
 Procedia - Social and Behavioral Sciences 47 (2012) 1991 – 1999

1877-0428 © 2012 Published by Elsevier Ltd. Selection and/or peer review under responsibility of Prof. Dr. Hüseyin Uzunboylu
doi: 10.1016/j.sbspro.2012.06.938

CY-ICER 2012

A serious game for developing computational thinking and learning
introductory computer programming

Cagin Kazimoglu, Mary Kiernan, Liz Bacon, Lachlan Mackinnon
University Of Greenwich, London, UK

Abstract

Owing to their ease of engagement and motivational nature, especially for younger age groups, games have been omnipresent in
education since earliest times. More recently, computer video games have become widely used, particularly in secondary and
tertiary education, to impart core knowledge in some subject areas and as an aid to attracting and retaining students. Academics
have proposed a number of approaches, using games-based learning (GBL), to impart theoretical and applied knowledge,
especially in the computer science discipline. Our research is concerned with the design of an innovative educational game
framework focused on the development of Computational Thinking (CT) skills, and herein we introduce a serious game, based
on our framework, which encourages the development of CT skills to facilitate learning introductory computer programming. We
describe how a limited number of key introductory computer programming concepts have been mapped onto the game-play, and
how an equivalent set of skills characterising CT can be acquired through playing the game. A survey response group of 25
students, following computer science and related degree programmes but with very diverse backgrounds and experience,
provided initial usability feedback on the game. Their feedback confirmed that they found the game enjoyable, and also
universally believed that this approach would be beneficial in helping students learn problem-solving skills for introductory
computer programming. Feedback from this group will be incorporated in a revised version of the game, which will now be
subject to rigorous experimental evaluation and analysis, to provide structured empirical evidence in support of our approach.
© 2012 Published by Elsevier Ltd.

Keywords: Serious games, game based learning, computational thinking, introductory programming, learning programming with
games.

1. Introduction

Existing research has led to many discussions and ideas on how best to teach introductory computer
programming as students suffer from a wide range of difficulties in computer programming (CP) courses (Bonar &
Soloway, 1983; Lahtinen, Mutka & Jarvinen, 2005; Coull & Duncan, 2011). Numerous studies argue that students
view computer programming as a purely technical activity rather than a set of combined problem solving skills
(Bennedsen, & Carpersen, 2008; Kazimoglu et al., 2010; Liu, Cheng & Huang, 2011). Therefore, the majority of
students who are learning introductory computer programming tend to develop superficial knowledge and fail to
create problem solving strategies through using programming constructs. Additionally, recent work in this field
reports that enrolment in computer science (CS) programmes has been facing a steady decline despite steps taken to
counter this and to bring more students into CS (Ali & Shubra, 2010).

One strategy proposed to facilitate the teaching and learning of introductory computer programming is the use of
video game technologies in an educational game context (also referred to as "serious games"). The rationale for this
is that because games are engaging and motivational, students will be encouraged to learn programming constructs

Available online at www.sciencedirect.com

© 2012 Published by Elsevier Ltd. Selection and/or peer review under responsibility of Prof. Dr. Hüseyin Uzunboylu

1992 Cagin Kazimoglu et al. / Procedia - Social and Behavioral Sciences 47 (2012) 1991 – 1999

in an entertaining and potentially familiar environment, and will then be able to transfer their learning outcomes
from that environment into learning introductory computer programming with a programming language. Moreover,
curricula that used serious games to specialise in learning programming have found positive effects on students as
well as on learning outcomes (Ater-Kranov et al., 2010). Despite these efforts, few studies evaluated serious games
as learning environments and how game-play can be associated to support the education of computer programming
(Sung et al., 2010). The empirical evidence that verifies games are educationally effective tools for learning
introductory computer programming is still absent from the literature (Guzdial, 2011). Furthermore, the existing
work in this field tends to focus on how to adapt and assess serious games in classroom environments rather than
proposing concrete methods to improve game-play. Therefore, there is a significant need for clear instructions and
analysis on how games can be developed specifically for acquiring problem solving skills to support the education
of introductory computer programming. To address these issues, we discuss and present the following: 1) A
definition of Computational Thinking (CT) based on the current research literature, and a consideration of how this
can be developed through playing games. 2) An analysis of currently available serious games designed to support
teaching and learning in introductory computer programming. 3) A description of the game we have developed,
based on our innovative educational game framework, and the potential benefits for students in acquiring CT skills
to support learning introductory computer programming. 4) Initial feedback on the game, and the value of the
approach in teaching students, from 25 survey respondents, all studying computer science or related degree
programmes, with a wide diversity of backgrounds and experience.

