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ABSTRACT

BOND STRENGTH HISTORY IN PRESTRESSED CONCRETE REACTOR VESSELS

M. Ahmad

An attempt has been made to study bond strength history iti 
Prestressed Concrete Reactor Vessels (PCRV) which house the Advanced 
Gas-cooled Reactors.

Three-dimensional non-linear analytical model has been developed 
in which the effect of bond is included. A finite element computei 
program is written in which solid, membrane, line and bond-linkage 
elements have been used to represent vessel concrete, steel liner, pre- 
stressing tendons and bond (between steel and concrete) respectively. 
Concrete is assumed to be non-linear material in compression and linear 
brittle (tension cut-off) material in tension, and the steel as elasto- 
plastic material with strain hardening. Provision is also made for 
concrete cracking, crushing and visco-elastic creep.

Two experiments have been carried out during this research. The 
purpose of the first experiment was to determine bond coefficients 
required for the analysis. This was achieved by pull-out tests on 
prestressing specimens using 5 mm and 7 mm diameter prestressing wires. 
The second experiment was performed on an octagonal prestressed concrete 
slab representing a top cap of a reactor vessel. The experimental results 
obtained from this slab are corroborated with the analytical results.

A typical Prestressed Concrete Reactor Vessel with boilers and 
circulators housed within the vessel wall thickness has been analysed 
for bond strength under increasing gas pressure at suitable intervals 
of its 30 year life. A comparison is made between the unbonded and 
bonded vessels. All analytical results compare well with those obtained 
from the experiments and available published data.
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NOTATION

	denotes matrix or a vector 
J3 - strain-displacement matrix 
&i - strain-displacement matrix at node i 
C - inverse of material matrix 
D - constitutive matrix
D* - constitutive matrix in crack coordinate system
DT - tangent constitutive matrix in global coordinate system
£i - vector of Cartesian strain components at point i
o*' - vector of Cartesian stress components at point i
£  - initial strain vector

- creep strain vector

- initial stress vector
" incremental strain/stress vectors
- stress vector in crack directions*^

£* - strain vector in crack directions
AC*, £fc** - incremental strain/stress vectors in crack directions

u

A6 - incremental thermal strains< »

{3 - shear interlocking factor
Ec - modulus of elasticity for concrete

- Poisson's ratios for concrete

- concrete cylinder compressive strength
- concrete limiting tensile strength
- vector of body forces per unit volume
- concrete crushing strain

- element stiffness matrix*^

K - global structural stiffness matrix***
jCb - bond linkage stiffness matrix
L - length of the line elements
d - diameter of the line element
A,m,n - direction cosines relating local to global axes
NC - shape function of node i

N - element shape function matrix
f^ - vector of external element loads
+9

Q - vector of surface pressure
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- global load vector

- strain transformation matrix

- stress transformation matrix

- transformation matrix (relating local to global displacements 

	at nodes)

- element nodal displacement vector

U - global nodal displacement vector

Ui,\fr, Wt - displacements at node i

X,Y; £ - global coordinate system

X',Y'Z' - local Cartesian coordinate system

X ;Y,Z - crack coordinate system

- local curvilinear coordinates

- differential surface area

- differential volume

detJ _ determinant of Jacobian

;J - Jacobian matrix

EH , EV, E£ - bond slip moduli in horizontal, vertical and lateral directions

- incremental bond stress vector

- incremental slips

- bond stress vector

- bond linkage constitutive matrix
	 

- thickness of membrane element

- elastic material matrix for membrane element

lt - first stress invariant

Ji - second invariant of stress deviator tensor

Orn - mean stress

£\tE"2.jE-3 - moduli of elasticity in three principal directions

£tu - uniaxial equivalent strain in ith direction

AEt'u - incremental uniaxial strain

<Nt- - principal stresses, 1=1,2,3

6t - principal strains, i=l,2,3

G - shear modulus
/

o - shear modulus for cracked concrete

<*" - equivalent stress

A6p - plastic strain increment

D_ - elastic material matrix for steel ~E
D - plastic material matrix for steel -p
Dep - elasto-plastic material matrix for steel
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CHAPTER 1

General Introduction

In recent years, many complex prestressed concrete structures have 

been designed and built. The complex nature of the geometric configura­ 

tion and material behaviour of many of these structures has given rise 

to many new problems. A prestressed concrete reactor vessel is such a 

structure, the complex behaviour of which is directly associated with 

material anisotropicity and non-linearity, temperature, creep and 

shrinkage. Gas increasing pressure, load history and a cracking con­ 

dition assume important roles in the vessel's short and long-term 

performance. Where the vessels have been bonded (grouted tendons), the 

ultimate load carrying capacity is influenced by the complex three- 

dimensional bond-slip phenomenon. This is the theme of the current 

research. Prior to the establishment of a case for a bonded vessel, it 

is essential to discuss this important phenomenon.

In the tension zone within the vessel concrete, bond-slip takes 

place at the steel-concrete interface prior to cracking. It contributes 

to further cracking under loads and consequently affects the ultimate 

load capacity. Bond-slip behaviour is non-linear in nature and is 

influenced by many factors such as the strength of the concrete, 

roughness of the steel surface and diameter of the steel. As soon as 

bond breaks, the steel and concrete separates and wider cracks appear, 

producing greater slip. During and after the crack formation, pre- 

stressing tendons carry most of the load and may deform plastically, 

thereby affecting the integrity of the vessel. In addition, the effect 

of temperature and creep also adds additional problems to bond-slip 

situations.

