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ABSTRACT 

 

The purpose of this thesis was to develop and validate a liquid chromatography mass 

spectrometry (LC-MS) method to measure salivary cortisol and testosterone. Furthermore, 

to use this method to analyse saliva samples collected during an exercise study measuring 

the hormonal response to acute exercise.  The ongoing contribution to knowledge provided 

by this research is the application of a developed and validated LC-MS method to analysis 

of cortisol from pre and post exercise saliva samples, and evaluation of the cortisol and 

testosterone response to three different training sessions; including an interval session 

(INT), tempo run (TEMP) and aerobic circuit training (CIR).  An LC-MS method was 

developed to measure cortisol and testosterone.  The mass spectrometer used was a triple 

quadrupole BioQ (Waters/Micromass, UK) coupled with a 1200 series HPLC machine 

(Agilent Technologies, UK).  Optimisation of various parameters was undertaken 

including: cone voltage and capillary voltage, followed by optimisation of liquid 

chromatography (LC) parameters such as; mobile phase gradient and flow rate.  Saliva 

samples were collected at rest, and hormones measured with the new LC-MS method and 

ELISA to validate the developed method.  Finally, heart rate and salivary and plasma 

cortisol and testosterone response to acute exercise were tested, to compare the response to 

different training protocols in runners.  Following this, the MS method underwent further 

validation against ELISA.  Results revealed optimum MS parameters were: cone voltage 

25 V; capillary voltage 3.5 kV and LM and HM resolution 8 Da. For the LC method, 

mobile phase flow rate was optimised at 0.1 mL/min, with a gradient profile ranging from 

50 to 95% methanol (MeOH), and a run time of 15 minutes. Sample preparation was also 

considered (solid phase extraction); and wash phase of 10% MeOH, 10 times sample 

concentration and reconstitution with 80% MeOH were optimised to improve analyte 

recovery and detection.  Comparison of cortisol measured at rest with LC-MS and ELISA 

(n=22) revealed a correlation between methods (r=0.83, P<0.001).   The exercise study 

showed the INT elicited a higher peak heart rate (172±11) than CIR (148±10) or TEMP 

trials (163±10). INT also produced a higher RPE (15 ±2) than CIR (13±1) and TEMP 

(14±2) trials.  Salivary cortisol increased at all time points post exercise in INT and 

remained higher than rest (1.29 ± 0.51 ng/mL) at 60 minutes recovery (3.13 ±1.59 ng/mL).  

Salivary testosterone increased pre to post exercise in CIR (119.7±39.5 pg/mL to 150.1 

±51.5 pg/mL), TEMP (142.4±76.5 pg/mL to 185.0±49.1 pg/mL) and INT (117.5±23.5 

pg/mL to 176.3±46.0 pg/mL) trials.  There was also a correlation between cortisol 
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measured in plasma and saliva (r=0.813, p=0.0001).  Additionally, comparison of salivary 

cortisol measurements obtained with mass spectrometry and ELISA (n=85) showed a 

correlation (r=0.934, p=00001).   In conclusion, validation revealed cortisol could be 

quantfied accurately and precisely with LC-MS. Additionally, INT elicited a higher mean 

RPE and cortisol response than TEMP or CIR.  
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1. INTRODUCTION 

 

Acute stress during an exercise intervention can be assessed by a change in the 

concentration of the steroid hormones cortisol and testosterone. The acute hormonal 

response to exercise has been reported with different exercise modes, intensities and 

duration and recovery also considered.  The ratio between cortisol and testosterone has also 

been suggested as a marker of overtraining syndrome in athletes (Aldercreutz et al., 1986).   

Quantification can be from blood, urine and saliva; the latter a non invasive alternative to 

blood for hormone measurement. Until recently immunoassays were the main technique 

used to quantify cortisol and testosterone; however liquid chromatography tandem mass 

spectrometry has become the gold standard for quantification of small molecules in 

pharmaceutical, environmental and clinical applications and has potential to offer rapid, 

accurate analysis in exercise research. 

 

Liquid chromatography-mass spectrometry (LC-MS) faces ongoing challenges for faster 

chromatography and detection of lower concentrations of analytes.  Saliva matrix effects 

can limit ionisation efficiency, and given the low level of testosterone in saliva it is 

important to maximise sensitivity whilst maintaining high resolution; therefore sample 

preparation is important. Method validation is also important to achieve acceptance that the 

method can be used to analyse saliva samples effectively (ICH, 1996).  This research 

project is multifaceted and firstly aims to assess the validity of mass spectrometry as a tool 

to measure cortisol and testosterone in saliva.  In extension, to consider the limited use of 

LC-MS in sport and exercise science; saliva samples collected before and after acute 

exercise are analysed with this technique.  Addressing the need for further analysis of the 

role of cortisol and testosterone in the exercise stress response this work also endeavours to 

investigate the effect of acute training protocols on hormone secretion. 

 

1.1 Stress 

Stress can be psychological or physical and both types can be acute or chronic.  

Psychological stress is referred to as events or situations that challenge a person’s 

psychological and/or physiological homeostasis (Cannon, 1935).  Lazarus and Cohen 

(1977) identified three categories of stress including; cataclysmic events which include 



Introduction                                Chapter 1  

 

 2 

natural disasters and war; personal stressors, which are negative life events including 

death, divorce or loss of job and absence of positive life events, and thirdly; daily hassles 

which are chronic background stressors, for example work environment. Not everyone will 

experience events with the same level of stress, and to experience an event or situation as 

stressful it has to be perceived or appraised as such (Lazarus, 1966).  Physical stress 

includes environmental stressors such as extreme cold, heat and exercise stress. Exercise 

can encompass a short bout i.e. under an hour of cardiovascular exercise, a weight training 

session or a longer endurance effort such as a marathon. The time it takes for the body to 

return to ‘normal’ and reach homeostasis depends on the severity of the stress.  

 

The hypothalamus is activated after the onset of a stressor and secretes corticotrophic 

releasing hormone (CRH), which stimulates the pituitary gland to secrete 

adrenocorticotrophic hormone (ACTH). This hormone in turn stimulates the adrenal glands 

to release stress hormones such as adrenaline and cortisol.  The effects of a stressor reflect 

the bodies ‘fight or flight’ response (acute biological response to stress) and are 

characterised by an increase in heart rate, blood pressure and respiratory rate, breakdown 

of glycogen stores to mobilise glucose and a suppressed immune system (Axelrod and 

Reisine, 1984).   This is usually a short term reaction as the stressor which the body 

responds to then returns to ‘normal’.  Activation of the sympathetic nervous system (SNS) 

leads to the short term release of catecholamines into the circulation (adrenaline and 

noadrenaline), followed by the release of cortisol which is slower and can be more 

prolonged.  Acute stress has also been shown to increase circulating levels of testosterone 

(Sutton et al., 1973) and activation of catecholamines may be one of the main mechanisms 

stimulating secretion of testosterone during stress.  It is known that noradrenaline 

stimulates production of gonadotropin-releasing hormone (GnRH) and lutenising 

hormones (LH), both in men and in women (Chrousos, 1998).  However, the exact 

mechanisms for the increase in testosterone are under investigation.   

 

Chronic stress can occur if the stressor is not removed and leads to elevated corticosteroids 

which can have long term health implications such as headache, anxiety disorder, mood 

swings, memory disturbances, depression, anxiety and loss of concentration (Carroll, 

1992).  Long term physical stress has also been shown to elicit a decrease in circulating 

testosterone (Franca et al., 2006), and androgens are thought to play a role in carbohydrate 

metabolism. Androgens may have a suppressive effect on hepatic gluconeogenesis 
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(Tarnopolsky et al., 1990).  There is also evidence that tesotosterone may increase 

lypolysis and therefore offer a glucose sparing function, as studies of late pubertal boys 

revealed decreased lean mass and increased adiposity in those who were testosterone 

deficient; with decreased lypolysis and free fatty acid mobilisation was suggested as the 

cause (Mauras et al., 1987).  In sport chronic high stress levels with limited recovery have 

been suggested as an indicator of overtraining status or unexplained, underperformance 

syndrome (Urhausen, 2002). Stress biomarkers are commonly measured in blood plasma 

and serum, and also urine and saliva and this work focuses on the response of cortisol and 

testosterone. 

 

1.2 Stress biomarkers 

1.2.1 Cortisol 

Cortisol (C21H30O5) is a glucocorticoid produced by the cells of the adrenal cortex (for 

structure see figure 1.01). Cortisol represents a chemical response of the body to stress and 

also plays a major role in the mobilisation of glucose into the blood stream.  This is 

accomplished through inhibition of insulin production and sensitivity during SNS activity 

(Braunwald et al., 2001), and by breakdown of stored protein into glucose (Juhan, 1998). 

The hormone stimulates gluconeogensis and mobilisation of free fatty acids to make more 

glucose available (Salway, 2006).  Additionally, cortisol also has anti-inflammatory effects 

and acts on body defence mechanisms to suppress tissue response to injury (Brook and 

Marshall, 2001). 

 

 

Fig 1.01 Chemical structure of cortisol (Dvorak et al., 2006) 

 

Normal production of cortisol by cells of the adrenal cortex is dependent on two 

messengers in a chain called the hypothalamic-pituitary-adrenal axis (HPA axis). When 

stress is experienced, the hypothalamus releases the messenger corticotropin releasing 
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hormone (CRH). CRH is transported to the anterior pituitary and signals specialised cells 

to release ACTH into the bloodstream. ACTH is transported to the adrenal glands where it 

signals cells of the zona fasciculata and reticularis layers of the adrenal cortex. These cells 

increase production of cortisol and androgens (Brook and Marshall, 2001).  

 

1.2.2 Testosterone 

Testosterone (C19H28O2) (figure 1.02) is an androgen produced by the adrenal gland, the 

testis in males and the ovaries in females. Release of testosterone is controlled by the 

hypothalamus and it regulates human growth and reproduction, including contribution to 

the development of the male genitals.  Additionally, its anabolic actions also build skeletal 

and muscle tissue which is juxtaposed to the catabolic actions of cortisol (Norman and 

Litwack, 1997).  During stress testosterone production is thought to decrease as it is 

inhibited by the release of cortisol, this is thought to reflect the effect of cortisol on 

testosterone production in the testes (not production by the central regulatory components 

i.e. HPA) (Cummings et al., 1983).  Additionally, it is hypothesised that steroidogentic 

enzymatic activity for testosterone synthesis within the testes is disrupted (Castro and 

Matt, 1997).  Production of testosterone is mainly from the male gonads; therefore, 

circulating levels in women are lower compared to men, with women's ovaries and adrenal 

glands sharing the responsibility for testosterone production (typical resting hormone 

levels, table 1.1). Testosterone regulation is controlled by release of GnRH in the 

hypothalamus. This activates the release of LH and follicle stimulating hormone (FSH).  

LH triggers production of testosterone from cholesterol in the Leydig cells and FSH 

stimulates secretion of androgens and promotes spermatogenesis in males.  If levels are 

high, testosterone can suppress production of GnRH in turn reducing production of FSH 

and LH (Brook and Marshall, 2001).  

 

 

Fig 1.02 Chemical structure of testosterone (Saudan et al., 2006) 
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Table 1.1 Typical concentration of cortisol (Institute of Isotopes, 2011) and testosterone 

(Medlineplus, 2010a) in blood; cortisol (Medlineplus, 2010b) and  testosterone (Bao et al., 2008) 

in urine and cortisol (Aardal and Holm, 1995) and testosterone (Dabbs, 1990) in saliva. 

 Cortisol Testosterone 

Men Women 

Blood 53.4 – 264 ng/mL 3.0-10.8 ng/mL 0.3-0.95 ng/mL 

Urine 10,000-100,000 ng/24 hr 64000-374,000 ng/24 hr 14200-107,000 ngl/24 hr 

Saliva 1-8 ng/mL 0.049-0.189 ng/mL 0.006-0.044 ng/mL 

 

1.2.3 Hormone biosynthesis 

Steroid hormones are synthesised from cholesterol through a series of enzyme controlled 

reactions (Miller, 1988) (figure 1.03). Cortisol is produced in the adrenal cortex, 

cholesterol is converted to pregnenolone with cholesterol side chain cleavage enzyme and 

then this in turn is converted to 17a-OH-pregnenolone with a reaction of 17a-

hydroxylase/17-20-lyase.  17a-OH-pregnenolone forms 17a-OH-progesterone produced by 

the enzyme 3b-hydroxysteroid dehydrogenase/D5-D4-isomerase, following this 17a-OH-

progesterone is converted to deoxycortsol to cortisol with the enzyme 21-hydroxylase and 

the final stage conversion from deoxycortisol with enzyme 11b-hydroxylase. Testosterone 

can be formed in the testes (male) or ovaries (female) by various pathways, however the 

principal pathway suggests identical reactions to cortisol until 17a-OH-progesterone 

followed by conversion to androstenedione with 17a-hydroxylase/17-20-lyase and finally 

testosterone by enzyme 17b-hydroxysteroid dehydrogenase (Norman and Litwack, 1987).   

Biosynthesis occurs in the mitchondria and smooth endoplasmic reticulum of cells (Paynes 

and Hales, 2004).  As previously mentioned, when stress occurs, release of steroid 

hormones is controlled by the hypothalamus. The physiological effect of steroids is 

initiated when they enter target cells and bind to receptors which act as transcriptional 

activators of steroid response genes. Furthermore, hormone release exhibits a natural daily 

variation.  
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Figure 1.03 Biological synthesis pathways of hormones (adapted from Brook and Marshall, 2001, 

p69) 
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1.2.4 Biological variation 

Cortisol and testosterone exhibit a natural diurnal variation in addition to gender 

differences.  Concentrations of these hormones also vary depending on the biological 

matrix examined (table 1.1), however there is evidence that correlations exist between 

blood and salivary measures for both cortisol (Kirschbaum and Hellhammer, 2000) and 

testosterone (Vittek, 1985). 

 

Diurnal variation 

It is established that cortisol exhibited a diurnal variation and may be secreted episodically 

(Hellman et al., 1970; Krieger et al., 1971).  Levels increase on awakening and peak after 

45 minutes then decrease throughout the day (figure 1.04).  The increase of cortisol upon 

awakening is known as the cortisol awakening response (CAR).  Reports have suggested 

the CAR can be affected by gender with evidence that women elicit a higher response than 

men (Pruessner et al., 1997; Clow et al., 2004; Weekes et al., 2008).  Similarly, chronic 

psychosomatic stress has been found to intensify the CAR (Wust et al., 2000, Schulz et al., 

1998). Contrastingly, there is evidence that taking oral contraceptives has a tendency to 

attenuate the CAR (Pruessner et al., 1997; 1999), therefore when measuring cortisol it is 

important to control for these variables. 
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Figure 1.04 Diurnal variation of salivary cortisol (A) adapted from Harris et al. (2010); 

serum testosterone (B) adapted from Hong (2008) 

 

Previous research has illustrated there are also daily variations in testosterone with the 

highest concentration observed in the morning between 5.30 am and 8.00 am and the 

lowest approximately 12 hours later (Resko and Nes, 1966; Fairman and Winter, 1971; 

Baxendale et al.,  1980) (Figure 1.04B). It is suggested that the morning testosterone peak 

B A 
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is due to increased synthesis (Diver et al., 2003); however the mechanisms for this 

variation are still not fully understood (Walton et al., 2007).   

 

Testosterone changes with age have also been considered and there is evidence for a 

decline with age (Vermeulen et al., 1972; Bremner et al., 1983; Korenman et al., 1990; 

Simon et al., 1992; Tennekoon & Karunanayake, 1993; Morley et al., 1997; Harman et al., 

2001), however Diver et al., (2003) suggest that fit healthy men over 60 years can achieve 

levels of circulating testosterone in the concentration range of young men while 

maintaining a circadian rhythm.  This is supported by Szulc et al., (2001) and Khosla et al., 

(2001). Diver et al., (2003) studied the effect of age on diurnal variation in young and 

middle aged men and reported that diurnal variation was still visible in the older men and 

was not affected by lower resting levels typically observed in this population. These 

studies show that fit healthy men may not show an age related decline in testosterone; 

however other studies suggest health issues may contribute to a blunting of the diurnal 

rhythm and potential decline in testosterone in some older men.    

 

Correlation between biological matrices 

Numerous studies have assessed the correlation of hormone levels between biological 

matrices. Cortisol is a small, highly lipid soluble molecule and can pass easily through the 

lipid-bilayer membranes of nucleated cells.  However, acute levels of free cortisol in saliva 

are lower due to a relative abundance of the cortisol-metabolising enzyme 11-β 

hydroxysteroid dehydrogenase (Kirschbaum and Hellhammer, 2000). Salivary levels are 

around 1-2% of total cortisol in the lower range and 8-9% in the upper range (Hellhammer 

et al., 2009), and levels in saliva correlate with free cortisol in the blood (Kirschbaum and 

Hellhammer 1994; Paccotti et al., 2005; Kirschbaum and Hellhammer, 2000; Lac et al., 

1993; Kirschbaum et al., 1999).  This high agreement is due to cortisol entering saliva by 

passive diffusion, independently of saliva flow rate.  This is in contrast to other 

components found in saliva such as immunoglobulin A, where concentrations in saliva are 

affected by secretion rate from the saliva gland (Kirschbaum and Hellhammer, 2000).  

Despite the correlation there is a lag time for cortisol after acute stress (including exercise) 

with maximal levels recorded after 10-30 minutes (Kirschbaum and Hellhammer, 1989, 

2000; Heinrichs et al., 2001; Hough et al., 2011).  The diffusion from plasma to saliva 

occurs quickly, after intravenous injection cortisol was evident in saliva after less than one 

minute and peak levels lagged only 2-3 minutes after blood (Kirschbaum and Hellhammer, 
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2000).  However, following acute exercise Hough et al., (2011) revealed plasma cortisol 

concentration peaked 10-20 minutes post exercise and saliva 10 minutes later suggesting a 

longer lag time than pharmaceutical interventions.  

 

Similarly to cortisol, testosterone passively diffuses into the saliva and free testosterone in 

saliva also appears to be correlated with serum measures. Vittek et al., (1985) and Lac et 

al., (1993) showed a significant correlation between salivary and serum free testosterone 

(r=0.97).  After exogenous testosterone administration, Wang et al., (1981) found serum 

and salivary testosterone rose abruptly and in parallel, suggesting there is no lag time. As 

with cortisol there appears to be a lag time for peak tesotosterone in plasma and saliva; 

Hough et al., (2011) showed peak plasma testosterone occurred immediately post exercise 

and saliva 10 minutes post exercise suggesting a similar lag time to cortisol. 

 

The approximate 10 minute delay in peak salivary hormone measures compared to plasma 

does not agree with the immediate diffusion of these hormones in pharmaceutical studies.  

However, the pharmaceutical studies mentioned were performed during resting conditions, 

and during and after acute anaerobic exercise research has shown that saliva flow rate may 

decrease (Mackinnon et al., 1993).  This is suggested to be due to increased sympathetic 

activity during intense exercise, which causes vasoconstriction in the arterioles that supply 

the salivary glands, resulting in lower salivary volume (Chicharro et al., 1998).  The 

reduced blood flow may explain the delay in cortisol and testosterone delivery and 

diffusion from blood into the saliva found after acute exercise. However, some studies 

have shown no effect of acute exercise on salivary flow rates (Pilardeau et al., 1990; 

Dawes, 1981). There is suggestion that a minimum intensity of >60% VO2max is required 

for salivary secretion to be modified (Pilardeau et al., 1990; Bardon et al., 1983); therefore, 

the aforementioned studies that showed no change may not have reached this threshold. 

There is suggestion that exercise after anaerobic threshold may affect blood flow to the 

salivary glands (Chicharro et al., 1998). There have been no studies looking at the 

correlation of urinary hormone levels with those in blood or saliva. 

 

Benefits of salivary measurement 

Salivary measurement has benefits over blood measures in stress research. Salivary cortisol 

and testosterone concentrations have been shown to be correlated with blood levels, 
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therefore salivary measurement present a valid representation of these hormones.  

Additionally, salivary measures are often indicative of the free or ‘biologically active’ 

biomarkers as they diffuse from the blood into the saliva and are not bound by albumin.  

Therefore, they may indicate the freely available hormones that initiate the body’s stress 

response (Humphrey and Williamson, 2001).  Finally, sample collection is less invasive 

therefore less likely to induce a stress response (Kraemer et al., 2001) and samples can be 

collected by patients or study participants. 

 

Issues with salivary measurement 

A key issue with salivary measurement is contamination of samples through blood leakage 

due to microinjury in the oral cavity (Malamud and Tabak, 1993).  Different protocols can 

be utlised to screen for contamination, ranging from visual inspection of discolouration, 

detection of haemoglobin with testing strips to testing for the presence of transferrin with 

immunoassay.  Kivlighan et al., (2004) studied the above methods and their relationship 

with cortisol and testosterone measurement in saliva.  Results revealed that cortisol levels 

did not change in response to minor or moderate microinjury.  However, testosterone 

levels increased due to blood contamination and this was detected more readily with a 

tranferrin immunoassay rather than haemoglobin levels or discolouration.  It is suggested 

that an additional amount of care may need to be taken to ensure that salivary testosterone 

immunoassay results are accurate (Schwartz and Grainger, 2004).  

 

1.3 Analysis of stress biomarkers 

 

1.3.1 Analytical techniques and hormones 

Analytical techniques have developed over time with radioimmunoassay (RIA) the earliest 

developed and validated technique in the analysis of stress hormones.  RIA, developed by 

Yalow and Berson (1959), involves making a known quantity of antigen radioactive, this is 

then mixed with a known amount of antibody for that antigen and the two chemically bind. 

Following this, a sample containing an unknown amount of antigen is then added and this 

competes with the radioactive labelled antigen for binding sites. Increasing amounts of 

non-radioactively labelled compound result in a concomitant decrease in the amount of 

radioactive compound that binds to the antibody.  The amount of bound compound is then 

measured with a gamma counter.  These readings can be used to create a calibration curve 

and subsequently concentrations of unknown samples are extrapolated from this (Hawker, 
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1973).  RIA can be accurate and highly reliable (Furuyama et al., 1970; Dufau et al., 1972) 

with variation between and within hormone assays of < 10% if carried out stringently (Raff 

et al., 2002; Wang et al., 2004; Garcés et al., 2008).  Blood and saliva samples have been 

tested and multiple steroids measured in the same assay (Rosner et al., 2007).  The LOQ 

for RIA has been shown to be <0.15 ng/mL for testosterone (Wang et al., 2004) and, 0.5 

ng/mL for cortisol (Liening et al., 2010).   However this method can be cumbersome and 

time consuming and uses radioactive material (Stanczyk et al., 2007); additionally, the 

labelled antigen may be less stable than its unlabelled counterpart and degrade in a 

biological matrix. Despite the low cost of measuring samples once equipment is in place 

(Landon and Moffat, 1976), in the late 1970s RIA gave way to enzyme-linked 

immunosorbent assays (ELISA) with initial analysis of immunoglobulin G (Engvall and 

Perlmann, 1971) and later development of an early cortisol assay (Comoglio and Celada, 

1976).  

 

ELISA are simple, convenient, and less expensive than RIA and have a high throughput 

when automated (Rosner et al., 2007).  Briefly, a plate is coated with antibodies specific to 

the compound of interest and an enzyme-linked compound competes with known/unknown 

unlinked amounts of that compound for antibody binding sites.  Following this the 

unbound compound is washed away and bound compound is measured by its reaction with 

a substrate illustrated by a colour change.  Absorbance values are read with a plate reader 

and calibration curve constructed for quantification (Salimetrics, 2011). However, ELISA 

often overestimate steroid concentration due to a lack of sensitivity of the antibody 

involved (Stanczyk et al., 2007) and differences between the sample and standard solution 

matrix may also affect the results. Furthermore, certain steroids may not be released 

efficiently from sex-hormone binding globulin with the specific reagent supplied by the kit 

manufacturer and this could underestimate levels (Stanczyk et al., 2007).   

 

Despite the potential for overestimation, until recently ELISA was the predominant method 

for measurement of steroid hormones.  However, since the late 1970s mass spectrometry 

(MS) has developed and this has now become the gold standard for detection and 

quantification in the pharmaceutical industry including: drug development and discovery, 

environmental assays and many biochemical applications including steroid analysis 

(Kushnir et al., 2011).  The basis of mass spectrometry is the production of ions (for 

example by electrospray ionisation, Fenn, 1990) that are subsequently separated (for 
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example in a quadrupole mass analyser, Yost and Enke 1978) according to their mass to 

charge ratio (m/z) (commonly in positive ion mode as the molecular mass plus one proton). 

Once separated the intact ions can be fragmented and the resulting ions detected (tandem 

MS analysis).  The resulting mass spectrum is a product of the detected ions according to 

their m/z and relative abundance.  The coupling of powerful separation techniques such as 

gas chromatography (GC) and high performance liquid chromatography (LC); commonly 

high performance liquid chromatography (HPLC) to mass spectrometry has resulted in the 

ability to accurately quantify steroid hormones in a biological matrix by selected (SRM, 

Thevis and Schanzer, 2007) or multiple (MRM, Chang et al., 2003) reaction monitoring 

with stable isotope labelled analogues.   

 

1.3.2 Mass spectrometry and steroid analysis  

Recently there have been an abundance of studies attempting to detect and quantify steroid 

hormones such as cortisol and testosterone with mass spectrometry coupled to GC (table 

1.2) or LC without derivatisation (table 1.3).  

 

1.3.3 Gas chromatography mass spectrometry (GC-MS) 

GC was originally developed by Gohlke and McLafferty in the late 1950s (Gohlke, 1959).  

In GC-MS analytes are separated in a heated column according to their boiling point, 

ionised and detected by a mass spectrometer.  Analysis with GC-MS requires 

derivatisation in order to transform the analytes into thermally stable volatile analytes 

required for ionisation with silylation, the most common derivatisation method. Analytes 

are commonly ionised with electron ionisation (EI) and ions are bombarded with fast 

electrons generated from an electrically heated filament; they are accelerated through a 

potential difference of around 70 V and this gives electrons with 70 eV of energy. Positive 

ionisation is most common as electrons produced by the source collide with the sample and 

remove an electron, thus creating a positively charged ion with one unpaired electron 

(Dempster, 1921).  Sufficient volatility vaporises the sample at source temperature and are 

steered towards the mass spectrometer. A magnet positioned across the source chamber 

creates a spiral in the electron beam and increases the chance of interaction between the 

beam and analyte gas. After entered the mass spectrometer analytes are detected according 

to their m/z ratio. 
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Cortisol and testosterone are thermally stable and can be derivatised to become voltatile 

compounds therefore they are suitable for analysis with GC-MS.  Current literature 

contains GC-MS methods to quantify cortisol and/or testosterone in plasma and serum; 

however no studies have measured these hormones in saliva (table 1.2).  Derivatisation 

methods for these hormones include combinations of N,O-

Bis(trimethylsily)trifluoroacetamide (BSTFA) and Trimethychlorosilane (TMCS); N-

Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) Trimethylsilylimidazole (TMSI), 

and 1,4-dithioerythritol/trimethyliodosilane (DTE) as well as use of pentafluoropropanol 

(PFP), Pentafluoropropionic anhydride (PFPA) or heptafluorobutyroyl (HFB).  

Comparison of MSTFA and BSTFA has shown the MSTFA is more efficient to derviatise 

steroid hormones overall (Bowden et al., 2009). 

 

Table 1.2. Examples of studies examining cortisol and testosterone with GC-MS 

Author Hormone Medium Derivatisation DL QL 

Fitzgerald et 

al., (2010) 

Testosterone Serum BSTFA/TMCS  0.05 ng/mL 

Hansen et al., 

(2011) 

Testosterone Plasma 

and Serum 

MSTFA/TMSI/

DTE 

 0.2 ng/mL 

Legrand et 

al., (1995) 

Testosterone Plasma PFP  0.59 ng/mL 

Magnisali et 

al., (2008) 

Cortisol and 

testosterone 

Serum MSTFA/TMSI/

DTE 

C=0.05 ng/mL, 

T= 0.04 ng/mL 

C=0.25 ng/mL 

T=0.1 ng/mL 

Shibasaki et 

al., (2008) 

Cortisol Plasma HFB  1 ng/mL 

Taieb et al., 

(2003) 

Testosterone Serum HFB 0.04 ng/mL  

Yokokawa et 

al., (2009) 

Testosterone Plasma PFPA 1.0 ng/mL 2.0 ng/mL 

 

Cortisol and testosterone can be derivatised for analysis with GC-MS; though no technique 

has quantified both analytes simultaneously in the range required for salivary 

measurement. Derivatisation commonly occurs by enolisation-silylation with chemical 

modification of ketone and hydroxyl groups, or through oximation- silylation with 

modification of ketone groups alone (Fang et al., 2010).  Additionally, sample preparation 
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and chromatographic run times can be time consuming in this analytical method, as 

samples travel through the column slowly and the samples must be derivatised prior to 

analysis.  Furthermore, recent developments of liquid chromatography coupled to mass 

spectrometry eliciting fast run times and less sample preparation have meant that recent 

quantification employs this method rather than GC-MS (Kutsukake et al., 2009; Matsui et 

al., 2009). 

 

 

1.3.4 Liquid chromatography mass spectrometry (LC-MS) 

Liquid chromatography separation is based on the selective distribution of analytes 

between a liquid mobile phase and a stationary phase.  Retention time and ionisation of 

analytes can be affected by the chromatography chosen in the liquid phase and interaction 

with the stationary phase (column).  LC is linked to a MS by an interface such as 

electrospray ionisation (ESI).  The interface controls ionisation and transfer of ions to the 

detector in the mass spectrometer.  The majority of methods for quantitative analysis use 

the triple quad mass spectrometer.  Quantitative analysis with tandem mass spectrometry is 

typically performed in MRM mode with both mass analysers fixed on transmission of the 

compound specific precursor and product ions (Busch et al., 1988).  This mode offers 

highly selective and sensitive operation as the mass analysers transmit only ions 

characteristic of the target analyte and remove most of the chemical noise.  A combination 

of chromatographic separation with LC and detection with MS/MS can achieve one of the 

highest analytical specificities and sensitivities available in clinical laboratories (Kushnir, 

2011).   Single quadrupole techniques (LC-MS) are also used for trace analysis and have 

the advantage of being less expensive than tandem mass spectrometry (LC-MS/MS) 

techniques as they do not require pure gas for collision activated dissociation (Soler et al., 

2005).  However, analysis with LC-MS does require greater care with sample preparation 

and chromatography, as unlike LC/MS/MS, chemical noise is not reduced by 

fragmentation. Sensitivity and selectivity can be improved in LC-MS analysis with 

selective reaction monitoring rather than scanning across the full m/z range.   

 



 

 

Table 1.3 Studies examining cortisol and testosterone with LC-MS (no derivatisation) 

Author Technique Hormones Medium LOD LOQ 

Baid et al., (2007) LC-MS/MS Cortisol Saliva 0.4 ng/mL  

Borrey et al., (2007) LC-MS/MS Testosterone Serum  0.01 ng/mL 

Cawood et al., (2005) ID-LC-MS/MS Testosterone Serum  0.09 ng/mL 

Chen et al., (2009) LC-MS/MS Testosterone Serum  0.056 nmol/L 

De Palo et al., (2009) HPLC Cortisol Saliva  0.036 ng/mL 

DiFrancesco et al., (2007) LC-MS/MS Cortisol Plasma  3.60 ng/mL 

Fanelli et al., (2010) ID-LC-MS/MS Cortisol and 

testosterone 

Serum  C=0.24 ng/mL 

T=0.02 ng/mL 

Fitzgerald et al., (2010) LC-MS/MS Testosterone Serum  0.05 ng/mL 

Gallagher et al., (2007) LC-MS/MS Testosterone Serum  0.07 ng/mL 

Higashi et al., (2005) LC-MS/MS Testosterone Serum 0.02 ng/mL   

Hogg et al., (2005) LC-MS Testosterone Saliva 0.2 ng/mL 0.5 ng/mL 

Ionita et al., (2009) LC-MS/MS Cortisol Plasma  1.0 ng/mL 

Ionita et al., (2010) LC-MS/MS Cortisol Plasma  0.1 ng/mL 

Jonsson et al., (2003) LC-MS/MS Cortisol Saliva  0.1 ng/mL 

Kataoka et al., (2007) LC-MS Cortisol Saliva 0.005 ng/mL 0.017 ng/mL 

Kutsukake et al., (2009) LC-MS/MS Cortisol and 

testosterone 

Saliva  C=0.01 ng/mL 

T=0.005 ng/mL 



 

 

Table 1.3 cont. Studies examining cortisol and testosterone with LC-MS (no derivatisation) 

Author Technique Hormones Medium LOD LOQ 

Lee et al., (2010) LC-MS/MS Cortisol Saliva  0.2 ng/mL 

Li et al., (2008) LC-MS/MS Cortisol Saliva  0.18 ng/mL 

Ma et al., (1997) LC-MS Testosterone  0.05 ng/mL  

Matsui et al., (2009) LC-MS/MS Cortisol and 

testosterone 

Saliva  C=0.01 ng/mL 

T=0.005 ng/mL 

Moal et al., (2007) LC-MS/MS Testosterone Serum  0.05 ng/mL 

Owen et al., (2010) LC-MS/MS Cortisol Saliva  0.72 ng/mL 

Perogamvros et al., (2010) LC-MS/MS Cortisol Saliva  0.14 ng/mL 

Shirasihi et al., (2008) LC-MS/MS Testosterone Serum  0.02 ng/mL 

Singh et al., (2008) LC-MS/MS Testosterone Serum  0.07 ng/mL 

Taylor et al., (2010) LC-MS/MS Cortisol Urine  25 ng/mL 

Wang et al., (2008) LC-MS/MS Testosterone Serum  0.2 ng/mL 

Yasuda et al., (2008) LC-MS/MS Cortisol Saliva <0.03 ng/mL  
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Various methods have been reported to detect and quantify cortisol and testosterone in 

blood and saliva (table 1.3).  The majority of studies focus on measuring cortisol with 

different applications including: diurnal variation (De Palo et al., 2009); Korean population 

(Lee et al., 2010); obese individuals (Baid et al., 2007) and the stress responses (Katoaka 

et al., 2007).  Salivary cortisol studies have reported limit of detection (LOD) between 

0.017 ng/mL (Katoaka et al., 2007) and 0.72 ng/mL (Owen et al., 2010).  The former study 

utilised LC-MS measurement however most studies have been with LC-MS/MS.  

However, the low limit of quantification (LOQ) achieved with LC-MS suggests detection 

without fragmentation provides sufficient sensitivity to measure salivary cortisol.  