2. Related Work

2.1. Defining computational thinking

Computational thinking (CT) has been the focus of several studies and reports in recent years (Guzdial 2008,
Qualls & Sherrell, 2011).Wing (2006) defines CT as a set of intellectual and reasoning skills that states how people
interact and learn to think through the language of computation. In other words, thinking computationally involves
using methods, language and systems of computer science (CS) in order to solve problems in any discipline
regardless of where the problem lies. Many authors state that CT is vaguely defined and a clear definition is
necessary in order to use this construct to gain insight into problems (Guzdial, 2008; Dennings, 2009). Additionally,
recent research in this field attempted to identify CT independently and thus several definitions exist in the literature
(Perkovic et al., 2010). Despite these efforts, little work has successfully demonstrated how CT can be integrated
into the curriculum and classroom environment. Because CT has multiple definitions and involves a broad range of
skills, it is arguable which cognitive skills characterise CT and which real interactions can be identified as CT. For
example, Wing (2006) argues that CT incorporates all critical skills and that involves problem solving with
mathematical and engineering thinking. However, a recent study investigating the importance of skills
characterising CT reveals that mathematical and engineering thinking is not necessarily a main characteristic of CT
because complex CT can also happen spontaneously (Ater-Kranov et al., 2010). Furthermore, recent work in this
field examined the categories of CT by summarising the rationale derived from the literature and according to this
research none of these categories include mathematical and engineering thinking (Berland & Lee, 2011). Although
empirical evidence is currently absent from the literature, the CT categories academics ubiquitously agree on are:
conditional logic, building algorithms, debugging, simulation and distributed computation (Wing 2006; Wing 2008;
Ater-Kranov et al., 2010; Berland & Lee, 2011). Conditional logic is the building block of CT and refers to local
consequences of true/false value of a given statement. Building algorithms contain set of conditional logic and
presents instructions to solve a complex problem in a step-by-step approach. While debugging refers to the act of
determining problems in an algorithm, simulation states modelling or implementing an algorithm as test beds in
order to identify which circumstances and abstractions to consider. Finally, distributed computation refers to the
social aspect of CT and involves multiple parties when developing abstractions.

Many authors draw the attention that CT is not a synonym for programming (Wing, 2006; Guzdial, 2008;
Repenning, Webb & Ioannidou, 2010). However, a survey revealed that the majority of high school teachers believe

1993 Cagin Kazimoglu et al. / Procedia - Social and Behavioral Sciences 47 (2012) 1991 – 1999

that CT is identical to programming (Blum & Cortina, 2007). Therefore, at this point it is crucial to differentiate a
programming tool from a CT tool. A programming tool should support students in writing programs by providing
specific feedback on syntax errors, method implementation and programming logic as these issues have been
identified to be most common mistakes made by students (Haden & Mann, 2003). Equally, a CT tool should offer a
simple mapping between a problem and its alternative solutions by using relevant feedback and a context familiar to
students. On one hand, we have programming tools where activities often involve writing excessive programming
code in order to learn the structure of programming and produce efficient outcomes whereas on the other hand, a CT
tool may allow development of simple solutions to CS challenges with little or no programming background.
Recently, researchers in this field stressed
tools can make CT most accessible to everyone (Qualls & Sherrell 2010; Kazimoglu et al., 2011). In conjunct
with this discussion, we have successfully developed a game framework which allows students to acquire the
following skills through playing the game:

 to create and apply algorithms for a particular problem;
 to evaluate an algorithm by specifying appropriate criteria used;
 to apply computational thinking methods to problems;
 debugging algorithms and detecting logical errors;
 simulating algorithms and observing which consequences to consider when completing abstractions.

