. 

Consequently, the conveying line pressure drop will then reduce and so 

will the pressure difference across the rotary valve. 
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Now, if it was a high air leakage, resulting from a high pressure 

difference, which initially caused the drop-out box to choke, then it 

would be logical to expect the system to revert back to the turbulent 

mode of entrainment as soon as the pressure difference reduces. Since, 

the above analysis shows that the pressure difference will reduce when 

the drop-out box chokes, this would lead us to expect the solids feed 

rate to hunt between two levels, as indicated by the diagram shown in 

Figure 7.54. However, the experimental observations shows that this 

does not happen and that the performance of the system in the choked 

condition is stable. Consequently, it is reasonable to conclude that 

choking is not a result of the pressure change in the drop-out box.when 

the air mass flow rate is increased; and that air leakage cannot be 

solely responsible for maintaining the arch of material which forms when 

the drop-out box chokes. 

The implication of this conclusion is that the pick-up velocity 

of the conveying air must be the factor which determines the mode of 

entrainment, because it is the only other parameter which varies 

siginificantly with the air mass flow rate. This agrees with the 

interpretation of the results obtained from the flow visualisation rig 

which were discussed in Chapter 3 and justifies the approach used in 

Chapter 4 for developing a model which could be used to predict the 

minimum pickup velocity at which choking can occur (V). 
c In the 

following section the experimental results relating to the choked 

condition are analysed in order to obtain actual values of V . 
c These 

results are used to explain why choking did not occur with all the materials 

that were tested. 

However, before examining the results in detail, the following general 

observations are made about the solids feed rate corresponding to the 

choked condition. These help to explain the distribution of data points 

on the graphs presented in Figures 7.56 to 7.71 which relate the solids 

mass feed rate (m )to the valve rotor speed (n) and the feeding factor 
s 

<y) to the valve rotor speed (n). 

The experiments showed-that the solids feed rate in the choked 

condition was always the same for any given combination of drop-out box 

and material. Furthermore, this was completely independent of the 

initial solids feed rate that was obtained before choking occurred. This 
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indicates that the solids feed rate in the choked condition was primarily 

dependent on both the characteristics of the material being handled and 

the geometry of the drop-out box. If this is accepted then curves 

representing the solids feed rate of a drop-out box in the choked 

condition, the 'choked feed characteristiCS', can be superimposed on the 

feed rate and feeding factor characteristics of a rotary valve in order 

to determine the combined performance of that particular rotary valve and 

drop-out box. An example of this is shown in Figure 7.55. From this 

it can be seen that the choked feed characteristic is a straight horizontal 

line on the feed rate - rotor speed graph and a curve on the feeding 

factor - rotor speed graph. For operating conditions which correspond 

to points below the choked feed characteristiCS, the choked condition 

cannot occur because the potential feed rate of the rotary valve is less 

than the choked feed rate of the drop-out box. However, for operating 

conditions corresponding to points above the choked feed characteristics 

the choked condition can occur. Whether or not it does depends on the 

magnitude of the pick-up velocity. 

The observations suggest that if the pick-up velocity is less than 

the minimum needed to cause choking (V), then the system will operate at c 
conditions corresponding to a point on the rotary valve characteristics. 

Consequently, the feed rate will then be proportional to the valve rotor 

speed. Alternatively, if the pick-up velocity is higher than V the 
c 

drop-out box will choke and the resulting operating conditions will 

correspond to a point on the choked feed characteristic. The results 

presented in Figures 7.56 to 7.71 show the data points to be concentrated in 

bands corresponding to the shapes of the rotary valve characteristics 

and drop-out box choked feed characteristics proposed in Figure 7.55. 

7.4.4 Analysis and Discussion of Results 

The results presented in Figures 7.56 to 7.59 and 7.68 to 7.71 show 

respectively the performance of the system with Wheat Flour and 

Polyethylene Powder for each of the three rotary valve orientations 

shown in Figure 7.1. Drop-out box B was used in each case. From these 

figures it can be seen that the choked feed characteristics of this 

drop-out box were not affected by the orientation of the rotary valve. 

This result is consistent with the conclusion that the choked feed 
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characteristics of a drop-out box are primarily dependent on the geometry 

of the box and the characteristics of the material being handled. 

Figure 7.59 shows the relationship betwen the feeding factor and 

the pick-up velocity for the Wheat Flour in drop-out box B. Individual 

graphs are drawn for each of the five set rotor speeds which were 

examined, that is, 7, 15, 20, 30 and 40 rev/min. These graphs were 

constructed by combining the results obtained from the experiments with 

the three rotary valve orientations. Figure 7.71 is a similar series 

of results for the Polyethylene Powder. Both of these figures show 

that the choked condition only occurred when there was a combination of 

high pick-up velocity and high valve rotor speed. The significance of 

the high rotor speed being a potentia~ly high solids feed rate. 

From these figures the actual value of V can be determined. It is 
c 

the pick-up velocity at which there is a step change in the value of the 

feeding factor. This can be seen most clearly in the graph for 40 rev/ 

min with the Wheat Flour and the graphs for both 30 and 40 rev/min for 

the Polyethylene Powder. For both these materials the value of V was 
c 

approximately 40 m/s in drop-out box B. 

Figures 7.60 to 7.65 show the results obtained for the Contaminated 

* Wheat Flour with drop-out boxes A, B and C. From these figures it can 

be seen that the feed rate obtained with boxes Band C in the choked 

condition were similar, but that obtained with box A was very much 

smaller. This is consistent with the idea that the geometry of the 

drop-out box is one of the primary factors dictating the feed rate in 

the choked condition. However, in the case of the Polyethylene Powder 

the results do not show such a clear difference between the choked feed 

rates of drop-out boxes A and B, see Figures 7.66 to 7.71. The reason 

for this is probably due to the Polyethylene Powder being more free­

flowing than the Wheat Flour and therefore the shape of the drop-out 

box was less important. 

The results given in Figures 7.72 to 7.76 were obtained for the 

Polyethylene Powder with drop-out boxes E and F. The performance of 

these drop-out boxes showed characteristics similar to but not exactly 

the same as for choking. The difference was that the feed rate did not 

* footnote: See section 7.3.4 for the reasons why the flour was 
contaminated. 
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'switch' distinctly from one value to another, but was restricted 

progressively as the pick-up velocity was increased. This is 
illustrated by Figures 7.73, 7.75 and 7.76. Figure 7.76 also shows 

that this effect was more severe for drop-out box Ethan F. This is 

to be expected because the cross-sectional area of box E is smaller than 

that of box F and therefore it is reasonable to expect it to offer a 

greater restriction to the feed rate. 