Additionally, a variety of machines have been employed ranging from the Quattro Micro 

(Waters, UK) to API 4000 (ABSciex, UK).  This variation suggests that many machines 

offer the required specifications to obtain sufficient sensitivity to quantify cortisol in 

saliva. The main difference between the mass spectrometers relates to their interface, with 

newer machines employing more heaters to improve solvent evaporation during 

electrospray and therefore increase ionisation efficiency.  More ions reaching the detector 

lead to a proportional increase in signal strength.  

 

Method run time is also an important parameter to consider and introduction of ultra 

performance liquid chromatography (UPLC) has offered new possibilities in liquid 

chromatography, especially concerning decreased run time and solvent consumption. A 

UPLC chromatographic system is designed to withstand high system back-pressures, 

therefore higher flow rates can be utilised.  This technique employs the principle of Van 

Deemter equations which states that the efficiency of chromatographic process is 

proportional to particle size decrease. When explaining band broadening the model 

describes the relationship between height equivalent of theoretical plate (HETP) and linear 

velocity; this is partly dependent on a diameter of particle packed into the analytical 

column. Smaller particle diameter can significantly reduce HETP which results in higher 

efficiency and the flatter profile of Van Deemter curve (Van Deemter, 1956).  Using 

UPLC, it is now possible to take full advantage of chromatographic principles to run 

separations using shorter columns, and/or higher flow rates for increased speed, with 

superior resolution and sensitivity (Patel et al., 2010).  Introduction of UPLC to steroid 

analysis has reported cortisol quantification in less than five minutes (Perogamvros et al., 

2010).  Establishing chromatography with retention time between two to four minutes is 
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important to remove analyte peaks from the solvent front which can lead to improved S/N 

ratio, minimise ion suppression and improve assay sensitivity.  No published studies have 

currently utilised UPLC to quantify cortisol and testosterone simultaneously in blood or 

saliva. 

 

Few studies have quantified salivary testosterone; this is likely to be due to lower salivary 

concentrations than cortisol and lower proton affinity. Two studies have successfully 

quantified salivary testosterone without derivatisation (Hogg et al., 2005; Yasuda et al., 

2008).  However the work by Hogg et al., (2005) has limitations for use in human studies 

as it measures dolphin saliva and the LOQ is 0.5 ng/mL, which is above the salivary 

reference range for men and women.  Conversely, Yasuda et al., (2008) presents 

measurement applied to healthy men and those suffering from late onset hypogonadism 

(LOH) or testosterone deficiency.  They collected 1 mL saliva and concentrated it 10 times 

before analysis with an API 4000 triple quad mass spectrometer (ABSciex, UK).   They 

reported a LOQ of <30 pg/mL which is sufficient to quantify salivary testosterone in male 

samples. However to improve efficiency and reduce costs of sample analysis, the growing 

trend is for measurement of multiple hormones from one sample.  Limited studies have 

measured salivary cortisol and testosterone simultaneously; although, two recent studies 

present measurement of both hormones.  Kutsukake et al., (2009) measured salivary 

cortisol and testosterone with LC-MS/MS and they revealed LOQ of 10 pg/mL for cortisol 

(lower reference value in humans 1000 pg/mL; Aardal and Holm, 1995) and 5 pg/mL for 

testosterone (lower reference value in humans 6 pg/mL; Dabbs, 1990).  However, a 

limitation of this study was its focus on saliva obtained from chimpanzees extracted from a 

rope and further validation is required to transfer this method to human saliva.  A second 

study by Matsui et al., (2009) addressed this issue and measured salivary cortisol and 

testosterone in humans using a similar method employed by Kutsuake and colleagues, 

reporting identical LOQ with application to LOH men.  Despite one established MS 

method to quantify both cortisol and testosterone in human saliva, there are no studies 

which have applied this quantification to stress or exercise.  Only one study (Katoaka et 

al., 2007) has investigated the response of cortisol to 30 minutes running.   

 

Additionally, given the variation in mass spectrometer specification and notably the 

interface employed affecting ionisation; transfer of this method to other laboratories is 
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limited to those possessing a machine with similar ionisation efficiency.  Katoaka et al., 

(2007) reported a single quadrupole MS method was able to quantify testosterone, and 

given its cost effectiveness, new methods to measure cortisol and testosterone 

simultaneously in saliva with this method would be beneficial. Finally, approval as the 

gold standard in pharmaceutical and clinical settings has encouraged investigation of other 

potential uses of LC-MS in salivary hormone analysis. 

 

1.3.5 Improving LC-MS sensitivity  

 

Sample preparation 

Despite the benefits of salivary measurement, like other biological fluids it can affect 

ionisation during electrospray through what are termed as ‘matrix effects’.  Matrix effects 

are the alternation of ionisation efficiency in the presence of co-eluting substances (Tang 

and Kebarle, 1993).  Matrix effects can affect the development of MS methods as they may 

lead to ion suppression, inhibiting ionisation and sensitivity during ESI with adverse 

effects on LOQ (Buhrman, 1996).  Ion suppression can be minimised by cleaning the 

sample prior to analysis with techniques such as solid phase extraction (Bonfiglio et al., 

1999). 

 

 

Derivatisation 

Derivatisation in methods for analysis of steroids could be beneficial because of the 

challenges involved in measuring endogenous concentrations of many of the steroids.  

Commonly, keto and hydroxyl groups are targeted for derivatisation (Kushnir et al., 2006).  

Modifications to an analyte structure can change its proton affinity and facilitate improved 

ionisation.  Derivatisation has produced an improvement in detection limit of salivary 

analytes of 5-10 times for cortisol (Yamashita et al., 2007), four times for testosterone and 

2000 times for DHEA (Shibayama et al., 2008) (table 1.4). 
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Table 1.4 LC-MS studies measuring testosterone (with derivatisation) 

Author Technique Medium LOQ LOQ 

Higashi et al.,  2005 HMP + TFA Serum 0.03 ng/mL   

Kushnir et al., 2006 Hydroxylamine Serum  0.01 ng/mL 

Kushnir et al., 2010 Hydroxylamine Serum 0.005 ng/mL 0.01 ng/mL 

Licea-Perez et al., 2008 2,3, pyridine 

dicarboxylic anhydride 

Serum  0.01 ng/mL 

Shibayama et al., 2008 HMP + TFA Saliva  0.01 ng/mL 

Yamashita et al., 2009 DAP, MNBAn, THF Serum  0.05 ng/mL 

 

Testosterone has commonly been derivatised prior to LC-MS analysis to detect low levels 

in certain populations. Kushnir et al., (2006, 2010) analysed serum testosterone on an API 

4000 triple quad mass spectrometer (Applied Biosystems/Sciex) and found quantification 

limits of 0.01 ng/mL (10 pg/mL) after derivatisation with hydroxylamine (around the lower 

reference range for women in saliva). A similar quantification limit was discovered in 

saliva by Shibayama et al., (2008) who used 2-hydrazino-1-methylpyradine (HMP) and 

trifluroacetic acid (TFA) to derivatise testosterone, subsequently improving sensitivity.   

 

1.4 Hormone quantification 

1.4.1 MS quantification 

Bioanalytical techniques such as LC-MS can employ various techniques to quantify an 

unknown analyte; however, the main methods used are either standard addition on adding 

an internal standard.  Firstly, standard addition involves spiking a series of unknown 

samples with known amounts of analytical standard in increasing quantities. Each spiked 

aliquot must be extracted and processed to give final extract solutions with a fixed final 

volume.  The total amount of analyte is a combination of the spiked amount and unknown 

amount. The response for each spiked sample (y-axis) is plotted against the amount of 

added standard in each sample (x-axis) and a best fit line determined; the intercept should 

correspond to where the added amount of standard is zero.  The desired quantity 

(unknown) is determined from the (in principle negative) intercept on the axis representing 

the amount of added sample (x-axis) (Figure 1.05).  Despite providing the ability to 

account for ionisation suppression, one major limitation of this method is the large amount 

of sample required and time involved.   
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Figure 1.05 Example of standard addition method quantification method 

 

A more widely used method in LC-MS is inclusion of labelled internal standards.  This 

method works on the principle of adding a fixed amount of internal standard (IS) 

(commonly a deuterated form of the analyte being measured) to both the calibration 

standards and unknown samples.  The responses due to the analyte standard and IS are 

measured in the same chromatogram run for each of the spiked calibration solutions and 

unknowns.  The response ratio (analyte/IS) (y-axis) are plotted vs. the concentration of the 

calibration standards (x-axis) and the ratio of the unknown samples (analyte/IS) is used to 

calculate the concentration from the calibration curve regression equation (figure 1.06). 
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Figure 1.06 Example of peak area ratio calibration graph 

 

It is important to choose a stable isotope labelled IS with similar physico-chemical 

characteristics to the analyte which will in turn offer similar elution patterns.  This method 

has advantages including minimising/masking variations resulting from sample preparation 

and extractions (Wieling, 2002). Internal standard quantification is also the most reliable 

analytical method for high throughput trace analysis and reduces problems arising from 

ionisation suppression that can affect sensitivity and response of the MS (Boyd et al., 

2008). Given the advantages of IS over standard addition, including reduced time and 

sample volume, the IS method appears more efficient for quantification of cortisol and 

testosterone in saliva.  

 

1.4.2 Peak measurement 

Accurate quantification involves accurate peak integration. Quantification in mass 

spectrometry is commonly through measurement of peak area however occasionally this 

may be measured by peak height.  Peak area is a measure of the solute quantity if the 

solute elutes intact and is linearly detected.  Peak height is an alternative measure of solute 

quantity, although it is only linear over a small range but can be used to quantify peaks that 

are not particularly symmetrical, as long as the shapes do not change. Peak height has 

advantages for the measurement of small overlapping peaks. Peak area is the common 
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choice with a large S/N as unlike peak height as it is not susceptible to peak asymmetry 

and it has a greater linear range (Dyson, 1998).  

 

Limits of detection and quantification are commonly measured using signal to noise (S/N) 

ratio.  Noise is described as erratic variations in detector output that occur rapidly relative 

to the timescale of a chromatographic peak width, regardless of whether there is any 

analyte present.  Intrinsic noise describes the electric fluctuations of an MS machine and 

chemical noise the ‘chemical background’; the latter are small variations in chemical 

composition of the mixture flowing into the mass spectrometer.  Peak-to-peak 

measurements are commonly used which encompass all contributions of background on 

either side of a peak (Boyd et al., 1998).  S/N ratio is the ratio between peak height (hsignal) 

and noise levels (hnoise) (figure 1.07).  Accepted guidelines for detection are a S/N ratio of 

3 and for quantification S/N of 5-10 (ICH, 1996). 

 

 

Figure 1.07 Illustration of chromatogram signal and noise (Levin, 2011) 

 

1.4.3 Method validation 

Assessing the acceptable performance of an analytical method is required before it can be 

put into practice. Validation experiments for mass spectrometry commonly include an 

evaluation of precision, linearity, accuracy, LOQ and LOD according to published 

guidelines (ICH, 1996; US Department of Health, 2001). Before implementing a mass-

spectrometry based assay it should be compared to an available assay already in use with a 

range of samples.  
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1.5 Method comparison: MS versus ELISA 

Mass spectrometry assays can produce high sensitivity, specificity and measurement of 

multiple analytes in a small sample volume with high throughput (Rosner et al., 2007).  

Also, an advanced LC-MS/MS assay is capable of measuring 12 steroids in serum 

simultaneously within 11 minutes (Guo et al., 2006) and other studies have shown profiles 

of numerous hormones from one samples (De Palo et al., 2009; Shibaski et al., 2008; 

Shibayama et al., 2008; Wang et al., 2008; Yamashita et al., 2009). Dissimilarly, ELISA 

can only measure one analyte per assay. 

 

Prior to 2005 immunoassays were the predominant methodology to analyse testosterone in 

samples from all population groups and show acceptable performance in samples from 

healthy men; however they have also been shown to lack sufficient sensitivity and 

specificity to measure low levels of testosterone in women. Taieb et al., (2003) found a 

46% over estimation of testosterone in women with ELISA compared to Isotope-Dilution 

gas chromatography–mass spectrometry.  Similarly, Fitzgerald and Herold (1996) and Van 

Uytfanghe et al., (2005) compared direct assays with GC-MS/MS and again found an 

overestimation and Wang et al., (2004, 2008),  Moal et al., (2007) and Taieb et al., (2003) 

found similar results when comparing with LC-MS/MS.  Furthermore, in an accompanying 

editorial to Taieb et al., (2003), Herold and Fitzgerald (2003) claim that guessing is as 

good for assessing testosterone in women given that assays can miss a target value by as 

much as 200-500%; this finding is also supported by Miller et al., (2004). A downside of 

MS is the high cost of instrumentation and time to develop assays can be restrictive; 

however, once installed MS allows single samples to be analysed immediately without the 

need to fill an ELISA plate.  MS is already used routinely in hospitals and to test 

individuals’ testosterone levels during doping control (Shackleton et al., 1997, Thevis et 

al., 2005).  Although this technique has been slow to enter exercise research primarily due 

to the high cost of machinery and time involved in method development and validation.  In 

relation to exercise studies cortisol and testosterone have been measured in urine with GC-

MS (Yap et al., 1996; Pucsok et al., 2005; Timon et al., 2008) as well as LC-MS (Taylor et 

al., 2010), though as yet no studies have been published in relation to exercise and salivary 

levels.   
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The studies above all use correlational analysis to examine the relationship between 

methods; however other techniques such as agreement analysis may give a better 

indication of the comparability of different methods.  Correlational analysis is able to 

indicate if there is a relationship between sets of values, however not how closely the 

absolute values compare (Bland and Altman, 1986).  Agreement analysis is completed by 

calculating the mean difference between measures (d) and the standard deviation of the 

difference measures (s).  The following equation gives the upper and lower limits of 

agreement: upper/lower limits of agreement = d +/- (2 x s) (Bland and Altman, 1986, 

p308).   

 

1.5.1 Application to exercise 

Evidence suggests MS is the gold standard for measuring hormones in pharmaceutical, 

clinical and blood doping settings (Kushnir et al., 2011); however, the use of this valuable 

technique has not yet been applied to analysis of blood or salivary cortisol or testosterone 

in studies from sport and exercise science. As previously mentioned, physiological stress 

can elicit changes in hormone levels, particularly in response to exercise.  Measurement of 

biomarkers such as cortisol and testosterone can aid understanding of the hormonal 

exercise response to training and multiple studies have examined this response within 

different sporting contexts.   

 

1.6 Cortisol and testosterone responses to acute exercise 

 

1.6.1 Cortisol and acute exercise 

It is well established that cortisol increases after exercise, with the majority of studies 

reporting this (Table 1.5).  The main function of cortisol is to maintain blood glucose 

levels during physical exercise by acting on skeletal muscles and adipose tissue to increase 

amino acid and lipid mobilisation (Galbo, 2001; Wolf, 2001).  Cortisol also stimulates the 

liver to produce enzymes involved in gluconeogenesis allowing conversion of amino acids 

and glycerol to glucose and glycogen.  However, some studies showed a decrease in 

cortisol after exercise (Meeusen et al., 2004; Beaven et al., 2008).  These results may have 

been affected by diurnal variation as the samples were collected in the morning but 

exercise did not commence immediately; therefore, the decrease may have represented the 

natural sharp decline in cortisol throughout the morning.  Similarly, an anticipatory 

increase in cortisol may have produced a false decline which could not be eliminated due 
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to lack of baseline average values.  There are various potential reasons for no change in 

cortisol, including low exercise intensity, short duration, the exercise mode and 

participants training status. The intensity and duration of exercise appear to be important 

factors impacting the cortisol response, as well as exercise type and muscle mass 

involvement. 

 

1.6.2 Cortisol and exercise intensity 

The overall consensus supports the hypothesis of a threshold of exercise intensity above 

which cortisol levels increase.  Jacks et al., (2002) studied the response of salivary cortisol 

to one 60 minute cycle ergometry bouts at 45%, 62% and 76% VO2max and found a 

significant increase after 59 minutes of exercise at 76% VO2max only.  This outcome is 

supported in a shorter duration exercise study (Allgrove et al., 2008) examining cycling 

trials (average 22.3 minutes) at 50% and 75% VO2max; the latter trial showed a significantly 

higher increase in salivary cortisol levels one hour post exercise when compared to the 

other trials.   In a group of healthy schoolchildren, Budde et al., (2010) also found those 

who ran for 12 minutes at 70-85% maximum heart rate showed an increase in salivary 

cortisol levels, whereas at 50-65% there was no increase.  Further research (Hill et al., 

2008) examined 12 active men performing 30 minutes of cycle ergometry at 40, 60 and 

80% VO2max; only the moderate (60%) and high (80%) intensity trials elicited a significant 

increase in serum cortisol levels.  Support by studies from O’Connor and Corrigan (1987) 

and Rudolph and McAuley (1998), with increases in serum and salivary cortisol levels 

after 30 minutes cycle ergometry at 75%VO2max and 30 minutes running at 60% VO2max 

respectively, suggest that in a highly controlled study there is a threshold of around 60% 

VO2max to elicit an increase in salivary cortisol levels over 20 minutes or more of 

continuous cycling or running. However, there is evidence that this threshold may not be 

conclusive (Jacks et al., 2002; Budde et al., 2010).   

 

The variation of findings in studies considering the cortisol response and exercise intensity 

may be due to the use of percentage VO2max as controlling variable.  In 1928, Hill claimed 

that expressing a given aerobic energy yield in percentage VO2max was a way to normalise 

people with different exercise capacities.  This is supported by Costill et al., (1973) who 

found that elite marathon runners exercised at a similar VO2max (80-90%) to those finishing 

further down the field. However, there are other variations that should be considered when 
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exercising at a normalised percentage VO2max, for example lactate threshold.  Coyle et al., 

(1988) conducted a study in cyclists with a VO2max of 67 ml/kg/minute and found that 

within the group there were participants termed high lactate responders who produced 

higher levels of blood lactate when exercising at 88% VO2max compared to others in the 

group. This characteristic resulted in the endurance of the high lactate responders being 

half that of the low lactate responders. The latter finding suggests that normalising to 

percentage VO2max during a hormone study may not encompass differences in lactate 

threshold or training adaptations in participants.  Recent research by Lansley et al., (2011) 

has investigated an alternative to percentage VO2max for normalisation of exercise intensity.  

Their study investigated the use of gas exchange threshold (GET) which is synomomous 

with lactate threshold.  Individials vary in GET from 40-60% maximum in untrained up to 

80% in endurance athletes (Jones and Carter, 2000).  Lansley and colleagues employed % 

delta GET which is the GET plus percentage interval between the GET and VO2max.  

Exercise at a set %  resulted in significantly decreased subject variability in gas 

exchange, blood lactate accumulation, heart rare and RPE.  Therefore, this concept could 

provide more accurate characterisation of exercise intensity in experimental studies 

designed to measure the impact of a given intervention.  Additionally, if participants may 

begin exercising at a set percentage VO2max but by the end of the trial are likely to be 

working at a higher proportion of their maximal oxygen uptake.  This raises doubt over the 

true threshold intensity of cortisol release.  Finally, standardising exercise intensity lacks 

validity when considering the hormonal response in a competition setting.  It is also 

important to control of all factors that may influence cortisol levels including time of day, 

timing of sample (to encompass lag time), circadian rhythm, diet and previous exercise.  

 



 

 

Table 1.5 Studies investigating the cortisol response to exercise 

Author Participants Exercise Cortisol 

Allgrove et al.,  (2008) 10 men Cycle ergometry ↑ after 75% VO2max and exhaustion 

trials 

Beaven et al.,  (2008) 23 rugby players Resistance exercise Salivary ↓ significantly 

Brownlee et al.,  (2006) 50 active men Circuits, weights, running rowing 

and cycling 

Blood ↑ post exercise 

Budde et al.,  (2010) 60 students Running for 12 mins Salivary ↑after 70-85% VO2max 

Cadore et al.,  (2008) 21 middle aged men Strength training ↑ serum in untrained 

Cadore et al.,  (2009) 10 young and 10 elderly men Water training protocols No change 

Cordova et al.,  (2009) 12 volleyball players Cycling to fatigue ↑ serum levels 

De Corral et al.,  (1994) 10 male children Cycle ergometer Serum ↑ 

Daly et al.,  (2005) 22 male athletes Running to fatigue Serum ↑ post exercise 

Di Luigi et al.,  (2006) 110 male athletes 90 mins various training Salivary ↑ post training 

Dimitriou et al.,  (2002) 14 male swimmers Swimming intermittent ↑ salivary levels 

Eliakim et al.,  (2009) 14 male and 14 female 

volleyballers 

One hour volleyball No change 

Eloumi et al.,  (2003) 20 male rugby players Competitive match ↑ sharply during comp 

Farzanaki et al.,  (2008) 11 female gymnasts One or two training sessions Salivary ↑ after 2 sessions 

Franca et al.,  (2006) 20 male athletes Marathon race ↑ post race 

 



 

 

Table 1.5 cont. Studies investigating the cortisol response to exercise 

Author Participants Exercise Cortisol 

Fry and Lohnes (2010) 4 trained men Weight lifting session No change 

Hackney and Viru (1999) 17 men Running or cycling ↑ after moderate and high intensity 

Hill et al.,  (2008) 12 men Cycle ergometry ↑ after 60% and 80% VO2max 

Hough et al.,  (2011) 10 men Cycling and resistance ↑ in 50/80 and fatigue trials 

Isprilidis et al.,  (2008) 24 male footballers Football match ↑ post match 

Jacks et al.,  (2002) 10 active men Cycle ergometry ↑ after 76% VO2max 

Karkoulias et al.,  (2008) 11 marathon runners Marathon race Serum ↑ post race 

Kokalas et al.,  (2004) Six male rowers Various rowing sessions ↑ post endurance protocol 

Kraemer et al., (1993) Eight men  Resistance exercise  ↑ after  high total work trial 

Kraemer et al., (1999) 7 powerlifters, 12 untrained men Resistance exercise ↑ untrained 

Le Panse et al.,  (2010) 26 elite power lifters Power lifting competition ↑ after bench press 

Marinelli et al.,  (1994) Six athletes Marathon race ↑ post race 

McMillan et al., (1993) 21 trained and untrained men Resistance exercise ↑ untrained 

Meeusen et al.,  (2004) Seven cyclists Two max exercise tests pre and 

post training camp 

Pre camp ↓ during test 1 and ↑ 

during 2
nd

.  Post camp ↓ in both tests 

Moreira et al.,  (2009) 22 male footballers Football match No change 

 

 

 



 

 

Table 1.5 cont. Studies investigating the cortisol response to exercise 

Author Participants Exercise Cortisol 

Moreira et al.,  (2010) 17 male athletes Kickboxing match ↑ post match 

O’Connor and Corrigan (1987) Eight men Cycle ergometry ↑ serum and salivary levels post 

exercise 

Passelergue and Lac (1999) 15 young wrestlers Two day wrestling competition ↑ before and after the comp 

Petraglia et al.,  (1988) 27 male athletes Athletics meeting ↑ after 10km, 1500m and 100m 

Rowbottom et al.,  (1995) 18 male triathletes Run to exhaustion and cycle 

ergometry 

Serum ↑ post exercise 

Rudolph and McAuley (1998) 13 male cross country runners 30 mins running ↑ post exercise 

Sari-Sarraf et al.,  (2007) 10 males Football training Post exercise ↑ not sig 

Stuempfle et al.,  (2010) 44 male athletes Ultra endurance race ↑ post race 

Thomas et al.,  (2009) 17 schoolchildren Intermittent cycling Salivary ↑ post exercise 

Thomas et al.,  (2010) 19 girls Intermittent cycling No change 

Tremblay et al.,  (2005) Eight men Various running protocols ↑ post run 

Viru et al.,  (1992) 82 men Two hr cycle ergometry ↑ post exercise 

Viru et al.,  (2001) 12 endurance athletes Cycling and running ↑ after first test 

Vuorimaa et al.,  (2008) 20 trained runners Running protocols ↑ after tempo run in middle 

distance (MD) runners 
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1.6.3 Cortisol and exercise duration 

Previous research suggests that intense exercise (>60% VO2max) of >20 mins increases 

cortisol levels; however, during lower intensity exercise there appears to be a threshold of 

time to elicit an increase. Tremblay et al., (2005) conducted a study into plasma cortisol 

response after treadmill runs of 40 minutes, 80 minutes and 120 minutes at 55% VO2max in 

eight endurance trained males. Cortisol levels increased in response to the 120-min run in 

the second hour of running (22%) and showed a decline across time in the other shorter 

sessions. It is suggested that when exercise is performed under 60% VO2max, hormonal 

responses will only occur when a certain amount of work is done, i.e. running for an 

adequate time (Viru et al., 1992).  Tremblay et al., (2005) demonstrated this to be 80 

minutes of running at low intensity (55% VO2max).  Research into marathon running 

supports the claim that long duration exercise will increase circulating cortisol levels.  

Franca et al., (2006), Marinelli et al., (1994) and Karkoulias et al., (2008) all studied 

marathon races (various durations from three to eight hours) and found a significant 

increase in cortisol levels post race. This is supported by Stuempfle et al., (2010) who 

found an increase in cortisol levels after a 161 km ultra endurance race (28.3 ± 7.4 hours).  

A study by Petraglia et al., (1988) measured cortisol before and after an athletic 

competition in 10,000m, 1500m and 100m athletes where, despite a pre exercise 

anticipatory increase, plasma cortisol levels still significantly rose in all the athletes, with a 

higher increase in the 10,000m (n=8) and 1500m (n=7) compared to the 100m (n=7).  

These results suggest that longer duration exercise (>20 minutes) will lead to a higher 

increase in cortisol concentration; however, short duration exercise (>15 seconds) may still 

stimulate the HPA axis and cortisol release.  

 

There is evidence that glycogen depletion is greater with an increase of intensity (Vollestad 

and Blom, 1985) and duration (Coyle et al., 1986) of exercise.  There is evidence to 

suggest that cortisol enhances lipolysis and protein catabolism to mobilise fuels (Nindl et 

al., 2001), therefore cortisol, may provide a glycogen sparing role during exercise.  A 

study by Grego et al., (2004) showed that during 80 minutes of cycling at 66% VO2max 

cortisol levels increased significantly after 144 minutes and this corresponded to an 

increase in glycerol and free fatty acid in the blood and a decrease in blood glucose. This is 

supported by Steensberg et al., (2002) who reported an increase in plasma free fatty acids 

and cortisol concentrations between 90 and 120 minutes of exercise in a glycogen depleted 

state.  These studies suggest that the level of glycogen depletion may mediate the hormonal 
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response to exercise rather than the intensity or duration per se. The latter study suggests 

that with maximal exertion, exercise duration <20 minutes can elicit a significant cortisol 

response; however further investigation is required to support these findings. 

 

1.6.4 Cortisol and intermittent exercise 

The effects of intermittent exercise on cortisol levels are less clear; although, generally this 

exercise mode elicits an increase in cortisol levels after intermittent exercise such as 

swimming and running interval sessions (Dimitriou et al., 2002; Vuorimaa et al., 2008) 

and team sports such as rugby (Elloumi et al., 2003). However, Eliakim et al., (2009) 

studied the response of one hour volleyball practice on serum cortisol and found no 

change.  Similarly, Thomas et al., (2009) revealed no significant increase in salivary 

cortisol levels in schoolgirls who performed 6x8 second cycle sprints with 30 seconds 

recovery, although the same trial in boys produced a significant increase post exercise, 

perhaps suggesting the boys exerted themselves more during the sprints.  Similarly, 

Moreira et al., (2009) also revealed no significant change in salivary cortisol level after a 

competitive football match.  The latter might relate to exercise intensity as a trained athlete 

may have a higher threshold for cortisol release in response to exercise.  This is supported 

by Sari-Sarraf et al., (2007) who studied a football training session and also found no 

significant increase in salivary cortisol levels.   It is possible athletes may become 

accustomed to performing a certain type and intensity of exercise and therefore adapt 

(Vuorimaa et al., 2008), requiring extra stress to elicit a hormone response.  There are 

various reasons this may occur, firstly the athletes may have been overtraining and 

suffering from a decreased adrenal sensitivity to ACTH (Lehmann et al., 1997).  

Alternatively, after endurance training there is an increased use of fat as a fuel during 

exercise (Hollosky and Coyle, 1984).  This is not due to an increase in free fatty acid 

(FFA) availability as plasma FFA mobilisation does not increase after training (Horrowitz 

and Klein, 2000).  An increased oxidation of intra muscular triglycerides (IMTG) has been 

postulated as most studies have found that athletes do not oxidise more circulating FFA 

during exercise than their untrained counterparts (Horrowitz and Klein, 2000; Martin et al., 

1993).  Therefore, the requirement of extra exercise stress to elicit a cortisol response may 

be linked to more efficient utilisation of fat as a fuel at lower intensities and reduced 

reliance on glycogen stores and blood glucose.  
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Furthermore, the lack of increase may also have been due to inadequate exercise stimulus, 

supported by Passelergue and Lac (1999) who concluded that the observed increase after a 

wrestling match was a reflection of the pre-exercise anticipatory response due to the low 

exercise intensity.  Nevertheless, many studies have shown an increase in cortisol levels.  

Dimitriou et al., (2002) found a swimming interval session contributed to a 76% increase 

in salivary cortisol concentration and research by Di Luigi et al., (2006) found intermittent 

moderate intensity football training produced an increase in salivary cortisol of 12.4% post 

training.  In other team sport studies both Elloumi et al., (2003) and Ispirlidis et al., (2008) 

showed an increase in cortisol levels after a rugby match and football match respectively.  

Individually, Moreira et al., (2010) studied the effect a kickboxing competition on salivary 

cortisol concentration and found an increase post match. 

 

A recent laboratory study by Hough et al., (2011) measured salivary and plasma cortisol 

and testosterone levels in four trials including two cycle ergometer interval sessions. The 

interval session consisted of a 55/80 trial (30 minutes alternating one minute at 55% 

maximum work rate and four minutes at 80% maximum work rate) and a 60/90 trial (30 

minutes alternating one minute at 90% maximum work rate and one minute at 60% 

maximum work rate).  Plasma cortisol levels increased after all trials and salivary cortisol 

increased after the 55/80 trial. This suggests that even in an intermittent exercise session 

work > 60% maximum must exceed 20 minutes duration to elicit a cortisol response. In 

their other interval session there was no increase in salivary cortisol level and the authors 

concluded this was due to inclusion of < 15 minutes exercise above 60% maximum.  Other 

researchers (Vuimoraa et al., 2008) investigated the effect of a tempo run (TR) or intense 

interval training (IT) on serum hormone levels.  Serum cortisol levels increased after both 

trials (17% after 20 minutes of IT) and 30% and 25% for IT and TR respectively post 

exercise.  After 10 minutes recovery the IT had increased 39% and TR 51%; suggesting the 

exercise induced increase in cortisol tends to take place earlier if the exercise is more 

intense.  Overall it appears that intermittent exercise may elicit increases in blood and 

salivary cortisol concentrations; however, during the session an intensity of >60% VO2max 

is required for at least 20 minutes duration.   

 

1.6.5 Cortisol and resistance exercise 

There is no clear trend regarding the cortisol response to resistance exercise.  Studies show 

a difference in the intensity and number of repetitions employed, and the cortisol response 
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has been investigated by changing these parameters. After testing four different exercise 

protocols (4 sets of 10 repetitions at 70% 1 repetition max (1RM); 3 sets of 5 reps at 85% 

1RM, 5 sets of 15 reps at 55% 1RM and 3 sets of 5 reps at 40% 1RM), Beaven et al., 

(2008) revealed a decline in cortisol concentration across all protocols, this is comparable 

to Smilios et al., (2003).  Other researchers such as Fry and Lohnes (2010) have shown no 

change in cortisol levels.  Their protocol involved 10 speed squats at 70% 1RM plus body 

weight, and this is supported by findings from Hakkinen et al., (1987).   

 

However, Cadore et al., (2008) found that serum and salivary cortisol levels were both 

significantly increased after a resistance training bout consisting of two exercises at 75% 

1RM (8 repetitions each) and two exercise at 75% and 65% 1 RM (8 and 12 repetitions 

respectively).  Similarly, Hough et al., (2011) conducted a resistance test in 10 males 

consisting of 8 sets of a 10 repetition max squat test.  Plasma cortisol levels increased from 

pre-exercise to 10 minutes post exercise, this is supported by McCaulley et al., (2009).  In 

a shorter bout of competitive resistance exercise, Le Panse et al., (2010) revealed a 

significant increase in salivary cortisol levels after three bench press attempts in an 

international power lifting competition (p<0.01), despite an anticipatory stress response 

evident in the women sampled. There is some consensus on the effect of training status on 

cortisol response; with untrained participants eliciting a higher cortisol response (McMillan 

et al., 1993; Kraemer et al., 1999).  Hypertrophy protocols also appear to induce a higher 

cortisol response than neural lifting schemes (Kraemer et al., 1993).  Hypertrophy and 

neural (strength) protocols were descrived by Kraemer et al., (1990; 1993). The strength 

protocol was characterised by lifting a higher resistance fewer times (5RM), leading to 

lower volume of training overall.  The hypertrophy programme consisted of a lighter 

resistance (10RM) but training volume was higher.  The latter findings suggest that overall 

volume of training could be more important in relation to the acute cortisol response than 

intensity alone.  This is supported by Nunes et al., (2011) who studies three strength 

training protocols in elite female basketball players on a continuum ranging from an 

endurance scheme (4 sets of 12 reps, 60% 1RM) to a strength-hypertrophy scheme (1 set of 

5RM, 1 set of 4RM, 1 set of 3RM, 1 set of 2RM, and 1set of 1RM, followed by 3 sets of 

10RM) and a power scheme (3 sets of 10 reps, 50% 1RM load power).  They discovered 

that the strength-hypertrophy scheme elicited the highest increase in salivary cortisol 

levels, and postulate this was due to the higher overall training volume of this session 

leading to a higher metabolic demand. Further studies are required to establish an overall 
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trend for the cortisol response to resistance exercise; however, there is evidence that the 

cortisol response may be able to be used to evaluate the metabolic demands of different 

resistance exercise schemes or as a tool for monitoring training strain (Nunes et al., 2011). 

 

1.6.6 Testosterone and exercise intensity 

Similarly to cortisol, exercise intensity appears to affect the testosterone response to acute 

exercise (table 1.6). Budde et al., (2010) revealed a significant increase in salivary 

testosterone after 12 minutes of running at 70-75% maximum heart rate (HR) but no 

change at a lower intensity (65%).   This is supported by Kokalas et al., (2004) who found 

a 60% increase in serum testosterone after 60 minutes rowing at blood lactate levels of 3-4 

mmol.l.   However, a short duration trial (10 minutes at 70% VO2max) failed to elicit a 

change in testosterone (Viru et al., 2001).  These results support the hypothesis that there is 

a threshold of exercise intensity above which testosterone levels increase; however, the 

bounds of this threshold are yet to be established.  The increase in testosterone could be 

due to increased release from the adrenal cortex or changes in vascular shift (Daly et al., 

2005).  