The bonded vessels under such conditions need to be investigated 

by sophisticated numerical techniques. In the present research, the 

finite element method is adopted in order to model the bond strength 

history of the vessels under increasing loads.
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1.1. Bonded and Unbonded Tendons

Bonded and unbonded tendons and their choice for conventional pre- 

stressed concrete structures have always been the subject of much con­ 

troversy. This is more so in the case of prestressed concrete pressure 

vessels. The proponents of the unbonded tendons suggest that the loss 

of prestress in tendons due to various sources such as high temperature, 

shrinkage and creep of concrete cannot be adequately assessed owing to 

the approximate nature of analyses and material models. On the other 

hand, unbonded tendons can be inspected and restressed, thus ensuring 

their load carrying capacity for both short and long-term conditions. 

The main disadvantage of unbonded tendons lies in the incorrect assess­ 

ment of the structural reliability of their anchorages. Expensive 

equipment for inspecting tendons and recording of the losses are 

additional problems caused by the use of unbonded tendons. These are 

fully described by Bangash (47).

Vessels with bonded tendons provide reasonably good corrosion 

protection. In the bonded vessel, the prestress force is transferred 

from the steel to the concrete through the bond, thus minimising the 

influence of the structural reliability of the end anchorages. In 

principle, the grouted tendons in many ways behave like unstressed bonded 

reinforcement. It is unlikely that a sudden increase in cavity pressures 

would cause any explosive failure of the vessel. A vessel with bonded 

tendons has a well-disposed crack pattern. With bonded tendons, the 

vessel achieves high ductility, if and when a cavity pressure exceeds 

the prestressing force. The ductility of the vessel is extremely 

important, since it utilises the full strength capacity of tendons right 

up to the ultimate conditions. If any well-disposed small cracks exist, 

this ductile nature will enable the liner to span cracks without 

yielding. The biggest issue of a leaked liner will be avoided.

From the above brief discussion, the bonded vessel will perform 

better than the unbonded vessel, provided that correct assessment of the 

grouted prestressing tendons (analytical, experimental and site moni­ 

toring) have been made on reliability of the grouted prestressing tendons
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Little information is available on the behaviour of bonded vessels. 

It is intended that this investigation will give more understanding of 

the realistic behaviour of the vessel's short and long-term 

performance using bonded tendons. The techniques given in this research 

will encourage many engineers to use bonded tendons in future vessels 

for advanced gas-cooled reactors, pressurised water reactors, high 

temperature reactors, fast-breeder reactors, and even for the use of 

non-nuclear work.

1.2. Scope of the Present Research

The scope of the present research is to analyse bonded and 

perfectly bonded prestressed concrete reactor vessels. For comparative 

study, an unbonded vessel is also analysed. The vessel chosen for the 

analyses is of multicavity type, in which boilers and circulators are 

housed within the vessel wall and cap thickness.

The main investigation is based on bond between the prestressing 

tendons and the vessel concrete. An attempt has been made to carry out 

analytical study on bonded vessels. In order to corroborate results, 

experimental tests have been performed on an octagonal prestressed con­ 

crete slab and pull-out specimens. Using parameters obtained from bond 

tests, the analyses have been carried out on the slab which represents 

the top cap of the concrete vessel for an advanced gas-cooled reactor 

(AGR). Realistic material models with regard to progressive cracking 

and compression of concrete, steel yielding and bond stress distribution 

have been developed for analysis, with and without the influence of 

temperature and creep effects. The following lines cover the programme 

of this research.

Chapter 2 gives a brief review on the analytical and experimental 

work of prestressed concrete reactor vessels and end slabs. This 

Chapter also reviews the subject of bond and local bonded-slip 

relations for prestressing strands and conventional steel. This is 

then followed by Chapter 3 which covers the finite elements developed

-14-



to model vessel components. Linear equations of these elements are 

given. Chapter 4 gives non-linear material constitutive relations for 

concrete (cracking and compressive behaviour), elasto-plastic relations 

for prestressing tendons and the liner, and a non-linear bond-slip 

relation for bond linkage elements. Equations for creep and thermal 

effects have also been given. Non-linear equations are solved using 

incremental/iterative techniques which are described in Chapter 5.

The above equations are used to develop a computer program which is 

described in detail in Chapter 6. Flow charts of various segments of 

the program are also given. This Chapter is supported by a User's 

Manual given in Appendix B.

Chapter 7 describes the experimental programme carried out during 

this research. The experimental programme was carried out first to 

understand the local bond-slip behaviour of prestressing wires, and 

second to test a bonded prestressed concrete slab representing the top 

cap of the vessel. Chapter 8 gives the comparative study of the 

analytical and experimental results.

-15-



CHAPTER 2

Literature Review

2.1. Introduction

In this Chapter, an attempt has been made to briefly review the 

state of the methods of analysis and experimentation of concrete reactor 

pressure vessels with particular emphasis on bond-and bond-slip relations. 

Wherever possible, bond-slip behaviour of conventional structures has been 

examined and an analogy is made for the possible bond-slip phenomenon of 

concrete pressure vessels.

2.2. Step-by-step Review

Several conferences have been held (144, 145a, 145b, 145c, 145d, 

145e) on various aspects of the analysis, design and construction of 

prestressed concrete reactor vessels. A comprehensive review is given by 

Bangash (21a) concerning the historical development, stress analyses and 

design of vessels, mostly with unbonded tendons. It is not intended here 

to repeat this work. However, certain cases relevant to this research 

have been critically re-examined in order to give a better understanding 

of the aim of the current research.

2.2.1. Methods of Analyses

Earlier finite element analyses of concrete pressure vessels have 

been performed assuming axial symmetry in which two-dimensional elements 

have been used. Rashid (14, 15) carried out linear and non-linear 

analyses using finite element and predicted deformation, cracking and 

yielding of steel of the Fort St. Vrain vessel. The analysis performed 

on this vessel, in which tendons were unbonded, is two-dimensional.