The tables shown in Figures 7.77 to 7.79 show the values of V 
c 

obtained experimentally for drop-out boxes A, B and C respectively. 

shown in these tables are the predicted values of V IC obtained from 
c c 

Also 

equation 4.21c. Dividing the experimental values of V by the predicted 
c 

values of V IC gives empirical values of C for each combination of c c c 
material and drop-out box which was found to choke. In Chapter 4 it was 

proposed that such empirical values of C would provide useful reference 
c 

data which together with equation 4.21c could be used to estimate V for 
c 

other systems. However, since choking did not happen with all of the 

materials which were tested, only a limited amount of data regarding 

typical values for C was obtained. 
c 

The graphs shown in Figure 7.80 were constructed to present the results 

in a more useful manner. These are similar to the graphs in Figure 4.3 

of Chapter 4 which showed the relationship between the dimensionless 

critical peripheral velocity (P*) and the drop-out box shape factor 

(B/a), and which were proposed as a means of comparing the choking 

characteristics of different sized and different shaped drop-out boxes. 

Figure 7.80 differs slightly from this because the product of the terms 

Cc and P*, rather than P* alone, is plotted against the shape factor. 

The reason for dOing this is that the product of these terms can be obtained 

directly from experiment whereas their individual values cannot. The 

values of C given in Figures 7.77 to 7.79 were obtained by assuming the 
c 

value of P* to be equal to that predicted by equation 4.18, that is: 

= 1 (H 
/2 a 

.1 
a 2 

+ -) 
H 

(4.18) 

However, this approach can only be justified in the respect that it 

enables empirical values of C to be obtained. The more correct approach 
c 

would be to quote experimentally determined values of the product CcP* 
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DROP-OUT BOX A P = 1.72 mls ilia = 0.33 c 

Ps V Ie V Cc Ccp. c c c 
MATERIAL Bulk Predicted Actual (P .=1.30 

Density From Eq 4.21c 
(kg/m2) (m/s) (m/s) (-) (-) 

POLYETHYLENE 
529 Not 

PELLETS 25-36 - -Tested 

POLYETHYLENE 
504 POWDER 25-35 40-44 1.45-1.60 1.88-2.07 

WHEAT FLOUR 440 23-33 Not - -Tested 

CONTAMINATED 
470 24-34 WHEAT FLOUR 20-44 0.94-1.13 1.22-1.46 

ORDINARY 
PORTLAND 1138 37-52 Did not - -
CEMENT choke 

SI'NGLES COAL 641 28-39 Did not - -choke 

PULVERISED 
587 27-38 

Did not - -
COAL choke 

Figure 7.77 Comparison of Predicted and Actual Characteristics 
for Drop-Out Box A 
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DROP-OUT BOX B P = 1.36 m/s H/a = 0.72 c 

Ps V /e V C Ccp. c c c c 
MATERIAL Bulk Predicted Actual (P.=1.30) 

Densi~y From Eq 4.21c 
(kg/m ) (m/s) (m/s) (-) (-) 

POLYETHYLENE 
529 20-28 Did not 

PELLETS - -choke 

POLYETHYLENE 
POWDER 504 20-38 40-45 1.84-2.07 1. 88-2.11 

WHEAT FLOUR 440 18-26 38-42 1.87-2.07 1. 91-2.11 

CONTAMINATED 
470 19-27 28-42 1.81-2.00 1.85-2.05 WHEAT FLOUR 

ORDINARY 
Did not PORTLAND 1138 29-41 - -choke CEMENT 

22-31 
Did not SINGLES COAL 641 - -choke 

PULVERISED 
21-30 

Did not 
587 - -COAL choke 

Figure 7.78 Comparison of Predicted and Actual Characteristics 
for Drop-Out Box B 

-248-



Chapter 7 Experimental Study 7.4.4 

DROP-OUT BOX C P = 1.37 a/s B/a = 1.44 c 

Ps V /C V C CcP* c c c c 
Bulk Predicted Actual (P *=1.30) 
Densi~y From Eq 4.21c 
(kg/m ) (m/s) (m/s) (-) (-) 

POLYETHYLENE 
529 ~ot 

PILLETS 20-28 - -Tested 

POLYETHYLENE 
504 20-28 Not 

POWDER - -Tested 

WHEAT FLOUR 440 18-26 
Not - -Tested 

CONTAMINATED 
470 19-27 

lfHEAT FLOUR 35-40 1.65-1.89 1. 70-1. 95 

ORDINARY 
PORTLAND 1138 29-52 

Did not - -
CEMENT choke 

SINGLES COAL 641 22-31 
Not - -
Tested 

PULVERISED 
587 21-30 

Not - -
COAL Tested 

Figure 7.79 Comparison of Predicted and Actual Characteristics 
for Drop-Out Box C 
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and then use these with the following modif1'ed f orm of equation 4.21c 

in order to esimate V for other systems: c 

V = c (7.1) 

which is obtained by substituting p*(ga)! for P in equation 4.21c. 
c 

Unfortunately, it is not possible to identify the actual relation-

ship between CcP* and Hla from the graphs shown in Figure 7.80 because 

of the limited number of data points. However, it is clear from the 

results obtained with the Contaminated Wheat Flour that it does not 

necessarily follow the same trend as that predicted by equation 4.18 

for the relationship between P* and H/a. 

Clearly, more experimental data is needed if the graphs shown in 

Figure 7.80 are to be used as reliable reference information from which 

the choking characteristics of other systems can be estimated, However, 

it is equally valuable to understand why the drop-out boxes did not choke 

wi th all the materials which were examined because this would enable us to 

identify the types of material for which choking is not a problem. 

The tables shown in Figure 7.77 to 7.79 indicate why one of the 

materials did not choke. This was the Cement, which was considered to 

be a likely candidate for choking before the experiments were conducted. 

However, the Cement had a much greater bulk density than the other test 

materials and consequently a significantly higher value of Vc/Cc' The 

implication of this is that the Cement would require a very high pick-up 

velocity to cause it to choke. For instance, consider drop-out box B, 

for which C was determined to be approximately 2.0 with each of the 
c 

three materials that did choke. Using this value of C gives a c 
predicted value of V for Cement between 76 and.84 m/s; which is far in 

c 
excess of the pick-up velocities used in 4 the experimental work and much 

greater than those used in industrial conveying systems. Consequently, 

for materials like Cement choking is not a practical problem. However, 

the converse argument is that materials with a low bulk density will be 

very prone to choking. 