 

1.6.7 Testosterone and exercise duration 

Tremblay et al., (2005) presented a 20% increase in free and total testosterone after one 

hour of 80 min and 120 minute runs at 55% VO2max.  However, after an hour of exercise 

there was a subsequent decline in testosterone that continued throughout recovery. The 

authors also revealed that testosterone levels were greater in an 80 minute run compared to 

40 minute, suggesting testosterone may have a dose response relationship with exercise 

duration.  A decrease in testosterone levels have been consistently observed following 

marathons (Marinelli et al., 1994; Franca et al., 2006; Karkoulias et al., 2008) and in a 

study by Brownlee et al., (2006).  The high physiological stress of a marathon may 

contribute to this decrease, and testosterone levels may be related to cortisol release; 

therefore, a sufficient rise in cortisol levels may lead to a subsequent decline in 

testosterone (Brownlee et al., 2005). Galbo et al., (1977) suggested the decline in 

testosterone could be explained by a decrease in testicular blood flow as exercise is 

prolonged.  Pharmaceutical studies manipulating levels of cortisol by venous infusion have 

resulted in a reduction in circulating testosterone (Bambino and Hsueh, 1981; Cumming et 

al., 1983).  This is suggested to be caused by direct steroidogenesis inhibition at the Leydig 

cells of the testes and/or central and peripheral disruption of the hypothalamic pituitary 
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gonadal regulatory axis (Hackney and Dobridge, 2003).  Variations in response might also 

correspond to whether free or total testosterone was measured. Daly et al., (2005) found 

that total testosterone decreased after a run to fatigue at 100% ventilatory threshold; 

however free testosterone increased.  They suggested this could be a result of free 

testosterone secretion from the adrenal gland (Wilson, 1998) with a concomitant release of 

cortisol and testosterone from this gland. Alternatively, the relationship could be due to 

plasma volume shifts affecting free testosterone levels.  Their results support this theory as 

controlling for vascular fluid shift meant free testosterone did not significantly change. 



 

 

 

Table 1.6 Studies investigating the testosterone response to exercise 

Author Participants Exercise Testosterone 

Ahtiainen et al (2005) 13 strength-trained men Resistance exercise No influence of rest times 

Beaven et al.,  (2008) 23 rugby players Resistance exercise No overall change 

Brownlee et al.,  (2006) 50 active men Circuits, weights, running rowing 

and cycling 

Blood ↑ post exercise 

Budde et al.,  (2010) 60 students Running for 12 minutes Salivary ↑after 70-85% VO2max 

Cadore et al.,  (2008) 21 middle aged men Strength training ↑total and free in untrained and free in 

trained 

Cadore et al.,  (2009) 10 young and 10 elderly men Water training protocols Salivary ↑ after intermittent exercise 

Daly et al.,  (2005) 22 male athletes Running to fatigue Serum ↑ 

Di Luigi et al.,  (2006) 110 male athletes 90 mins various training Salivary ↑ 

Eliakim et al.,  (2009) 14 male and female volleyballers One hr volleyball ↑ serum levels 

Franca et al.,  (2006) 20 male athletes Marathon race ↓ post race 

Fry and Lohnes (2010) Four trained men Weight lifting session No change 

Hough et al.,  (2011) 10 men Cycling and resistance ↑ in all trials bar 50/80 

Isprilidis et al.,  (2008) 24 male footballers Football match No change 

Karkoulias et al.,  (2008) 11 marathon runners Marathon race Free and total serum ↓ post race 

 

 



 

 

 

Table 1.6 cont. Studies investigating the testosterone response to exercise 

Author Participants Exercise Testosterone 

Kokalas et al.,  (2004) Six male rowers Various rowing sessions ↑ more after endurance 

Kraemer et al.,  (1990) Nine men Resistance exercise No change 

Kraemer et al.,  (1991) Eight men and eight women Resistance exercise Men, serum↑ 

Kraemer et al.,  (1999) Seven powerlifters and 12 

untrained men 

Resistance exercise ↑ powerlifters 

Le Panse et al.,  (2010) 26 elite powerlifters Power lifting competition No change 

Linnamo et al.,  (2005) Eight men and eight women Resistance exercise Serum ↑during heavy resistance 

Marinelli et al.,  (1994) Six athletes Marathon race ↓ post race 

Passelergue and Lac (1999) 15 young wrestlers Two day wrestling competition ↑ post competition 

Thomas et al.,  (2009) 17 schoolchildren Intermittent cycling Salivary ↑ post exercise 

Thomas et al.,  (2010) 19 girls Intermittent cycling No change 

Tremblay et al.,  (2005) Eight men Various running protocols ↑ post run 

Viru et al.,  (2001) 12 endurance athletes Cycling and running ↑ post 2 hour run 

Vuorimaa et al.,  (2008) 20 trained runners  Running protocols ↑ after intermittent run in MD 

runners 

Yarrow et al., (2007) 22 untrained men Resistance exercise No  change 
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1.6.8 Testosterone and intermittent exercise 

Overall, testosterone appears to increase after intermittent exercise. Eliakim et al., 

(2009) observed an increase in serum testosterone after a one hour volleyball training 

session as did Di Luigi et al., (2006) after 90 minutes football training.  However, 

Ispirildis et al., (2008) found no increase in testosterone after a football match, nor did 

Thomas et al., (2010) after a 6x8 second sprints with 30 seconds recovery on a cycle 

ergometer in adolescent girls.   However, as stated for cortisol their identical study in 

adolescent boys (Thomas et al., 2009) reported a significant increase in testosterone. 

The authors concluded that this may have been due to the very low levels of 

testosterone in girls and an inability to gain sufficient detection when analysing the 

samples. Additionally, they failed to control for the potential effect of oral 

contraceptives which may limit short term changes in testosterone with exercise (Enea 

et al., 2009).  A study (described previously) by Hough et al., (2011), found an increase 

in salivary testosterone for all exercise trials including two interval sessions.  Similarly, 

Vuimoraa et al., (2008) reported that testosterone increased similarly after IT and TR in 

competitive runners.  However, the IT only showed a significant increase in middle 

distance runners, (not marathon runners).  The authors postulated that the post IT 

increase may be due to the influence of circulating catecholamines or SNS (Jezova & 

Vigas, 1981).  In their study testosterone levels were correlated with blood lactate 

response after a VO2max test and they hypothesised that differences in the structure of 

fast and slow muscle fibres regarding the affinity (Bricout et al., 1999) and number 

(Monks et al., 2006) of androgen receptors as well as testosterone-induced changes in 

lactate transport (Enoki et al., 2006) may be responsible for the increase in testosterone.  

This result is supported by Kokalas et al., (2004) who studied rowers and found an 

interval session of 4x5 minutes at 4-6 mmol.l produced a 42% increase in serum 

testosterone.   

 

1.6.9 Testosterone and resistance exercise 

The resistance exercise protocol design, including intensity and volume of training, 

appears to underpin the testosterone response (Crewther et al., 2006).  It has been 

established that schemes designed to induce hypertrophy (less resistance more 

sets/repetitions) result in a larger increase in testosterone than those designed to elicit 

neural adaptations (Kraemer et al., 1991).  However, this increase is not seen in women 

(Kraemer et al., 1991). Studies that observed an increase in testosterone suggested this 
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may be related to the magnitude of stress of the session.  In their recent review, Vingren 

et al., (2010) proposed there is a threshold of intensity to elicit a testosterone response 

to resistance training (supported by studies from Yarrow et al.,  2007; Kraemer et al.,  

1990; Raastad et al.,  2000; Hakkinen et al., 1993, Linnamo et al., 2005).  Training 

volume (total workload performed) also appears to be important with a higher volume 

eliciting a greater metabolic demand and in turn teststoerone response (Similios et al., 

2003). The period of rest between sessions has also been considered, as it is postulated a 

shorter recovery could increase metabolic demand (Kraemer et al., 1990); however, this 

has not been found to translate into a greater increase in testosterone (Ahtiainen et al., 

2005).   Physiologically, testosterone has anabolic properties and has been linked to 

muscle growth; it is thought that testosterone has direct interaction with a cytoplasmic 

receptor on the muscle cell which in turn initates activation of RNA synthesis, and 

subsequent accumulation of muscle proteins (Florini, 1985).  Another important factor 

affecting the testosterone response to resistance exercise appears to be training status; 

testosterone response in strength trained individuals appears to be greater than for 

untrained (Kraemer et al., 1999; Ahtiainen et al., 2004).  This suggests that perhaps 

trained individuals are better adapted to increase muscle growth than their untrained 

counterparts.  However, it has also been proposed that the increase in testosterone could 

be a result of decreased muscle utilisation (Kraemer et al., 1990) therefore trained 

individuals may require less testosterone utilisation by the muscle to aid growth and 

repair.  Some studies did not find a significant increase in testosterone such as Beaven 

et al., (2008) who tested four different resistance exercise protocols (previously 

described); Kokolas et al., (2004) who reported an insignificant serum testosterone 

increase of 24% after a bout of resistance training and Le Panse et al., (2010) who 

showed no change after an international weight lifting competition.  These results 

suggest the intensity of the exercise may not have been high or sustained enough to 

elicit a change.   The overall consensus is that the adaptive response to strength training 

is likely to be multi faceted with several acute training factors (one of them hormonal) 

rather than a single factor.  With regards testosterone, intensity and volume of training 

appear to be the most important factors to consider when planning a training session and 

additional factors such as age, and nutritional status may also be of importance 

(Crewther et al., 2006).  
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1.7 Testosterone/cortisol ratio (T/C ratio) 

The T/C ratio is increasingly being identified as a marker of training stress as the focus 

on research into metabolic aspects of fatigue increases (Petibois et al., 2002).  This 

review focuses mainly on the acute effects however the chronic effects may indicate an 

athlete’s training status.  Most studies have reported a decrease in the T/C ratio after 

acute exercise.  Franca et al.,  (2006) and Marinelli et al.,  (1994) both observed a 

decrease after a marathon race; Elloumi et al., (2003) after a rugby match;  Le Panse et 

al., (2010) after a power lifting competition and Passelergue and Lac (1999) after a 

wrestling competition. The latter suggest that competition and/or strenuous exercise 

results in a low T/C ratio which is considered as a catabolic phase i.e. breakdown of 

tissues. Conversely, the recovery phase (associated with a feeling of tiredness and 

incapacity to train strenuously) corresponds to a high T/C ratio and anabolic or muscle 

building phase. Passelergue and Lac (1999) discovered a high T/C ratio during 

recovery, which may indicate restoration of the body after the heavy exercise. One 

study (Di Luigi et al., 2006) that found an increase in T/C ratio in adolescents playing 

football, proposed that the increase may have been due to the lower cortisol response in 

the adolescents, which could be explained by the contribution of different endocrine 

pathways and testes volume during the stages of pubertal development (Weise et al., 

2002).  Overall, the ratio tends to decrease in response to an increase in cortisol levels 

after exercise, despite an increase in testosterone of lower magnitude than cortisol.  

Longer duration exercise (such as marathon running) has been shown to decrease 

testosterone (possibly due to a large increase in cortisol levels) which in turn leads to a 

decrease in T/C ratio (Franca et al., 2006; Marinelli et al., 1994).  However, with longer 

duration exercise the intensity must also be considered. Repetitive strenuous acute bouts 

of exercise without adequate recovery may have wider relevance, and can lead to long 

term fatigue and reductions in performance, sometimes diagnosed as overtraining 

syndrome or underperformance syndrome.     

 

1.8 Overtraining syndrome 

As previously mentioned, overtraining syndrome is characterised by fatigue and 

underperformance precipitated by the stress of training (Budgett, 1998).  T/C ratio tends 

to decrease in response to training or a period of intensified training and is increasingly 

being identified as a potential marker for diagnosis of overtraining syndrome (Banfi et 

al., 1993). Other stresses, depression and an increased susceptibility to infections may 
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also be important (Budgett, 1990).  Originally, Adlercruetz et al., (1986) proposed that a 

decrease in T/C of 30% or more below resting levels may be indicative that an athlete is 

suffering from overtraining syndrome.  However, Banfi et al., (1993) tested the 

usefulness of the T/C ratio in elite skaters and concluded that the previous threshold for 

overtraining syndrome should be modified to below 18% or more.  Most studies have 

observed a decrease in the ratio after heavy exercise or intensified training. Gonzalez-

Bono et al., (2002) identified that intensified training in basketball players led to a 

decrease; this is supported by Maestu et al., (2005) in rowers, Coutts et al., (2007) in 

rugby players and Ishigaki et al., (2005) in endurance runners.  Argus et al., (2009) 

examined the response of cortisol and testosterone to rugby preseason training and a 

competitive season.  They observed a decrease in T/C ratio across the season, and 

concluded the concomitant increase in testosterone may have been evidence that the 

endocrine system was recovering after the intense preseason training.  Cortisol levels 

increased more than testosterone across the season and could reflect the players’ lack of 

recovery from the previous match.  Furthermore, Elloumi et al., (2003) suggest five 

days rest or light training is required to adequately recover from the demands of a rugby 

match.  Most studies conclude that the ratio decrease indicates an imbalance between 

anabolism and catabolism and is useful for monitoring the adaptation to training and 

ultimately progression towards overtraining. However, Urhausen and Kindermann 

(2002) employ that it may be more a physiological indicator of training status than an 

indicator of overtraining itself.  This explanation is supported by studies that have 

observed an increase in T/C ratio (Santtila et al., 2009; Tanskanen et al., 2011).  

Tanskanen et al., (2011) measured the ratio in adult army recruits and found an increase 

after army training (weeks 4-7); although in those recruits identified with overtraining 

syndrome the ratio tended to decrease suggesting that some recruits coped with the 

training better than others.  In a similar study with army recruits Santtila et al., (2009) 

also found an increase in the ratio. Coutts et al., (2007) hypothesised that an elevated 

T/C ratio may indicate that an athlete is tolerating their training load because while 

exercise may elicit a decrease in the ratio immediately, it would then increase to 

indicate a rise in testosterone and anabolism i.e. during muscle repair and regeneration.  

 

Further research is still required to clarify guidelines for the use of the T/C ratio in 

monitoring training and diagnosing overtraining syndrome.  Recently research has been 

undertaken into repeated bouts of exercise for the diagnosis of overtraining syndrome. 
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In a study by Meeusen et al., (2004), cyclists performing two graded incremental 

exercise tests to exhaustion separated by 4 h before (not over-reached) and after 

(overreached) a 10 day training camp.  There was a decrease in cortisol after the first 

trial and no change in cortisol concentration after the second trial in overreached 

athletes; in addition their resting levels were higher than non-overreached athletes who 

demonstrated no change after the first trial and an increase after the second.  Blunting of 

cortisol may be linked to central disruption at the hypothalamic pituitary level.  This is 

supported by Lehnmann et al., (1998) in endurance athletes and Schmikli et al., (2011) 

who found a blunted cortisol response to exercise in over trained elite middle distance 

runners and football players.  There is also a condition labelled non-functional 

overreaching (NFO) where training results in no improvement in performance.  This is 

thought to lead to hypersensitivity of glucocorticoid receptors during the second bout of 

exercise (Meussen et al., 2010). In a recent study they identified that resting cortisol 

levels were higher in overtrained athletes compared to NFO and there was no increase 

in cortisol after the first bout of exercise in both overtrained and NFO athletes; however, 

there was an increase after the second and this was higher in the NFO athletes.  It has 

been proven difficult to distinguish between overtrained and NFO athletes but other 

hormones such as ACTH and prolactin may prove better in this (Meeusen, 2010). 

Diagnosis of overtraining syndrome is a growing area and proven criteria could help 

athletes improve with performance with adequate recovery. 

 

1.9 Summary 

This chapter presents a review of steroid hormones, mass spectrometry and detection 

and quantification of hormones as well as the acute hormonal response to exercise.  

Cortisol and testosterone are involved in the acute and chronic stress response and 

measurement in saliva offers a non invasive alternative to blood sampling.  Studies of 

the hormonal stress response to exercise propose a ‘threshold intensity’ for cortisol and 

testosterone release during acute exercise; however, findings are contentious and further 

work is required to confirm this association.  Exercise research also includes studies 

investigating the cortisol and testosterone response to weight training sessions; but 

aerobic circuit sessions commonly practiced by endurance athletes have been 

overlooked.  Despite studies observing a concomitant increase in salivary measures after 

intravenous injection, there are mixed reports concerning a time delay of post exercise 
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steroid hormone peaks in saliva compared to blood.  This project aims to bridge some of 

these identified gaps in exercise research. 

 

Secondly, LC-MS is currently an established gold standard method for analysis of 

hormones in pharmaceutical, clinical and environmental analytical laboratories however 

ELISA still remains the primary method used for hormone analysis in exercise research.  

This review suggests that LC-MS offers an alternative method for analysis of cortisol 

and testosterone, providing simultaneous quantification of both analytes and high 

sensitivity and specificity for salivary analysis. Utilising this method may also avoid the 

potential overestimation of ELISA proposed during quantification of testosterone in 

women and children. Therefore, the main objectives of this collaborative analytical 

chemistry and exercise physiology project are to: 

 

 Develop an LC-MS method to detect and quantify cortisol and testosterone 

simultaneously in saliva;  

 Validate the LC-MS method by comparing quantification of resting saliva 

samples with  ELISA; 

Following this: 

 Use the developed LC-MS method to quantify salivary cortisol and testosterone 

in response to exercise; 

 Investigate the effects of acute training sessions including circuit training on 

salivary hormone concentrations in endurance athletes; 

 Assess the correlation between salivary and blood measures before and after 

acute exercise. 

 

The thesis is structured in chapters that stand alone, which are presented in a logical 

order and are linked together to fulfil the main aims of the project. 
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2. GENERAL METHODS 

 

2.1 Materials 

 

2.1.1 Stocks 

For all mass spectrometry optimisation, 50 ng/mL methanolic stocks of dry cortisol and 

testosterone (Sigma-Aldrich, UK) were prepared weekly by dilution of a 1 mg/mL master 

stock.  The 1 mg/mL stocks contained cortisol and testosterone dissolved in 100% 

methanol (MeOH) and the stock was stored at -20
o
C for up to two months, before being 

discarded and freshly prepared.   

 

2,1.2 Calibration standards 

Calibration standards (4mL) were prepared in water at concentrations of 0, 1, 2, 5 and 10 

ng/mL of cortisol and 0, 0.1, 0.2, 0.5 and 1.0 ng/mL testosterone. IS (3 ng/mL and 0.3 

ng/mL deuterated cortisol (d2) and testosterone (d3) respectively; QMX laboratories, 

Thaxted, UK) was added to all calibration standards. For separate analysis of single 

analytes, standards were prepared containing only cortisol and cortisol (d2) IS or only 

testosterone and testosterone (d3) IS, the latter was also prepared in the higher range of 0-

10 ng/mL (table 2.1).  1000 µL of each stock was used for analysis.  
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Table 2.1 Calibration standard preparation (4mL) 

Stock concentration 

(ng/mL) 

Cortisol 

stock (µL) 

Testosterone 

stock (µL) 

Water 

(µL) 

Internal standard (µL) 

Cortisol Testosterone Cortisol  Testosterone  

0 0 0 0 3760 120 120 

1* 0.1* 400 400 2960 120 120 

2* 0.2* 800 800 2160 120 120 

5§ 0.5§ 400 400 2960 120 120 

10§ 1.0§ 800 800 2160 120 120 

0   0  3880 120  

1*  400  3360 120  

2*  800  3760 120  

5§  400  3360 120  

10§  800  3760 120  

 0   0 3880  120 

 1¶  400 3360  120 

 2¶  800 3760  120 

 5¶  400 3360  120 

 10¶  800 3760  120 

Key: * = 10 ng/mL cortisol and/or 1 ng/mL testosterone 

§= 50 ng/mL cortisol and/or 5 ng/mL testosterone 

 ¶=10 ng/mL testosterone 

 

2.1.3 Known controls 

Known control samples (1000 µL) were also prepared (1.89, 4.72 and 7.54 ng/mL cortisol 

and 0.19, 0.47 and 0.75 ng/mL testosterone, IS 3 ng/mL and 0.3 ng/mL respectively; table 

2.2).  Prior to analysis,  all samples were diluted with 1000 µL water and underwent solid 

phase extraction (SPE), after which the eluent was dried and the sample reconstituted in 

100 µL 50:50 MeOH:water (concentrating 10 times). 
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Table 2.2 Known control samples of cortisol and testosterone (1mL) 

Stock concentration 

(ng/mL) 

Cortisol stock 

(10 ng/mL) 

(µL) 

Testosterone 

stock (1 

ng/mL) (µL) 

Water 

(µL) 

Internal standard (µL) 

Cortisol Testosterone Cortisol  Testosterone  

1.89 0.75 200 800 0 30 30 

4.72 0.47 500 500 0 30 30 

7.54 0.19 800 200 0 30 30 

2.00  200 0 770 30  

5.00  500 0 470 30  

8.00  800 0 170 30  

 0.20  200 770  30 

 0.50  500 470  30 

 0.80  800 170  30 

 

2.2 Analytical methods 

 

2.2.1 LC-MS  

 

The LC-MS instrument was a VG BioQ triple quad LC-MS system (Micromass, UK) with 

an ESI interface. The system included an Agilent 1200 HPLC system with temperature 

controlled autosampler (Agilent Technologies, UK).  Analytical separation was conducted 

with a Luna pentafluorophenyl (PFP) phase column (100 x 200 x 3 µm) (Phenomenex, 

UK).  The injection volume was 15 µL and column temperature 25
o
C.  The mobile phase 

was delivered at a flow rate of 0.15 mL/min with a gradient programme of 15.5 mins (table 

2.3); both MeOH and water contained 0.1% formic acid.  The MS conditions were 

optimised for maximal signal intensity for cortisol and testosterone.  The machine was 

operated in positive ion mode with a source temperature of 120
o
C and desolvation 

temperature of 300
o
C.  Nitrogen gas flow was 100 L.hr and desolvation gas 350 L.hr.  

Capillary voltage was 4 kilovolts (kV) and cone voltage 25 volts (V). Low mass (LM) and 

High mass (HM) resolution were set at 8 Daltons (Da).  Scans were performed with SRM 

for cortisol (m/z 363.4), deuterated cortisol (m/z 365.4), testosterone (m/z 289.4) and 

deuterated testosterone (m/z 292.4). After LC-MS analysis samples were analysed using 

MassLynx software (version 3.5).  Peaks were integrated by conducting a 3 x 2 smooth 
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automatic integration, identifying the peak area of both analytes and applying manual 

correction when necessary.   

 

Table 2.3 Gradient and flow rate for LC method 

Time (mins) % A (water) % B (MeOH) Flow rate 

(mL/min) 

0 50 50 0.15 

2 5 95 0.15 

7 5 95 0.15 

9 50 50 0.15 

15.5 50 50 0.15 

 

2.2.2 Saliva collection and storage 

Participants, recuited from the local university and athletics clubs, were instructed to 

produce at least 2 mL of saliva into a 50 mL centrifuge tube.  Parafilm (50 x 100mm) was 

provided for participants to chew on in order to stimulate saliva production.  Participants 

were instructed to chew on the Parafilm for one minute before emptying their mouths and 

expectorating any further saliva into the tube with their head tilted forward.  Participants 

continued to chew on the Parafilm during collection to stimulate production.  Prior to 

collection participants were advised to refrain from drinking at least five minutes before 

producing the sample and from eating or consuming caffeine at least 3 hours before.  

Samples took between 3 and 10 minutes to produce. Samples were stored for a maximum 

of 3 months prior to analysis. After production, samples were aliquotted into four 1.5mL 

Eppendorf tubes, centrifuged at 10,000 x G for 10 mins at room temperature and the 

supernatant removed and finally put into new Eppendorf tubes and stored at -80
o
C until 

analysis.  Samples were collected in the morning within 45 minutes of awakening during 

the resting validation studies and between 3pm and 8pm in the exercise study. 

 

2.2.3 Salivary ELISA analysis 

After thawing and centrifugation for 5 minutes at 1500 x G saliva samples (25 µL) were 

analysed for cortisol and testosterone in duplicate with ELISA (Salimetrics, UK) according 

to the kit instructions.  The calibration curve consisted of five prepared standards (0.012 to 

3.0 µg/dL for cortisol and 6.1 to 600 pg/mL for testosterone) and a zero sample. 

Absorbance values for the unknown samples were interpolated from calibration standards 
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with a 4-parameter logistic curve (SigmaPlot, version 11).  The sensitivity of the kits was 

0.03 ng/mL for salivary cortisol and 1 pg/mL for salivary testosterone. For all studies, the 

mean intra assay coefficients of variation were 8.0% for cortisol and 9.1% testosterone.  

The mean inter assay coefficients of variation were 7.4% and 5.2 % for cortisol and 

testosterone, respectively.   

 

2.3 Ethical Approval 

Ethical approval was obtained from the University of Greenwich ethics committee for 

studies in Chapters 5 and 6.  All participants were given an information sheet detailing the 

study and were given the opportunity to ask questions before providing written informed 

consent (Appendix A).  Prior to beginning the study participants completed a health screen 

questionnaire (Appendix B) and a physical activity questionnaire to assess suitability to 

take part.  

 

2.4 General statistics 

All statistical analysis was performed with SPSS 18.0 software for Windows (SPSS Inc., 

Champaign, ILL, USA). Data are presented as mean values ± standard deviation (± SD) 

Data was checked for normality and sphericity prior to statistical analysis. If data was not 

normally distributed analysis was performed on logarithmic transformed data (Log10).  In 

chapter 3 data is analysed with one way analysis of variance (ANOVA) and independent t-

tests.  Chapter 4 employs both paired and independent t-tests.  Chapter 5 utilises 

independent t-tests as well as Pearson product-moment correlation coefficient and 

agreement analysis. In chapter 6 data were analysed with a two way (trial x time) repeated 

measures ANOVA. Significant differences were assessed with Bonferoni adjustments for 

multiple comparisons.  Additionally, correlations are analysed with Pearson product-

moment correlation coefficient and methods were compared with agreement analysis.  A p 

value of < 0.05 was accepted for statistical significance. 
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3. DEVELOPMENT OF AN LC-MS METHOD FOR THE 

QUANTIFICATION OF SALIVARY CORTISOL AND 

TESTOSTERONE 

 

Central to this project is the development of an LC-MS method to quantify cortisol and 

testosterone in saliva.  Chapter 1 identified LC-MS as the gold standard for measurement 

of small molecules in clinical and pharmaceutical settings and LC-MS was chosen because 

there is currently an established method to measure salivary cortisol levels with low LOQ 

(Katoaka et al., 2007) and using a single quad mass spectrometer is more cost effective 

than tandem mass spectrometry.  To achieve this, it is important to optimise various LC 

and MS parameters.  These include MS parameters such as cone voltage, capillary voltage 

and ion resolution (Jiao et al., 2002). Furthermore LC parameters such as solvent 

composition and flow rate, pH buffering and column choice and temperature (Dolan, 

2010).  For application in exercise research an LC-MS method for detection and 

quantification of salivary cortisol and testosterone levels should: 

 Minimise analyte loss during sample preparation 

 Involve sample volumes that can easily be collected during and after intense 

exercise 

 Accurately quantify cortisol and testosterone levels in a biological matrix  

 Show acceptable intra and inter day precision 

 Allow transfer to other laboratories and machines 

 Allow fast sample preparation, chromatography and detection  

 Be cost effective  

 Offer simultaneous detection of multiple analytes 

 

In this chapter, the optimisation of both MS and LC parameter to quantify cortisol and 

testosterone are presented, along with further ways to improve method sensitivity. 

 

3.1 MS optimisation 

Optimisation is conducted to give the highest signal possible to obtain the low levels of 

detection.  This is commonly carried out by infusion of standard solutions directly into the 

mass spectrometer and manually or automatically tuning paramters (Lehotay, 2005).  

However, this method fails to consider the effect of actual flow rate or mobile phase 



LC-MS method development                                Chapter 3  

 

 51 

conditions on the mass spectrometer parameters.  Additionally, mixtures of analytes are 

infused and these may have different parameters for optimisation due to differences in 

polarity and reference concentration (Kruve et al., 2010).  Low levels of detection required 

in this method justify linking the LC to MS and coupling of LC to the mass spectrometer 

during optimisation, ensuring the impact of LC flow rate is considered. 

 

3.1.1 Ionisation 

Electrospray ionisation (ESI) conducted at atmospheric pressure can ionise small 

molecules prior to MS analysis. ESI allows ionisation at lower temperatures than other 

ionisation methods, such as thermal ionisation and can be used to ionise a wide range of 

compounds including those that are thermally unstable (Santa et al., 2007).  ESI (figure 

3.01) is produced by applying a strong electric field (3 kV) to liquid passing through a 

capillary tube under atmospheric pressure (figure 3.01 A).  The electric field is obtained by 

applying a potential between the capillary and the counter electrode.  This field induces a 

charge accumulation at the liquid surface located at the end of the capillary.  The emerging 

liquid from the narrow capillary adopts the shape of a cone as a result of balance between 

Colombic repulsion at the surface and the surface tension of the liquid. This is known as 

the ‘Taylor cone’ (Taylor, 1964).  The ionised droplets pass through heated inert gas 

(nitrogen), this evaporates the solvent molecules and with this desolvation the droplet size 

decreases but the charge remains constant.  The nitrogen gas is also heated to aid drying of 

the solvent and the temperature required is optimised depending on the amount of water in 

the mobile phase and the flow rate.  This results in an increase in charge density and 

electrostatic stress near the surface of a given droplet, when the force of electrostatic 

repulsion between like charges becomes equal to the surface tension holding the droplet 

together, the ‘Rayleigh limit’ (Rayleigh, 1882) is reached.  Prior to reaching the Rayleigh 

limit droplets undergo ‘Coulomb fission’; a process which leads to the production of 

smaller ‘offspring’ droplets and ultimately gas phase ions.  
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Figure 3.01 Electrospray ionisation coupled to mass spectrometry (University of Bristol, 2010; 

University of Angers, 2010) 

 

ESI is an ionisation technique that favours multiple charges. Multiply charged ions 

observed in ESI-MS arise from molecules that have undergone multiple protonations or 

attachment of several cations (positive ion mode), or have undergone removal of multiple 

protons or attachment of several anions (negative ion mode) (Cole, 1997).  ESI is a soft 

ionisation technique and as very little residual energy is retained by the analyte upon 

ionisation and fragmentation is avoided.  ESI also favours protonation of ions in the gas 

phase and cortisol and testosterone observe addition of one charge and an increase in m/z 

of 1 ([M+H]
+
).  The total number of ions that can be extracted by the mass spectrometer is 

limited by the electrical current produced by the oxidation or reduction of ions at the probe, 

therefore ESI is concentration dependent even with a low flow rate (Cole, 2000). 
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Liquid chromatography factors, including mobile phase composition and additives (Ma 

and Kim, 1997) play an important role in ionisation and will be discussed later in this 

chapter.   MS parameters also exhibit importance including capillary voltage (which 

influences ion charge and electrospray efficiency) and cone voltage (influencing transfer of 

ions to the detector).   

 

3.1.2 Interpreting the mass spectrum 

The molecular ion represents the most abundant ion displayed in the mass spectrum (figure 

3.03).  Mass spectra are dependant on proton affinity and high proton affinity favours the 

formation of protonated ([M+H]
+
) ions.  Ion selection of steroids commonly occurs in 

positive ion mode due to protonation of these analytes.  Compounds are analysed as their 

protonated species, although competition between sodium adduct formation and 

protonation can occur during ESI where [M+Na]
+
 base peaks are evident (Ma and Kim, 

1997).  Adduct formation involves a situation where an ion other than a proton forms an 

adduct with an analyte in solution resulting in a different m/z from that of the protonated 

molecule.  Common adducts are formed with sodium, potassium and ammonium and 

although the exact mechanism for their formation is not clearly understood; however, it is 

thought that carboxyl or carboxyl ester groups are responsible for binding the alkali metal 

ions (Lambert, 2004).  Sodium and potassium may originate from the biological matrix or 

glass containers.  Alkali metal adducts can reduce signal from [M+H]
+
 ions and are 

therefore undesirable (Cole, 1997). During protonation of cortisol and testosterone the 

proton is most likely to attach the hydroxyl or ketone groups as they are the only functional 

groups that will ionise in these molecules and proton affinity affects their detection.  This 

is supported by Leinonen et al., (2004) who reported that proton affinity affected ionisation 

of anabolic steroids in urine, with high proton affinity producing lower detection limits 

compared to steroids with low proton affinity.   

 

Proton transfer is the most common ionisation reaction, the exact mechanism for ion 

production is unknown but there are two theories to explain this.  Firstly Dole et al., (1968) 

proposed the charged residue model (CRM) which they hypothesised that as a droplet 

evaporates, its charge remains unchanged. The droplet's surface tension, ultimately unable 

to oppose the repulsive forces from the imposed charge, explodes into many smaller 

droplets. These Coulombic fissions occur until droplets containing a single analyte ion 

remain. This analyte molecule would retain the ‘residual’ droplet charge as the last solvent 
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molecules evaporated, thus forming a ‘free’ gas-phase ion.  The second mechanism 

proposed by Iribarne and Thomson (1976) is named the ion evaporation method (IEM).  In 

this method small droplets form by Colombic fission as in Dole’s model; however they 

proposed that prior to the droplet reaching the Rayleigh limit the charge density on the 

droplet is sufficiently high to lift a charged analyte molecule, entraining with it a few 

solvent molecules, from the droplet surface into the ambient gas (Cole, 2000).  There is 

still controversy over which mechanism occurs, although it has been postulated that the 

CRM occurs with large molecules with masses of at least 3300 Daltons (Cole, 2000), 

though, there is still debate about desorption of smaller molecules. 

 

Protonation occurs in the liquid phase and ionic modifiers such as formic acid are added to 

lower the pH of the solution and encourage the molecules to accept a hydrogen ion. 

Cortisol and testosterone have a PkA >10, therefore addition of an acid will create a liquid 

with a lower pH and protonation occurs. The choice of mobile phase solvent is also 

important for MS analysis.  Compounds must be dissolved in an appropriate HPLC grade 

solvent that can be sprayed and also carry the analytes, as well as containing the volatile 

modifier to maintain pH and promote protonation.  

 

3.1.3 MS parameters 

Once appropriate ions have been selected for each compound key MS parameters can be 

examined to improve ionisation and ion transfer.  In single quad MS they are identified as 

cone, capillary and low mass (LM) and high mass (HM) voltages (Jiao et al., 2002). 
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Figure 3.02 Design of an ion trap mass spectrometer to illustrate application of cone voltage (A), 

Capillary voltage (B) and LM and HM resolution (C) adapted from Kruve et al., (2010). 