Three-dimensional non-linear analysis of a reactor vessel has been 

carried out by Sangy et al (22, 23) in which creep effects were

-16-



included in the finite element constitutive equations. A failure 

criterion containing the effect of first and second stress invariants 

was used. The failure surface in stress space is of cone shape. The 

non-linear effect of concrete in compression is taken into account by 

changing the shear moduli which is assumed to be a function of the 

second stress invariant. The initial stress method was used to solve 

the finite element equations.

Similarly, a non-linear analysis of a reactor vessel model was 

performed by Mohraz et al (11) using the lumped parameter method.

Phillips et al (19, 20) carried out a two-dimensional finite 

element analysis on a model vessel adopted already by Mohraz et al (11), 

in which a non-linear model of concrete in compression is described by 

changing the shear moduli and the bulk moduli. An octahedral shear 

stress law was used as failure criteria once the stress had reached the 

peak value. This law as appeared there is only applicable to a biaxial 

state of stress. Cracking was modelled by using tension cut-off.

Argyris et al (10, lOa) analysed prestressed concrete reactor 

vessels using an elasto-plastic material model. The failure criterion 

of Mohr-Coulomb was used as yield criterion. A tension cut off model 

was used in tension.

Bangash (21) analysed vessels using the hypo-elastic concept to 

model the compression side of the concrete. This concept was first 

introduced by Truesdell (137) and was later used by Coons and Evans (30) 

to model non-linear behaviour of plain concrete. Bangash (21a) has 

carried out ultimate analyses of several unbonded vessels in order to 

establish a factor of safety for these vessels. To achieve this 

objective, two types of analyses were performed. The first one was a 

three-dimensional non-linear finite element analysis in which the hypo- 

elastic material model was used. The second analysis was based on the 

limit state concept. Factors of safety from both analyses compared 

favourably.

-17-



Long-term elastic analyses of reactor vessels have been carried
 

out by many other investigators (71, 73, 74, 81, 83, 85, 132a)   

England et al (74) have used the rate of creep method in which thermal 

effects were also included. Two-dimensional finite element analyses 

were performed and the results obtained were fully corroborated
. 

Kawamata et al (81) have used the rate of creep method to analyse a 

multicavity vessel. Elastic long-term stresses up to'40 years of the 

vessel's life were predicted in conjunction with their early me
thod of 

"sliced substructure" (81a). This method is an approximation of the 

usual three-dimensional finite element method.

Smith et al (83) have carried out reactor vessel analysis using a 

visco-elastic creep model. The creep compliance function of concrete 

was expressed as the Dirchlet series with temperature coefficien
ts. 

A comprehensive experimental work on cylindrical specimens was 
carried 

out under multiaxial loading and temperature. Results up to five years 

were obtained. With these results, a creep compliance function which is 

fitted to a five term Dirchlet series was obtained. This function 

was generalised for multiaxial creep strains. Three-dimensional iso- 

parametric finite element analyses, in which the creep model was inc­ 

luded, form the basis of his modified program NONSAP. No information is 

available as to whether the researchers (81, 83, 85) considered any bond- 

slip phenomenon.

Takeda et al (18) have carried out inelastic analysis of a pre- 

stressed concrete multicavity reactor vessel. A l/20th scale model was 

selected. The concrete constitutive law in compression was modelled as 

an elasto-plastic material with Drucker-Prager's failure surfac
e as 

yield criterion. Concrete in tension was considered to be a linear 

brittle material. The prestressing steel was also modelled as an 

elasto-plastic material. The vessel model was then analysed by two 

and three-dimensional finite elements. This analysis considers both 

cracking and crushing states of the vessel. Again, no consideration 

was given for the tendon bond-slip condition.
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Connor et al (17) have reported a non-linear numerical procedure 

for analysing prestressed concrete reactor vessels. Three-dimensional 

finite element analysis was adopted. The concrete in compression was 

modelled by a non-linear orthotropic model and for tension, a tension 

cut-off model was used. Steel (liner and prestressing cables) was 

treated as elasto-plastic material. Creep and temperature effects were 

also included. The stress contours and crack patterns are shown for 

the Fort St. Vrain vessel. Since the tendons are treated as unbonded, 

no consideration was given to the influence of bond on the load carrying 

capacity of the vessel.

Gallix et al (17) carried out a two-dimensional non-linear analysis 

for the multicavity reactor vessels. The vessel concrete was modelled 

by a non-linear orthotropic stress-strain constitute law and the steel 

liners and prestressing steel were modelled by an elasto-plastic material 

using Yon Mises yield criterion l/10th scale Hartlepool vessel and 

l/20th scale high temperature gas cooled reactor (HTGCR) were analysed.

A brief description of the comparative results for bonded and 

unbonded tendons has been given by Bangash (47) for a typical reactor 

vessel. No detailed analysis is available in this paper.

2.3. Model Techniques and Model Testing

In order to understand the vessel behaviour under overload conditions, 

several experimental investigations (13, 113, 113a, 113b, 114, 115, 116, 

117, 118, 119, 120, 121, 122, 123, 124) have been carried out on scaled 

models and isolated vessel components in the last decade or so. Some of 

these are reviewed here. Brading and Hills (113a) presented results of 

six models, two of which were reinforced slabs. The other four l/24th 

scale models had a span to depth ratio of 2.9. The main purposes of the 

tests were to provide information for the design of the Dungeness 'B' 

vessels. Only one model was pressurised to failure. Tests on the 

remainder were discontinued, mainly because of leakage in the liner.