2.2. Serious games supporting the education of introductory computer programming

A number of studies used serious games as learning environments to support the education of introductory
programming. Robocode (2001) is one of the first environments developed as an open source educational game in
order to support java programming. The game objective is to develop an artificial intelligence (AI) for a tank to fight
against other tanks programmed by other players. Students simply develop their war strategy using java
programming and the battles run interactively when all players complete programming their own AI. Colobot (2007)
is known to be the only commercial game that is specifically developed to teach computer programming. Players
command different vehicles by writing pseudo codes in an in-game specific programming language (which is
similar to C++) in order to complete various tasks. Despite presenting an interactive game-play, Colobot (2007) is
not free and cannot be modified according to a specific curriculum. Catacombs (Barnes et al., 2007), Saving Serra
(Barnes et al., 2007) and Elemental (Chaffin, Doran, Hicks & Barnes, 2009) are other examples of games that are
specifically developed to teach about programming. More recently, Muratet et al. (2011
multiplayer real time strategy (RTS) game and asked both students and teachers to evaluate their game as a learning
environment. Their initial results indicate that majority of students found their game motivational although some
teachers who participated in their study reported negative perceptions because they thought the game might
misrepresent CS as only being made of video games. Furthermore, recent studies also started to evaluate the
learning behaviours of students in addition to their motivation in learning programming. For example, Liu, Cheng &
Huang (2011) created a simulation game and analysed the feedback and problem solving behaviours of 110 students
during their game-play. It was found that students motivated with the game used problem solving strategies in order
to discover available solutions and also explored ways to apply them. In contrast to this, students who felt bored
with the game only solved problems at a superficial level.

Additionally, there are many studies that run assessments on the existing visual programming tools (such as in
Scratch, Alice) depending on game design principles (Resnick et al., 2009; Wu et al., 2010). These tools cleverly
remove the syntax of a programming language and present a simple interface through drag and drop interactions.
However, it is crucial to underline that programming tools are not games and cannot be considered as game based
learning (GBL) environments because they lack some of the crucial features that exist in all good games such as
timely feedback and a rewarding mechanism to drive students to discover more. The majority of programming tools
deliver feedback only during the run-time of the designed projects, in the form of demonstrations of actions
predetermined by the students (Kazimoglu et al., 2011).While using these tools, students might develop a good

1994 Cagin Kazimoglu et al. / Procedia - Social and Behavioral Sciences 47 (2012) 1991 – 1999

programming practice or acquire a CT strategy, however there is little feedback available to alert them to this. The
corollary to this might be when students create a working linear scenario without considering reusability and other
good programming practices. In this case, students might create output that works by designing a bad programming
strategy, such as a statement repeated lots of times without using a loop, because they do not possess the requisite
level of knowledge to develop a better solution and the tool provides no feedback to address this.

Although current studies in serious games for learning programming are encouraging, it is crucial to underline
that the majority of approaches do not consider the acquisition of CT skills but rather promote abstract and
conceptual knowledge while encouraging student motivation in computer programming subjects (Kazimoglu et al.,
2011). Supporting the learning of conceptual knowledge through a serious game can be an effective way but it does
not allow opportunities for students to develop their skills in CT. Therefore, a clear definition should be made here
between games that support the learning and reinforcement of conceptual knowledge, and games that support the
learning of procedural and applied knowledge, and through this, skills acquisition and development. In the first case
the contextual relationship between the focus of the game and the knowledge being acquired is less important and
may be completely abstract, whereas in the latter case the contextual relationship between the game and the
knowledge is paramount, hence our concern to see the utilisation of game-play.

3. The Game

Program your robot is a serious game designed to enable students to practice working with introductory
programming constructs, within an environment that explicitly supports the acquisition of CT skills (such as
algorithm building, debugging and simulation). The game is developed in Adobe Flash CS5 (2010) using
actionscript 3 as the default programming language. The goal of the game is to assist a robot and help him to escape
from a series of platforms by constructing an escape plan called a solution algorithm. Players construct their
solution algorithm by giving various commands to the robot to perform. These commands are divided into two as
action commands and programming commands. Action commands are those that have a direct effect on the robot
(such as go forward, turn left), while programming commands indirectly affect these actions by supporting the
solution developed by the player (such as repetition of a series of commands or making a decision on a condition).
The current version of the game contains three programming commands which are functions, decision making and
loops respectively. Functions are used to create repeatable patterns; loops are basically used to repeat a series of
action commands and decision making is used to evaluate a condition such as whether or not the robot faces an
enemy. All command can be dragged from their associated toolbars and dropped into specific areas called slots.
Additionally, players can use any number of commands in any sequence, for as long as they have empty slots. For
example, in early levels players often build their solution algorithms simply by dragging and dropping action
commands into the main method which is the robot default controlling function.