 

Cone/skimmer voltage 

Cone or counter electrode voltage attracts positively charged ions from the spray into a 

reduced pressure chamber (figure 3.02 B).  If the voltage is low, few ions will be attracted 

through the skimmer to be focused on the first octopole; however if it is set too high, then a 

phenomenon known as ‘in source fragmentation’ can occur.  This is where the ions are 

accelerated into the sprayer at very high speeds and collisions between the ions can 

fragment them creating smaller ions. This collision is caused by varying the potential 

difference between the capillary and cone (Wang and Cole, 1997). Insource fragmentation 

will have a negative effect on signal intensity as the proportion of non fragmented ions 

reaching the detector decreases.  This phenomenon is also difficult to control. 

 

Capillary voltage 

Capillary voltage is the voltage applied to the capillary needle, (sometimes referred to as 

nebuliser needle) in the probe, which leads to the production of charged droplets (figure 

3.02A).  If the voltage is low the signal intensity will also be low and fewer charged 

droplets will be created and enter the detector.  Adequate voltage applied to the capillary 

will create a high concentration of charged ions, these will be attracted to the oppositely 

charged cone and this process of attraction produces the ‘Taylor cone’ (Taylor, 1964) and 

subsequent spray.  Ultimately, low voltage applied to the capillary will produce insufficient 

charged ions to form the spray created from the Taylor cone.  

A 

B 

C 
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HM and LM resolution 

HM and LM resolutions are arbitrary values calculated from the RF/DC ratio.  The 

quadrupoles are divides into two pairs of rods. Filtering, or passing a given charged 

particle along the length of the rod length, is accomplished by applying direct current (DC) 

and radio frequency (RF) voltages to the rods. Different masses (with associated charge) 

are affected by changing the RF/DC conditions. The rods are connected as paired opposites 

with each set alternated as the positive and negative poles by the RF source. The 

resolutions are applied to quadruple one of a triple quadrupole mass spectrometer 

(represented by octopole one in figure 3.02C). LM affects the resolution of ions at the low 

mass range of the quadrupole and HM the high mass range.  It is important to optimise 

these parameters, because if LM and HM are set too low then the isotope peak (carbon 13) 

will merge with the main peak giving poor mass accuracy; however, if they are set too high 

over resolution will occur and signal strength will be diminished.  Ideal resolution shows 

the carbon 13 peak without compromising signal strength (Figure 3.03). 

 

 

Figure 3.03 Example of cortisol (m/z 363.5) showing carbon 12 and carbon 13 peaks 

 

3.14 LC Optimisation 

Liquid chromatography separation is based on the selective distribution of analytes 

between a liquid mobile phase and a stationary phase.  The retention time and detection of 

Cortisol, carbon 13 

Cortisol, carbon 12 



LC-MS method development                                Chapter 3  

 

 57 

analytes can be partly controlled by the chromatography involved in the liquid (mobile) 

phase and their interaction with the chosen stationary phase (column). 

 

Mobile phase solvent 

Mobile phase refers to the composition of the solvent that is used in the HPLC system.  

Varying mobile phase composition can affect peak shape and intensity as well as retention 

time (the time it takes for an analyte peak to be detected by the mass spectrometer). In 

reversed phase chromatography compounds are injected onto a column (commonly C18) 

and bind to the non polar silica molecules in the column.  Less polar compounds will bind 

more strongly to the silica.  Compounds are eluted by reducing the polarity of the mobile 

phase flowing through the column by adding an organic solvent.  When the solvent reaches 

the same non polarity as the molecules bound to the silica, it competes for binding sites 

and the analyte is eluted from the column.  More polar analytes will be eluted from the 

column first and exhibit a lower retention time in the resulting mass spectrometer 

spectrum. 

 

Polarity forms the basis of the rationale for using a ramped gradient for the mobile phase. 

As the percentage of solvent increase the polarity of the mobile phase will decrease and 

less polar compounds will be eluted from the column.  Gradient elution is especially 

important in a mixture of compounds with different polarities, as compounds will remain 

on the column if the percentage of solvent is not increased. 

 

Flow rate  

Flow rate is the rate in which the mobile phase is transported through the HPLC system 

into the mass spectrometer.  Flow rate is a key component in Van Deemter’s band 

broadening theory (Van Deemter, 1956).  This theory proposes three key elements which 

effect band broadening; firstly the path an analyte takes through the column packing; 

secondly, the effect of  molecular diffusion; and thirdly, effect of mass transfer between 

phases.   The first two conditions are likely to be influenced by the column packing and 

dimensions.  HPLC columns which contain packing of smaller particle sizes give better 

efficiency because the diffusion paths are shorter allowing analytes to transfer between the 

particles more quickly and thus reducing band broadening (Majors, 1973). With relation to 

flow rate a chromatographic system is in dynamic equilibrium. As the mobile phase is 

moving continuously, the system has to restore this equilibrium continuously. Since it 
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takes some time to restore equilibrium (resistance to mass transfer), the concentration 

profiles of sample components between mobile and stationary phase are always slightly 

shifted. If the mobile phase flow rate is too high the mobile phase will flow through the 

column quicker than the analyte, thus leading to peak broadening.  A lower flow rate is 

designed to give a high number of theoretical plates within the column thus providing high 

column efficiency and narrow peaks; consequently it is important to optimise this LC 

parameter.  

 

pH 

pH can affect the retention time, peak shape and reproducibility of a HPLC method. In 

cations a decrease in pH can lead to a greater sample ionisation and retention due to its 

effect on hydrophobicity of an analyte. However, if the addition of ionic modifiers such as 

formic acid is too high there is likely to be a suppression of MS signal.  This is essentially 

due to an increase in the number of ions in the spray and could decrease access of the 

target analyte to the droplet surface, eventually leading to complete droplet saturation and 

suppression of target analyte ionisation (Benijits et al., 2004). It is also important to 

maintain consistency of the pH in order to reproduce retention times.  A buffer such as 

formic acid can cause ion suppression on the column, which may force molecules to 

become unionised and therefore increase retention and improve resolution of analytes 

(Thermo, 2004).  It can also lead to suppression of column silanol ionisation (Alexander 

and Dolan, 2009); finally, a sufficiently low pH can enhance ESI which may improve 

method sensitivity.  

 

Column type and temperature 

The type of column chosen for the HPLC analysis can affect the peak shape and retention 

time of the analyte peaks.  C18 columns are commonly used to measure steroids such as 

cortisol and testosterone.  However, newer columns available claim to give better 

resolution and peak intensity than the traditional C18; for example the Luna 

Pentafluorophenylpropyl (PFF) column is designed for increased selectivity of compounds 

(Havlíková et al., 2008), and the latter column is employed in the current method.  

 

Column temperature can be a powerful tool to increase selectivity and separation of 

compounds (Dolan, 2002).  Previous studies have shown an increase in temperature of 

3.75
o
C was found to have a similar effect on retention as a 1% increase in MeOH 
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(Bowermaster and McNair, 1984).  An increase in temperature lowers the viscosity of the 

mobile phase and gives molecules more energy moving faster through the column.  This 

can improve column efficiency represented by less band broadening (Vanhoenacker and 

Sandra, 2006). Manufacturers recommend that column temperature does not exceed 50
o
C 

due to concerns of thermal degradation; however, a new generation of silica based phases 

have recently been developed that are stable up to 200
o
C (Jones et al., 2005).  

 

3.15 Increasing LC-MS sensitivity 

Derivatisation 

Changing the chemical structure of a compound can also offer improvements in ionisation 

and limits of detection.  Testosterone is found in low levels in biological fluids, particularly 

saliva and this provides issues when attempting to quantify extremely low levels found in 

some women and in children (Kushnir et al., 2006).  Therefore, to solve this problem, 

methods have been sought to dervitise testosterone. Derivatisation of testosterone has been 

commonly performed using hydroxylamine, this compound reacts with keto groups to form 

an oxime derivative (Kalhorn et al., 2007).  The process for derivatisation of testosterone is 

detailed it the diagram below (figure 3.04).   

 

 

Figure 3.04 Schematic illustrating derivatisation of testosterone (m/z 289) with hydroxylamine to 

form a testosterone oxime derivative (m/z 304) adapted from Vesper and Botelho, (2010) 

 

Derivatising compounds has been shown to improve ionisation efficiency and decrease 

LOD by increasing volatility and decreasing ionisation energy of polar compounds, 

allowing improved ionisation in the source (Vesper and Botelho, 2010).  This work will 

examine the effect of derivatisation on testosterone in terms of chromatographic separation 

and LOD. 
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3.2 Methods 

 

3.2.1 LC-MS 

During all analysis a VG BioQ triple quad mass spectrometer (Micromass/Waters) with 

electro spray ionisation (ESI) interface was coupled an Agilent 1200 HPLC machine 

(Agilent Technologies UK Ltd, UK).  All analysis was undertaken with a Luna PFP 

column with dimesions 100 x 2mm and 3um particles (Phenomenex Inc, UK). 

 

3.2.2 Stock solutions 

A working stock solution containing cortisol (50 ng/mL) and testosterone (50 ng/mL) 

(Sigma-Aldrich, Gillingham, UK) dissolved in MeOH was used as described in chapter 2. 

 

3.2.3 Ion selection  

A full ion scan (m/z 50-500 Da) of working stock was performed to identify which ions 

were most abundant for cortisol and testosterone. Ions chosen were m/z 289.4 for 

testosterone and m/z 363.4 for cortisol ([M+H]
+
) additionally deuterated forms of cortisol 

(m/z 365.4) and testosterone (m/z 292.4) (QMX, UK) were analysed for their ion 

formation. 

 

3.2.4 MS Optimisation 

Cone voltage 

Cone voltage was manually manipulated (10 to 50 V at 5V intervals, 70% MeOH and 20 to 

40 V at 5 V intervals, 90% MeOH) two mobile phases were tested to establish if the results 

were consistent with changes in MeOH percentage.  The working stock solution was 

analysed for signal intensity, fragmentation, peak area, peak height and signal to noise ratio 

(S/N). 

 

Capillary voltage 

Peak area response of a working cortisol and testosterone solution (50 ng/mL of each 

analyte) was recorded at various capillary voltages (2 to 5kV, 0.5 kV intervals).  Again this 

was tested with mobile phases of 70% and 90% methanol. 
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LM/HM resolution 

Firstly, peak area response of cortisol and testosterone working stock (Chapter 2) at LM 

resolution (6-14 Daltons (Da), 1 Da intervals, with HM set at 14 Da) were examined.  

Secondly, the response of these analytes to varying HM resolutions (6-14 Da; 1 Da 

intervals) was also tested with the LM resolution set at the established optimum (8 Da).  

Parameters were assessed using peak area of the cortisol and testosterone stocks (70% and 

90% MeOH isocratic mobile phases).   

 

3.2.5 LC method development   

Solvent selection 

An Acetonitrile (MeCN) and MeOH gradient were tested for its effect on peak area, peak 

height and S/N ratio for cortisol and testosterone.  The gradient employed with a flow rate 

of 0.3 mL/min is presented in figure 3.05.  
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Figure 3.05 Gradient of acetonitrile and methanol for analysis of cortisol and testosterone 

  

Gradient and solvent flow rate 

Isocratic (20-90% MeOH) and ramped gradient (table 2.1) methods were assessed for their 

effect on resolution and signal intensity of cortisol and testosterone (as indicated by 

retention time, peak area, peak height and S/N of cortisol and testosterone peaks).  
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Isocratic gradients were tested (flow rates 0.1 mL/min, 0.2 mL/min and 0.3 mL/min) to 

establish the optimum flow rate.  Ramped gradients were initially tested at 0.3 mL/min 

(peak area, height and S/N ratio of cortisol and testosterone); the best performing gradients 

in terms of detection sensitivity and resolution were retested at 0.1 mL/min (gradients 1, 2 

and 6, table 3.1).  The initial gradient was adapted from that employed by Jonsson et al., 

(2003), who measured salivary cortisol and began with 50% MeOH and ramped to 100% 

MeOH within three minutes.  Furthermore, Cawood et al., (2005) measured testosterone 

and eluted with 65% MeOH for three minutes therefore different starting solvents were 

tested around this range to optimise for cortisol and testosterone.  Various solvent 

percentages were used to begin the gradient in order to optimise run time as well as peak 

area, height and S/N ratio for both analytes.  The gradients below were tested and 

modification to ramping programmes tested after anlysis of peak characteristics and 

retention time, with the aim of obtaining clear peak resolution, efficient run time and high 

S/N ratio. 

 

Table 3.1. %B (MeOH) for 10 ramped gradients 

 

Gradient 

number 

Time (mins) 

0 1 2 3 4 5 6 7 8 9 10 11 12 

1 65 65 65  85 85 85 85 85 85 65 65 65 

2 55  90 90 90 90 90 90 90 55 55 55 55 

3 55   90 90 90 90 90 90 55 55 55 55 

4 55    90 90 90 90  55 55 55 55 

5 55     90 90 90 90 55 55 55 55 

6 50   90 90 90 90 90  50 50 50 50 

7 30  90 90 30 30 30 30 30 30 30 30 30 

8 70 70   90 90 90 90 90 70 70 70 70 

9 75 75   90 90 90 90 90 75 75 75 75 

10 65    90 90 90 90 90 65 65 65 65 

 

pH 

Peak area of cortisol and testosterone (50 ng/mL) were recorded (50-90% methanol, 10 % 

intervals) at varying mobile phase pH values (2.58 to 3.32) controlled by addition of 

formic acid  (0.1%, 0.2% or 0.5%) added to both MeOH and water of the mobile phase.  
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Column temperature 

Peak area and peak height were recorded for the working stock of cortisol and testosterone 

(50 ng/mL) for various column temperatures (20-50
o
C, intervals of 10

 o
C, 70% MeOH 

isocratic mobile phase, 0.3 mL/min). 

 

3.2.6 Chemical modification of testosterone 

This method was based on Kushnir et al., (2006).  Hydroxylamine hydrochloride was 

obtained from Sigma-Aldrich (Gillingham, UK).  Methyl tert-butyl ether (MTBE) and 

HyperSep SPE cartridges were purchased from Fisher Scientific (Loughborough, UK). 

 

Initially, a testosterone stock (1000 ng/mL) was prepared in MeOH (100%). 500 µL stock 

was evaporated to dryness in a vacuum centrifuge and the dried residue was derivatised 

with aqueous hydroxylamine solution (300 µL 1.5 mol/L), the samples were vortex mixed 

and incubated in a heating block (60
o
C, 5 mins).  Water (2 mL) was then added to each 

tube and the derivatised testosterone was extracted with SPE.  HyperSep cartridges (3 mL, 

200 mg) were conditioned with MeOH (2 mL) and water (2 mL) then the samples added to 

the columns.  The columns were washed with 20% MeCN (2 mL) and dried (10 minutes), 

testosterone was then eluted (2x 500 µL MTBE).  The solvent was evaporated in a vacuum 

centrifuge and the residue reconstituted (50 µL mobile phase). 

 

Once this procedure was established to work, lower calibration samples (500 µL) (0, 1, 2, 5 

and 10 ng/mL, 3 ng/mL internal standard (d3 testosterone)) were derivatised, cleaned with 

SPE and concentrated 10 times to make final concentrations of 10-100 ng/mL.  Samples 

were then analysed (15 µL injection) and S/N ratio compared with non-derivatised 

testosterone.  The above experiment was also repeated with deuterated (d2) cortisol as an 

internal standard.  Testosterone calibrations and saliva (1 mL) were derivatised with 

hydroxylamine.  

 

LC-MS analysis was undertaken with an Agilent 1200 HPLC (Agilent Technologies) 

coupled to a VG BioQ Mass spectrometer (Micromass/Waters) and is described fully in 

chapter 2.  
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3.3 Results and discussion 

In the following section the optimisation of mass spectrometry settings are discussed 

followed by liquid chromatography settings and finally observation from the derivatisation 

of testosterone. During LC-MS analysis it is important to consider all parameters that 

interact to affect signal intensity and resolution, including adduct formation and ion 

suppression. The solvent system transporting the analyte into the mass spectrometer can 

also significantly affect the sensitivity and selectivity of the MS method. 

 

Mass spectrometry optimisation 

Each parameter was optimised by assessing the mass spectrum obtained by ESI during LC-

MS operation. 

 

3.3.1 Mass spectra 

To select precursor ions, full scan (m/z range 50-500) mass spectra for each steroid were 

measured.  Results indicate that the most dominant ions are [M+H]
+
 and [M+Na]

+
. Sodium 

[M+Na]
+
 adduct ions were considered, because as well as being contained in saliva, 

sodium is a common impurity in MS sample analysis (Lambert, 2004).  After a full scan of 

a combined (50 ng/mL) cortisol and testosterone stock, the ions below were found to be 

most abundant for the respective analytes (figure 3.06, 3.07).  The lower values represent 

the [M+H]
+
 peaks (m/z 289 and 363) and the higher values represent the sodium adduct ion 

(m/z 311 and 385). The more abundant protonated ions were chosen for analysis. 
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Figure 3.06 Cortisol ion (m/z 363.3) and sodium adduct (m/z 385.2) 

 

 
Figure 3.07 Testosterone ion (m/z 289.4) and sodium adduct (m/z 311.4) 

 

When quantifying the analytes, two deuterated internal standards were added to the 

samples (fig 3.08 d3 testosterone, m/z 292.4 and fig 3.09 d2 cortisol, m/z 365.2).  

Deuterated internal standards were chosen for their similar physicochemical properties to 

[M+Na]
+
 

[M+H]
+
 

[M+H]
+
 

[M+Na]
+
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undeuterated forms of cortisol and testosterone and to control for fluctuations in ionisation. 

Similarly the protonated ([M+H]
+
)  ions were most abundant.   

 

Figure 3.08 Deuterated testosterone ion (m/z 292.5) 

 

Figure 3.09 Deuterated cortisol ion (m/z 365.2) 

 

3.2.2 Cone voltage 

Results illustrate that a cone voltage of 30 V for testosterone and 25 V for cortisol 

produced the highest peak areas.  For testosterone, as the cone voltage increases from 10 V 

[M+H]
+
 

[M+H]
+
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to 30 V there is an almost linear increase in the observed peak area, corresponding to a 

130% increase in testosterone peak area.  This increase is followed by a rapid linear drop 

from 30 V to 40 V.  The increase in testosterone peak area is caused by an improved ion 

transmission through the sample cone (Murata et al., 1994); whereas the decrease in peak 

area is caused by the uncontrolled fragmentation of the pseudo molecular ion, which is 

confirmed by the increase of in source fragment production.  As the cone voltage increases 

a constant increase in number of fragments formed in the source is observed (figure 3.10).  

For cortisol, as cone voltage increases from 10 V to 25 V, a 134% increase in peak area is 

observed.  This is followed by a linear decline between 25 V and 40 V. This increase is 

also due to improved ion transmission and the decrease is caused by an increase of in 

source fragmentation which occurs after 25 V.   

 

The study was repeated with a mobile phase consisting of 90% MeOH.  Peak area was 

highest at 25 V for both cortisol and testosterone and the number of fragments lowest at the 

same voltage for both analytes (figure 3.11).  There was an increase in testosterone peak 

area between 10 V and 25 V of 158% and a linear decline from 25 V to 40 V.  This 

coincided with a stable number of in source fragments between 10 and 25 V, followed by 

an increase from 25 V to 40 V, representing the increased ion energy causing collisions 

and fragmentation in the vacuum interface. Cortisol showed an identical trend with peak 

area, increasing from 10 V to 25 V by 122%, then declining to 40 V and fragmentation 

increased between 25 V and 40 V.  

 

Peak area for cortisol and testosterone is higher in the second experiment, employing 90% 

MeOH, this may have been due to reduction in background noise levels of the mass 

spectrometer or improved ionisation efficiency, due to the higher percentage of solvent 

leading to more efficient evaporation and smaller droplets (Smith et al., 2002).  The 

relative percentages of aqueous and organic solvents will affect the signal intensity in MS, 

due to their effect on the performance of the vacuum interface (Watson and Sparkman, 

2007).  In ESI the higher the organic content, the more rapid and complete desolvation will 

occur and therefore there will be increased ion formation and higher signal strength.  
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Figure 3.10 Peak area and number of fragments (± SD) (n=4) observed in the mass spectra of  

cortisol and testosterone collected at cone voltages 10-40 V with 70%v/v MeOH mobile phase  

 

Comparison of cortisol and testosterone reveals a higher peak area for testosterone and this 

may be linked to a ‘hydrophobicity effect’ (Marmur et al., 2000), which occurs during ESI. 

It has been shown that more hydrophobic compounds elicit greater signal intensity (Null et 

al., 2003). Testosterone is more hydrophobic than cortisol and therefore moves to the edge 

of the droplets in electrospray to compete for charges.  In turn, a higher signal is observed 

for testosterone as a higher proportion of droplets are charged and are detected by the mass 

spectrometer.  This is hypothesised to be due to more hydrophobic compounds migrating 

towards the inter droplet air space and therefore competing better for charges on the 

droplet surface (Abaye et al., 2011). 

 

A cone voltage of 25 V was chosen for this method to provide minimal fragmentation and 

highest peak area for cortisol and testosterone.  This voltage maximises the proportion of 

ions entering the detector, contributing to a higher detector response.   
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Figure 3.11 Peak area and number of fragments (± SD) (n=4) observed in the mass spectra of  

cortisol and testosterone collected at cone voltages 10-40 V with 90%v/v MeOH mobile phase  

 

3.3.3 Capillary voltage 

In this study peak area of cortisol and testosterone were measured at capillary voltages of 

2-5 kV (figure 3.12).  Cortisol peak area showed a linear increase between 2.0 kV and 5 

kV representing an increase of 33%.  There was also an increase in peak area from 3.5 kV 

to 5 kV of 9%.  Peak area was higher at 2.5 kV compared to 5.0 kV for testosterone 

equating to a 5.3% increase, therefore intra day machine fluctuations negate this 

difference.  No difference was observed for testosterone peak area between 3.5 kV and 5 

kV.   

 

The study was also repeated with a 90% MeOH mobile phase (figure 3.13) and for cortisol 

peak area was higher at 3.0 kV, 3.5 kV, 4.0 kV and 4.5 kV compared to 5kV (12.8%, 

16.1%, 15.8% and 11.1% respectively).  The largest peak area was observed at 3.5 kV.   

For testosterone, the highest peak area was also reported at 3.5 kV; however this was not 

significantly higher than the peak area produced by 3.0 kV.  Evaluation of the results 

concluded the optimum capillary voltage was 3.5 kV as it produced the highest peak area 
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for cortisol and testosterone in experiment two and in experiment one although cortisol 

peak area at 3.5 kV only differed from 5 kV by 9% and there was no difference between 

capillary voltages for peak area of testosterone.  These results are supported by the 

recommendation of 3.5 kV as optimum for LC-MS analysis (Waters, 2011).   

 

Low capillary voltage prevents the formation of spray during ESI and insufficient charge 

will reduce the number of ions reaching the counter ion (cone). This may explain the linear 

increase in cortisol peak area between 2.5 KV and 5 kV in experiment one.  If there is a 

sufficient voltage gradient between the capillary and cone this process of attraction 

produces the ‘Taylor cone’ (Taylor, 1964) and once the Rayleigh limit (Rayleigh, 1882) is 

reached, Coulomb fission occurs and the cone splits to form small charged droplets.  With 

a low voltage gradient there will be insufficient charge to form the Taylor cone or to draw 

ions into the detector.  
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Figure 3.12 Peak area (± SD) (n=4) observed in the mass spectra of cortisol and testosterone 

collected at capillary voltages 2-5 kV with 70%v/v MeOH mobile phase 
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Figure 3.13 Peak area (± SD) (n=4 observed in the mass spectra of cortisol and testosterone 

collected at capillary voltages 2-5 kV with 90%v/v MeOH mobile phase 

 

3.3.4 Low mass (LM) and high mass resolution (HM) 

LM was examined from 6-14 Da in two Da increments with HM resolution set at 14 Da 

(70% MeOH mobile phase) (figure 3.14).  For cortisol, 12 Da produced lower peak area 

than all other resolutions and this equated to 9.8% difference.  Testosterone showed a 

higher peak area at a LM resolution of 10 Da and this was higher than 12 Da, however 8 

Da did not differ (Figure 3.15).  This experiment was repeated with a second mobile phase 

(90% MeOH), and LM resolution of 6 Da for cortisol and testosterone elicited the highest 

peak area.  In conclusion, 8 Da was chosen for LM resolution as it consistently elicited a 

higher PA. 

 

HM resolution was also examined from 6-14 Da, with LM resolution set to 8 Da. 

Employing a 70% mobile phase (figure 3.16) results revealed there was no difference in 

cortisol PA between 6, 8 and 10 Da, though 8 Da was significantly higher than 12 and 14 

Da (>18%) (p=0.0001).  Testosterone peak area exhibited a similar pattern with 8 and 10 

Da higher than 12 and 14 Da (<20%).  This experiment was repeated with 90% MeOH 

(figure 3.17), highest peak area was at 6 Da for cortisol (>12%) (p=0.001) and the same 

voltage for testosterone, which was also reported >12% higher peak area than the next 
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closest resolution. In conclusion, 8 Da was chosen for HM resolution, as it consistently 

elicited a high peak area in both experiments. 

 

LM and HM resolutions affect the resolution of low mass ions and high mass ions on the 

quadrupole.  If the LM and HM are set too low, the quadrupole acts as a transmission cell 

and the carbon 13 isotope peak (1.1% of carbon ions) will merge with the main peak 

giving poor mass accuracy. If the resolution is high, the peaks may become over-resolved 

therefore compromising sensitivity; this exemplifies the importance of optimising 

resolution appropriately (Mallet et al., 2004). Addionally, examination of resultion at 8 Da 

revealed sufficient peak resolution. An example of the ion spectra, illustrating the carbon 

13 peak for cortisol is presented in figure 3.03. 
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Figure 3.14 Peak area (± SD) (n=4) observed in the mass spectra of cortisol and testosterone 

collected at LM resolution of 6-14 Da, HM resolution of 14 Da, with 70%v/v MeOH mobile phase 
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Figure 3.15 Peak area (± SD) (n=4) observed in the mass spectra of cortisol and testosterone 

collected at LM resolution of 6-14 Da, HM resolution of 14 Da, with 90%v/v MeOH mobile phase 
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Figure 3.16 Peak area  (± SD) (n=4) observed in the mass spectra of cortisol and testosterone 

collected at HM resolution of 6-14 Da , LM set at 8 Da with 70%v/v MeOH mobile phase 
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Figure 3.17 Peak area (± SD) (n=4) ) observed in the mass spectra of cortisol and testosterone 

collected at  HM resolution of 6-14 Da, LM resolution of 8 Da, 90%v/v MeOH mobile phase 

 

Optimisation of MS parameters serves to increase ionisation and transmission of ions to 

the detector, as well as improve resolution and mass accuracy (Jiao et al., 2002).  As 

previously discussed, in addition to MS optimisation, it is also possible to increase 

ionisation and in turn lower limits of quantification, through optimisation of LC 

parameters. 

 

LC Optimisation 

3.3.5 Mobile phase solvent 

Mobile phase solvent choice is important in LC-MS as it can influence ionisation of 

analytes and peak retention, therefore it is important to choose the most appropriate solvent 

for each method.  MeCN and MeOH mixed with water were investigated for their impact 

on peak area of cortisol and testosterone.  Examination of the effect of MeCN compared to 

MeOH on peak area found that for cortisol, a mobile phase containing MeOH elicited 29% 

higher peak area than the same mobile phase using MeCN.  Similarly, for testosterone the 

peak area was 30% higher will MeOH compared to MeCN. This is illustrated by 

presentation of different chromatograms and peak areas in figure 3.18.   
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Some LC-MS methods use MeCN as a mobile phase solvent, rather than MeOH as it is 

less viscous, resulting in a lower column back pressure thus allowing faster flow rates and 

it is used as a solvent in hormone measurement research (Singh, 2008). This work supports 

this observation revealing that peak retention times for cortisol and testosterone were 

shorter when using MeCN (figure 3.18).  This is due to higher polarity of MeCN, leading 

to faster movement through the column, and when mixed with water MeCN possesses 

greater elution strength than MeOH (Shimazdu, 2010).  These solvents also have different 

chemical properties, as MeOH is protic (capable of hydrogen bonding) and MeCN is 

aprotic (not capable of hydrogen bonding). 

 

There is also evidence to suggest MeOH produces significantly higher ionisation of some 

steroids than acetonitrile (Ma and Kim, 1997).  However, this study utlised atmospheric-

pressure chemical ionisation and results may not be transferrable to ESI.  Furthermore due 

to lower viscosity, MeCN elicits lower backpressure than MeOH, although in this method 

backpressure was not an issue. Finally, during the initial period of method development 

there was a shortage of MeCN and prices increased dramatically (Tullo, 2008) further 

justifying the use of MeOH in this method. 
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Figure 3.18. Peak area of cortisol and testosterone (50 ng/mL) with comparison of MeOH versus 

MeCN gradient 



LC-MS method development                                Chapter 3  

 

 76 

 

Another observation is that cortisol elutes before testosterone as it is more polar and spends 

less time interacting with the column bonded phase. This leads to differences in peak 

retention and shape and it is important to consider the chromatographic behaviour of both 

analytes when optimising the LC method. 

 

3.3.6 Solvent flow rate and isocratic gradients 

Firstly, the effect of flow rate on peak area was examined for cortisol (figure 3.19) and 

testosterone (figure 3.20).  There was no change in peak area for cortisol or testosterone 

from 50-80% MeOH but there is an increase at 90% MeOH.  The effect of flow rate was 

examined for peak height, to investigate the effect of flow rate and organic solvent 

percentage on peak broadening.  Peak height was higher for both cortisol and testosterone 

at 0.1 mL/min compared to 0.2 mL/min and 0.3 mL/min (figures 3.21 and 3.22).  

Similarly, there was also a linear increase in peak height with an increase in MeOH 

concentration.  For cortisol, at 0.1 mL/min peak height increased 455% between 50 % and 

90 % MeOH.  For testosterone the peak height increased 480% between 60 % and 90 % 

MeOH. 

 

These results suggest taller narrower peaks are produced with an increase in solvent 

percentage.  This may be due to improved ionisation efficiency with a flow rate of 0.1 

mL/min. At the liquid flow rates of conventional LC separations, ESI-MS response 

typically appears concentration-sensitive rather than mass-sensitive; that is, increasing the 

flow rate does not greatly increase the signal (Bruins, 1991). However, as flow rates are 

lowered, smaller charged droplets generated by the electospray results in increased 

ionisation efficiency (i.e. transfer of an ion from solution to the gas phase) and also permit 

the ESI emitter to be positioned closer to the MS inlet, allowing more efficient transport to 

the MS analyser, both of which provide increased sensitivity (Gale and Smith, 1993; Wilm 

and Mann, 1994) (ESI, figure 3.01).  The column dimensions were 100 x 2mm with 3 µm 

particle size and given the particle size the suggested flow rate is 0.1 mL/min for optimal 

performance (Phenomenex, 2010).  This flow rate is designed to give a high number of 

theoretical plates within the column, thus providing high column efficiency and narrow 

peaks (Van Deemter, 1956).   Smaller inlet diameter columns with low flow rates have 

been shown to produce higher sensitivity than larger internal diameter (ID) columns with 

higher flow rates (Shen et al., 2002).  This is because peak volume (peak width in 
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volumetric terms), declines with the reduction of the cross-sectional area of the column, or 

square of the change in diameter and translating into proportionally taller peaks (Dolan, 

2010).  Formation of narrower peaks with a higher percentage of MeOH are likely to be 

caused by a reduced viscosity, leading to less peak broadening prior to detection  
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Figure 3.19 Peak area (± SD) (n=4)  observed in the mass spectra of cortisol collected at  at 50-

90%v/v MeOH and flow rates 0.1-0.3 mL/min 
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Figure 3.20 Peak area (± SD) (n=4) observed in the mass spectra of testosterone collected at 50-

90%v/v MeOH and flow rates 0.1-0.3 mL/min 
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Figure 3.21 Peak height ( ± SD) (n=4) observed in the mass spectra of cortisol collected at 50-

90%v/v MeOH and flow rates 0.1-0.3 mL/min 
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Figure 3.22 Peak height (± SD) (n=4) observed in the mass spectra of testosterone collected at 50-

90% v/vMeOH at flow rates 0.1-0.3 mL/min 

 

3.3.7 Ramped gradients 

Various ramped gradients were tested to optimise peak height, area and signal to noise 

ratio (table 3.1 in methods section). All gradients were analysed at a flow rate of 0.3 

mL/min for peak area, height and S/N ratio for cortisol and testosterone (tables 3.2 and 3.3) 

and the optimal gradients for the measurement of cortisol and testosterone were analysed at 

0.1 mL/min, given this flow rate is optimal for the column dimensions (table 3.4).  The 

highlighted gradients in table 3.4 represent those chosen for further analysis; the criteria 

was having a retention under 6.5 minutes for both analytes (to keep run time under 20 

minutes, when the flow rate was decreased to 0.1 mL/min) and illustrating high peak area, 

peak height or S/N (highlighted in bold typeset).  
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Table 3.2 Mean (± SD) of cortisol and testosterone S/N, peak area and height of various MeOH 

gradients (n=4) 

Gradient Cortisol Testosterone 

 S/N Peak area Peak height S/N Peak area Peak height 

1 41.46 ± 

6.49 

117542±1196 176832 ± 

2562 

25.68 ± 

1.04 

199755 ± 2974 276543 ± 

6825 

2 42.95 ± 

2.33 

124087±3774 183017 ± 

2799 

40.12 ± 

2.20 

253648±10684 355294± 

14616 

3 35.43 ± 

7.24 

114980 1334 166575 ± 

2967 

31.99 ± 

1.63 

129002 ± 6663 299787± 

13868 

4 47.77 ± 

4.97 

113562 ± 691 164207 ± 

3276 

37.45 ± 

1.74 

179646 ± 6393 346429 

±17925 

5 58.06 ± 

6.27 

109893 ± 977 161971 ± 

3167 

38.78 ± 

3.30 

195370 ± 1857 351748 ± 

7805 

 

 

 

Table 3.3 Mean (± SD) of cortisol and testosterone S/N, peak area and height of various MeOH 

gradients (n=4) 

Gradient Cortisol Testosterone 

 S/N Peak area Peak height S/N Peak area Peak height 

6 68.28 ± 

8.67 

30014 ± 271 157370 ± 

3623 

85.16 ± 

4.92 

63736 ± 

1282 

535595 ± 

16698 

7 61.37 ± 

6.14 

26167± 2273 226139 ± 

19626 

150.55 ± 

24.13 

79459 ± 

4510 

575739 ± 

32693 

8 49.37 ± 

4.60 

18683 ± 921 124787 ± 

5573 

15.59 ± 

0.85 

45325 ± 

1844 

248773 ± 

9283 

9 41.67 ± 

6.05 

17017 ± 662 129438 ± 

3680 

29.57 ± 

3.13 

45796 ± 

2119 

312382 ± 

15015 

10 56.39 ± 

1.31 

106067±1492 201836 ± 

4233 

25.66 ± 

3.64 

179822 

±4081 

311626 ± 

4839 
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Three optimal gradients (1, 2, and 6) were chosen based on the initial analysis after 

considering retention time, S/N and peak descriptive; these were tested at 0.1 mL/min 

(table 3.4; figure 3.21). Choosing the appropriate gradient was based on all parameters; 

including peak retention with the ideal method able to elicit tall intense peaks for both 

analytes in < 20 mins.  