-19-



Cambell-Alien et al (13, 113b) have carried out two types of 

experiment. The first one had seven 263 mm diameter slabs with clear

span to depth ratios of 3.67 and 1.835. The hoop prestress, which
2 2 ranged between 2.35 N/iran and 24.10 N/mm consisted of straight tendons

either 5.1 mm or 7.0 mm diameter in unlined ducts. On the second type 

of experiment, a small number of discs and skirted slabs were loaded to 

failure. The prestress was applied by external bolts acting against 

either one or a series of octangonal stiff rings.

Morgan (114) indicated that about twelve models slightly more 

than 610 mm diameter were tested for checking the design of the Oldbury 

and Hinkley Point 'B 1 pressure vessels. No experimental details or 

results were reported. However, it was stated that shear failure did 

not take place in any of the models.

Sozen et al (116) at the University of Illinois have carried out 

25 tests on skirted prestressed concrete slabs. The span to depth

ratios in these investigations covered a range of 1.67 to 5, and the
2 amount of force required to restraint varied between 1.52 N/mm and

2 2.90 N/mm . It was reported that eight of these slabs failed in shear

and the remaining slabs either failed in flexure or the tests were dis­ 

continued because of leakage in the pressure system. The reason for 

the high percentage of liner leakage was given as due to the usage of 

long length barrel and the lack of hoop forces to prevent the large 

displacement of the barrel stub.

Langah et al (119) reported a comprehensive description of the 

design of multicavity pressure vessels used for both the Hartlepool 

and Heysham nuclear power stations. Elastic analysis of the vessels 

was carried out using dynamic relaxation. The l/10th scale model of the 

Hartlepool model has been successfully tested for serviceability and
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ultimate conditions, and the data provided were extremely valuable for 

three-dimensional analyses. Various graphs were plotted between 

pressure deflection and pressure strain for cap and wall of the model 

at the design pressure and at 2.5 times the design pressure. Crack 

sizes for various internal pressures were given, together with a typical 

crack pattern at 2.5 times the design pressure.

Meerwald and Schwiers (115) reported a test on a l/20th scale

model of perforated prestressed concrete end slab with a span to depth
2 ratio of 3.1. The applied hoop prestress was about 10.30 N/mm . Failure

took place when the central core was forced out at a pressure of 

196 N/mm2 .

Langan and Garas (117) reported tests on more than twenty thick 

restrained circular slab models in order to study the shear failure 

mechanism. The variables investigated were the effects of bonded re­ 

inforcement, lined and unlined penetrations, span to depth ratio and the
2 level of hoop prestress. The hoop prestress ranged from 2.482 N/mm to

2 6.206 N/mm which was provided by wire-winding. The vertical prestress
2 2 varied between 1.345 N/mm and 19.035 N/mm and was provided by the

high tensile bars.

Very few models with bonded tendons have been considered. It 

is necessary to look at conventional structures for more information on 

various aspects of bond-slip characteristics.
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2.4. Bond and Bond-slip 

2.4.1. General Introduction

Although a great deal of effort was made a few decades ago to 

understand the bond characteristics between steel and concrete, the 

subject is still open to doubt and critical discussion. The questions 

to various unknown variables affecting bond and bond-slip have not been 

answered. In concrete reactor vessels subject to multiaxial loading 

conditions, the accurate investigation of bond and bond-slip with and 

without the influence of creep and shrinkage is a dilemma. In the last 

few years, awareness of the importance of bond has increased greatly. 

This culminated in an international conference on bond in concrete   

(146) in which subjects ranged from bond between cement paste and 

aggregate, to that of plain and deformed bars and prestressing strands 

and concrete. The effect of cyclic, impact and sustained loading, 

thermal and corrosion have been included. Only simple structures were 

considered. Complicated structures, such as prestressed concrete 

reactor vessels, were excluded. Nevertheless, it has become even more 

important to review the most important research papers on bond relevant 

to the current research. This review is given below.

2.4.2. Nature of Bond

It is generally considered that bond between steel and concrete is 

due to a combination of adhesion and friction. Adhesion bond develops 

first and, after a small slip, it disappears. For relatively larger 

slips, frictional bond develops between steel and concrete sliding 

surfaces. The adhesion between steel and concrete is not significant. 

The bond of plain steel is mainly due to frictional resistance which 

depends on the roughness of the steel surface and any change in its 

lateral dimension along the embedded length. The bond between deformed 

bars and concrete is radically different from that of plain steel bars. 

It is due to the interlocking of the ribs and surrounding concrete. 

Adhesion and friction resistance also exists, but the great improvement

-22-



of the bond is related to the bearing pressure of the concrete against 

the lugs. In the case of a plain bar, the failure usually occurs due 

to slip of the bar and the bar usually pulls out of the concrete. On 

the other hand, deformed bar failure is almost always associated with 

longitudinal splitting along the surface nearest the bar.

2.4.3. Bond Characteristics

Bond in pretensioned prestressed concrete is of two types : 

transfer bond (anchorage) and flexural bond. Transfer bond utilises 

a part of the available tensile strength of the steel to establish 

compressive forces in the concrete. Flexural bond results from external 

force applied on the structure. After cracking, the increase in steel 

stress above effective prestress causes flexural bond stress between 

steel and concrete. The two cases are shown in Figures (2.5).