The other materials which did not choke were the Polyethylene 

Pellets and the two grades of Coal. In the case of the Polyethylene 

Pellets the reason for the drop-out boxes not choking was due to the 
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free-flowing nature of this material, which prevents the formation of a 

stable arch. However, the same argument could be pplied to the 

Polyethylene Powder which did choke. This apparent inconsistency may 

have been due to electrostatic charging of the Polyethylene Powder which 

would undoubtedly change its handling characteristics. The ability of 

this material to take a charge was first noted when its bulk density was 

being measured. If care was not taken to prevent the material acquiring 

a charge the poured bulk density was found to decrease by up to 20~. 

The ability of the system to handle the Single Coal was surprising. 

Blockages in both the drop-out box and the pipeline had been anticipated 

as a problem because of physical interlocking of the large particles. 

However, in practice this was not found to be a problem and the coal 

conveyed reliably. Choking did not occur with the Single Coal because 

its mode of entrainment was quite different from that of all the other 

materials. Using the drop-out box with the Perspex windows it could be 

seen that the pieces of coal were not recirculated inside the drop-out 

box by an air swirl but simply moved 'en masse'. Consequently, choking 

did not occur because the lumps of coal were not held in suspension. 

The other material which did not choke was the Pulversised Coal. 

In this case the air leakage through the rotary valve restricted the 

pocket filling process, as discussed in section 7.3.4. As a result of 

this the rotary valve was not able to feed material into the drop-out box 

at a sufficient rate to cause it to choke. 

In conclusion, the materials which are most likely to choke a drop­

out box are those which have a low bulk density and thus a low inertia. 

This enables the air swirl in the drop-out box to entrain the material 

easily and, because of the low-inertia, the pick-up velocity needed to 

choke the box will be low. In addition, those materials which have a 

significant interparticulate strength will choke easily because they will 

be able to form a stable arch in the drop-out box; that is, provided that 

they can be fed into the drop-out box at a sufficiently high rate. 
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7.5 Blowing Seal Investigation 

7.5.1 Purpose of Experiments 

7.5 

The purpose of this part of the experimental programme was to compare the 

performance of the blowing seal with that of a similar sized drop-through 

rotary valve. In Chapter 4 the performance of a blowing seal was 

analysed simplistically and this indicated that for most normal operating 

conditions the discharge efficiency will be very high. If this is so, 

the primary factor limiting the performance of a blowing seal will be the 

pocket filling process. The results presented here show that this was 

the case with at least one of the test materials. 

7.5.2 Experimental Plan and Method 

The experimental plan was to examine the performance of a blowing seal wi th 

each of the six test materials described in Chapter 6. The blowing seal 

used was the Westinghouse GS-175 previously described in Chapter 5, see 

Figure 5.7. This particular blowing seal had the same internal dimensions 

as the drop-through rotary valve used for the previous work. 

The experimental method which was used was exactly the same as that 

followed for the experiments with the drop-through valve. This enabled 

a complete set of data to be obtained for the envelope of conveying 

conditions indicated on the conveying characteristics shown in Figures 

6.13 to 6.18. 

7.5.3 Results 

The results obtained with the blowing seal arg compared with_those for the 

drop-through rotary valve in Figures 7.81 to 7.92. The results present-

ed for the drop-through~alve are those obtained with drop-out box B. 

7.5.4 Analysis and Discussion of Results 

The solids mass throughputs obtained with the blowing seal were at least 

as good, and in most cases better than those which were achieved with 

the drop-through rotary valve and drop-out box. 

Figure 7.81 shows that in the case of the Polyethylene Pellets the 

feeding factor was unity for the range of rotor speeds examined. The 

implication of this is that both the pocket filling and discharge 

processes were complete, as suggested by the analysis given in Chapter 4. 

7 82 h th t s1'm1'lar performance was also obtained However, Figure . sows a a 
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with the drop-through rotary valve and drop-out box. Consequently, 

for this particular material, there is no advantage to be gained in using 

a blowing seal instead of a drop-through valve. 

Similarly with the Polyethylene Powder there was very little 

difference between the performance of the blowing seal and the 'best' 

performance obtained with the drop-through valve, see Figures 7.83 and 

7.84. However, in this case there was considerably less scatter in the 

results obtained for the blowing seal and this could be a Significant 

advantage in some process systems where it is important to control the 

feed rate within close limits. 

The most distinct difference ·betwe~n the performance of the blowing seal 

and the drop-through valve was obtained with the Wheat Flour and Cement. 

In the case of the Wheat Flour the throughput of the blowing seal was 

approximately 5% better than that obtained with the drop-through valve, 

see Figures 7.85 and 7.86; and in the case of the Cement the difference 

was approximately 10%. Both of these two materials are more cohesive in 

nature than the two grades of Polyethylene and this may be the reason why 

they were handled more efficiently by the blowing seal. 

As mentioned in section 7.3.4, the results obtained with the Singles 

Coal had to be processed differently from those obtained with the other 

materials because of severe degradation. Despite the uncertainty which 

this imposes on the calculated values of the feeding factor, it can be 

seen from Figures 7.89 and 7.90 that the performance of the blowing seal 

and drop-through valve were almost identical for this material. This 

result is not surprising because, unless a mechanical blockage occurred, 

it would be reasonable to expect the lumps of coal to discharge easily 

from the pockets of a drop-through valve; in which case there would be 

no advantage in using a blowing seal. 

The final material which was tested in the blowing seal was the 

Pulverised Coal. This also proved to be a problem material because the 

pocket filling process restricted the throughput which could be achieved. 

This was referred to in section 7.3, where the effect of the size and 

shape of a drop-out box were discussed. Comparing Figure 7.91 with the 

results obtained for all the other entrainment configurations used with 

the Pulverised Coal shows that they are all similar and that there is a 

significant amount of scatter in the results. Consequently no conclusions 
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can be made about the relative performance of h t e blow seal and drop-

through valve when handling this material. 