The problems are represented as levels and currently there are six levels in the game. Each game presents a
different challenge and aims to teach a different programming construct. In order to pass a level, players need to
reach a destination point called the teleporter within that particular level by developing their own solutions. As
players progress through the levels, the platforms expand and the game increases in complexity. In each level,
players encounter items that can be captured by the robot. These items reward players in the game and are randomly
scattered every time players start to play a level. The random distribution of items is controlled in order to ensure
that the complexity of each level remains broadly consistent. Therefore, we intend to deliver a game-play where,
although the level of difficulty remains similar, a problem presented to one player can be significantly different to
that given to another player to solve, who is playing the same level or indeed the same player repeating the level to
consolidate their learning.

1995 Cagin Kazimoglu et al. / Procedia - Social and Behavioral Sciences 47 (2012) 1991 – 1999

Figure 1. Current version of our game, showing level 6.

As shown in figure 1, players can perform a few actions after they finish arranging their sequences of commands
inside the slots. The first of these actions is to execute the commands by pressing the run button. During runtime
only the commands set inside the Main method are performed by default, in the initial sequence determined by the
players. Alternatively, players can use programming commands to design more advanced solutions rather than
simply dropping all action commands inside the Main method. While players can ignore programming commands
(such as loops, decision making) early in the game, designing repeatable patterns becomes essential in the more
advanced levels due to the lack of slots in the Main method. Moreover, we have built a scoring system into the game
to measure their ability to devise strategies for optimising the behaviour of
the robot according to these rules. The score calculation is based on how players use programming commands in the
game. As an example, players can complete early levels without using a single function. However doing so creates
an inelegant solution and thus produces a low score. Therefore, the game is aimed to motivate players to design
reusable algorithms through using functions, loops and conditionals rather than placing all action commands inside
the main method. In this way the game ensures that players discover for themselves the necessity of using functions
and loops, and thus eventually recognise how crucial it is to separate the logic inside the main method into
repeatable patterns in order to develop reusable solutions. Hence, students can learn by constructing their own
knowledge, as well as developing their skills in CT by designing and building algorithms.

Another important action is to debug a solution designed by the players. At any time in the game, players can use
the debug mode to detect potential errors in their solutions. After a debug process, the error/warning results are
shown in the equivalent logic area within the game as messages (see Figure 1). Similar to an integrated development
environment (IDE), the debug mode in our game allows players to develop the good practice of constantly
debugging a solution before running it. We also avoided using programming jargon or technical terms in our game
as players might have a non-technical/non-programming background.

In many ways Program your robot is similar to other games such as Light-Bot (2008) and Robozzle (2010) that
deliver a similar game experience. However, because these games are created for fun and not for learning purposes,
they do not consider a curriculum or developing skills in CT. In addition to this, these games do not sufficiently
make a difference between different programming constructs (such as the difference between a recursive function
and a loop). Therefore, although our prototype is similar to these games, there are differences that guide our efforts

1996 Cagin Kazimoglu et al. / Procedia - Social and Behavioral Sciences 47 (2012) 1991 – 1999

such as the necessity to consider good programming practices, and the intention to encourage players to think
computationally through motivation to achieve a high score.

Although we currently lack empirical evidence, we argue that our game encompasses main cognitive skills in CT
because of the following: 1) players build algorithms during the game-play by designing their own solutions 2)
players often use condition logic in order to achieve a high score in the game and also when they want to create
reusable solutions 3) players track a simulation when they press the run button and observe the actions of the robot
4) players can debug their solution to detect errors in their logic.