Transfer bond exists near the ends of the member after the load 

in pretensioned steel (strand) has been transferred. The length over 

which this transfer is made is known as the prestress-transfer length 

(or anchorage length), and mainly depends on the amount of prestress 

and the surface conditions of the steel (strand). Three factors which 

contribute to bond performance are adhesion, friction and mechanical 

resistance between the steel and concrete. In the tensile zone, the 

reduction in tensile strain of the steel is generally not equal to the 

compressive strain of the concrete at the same point. There is, 

therefore, a relative movement between the steel and concrete. This 

indicates that the adhesion does not contribute much to the transfer of 

prestress. Friction assumes a greater role in prestress transfer. As 

soon as tension in the strand is released, the strand diameter tends 

to increase, resulting in radial pressure against the concrete, which 

in turn, produces high frictional resistance to slip in the transfer 

zone.

Flexural bond in prestressed concrete is of significant magnitude 

only if it is loaded up to its cracking stage. When the concrete cracks 

the bond stress in the immediate vicinity of cracks rises to some
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limiting stress and slip occurs over a small portion of strand length 

adjacent to the cracks. The bond stress near these cracks is then 

reduced to a low value. With increasing load, the high bond stress 

generates a wave from the original cracks to the far ends. The bond 

stress remaining behind this wave is always lower than the maximum 

value at the peak of the bond stress wave. If the peak of high bond 

stress wave reaches the prestress transfer length zone, the increase in 

steel stress resulting from the bond-slip decreases the steel diameter, 

which reduces the frictional bond resistance in this region. Hence 

mechanical resistance in a transfer zone becomes important. This 

resistance is at a minimum for plain smooth wire and maximum in the 

case of strand.

In order to simulate the above two conditions in prestressed con­ 

crete beams, there have been a number of experimental investigations of 

pull out and beam tension test specimens. Further empirical expressions 

were obtained from these tests which could be applied to practical 

structures.

In order to understand the bond characteristics of prestressing 

strand,.Dably (96) carried out a series of tests involving four pre­ 

stressed concrete beams. Each was reinforced with H.11 mm (7/16") 

strands. The anchorage length was determined by measuring the concrete 

strains at the level of the strand. An anchorage length of 610 mm to 813 mm 

(24" to 32") was reported and high values for a larger concrete cover 

under the strand. Base (97) reported an anchorage length oc 228.6 mm to 

482.6 mm (9" to 19" of 5/16") strand. Ratz (98) conducted 200 tests on 

concentrically prestressed concrete prisms to study the concrete 

strength on anchorage length. Bond in this investigation was found to 

be the direct function of concrete strength for any type of wire and 

strand. An empirical formula was given in order to calculate the slip 

within the anchorage zone.

Dinsmore et al (99) performed 42 pull out tests and four pre­ 

stressed beam tests in order to study the anchorage length required to 

transfer the prestressing force. Clean strands of 11.11 mm (7/16")
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diameter were used. The anchorage length to transfer the prestress 

force of 950.8 N/mm2 to 1143.74 N/mm2 (138 KSI to 166 KSI) range from 

228.6 mm to 914.4 mm (9" to 36"). Rehm (100) carried out tests on 

16 different types of prestressed steel using concentrically prestressed 

concrete beams. The general indication of results shows that the 

increase in concrete strength lead to a decrease in anchorage length. 

The release of stress, the time effect on anchorage length, was also 

studied. Kaar et al (101) performed the influence of the concrete 

strength on the anchorage length of a seven wire strand by testing 

36 concrete prisms. Preston (102) reported a comparative study of an 

anchorage length of clean and rusted 12.7 mm (5") strands. Results 

indicated that for major cases, the bond characteristics were almost 

identical. Hulsbos et al (103) studied the load capacity of pretensioned 

prestressed concrete beams with web reinforcement. They reported 

anchorage length of 11.11 : 

stress was 457.2 mm (18").

anchorage length of 11.11 mm (7/16") strand for 1067.95 N/mm2 (155 KSI)

Over et al (104) investigated the influence of the strand diameter 

on anchorage length with the aid of six square concrete prisms. The 

diameters investigated were 63 mm, 9.25 mm and 12.7 mm (1/4", 3/8" and 

i") and results indicated that anchorage length increased with the 

increase in strand diameter. Hanson (95) studied the influence of 

surface roughness on anchorage bond and flexural bond strength in 12 

prestressed concrete beams using 11.11 mm and 12.7 mm (7/16" and 3") 

strand. Clean as received, partially rusted and rusted strands were 

tested. Results show a 30% improvement in the anchorage length when 

using rusted strand. The flexural bond strength of the beams rusted 

was high than that for clean strand.

Evans and Robinson (94) tested pretensioned prestressed concrete 

beams by measuring the strain and slip distribution along the steel wire 

during loading by means of X-ray photography. Their findings indicate 

that bond stresses were only detected when cracking commenced, and 

as the crack opened, the values of bond stresses increased until a slip 

of 0.1 mm was reached. Thereafter, the band stresses began to decrease.
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Bond stresses found in this investigation are much higher than those 

normally obtained for wires. They concluded that the tangential 

friction was the main source of bond in cracked beams and the measured 

high bond stresses were due to this kind of friction.

Hanson and Kaar (95) carried out tests on rectangular pre- 

tensioned beams to study the flexural bond of strand. Strain in strands 

was measured by instrumenting with electrical resistance strain gauges

at spacings ranging from 300 mm to 500 mm. The results indicated
2 2 average flexural bond stresses ranging from 1.05 N/mm to 2.75 N/mm for

12.7 mm strand. Before cracking, the bond stresses were very small. 

After cracking, the maximum bond stress progressed from the cracks 

towards the beam ends as the load was increased. The conclusion was 

drawn that in pretensioned beams, failure in bond mainly depends on the 

anchorage length, i.e. the distance from the section of maximum steel 

stress to the beam end.