The implications of these results are: 

i) 

ii) 

iii) 

th~re.are, no advantage~ to be gained by using a blowing 
~al 1f tne ~roduct be1ng handled is free-flowing; if it 
1S free~flow1ng the material is non-cohesive. 

in some cases the product throughput may be controlled 
more precisely by a blowing seal than by a drop-through 
valve; and 

for cohesive materials the blowing seal will be more 
efficient than the drop-through valve, but the actual 
difference between them will depend on the characteristics 
of the particular material being handled. 

7.6 Air Leakage Measurements 

7.6.1 Purpose of Experiment 

The purpose of measuring the air leakage through the rotary valve was to 

obtain data which could then be used to predict the air leakage for 

similar conveying systems. The reason for doing this is that the air 

which leaks through a rotary valve can often be a significant proportion 

of that needed to convey the product. Consequently, it is of considerable 

interest to be able to estimate the air leakage accurately in order that 

the air supply may be adequately sized. 

In this section the air leakage measurements for four of the test 

materials are presented and these are compared with the air leakage rates 

* predicted by the method developed by Reed (11). In view of these 

results a simple modification to the Reed model is proposed which allows 

the air leaka~e to be predicted more accurately. 

7.6.2 Experimental Plan and Method 

The experimental plan was to make me.asurements of the air leakage during 

the course of conducting the experiments reported in the previous sections 

of this chapter. The method used to measure the air leakage was to duct 

the air from the constant head tank and supply hopper to a bank of 

rotameters, as previously described in Chapter 5. This bank of rotameters 

were connected by a manifold and by opening or closing valves in this 

manifold the best combinations of rotameters for the air leakage rate 

* footnote: See section 2.2.7 of Chapter 2 
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could be selected, see Figure 5.9 of Chapter 5. 

7.6.3 Results 

The results obtained from the air leakage measurements are presented in 

Figures 7.93 to 7.97. These figures consist of graphs which show the 

variation of the volumetric air leakage rate (V· ) L with the pressure 

ratio across the rotary valve (bPv). As well as the experimental data 

points which are plotted on these graphs, the predicted air leakage 

characteristics obtained by using aeed's model are also shown. 

It will be seen from Figure 7.93 to 7.97 th~: results are not 

presented for two of the test materials, namely, the Cement and the 

Pulverised Coal. Results could not be obtained with these products 

because they carried over into the ducts which connect the constant head 

tank and supply hopper to the rotameter manifold. Consequently, the 

rotameters became fouled and it was impossible to take meaningful readings. 

7.6.4 Analysis and Discussion of Results 

Figure 7.93 shows the relationship between the measured volumetric air 

leakage rate and the pressure ratio across the rotary valve for the 

situation where there is no material in the supply hopper or conveying 

line. This particular data was obtained with the AS-175 rotary valve 

at a rotor speed of 7 rev/min, but check at other rotor speeds revealed 

that the air leakage characteristics did not change with this parameter. 

This finding is in agreement with the work of Reed. 

From Figure 7.93 it can be seen that the predicted air leakage is 

in good agreement with the actual measured air leakage for the range of 

pressure ratios which were examined. The reason for constructing this 

graph is that it provides a basis against which to compare the results 

obtained for the situations where materials were being conveyed. 

Figures 7.94 to 7.97 show the results obtained for the Polyethylene 

Pellets, Polyethylene Powder, Wheat Flour and Singl~Coal respectively. 

The data points shown on these graphs are the combined results for all 

the different entrainment configurations which were tested, including 

the blowing seal. The reason for combining the results in this way was 

that there was no significant difference between the air leakage 
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characteristics for these different configurations. 
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7.6.4 

Figures 7.94 to 7.97 show that the actual measured air leakage was 

significantly less than that predicted by Reed's model, even when making 

allowance for the presence of the material as suggested by him. For the 

two grades of Polyethylene and the Wheat Flour the actual leakage rates were 

approximately 60% of those which were predicted and for the Singles Coal 

the actual leakage rate was only about 35% of that predicted. To explain 

these differences, the difference between the rig used by Reed to obtain 

his data and the rig used for this study must be considered. 

Figure 7.98 is a diagram of the rig used by Reed. From this it 

can be seen that the rotary valve was not connected to a conveying line 

but was used to feed material directly into a pressurised receiving vessel. 

Consequently, the only way for air to excape from the receiving vessel was 

through the clearances within the rotary valve. Furthermore, because of 

this arrangement it is reasonable to suppose that there were no 

significant air currents immediately beneath the discharge port of the 

rotary valve, such as those that are present when the valve is being used 

to feed a pneumatic conveying line. 
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In contrast, the rig used in this study consisted of a pneumatic 

conveying system in which the rotary valve was used to feed material 

into a drop-out box. Consequently, there were very strong air currents 

on the discharge side of the rotary valve and an alternative route for 

the air to take, that is, along the pipeline. 

It is proposed that the significant difference between these two 

systems with regard to the air leakage, is the presence of the strong 

air currents in the drop-out box of the rig used for this study. Since 

the air in the drop-out box has momentum in directions other than towards 

the discharge port, it is postulated that this will result in a lower air 

leakage than when the air is stationary and at the same static pressure. 

If this argument is accepted, then it follows that the air leakage 

through a rotary valve used to feed a conveying line will be less than 

that through the same valve when used to feed a simple container at the 

same pressure as the conveying line. Blackmore (67) has stated that 

this conclusion is in agreement with his own practical experience 

that the air leakage through a rotary valve used to feed material into a 

dynamic airstream will invariably be less than that through a rotary 

valve used to feed a static airstream. 

When the air only leakage characteristics, presented in Figure 

7.93, were obtained, the pipeline had to be blocked in order to generate 

a significant pressure ratio across the rotary valve. This would 

explain the good agreement with the predicted characteristics because the 

air beneath the rotary valve would have been relatively static and thus 

similar to the situation in the rig used by Reed. 

From the results shown in Figures 7.94 to 7.97, Figure 7.99 was 

constructed. This is similar to the figure proposed by Reed for 

estimating the blockage factor (b) of materials when handled in rotary 

valves, ~ee Figure 2.26 in Chapter 2. The blockage factor is the 

ratio of the air leakage through a rotary valve when material is being 

conveyed to the air leakage through the same valve when no material is 

being conveyed. When used in equation 2.23, which was proposed by Reed 

for estimating the air leakage rate, it makes allowance for the presence 

of the material and the effect which this has in blocking the valve 

clearances. b Reed 's data was obtained from the rig However, ecause 

shown in Figure 7.98 it was not representative of the leakage 

-273-



Chapter 7 Experimental Study 7.6.4 

characteristics of a rotary valve used to feed a pneumatic conveying 

line. 