 

Table 3.4 Mean (± SD) of cortisol and testosterone S/N, peak area and height of three MeOH 

gradients at flow rate of 0.1 mL/min (n=4) 

Gradient Cortisol Testosterone 

 S/N Peak area Peak height S/N Peak area Peak height 

1 127.97 

± 16.46 

268386 

± 20515 

849358  

± 55212 

154.96  

± 23.08 

717864 

± 125037 

1673889  

± 330601 

2 96.91± 

24.25 

210606 

± 17515 

267410  

± 21740 

222.41 

± 61.27 

502249 

± 39934 

2143123 

± 168164 

6 186.7  

± 7.74 

281739  

± 32420 

844682 

± 133658 

336.21 

± 61.98 

701557 

± 168046 

2131729 

± 261496 
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Figure 3.23 Cortisol and testosterone peaks for gradients 1, 2 and 6 at flow rate 0.1 mL/min 

 



LC-MS method development                                Chapter 3  

 

 82 

Gradient 6 was chosen as it produced a higher S/N ratio for testosterone, compared to the 

other gradients and S/N ratio for cortisol was comparable to the other gradients.  

Additionally analyte retention occurred within 20 minutes for both hormones (fig 3.23). 

S/N ratio is an important parameter in analyte quantification as a ratio of ≥ five is required 

to determine the lower limit of quantification, (US Department of Health, 2001) therefore, 

improvements in S/N will have a direct impact on enhancing the quantification of low 

levels of steroid hormones in saliva.   

 

3.3.8 Column temperature  

This work examined column temperatures ranging from 20-50
o
C for their effect on cortisol 

and testosterone peak area with a 70% methanol gradient (table 3.5).  For cortisol the 

largest difference in peak area was observed for column temperatures between 20
o
C and 

50
o
C with 25

o
C higher by 6.9%.  For testosterone the largest difference in peak area was 

between column temperatures of 25
o
C and 40

o
C and 40

o
C was higher by 4.2%.  Given the 

potential for intra assay precision to be on average 7.0% for cortisol and testosterone 

(Jonsson et al., 2003; Matsui et al., 2009), it is unlikely that these values represent a true 

increase.  A column temperature of 25
o
C was chosen to maintain consistency and minimise 

the proposed negative effects of high temperature on column lifetime (Vanhoenaker and 

Sandra, 2006).  Column temperature has been shown to have a strong influence on peak 

retention and broadening, thus potentially improving selectivity and S/N ratio (Bowermater 

and McNair, 1984; Vanhoenaker and Sandra, 2006) however no differences were 

identified in this study. The chosen temperature produced sufficient peak separation and 

minimal peak broadening. 

 

Table 3.5 Peak area (±SD) for cortisol and testosterone with column temperatures ranging from 20-

50
 o
C (n=3) 

Column temperature (
o
C) Cortisol peak area Testosterone peak area 

20 64346 ± 473 168555 ± 433 

25 61546 ± 160 166584 ± 412 

30 61503 ± 41 170098 ± 5069 

40 62946 ± 2357 172810 ± 1631 

50 60404 ± 1740 167323 ± 2998 
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3.3.9 pH 

Mobile phase pH can impact on retention consistency and ionisation efficiency. pH varies 

with the concentration of solvent and also amount of acid modifier such as formic acid. 

Samples were analysed with the three percentages of formic acid.  Results revealed that 

0.1% formic acid produced higher cortisol peak area than 0.2% (15.8 %) and 0.5% formic 

acid (25.1 %).  For testosterone 0.1% formic acid produced higher peak area than 0.2% 

(9.5 %) and 0.5% (9.8%) (figure 3.24). Retention times were consistent at 0.1% formic 

acid which suggests sufficient buffering.  
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Figure 3.24 Peak area (±SD) (n=4) observed in the mass spectra of  cortisol and testosterone (50 

ng/mL stock) collected with an isocratic gradient of 70%v/v MeOH containing 0.1, 0.2 or 0.5 % 

formic acid  
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Figure 3.25 pH of 50-90% methanol with 0.1, 0.2 or 0.5% formic acid 

 

Higher peak area with a mobile phase containing 0.1% formic acid is likely to be due to a 

combination of factors. Firstly, a low pH can contribute to ion suppression on the column, 

this reduced ionisation of column silanols which can interfere with peaks causing peak 

tailing (Alexander and Dolan, 2009).  A low pH is known to improve ionisation during 

ESI, cortisol and testosterone have an acid dissociation constant (PkA) of >10 therefore at 

a low pH the analytes should be completely ionised. However, using high amounts of 

buffer can cause peaks to co-elute as they are not retained on the column, it is also thought 

to supress ionisation through high numbers of ions and droplet saturation which prevents 

ionisation of target analytes (Benijits et al., 2004).  Formic acid has a PkA of 3.8 therefore 

it is advised it can buffer a pH of 2.8 to 4.8.  Analysis of pH at of a range of solvent 

concentrations (50-90% MeOH) with 0.1% and 0.2% and 0.5% formic acid revealed a 

linear increase in pH as methanol concentration increased (figure 3.25).   At 0.2% FA 

(<55% MeOH) and 0.5% formic acid (<60% MeOH) pH has exceeded the buffering range 

of formic acid and therefore pH stability cannot be guaranteed (LaserChrom, 2011).  In 

conclusion, 0.1% formic acid is acceptable for buffering methanol concentrations in the 

mobile phase employed in this method. 
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3.3.10 Further LC-MS optimisation 

To improve the sensitivity of the LC-MS method and lower the detection limit of steroid 

hormones, several options exist including derivatisation to change the chemical structure of 

a compound and additionally the use of tandem mass spectrometry, to detect fragmented 

ions to reduce background interference (Jiao et al., 2002). 

 

Hydroxylamine derivatisation 

Hydroxylamine derivatisation was conducted with testosterone based on the method by 

Kushnir et al., (2006).  An initial stock of 1000 ng/mL revealed a resolved peak of m/z 

304, which indicated testosterone was successfully derivatised (figure 3.26B) and 

comparison of the peak areas suggests a four fold improvement with derivatisation.  

However, a co-eluting compound of m/z 304 was visible when derivatising low levels of 

testosterone (10 ng/mL; figure 3.27). Various experiments were conducted to investigate 

the cause of this interference with SPE, vacuum drying and column contamination 

excluded.   

 

 

Figure 3.26  Underivatised, m/z 289  (A) and derivatised (m/z 304) testosterone stock (B) (1000 

ng/mL) 

 

A 

B 
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Figure 3.27 Derivatised testosterone (m/z 304) (10 ng/mL) 

 

In conclusion, due to the co-eluting peak at m/z 304 it was very difficult to quantify 

derivatised testosterone within the reference range for men, however further work by our 

research group indicates a three fold improvement in testosterone quantification with 

hydroxylamine derivatisation (Nielsen et al., 2011; unpublished data) This improvement is 

less than that proposed by Kushnir et al., (2006) who reported testosterone detection could 

be improved 5-10 fold with this method.  However, derivatisation lead to a compromise in 

cortisol quantification levels; (figure 3.28) therefore, alternative ways to improve 

quantification of testosterone should be investigated.  There are other methods which have 

been used to derivatise testosterone such as with HMP (Higahsi et al., 2005; Shibayama et 

al., 2009); pyridine (Licea-Perez et al., 2008) and 2, 6-diaminopyridine (DAP) (Yamashita 

et al., 2009) and investigation of these methods could be undertaken to establish if 

improvements in quantification by derivatisation are possible without compromising 

detection of cortisol. Derivatising compounds has been shown to improve ionisation and 

decrease LOD by increasing volatility and the change in structure has the potential to 

improve proton affinity. 
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Figure 3.28 Cortisol in an underivatised saliva samples (A) and derivatised (B) 

 

Recent results from our group support reports of improved detection of testosterone with 

hydroxylamine derivatisation in the literature.  There is evidence that co-eulting peaks may 

be able to be moved chromatographically or through fragmentation by employing MS/MS 

(Kushnir et al., 2006; Kalhorn et al., 2007).   

 

Tandem Mass Spectrometry 

Another method to improve sensitivity in LC-MS may be to employ tandem mass 

spectrometry (LC-MS/MS).  LC-MS/MS can be used to effectively suppress background 

noise from the sample matrix and greatly enhance sensitivity if the instrument is properly 

tuned and operated (Jiao et al., 2002). Tandem mass spectrometry has been used to 

quantify salivary cortisol and testosterone in the reference range for saliva (Matsui et al., 

2009; Kusukake et al., 2009).  However, similar LOQ have been achieved for 

quantification of salivary cortisol with LC-MS (Katoaka et al., 2007) and this suggests that 

LC-MS/MS may not be required to quantify cortisol and testosterone in salivary samples. 

Although, the specifications of the mass spectrometer used in the latter study are not 

specified therefore direct comparison of the methods is difficult. 

 

3.4 Summary 

The first objective of this research project was to develop a method to measure salivary 

cortisol and testosterone with LC-MS.  This chapter encompassed optimisation of LC and 

MS parameters for this method with MS parameters manipulated first. Ion selection was 

based on a full scan across the mass spectra and this identified protonated ions as the 

dominant ions.  Optimisation proceeded using a single ion scan for the protonated form of 

cortisol and testosterone (m/z 363.4 and m/z 289.4 respectively).  Protonated ions of 
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deuterated forms of cortisol (m/z 365.4) and testosterone (m/z 292.4) were also identified 

as most abundant. Cone voltage appears to be the most influential MS parameter on peak 

area of all the MS parameters tested.  Cone voltage has a two pronged effect on ions as 

firstly, when optimised it attracts a high number of ions into the ion block and this has a 

direct effect on signal strength and detection limits.  In this work this equated to an 

improvement in cortisol and testosterone peak area of over 130%.  Secondly, high cone 

voltage is linked to insource fragmentation; therefore if this parameter is set incorrectly 

high ion energy can lead to fragmentation and ultimately a reduction in analyte ions 

reaching the detector.  Optimisation of capillary voltage suggests this parameter does affect 

peak area of cortisol and testosterone. However, less dramatic changes were observed than 

for cone voltage.  Similar conclusions regarding influence on peak area were drawn for 

low and high mass resolution and the carbon 13 peak was identified to ensure peak 

resolution.   

 

LC parameters were also optimised for detection of cortisol and testosterone.  

Manipulation of solvent type allowed for assessment of this parameter on peak area and 

analyte retention, in this method MeOH produced higher peak area for both analytes of 

over 25%.  Additionally solvent flow rate had a considerable effect on peak area and peak 

height with a slower flow rate producing the best results.  The latter is likely to be linked to 

the Van Deemter peak broadening theory (Van Deemter, 1956) which implied that optimal 

flow rate will give a higher number of theoretical plates in the column and lead to higher 

column efficiency and narrower peaks. The lower flow rate is also likely to improve ion 

transmission, as smaller electrospray droplets lower the threshold of the Rayleigh limit and 

provide more efficient transfer from the liquid to gas phase (Gale and Smith, 1993). 

Combined, these translate to a higher percentage of ionisation; therefore more ions reach 

the detector.  Mobile phase pH is a further parameter which has large influences on 

ionisation and it is important to add an optimal level of acid buffer to maintain retention 

and ionisation efficiency.  0.1% formic acid is commonly used in LC and this work 

supports using this percentage of acid.  Dissimilarly, column temperature had negligible 

impact of peak area and therefore a temperature of 25
o
C (slightly above room temperature) 

was employed to minimise temperature effects on retention time. 

 

Finally, considering the low levels of testosterone in saliva, work was conducted to 

investigate ways to improve ionisation of this compound.  In conclusion, derivatisation 
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may offer improvements in detection of testosterone with reaction of hydroxylamine to 

produce a testosterone oxime derivative.  However, further investigation is required to 

confirm the true improvements gained with this technique and assess the impact for 

cortisol detection.  This could be achieved through optimisation of the derivatisation 

method and analysis with LC-MS/MS to reduce background interference. 
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4. OPTIMISATION OF SAMPLE PREPARATION 

 

With its ease of collection and established correlations with blood (Vittek et al., 1985; 

Kirschbaum and Hellhammer, 1994) saliva has become a widely used medium to monitor 

cortisol and testosterone. However, there are two main issues when attempting to quantify 

hormones in saliva with LC-MS. Firstly, the saliva matrix, can cause ion suppression, and 

high noise levels subsequently produce poor ion detection and S/N ratio through the 

‘matrix effect’.  This effect is also observed in other biological matrices such as blood and 

urine.  Secondly, concentration of cortisol and testosterone are lower in saliva than blood 

(10 fold) and this creates a challenge to accurately quantify them.  Importance is placed on 

cleaning the sample prior to analysis employing a method that produces high analyte 

recovery.  Established techniques such as protein precipitation and solid phase extraction 

(SPE) are commonly used to reduce the effect of matrix noise and to concentrate the 

sample for analysis with mass spectrometry.   This chapter includes examination of saliva 

sampling considerations and matrix effects, optimisation of an SPE extraction method for 

cleaning saliva prior to LC-MS analysis and finally investigation of sample recovery. 

 

4.1 Saliva 

4.1.1 Saliva composition 

Saliva is a clear, slightly acidic mucoserous endocrine secretion. It is composed of more 

than 99% water with a normal pH of 6-7.  Saliva contains a variety of electrolytes 

including sodium, potassium, calcium, magnesium, bicarbonate and phosphates as well as 

immunoglobulins, proteins, enzymes, mucins, urea and ammonia (Humphrey and 

Williamson, 2001) (figure 4.01) Secretion of saliva is controlled by a salivary centre 

composed of nuclei in the medulla (Grant et al., 1988) and is triggered by mechanical, 

gustatory and olfactory stimuli (Humphrey and Williamson, 2001). Additionally many 

small biomarkers including hormones are present in saliva.  Most steroids including 

cortisol and testosterone enter the saliva through diffusing through the cells of the salivary 

glands and their concentration is not dependent on flow rate (Vining et al., 1983). 
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Figure 4.01 Components of saliva 

 

4.1.2 Salivary measures 

Salivary measurement has many benefits over blood measures. Sample collection is less 

invasive therefore less likely to induce a stress response (Kraemer et al., 2001), also the 

sample can be collected by patients or study participants and there is no need for medical 

personnel or researchers to be present.  This is particularly advantageous in large cohort 

studies and studies in children (Jessop and Turner-Cobb, 2008).  Additionally, salivary 

measures are often indicative of the free or ‘biologically active’ biomarkers, as they diffuse 

from the blood into the mouth and are not bound by albumin therefore may indicate the 

levels which initiate the body’s stress response (Humphrey and Williamson, 2001).  

However representing free hormone levels means low concentrations of cortisol and 

testosterone compared to blood (table 1.1); and this can lead to problems with accurate 

detection in samples from women and children (Kushnir et al., 2006). 

 

4.1.3 Collection of saliva 

Various studies assess appropriate collection methods for salivary hormones. Poll et al., 

(2007) showed a higher correlation between salivary and serum cortisol levels when 

collecting with cotton Salivettes rather than passive drool. However, cotton Salivettes have 

been shown to elicit low hormone recoveries of 88% for cortisol and 62% for testosterone 

(Groschl and Rauh, 2006), therefore use in steroid analysis is discouraged. With regards 

stimulating saliva production, Dabbs et al., (1991) and Booth et al., (2003) investigated the 
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effect of chewing gum on salivary testosterone and found that levels tended to increase 

within the first minute of chewing, but were not significantly above baseline at any other 

time point. Participants should therefore be advised to chew for at least a minute before 

providing the saliva sample.  Additionally, the purpose of hormone measurement should be 

considered with collection.  Resting cortisol and testosterone levels exhibit a diurnal 

variation (Baxendale et al., 1980), therefore timing of sampling should be considered if 

collecting during the awakening response.  After this period levels are fairly stable and 

high volumes can be sampled.   When measuring the acute effects of a stressor short 

sample collection times are required to capture the immediate hormonal response to the 

stressor.  When stimulated by chewing or by moderate strengths of citric acid, whole saliva 

flow rate increases from the resting value of around 0.3–0.65 mL/min (Bertram, 1967) to 

around 1.5–6.0 mL/min (Heintze et al., 1983) and there is large individual variation.  

Additionally, dehydration through sweat loss during exercise may decrease saliva flow rate 

(Ford et al., 1997) and must be considered.  Therefore, when collecting saliva samples to 

assess the acute stress response during and after exercise; volume will be restricted by the 

sampling time. Volume may also be affected by vasoconstriction of the arterioles 

surrounding the salivary glands resulting in lower salivary volume (Chicharro et al., 1998), 

which has been postulated during and after intense exercise.  Therefore, during a 

stimulated sample over a three minute period, it is realistic to collect between 2 mL and 3 

mL. Concentration of samples prior to MS analysis can improve detection limits however 

sample volume restrictions during and after exercise limits the factor of concentration.   

 

4.1.4 Storage of saliva 

Correct storage of saliva is important to minimise sample degradation and reductions in 

hormone concentration which can limit detection.  Granger et al., (2004) studied the 

stability of salivary testosterone and found when stored at -20
o
C there was an 18% decline 

in testosterone after six months but at -80
o
C there was no significant change after 36 

months. This is supported by Whembolua et al., (2006) who found higher testosterone in 

samples stored at -80
o
C on the day of collection compared to samples stored at room 

temperature. Examining storage at higher temperatures, Granger et al., (2004) reported a 

significant increase in testosterone levels after storage at 4
o
C for four weeks and this was 

suggested to be due to bacterial growth interfering with the ELISA assay used in this study.  

Although, conversely, Whembolua et al., (2006) reported that after 10 days at room 

temperature salivary testosterone declined 39% and there was no correlation between 
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bacteria colony counts and salivary levels of testosterone. Cortisol appears to be more 

stable than testosterone, supported by findings from Aardal and Holm (1995) who revealed 

salivary cortisol was stable at room temperature for at least 7 days and at -20
o
C for nine 

months. Similarly, Kirschbaum and Hellhammer (2000) suggest that salivary cortisol can 

be stable at room temperature for up to four weeks and however for longer storage 

temperatures of -20
o
C or lower are recommended.  These results support storage of saliva 

samples at -80
o
C prior to measuring cortisol and testosterone. 

 

4.1.5 Matrix effects and ion suppression 

Despite the benefits of salivary measurement, like other biological fluids it can affect 

ionisation during ESI through ‘matrix effects’.  Matrix effects can be defined as the 

alternation of ionisation efficiency in the presence of co-eluting substances and this 

concept was first described by Tang and Kebarle (1993).  Various methods are used to 

measure ion suppression, commonly this is achieved through post extraction addition 

where a matrix sample is spiked with analyte post extraction and the signal of analyte 

compared with a pure solution with identical concentration of analyte.  The matrix effect is 

calculated by the difference in analyte signal between the samples and is usually presented 

as a percentage (Taylor, 2005).   

 

There have been various mechanisms proposed for the cause of matrix ionisation 

suppression during ESI.  King et al., (2000) have shown that matrix effects are the result of 

competition between non volatile matrix components (such as salts) and analyte ions for 

access to the droplet surface and transfer to gas phase.  Any mechanism that might 

decrease the production rate of small droplets and ultimately gas phase ions could 

participate in ionisation suppression. High concentrations of non voltalite materials present 

in the spray with the analyte increase attractive forces keeping the droplets together.  

Therefore, ions in the unevaporated portion of the electrospray liquid may collect on the 

interface plate of the mass spectrometer and fail to enter the detector.  Analyte polarity has 

been shown to potentially cause ion suppression of similar sized analytes: in mixtures, the 

more non-polar analytes have a higher affinity for the ESI droplet-air interface where the 

effective competition for the excess charge results in higher signal intensities in the mass 

spectrum (Abaye et al., 2011a; 2011b).  Another mechanism involves the mass and charge 

of individual analytes, where molecules of higher mass can suppress the ionisation of 

smaller molecules (Sterner et al., 2000), however the presence and the cause of signal 
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suppression can be difficult to determine.   Ionisation suppression can affect the 

development of MS methods as when ion suppression occurs the sensitivity and LOQ may 

be adversely affected (Buhrman, 1996).  For both qualitative and quantitative LC-MS 

understanding and eliminating this cause of signal suppression is essential.  The impact of 

ion suppression can be reduced through chromatographic separation so the analyte elutes 

away from interfering compounds or alternatively modification of the sample extraction 

method (Avery, 2003). Increasing retention of analytes to avoid elution in the solvent front 

where the majority of matrix effects occur is one method to reduce the effect of co-eluting 

compounds (Muller et al., 2002).  Furthermore, addition of an internal standard, which co-

elutes with the compound of interest can control for matrix effects as they would both 

experience the same interference from ion suppression (Bonfiglio et al., 1999; Annesley, 

2003).   

 

Finally, cleaning the sample prior to analysis can also be beneficial.  SPE and liquid-liquid 

extraction have been shown to reduce ion suppression through removal of interfering 

compounds that can compete for charges during ESI or interferes with desolvation 

(Bonfiglio et al., 1999; Muller et al., 2002).   

 

4.1.6 Sample cleaning 

The importance of sample cleaning to reduce ionisation suppression has been illustrated as 

electrolytes and other components in a saliva matrix can potentially interfere with 

ionisation of the analytes of interests and directly influence detection limits.  Additionally 

sample concentration and recovery are important parameters to optimise for improvements 

in detection and quantification in saliva. 

 

Solid phase extraction 

SPE is a widely used sample-preparation technique for the isolation of selected analytes, 

usually from a mobile phase (gas, fluid or liquid). Analytes are transferred to the solid 

phase where they are retained while larger compounds are removed (washing) and finally 

the analytes of interest are eluted. The principal goals of SPE are: 

 matrix simplication (sample clean-up) 

 trace enrichment (concentration)  

 medium exchange (transfer from the sample matrix to a different solvent or to the 

gas phase) (Poole, 2003) 
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SPE has been widely used in the preparation of serum, plasma and saliva prior to analysis 

for cortisol (Kataoka et al., 2007; De Palo et al., 2009) and testosterone (Chang et al., 

2003; Shibayama et al., 2008; Yamashita et al., 2009). 

 

4.1.7 Recovery of analytes 

The chosen cleaning techniques can affect recovery of analytes and this is especially 

important for testosterone as losses exacerbate the difficultly in detection of very low 

levels in saliva. Chang et al., (2003) reported testosterone recoveries of 91% at 2 ng/mL 

and 10 ng/mL and recovery of 96% was found by Cawood et al., (2005).  Similar results 

were also shown for cortisol by AbuRuz et al., (2003) (90%) and Kataoka et al., (2007) 

(95%).  

 

Considerations for high recovery post SPE include the method used to drying the analyte 

eluent.  This is important in terms of productivity, reliability and recovery of the analyte. 

Three methods of drying (freeze drying, vacuum centrifuge and nitrogen) have been 

examined for quantification of salivary cortisol levels by Nelson et al., (2008).  They 

concluded that evaporation of samples under a nitrogen flow is time consuming has more 

room for human error.  Although they reported no difference in recovery of cortisol 

between the drying methods benefits of using freeze drying or vacuum centrifuge for 

drying the eluent included improved efficiency and reproducibility. 

 

4.2 Methods 

 

4.2.1 Calibration standards 

Calibration standards (4mL) were prepared in water as described previously in Chapter 2.  

Concentrations of 0, 1, 2, 5 and 10 ng/mL of cortisol and 0, 0.1, 0.2, 0.5 and 1.0 ng/mL of 

testosterone and IS (3 ng/mL and 0.3 ng/mL deuterated cortisol (d2) and testosterone (d3) 

respectively (from QMX laboratories, Thaxted, UK)) were added to all calibration 

standards. Prior to separate analysis of single analytes, standards were prepared containing 

only cortisol and cortisol (d2) IS or only testosterone and testosterone (d3) IS, the latter was 

also prepared in the higher range of 0-10 ng/mL (Chapter 2; table 2.2).  1000 µL of each 

stock was used for analysis. Known concentration samples (1000 µL) were also prepared 

(1.89, 4.72 and 7.54 ng/mL cortisol and 0.19, 0.47 and 0.75 ng/mL testosterone, IS 3 
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ng/mL and 0.3 ng/mL respectively (chapter 2).  Prior to analysis all samples were diluted 

with 1000 µL water and underwent solid phase extraction (SPE) after which the eluent was 

dried and the sample reconstituted in 100 µL (concentrating 10 times). 

 

4.2.2 Matrix effect 

Mean LC-MS spectra of spiked analyte free saliva (20 ng cortisol and 20 ng testosterone) 

was compared with negative controls (water) spiked with the same concentration of both 

analytes. Analyte-free samples were prepared with activated charcoal treated saliva 

(Shibayama et al., 2009).  500 µL saliva was pre-treated (1 mL MeCN added, centrifuged 

3000 RPM, 5 mins) then SPE was conducted with 200 mg HyperSep C18 cartridge 

(Thermo Scientific, Bellefonte, PA) the SPE eluent was evaporated (vacuum centrifuge, 

500 x G), reconstituted (500 µL MeOH: water (60:40)) and spiked with 20 ng/mL cortisol 

and testosterone. Positive control samples of 500 µL MeOH: water (60:40) were spiked 

with cortisol and testosterone (20 ng/mL). Two saliva and two control samples were 

prepared and were analysed in triplicate with LC-MS (70% MeOH isocratic mobile phase, 

0.3 mL/min). 

 

4.2.3 Solid phase extraction 

The SPE process conducted in these experiments (figure 4.02) involved the following 

steps.  3mL 200 mg HyperSep C18 cartridges (Thermo Scientific, Bellefonte, PA) were 

attached to a 12-position vacuum manifold (Phenomenex, UK).  Cartridges were 

conditioned with MeOH (2 mL) followed by water (2 mL) then loaded with the sample 

(1mL diluted with 1mL water) (total volume 2 mL).  A vacuum pressure (< 20 mmHg) was 

applied to the cartridges for binding the analytes to the cartridges with the correct sample 

flow rate indicated by individual droplets. Two washes, water (2mL) and MeOH (2mL, 

10%) were executed before the analytes were eluted with MeOH (2 x 500 µL).  Eluent was 

evaporated to dryness in a vacuum centrifuge at 45
o
C and reconstituted in 100 µL mobile 

phase (50:50 MeOH: water).   
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Figure 4.02 SPE procedure (Supelco, 1998; Buletin 910, Introduction to Solid Phase extraction)  

 

Washing during SPE was assessed (10, 40 and 50% MeOH) for its effect on sample 

recovery.  Cortisol and testosterone stock 50 ng/mL was compared with samples which had 

undergone SPE with a 10, 40 and 50% MeOH wash.  Three samples were analysed for 

each wash percentage and were analysed in duplicate. Three samples (50 ng/mL) were 

prepared without SPE and repeated in duplicate as controls. Peak areas of cortisol and 

testosterone were recorded for all samples and recovery calculated using the equation 

details in chapter 2.  

 

To analyse the effect of concentrating samples on accuracy, calibration samples were 

prepared with 0.1, 0.2, 0.5 and 1.0 ng/mL of testosterone and 1.0, 2.0, 5.0 and 10 ng/mL 

cortisol with 0.3 ng/mL deuterated testosterone and 3 ng/mL deuterated cortisol 

respectively (table 2.2). Samples underwent SPE and were concentrated 10, 20 or 50 times 

(table 2.4).  Known amounts of cortisol (2, 7 and 8 ng/mL) and testosterone (0.2, 0.3 and 

0.8 ng/mL) were also prepared and analysed for accuracy at the same concentrations.   

 

For assessment of sample reconstitution 1 mL samples of 5 and 10 ng/mL (3 ng/mL IS) for 

cortisol and 0.5 and 1 ng/mL (0.3 ng/mL IS) underwent solid phase extraction and vacuum 

drying, and were reconstituted with 100 µL of 50% MeoH or 80% MeOH.  Peak areas 

were recorded for both analyte and IS and mean values ± SD plotted graphically. 
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Table 4.1 Concentration of calibration and saliva samples 

Concentration Original stock volume 

(µL) 

Reconstitution (µL) Wash and conditioning 

volume (µL) 

10X 500 50 1000 

15X 750 50 2000 

20X 1000 50 2000 

 

4.2.4 Analyte recovery  

Recovery was assessed by analysing two known amounts of cortisol and testosterone (2 

ng/mL and 8 ng/mL for both) in triplicate.  These samples underwent preparation with SPE 

(method above, 4.2.3) and were concentrated 10 times.  A sample with the same 

concentrations spiked post SPE (2 ng/mL and 8 ng/mL) and concentrated 10 times was 

used as the control.  The recovery of the method was calculated as the difference in mean 

peak area of the known samples compared to the peak area of the control sample.  The 

following equation (equation 2) was used and the final value expressed as a percentage of 

recovery: [Mean peak area of known sample/peak area control sample*100]. 

 

4.2.5 Statistical analysis 

Matrix effect were analysed with Students paired t-tests and a P value of <0.05 was 

accepted as significant. 

 

4.3 Results and discussion 

 

4.3.1 Matrix effects 

The saliva matrix effect was assessed by comparing the peak areas of cortisol and 

testosterone from a spiked, charcoal treated analyte-free saliva sample and a positive 

control (non matrix) sample prepared in water.  Both samples were spiked with 20 ng/mL 

cortisol and testosterone and analysed by LC-MS following SPE cleanup.  A paired t-test 

revealed there was no significant difference in the peak area of cortisol between the matrix 

and non-matrix samples however for testosterone the matrix sample peak area was 

significantly lower than the control by 6.3% (t=-2.662, p=0.024) (figure 4.03).  This 

suggests that noise from the background of a saliva sample may negatively affect peak area 

and potentially compromise the ability to quantify this analyte.  Competition for the total 

available charge from matrix components can lead to ion suppression and poor detection 
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limits (Boyd et al., 2008).  Additionally, a decrease in surface tension of electrospray 

droplets may occur as a result of a high concentration of co-eluting compounds (Mallet, 

2004).  This could decrease the rate of solvent evaporation and probability that the droplet 

will reach a sufficiently small size that ion evaporation can occur.  In turn more ions would 

remain in the liquid phase and fail to reach the detector (King, 2000). Ion suppression may 

have contributed to the decrease in testosterone detection in the matrix sample. It is 

therefore important to optimise cleaning of samples to reduce potential matrix effects.  

 

 

Figure 4.03 Peak area (± SD) of cortisol and testosterone for matrix and non-matrix 

samples (n=6)  *significantly lower than non matrix (P<0.05).  

 

 

4.3.2 Concentration of sample 

Samples were concentrated 10, 20 and 50 times for cortisol and testosterone to assess 

accuracy of quantification of known amounts of each analyte (table 4.2). 

 

 

 

 

 

 

* 
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Table 4.2 Accuracy (%) for cortisol and testosterone for three control samples (n=3) 

 Cortisol  Testosterone 

 2 ng/mL 5 ng/mL 8 ng/mL  0.2 

ng/mL 

0.3 

ng/mL 

0.8 

ng/mL 

10X 

concn 

91.5% 92.4% 98.4% 10X 

concn 

80.0% 92.0% 90.0% 

20X 

concn 

95.0% 100% 90.8% 20X 

concn 

60.0% 61.2% 66.6% 

50X 

concn 

90.5% 97.4% 92.8% 50X 

concn 

63.4% 77.9% 89.5% 

 

The mean accuracy for cortisol at 10, 20 and 50X concentrations were 94.1%, 95.3% and 

93.6% respectively, this illustrates that there was no improvement in accuracy with 

concentration >10X.  Similarly for testosterone there is no improvement in accuracy above 

10X concentration.  Method validation guidelines state that accuracy should be within 20% 

of the actual value (U.S. Department of Health, 2001) and for concentrations of cortisol 

meets these criteria.  Similarly testosterone meets the criteria above 0.5 ng/mL 

(concentrating 10 times).  The validation guidelines also state that at lower limit of 

quantification (LLOQ) accuracy should be within 15% and results suggest 0.2 ng/mL is 

close to this limit. This method is to be applied to samples collected after exercise; 

therefore volume must be considered prior to concentration as well the capacity of SPE 

cartridges.  It has been established that post exercise a three minute stimulated saliva 

collection is likely to elicit approximately 3mL saliva; therefore after centrifugation and 

removal of 500 µL for ELISA analysis, duplicate samples of 1 mL will be stored for LC-

MS analysis.  With 1:1 dilution prior to SPE the sample is appropriate for 3mL cartridges 

and reconstitution in 100 µL allows concentration 10 times with the final sample volume 

sufficient for multiple LC-MS injections. 

 

4.3.3 SPE wash phase 

Cortisol recovery decreased as the percentage of organic solvent in the wash phase 

increased (figure 4.04).  A one ANOVA for cortisol revealed 50% MeOH produced 

significantly lower sample recovery than 10% MeOH (P=0.001) (effect of wash, 

F(2,17)=6.101, p=0.012).  No effect of wash was observed for testosterone between 10 % 

and 50 % MeOH. These findings are in line with those from a study of testosterone 
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recovery which showed no decrease with 50% MeOH wash in Strata X SPE cartridges 

(Huq et al., 2008).  Testosterone is insoluble in water however unlike most steroids cortisol 

exhibits some solubility and the current findings suggest that a concentration of 50% 

MeOH may exceed the non polarity of cortisol and elute it from the SPE cartridge.  

Testosterone is less polar that cortisol therefore requires a higher proportion of organic 

solvent for elution.  In conclusion, a wash phase of 40% methanol or below is acceptable 

during SPE of these analytes.  
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Figure 4.04 Changes in recovery (mean ± SD) for washes of 10, 40 and 50% MeOH (n=6). 