4. Initial Evaluation

As an initial evaluation, we designed an exercise to get feedback from students who are studying degrees within
the computer science discipline at University of Greenwich. The purpose of the exercise was to identify positive and
negative issues of our game before we move to the structured empirical part of our research. Because participating
students are studying on different degree programmes, their programming knowledge and skills were considerably
different. This proved beneficial in terms of evaluation as we got feedback from participants with diverse knowledge
backgrounds and experiences. Twenty five students completed the exercise and some of them wrote reports up to
four pages. The feedback showed that the majority of participants found the game well-suited to helping students to
understand introductory computer programming constructs and develop their problem solving skills in this regard.
The following quotes from student reports support this point:

Student 1:

and I found that the game puts across the idea of structuring a program. The functions could be considered as
classes and the decision making is a Boolean value. Those are the basics of programming, a way to show how to

Student 2: In my point of view, this game was really good to introduce the fun of programming to students who

want to study programming

Student 3: any problems as I found the commands easy to

understand. As the game went on it became quite complex but I managed to understand the concept behind it.

Student 4: In the robot game, I managed to play up to level 5 with a score of 38000. I found the game

interesting to play as it was easy to follow the instructions. I think the interface is quite simple and not overly done. I
had no major issues with the game.

It is encouraging for us that none of the participants reported an error or a crash in the game. However, almost all

of them provided their suggestions regarding the game mechanics and user interface. We found some of these
comments very valuable and decided to deliver a better game experience in the light of the following student
suggestions:

-down as games like this require some sort of

1997 Cagin Kazimoglu et al. / Procedia - Social and Behavioral Sciences 47 (2012) 1991 – 1999

Student

to complete a level

Student 10

completing the levels

5. Conclusion and Future Work

This study examines the relationship between computational thinking and learning programming within a serious
game context. The paper argues that current serious games specifically developed for learning programming
purposes do not consider a deep game-play for developing computational thinking skills. To address this problem,
the paper describes program your robot, a serious game aimed at integrating core computational thinking skills and
various programming constructs as an integral part of the game-play. Twenty five students participated in an
exercise to evaluate program your robot and it was found that participants enjoyed playing the game. Furthermore,
participants reported that this type of approach can enhance the problem solving abilities of students who are
learning introductory computer programming.

Our future work involves improving the game by addressing all of the above suggestions raised by the students.
An achievements section will be available in the game to reward players after they discover good practice in
programming. Additionally, a high score chart is being designed where players can submit their scores and share it
with other players. The participation in the high score chart is going to be optional because we do not want players
to stop playing if they are not doing very well. We are also planning to make minor changes to the user interface in
order to make the game more accessible to students.

A set of rigorous experiments are currently being designed to provide a systematic and structured evaluation of
both the framework and the game. These will provide analytic data to determine whether or not the framework is
successful in encouraging the development of CT skills and, as a result, whether or not the game helps students to
learn and use key concepts in introductory computer programming. Both of these aspects will be analysed separately
and in combination, to ensure we can accurately determine the impact of our approach and any benefits that can be
derived from it. The statistical data generated from these experiments, and subsequent analysis, will also be made
available to the research community, to provide a further contribution to the body of knowledge in this area. Finally,
although program your robot is a prototype, the game is free and accessible at: http://www.programyourrobot.com.

Acknowledgements

Game and main menu music are composed by Dan O'Connor (dano@danosongs.com).

References

Adobe Flash CS5, (2010). Industry-leading authoring environment for producing expressive interactive content. Retrieved 10 December 2011,
from http://www.adobe.com/products/flash.html

Ali, A., & Shubra, C. (2010). Efforts to Reverse the Trend of Enrollment Decline in Computer Science Programs. Issues in Informing Science

and Information Technology, 7, 16.

Ater-Kranov, A., Bryant, R., Orr, G., Wallace, S., & Zhang, M. (2010). Developing a community definition and teaching modules for

computational thinking: accomplishments and challenges. Paper presented at the Proceedings of the 2010 ACM conference on Information
technology education.

1998 Cagin Kazimoglu et al. / Procedia - Social and Behavioral Sciences 47 (2012) 1991 – 1999

Barnes, T., Richter, H., Powell, E., Chaffin, A., & Godwin, A. (2007). Game2Learn: building CS1 learning games for retention. SIGCSE Bull.,
39(3), 121-125.

Bennedsen, J., & Carpersen, M. E. (2008). Exposing the Programming Process. In Reflection on the Theory of Programming: Methods and

Implementation, Bennedsen, J., Carpersen, M. E., Kolling, M. Eds. Springer, Verlag 6-16.