In Figure 7.99 the results obtained from this study are used to 

suggest a relationship between the blockage factor and the mean particle 

size of the product which is representative of the leakage characteristics 

of a rotary valve used to feed a pneumatic conveying line. 

The one anomaly in these results is the apparently very low 

blockage factor obtained with the Singles Coal. This was only 35% of 

the value suggested by Reed's work, instead of approximately 60% as 

obtained with the other three materials. The reason for this may be due 

to the rapid degradation of the Singles Coal which resulted in a 

significant proportion of fines. It is believed that these blocked the 

clearances in the rotary valve in the same way as a product with a small 

mean particle size. This would explain the low air leakage rates which 

were measured with the coal. 

The useful implication of these results is that the method proposed 

by Reed for estimating the air leakage through a rotary valve used to 

feed a static airstream may also be applied to the situation where the 

valve is used to feed a pneumatic conveying line. However, when used 

for the latter situation the blockage factor should be obtained from 

Figure 7.99. This will then make an allowance for the effect of the 

interaction with the pipeline. 
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CHAPTER EIGHT 

CONCLUSIONS 

8.1 Current Understanding as a Result of this Research 

8.1.1 Introduction 

Before starting the work reported in this thesis very little information 

was published about the interaction between rotary valves and pneumatic 

conveying pipelines o The suppliers of such systems usually have their 

own ideas and preferences with regard to the way in which these two 

components should be interfaced, but these are usually based on 

supposition rather than factual evidence. 

It is proposed that this research has led to a better understanding 

of this interaction and the effect which it can have on the overall 

system performance. In particular, it is now known that there are two 

distinctly different modes of flow which can take place in the chamber 

of the conventional type of drop-out box. The first of these is a 

turbulent swirling motion caused by the action of the conveying air-

stream on the 'captive' volume of air in the drop-out box. This is the 

most desirable operating condition because it results in the most 

effective entrainment of material into the conveying line. The other 

mode of flow is a situation where the drop-out box is effectively 

'choked' with product. The cause of this has been identified as a high 

initial feed rate combined with a high conveying air velocity and is a 

condition that should be avoided because it can severely restrict the 

performance of the system. 

In addition to identifying these two modes of flow the research has 

also provided answers to some of th~ questions posed in Chapter 1, where 

industrial problems and reasons for the research were discussed. 
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These questions were: 

a) Is there a best orientation of the rotary valve with 
respect to the pipeline? 

b) Is the direction of rotation of the rotor in relation 
to the pipeline important? 

c) Are the size and shape of the drop-out box important? 

d) Does the air veloCity in the entrainment region affect 
performance? 

e) In what way do the characteristics of the material to 

8.1.2 

be handled affect the answers to the preceding questions? 

The following sections summarise the answers to these questions 

based on the findings of this research. 

8.1.2 Valve Orientation and Direction of Rotation of Rotor 

The evidence of the research is that the orientation of a rotary valve 

and the direction of rotation of the rotor have no measurable effect on 

the rate at which it is possible to feed material into a conveying 

sys~em. Furthermore, this was found to be the case with all the 

combinations of material and entrainment configuration tested. The 

implication of this for practical system design is that it is not 

necessary to use an specific orientation and/or direction of rotation in 

order to ensure satisfactory performance. 

8.1.3 Size and Shape of the Drop-out Box 

The research has shown that the size and shape of a drop-out box can have 

a measurable effect on the feed rate which can be achieved with a given 

rotary valve, but the extent of this effect is dependent on the 

characteristics of the bulk solid being handled. 

For large particle, free-flowing materials the feed rate is not 

perceptibly affected by changes in the size or shape of the box; as 

demonstrated by the results obtained with the Polyethylene Pellets. The 

only practical problem which may arise with large products is that of 

mechanical blockage if the particles are very large in comparison with 

the size of the box chamber. In this respect, it is somewhat surprising 

to note that no blockages occurred when the Singles Coal was tested. 

This had a nominal size distribution between 12.5 and 25 mm and was 

successfully handled in a drop-out box only 75 mm deep. 
Nevertheless, 

the possibility of a mechanical blockage should not be overlooked when 
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dealing with such materials and the drop-out box should be sized 

accordingly. 

8.1.2 

For fine particle products the evidence of the research is that 

increasing the volume of the drop-out box will lead to a general 

improvement in the entrainment process. However, it is difficult to 

quantify this effect and it is unlikely to be significant unless the 

initial volume of the box was very sma11,for example, that corresponding 

to a box depth of less than two pipe diameters. 

8.1.4 Volume Ratio and Entrainment Efficiency 

In an attempt to categorise different combinations of rotary valve and 

drop-out box and quantify the effect of drop-out box size on performance 

a term called the 'volume ratio' (V
R

) has been proposed. This was 

defined as the ratio of the volume of the rotor pocket(s) which engage 

with the valve discharge port to the overall volume of the drop-out box 

chamber. In Chapter 4 it was argued that this could be used to determine 

a theoretical entrainment efficiency (n
e

) if a simplified model of the 

entrainment process was accepted. As a result of this the following 

expression relating ne and VR was proposed: 

= x 100% (4.9a) 

Although the experimental results are not exactly predicted by this 

relationship the ~eneral trends are in the same direction. That is, 

combinations of rotary valve and drop-out box with a large volume ratio 

are generally less efficient than those with a small volume ratio. In 

addition there is some evidence to suggest that increasing the volume of 

the drop-out box by increasing its depth is more effective than increasing 

the volume by changing the shape. However, the research has demonstrated 

that a volume ratio between 0.07 and 0.15 and a drop-out box depth 

between two and three pipe diameters will usually result in satisfactory 

performance. 

8.1.5 Air Velocity 

The research has shown that the air velocity in the drop-out box can have 

a significant effect on system performance depending on the nature of 

the product being handled and the type of drop-out box being used. 
For 

conventional transition shaped drop-out boxes the air velocity does not 
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affect the feed rate if it is less than a certain critical value. 