*significantly lower than 10% MeOH wash (P<0.05) 

 

In this experiment the error bars were large and machine variations in ionisation may have 

contributed to some of this difference.  The SPE cartridges had a packing volume of 600 

mg and guidelines state that the mass of compounds to be extracted should not be more 

than 5% of the mass of the tube packing (Supleco, 1998).  The mass of the packing has a 

tolerance of 30 mg of compound therefore adding 100 ng would not have exceeded this 

limit.  Conversely an excessive bed weight can result in incomplete elution and therefore 

this may have affected the results.  Polarity of the wash will also impact recovery, a polar 

solvent such as water will retain the analytes on the stationary phase, and adding a higher 

* 
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proportion of MeOH will encourage the hydrophobic compound to leave the stationary 

phase.  Less polar compounds such as testosterone will require a higher percentage of 

organic solvent to dissolve and be removed from the SPE sorbent.  

 

4.3.4 Reconstitution of dried SPE eluent 

Results showed that for testosterone (0.5 mg/mL and 1 ng/mL) peak area ratio was higher 

when reconstituting samples in 80% MeOH compared to 50% MeOH (figure 4.05). There 

was also a higher peak area ratio for cortisol (5 ng/mL) when redissolving the dried SPE 

eluent in 80% MeOH compared to 50% MeOH (figure 4.06).  These results suggest there 

is higher testosterone recovery when there is more organic solvent present.  Similarly for 

cortisol (5 ng/mL) PA ratio was significantly higher when reconstituting in 80% MeOH 

compared to 50% (t=-7.50. p=0.005).  
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Figure 4.05 Peak area (± SD) of testosterone samples of 0.5 and 1 ng/mL reconstituting in 50% and 

80% MeOH (n=4).  
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Figure 4.06 Peak area (± SD) of cortisol samples of 5 and 10 ng/mL reconstituting in 50% and 80% 

MeOH (n=4).  

 

Using peak area ratio controlled differences in ionisation which could be attributed to the 

sample cleaning and the method error. The findings for testosterone are expected given its 

requirement for high levels of organic solvent to dissolve.  However, cortisol is slightly 

soluble in water and would be expected to dissolve in 50% MeOH. The findings show that 

dried analyte should be reconstituted for analysis in 80% MeOH rather than 50%.   

 

4.3.5 Sample recovery 

Sample recovery was tested at two concentrations over different days (table 4.3) and 

results revealed mean recovery was 93.3% for cortisol and 84.8% for testosterone which is 

in line with other studies measuring these analytes (Chang et al., 2003; Cawood et al., 

2005; AbuRuz et al., 2003 and Kataoka et al., 2007); there is no recommended threshold 

for sample recovery however ideal recovery would be 100% and the extent of recovery of 

the analyte and internal standard should be consistent (U.S. Department of Health, 2001). 

 

 

 

 

 



Sample Preparation                                Chapter 4  

 

 104 

Table 4.3 Mean (± SD) PA of 2ng/mL and 8 ng/mL cortisol and testosterone pre and post SPE 

(n=6) 

Samples Cortisol Testosterone 

 2 ng/mL 8 ng/mL 2 ng/mL 8 ng/mL 

PA Pre SPE 34881 ± 1173 313934 ±22214 539997 ± 13308 1731725 ± 51892 

PA Post SPE 36945 ± 457 289019 ±10834 461220 ±9233 2056264 ± 43707 

Recovery (%) 94.4 ± 4.6% 92.1 ± 4.5 % 85.4  ± 2.1% 84.2 ± 0.6 % 

 

The reduction in analyte signal reported after SPE is likely to occur from a combination of 

losses during the SPE process including elution and transfer between vials and the wash 

phase. The above study used 10% MeOH and previous experiments to compare analyte 

recovery with different washes suggest this condition is likely to minimise sample losses 

(figure 4.04). Addition of an internal standard would also control for losses obtained 

during the SPE process.   

 

4.4 Summary 

Saliva samples have been established as a convenient, easy and non invasive alternative to 

blood measures for measurement of cortisol and testosterone.  Collection can be achieved 

quickly and patients or study participants are able to collect samples themselves if 

necessary and send them for analysis.  Cortisol is stable in saliva for at least one week at 

room temperature (Aardal and Holm, 1995) and both cortisol and testosterone are stable in 

saliva for prolonged periods when stored at -80
o
C prior to analysis (Aardal and Holm, 

1995; Granger et al., 2004).  Saliva has the potential to cause ion suppression during LC-

MS analysis in ESI through compounds in the matrix causing modifications in surface 

tension of the electrospray droplets and decreasing efficiency of transfer of ions in to the 

gas phase.  Testosterone appears to be affected by ion suppression in this study and this is 

likely to be caused by matrix effects. 

 

Cleaning samples with SPE can reduce ion suppression by removal of contaminating 

matrix compounds (Bonfiglio et al., 1999).  Examining SPE method development revealed 

the wash phase can detrimentally affect the recovery of analytes if the concentration of 

organic solvent elicits a non polarity above that of the analytes being extracted.   

Additionally, studies assessing composition of the solution to reconstitute cortisol and 

testosterone post SPE revealed that the percentage of organic solvent affects analyte 
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recovery and signal strength therefore 80% methanol is the preferred constitution.  

Concentration of saliva post SPE is limited due to the initial volume obtained during 

sampling, however concentrating samples 10 times was revealed to elicit method accuracy 

within the accepted criteria (<15%)  for cortisol for all samples (range 2-8 ng/mL) and 

concentrations above 0.5 ng/mL for testosterone.   Finally, recovery for both analytes was 

comparable with findings from similar studies and elicited consistent results therefore the 

SPE extraction method was accepted for use in this study. 
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5. LC-MS ANALYTICAL METHOD VALIDATION 

 
Analytical method validation is designed to establish the reproducibility and accuracy of a 

new method and validity of its use in analyte detection and quantification. The main 

criteria for investigation are limits of detection and quantification, intra and inter assay 

precision, accuracy and linearity.  The aim of this chapter is to describe the validation of 

the LC-MS method developed for the detection and quantification of cortisol and 

testosterone (Chapter 3).  Part of this validation involves a comparison against a fully 

validated ELISA (Salimetrics, UK) for the detection and quantification of salivary cortisol 

and testosterone.  Studies have already compared LC-MS with ELISA (Nelson et al., 2008) 

and radioimmunoassay (Jonsson et al., 2003) assays to measure salivary cortisol levels.  

Similarly, LC-MS has been compared with immunoassay techniques (Singh et al., 2008; 

Nelson et al., 2008) to measure salivary testosterone.  All studies revealed correlations 

between the techniques.  

 

Cortisol and testosterone levels in saliva measured during a resting state have many 

applications; from the diagnosis of disorders such as Cushings syndrome (Baid et al., 

2007) and hypogonadism (Matsui et al., 2009) to the potential diagnosis of overtraining 

syndrome in athletes (Urhausen and Kindermann, 2002).  Resting diurnal variation is 

evident for both analytes and the cortisol awakening response (CAR) can be higher in 

women (Clow et al., 2004) compared to men.  Testosterone exhibits clear gender 

differences with men possessing higher circulating testosterone levels than women.  

Physical activity may also have an impact on resting hormones levels and there is evidence 

for an increase in resting testosterone levels in those undertaking weight training (Stone 

and Fry, 1997).  However those undertaking prolonged high volume endurance training 

may exhibit a decreased resting testosterone level and higher cortisol level than untrained 

individuals (Gulledge and Hackney, 1996).  

 

This chapter will evaluate the developed LC-MS method to measure cortisol and 

testosterone against established analytical method validation criteria.  Correlations between 

resting salivary cortisol levels with both LC-MS and ELISA will be measured.  
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Furthermore, salivary cortisol and testosterone levels are examined in active versus non 

active men and women.  

 

5.1 Method validation guidelines  

Method validation is required for any new or amended method to ensure it can produce 

reproducible and reliable results and it involves satisfying a number of criteria (figure 

5.01).  These are based on the International Conference on harmonisation of technical 

requirements for registration of pharmaceuticals for human use (ICH) guidelines (1996) 

and US Department of Health bioanalytical method validation guidelines (2001).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.01 Method validation criteria (ICH, 1996) 

 

Specificity 

Specificity ensures that the signal of interest is measured despite the presence of other 

components such as impurities and/or degradation products.  It is determined by assessing 

peak identity and purity.  

 

Limit of detection and limit of quantification  

The LOD is the lowest concentration of a sample that can be detected but not necessarily 

quantitated as an exact value; it is generally quoted as a S/N ratio of 3:1.  The LOQ is the 

lowest amount of analyte in a sample which can be quantitated exactly and is determined 

by a S/N ratio of at least 5:1. It should be validated by the analysis of a number of samples 

know to be near the limit.  
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Accuracy 

Accuracy is a measure of the closeness of agreement between test results and the value 

which is accepted as the true value.  It indicates the deviation between the mean value and 

the true value. It should be presented as percent recovery of a known added amount of 

analyte in the sample.  This is assessed by adding a known amount of a labelled internal 

standard and comparing the signal for this compound against that for the unknown 

concentration of analyte.  Accuracy is accepted as at least 80% recovery of a known 

concentration at LOQ and 85% in higher samples.  

 

Precision 

Precision is a measure of the reproducibility of the whole analytical method (including 

sampling, sample preparation and analysis) and is presented as relative standard deviation 

or coefficient of variation.  Precision encompasses repeatability, reproducibility and 

intermediate precision.  Precision is accepted as a coefficient of variation <20% and <15% 

at the lower limit of quantification. 

 Repeatability is a measure of intra assay precision (precision under the same 

operating conditions over a short interval of time).   

 Reproducibility expresses the precision between laboratories; this is assessed by 

conducting an inter-laboratory trial. 

 Intermediate precision expresses the precision against within-laboratory variations 

(e.g. different days, analysts, equipment).  The method should be assessed on 

different days and conducted by different analysts and the variation documented. 

 

Linearity 

Linearity is the ability of a method to obtain results which are within a given range, to 

obtain results which are directly proportional to the amount of analyte. This is established 

by calculating the regression line of the results and comparing it with analyte concentration 

i.e. calibration standards would be run across the known range of concentrations of cortisol 

and testosterone and a linear regression line plotted to reveal if the samples show a 

proportional increase. An r
2
 value of >0.95 is expected for a method to be classed as linear. 
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Range 

The range of an analytical procedure is the interval between the upper and lower 

concentration of analyte in the sample, this is derived from linearity studies. 

 

5.1.1 Comparison of LC-MS with ELISA 

Most commonly, ELISA have been use to measure cortisol and testosterone levels in 

human saliva; however when measuring low levels of hormones in saliva they have a 

tendency to overestimate concentrations, especially for testosterone samples from women 

and children (Fitzgerold and Herold, 1996; Taieb et al., 2003).  Despite their shortcomings, 

ELISA show a high accuracy and precision when measuring salivary cortisol and previous 

researchers have shown a correlation with LC-MS of 0.63 (Nelson et al., 2003).  Nelson 

and co-workers also reported higher accuracy in LC-MS compared to ELISA.  Higher 

correlations have been found when comparing testosterone samples measured with LC-MS 

and ELISA (r=0.81, Yasuda et al., 2008).  As previously mentioned, correlational analysis 

has been commonly used to compare the relationship between methods, however limits of 

agreement may give a more accurate indication of how closely two sets of values agree 

(Bland and Altman, 1986). 

 

5.1.2 Salivary measures at rest 

Advantages of measuring salivary hormones include monitoring diurnal changes and 

diagnosing some diseases. A further application is the analysis of resting sample from 

athletes as changes in the ratio of cortisol to testosterone has been hypothesised as an 

indicator of overtraining syndrome (Urhausen and Kindermann, 2002).  

 

Gender differences have been identified in resting hormones such as lower testosterone in 

men and there are also reports that the cortisol awakening response (CAR) can be affected 

by gender with evidence that women elicit a higher response than men (Pruessner et al., 

1997; Clow et al., 2004; Weekes et al., 2008).  Resting hormone concentrations may also 

be affected by exercise status.  There is evidence that individuals undertaking prolonged 

hard endurance training show a reduction in resting testosterone levels and increase in 

circulating cortisol levels (Vervoorn et al., 1991; Elloumi et al., 2003).  This catabolic 

process may indicate the breakdown and repair of muscle tissue.  
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This chapter aims to assess accuracy and precision of ELISA compared to LC-MS for 

measurement of salivary cortisol levels and evaluate the correlation between the two 

measurements with saliva samples collected from active and non active men and women.  

Concentrations of salivary cortisol and testosterone from these groups will also be 

examined to establish whether resting salivary measurements at rest differ between 

sedentary and active participants.  

 

5.2 Methods 

 

5.2.1 Sample extraction and LC-MS 

Cortisol and testosterone were extracted with SPE and samples analysed with LC-MS 

employing the method described in chapter 2.  

 

5.2.2 Method validation 

For method validation the following approach was followed: 

 

Limit of Detection (LOD) and Limit of Quantification (LOQ) 

LOD and LOQ were established by analysing six calibration samples in triplicate.  Cortisol 

standards were prepared in HPLC grade water (0, 1, 2, 5, 8 and 10 ng/mL, 3 ng/mL IS), 

underwent extraction SPE (as described in Chapter 4) and were concentrated 10 times prior 

to analysis. Testosterone calibration standards (0, 0.1, 0.2, 0,5, 0,8 and 1 ng/mL, 0.3 ng/mL 

IS and 0.0, 0.1, 0.2, 0.5 and 1.0 ng/mL, 0.3 ng/mL IS) also underwent SPE and 

concentration prior to analysis.  Samples were analysed with LC-MS and their S/N ratio 

plotted against concentration.  The regression equation produced from this calibration 

curve was used to extrapolate the S/N corresponding to LOD and LOQ.  S/N ratio of the 

cortisol and testosterone peaks corresponded to either LOD (S/N ratio = 3) or LOQ (S/N 

ratio = 5). The experiment was repeated on three separate days. 

 

Repeatability 

High, medium and low concentration solutions were prepared for cortisol (2 ng/mL, 5 

ng/mL and 8 ng/mL) and testosterone (0.2, 0.5 and 0.8 ng/mL).  Aliquots of these solutions 

were repeatedly (n=5) measured on the same day, and the coefficient of variation (%CV) 

calculated to establish how reproducible the measurements were across the reference range 

of each analyte.  Mean peak area of each concentration was calculated and divided by the 
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standard deviation of the samples with the following equation [mean peak area /standard 

deviation*100].   

 

Inter assay precision 

High, medium and low concentration solutions were prepared for cortisol and testosterone 

(as above).   Aliquots of these solutions were repeatedly (n=5) measured on two separate 

days and the coefficient of variation (%CV) calculated to establish how reproducible the 

measurements were across the reference range of each analyte. Inter assay precision (% 

CV) was determined by calculating the mean peak area for each concentration on both 

days and  these means were combined to give an average across the days then the standard 

deviation between then was calculated.  Inter assay precision for each concentration was 

calculated by dividing the standard deviation between day 1 and 2 by the mean peak area 

for both days and multiplying by 100 to give a percentage [mean peak area day one and 

two/standard deviation between days*100].   

 

Linearity 

A range of cortisol and testosterone calibration standards (0, 1, 2, 5, and 10 ng/mL, 

3ng/mL IS) and further testosterone standards (0, 0.1, 0.2, 0.5 and 1 ng/mL; 0.3 ng/mL IS) 

were tested for linearity on three occasions (n=3).  Peak area ratio between the analyte and 

internal standard was plotted graphically against concentration and the regression line 

established. Linearity was accepted with an r
2 

value > 0.95.  

 

Accuracy 

Accuracy was determined for each three known concentration of cortisol (2. 7 and 8 

ng/mL) and testosterone (0.2, 0.3 and 0.8 ng/mL) Cortisol and testosterone were extracted 

with SPE, dried and reconstituted before analysis with LC-MS.  The measured amount is 

divided by the expected amount and multiplied by 100 to express as a percentage (equation 

4) [% accuracy = (measured/known)*100].   

 

 

5.2.3 Method comparisons 

Recruitment 

For study one, twenty men and five women aged 18-55 were recruited from running clubs 

and the local university community.  Before the study all participants were given an 
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information sheet and the opportunity to answer any questions about the study.  They also 

completed a health questionnaire (Appendix B), and signed an informed consent form 

(Appendix A).  For study two, the same protocol for recruitment was used however 19 men 

and 11 women aged 18-55 were recruited, some participants took part in both studies.  

Exclusion criteria included taking any prolonged medication or oral contraceptives. 

 

Participants  

Male participants were divided into active and sedentary groups according to their level of 

exercise.  “Active” was classified as participating in organised physical activity for a total 

of >3 hours of physical activity per week.  Women in the study were a mixture of active 

and non active.  Physical characteristics for participants can be seen in table 5.1 and study 

two in table 5.2. 

 

Table 5.1 Participant characteristics (mean ± SD) (study one) 

 Non active men Active men Women 

Age (y) 35 ± 7 33 ± 8 35 ± 11 

Body Mass (kg) 77.2 ± 13.9 70.0 ± 4.9 65.6 ±9.7 

Physical activity (h.wk) 1.3 ± 0.8 6.2 ± 2.0 2.4 ± 1.8 

 

Table 5.2 Participant characteristics (mean ± SD) (study two) 

 Non active men Active men Women 

Age (y) 36  ± 9 34 ± 9 34 ± 9 

Body Mass (kg) 79.9 ± 13.1 73.4 ±4.9 62.3 ±9.4 

Physical activity (h.wk)  0.8 ± 0.5 5.8 ± 2.5 3.7 ± 2.0 

 

Sample collection and storage 

Saliva collection and storage was performed as described in Chapter 2. Samples took 

between 5 and 15 minutes to produce.  

 

Sample analysis 

ELISA 

Samples were thawed and analysed for cortisol and testosterone as described in chapter 2.  

The intra assay CV for ELISA was 10.1 ± 5.8%. 
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Extraction and LC-MS 

Cortisol and testosterone were extracted with SPE and analysed for cortisol with LC-MS 

employing the method described in chapter 2. A calibration curve was prepared for each 

study (table 2.1, Chapter 2) and samples quantified according to peak area ratio using the 

regression equation established from the calibration.  The intra assay CV was 11.0 ± 8.5% 

for MS.  

 

5.2.4 LC-MS (with and without SPE) compared to ELISA 

Calibration curves and known amounts of cortisol (0, 1, 2, 5, 8 and 10 ng/mL, 3 ng/mL IS) 

were prepared with or without SPE and compared for accuracy and recovery with LC-MS 

(with and without extraction) and ELISA.  Samples (1000 µL) were either dried with a 

vacuum centrifuge and reconstituted in 100 µL mobile phase (MeOH: water, 50:50) and 

analysed with LC-MS (described in chapter 2) or samples (1000 µL) were diluted with 

water (1000 µL) extracted with SPE (Chapter 2), dried and reconstituted (100 µL) for 

analysis.  Samples (1000 µL) were also prepared without IS and analysed for cortisol with 

ELISA as described in chapter 2.  The mean intra assay coefficient of variation was 7.52%.  

Recovery of the LC-MS samples was calculated by the following equation [Mean peak 

area of SPE sample/peak area non SPE sample*100].  For ELISA the amount of the control 

samples recovered compared to the expected amount was calculated as a percentage.  

 

5.2.5 Statistical analysis 

Statistical analysis was performed using SPSS (Version 18.0, Champaign, ILL, USA).  

Data was checked for normality prior to statistical analysis. Pearson’s correlation 

coefficient was used to compare cortisol and testosterone for ELISA and LC-MS. Limits of 

agreement were also used to evaluate the agreement between the two methods.  A one way 

ANOVA with post hoc Bonferoni tests and independent t-tests were used to compared the 

cortisol and testosterone levels between the different groups. A P value of <0.05 was 

accepted as significant.  

 

5.3 Results and discussion 

 

5.31 LOD and LOQ 

S/N ratio of the concentrations of cortisol and testosterone in a calibration curve (figure 

5.02) were used to establish LOD and LOQ for each analyte and are presented in table 5.3.  
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The LOQ of cortisol was 0.6 ng/mL.  Quantification of cortisol was achieved within the 

accepted range for measurement in saliva (1-8 ng/mL; Aardal and Holm, 1995) however 

for testosterone the LOQ was 273 pg/mL; this is above the resting reference range for men 

(49-190 pg/mL) and the LOD was 102 pg/mL.  Therefore, in resting saliva samples some 

testosterone peaks could be detected however the S/N ratio was not sufficient to quantify 

this analyte and the LOQ for testosterone was outside the lower end of the reference range 

for men by a factor of 5.6.   Samples were concentrated 10 times and further concentration 

revealed no improvements in accuracy (chapter 4) and was not viable due to sample 

volume restrictions during exercise which was the target application.  Despite the inability 

to accurately quantify testosterone, peaks were visible in a male saliva sample; however 

the S/N ratio was below that required for quantification due to background noise (figure 

5.03). 

 

Table 5.3 LOD and LOQ for cortisol and testosterone using LC-MS (n=4) 

Mean ± SD Cortisol (ng/mL) Testosterone (pg/mL) 

LOD  0.31 ± 0.007 102 ± 8 

LOQ 0.60 ± 0.042 273 ± 17 

 

 

 

Figure 5.02 Example of the S/N ratio calibration to establish LOD (S/N=3) and LOQ (S/N=5) of 

cortisol.  
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Figure 5.03 Male saliva sample displaying shaded peaks for testosterone ([A], m/z 289.4 RT 16.11 

mins) and d3 testosterone ([B], m/z 292.4 RT 16.11 mins)  

 

In this study, LOQ is below levels achieved by most other research groups measuring 

salivary cortisol levels; one study of LC-MS revealing a LOQ of 0.017 ng/mL (Katoaka et 

al.,2007) for cortisol and LOQ has ranged from 0.017 ng/mL to 0.72 ng/mL (Owen et 

al.,2010). The present study reported a LOQ close to the upper limit LOQ in the literature. 

There are few research methods available for detection and quantification of testosterone in 

saliva, probably due to the trace levels in this medium.  Recent methods utilising LC-

MS/MS have reported LOQ of 0.005 ng/mL (Kutsukake et al., 2009; Matsui et al., 2009). 

Both studies employed an API 4000 electro spray ionization (ESI) mass spectrometer 

(Applied Biosystems, USA) The specification of the MS machine used in this work is 

likely to contribute to the quantification limit falling at high end of the range achieved in 

other studies as detectors and ESI interfaces have improved greatly for detection and 

quantification of small molecules in the past 10 years.  The API 4000 has been found to 

elicit an 8 fold improvement in sensitivity compared to the API 3000 (Kushnir et al., 

2006).  This is because the API 4000 possesses improved gas dynamics (i.e. transfer from 

liquid to gas phase ions) leading to increased ion yield in the gas phase, which has the 

potential to elicit a 10 fold increase in sensitivity (ABSciex, 2010).  This exemplifies how 

mass spectrometer specifications can impact on quantification limits in an LC-MS method. 

A 

B 
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Sample quantification 

Calibration samples were prepared and quantified by adding an internal standard prior to 

SPE.  The ratio between the peak area of analyte and the internal standard were used to 

prepare a calibration using the labelled standard method of quantification described in 

chapter 1.  This method was chosen above standard addition due to the lower volume of 

sample required and shorter preparation and analysis time. Examples of calibration curves 

for cortisol and testosterone with resultant regression equations are illustrated in figures 

5.04 and 5.05 respectively. 
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Figure 5.04 Calibration graph (0-10 ng/mL cortisol) illustrating peak area ratio of cortisol and 

deterated (d2) cortisol against concentration  
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y = 6.2241x + 0.8206

R
2
 = 0.9962
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Figure 5.05 Calibration graph (0.1-2 ng/mL testosterone) illustrating peak area ratio of testosteorne 

and deterated (d3) testosterone against concentration  

 

Testosterone calibration samples were prepared in the range 0.1-2 ng/mL as this was 

representative of the reference range for salivary testosterone in men, whereas for cortisol 

the concentration in saliva is 10 fold higher. Addition of an internal standard controlled for 

fluctuations in ionisation and analyte detection between runs linked to the mass 

spectrometer.  Adding a labelled standard prior to cleaning also control for any analyte loss 

during sample cleaning (Cawood et al., 2005; Jonsson et al., 2003) and can improve 

analytical method accuracy.     

 

5.32 Precision 

Repeatability (intra day) 

Repeatability or intra assay precision of three concentrations of cortisol and testosterone 

repeated 10 times was found to be higher at the lower reference range of quantification 

than the upper range (table 5.5). The mean CV was 6.72% for cortisol and 8.15% for 

testosterone. The accepted validation criteria for repeatability is a CV of <20% (US 

Department of Health, 2001), therefore both cortisol and testosterone met the desired 

criteria for precision. The present study reports intra assay precision of <10% for both 

cortisol and testosterone.   Other studies have reported intra assay values for salivary 
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cortisol of 15.8% (Kutsukake et al.,2009); 7.0% (Jonsson et al.,2003) and 5.1% (Li et al., 

2008) therefore the current method is comparable.  Similarly, testosterone precision in the 

current method validation is comparable to those reported in other studies with intra assay 

values of 10.9% (Kutsukake et al., 2009) and 7.0% (Matsui et al., 2009).  Intra assay 

precision is affected by variation in injection, sample preparation, instrument parameters 

and matrix effects and the primary reason for adding an internal standard is to control for 

these fluctuations (Magni et al., 2001).  

 

Table 5.4 Repeatability/intra day and inter day precision for cortisol (2. 5 and 8 ng/mL) and 

testosterone (0.2, 0.5 and 0.8 ng/mL) (n=5) (%CV) 

Cortisol 

concentration 

(ng/mL) 

CV (%) Testosterone 

concentration 

(ng/mL) 

CV (%) 

Intra assy Inter assay Intra assay Inter assay 

2 8.67 6.93 0.2 9.38 6.61 

5 7.22 3.90 0.5 8.06 2.01 

8 4.28 6.60 0.8 7.02 6.52 

 

Inter day precision 

Inter day precision was established from repetition of three concentrations of cortisol and 

testosterone on two separate days (table 5.4).  Mean inter day precision was 5.80% for 

cortisol and 5.04% for testosterone. The present study reports inter assay precision of 

5.80% for cortisol which is comparable with other studies quantifying salivary cortisol 

levels. Findings of 5.8% (Kutsukake et al., 2009); 11.0% (Jonsson et al., 2003) and 1.7% 

(Li et al., 2008) have been reported in the literature.  Similarly for testosterone intra assay 

precision in this study was 5.04% and compares with 6.2% (Kutsukake et al., 2009) and 

1.0% (Matsui et al., 2009).  Inter assay or between day precision can be affected by inter 

day variations in the mass spectrometer and conditions such as temperature and sample 

handling procedures.   

 

5.3.3 Accuracy 

Accuracy is the comparison of the measured compared to the expected amount of analyte.  

Results are presented in Chapter 4 (table 4.2, 10% concentration).  The mean accuracy 

across the range of samples tested was 6.04% for cortisol and 12.69% for testosterone.  

These results are accepted in method validation and are similar to other LC-MS studies 
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which have reported accuracies of 9.5% (Kutsukake et al., 2009), 2.2% (Matsui et al., 

2009) and 9.0% (Jonsson et al., 2003) for cortisol.  However, for testosterone accuracy is 

above values levels achieved by other studies such as 2.4% (Kutsukake et al., 2009) and 

2.5% (Matsui et al., 2009).  Compounds co-eluting with the chosen analyte can affect 

accuracy of an LC-MS assay. Also inconsistency during sample preparation may affect 

method accuracy, although addition of an internal standard in this method serves to negate 

these errors.  

 

5.3.4 Linearity 

Cortisol calibration samples tested on three separate occasions revealed an average r
2
 value 

of 0.991 and a mean r
2 

value of 0.975 was achieved for testosterone.  Linearity is accepted 

with an r
2
 value of > 0.95 (ICH, 1996) indicating this method can be accepted as linear in 

the tested range (0-10 ng/mL for cortisol and testosterone).  Testosterone was also 

examined with a lower calibration range (between 0 and 1 ng/mL) and this exhibited an r
2
 

value of 0.998 which suggests the method is also linear in this lower range for testosterone. 

The addition of an internal standard to control for ionisation suppression can potentially 

improve linearity (Liang et al., 2003).  Liang and colleagues found adding an internal 

standard of a concentration appropriate to the assay lead to mutual suppression of the IS 

and analyte signal.  Howver, they also observed that if IS concentration is too high this can 

suppress the analyte signal during ESI and affect linearity, accuracy and reproducibility of 

the calibration curve, 

 

5.3.5 Comparison study 

In this study only cortisol is quantified due to the LOQ of testosterone falling below the 

established reference range in saliva.  Stock samples measured with ELISA and MS were 

compared with and without SPE.  Findings revealed there was high linearity for a set of 

cortisol calibration samples using both ELISA and LC-MS with and without SPE (0-10 

ng/mL; figure 5.06).  Accuracy, intra assay precision (CV) and sample recovery are 

presented in table 5.5. 
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Table 5.5 Cortisol accuracy (%), CV (%) and recovery (%) (n=3) determined by ELISA LC-MS 

(SPE and no SPE)  

Technique Accuracy (%) Precision (%CV) Recovery 

ELISA 94.6 ± 4.2 7.2 ± 11.3 100.4 ± 7.2 

MS (no SPE) 91.5 ± 6.0 2.0 ± 1.9 N/A 

MS (SPE) 88.4 ± 8.0 6.5 ± 9.1 85.4 ± 0.04 

 

ELISA showed higher accuracy than LC-MS however precision (%CV) was lower with 

LC-MS.  ELISA sample recovery was higher than LC-MS with SPE however cortisol 

recovery achieved with LC-MS is comparable with acceptable levels found in other MS 

studies previously described (Chapter 4). 
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Figure 5.06 Validation of cortisol comparing ELISA and MS (with and without SPE) (n=6) 

 

5.3.6 Method validation – samples collected at rest 

Resting study one 

The aim of the study was two fold 1) to validate the LC-MS method for cortisol and 

testosterone and 2) investigate if there was a difference between active and non active men 

and women (mixed activity status).   
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Participant characteristics are presented in table 6.4.  ELISA results for cortisol and 

testosterone are presented in table 5.1.  

 

Table 5.6 Mean ± SD salivary cortisol and testosterone for active men (n=10) and non-active men 

(n=10), all men (n=20) and women (n=5) determined by ELISA 

Mean ± SD Active  Non active  All men  Women  

Cortisol (ng/mL) 3.7 ± 1.6 3.8 ± 1.9 3.7 ± 1.7 4.8 ± 2.7 

Testosterone (pg/mL) 168.0 ± 57.7 231.9 ± 126.2 199.9 ± 105.5 101.5 ± 77.5 

 

There was a correlation between saliva samples (n=22) measured with ELISA and LC-MS 

(r=0.83, p<0.001, figure 5.07).  Three samples were omitted due to high viscosity causing 

issues during SPE. When comparing MS and ELISA.  The mean difference between the 

methods was -0.54 ng/mL and limit of agreement between MS and ELISA was 4.23 ng/mL 

below and 3.16 ng/mL above.  This showed poor agreement of ELISA with MS, however 

the results were correlated. 
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Figure 5.07 Comparison of cortisol samples (n=22) with ELISA and LC-MS  
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Comparison of hormone levels measured with ELISA revealed there was no significant 

difference between active and non-active men for levels of cortisol or testosterone (table 

5.6).  However an independent t-test showed a trend towards lower testosterone in women 

compared to men (p=0.055).  

 

Resting study two 

Resting saliva samples were collected to repeat the protocol used in study one as it was 

identified that the speed of elution during the SPE procedure may have contributed to a 

loss of analyte.  This second study also included a higher number of women, improving 

statistical power when comparing their hormone levels with men.  Participant 

characteristics are presented in table 5.2.  

 

Correlation analysis comparing ELISA and LC-MS revealed a strong correlation (r=0.80, 

p=0.0001, figure 5.08).  This was marginally higher than study one.  Results from both 

studies reveal that the LC-MS method is accurate, precise and linear and is comparable 

with ELISA analysis therefore this method is validated for use in salivary analysis of 

cortisol.  The mean difference between the methods was 1.64 ng/mL and limit of 

agreement between MS and ELISA was 0.79 ng/mL below and 4.08 ng/mL above.  This 

showed poor agreement of ELISA with MS likely to overestimate results; however the 

results are correlated and show a similar trend. 
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Figure 5.08 ELISA vs. LC-MS for resting cortisol samples (n=29) 

 

Group comparisons revealed no significant difference between active and non-active men 

for cortisol or testosterone concentrations however gender differences were observed with 

cortisol levels significantly higher in women (p=0.004) and testosterone levels 

significantly lower compared to all men (p=0.0001; table 5.7).  There is evidence to 

suggest that the cortisol awakening response (CAR) is higher in women (Pruessner et al., 

1997; Clow et al., 2004; Weekes et al., 2008).  Additionally, psychosomatic stress has 

been shown to potentially increase the CAR (Wust et al., 2000; Schultz et al., 1998).  

 

Table 5.7 Mean ± SD salivary cortisol and testosterone levels for active men (n=9) and non-active 

men (n=9), all men (n=18) and women (n=11) measured with ELISA. 

Mean ± SD Active  Non active  All men  Women  

Cortisol (ng/mL) 3.6 ± 1.5 3.0 ± 0.9 3.3 ± 1.3 4.9 ± 1.5 

Testosterone (pg/mL) 160.7 ± 38.0 148.8 ± 53.4 154.7 ± 45.4 81.8 ± 32.9 

 

 

5.4 Summary 

Method validation procedures suggest the present method credible for salivary cortisol 

quantification within the reference range (0-10 ng/mL; Aardal and Holm, 1995).  The 
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method meets the ICH (1996) and US Department of Health (2001) criteria for accuracy, 

intra and inter assay precision and linearity.  However the testosterone LC-MS assay falls 

outside the reference range required to quantify this analyte in male and female saliva, 

despite the ability to detect testosterone in some samples. The mass spectrometer may be a 

limiting factor in the quantification of testosterone as newer ESI interfaces eliciting more 

efficient ionisation have the potential to increase assay sensitivity up to 10 fold (Kushnir et 

al., 2006).  Concentration of samples in Chapter 4 revealed no increase in accuracy in the 

reference range for testosterone and further concentration is not possible due to restrictions 

on sample volume during exercise.  To monitor the acute response at multiple time points 

it is feasible to collect a sample of 2-3 mL within a 3 minute collection period based on 

salivary flow rate (Heintze et al., 1983). A further aim was to compare LC-MS with 

ELISA to quantify salivary cortisol levels in resting samples and results revealed a strong 

correlation between methods which is comparable with other studies comparing 

measurement of cortisol with these techniques (Jonsson et al., 2003).  Limits of agreement 

analysis showed poor agreement between absolute values but given the difference in 

techniques this is expected.  