Stocker and Sozen (105) reported the results of 486 pull out and 

five beam tests using strands and plain wires with embedment length of 

25.0 mm. These tests were performed to provide information on the 

relationship between bond and slip and to study the effect of the 

various variables on the bond strength.These are (a) strand diameter, 

(b) concrete strength, (c) shrinkage, (d) settlement of concrete, (e) con­ 

fining pressure, (f) concrete cover, (g) time effects. Some of the 

results from this investigation was reproduced and are shown in Figures 

2.1. and 2.2. Figure 2.1. shows a slight trend towards increasing bond 

stress due to an increase in strand diameter, but a study of all the test 

data indicated that this trend was not statistically significant. The 

bond strength was found to increase significantly with the concrete

strength (see Figure 2.2.). The unit bond force increased by approxi-
2 mately 10% per 7 N/mm of concrete strength. High bond strengths were

also obtained due to dry cured specimens, concrete cover and lateral 

pressure. The conclusion was drawn that initially bond stress of 

strand increases at a slip too small to be measured. After having 

reached a value of approximately 0.0025 mm, .the slip increased more
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rapidly. Beyond that point, the bond strength continued to increase at 

a small rate. Some tests on plain wire (the middle wire of the strand) 

showed that the bond strength of strand was higher than the bond 

strength of plain wire. Finally, the bond characteristics obtained in 

the pull out tests were used in calculating the anchorage length of a 

strand in a pretensioned beam. It was shown that the calculation based 

on the results of 25 mm embedded length of pull out tests using non- 

prestressed strand provided a reasonably safe estimate of the anchorage 

length.

More recently, Edward and Picard (90) reported bond pull out and 

tension tests on 12.7 mm strand in order to obtain the local bond 

stress-slip relationship. They used 38.1 mm embedded length with 

three concrete covers of 12.7 mm, 25.4 mm and 38.1 mm. The results 

obtained, plotted as bond stress-slip curves showing elasto-plastic 

type behaviour, are reproduced in Figure 2.4. The results indicated 

that the average maximum bond strength decreased when the concrete cover 

was increased. Also, some empirical expressions for crack widths and 

spacings were given.

Jeager (89) presented a state of the art of corrosion protection 

of prestressing tendons in prestressed concrete reactor vessels. The 

advantages and disadvantages of grouted and the non-grouted vessels 

were also given. Bangash (47) presented in detail certain arguments for 

and against the use of bonded and unbonded tendons in prestressed 

concrete reactor vessels. Two-dimensional finite element models were 

used to calculate bond stresses for bonded reactor vessels. On the 

basis of this calculation, various tendon types and their sizes for 

bonded and unbonded tendons were recommended.

Morris Schupack (107, 108, 109) carried out various tests on post- 

tensioned grouted tendons, mainly used in containment vessels. Grouting 

tests of a large 54 strand post-tensioning tendon (107) were performed. 

The tendon was embedded in a concrete beam and it was stressed at 76% 

of GUTS. After cutting the tendon at 31 days of grouting, the bond 

transfer length of 3.1 mm- to 3.7 mm was found. Mottock et al (110)
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carried out a comparative study of prestressed concrete beams with and 

without bonded tendons. The primary variables were the presence and 

absence of bond and the amount of bonded reinforcement. The results 

reported show that the unbonded post-tensioned beams with minimum re­ 

commended reinforcement had serviceability characteristics, strength 

and ductility equal to, or better than, those of comparable bonded 

post-tensioned tendons.

Naus (112) studied the behaviour of grouted and non-grouted 

tendons in relation to prestressed concrete reactor vessel application. 

The various aspects of bond performance were studied experimentally. 

Flexural tests were performed on beams (dimensions of 3.05 mm length, 

0.15 m width and 0.31 m depth) prestressed with a 12.7 mm diameter 

seven wire prestressing strand. Prestressing load (0.5 to 0.7 GUTS) 

and loading rates of 0.074 KN/second to 74 KN/second were adopted in 

the tests. The beams were tested in flexure at a loading rate of 

0.074 KN/second. The results indicated that the grouted tendon beams 

have increased cracking and ultimate loads for the same level of pre­ 

stressing and also improved crack control, i.e. more cracks with smaller 

widths. On the other hand, rates of loading did not indicate any 

significant effect on the ultimate load on either tendon system.

Experimental studies of bond between strands and concrete have 

been carried out by Javor and Lazar (147). Relationships between the 

compressive strength of concrete and the transfer length of a seven wire 

strand were obtained. The results obtained indicate that there is a 

relationship between the strand slip and transfer length and that the 

stress distribution in the strand over the transfer length is 

approximately linear.

None of the above experimental tests on bond, except those of 

Stocker and Sozen (105) and Edward and Picard (90) were carried out for 

local bond-slip relationships. The local bond-slip relationship of 

various steel bars (e.g. plain bar, deformed bar, prestressing strand 

and wire) is very important, since this indicates a local constitutive
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relation at the interface of steel and concrete. This relationship has 

an analogy with the stress-strain relationship of steel. Various 

difficulties were encountered in obtaining a local bond stress and slip 

on pull out and tension tests (Fig. 2.6.)- A large number of pull out and 

tension tests were carried out (94, 106a, 90, 91, 106b, 93, 106, 105) 

differing in the dimensions of the test specimen, measurement of bond 

stress and slip. A bond pull out test used by Edward and Picard is 

shown in Figure 2.3. Nilson (92) established the local bond-slip for 

deformed bars by indirectly calculating strains of steel and concrete. 