However, if this velocity is exceeded the drop-out box can become choked 

with product because the air swirl is th 
en strong enough to prevent it 

from being entrained l.'nto the i I' 
P pe l.ne. The result of this is a 

significantly restricted feed rate. In Chapter 7 the following 

expression for predicting this critical velocity (V ) was proposed: 
c 

V 
c = C P 

c * (7.1) 

where Ps is the poured bulk density of the solids, P
a 

is the air density 

in the drop-out box, a is the length of the box, g is the gravitational 

constant and CcP* is an empirical factor which can be obtained from 

Figure 7.80. 

An important implication of equation 7.1, which is supported by the 

experimental results, is that materials with a bulk density grater than 
3 , 

about 500 kg/m wl.ll not choke at pick-up velocities normally used in 

pneumatic conveying systems. Conversely, although they have not been 

tested in this work, care should be taken with materials having a bulk 

density lower than 200 kg/m
3 

because the trends suggest that these could 

choke at normal velocities. 

8.1.6 Air leakage 

As well as providing information about the entrainment process the 

research has also demonstrated the importance of considering the effect 

of air leakage on the pocket filling process. This was best illustrated 

by the results obtained with the pulverised coal; from which it was 

impossible to identify any significant differences between the performnces 

of the various entrainment configurations because of restricted pocket 

filling. At the present time there is no proven method for predicting 

the effect of air leakage on pocket filling, but the model proposed in 

Chapter 4 could provide the basis for achieving this. 

The research has also shown that the air leakage itself can be 

predicted by a method similar to that proposed by Reed (11). The 

difference being the value of the blockage factor (b) used in equation 

2.23, that is: 

v = b u L c (2.23) 
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In Reed's model the value of b is determined from Figure 2.26 which was 

derived from experimental data obtained with a rotary valve feeding a 

simple pressurised container. 
Whilst this gives acceptable results for 

rotary valves used in such Situations, for valves which are used to 

feed pneumatic conveying pipelines a better estimate of the blockage 

factor is given by Figure 7.99 'which was derived from the results of this 

research. 

8.1.7 Summary 

To summarise the various factors which are now known to affect the 

performance of a rotary valve used to feed a pneumatic conveying line 

Figure 8.1 has been constructed. This is similar to Figure 2.33 in 

Chapter 2 but also considers the influence of . the drop-out box and air 

leakage on valve performance. 

In Figure 8.1 curve A represents the typical characteristics of a 

rotary valuve used to feed a positive pressure pneumatic conveying line. 

Line B represents the complete pocket filling model and curve C the 

incomplete pocket filling models of Reed (11) and Jotaki & Tomita 

(10, 12 & 13). 

f 

Figure 8.1 

E 

F 

F' 

Rotor Speed 

ritical rotor 
speed 

Actual and Predicted Characteristics of a Rotary Valve 
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The intersection of these two curves give a prediction of the 'critical 

rotor speed' at which the throughput is a i max mum •. Below the critical 

rotor speed the throughput is overestimated by line B and line D gives 

a better prediction of the performance. Line D is obtained by 

multiplying the complete pocket filling model by a filling factor (a) , 

such as that obtained from the design curves suggested by Reed, see 

Figure 2.11. However, this still invariably overestimates the feed 

rate and so a further correction needs to be made to account for the 

effect of the drop-out box. This is illustrated by line G and the arrow 

X, which indicates the effect of increasing the drop-out box volume. 

Hence line G would approach line D for a box with a large volume. 

As already stated, curve C represents the incomplete pocket filling 

model as suggested by Reed and Jotaki & Tomita. However, in practice 

this will overestimate the performance of the valve because of the 

adverse effect of air leakage on pocket filling. Consequently, the 

actual performance will follow a curve similar to that produced by 

equation 4.7 of this study, which is similar in form to Reed's equation 

for incomplete pocket filling but inforporates a 'leakage factor' (Ki) 

to allow for the effect of air lekage through the internal clearances 

of the valve. The arrow Y shows the effect of increasing air leakage 

on curve C. 

Lines E and E' show the effect of the hopper discharge characteristics 

on the overall performance of the feeding system. If the discharge rate 

of the hopper is greater than the maximum take-away rate of the valve 

the hopper characteristics will lie above the valve characteristics as 

indicated by line E. However, if the discharge rate of the hopper is 

less than the take-away rate of the valve the feed rate will be 

restricted, as shown by line E'. The choked feed characteristics of the 

drop-out box will restrict the throughput in a similar way to the hopper 

shown by 11'nes F and F', with the actual feed rate characteristics as 

dependent upon the size and shape of the drop-out box. 
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8.2 Value of the Research to Industry 

The value of this research to industry is difficult to quantify in 

financial terms but, since it is estimated that rotary valves are used 

in more than 50 per cent of all pneumatic conveying systems, there 

should be, at the very least, widespread interest in the results. 

Furthermore, if it is accepted that these results are representative of 

the performance of industrial systems, it is not unreasonable to use 

them as the basis for guidelines for interfacing rotary valves with 

conveying pipelines. This would then enable systems to be designed 

with more confidence than was possible previously and thereby satisfy 

one of the prinCipal objectives of this work. 

following guidelines have been produced. 

With this in mind the 

8.3 Guidelines for Interfacing Rotary Valves with Pneumatic Conveying 
Pipelines 

i) Any suitable orientation of the rotary valve with 
respect to the pipeline may be used without adversely 
affecting the feed rate which can be achieved. 

ii) The direction of rotation of the valve rotor with 
respect to the direction of the conveying air stream 
does not affect the feed rate which can be achieved. 

iii) Any obstructions, deflection plates or flow 
constrictions in the drop-out box chamber should be 
avoided. 

iv) 

v) 

vi) 

For most products there is little point in using drop­
out boxes having complex shapes; a simple transition 
shape two or three pipe diameters deep will usually 
provide satisfactory performance. 

The smallest internal dimension of the drop-out box 
should be at least three times the largest particle 
size to minimise the risk of mechanical blockage. 

To optimise the entrainment efficiency with fine 
particle products the depth and volume of the drop­
out box should be made as large as reasonably possible. 

vii) To minimise the risk of choking the drop-out box 
excessive pick-up velocities should be avoided. 

viii)The blowing seal type of rotary valve provides a more 
consistent feed rate and a better overall volumetric 
efficiency than the drop-through type for fine cohesive 
materials. However, the use of this type of valve 
should be avoided when handling abrasive and erosive 

products. 
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It should be remembered that the b 
a ove guidelines have been 

compiled from the results of research conducted wl.'th a 
positive pressure 

conveying system. 
In the absence of any other information it is 

suggested that the same guidelines be d f 
use or negative pressure systems 

with appropriate caution. 