 

Finally, a comparison of resting salivary cortisol and testosterone levels measured with 

ELISA revealed that women showed higher salivary cortisol levels than men and this may 

be due to an enhanced CAR observed in this population (Clow et al., 2004).  Resting 

cortisol and testosterone concentration did not differ between active and sedentary men and 

the results may be explained by the level of exercise in the active group being insufficient 

to elicit a prolonged or chronic alteration in these hormones.  
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6. CORTISOL AND TESTOSTERONE RESPONSE TO ACUTE 

EXERCISE 

 

6.1 Introduction 

Physical stress such as exercise stress mobiles the endocrine system. The hypothalamus is 

activated after the onset of a stressor and secretes ARH which stimulates the pituitary 

gland to secrete ACTH. This hormone in turn stimulates the adrenal glands to release stress 

hormones such as adrenaline and cortisol.  Activation of the sympathetic nervous system 

leads to the short term release of catecholamines into the circulation (adrenaline and 

noadrenaline) followed by the release of cortisol which is slower and can be more 

prolonged.  Acute stress has also been shown to increase circulating levels of testosterone 

(Sutton et al., 1973) and activation of catecholamines may be one of the main mechanisms 

stimulating secretion of testosterone during stress (Chrousos, 1998).  However the exact 

mechanisms for the increase in testosterone are contentious.  The extent of the endocrine 

response is dependent on the intensity and duration of the exercise stimulus. Cortisol and 

testosterone are markers of the exercise stress response and also acknowledged for their 

potential as useful biomarkers in the diagnosis of overtraining syndrome (Urhausen and 

Kindermann, 2002). Currently, quantification of these hormones in exercise studies is 

predominantly through ELISA however MS is emerging as an alternative way of 

measuring these hormones.   

 

To date, many studies have investigated the effect of exercise on cortisol following acute 

exercise with most reporting increases following acute continuous exercise (Jacks et al., 

2002; Allgrove et al., 2008; Budde et al., 2010; O’Connor and Corrigan, 1987; Rudolph 

and McCauley, 1998). The overall consensus supports the proposal of a ‘threshold’ of 

exercise intensity above which cortisol levels increase and this is suggested to be at least 

20 mins of exercise above 60% VO2max.  It has also been suggested that when exercise is 

performed under 60% VO2max, hormonal responses will only occur when a certain amount 

of work is done i.e. running for an adequate time (Viru et al., 1992).  Tremblay et al., 

(2005) demonstrated this to be 80 minutes of running at low intensity (55% VO2max).  

Furthermore, some researchers have examined intermittent exercise and support the 

hypothesis of the intensity threshold (Hough et al., 2011). 
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The response of testosterone to acute exercise also appears to be affected by a threshold 

intensity required to elicit an increase (Budde et al., 2010; Kokalas et al., 2004); however 

the bounds of this threshold are yet to be established.  Conversely it has been identified 

that prolonged intense exercise such as marathon running elicits a decrease in testosterone 

levels (Marinelli et al., 1994; Franca et al., 2006; Karkoulias et al., 2008; Brownlee et al., 

2005).  The high physiological stress of a marathon may contribute to this decrease, and 

research has shown testosterone levels may be related to cortisol release; therefore a 

significantly high increase in cortisol may lead to a subsequent decline in testosterone 

levels (Brownlee et al., 2005).   

 

It is also possible that athletes may become accustomed to performing a certain type and 

intensity of exercise and therefore adapt (Vuorimaa et al., 2008) requiring extra stress to 

elicit a hormone response; supported by studies by Moreira et al., (2009) and Eliakim et 

al., (2009).  The latter two studies were conducted during a training session therefore 

exercise intensity was not controlled. These studies offer an insight into cortisol responses 

in real situations.  Furthermore, the majority of studies have been conducted outside a 

laboratory setting, therefore overall intensity is unknown.  Despite many studies examining 

the response of cortisol and testosterone to exercise, there are few comparing both cortisol 

and testosterone responses to different types of exercise training e.g. intermittent and 

continuous sessions in one group of individuals (Hough et al., 2011; Vuorimaa et al., 

2008).  Further studies could add insight into training responses and hormonal response.  

Additionally, there have been no studies examining the cortisol and testosterone response 

to aerobic circuit training; a common training mode utilised by many athletes.  

 

Despite no studies on aerobic circuit training there has been research investigating the 

effect of structured weight training on cortisol and testosterone.   Those who observed an 

increase in testosterone suggested the magnitude of stress of the session or intensity may 

play a part.  In their recent review, Vingren et al., (2010) proposed there is a threshold of 

intensity to elicit a testosterone response to resistance training (supported by studies from 

Yarrow et al., 2007; Kraemer et al., 1990; Raastad et al., 2000; Hakkinen et al., 1993, 

Linnamo et al., 2005).   Training volume (total workload performed) also appears to be 

important with a higher volume eliciting a greater metabolic demand. Moreover, Similios 

et al., (2003) reported that a higher volume of training led to a greater testosterone 



Acute Hormonal Response to Exercise                      Chapter 6  

 

 127 

response.  However some studies failed to observe an increase after resistance training 

(Beaven et al., 2008; Kokalas et al., 2004).  The literature presents no clear trend regarding 

cortisol response to resistance exercise.  The overall consensus is that the adaptive 

response to strength training is likely to be multi faceted with several acute training factors 

(one of them hormonal) rather than a single factor.   

 

Plasma cortisol and testosterone measures can be taken from blood and saliva, studies have 

shown intravenous injection of these hormones elicits immediate detection in saliva for 

cortisol (Kirschbaum and Hellhammer, 2000; Wang et al., 1981) and testosterone (Vittek 

et al., 1985; Wang et al., 1981).  Though studies examining the hormonal exercise 

response have reported delays of up to 30 minutes for peak cortisol levels in saliva after 

exercise (O’Connor and Corrigan, 1987; Crewther et al., 2008; Hough et al., 2011; Daly et 

al., 2005).  Delays are also evident for peak salivary testosterone however these are shorter 

than cortisol; occurring within 10 mins of exercise cessation (Hough et al., 2011; Daly et 

al., 2005).  These results suggest that exercise may affect diffusion of cortisol from blood 

into saliva; this is suggested to be due to increased sympathetic activity during intense 

exercise which causes vasoconstriction in the arterioles that supply the salivary glands, 

resulting in lower salivary volume (Chicharro et al., 1998).  The reduced blood flow may 

explain the delay in cortisol and testosterone delivery and diffusion from blood into the 

saliva found after acute exercise. 

 

In previous studies, salivary and plasma cortisol and testosterone concentrations were 

measured with ELISA or radioimmunoassay (Chapter 1, table 1.5 and 1.6) however MS is 

now commonly used to quantify these hormones in blood (Fanelli et al., 2010; Cawood et 

al., 2005; Jonsson et al., 2003) and saliva (Kutsukake et al., 2009; Matsui et al., 2009).  

Also when comparing MS to ELISA assays the latter have been shown to lack sufficient 

sensitivity and specificity to measure low levels of steroids such as testosterone in women 

(Taieb et al., 2003; Herold and Fitzgerold, 2003).  MS is already used routinely in 

hospitals and to test individuals’ testosterone levels during doping control (Shackleton et 

al., 1997, Thevis et al., 2005).  Given the increased automation of MS this technique 

would be beneficial for use in exercise research to measure multiple hormones quickly and 

accurately.   
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The aim of this chapter are to examine the salivary cortisol and testosterone response to 

three different exercise bouts in runners, and will investigate correlations between salivary 

and blood measures taken simultaneously.  Furthermore, the LC-MS method developed in 

earlier chapters of this thesis will be used to measure salivary cortisol and testosterone 

levels and validate against ELISA measurements.  

 

6.2 Methods 

6.2.1. Participants  

Participants were recruited by emailing local athletics and running clubs.  13 healthy male 

runners agreed to participate in the study and 10 completed the study.  Participants 

competed regularly in running, triathlon and ironman competitions and trained 4-8 times 

per week.  Participant characteristics are presented in table 6.1. Ethical approval was 

granted from the university ethics committee.  Prior to commencing the study participants 

received written and verbal instructions via information sheet (appendix D) detailing what 

the study entailed, and they also completed a health questionnaire (appendix B) and gave 

their written informed consent (appendix A).   

 

Table 6.1 Participant characteristics 

Variable Mean (± SD) 

Age (y) 39.3 ± 6.6 

Body mass (kg) 76.6 ± 8.7 

Height (m) 1.78 ± 0.06 

VO2max (ml.kg.min) 59.2 ± 5.9 

Maximum heart rate (bpm) 180 ± 11 

 

6.2.2 Experimental procedures 

All participants reported to the laboratory on five occasions.  Participants visited the 

laboratory between 3pm and 8pm for this trial as cortisol and testosterone levels show 

better stability at this time (Rose, et al., 1972).  Participants were asked to refrain from 

eating and consuming caffeine three hours before each trial and from strenuous exercise 

and alcohol consumption in the 24 hours before each trial.   
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Maximal oxygen uptake 

On the first visit to the laboratory participants undertook a VO2max test on a pre-

programmed treadmill (Woodway ELG55).  In order to establish participants lactate 

threshold during the VO2max test an incremental speed protocol with interruptions was 

employed (similar to Vuorimaa et al., 2008).  Prior to starting the test resting lactate 

measures were taken via a finger tip blood sample (20 µL) and the sample was mixed in a 

pre filled reaction cup (EFK Diagnostic, Barleben, Germany), this was stored at 4
o
C for 

analysis after the test.  Following a five minute warm up (5-10 km.hr
-1

), participants 

commenced running at 2 km.hr below their predicted 10 mile pace (predicated from the 

most recent race the participant had completed).  Each stage was 2 minutes in duration and 

the treadmill speed increased 1 km.hr
-1

 per stage and incline remained 1% throughout.  

After each stage participants stopped for 45 seconds for a finger tip blood sample to be 

collected.  Expired gas was analysed with an automatic gas analyser to establish the rate of 

oxygen consumption, the analyser was calibrated prior to each test.  HR was recorded with 

a Polar HR monitor (Polar Electro Oy, Kempele, Finland) and rating of perceived exertion 

(RPE) on a 6-20 Borg scale was recorded in the final 15 seconds of each stage, participants 

continued running until volitional exhaustion. The average test length was 18 minutes. 

 

Lactate Threshold and percentage VO2max 

Blood lactate measures were taken at rest and after each two minute stage in the VO2max 

test and was measured with a BioSen C line (EFK Diagnostic, Barleben, Germany) 

machine. Lactate threshold was deemed to be 1 mmol/L above the resting value (Yoshida 

et al., 1987).  Blood lactate values were plotted against speed and speed at lactate threshold 

determined from the resulting graph.  Percentage VO2max at lactate threshold was 

calculated by plotting speed against VO2 and interpolating the resultant regression 

equation. 

 

Familiarisation 

During the VO2max test participants were given an opportunity to familiarise themselves 

with the changing speed of the treadmill which would occur during the interval session.  

After the VO2max test participants were asked to produce a saliva sample to familiarise 

themselves with the collection procedure.  Instructions were also given about the circuit 
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exercises to be completed before participants began this trial, and time was allocated to 

practice the exercises with guidance if required. 

 

6.2.3 Main trials 

In visits 2-5, participants undertook four main trials, there were: (a) circuit session; (b) 

interval session; (c) tempo run or (d) rest trial, as described below.  They were completed 

in a randomised order on separate visits to the lab with at least three days between each 

trial. 

 

Circuit session 

Participants completed three sets of ten exercises (figure 7.01).  These exercises were 

performed on a mat where necessary, while standing on the floor, in the case of the tricep 

dips these were performed on a box (30 cm) and the step ups on a bench (35 cm).  Each 

exercise was performed for 30 seconds with 30 seconds recovery between exercises and 

began with sit-ups.  Heart rate was recorded every 1.5 minutes and RPE every three 

minutes during the exercise. This session aimed to simulate an endurance circuit session to 

improve core strength. 

 

Figure 6.01 Circuit session exercises 
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Tempo run 

The tempo run was performed for 30 minutes at a constant speed which coincided with 

lactate threshold after the VO2max test.  Heart rate was recorded every 1.5 minutes during 

the trial and RPE every three minutes. 

 

Interval session 

This session lasted 31 minutes in duration and was divided into intervals and recovery 

period.  Intervals were 3.5 minutes in duration at a treadmill speed equivalent to speed at 

90% VO2max. Recovery periods were two minutes duration at a velocity equivalent to 30% 

VO2max.  Participants completed six repetitions during the trial. Heart rate was recorded 

every 1.5 minutes and RPE every three minutes.  Heart rate was then adjusted for the 

proportion of time spent during recovery (32.3%) and repetitions (67.7%).  

  

Rest trial 

Participants sat and rested for the 30 minutes duration of this trial.  HR was measured 

every three minutes. 

 

6.2.4 Blood sample collection 

Prior to the interval session, tempo run and rest trial participants were fitted with a cannula 

in the forearm (21G Venflon, Becton, Dickinson and Co., Oxford, United Kingdom). In 

any case where it was not possible to cannulate the participant, serial blood samples were 

taken by venepuncture (21G BD Vacutainer Safety-Lok blood collection set; Becton, 

Dickinson and Co.) from an antecubital vein and this procedure was then used for all trials.  

During and after the circuit session all samples were taken with the aforementioned 

butterfly needles as there was a risk the cannula could be dislodged during the activities or 

when the participants were moving between them.  Blood samples were collected into 6 

mL tripotassium ethylenediaminetetraacetic acid (K3EDTA) Vacutainers (Becton, 

Dickinson and Co.) pre exercise and 0, 15, 30 and 60 mins post exercise.  2 mL stimulated 

saliva samples were also taken at these time points (using the collection procedure 

mentioned previously).  Blood samples were refrigerated at 4
o
C (for no more than two 

hours) until the end of each trial. Samples were identified as being stable for up to four 

hours at 4
o
C prior to centrifugation and freezing (Tuck et al., 2008).  After each trial blood 

samples were centrifuged at 1500 x G for 10 minutes, plasma was then aliquoted into four 

labelled Eppendorf tubes and stored at -80 
o
C until analysis. 
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6.2.5 Saliva sample collection 

Saliva samples were collected at the pre exercise, and 0, 15, 30 and 60 minutes post 

exercise. The saliva collection was based on the method described in Chapter 2. 

Participants could drink water ad libitum during all the trials but were advised to stop 

drinking 5 minutes before each saliva sample to avoid dilution.  Samples were refrigerated 

at 4
o
C until after the trial ended and were then processed and stored.  

 

6.2.6 Sample analysis 

ELISA 

Saliva was analysed for cortisol and testosterone with ELISA as detailed in Chapter 2.  The 

mean intra assay coefficients of variation were 8.0% for cortisol and 9.1% testosterone for 

duplicate samples.  The mean inter assay coefficients of variation were 7.4% and 5.2 % for 

cortisol and testosterone, respectively.   

 

Plasma cortisol and testosterone concentrations were determined using commercially 

available ELISA kits (DRG Instruments, Germany). All samples were thawed and inverted 

three times prior to analysis. Plasma (25 µL) was measured in duplicate according to the 

kit instructions. The sensitivity of the kits were 2.5 ng/mL for plasma cortisol and 0.083 

ng/mL for plasma testosterone. The mean intra assay coefficients of variation were 9.3% 

for cortisol and 6.1% for testosterone.  The mean inter assay coefficients of variation were 

6.2% and 7.5% for cortisol and testosterone, respectively.   

 

LC-MS 

Saliva samples (1 mL) collected before and after the INT and TEMP sessions were also 

analysed for cortisol using LC-MS.   They were centrifuged and stored in the same way as 

the ELISA samples. The method used was optimised and validated in previous chapters 

and is detailed in chapter two.  

 

6.2.7 Statistical analysis 

A one way ANOVA with repeated measures design was used to examine HR and RPE 

data.  Data was checked for normality prior to testing and those data not eliciting normal 

distribution were log transformed prior to analysis (salivary cortisol and testosterone and 

C/T data).  A two way ANOVA (4 trials x 5 sample points) with repeated measures design 
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was used to examine the salivary data.  Significant differences were assessed with student 

t-test with Bonferoni post hoc adjustments for multiple comparisons.  Pearson’s product 

moment correlation coefficient and agreement analysis were used to assess correlations 

between salivary and plasma measures and ELISA and LC-MS data. Some graphs are 

presented as ± standard error of the mean (SEM) for clarity due to large SD.  Statistical 

significance was accepted at P < 0.05. 

 

6.3 Results  

 

6.3.1 Trial characteristics 

The characteristics in terms of running speed, percentage VO2max and percentage maximal 

HR for each trial are presented in table 6.2. Percentage maximum HR was significantly 

higher in INT and TEMP compared to CIR (main effect of trial, F2, 12 = 84.4, p<0.0001) 

but did not significantly differ between INT and TEMP trials.  

 

Table 6.2 Mean ± SD for treadmill speed and VO2max for tempo and interval session trials (n=10)  

Trial (mean ± SD) Treadmill Speed 

(km.h
-1

) 

VO2max (%) Maximum HR 

(%) 

Tempo 13.0 ± 1.4 74.7 ± 1.6 87.1 ± 6.1* 

Intervals - repetition 15.3 ± 1.6 88.3  ± 3.2  

Intervals - recovery 3.6  ± 0.7 30.6 ± 3.3  

Intervals - mean 11.6 ± 1.3 66.5 ± 3.0 86.0 ± 7.1* 

Circuits n/a n/a 67.4 ± 7.5 

*significantly higher than CIR (P<0.05) 

 

6.3.2 HR and RPE 

Mean HR increased with the exercise sessions and was greater in INT and TEMP 

compared with CIR (main effect of trial F3, 21 = 318.9, p<0.0001).    However, subsequent 

post hoc tests revealed no difference was observed between INT and TEMP. There was 

also a significant effect of trial for peak HR (F2, 16 = 216.7, p<0.0001), Bonferoni pairwise 

comparisons revealed peak HR was significantly higher in INT compared to CIR and 

TEMP (p<0.05) (table 7.3).  RPE was significantly different between trials (main effect of 

trial (F2, 16 = 8,809, p<0.01).  Further analysis revealed RPE was higher for INT compared 

to TEMP (p=0.004) and CIR (p=0.021)  
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Table 6.3 Mean and Peak (HR ± SD) (b.p.m) and mean RPE for all trials (n=10).  

b.p.m (± SD) Rest TEMP INT CIR 

Mean HR 59 ± 6 155 ± 10*# 145 ± 12*# 116 ± 10* 

Peak HR N/A 163 ± 10 173 ± 12§ 148 ±10 

RPE 6.0 ± 0 14 ± 2 15 ± 2§ 13 ± 1 

*significantly higher than rest (P<0.01), # significantly higher than CIR (P<0.01), § significantly higher than 

CIR and TEMP (P<0.01) 

 

The heart rate response varied between trials (figure 6.02).  TEMP showing a gradual 

significant rise in HR throughout the duration of the trial (135 ± 15 rising to 159 ± 11, 

p=0.001).  However, in the INT session there was a significant increase in HR during the 

3.5 min compared to the recovery periods between repetitions (160 ± 11 bpm versus 114 ± 

12 bpm, p=0.0001). CIR showed intermittent increases and decreases in HR during the 

trial, however HR never exceeded TEMP. 
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Figure 6.02 Mean HR for INT, TEMP and CIR across time (n=8) 
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6.3.3 Salivary cortisol response 

Salivary cortisol response for the four trials is presented in figure 6.03. There was no 

change in cortisol levels for the duration of the resting trial.  There was a trend for post 

exercise salivary cortisol levels to be higher than pre exercise (p=0.064) and 15 mins 

recovery (p=0.068).  Salivary cortisol concentration was also significantly higher in INT 

compared to rest (p=0.004) and TEMP (p=0.046).  There was a trial x time interaction 

(F12,84= 5.4, p<0.0001) and INT session elicited significantly higher salivary cortisol levels 

at all recovery sample points compared to pre exercise.  
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 Figure 6.03 Mean values (+/- S.E.M) for cortisol in response to rest, TEMP, INT and CIR sessions 

(n=10) *significantly higher than pre exercise (p<0.05) 

 

AUC analysis (table 6.4) revealed differences in the cortisol response (main effect of trial, 

F3, 24 = 8.20, p<0.001).  Bonferoni post hoc tests showed INT trial elicited significantly 

higher cortisol response compared to rest (p=0.025) and CIR (p=0.047) but not TEMP. 

 

 

 

 

* 
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Table 6.4 Mean (± SD) salivary AUC for cortisol and testosterone for rest, INT, TEMP and CIR 

and plasma INT and TEMP 

AUC Cortisol Testosterone 

Saliva Plasma Saliva Plasma 

Rest 70.4 ± 28.4  9352 ± 3698  

INT 282.1 ± 156.5*# 15503 ± 4577 13735 ± 3111* 456645 ± 116482 

TEMP 172.0 ± 120.2 11324 ± 5365 13080 ± 3972* 511734 ± 220859 

CIR 127.9 ± 81.6  12248 ± 3198  

*significantly higher than rest (p<0.05), # significantly higher than CIR (p<0.05) 

 

6.3.4 Salivary testosterone response 

There was no change in testosterone levels for the duration of the resting trial. However in 

the exercise trial there was a difference in salivary testosterone (main effect of trial F3,24 = 

6.305, p<0.003). Subsequent Bonferoni comparisons revealed TEMP was significantly 

higher than rest (p=0.05) and INT showed a trend to be higher than rest (p=0.061) (Figure 

6.04).  There was also an effect of time (F4, 32 = 17.04, p<0.0001), with an increase in 

testosterone levels pre to immediately post exercise (p=0.001).  Moreover, there was a 

significant reduction in testosterone concentration at all time points post exercise compared 

to 60 minutes recovery (p<0.01).  A trial by time interaction (F12,96 = 5.72, p=0.001) 

revealed that TEMP (p=0.021), INT (p=0.028) and CIR (p=0.0001) were all significantly 

higher post exercise compared to pre exercise. An ANOVA comparing AUC between trials 

illustrated a difference (table 7.4) (main effect of trial, F3, 24 = 6.93, p<0.002) and post hoc 

tests found TEMP (p=0.047) and INT were significantly higher than rest (p=0.043).  
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Figure 6.04 Mean values (+/- S.E.M) for testosterone in response to rest, TEMP, INT and CIR 

sessions (n=10). *significantly higher than pre exercise 

 

6.3.5 Salivary cortisol/testosterone (C/T) ratio  

An ANOVA revealed salivary C/T ratio differed between trials (main effect of trial, F3, 21 = 

8.20, p<0.001) and increased significantly after INT compared to rest (p=0.009), however 

there was no difference between any other trials (figure 6.05). A trial x time interaction 

(F12, 84 = 4.49, p<0.001) followed by post hoc tests showed INT was significantly higher 

than pre exercise at all time points post exercise (p<0.05).   
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 Figure 6.05 Mean values (+/- S.E.M) for salivary C/T ratio in response to rest, TEMP, INT and 

CIR sessions (n=10) *significantly higher than pre exercise (P<0.05) 

 

6.3.6 Plasma and salivary hormone correlations 

Levels of cortisol and testosterone in plasma were analysed from TEMP and INT sessions 

and results used to correlate against salivary measures.  Plasma showed a higher mean 

cortisol concentration compared to saliva (145.3 ± 68.0 ng/mL vs. 2.41 ± 1.89 ng/mL 

respectively).  This trend was mirrored in salivary (145.7 ± 48.1 pg/mL) and plasma 

(5518.9 ±1873.0 pg/mL) testosterone (p<0.0001).  Plasma cortisol values for both trials 

compared to saliva are presented in figure 6.06 and testosterone in figure 6.07.  
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Figure 6.06 Mean (± SEM) salivary vs plasma cortisol for tempo and interval session (n=10).  

 

 

Figure 6.07 Mean (± SEM) salivary vs plasma testosterone for tempo and interval session (n=10) 
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Plasma and salivary measures from all time points in TEMP and INT sessions were also 

compared to establish if there was a correlation (table 6.5).  Overall there was a correlation 

between saliva and plasma cortisol (r=0.813, p=0.0001) (figure 6.08) and testosterone 

levels (r=0.568, p=0.0001) (figure 6.09).   

 

Table 6.5 Correlation between salivary and plasma cortisol and testosterone levels for tempo and 

interval sessions (n=10) 

 Cortisol Testosterone 

TEMP r=0.816, p=0.0001 r=0.671, p=0.0001 

INT r=0.529, p=0.0001 r=0.479, p=0.001 
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Figure 6.08 Correlation between plasma and salivary cortisol (n=87) 
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Figure 6.09 Correlation between plasma and salivary testosterone (n=91) 

 

Comparison of peak hormonal measures revealed post TEMP salivary cortisol peaked 

immediately after exercise and plasma levels 15 minutes post exercise (figure 6.04).  There 

was a correlation between peak post exercise plasma and salivary cortisol levels for this 

session (r=0.887, p=0.001).  Salivary testosterone measures peaked immediately after 

TEMP and plasma levels also peaked at this time and exhibited a correlation between peak 

post exercise salivary and plasma hormone concentration (r=0.792, p=0.011).   

 

After INT plasma and salivary cortisol levels peaked at 15 mins post exercise and 

testosterone levels immediately post exercise.  There was also no correlation between peak 

post exercise salivary and plasma measures for either hormone after INT.    

 

6.3.7 Method validation 

Salivary cortisol samples (INT and TEMP) were compared with ELISA and MS (figure 

6.10).  This revealed a strong correlation between the techniques (r=0.934, p=0.0001).  

Additionally, comparison between MS and ELISA samples for INT revealed no significant 

difference between the trials (figure 6.11), although MS samples showed a trend towards 

being lower than ELISA (p=0.099). Salivary testosterone was also examined with LC-MS 
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and there was no correlation with ELISA (figure 6.13; Appendix 5).  Limits of agreement 

analysis for cortisol revealed the agreement between MS and ELISA was 0.83 ng/ml below 

and 1.19 ng/ml above (figure 6.12). 
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Figure 6.10 ELISA vs. MS for salivary cortisol exercise samples (n=85) 
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Figure 6.11 Mean (± SD) for salivary cortisol measured before and after INT with LC-MS and 

ELISA (n=8) 
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Figure 6.12 Upper and lower agreement limits (+/-2SD) to compare MS and ELISA assays (n=85) 
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Figure 6.13 Comparison between ELISA and LC-MS for quantification of testosterone (n=31) 



Acute Hormonal Response to Exercise                      Chapter 6  

 

 144 

 

6.4 Discussion 

The main findings of the present study were: 1) an INT session resulted in a prolonged 

increase in salivary cortisol levels post exercise; 2) salivary testosterone levels increased in 

response to exercise; 3) salivary C/T ratio increased in response to INT; 4) there was a 

correlation between salivary and plasma cortisol and testosterone concentrations; 5) Peak 

post exercise salivary and plasma cortisol and testosterone concentrations varied with 

exercise mode; 6) LC-MS is a valid tool to measure salivary cortisol. 

 

A significant increase in salivary cortisol concentration was observed after the INT session 

compared to rest and this was also significantly higher than TEMP.   The nature of the 

exercise and RPE response may help to explain these findings. Participants reported the 

INT session to be more strenuous overall with a significantly higher RPE.  This may reflect 

the periods of high exertion during the INT session, participants reached 96.1% of 

maximum HR during the 3.5 min repetitions, and a significant increase in HR was 

observed compared to the recovery periods.  There was no difference in mean HR between 

INT and TEMP, although peak HR was significantly higher in the INT trial compared to 

TEMP. The increase in salivary cortisol response after INT and prolonged high levels 

observed at all recovery time points may reflect the higher metabolic demands and 

activation of the HPA axis leading to cortisol secretion during this trial.  Despite 

significantly higher cortisol levels at 60 minutes of recovery post INT, it is likely that 

levels would have returned to baseline given further recovery. Typically prolonged 

endocrine disturbances are only observed after extremely intense exercise such as intensive 

training or excessively prolonged exercise over hours or days (Hackney and Viru, 1999). 

 

TEMP showed a gradual rise in HR throughout the duration of the trial however the 

demands of this trial were not sufficient to influence a significant increase in salivary 

cortisol.  Studies have shown a gradual increase in cortisol levels with exercise duration, 

this may be due to increased production and reduced metabolic clearance (McMurray and 

Hackney, 2000). Therefore increasing the duration of the TEMP trial would be likely to 

elicit a significant increase.  

 

Other studies examining the cortisol response to exercise have found mixed results; the 

present findings are supported by Hough et al., (2011) who after a cycling interval session 



Acute Hormonal Response to Exercise                      Chapter 6  

 

 145 

(30-minute continuous cycle alternating 1 minute at 55% work rate max and 4 minutes at 

80% work rate max) reported a prolonged increase in cortisol levels above baseline after 

60 mins recovery. However the present results differed to those reported by Vuorimaa et 

al., (2008).  They tested a 40 minute tempo run at 80% velocity of VO2max and a 40 

minutes repetition session which consisted of two minutes run (100%vVO2max) and two 

minutes recovery (slow walk).  Both trials showed a significant increase in serum cortisol 

concentration post exercise although the increase 10 minutes post tempo run was higher 

than that observed for the interval session.  The reason for the differences may have been 

due to the strain of the protocols, as Vuorimaa and colleagues report the total time but not 

the total work output of tempo and intervals runs were equated, and this resulted in similar 

RPE measured at the end of the 40-min exercises.  They suggested that if the total work 

output was equal, the serum cortisol response to the intervals session may have been 

greater than tempo.  The present study reports a higher RPE in INT and this may reflect the 

higher work output of this trial.  Furthermore it is recognised that cortisol has anti- 

inflammatory properties (Brook and Marshall, 2001) and perhaps muscle damage during 

the high intensity interval session may have elicited an increased cortisol response as a 

protective measure.   

 

An intensity threshold has been proposed to elicit increases in cortisol levels (Allgrove et 

al., 2008; Budde et al., 2010; O’Connor and Corrigan, 1987; Rudolph and McCauley, 

1998; Hough et al., 2011).  The present study included exercise above 60% VO2max for 21 

mins in INT and 30 mins in TEMP.  Results from the INT session supports the consensus 

that exercising above 60% VO2max for >20 mins will elicit a significant increase in cortisol. 

However, the present study refutes this hypothesis as there was no significant increase in 

cortisol levels after the TEMP trial despite meeting the threshold criteria.  

 

Salivary testosterone levels also increased in response to exercise.  The present study 

observed an increase in testosterone post exercise after INT, TEMP and CIR.  These 

findings are supported by Vuorimaa et al., (2008) who found similar increases in serum 

testosterone after INT and TEMP running trials.  Hough et al., (2011) also showed an 

increase in testosterone levels after two cycling interval sessions with testosterone 

returning to baseline within one hour of cessation of exercise, and Kokalas et al., (2004) 

showed in increase after a rowing interval session.  Various mechanisms have been 

proposed for this exercise induced increase.  It has been suggested that dependance on the 
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intensity and duration of the exercise is caused by the influence of increased circulation in 

the testes, activation of the sympathetic nervous system, increased lactate accumulation 

and/or lutenising hormone (LH) concentrations (Eik-Nes, 1969; Jezova & Vigas, 1981; 

Fahrner & Hackney, 1998). Acute exercise induced changes can be caused either by the 

testicular level (Leydig cells) or by the hypothalamic–pituitary level.  In their study, 

Vuorimaa et al., (2008) also measured LH and follicle stimulating hormone (FSH) and 

observed changes in testosterone but not LH or LSH.  Therefore they suggest the changes 

in testosterone are caused by the testicular level and not the hypothalamus–pituitary level. 

This is refuted by Vasankari et al., (1993) who demonstrated that an acute exercise-

induced decrease in testosterone was caused by reduced hypothalamus-pituitary stimuli. 

There is also suggestion that circulating catecholamines may influence testosterone levels 

(Jezova & Vigas, 1981) however further research is required to examine this mechanism.  

Dissimilarly to cortisol salivary testosterone returned to baseline after INT which suggests 

that there may be a different mechanisms for release occurring after exercise stress in these 

hormones.  This finding supports the hypothesis that most exercise induced testosterone 

secretion is from the testes and not the hypothalamus (Vuorimaa et al., 2008).   

 

No previous studies have investigated the response of cortisol and testosterone to aerobic 

circuit training however mobilisation of testosterone after this trial may reflect reports 

observing increases in testosterone after resistance exercise (Yarrow et al., 2007; Kraemer 

et al., 1990; Raastad et al., 2000; Hakkinen et al., 1993, Linnamo et al., 2005). There is no 

clear trend regarding cortisol response to resistance exercise and the present study adds to 

findings that observed no change in cortisol levels after weight training (Fry and Lohnes, 

2010).  The circuit training session contained a combination of weight bearing and aerobic 

exercises and further research is required to clarify the mechanisms of testosterone release 

and relate this to other running training sessions. 

 

Examining the salivary C/T ratio revealed only INT showed an increase and this was 

observed at all time points post exercise.  The increase is likely to reflect the cortisol 

response to exercise as a similar trend was observed in this measure.  It is apparent that 

salivary testosterone levels did not increase sufficiently to influence the C/T ratio.  The 

increase in cortisol and testosterone secretion after INT may be due to the adrenal glands 

secreting cortisol and testosterone concurrently (Kroboth et al., 1999).  These hormones 

are also formed from the same precursor, and an increased concentration of cortisol in 
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circulation may cause some dissociation of free testosterone from its carrier proteins, as the 

two hormones compete for binding sites (Rosner, 1990).  Despite the proposed 

mechanisms further investigation is required to clarify the mechanism (Brownlee et al., 

2005).   Few studies have reported the C/T ratio in response to acute exercise and its use in 

this context is limited.  There is however increasing evidence that the C/T ratio may be a 

useful tool to monitor chronic training and recovery status (Argus et al., 2009).  Under 

certain circumstances a negative relationship exists between cortisol and testosterone 

representing a shift to catabolism, which can have a negative effect on training and 

performance (Urhausen et al., 1995).  Cumming et al., (1983) found that using 

pharmacological doses of cortisol induced a decrease in testosterone production. However 

the strength of this in vivo relationship in response to exercise has not been thoroughly 

determined.  It has been postulated that a decrease in testosterone may be due to inhibition 

of production in the testes (Cumming et al., 1983) and potentially binding of LH on the 

testes and steroidogenesis (Bambino and Hsueh, 1981; Castro and Matt, 1997).   

 

Plasma and salivary cortisol and testosterone levels elicited a correlation in the present 

study.  There was a higher correlation between blood and saliva in TEMP compared to 

INT.  This reflects the inter participant variation in cortisol and testosterone response to 

INT. Other studies have revealed a correlation between blood and salivary measures. 

Hough et al (2011) reported a higher correlation between peak salivary and plasma cortisol 

levels in a run to fatigue compared to two INT trials.  Similarly, O’Connor and Corrigan 

(1987) revealed a strong correlation between serum and salivary cortisol measures during 

and after 30 minutes of cycling at 75% VO2max.  Results from the present study confirm the 

validity of salivary measures when monitoring the cortisol and testosterone response to 

short term intermittent and continuous exercise.  Salivary measurements are beneficial as a 

less invasive technique than blood measurement.  Saliva is particularly useful to examine 

the stress response as stress caused by blood taking can be avoided.  Salivary measurement 

also allows participants to collect their own samples with minimal instruction and samples 

can be posted to the laboratory if necessary.  