An extensive study of local bond-slip behaviour of plain and deformed 

reinforcing bar was made by Yannopoulous (91) under static and repeated 

loading. Bond-slip curves are reproduced in Figure 2.7. for plain bars 

(16.0 mm diameter).

2.4.4. A Case for Present Research

The above literature review indicates that not many reactor vessel 

analyses and experiments have been performed for bonded cases. Most of 

the analyses were performed on unbonded reactor vessels. In order to 

study the bonded reactor vessels, it is intended in the present research 

to carry out three-dimensional non-linear finite element analyses in 

which the effect of bond is included. For comparative purposes, an 

unbonded reactor vessel is also analysed. The review also indicates 

that significant work has been done for bond and bond-slip relationships 

for plain and deformed steel bars. Very little in comparison has been 

done on bonded prestressing wires and strands. For small or large 

tendons, it is rare to find any reference work on their bond with 

concrete. In order to study bond behaviour experimentally and to 

determine local bond-slip relationships, the following experiments have 

been carried out :

(a) Prestressed concrete bonded slab

(b) Pull out tests on prestressed concrete beams

These are fully described in Chapter 7.
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Figure 2.6 Types of Bond Tests
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CHAPTER 3

General Finite Element Analysis

3.1. Introduction

This Chapter discusses the general finite element analysis required 

for the bond strength investigation of prestressed concrete reactor 

vessels. Three-dimensional isoparametric solid elements were used to 

model the vessel concrete. Liner and prestressing tendons (bonded re­ 

inforcements) were modelled by curved membrane and axial line elements 

respectively. The interaction between steel and concrete was modelled 

by specially developed bond- linkage elements. The displacement finite 

element method was used throughout. As the literature covering the 

finite element method is vast and comprehensive (1, 2, 3, 4), only the 

essential features to develop these elements are given. The displace­ 

ment finite element method is presented first, followed by the expressions 

for the element stiffness matrices, loads, strains and stresses. 

Elastic (linear) material constitutive relationships are assumed in this 

Chapter.

3.2. The Displacement Finite Element Method

The displacement finite element method is adopted. Displacements 

at nodes are unknown variables. The displacement field within each 

element can be expressed as :

(3.D

- la)

where Qc - element nodal displacement vector /  »
U^ - .displacements at node i
*+*

N - element shape function matrixr~*
N - shape function of node i
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- identity matrix of n x n

- number o£ nodes of an element

- denotes a matrix or a vector

When the displacements are known at all points within each element, the 

strain at any point within the element may be written as :

£= Z Belli = BUe (3.2)

(3.5)

where B - strain-displacement matrix for an element

- strain-displacement matrix at node i

In general, the stresses are calculated within the element using the 

following relationship :

(3.4)

where <>0 - initial stresses

60 - initial (thermal) strains
*+*

3) - elastic constitutive material matrix

When virtual displacements ; dU.e, are applied at the nodes, the sum of work 

done by the stresses, distributed body and surface forces over the 

element volume (vol) and surface area(3l is respectively given by :

(3.5)

where Fi - surface force per unit surface area
* %» A

IG - force per unit volume <w A

In order to maintain equilibrium within the element, a system of 

external nodal forces, 6«, must be applied, and the external work 

equated to the internal work :
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(da*) & = Cciu')(jBdU,o£, - fNT ps as - f NT PG avoO __ (3.6)
vot S ~ >v£~ /"-^

Equation (3.6) is valid for any set of virtual displacements,dlie , 

and may be eliminated from both sides of Equation (3.6). Substitute 

Equations (3.2) and (3.4) to obtain :

(3 7 )

Equation (3.8) is the force-displacement relationship with stiffness 

transformation. In which :

(a) The element stiffness matrix, ke= fBTDBdvol (3.8a)
f*+ J *S* ^ *^»

Vot

& j*

(b) The element body force, R=-\ NT fccW (3.8b)
^** 1 ^*» ^^

vot

(c) The element nodal force due to surface pressure ,jJ3=-j$J|cls (3.8c)
s

(d) The element nodal force due to initial stress, GT= \B(>duo£ (3.8d)r»   \**f*°
voe

(e) The element nodal force due to initial strain, Fe^-Vjfoj^dvol (3.8e)~ """

Equation (3.8) is assembled to form a global stiffness matrix and load 

vector. The following force-displacement relationship for the entire 

structure is written as :

P = KU (3.9)

where - stiffness matrix of the structure
*^^

P - generalised force vector for the structure
/ w

Equation (3.9) is solved for the unknown nodal displacements, IJ.

The strains and stresses at any point within the element are calculated

using Equations (3.2) and (3.4) respectively.
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3.3. The Solid Isoparametric Elements

The solid isoparametric elements represent concrete of the pre- 

stressed concrete reactor vessels and are shown in Figures (3.la), 

(3.1b) and (3.1c). The essential features of these solid isoparametric 

elements in relation to the development of their stiffness matrices and 

load vectors are briefly given below.

3.3.1. Strain-displacement Relation

The strain displacement relation given earlier in Equation (3.3)

is now invoked. For the case of three-dimensional solid elements,

the B of node i is given below :

ax
0

o
9Ni
^Y

O

alt

O

ay
o
9NC.
ax

~S>£

O

0

0

32
O

9Ntay-

ax"

(3.10)

with
n&=?, (3.10a)

Appendix Al.1.4. gives full details of the coordinate trans­ 

formations between Cartesian and curvilinear axes. The Jacobian matrix 

J, and derivatives of Equation (3.10) are obtained in terms of deri­ 

vatives with respect to curvilinear coordinates. As there are three 

degrees of freedom at each node, the dimension of B matrices for the 

8, 20 and 32 noded elements is (6x24), (6x60) and (6x96) respectively. 