Blum, L., & Cortina, T. J. (2007). CS4HS: an outreach program for high school CS teachers. SIGCSE Bull., 39(1), 19-23.

Bonar, J., & Soloway, E. (1983). Uncovering the principles of novice programming. Paper presented at the Tenth ACM SIGACTSIGPLAN
Symposium on Principles of Programming Languages.

Chaffin, A., Doran, K., Hicks, D., & Barnes, T. (2009). Experimental evaluation of teaching recursion in a video game. Paper presented at the

Proceedings of the 2009 ACM SIGGRAPH Symposium on Video Games.

Colobot, (2007). 3D real time game of strategy and adventure for learning programming. Retrieved 10 December 2011, from

http://www.ceebot.com/colobot/index-e.php

Coull, N.J. and Duncan, I.M.M. (2011). Emergent requirements for supporting introductory programming. ITALICS, 10(1), 78-85. Retrieved 10

December 2011, from http://www.ics.heacademy.ac.uk/italics/vol10iss1.htm

Denning, P. J. (2009). The profession of IT Beyond computational thinking. Commun. ACM, 52(6), 28-30.

Guzdial, M., (2011). Any cognitive benefit of video games? Video-game studies have serious flaws. Retrieved 10 December 2011, from
Guzdial, M. (2008). Education: Paving the way for computational thinking. Commun. ACM, 51(8), 25-27.

Kazimoglu, C., Kiernan, M., Bacon, L., & Mackinnon, L. (2010). Developing a game model for computational thinking and learning traditional

programming through game-play. Paper presented at the World Conference on E-Learning in Corporate, Government, Healthcare, and
Higher Education 2010.

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L. (2011). Understanding Computational Thinking before Programming: Developing

Guidelines for the Design of Games to Learn Introductory Programming through Game-Play. International Journal of Game-Based
Learning (IJGBL), 1(3), 30-52.

Lahtinen, E., Mutka, K. A. & Jarvinen, H. M. (2005). A study of the difficulties of novice programmers. In Proceedings of the 10th Annual

SIGSCE Conference on Innovation and Technology in Computer Science Education (ITICSE 2005), 14 18.

Light-Bot, (2008) Control a robot by giving commands to it. Retrieved 10 December 2011, from http://armorgames.com/play/2205/light-bot.
Liu, C.-C., Cheng, Y.-B., & Huang, C.-W. (2011). The effect of simulation games on the learning of computational problem solving. Computers

& Education, 57(3), 1907-1918.

Muratet, M., Torguet, P., Viallet, F., & Jessel, J. P. (2011). Experimental Feedback on Prog&Play: A Serious Game for Programming Practice.

Computer Graphics Forum, 30(1), 61-73.

Qualls, J. A., & Sherrell, L. B. (2010). Why computational thinking should be integrated into the curriculum. J. Comput. Small Coll., 25(5), 66-

71.

Perkovic, L., Settle, A., Hwang, S., & Jones, J. (2010). A framework for computational thinking across the curriculum. Paper presented at the

Proceedings of the fifteenth annual conference on Innovation and technology in computer science education .

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the development of a checklist for getting computational thinking

into public schools. Paper presented at the Proceedings of the 41st ACM technical symposium on Computer science education.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., et al. (2009). Scratch: programming for all. Commun.

ACM, 52(11), 60-67.

Robocode, (2001). Open source educational game. Retrieved 10 December 2011, from http://robocode.sourceforge.net.

Robozzle, (2010). An addictive robot-programming puzzle game. Retrieved 10 December 2011, from http://www.robozzle.com.

1999 Cagin Kazimoglu et al. / Procedia - Social and Behavioral Sciences 47 (2012) 1991 – 1999

Sung, K., Hillyard, C., Angotti, R.L., Panitz, M.W., Goldstein, D.S., & Nordlinger, J. (2010). Game-Themed Programming Assignment
Modules: A Pathway for Gradual Integration of Gaming Context into Existing Introductory Programming Courses, IEEE Education Society,
54(3), 416 -427.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(2), 33-35.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 366(1881), 3717-3725.

Wu, W., Chang, C. & He, Y. (2010). Using Scratch as game-based learning tool to reduce learning anxiety in programming course. In Z. Abas et

al. (Eds.), Proceedings of Global Learn Asia Pacific 2010, 1845-1852. AACE.