8.4 Recommendations for Further Work 

8.4.1 Introduction 

While it is evident that the work presented in this thesis makes a 

significant contribution towards the current understanding of the 

interaction between rotary valves and pneumatic conveying pipelines, it 

is equally evident that it could be usefully complemented by further 

investigation. 

Since the work presented here was the first to investigate this 

subject in detail, it was necessary to establish the concept of the 

'feeding factor'o This is similar to the 'filling factor' proposed by 

Reed (11), but quantifies the overall ability of a rotary valve to feed 

a conveying system and not the performance of a valve in isolation. 

Consequently it is recommended that this approach is also adopted in the 

further work suggested here. 

8.4.2 Pocket Filling 

Both this work and previous investigations have shown that the pocket 

filling process of a rotary valve is affected by the air leakage resulting 

from feeding a positive pressure conveying system. This may be 

considered as an indirect effect of the interaction with the pipeline but, 

as shown by the results obtained for the pulverised coal, it can 

severely limit the overall performance. In Chapter 4 a method of 

modelling this effect was proposed which successfully predicted the 

correct trends but unfortunately overestimated the reduction in feed rate. 

Therefore, further work is needed either to improve this model or to 

develop an alternative. One possible approach could be to use the 

Ergun equation (56) in the derivation of the pocket filling model rather 

than the Carman equation (14) used in the model described above. This 

would take account of the body forces acting on the particle entering 

the valve as well as the viscous forces, but would not lead to a single 

simple material characteristic factor. 
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8.4.3 Air Leakage 

The prediction of the air leakage through 
rotary valves is another area 

where further work is recommended. Wh 
en compared with the work of Reed 

the results of this work appear to show that the air 1 eakage through a 

rotary valve used to feed a moving airstream is less than that through 

a similar valve used to feed static air at the same pressure. 

Consequently, it is suggested that a single rotary valve be tested in 

both situations and with the same mater1'als' d 1n or er to obtain a direct 
comparison, 

8.4.4 Drop-out Box Configurations and Other Materials 

Since this work has investigated the performance of conventional 

transition shap~d drop-out boxes, a logical development of this would be 

to examine the performance of other drop-out boxes. The testing of 

other materials would also be invaluable, particularly with regard to 

establishing an improved method for predicting the pick-up velocity at 

which choking occurs. 

8.4.5 Vacuum Systems 

The work reported in this thesis has been concerned only with the 

interaction between rotary valves and positive pressure conveying 

systems. However, it is very common to use rotary valves to feed 

vacuum conveying systems and at the present time we can only speculate 

about the entrainment characteristics of such arrangements. Neverthe-

less, the view of the author is that the entrainment characteristics of 

vacuum systems will be very similar to those of positive pressure 

systems because the air swirl which dominates the flow patterns in the 

drop-out box would still be present. The reason for suggesting this is 

because the air swirl results from the interaction between the conveying 

airstream and the 'captive' volume of air in the drop-out box; which 

would be essentially the same in both types of system. - Consequently 

there is no reason to believe that the overall entrainment characteristics 

will be significantly different. In particular, it is believed that 

the phenomenon of choking would still occur in vacuum systems and that 

the relative sizes of the rotary valve and drop-out box would still have 

a measurable effect on performance. 
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In order to test the above reasoning it is recommended that a 

programme of work be undertaken to investigate the entrainment 

characteristics of vacuum systems. This would fill a serious gap in 

our present knowledge and might also lead to a better understanding of 

entrainment in positive pressure systems. 

8.4.6 Multiple Feed Points 

It is quite common for there to be more than one feed point into a 

pneumatic conveyor, and if these are used simultaneously it follows that 

there will be material in the airstream prior to it entering the down-

stream drop-out box(es). At the present time the effect of this on 

the entrainment of material from the downstream box is not known but it 

seems reasonable to expect that it could be significant. Therefore, an 

investigation of this subject could provide valuable information. 

8.4.7 Bends and Other Downstream Disturbances 

In the experimental work conducted for this research the first bend in 

the conveying pipeline was approximately 12 metres downstream of the 

rotary valve and drop-out box. This arrangement was used deliberately 

in order to minimise the effect of the bend on the entrainment process. 

However, in many industrial systems the first bend is placed immediately 

after the rotary valve. Consequently it would be very interesting to 

know the effect of this, or any other downstream disturbances, on the 

performance of the system and hence provide some guidelines for 

positioning rotary valves with respect to downstream bends. 
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APPENDIX I 

[ __ -------P-N_E_U_M __ A_TI_C_C_O_N_V_E_Y_IN_G ________ __ 

Research aims to improve 
rotary valve performance 

With the intention of improving their understanding of rotary valve performance 11 UK 
companies are jointly guiding and sponsoring a research programme at Thames Polytechnic. 

This work has generated much interest and ways of making the results of the project more 
widely available are currently being discussed 

Pneumatic conveying systems which 
consist of a Roots-tYPt' blower, rotary 
valve, pipeline and separator are pro b­
ably the most common ,type of 
pneumatic system for handlmg bulk 
solids, Although they are essentiall y a 
simple system, it is not unco~mon to 
hear equipment users complam about 
problems such as insufficient through­
put, pipeline blocking, prematu,re wear 
of pipework, product degradatIOn and 
excessive power consumption . 

These problems are often due to the 
lack of attention paid to the various 
factors involved in feeding the product 
into the pipeline. For example: the 
installation of the wrong type or size of 
valve can lead to insufficient through­
put, excessive air leakage through ~he 
valve to pipeline blocking and hIgh 
entrainment velocities causing excessive 
plant wear, undesirable product 
degradation and high power consump­
tion. A potential user can minimise the 
likelihood of such problems occurring by 
employing a reputable and experien~ed 
system designer who will seek adv,Ice 
from the rotary valve supplier regardmg 
the most suitable type of feeder for the 
particular application. 