 

Results also revealed variation in post exercise hormone peaks.  Plasma and salivary 

cortisol and testosterone levels peaked simultaneously in all trials.  This refutes the 

hypothesis of a post exercise delay in peak cortisol and testosterone in saliva compared to 

blood.  Studies have reported this delay for resting cortisol levels (Kirshbaum and 
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Hellhammer, 1989; Henrichs et al., 2001) and after exercise (O’Connor and Corrigan, 

1987; Crewther et al., 2006; Hough et al., 2011; Daly et al., 2005) showing delays of up to 

30 mins for peak cortisol levels in saliva.  The present results reflect support observations 

of an immediate diffusion from blood into saliva after intravenous injection (Kirschbaum 

and Hellhammer, 2000; Wang et al., 1981). The reason for the difference in the current 

trials may be that in previous studies vasoconstriction occurred in the arterioles that supply 

the salivary glands, resulting in lower salivary volume (Chicharro et al., 1998).  The 

reduced blood flow may in turn explain the delay in cortisol and testosterone delivery and 

diffusion from blood into the saliva found after acute exercise.  It may be that the exercise 

in the present study was of insufficient intensity or duration to elicit this change.  

Testosterone levels have also been found to correlate with blood at rest (Vittek et al., 1985; 

Wang et al., 1981).  There was a variation in salivary cortisol levels between trials with a 

large inter individual difference in time for cortisol to peak post INT (immediately after to 

30 minutes post exercise).  The individual differences may have been caused by the 

intermittent nature of the trial. Other studies examining the time for hormones to peak post 

exercise have shown peak testosterone levels occurs earlier than cortisol within 10 minutes 

of cessation of exercise (Hough et al., 2011; Daly et al., 2005).  However, the present 

study revealed cortisol and testosterone levels peaked immediately post exercise in all 

trials, with the only exception being the INT trial where cortisol levels peaked at 15 mins 

post exercise.  The latter finding suggests during intense exercise the site of cortisol release 

may be different to testosterone, exemplified by the difference in peak hormone behaviour. 

The present study was conducted in running which involves weight bearing exercise with 

activation of large muscle groups.  Most other studies reporting the delay in hormones 

have involved cycling exercise (O’Connor and Corrigan, 1987; Crewther et al., 2006; 

Hough et al., 2011) and running (Daly et al., 2005). 

 

Validity of an LC-MS method to measure salivary cortisol and testosterone levels was also 

examined in the current study.  Results showed there was a strong correlation between the 

salivary cortisol response to an INT and TEMP running session measured with LC-MS and 

ELISA.  However testosterone could not be quantified with this technique, affirmed with 

the lack of correlation between LC-MS and ELISA.  LC-MS concentrations tended to be 

lower than ELISA, this is suggested to be due to the lower specificity of ELISA leading to 

overestimation (Taieb et al., 2003).  The latter finding reflects the LOQ of the method for 

testosterone which was outside the reference range for male saliva samples.  Testosterone 
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is harder to measure than cortisol due to lower levels present in saliva and its lower proton 

affinity which affects ionisation and detection with LC-MS.  A downside of LC-MS is the 

high cost of instrumentation and time to develop assays can be restrictive, however once 

installed it allows single samples to be analysed immediately with simple cleanup which 

can be automated. Despite accurately representing the cortisol response to exercise, the 

LC-MS method is currently more time consuming than ELISA. Automation of cleaning 

procedures and use of UPLC would ensure this method is viable alternative to measure 

cortisol concentrations compared with ELISA.  Additionally, multiple analyte testing to 

quantify salivary cortisol and testosterone levels in our laboratory still requires further 

development to offer a worthwhile alternative to ELISA testing.  

 

In conclusion, these results suggest that in running sessions cortisol concentration is a 

useful indicator of acute exercise stress.  Additionally the results negate the current 

proposed theory of a threshold intensity of cortisol and testosterone release.  Salivary and 

plasma hormone levels were correlated in response to acute exercise; this supports the use 

of saliva as an alternative sampling technique to blood measurement of cortisol and 

testosterone levels. Additionally, the results partially refute the hypothesis of a post 

exercise delay in peak hormonal response to exercise and lag time for the hormonal 

response in blood and saliva.  Finally, LC-MS represents an accurate tool to measure saliva 

cortisol levels in saliva and further work will cement its position as an alternative to 

ELISA. 
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7. GENERAL DISCUSSION AND CONCLUSIONS 

 

7.1 Discussion  

This research project gives an overview of the use of mass spectrometry as a tool for 

quantification of hormones such as cortisol and testosterone.  The stages involved in 

development and validation of an LC-MS method for measurement of cortisol and 

testosterone levels in saliva are discussed and application to exercise are illustrated.   This 

research aimed to validate an LC-MS method with resting saliva samples, and to evaluate 

the use of this method to quantify saliva samples collected from an exercise training study.  

The final aim was to investigate the hormonal response to different training sessions in 

runners, and assess the correlation of blood and salivary measures.  

 

Chapter 3 showed that optimisation of MS and LC parameters are important to improve 

detection limits of cortisol and testosterone.  Cone voltage and capillary voltage maintain a 

voltage gradient in order to form the Taylor cone during ESI and direct charged ions to the 

detector (Taylor, 1964).  Additionally, if cone voltage is high, ions may have excess energy 

and collide leading to uncontrolled fragmentation of the pseudo molecular ion, this is 

confirmed by the increased production of insource fragments observed in this study.  

Ultimately fragmentation and low ion transfer can contribute to poor detection levels.  A 

cone voltage of 25V and capillary voltage of 3.5 kV were identified as optimal in this 

method. During MS optimisation mobile phase solvent composition was also shown to 

influence analyte peak area.   Evidence suggests that mobile phase composition can 

influence both MS and LC optimisation.  Solvent choice and flow rate can also impact 

peak descriptives..   Solvent choice was examined and MeOH was chosen over MeCN.  

MeOH was chosen due to its protic nature, which promotes ionisation by readily giving a 

hydrogen ion for binding, potentially improving ionisation in less ionisable compounds and 

in turn increasing analyte signal.  Additionally, there was a shortage of MeCN during 

method development and it was not cost effective to use this solvent (Tullo, 2008).  

Solvent percentage is also important; this was exemplified during MS optimisation where a 

90% MeOH mobile phase elicited a higher peak area for cortisol and testosterone than 70% 

MeOH.  Results suggest a higher percentage of organic solvent may elicit improved 

ionisation through more efficient evaporation and smaller droplets thus representing 
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improved transfer of ions into the gas phase (Smith et al., 2002).  Results also support the 

notion that more hydrophobic compounds compete better for charges during ESI compared 

to less hydrophobic molecules.  Testosterone elicited a higher peak area than cortisol, 

which is in line with previous studies that showed more hydrophobic compounds elicit 

greater signal intensity (Null et al., 2003).  This is hypothesised to be due to a 

hydrophobicity effect during ESI (Marmur et al., 2000).  This concept has also been 

discussed by Abaye et al., (2011a; 2011b) whereby in mixtures; more non-polar analytes 

have a higher affinity for the ESI droplet-air interface, and the effective competition for the 

excess charge results in higher signal intensities in the mass spectrum.  This phenomenon 

may be important to consider when examining biological matrices and sample preparation.  

Matrix effects common in biological samples have been identified to alter ionisation 

processes (Tang and Kebarle, 1993).  Chapter 4 revealed the matrix of saliva contributed to 

a reduction in detection of testosterone by 6 %.  Studies such as those presented above 

have postulated this is caused by variations in analyte polarity affecting the ionisation of 

different compounds through competition for charges.  Additionally, interfering 

compounds may compete for these charges and suppress the signal of analyte of interest 

(Mallet, 2004).  Therefore, it was concluded that appropriate cleaning (with SPE) and 

reconstitution of the sample should be untaken prior to analysis to further optimise 

detection and quantification. 

 

It is also important to choose the most appropriate flow rate for the column (in this case 0.1 

mL/min) and optimise the mobile phase composition to establish effective 

chromatography. In this study, a lower flow rate was shown to elicit higher peak area; this 

may be related to improved desolvation and transfer of ions with less mobile phase to 

evaporate during ESI (Gale and Smith, 1993).  A narrow bore (2 mm) column was chosen 

as previous studies suggest smaller inlet diameter columns with low flow rates produce 

higher sensitivity than larger ID columns with higher flow rates (Shen et al., 2002).  This 

occurs due to the reduction in the cross-sectional area of the column, or square of the 

change in diameter which translates into proportionally taller peaks (Dolan, 2010).  The 

gradient for the LC-MS method was optimised after consideration of the existing literature 

and the chosen ramped gradient method produced elution of tall, narrow peaks.  Detecting 

analytes with different polarity such as cortisol and testosterone can benefit from a ramped 

mobile phase gradient as more polar compounds will be eluted from a column with a lower 

percentage of organic solvent than less polar analytes. Therefore, altering the percentage of 
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organic solvent during a chromatographic run allows optimisation of elution for both 

analytes.  However the run time was long (15.5 mins) and this is inefficient for high 

throughput analysis and promotes the development of ways to speed up the 

chromatography for example utilising UPLC. 

 

In order to establish accurate measurement of small analytes with LC-MS, peak resolution 

is also important in order to ensure specificity, accuracy and ultimately high S/N ratio.  

Examination of LM and HM parameters in the mass spectrometer revealed that although 

changes had minimal influence on peak area, optimisation was important to achieve mass 

accuracy and avoid merging of C12 and C13 isotopes, which can lead to an overestimation 

of peak area (Mallet et al., 2004).     

 

Column temperature has also been shown to have a strong influence on peak descriptives 

(VanHoenaker and Sandra, 2006; Bowermaser and McNair, 1984); although, the present 

study also refutes these observations with no difference in peak descriptives within the 

range of 25-50
o
C tested.  However only the column was heated and increasing the mobile 

phase temperature prior to column entry may have produced different results. Moreover, 

recent studies have shown availability of new columns able to withstand temperatures 

>200
o
C, given the thermal stability of cortisol and testosterone these columns may be 

applicable to decrease analyte retention times and chromatographic run time; making the 

assay more viable for research applications.  Mobile phase pH is a further factor which 

influences chromatographic performance, and decreasing the mobile phase pH had 

negative effects on peak area.  0.1% formic acid was optimal for the detection of cortisol 

and testosterone, increasing this percentage reduced the pH and consequently reduced peak 

area of cortisol and testosterone. When the percentage of buffer is increased, pH is lowered 

contributing to co-elution as the compounds of interest have minimal contact with the 

stationary phase of the column. 

 

The main aim of this work was to develop a method to detect and quantify cortisol and 

testosterone levels in saliva, ionisation is an important factor impacting upon LC-MS 

detection limits especially regarding competition of charges.  To apply an LC-MS method 

to analysis of saliva it was also important to consider the relevance of this matrix.  Salivary 

measurement has many benefits over blood measures. Sample collection is less invasive 

therefore less likely to induce a stress response (Kraemer et al., 2001).  The sample can 
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also be collected by patients or study participants; therefore there is no need for medical 

personnel or researchers to be present.  Additionally, plasma and salivary measures have 

been shown to be correlated. This is also observed in Chapter 6, when examining the 

plasma and salivary hormonal responses to exercise revealed plasma and salivary cortisol 

were strongly correlated. There was also a significant (but lower) correlation for 

testosterone.  The present findings refute some previous exercise studies that have 

observed no correlation between plasma and salivary testosterone (Cadore et al., 2008; 

Hough et al., 2011); although the current findings are supported by correlations found at 

rest (Vittek et al., 1985; Lac et al., 1993).  These results promote the use of saliva sampling 

to measure cortisol and testosterone in stress research. 

 

However, due to the low concentration of cortisol and testosterone in saliva it was 

important to evaluate ways to directly increase detection. Concentration of samples after 

drying and SPE were investigated and it was hypothesised that accuracy would improve by 

increasing concentration; however findings of the current work refute this hypothesis. 

Further interpretation shows that concentrating saliva samples over 10 times is not feasible. 

Firstly, time constraints linked to collection immediately post exercise allowed collection 

of less than 3 mL saliva ultimately providing concentration restrictions.  Secondly, 3 mL 

SPE cartridges are adequate for up to 1mL saliva and upgrading to 6 mL cartridges would 

not prove cost effective in this method.  Therefore, 1 mL saliva was used for analysis and 

concentrated 10 times for an end volume of 100 µL.  Recovery of analytes may also impact 

on quantification limits, and SPE produced acceptable recovery after cleaning (>85%).  

Results revealed that during SPE composition of the wash phase affected cortisol recovery.  

A methanol wash of 50% significantly decreased recovery of cortisol; however, 

testosterone recovery was not diminished during this experiment, concurrent with other 

research (Huq et al., 2008).   

 

Ultimately, the stages of LC-MS method development achieved in Chapters 3 and 4 aimed 

to produce a valid method to measure salivary cortisol and testosterone levels, and after 

optimisation, method validation was undertaken.  Chapter 5 aimed to validate the method 

to measure cortisol and testosterone against established validation criteria (ICH, 1996; US 

Department of Health, 2001).  Results showed that the LC-MS method was accurate, 

precise, linear and produced a LOQ below the lower reference range for cortisol.  Inclusion 

of an internal standard during quantification controlled for variation in injection, sample 
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preparation, instrument parameters and matrix effects (Magni et al., 2001).  Saliva samples 

taken before and after different exercise trials also showed strong correlation when 

measured with LC-MS and ELISA (Chapter 6).  However, agreement analysis showed 

poor agreement between the absolute values; this would be expected given that the 

techniques differ.  Some research has suggested that ELISA may lack specificity and 

overestimate hormone levels therefore this may have contributed to some of the difference.   

 

The significance of this research was developing an LC-MS method to measure cortisol 

and applying it to measure samples tested in an exercise study.  Despite its widespread use 

in hospitals and the pharmaceutical industry (Kushnir, 2011), LC-MS has not been used to 

measure salivary cortisol in exercise research.  However, testosterone could not be 

quantified with the current LC-MS method despite extensive optimisation; this was due to 

lower levels than cortisol in saliva and insufficient sensitivity of the assay.  This was 

established after the LOQ was above the lower reference range for men in saliva and also 

analysis of salivary samples with LC-MS revealed no correlation with ELISA (Chapter 6).  

Testosterone exhibits low proton affinity therefore it is harder to ionise than cortisol and 

low levels can also be difficult to detect.  Dervitisation was investigated as a method to 

improve detection of testosterone; this process changes the chemical structure of a 

compound and acts to increase proton affinity and detection limits.  Hydroxylamine 

derivatisation of the ketone group of testosterone in our laboratory reported three fold 

improvements in method sensitivity (changing the m/z from 289 to m/z 304) (Chapter 3), 

which is slightly lower than the literature reports of 5-10 times (Kushnir et al., 2006).  

Furthermore, LC-MS/MS is also used for detection of small molecules; recent studies have 

utilised this technique to quantify salivary cortisol and testosterone levels in the reference 

range for saliva (Matsui et al., 2009; Kusukake et al., 2009).  However both studies used 

the same mass spectrometer (API 4000), with a higher specification than the machine used 

in the present study, implying the mass spectrometer employed may have contributed to 

the low detection levels.   

 

During validation, resting salivary samples measured with ELISA showed that 

unsurprisingly, men had higher testosterone levels than women on average. This is 

concurrent with other studies (Dabbs, 1990; Bao et al., 2008).  However, unexpectedly 

salivary cortisol was higher in women compared to men.  Various reasons for this were 

proposed included higher stress levels in this group and a more pronounced CAR in 
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women. A limitation of this study was a lack of questionnaires to establish stress levels 

which have been shown to affect the CAR (Clow et al., 2004).  Also, given the low 

number of participants, expansion of the study would be beneficial to ascertain whether the 

reported trends are visible within a larger population.  Consideration of the CAR was 

important when planning the exercise validation study as sampling close to awakening may 

produce a false decrease or negate any exercise induced increase in hormone levels.  

Sampling in the afternoon and evening has been shown to offer a relatively stable diurnal 

period for cortisol and testosterone levels (Rose, 1972). Therefore, the exercise study was 

conducted between 3pm and 8pm.  

 

During the exercise study, salivary cortisol appeared to be linked to RPE.  A 30 minute 

INT session produced a significantly higher RPE and salivary cortisol response than a 30 

minute TEMP run and CIR.  Furthermore, the TEMP run at lactate threshold (75% VO2max) 

did not elicit a significant increase in salivary cortisol levels which refutes findings from 

previous studies (Allgrove et al., 2008; Hill et al., 2008; Budde et al., 2010) reporting a 

‘threshold intensity’ for cortisol release (20 mins, >60% VO2max).  However, there is 

contention over this threshold and differences may relate to the use of percentage VO2max 

as a controlling variable.  Research has postulated that normalising exercise to percentage 

VO2max may not consider differences in other variables, for example lactate threshold 

(Coyle et al., 1988).  Recent research by Lansley et al., (2011) investigated an alternative 

to percentage VO2max for normalisation of exercise intensity, the gas exchange threshold 

(GET), which is synomomous with lactate threshold.  They propose a more accurate 

normalising variable is % delta GET which is the GET plus percentage interval between 

the GET and VO2max.  This concept could be used to assess the hormonal threshold and 

remove some discrepancies caused by setting intensity at percentage VO2max.  Another 

finding of the present study was that salivary cortisol levels returned to baseline within 60 

minutes of ceasing exercise in all trials except INT. There is evidence to suggest that 

cortisol enhances lypolysis and protein catabolism to mobilise fuels (Nindl et al., (2001), 

therefore cortisol, may provide a glycogen sparing role during exercise.  Studies suggest 

that the level of glycogen depletion may mediate the hormonal response to exercise rather 

than the intensity or duration per se.  There may have been higher glycogen depletion 

during the interval session, and this could have led to an increased cortisol secretion after 

this session. 
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Salivary testosterone showed a post exercise increase after INT, TEMP and CIR sessions.  

There is evidence that the concomitant increase in cortisol and testosterone secretion after 

INT may be due to the adrenal glands secreting cortisol and testosterone concurrently 

(Kroboth et al., 1999). However, salivary testosterone levels rose after CIR without an 

increase in cortisol concentration.  Testosterone may have been released as an anabolic 

hormone to promote muscle growth and repair after circuit training (Florini, 1985); 

however, the stress caused by the session may not have been sufficient to elicit enough 

metabolic demand to require an increase in cortisol and glycogen sparing mechanisms 

(Nindl et al., 2001). 

 

There are no studies examining the hormonal response to aerobic circuit training, although 

the observed response may reflect reports of increased testosterone levels observed after 

weight training sessions (Yarrow et al., 2007; Kraemer et al., 1990; Raastad et al., 2000; 

Hakkinen et al., 1993, Linnamo et al., 2005).  The increase in testosterone levels post CIR 

also suggests that CIR met the proposed threshold of intensity to elicit a testosterone 

response to resistance training (Vingren et al., 2010).  Additional investigation is required 

to examine VO2max throughout this session to compare CIR with other running training 

sessions and investigate whether more prolonged training elicits an increase in salivary 

cortisol levels.  Results from Chapter 6 also suggest the salivary C/T ratio response is 

driven by the cortisol response because an increase in this ratio was only observed after 

INT.   

 

When examining the peak hormonal response, salivary cortisol levels peaked immediately 

post TEMP and 15 mins post INT and there was no delay in peak values compared to 

plasma. These finding refute those suggesting salivary hormone levels peak later than 

plasma (Kirschbaum and Hellhammer, 1989, 2000; Heinrichs et al., 2001; Hough et al., 

2011) and suggests strenuous exercise with multiple HR peaks may contribute to a delayed 

post exercise peak cortisol response.  In studies where a delay in peak salivary cortisol 

levels were reported, the exercise intensity may have caused an increase in sympathetic 

activity, leading to temporary vasoconstriction of the arterioles surrounding the salivary 

glands and decreased blood flow and hormonal diffusion (Chicharro et al., 1998).  

However, the anaerobic threshold postulated to trigger the decrease in salivary flow was 

likely to be exceeded in both TEMP and INT therefore there may be another reason for the 

difference in findings. Peak testosterone response occurred immediately post exercise in 
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saliva and plasma for both INT and TEMP trials. This strengthens the hypothesis that 

testosterone is secreted through different mechanisms to cortisol; however these 

mechanisms still remain unclear and require further investigation.  

 

7.2 Conclusions 

Based on the findings of this thesis a list of conclusions are summarised as follows: 

1. Optimising cone voltage to 25V results in a direct improvement in cortisol (134%) 

and testosterone (130%) peak area and the reduction of insource fragmentation. 

 

2. Mobile phase flow rate and composition are important to increase ionisation, 

establish peak resolution and improve analyte signal with optimised flow rate of 0.1 

mL/min and a ramped MeOH gradient ranging from 50 to 90% MeOH. 

 

3. Manipulating column temperature between 20 and 50
o
C does not affect the 

subsequent peak area of cortisol and testosterone. 

 

4. Sample cleaning methods prior to LC-MS can affect sample recovery, with a 

reduction in cortisol recovery if the wash phase contains over 50% organic solvent.  

Analyte polarity is also important during reconstitution of dried sample prior to 

analysis. 

 

5. Salivary cortisol levels can be measured accurately and precisely with LC-MS, 

which is supported by validation against established guidelines, including a LOQ of 

0.6 ng/mL and correlation with ELISA for saliva samples taken during an exercise 

intervention study (r=0.93).  However, quantification of testosterone in saliva 

requires further investigation and optimisation.  

 

6. Response of salivary hormones are affected by the intensity and nature of an 

exercise trial.  Increases in salivary cortisol are evident after a 30 minute interval 

session however they are not significantly changed after a tempo or aerobic circuit 

session.  Testosterone levels are significantly increased after an interval, circuit and 

tempo session compared to rest. 
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7. Mean RPE appears to be a good predicator of the salivary cortisol response; 

illustrated by the significant increase in salivary cortisol levels and higher RPE 

elicited by the interval session.  

 

8. Plasma and salivary cortisol and testosterone measures were correlated before and 

after a tempo and interval session supporting the use of salivary measurements to 

monitor the hormonal response to exercise.  

 

7.3 Future work 

Firstly, regarding efficiency of the LC-MS method, development of a UPLC method to 

reduce analysis time would be more effective and improve sample throughput. UPLC is 

likely to reduce the run time to <5 minutes. Furthermore, heating the solvent prior to 

column entry may also reduce analyte retention and sample run time and this could be 

investigated.  Despite the analyte recovery and sample cleaning exhibited by SPE, this 

method was time consuming and future work could investigate the compatibility of 

automated SPE to reduce sample preparation time.  

 

The LC-MS method was insufficiently sensitive to quantify testosterone levels in saliva 

and future research could investigate LC-MS and LC-MS/MS with a saliva matrix to 

compare differences in S/N ratio with the aim of reducing the LOQ for testosterone. 

Additionally, derivatisation of testosterone could be investigated further as a method to 

improve detection during LC-MS.   

 

It would be interesting to investigate the CAR and the mechanisms for the proposed 

difference between men and women as these are currently unclear.  Monitoring VO2max 

during the exercise trials to measure changes in effort would be useful to give a more in-

depth view of the training volume.  Finally, there is debate over the use of VO2max to 

standardise exercise intensity. Therefore, investigation of the acute hormonal response 

utilising GET and VO2max, may add further insight into the normalisation of exercise 

intensity and threshold for cortisol and testosterone release. 
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Appendix A – Informed consent form 

Participant Consent Form 

Participant number............ 

Title of Research: 

Investigator's name: Amy Tanner 

To be completed by the participant: 

1. Have you read the information sheet about this study?

2. Have you had an opportunity to ask questions and discuss this

study? 

3. Have you received satisfactory answers to all your questions?

4. Have you received enough information about this study?

5. Do you understand that you are free to withdraw from this study:

 at any time?

 without giving a reason for withdrawing?

 without affecting your future with the University/studies/medical

or nursing care?

6. Do you agree to take part in this study?

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

YES/NO 

Signed Date 

Name in block letters 

Signature of investigator Date 

This Project is Supervised by: Judith Allgrove 

Contact Details (including telephone number and email address): 
J.E.Allgrove@gre.ac.uk



References              Chapter 8 

183 

Appendix B – Health questionnaire 

CONFIDENTIAL 

Pre-test Health & Physical Activity Questionnaire 

Please circle when appropriate 

1. Do you, or have you ever smoked? Yes/No 

If yes please state the number/day ......................... or when stopped .......................... 

2. Do you drink alcohol regularly? Yes/No 

If yes how many units/week? (1/2 pint = 1 units) ............................................ 

3. Have you consulted your general practitioner with the last 3 months? Yes/No 

If yes please give details ............................................................................................................................................. 

4. Are you on any medication at present? Yes/No 

If yes please state which and for what ................................................................................................................................. 

.................................................................................................................................................................................................................................. 

5. When was the last time you had a medical check-up?.............................................................................................

Date: ...................................................................................... Sex: .................................................................................... 
Name: .................................................................................. Address: ...........................................................................

D.O.B:..................................................................................... .................................................................................................. 

Tel. No: ............................................................................... .................................................................................................. 

E. Mail: ................................................................................ .................................................................................................. 

Postcode: ........................................................................ 
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6. Have you ever suffered from:-

Any heart condition Yes/No 

If yes please specify ......................................................................................................................................................... 

High blood-pressures (>140/90)  Yes/No 

Fainting Yes/No 

Heart or chest pains Yes/No 

Anaemia Yes/No 

Family history of heart of vascular disease Yes/No 

If yes please specify ........................................................................................................................................................ 

High blood cholesterol (>5.2mmol/L) if known Yes/No 

Any blood condition Yes/No 

If yes please specify ....................................................................................................................................................... 

HIV, Hepatitis A, B or C, Venereal Disease, Haemophilia, Any other 

Respiratory problems (asthma, bronchitis, etc.) Yes/No 

If yes please specify ......................................................................................................................................................... 

Diabetes - NIDDM or IDDM (please circle) Yes/No 

Epilepsy Yes/No 

Cancer Yes/No 

If yes please specify ........................................................................................................................................................ 

7. Are you currently injured Yes/No 

If yes please specify ....................................................................................................................................................... 

8. Have you been ill within the last 3 weeks? Yes/No 

If yes please specify ........................................................................................................................................................ 

9. Have you ever “over-reached”, had overtraining syndrome Yes/No 
or chronic fatigue Syndrome?

If yes please specify ........................................................................................................................................................ 
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10. To your knowledge are there any health related reasons for not
undergoing the tests that have been explained to you?  Yes/No

If yes please specify ....................................................................................................................................................................... 

11. How many times do you exercise every week  ........................................................................................................

Do you weight train? Yes/No 

If yes how many times per week?…....……..……..... 

play games? Yes/No 

If yes how many times per week and what games?................................................................................................ 

 swim, run or cycle? Yes/No 

If yes: 
what exercise? ................................................................................................................................................................. 

how many times per week? .................................................................................................................................. 

for how long? ................................................................................................................................................................... 

13. Are you out of breath during exercise; (always?)  10......................5.......................0 (never)

14. Are there any other relevant factors? .....................................................................................................................................

..................................................................................................................................................................................................................................... 

15. Height (metres) ...........................  Weight (kg) ..........................

Signature of participant: ........................................................................................ Date ............................................... 

Signature of researcher: ......................................................................................... Date ...............................................

RISK ASSESSMENT (ACSM Guidelines) 

No. of Cardiopulmonary signs / symptoms ……………………..................………… 

No of Risk Factors …………………………...................…… 

Recommendation …………………...................…………… 

Assessors signature ………….………..................…………... 
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Appendix C – Participant information sheet resting study 

Research Information Sheet for Participants Involved in the Study: Detection, measurement and 
validation of stress biomarkers in saliva with mass spectrometry 

Firstly thank you for agreeing to take part in this research project. I hope you find the information given 
here useful and adequately informative for your participation in the project.  The research aims to 
validate a method to measure stress hormones (cortisol, testosterone and DHEA) in saliva using mass 
spectrometry.   

Procedures  
Prior to all testing you will arrive in the laboratory at 9am and complete the health questionnaire and 
informed consent form.  You will be required to attend the Physiology Laboratory or Laboratory 148, 
Grenville Building, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 
4TB on one occasion. 

Measurements 
A three minute saliva sample will be collected in a tube via passive drool 

Requirements 
Participants should refrain from eating one hour prior to arriving at the laboratory and should refrain 
from drinking five minutes before the saliva sample so as not to dilute the sample. 
Possible Risks/Discomforts 
The risks involved in the study are minimal. Prior to the study, you will have filled out a health 
questionnaire to assess your suitability for participation in the study. Participants should seek advice 
from their GP if the levels are outside the expected normal range. 

You are free to withdraw from the study at any time. 

Benefits 
The study will provide you with information about the levels of stress hormones in your saliva i.e. 
cortisol. testosterone, DHEA. You will be advised to seek advice from their GP if the levels are outside 
the expected normal range 
Confidentiality 
All data obtained will be dealt with in a confidential manner in line with the Data Protection Act. Data 
will be held for no more than two years before being destroyed. 

I look forward to seeing you, if there are any problems please do not hesitate to call me on one of the 
numbers below: 

 Supervisor: Dr Judith Allgrove      
Email: J.E.Allgrove@gre.ac.uk 

Investigator: Amy Tanner   
Email: 
A.V.Tanner@gre.ac.uk
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Appendix D - participant information sheet exercise study 

Research Information Sheet for Participants Involved in the Study: Effect of three different 
training sessions on salivary and plasma stress hormones and immune response in 

competitive runners 

Firstly thank you for your interest in this research project. I hope you find the information given here 
useful and adequately informative for your participation in the project.  The research aims to monitor 
salivary cortisol, testosterone and immunoglobulin A (IgA) levels before, during and after three 
simulated training sessions and to compare the levels of cortisol and testosterone with those in 
simultaneous plasma samples in order to see if there is a correlation between plasma and salivary 
levels of these hormones. 

Procedures  
Prior to all testing you will complete the health questionnaire and informed consent form.  

Measurements 
The study will involve five visits to the laboratory: 

Visit 1: VO2max assessment and study familiarisation i.e. getting used to changing the speed on 
the treadmill to simulate training and giving saliva samples. 

Visits 2, 3, 4 and 5 either one of three training protocols (below) or a resting trial 

Interval training 
6 x 4mins of running at 90% VO2max with recoveries of 2 mins between repetitions at 30% VO2max 

Tempo run 
30 minutes of running at 70% VO2max (or lactate threshold) 

Circuit training 
10 exercise stations performing 3x30secs with 30secs recovery for each exercise, total duration is 30 
mins 

Resting trial 
Participant sits down and rests of the duration of the trial (30 mins) 

Blood measures via cannulation will be taken pre exercise, post exercise (30 mins) and at 15, 30 and 
60 mins post exercise. 

Saliva samples will be collected at the same time intervals, a 3 mins stimulated sample will be 
collected for the analysis of cortisol and testosterone and a 2 mins unstimulated sample for IgA. 
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You will also be required to complete an illness incidence questionnaire and stress questionnaire prior 
to each trial 

Requirements 
Participants should refrain from eating two hours prior to entering the laboratory and refrain from 
drinking water 5 minutes before producing the first sample 

Possible Risks/Discomforts 
The risks involved in the study are minimal. Prior to the study you will have filled out a health 
questionnaire to assess your suitability for participation in the study. Blood sampling via cannulation 
can be slightly uncomfortable and cause minor bruising but good practice by qualified personnel 
minimises this risk.  Participants should seek advice from their GP if the levels are outside the 
expected normal range. 

You are free to withdraw from the study at any time. 

Benefits 
You will gain a reading of your VO2max level which is an indicator of fitness.  You will also gain results 
of your resting salivary and plasma cortisol and testosterone levels and the effect of the three training 
sessions on these levels, which could be useful when planning training sessions.  Similarly, resting and 
exercise salivary IgA will be measured and this is an indication of basic immune status and the levels 
can be linked with potential illness incidence. 

Confidentiality 
Samples will be stored at -80oC until analysis is complete, after which they will be discarded and 
destroyed. All data obtained will be dealt with in a confidential manner in line with the Data Protection 
Act. Data will be held both electronically and in hard copy form for no more than two years before being 
deleted/destroyed. 

I look forward to seeing you, if there are any problems please do not hesitate to call me on one of the 
numbers below: 

 Supervisor: Dr Judith Allgrove      
Email: J.E.Allgrove@gre.ac.uk

Investigator: Amy Tanner   
Email: 
A.V.Tanner@gre.ac.uk
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Appendix E – LC-MS testosterone exercise samples 

Sample MS 

1D Pre nd 

1D Post nd 

1D 15 nd 

1D 30 nd 

1D 60 nd 

2A Pre nd 

2A Post nd 

2A 15 nd 

2A 30 nd 

2A 60 nd 

2D Pre nd 

2D Post nd 

2D 15 nd 

2D 30 nd 

2D 60 nd 

3B Pre -108.36 

3B Post -103.33 

3B 15 18.64 

3B 30 21.59 

3B 60 160.24 

3C Pre 27.72 

3C Post 338.01 

3C 15 -4.85 

3C 30 87.73 

3C 60 1.72 

4A Pre 19.93 

4A Post -53.71 

4A 15 -10.55 

4A 30 -161.78 

4A 60 -55.18 

4D Pre nd 

4D Post nd 

4D 15 nd 

4D 30 nd 

4D 60 nd 

6A Pre -28.87 

6A 15 nd 

6A 30 nd 

6A 60 nd 

6B Pre 31.44 



References              Chapter 8 

190 

Sample MS 

6B Post nd 

6B 15 nd 

6B 30 nd 

6B 60 nd 

8A Pre -68.52 

8A Post 155.17 

8A 15 nd 

8A 30 20.26 

12A Pre nd 

12A Post nd 

12A 15 nd 

12A 30 nd 

12A 60 nd 

12D Pre nd 

12D Post nd 

12D 15 nd 

12D 30 nd 

12D 60 nd 

13B pre 452.73 

13B post 12.26 

13B 15 500.57 

13B 30 608.19 

13B 60 673.03 

13C Pre nd 

13C Post nd 

13C 15 nd 

13C 30 nd 

13C 60 nd 

8D pre nd 

8D post nd 

8D 15 nd 

8D 30 nd 

8D 60 nd 

9A pre nd 

9A 15 652.76 

9A 30 221.27 

9A 60 363.55 

9C pre 84.32 

9C 15 219.40 

9C60 84.32 

10A pre nd 

10A post nd 
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Sample MS 

10A 15 nd 

10A 30 nd 

10A 60 nd 