However, despite the vast wealth of 
experience within industry, many valve 
manufacturers system designers and 
user companie~ agree that there is still 
much scope for refining their techniques 
and products. This can be achieved ~y 
improving their knowledge of the way m 
which the parameters relevant to the 
feeding zone influence the performance 
of pneumatic conveyors, 

With the intention of improving their 
understanding of rotary val ve perfor­
mance, eleven British companies, 
comprising manufacturers of rotary 
valves, system designers and user ~o,m­
panies are jointly sponsoring and gUldmg 
a programme of work at the Bulk SOli.ds 
Handling Unit at Thames Polytec~nIc. 
The Unit's involvement in industrIally 
orientated research and consultancy 
work in the general area of pneu:natic 
conveying is well known , as IS ItS 

intensive short courses on pneumatic 
transport, hopper design and bulk soli,ds 
handling , The spon so r ing companies 

Above. View of the test rig installed 
in the units laboratories at 

Woolwich. Below. One type of 
rotary valve currently undergoing 

test work 

have provided both the equipme~t a~d 
funds needed to build a pilot size rIg 
necessary to generate the all important 
data , , 

This rig, which has been installe~ In 
the Unit ' s laboratories at WOOlWiCh, 
London. is a ver satile pneumatic comey­
ing system operating on a recirculatory 
basis, Mea ns for easily changing the type 
of rotary valve , it s orientation , the dr~p­
out box configuration and for \aryIng 
the vahe speed and air flow rat e are 
incorporated , Th e in strum entation co n­
sist s of a range of meters to measure alf 
and produ ct fl o w rates. air leal\ag e 
thro ugh th e rot a ry \3." e. con \ e\ Jn ~ line 
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pressure drop and power consumption . 
Obviously the results will depend upon 
the product conveyed and so the rig has 
been designed to handle products rang­
ing from lump coal to fine flour. 

The results of the research programme 
are received by the sponsoring companies 
through quarterly progress meetings. To 
date the work has provided the companies 
with an improved understanding of the 
wa y in which air and product s flow 
through the drop-out box, that is, the 
important interface between the rotary 
valve and conveying line. Favourable 
entrainment configurations and convey­
ing parameters have been identified for a 
number of materials and this newly ac­

I qui red technology has alread y ~een pu t to 
II good use in industry, Not surpnsm,gl y thiS 

w'ork has generated considerable Interest 
with organisations not involved in s p~n­
soring the project and ways of making 
result s more widely a\'ailable are curren t­
ly being di scussed , SH 504 

Th e organisations supporting the 
research are: Blue Circle; BP Chemi­
cals; Bush and Wi/ton Va /l'es; 
Kemlltec I M.4 S; Na tional Coal Board: 
Rank HOI'is; Rota 1'01; S TB Engineer. 
inr.' SllI rte l'allt Engineerin g; Ii adc 
EI~;i17eer{lIg: If ·cst{lI!!IlOiH2 SrSle l/l ~, 



APPENDIX II 

Integration of Equation 4.3 

dS 
dt = g - K(G + S) 

By re-arranging equation 4.3 we can write: 

dS 
= dt 

(g - KG) - KS 

and hence, 

1 
K £n«g - KG ) - KS) = 

(4.3) 

where Xl is a constant of integration which may be evaluated by applying 

the boundary condition S = 0 when t = O. Hence: 

and 

or, alternatively 

S 

NOW, since S = 

and hence, 

= 1 
K £n(g - KG) 

1 1 
K £n«g - KG)- KS) = t K £n(g - KG) 

= 

= 

g _ (g - KG) exp (-Kt) - G 
K K 

we may write: 

= ~ dt 
K 

(g - KG) exp (-Kt) dt -
K 

g (g - KG) X 
- t + 2 exp (-Kt) - Gt + 2 
K K 

Gdt 

t t of 1'ntegrat1'on which may be evaluated by applying 
where X is a cons an 

2 
the boundary condition Yb = 0 when t = O. 

= (KG - g) 
2 

K 
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and, 

= (~- G)t - (g - KG)(l - exp(-Kt» 
K 2 

K 

By re-arranging this last expression to put it in the same form as 

that used by Reed (11) in his expression for Yb' equation 2 . 15, it may 

be shown that: 

= 

or, alternatively 

= 

g (1 _ GK) 
K g 

1 

1 
t - (1 - e xp(-Kt» 

K 

g 
K KQ, t - K (1 - exp(-Kt» 

h K is the 'air leakage' factor discussed in Chapter 4. were Q, 
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APPENDIX III 

Calculation of the Minimum Fl 
by Jotaki et al (53) uidizing Velocity (Umf ) for the P.V.C. used 

For materials with a mean particle s1'ze between 50 and 500 Urn Woodcock 

(54) has suggested the following s1'mple correlation for the minimum 
fluidizing velocity: 

= 420 P d2 
P P 

where Umf is measured in mis, P
b 

in kg/m3 and d in m. 

used by Jotaki et al had a mean particle size o~ 166 ~m, 
may be used to provide an estimate of U 

m!' 

Since the P.V.C 

t h is correlation 

Mean particle size of the P.V.C. (d ) 
P 

Particle density of the P.V.C ( P
b

) 

Hence, 

= 0.016 m/s 

= 
= 

-6 
166 x 10 lJ m 

3 1400 kg / m 

Calculation of the Leakage Factor (K Q;> corresponding to the Feed Stoppage 
Condition reported by Jotaki et al (53) 

The paper written by Jotaki et al (53) gives the following information 

about the characteristics of the P.V.C which they used in their 

experiments. 

Mean particle size 

Particle density of 

Bulk density of the 

of the P.V.C (d ) 
P 

the P. V . C (p ) p 
P.V.C ( p ) 

p 

= 
= 
= 

-6 
166 x 10 ~m 

3 
1400 kg/m 

3 
524 kg/m 

From this information it may be shown that the voidage of the P.V.C is 

0.63. Then, by assuming a value of 1.8 x 10-
5 

for the dynamic viscosity 

of the air (~) and a value of 0.6 for the shape factor of the P.V.C ( ¢ ), 

the material characteristic factor (K) may be calculated using equation 
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2.14, that is: 

K = 

APPENDIX III 

(1 - E) 

E3(d ¢)2 
p 

This gives the value of K for the P.V.C as 345. 

(2.14) 

As well as the above information Jotaki et al also state that the 

superficial air velocity through the cross-sectional area of the supply 

hopper was 0.017 mls when the feed stoppage occurred. Dividing this by 

the voidage of the P.Y.C ~i l l gi ve th e velocit y of t he air relati ve t o 

the rotor pockets (G). The leakage factor K ~ may then be calculated by 

using equation 4.6a, that is: 

= 1 - KG/g 

where g is the gravitational constant. 

Following this procedure gives the value of K ~ at the feed stoppage 

condition reported by Jotaki et al as 0.05 . 
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