Although the 32 noded element is not used in this research, nevertheless 

it is included for future requirements.
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3.3.2. The Stress Calculation

The stress at any point within the element is given by Equation 

(3.4) and is now rewritten as :

2r= S < e - e.) + 3 **" C3.ii)

in which

,£Y. ,&.! o, o,o3T (3

where D - anisotropic material matrix for concrete (see~<*4

Equation (A2.1)

For isotropic cases, all ^'s and E's along three principal axes are 

the same respectively.

3.3.3. The Element Stiffness Matrix

The element stiffness matrix given in Equation (3.8a) is now 

rewritten as :

Ke = fBTDBdvol= f \ f ^DBdAJcl§d^dU5 -^ (3.12)

where D, E and detJ are defined by Equations (A2.1), (3.10) and 

(A1.4a) respectively.

3.3.4. The Load Vectors

The various load vectors of Equation (2.8) are now rewritten as

-38-



g +1 Jl *l T

-\ -I H "

B" =~ NT |^ds (3.13b)

(3.13c)

R!!= f f f BTJ> detJ"d|cMc^ (3.13d) 
-l -i _i ~"

where detJ = determinant of Jacobian

Further details of the calculation of the pressure load vector 

(Equation (3.13b)) are given in Appendix Al.1.5. The point load vector 

idea is also extended for the loads which are not acting directly at 

nodes. These loads are named as patch loads (see Appendix Al.1.6.).

The integrals of Equations (3.12), (3.13a), (3.13b), (3.13c) and 

(3.13d) are carried out using the Gauss quadrature formula (2).

3.4. The Membrane Isoparametric Elements

The membrane elements are used to model the steel liner in a 

prestressed concrete reactor vessel and are treated as thin shell 

elements. The elements are capable of transmitting only in plane 

actions and the strain in thickness direction is assumed constant 

(plane stress conditions are enforced) . These elements are compatible 

with the one face of the solid elements modelled for concrete. The 

element local, global and curvilinear coordinate systems are shown in 

Figures (3.2a), (3.2b), and (3.2c). Appendix A1.2. gives details of 

shape functions, their derivatives and B matrix. Details for these 

elements are given below.

3.4.1. The Strain-displacement Relations

As the element may be in any direction in the three-dimensional 

space, the strains refer to a local orthogonal Cartesian system 

(X 1 . Y 1 . Z'). The strain components which contribute to the strain
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energy are from Equation (A1.10).

3)C

3Y'

or S' = 8'U'
*^ /^» /^

After carrying out the transformation, the f
ollowing may be written 

(see Appendix A1.2) :

'= (3.14a)

3*1

The B matrix in this case is slightly differ
ent. Full details are given 

in Appendix (A1.2). For node i the B matrix can be rewritten as 

(Equation (A1.23)).

Rx'x dVi

(3.15)dr

Further details about the strain-displacemen
t matrix are given in 

Appendix Al.2.

3.4.2. The Stress Calculation

The local stresses at any point are written 
as

in which

£-' = DM e-fc"* *** t** **•

= C ,£y0' ,

(3.16)

(3.16a)
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For the plane stress case, the elastic material matrix is given by :

1 Vs O

(3.17)

Where ES and Vs are the modulus of elasticity and Poisson's ratio of steel

3.4.3. The Element Stiffness Matrix

The element stiffness matrix for this element is given by :

(3.18)
-i -I

In which I)Mof Equation (3.17) and B of Equation (3.15) are used. The 

numerical integration is again adopted for Equation (3.18).

3.5. The Line Elements

The line elements are used to model the vessel prestressing tendons 

and reinforcements (primary and secondary). The elements are only 

capable of transmitting axial stress and strain and are classified 

according to the following categories :

(a) Two node line element (Direct Approach)

(b) Two, three and four node elements (Isoparametric Approach)

(c) Isoparametric line element in the body of solid element (Body 

Element)

3.5.1. Two Node Line Element (Direct Approach)

This is the simplest element (Figure (3.3a)) in the series of 

line elements. The element is straight with length L, end nodes 1, 

2, cross-sectional area, A, and modulus of elasticity Es. The follow­ 

ing displacement function is taken into consideration :
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U'= Go + CtiX' (3.19)

The stiffness matrix in global system can be written as :

Ke=TT K L T (3.20)

In which kt.is the element stiffness matrix in local system. This may 

be written as :

KL= .EsA * _ \ (3.20a)
Txi *- [-i

AndT is the transformation matrix

/>*
2*6

0/O,0

0, 0 > 0, t\,
(3.20b)

where C^ , vnj ,^ are the direction cosines of element axis with respect 

to global axes. The explicit form of Equation (3.20) is given in 

Appendix Al, Equation (A1.25).

The local strain and stress are now written as :

£x'= 1. L^CU2-U,)-i-wi l tv2-v1)-vnl CHx-v4 1n (3.21a)
L*

'-S)c (3.21b)

where ^ , \j. , w^ and Ui , Vi , VlL are the global nodal displacements of 

nodes 1 and 2 respectively. Es is the modulus of elasticity and£Xothe 

initial strain.

3.5.2. Isoparametric Line Elements

The concept used in this case to develop the stiffness matrix is 

very similar to that for the solid and membrane elements developed in 

the previous sections. The shape functions, derivatives and the strain- 

displacement matrices for these elements are given in Appendix Al.3.2.
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The element stiffness matrix is then written as (Figures (3.3a), 

(3.3b) and (3.3c)) :

r+1 T NG T
Ke = [ BtsB A($) Lcl^IlBjEsBjLjUjA^j) (3.22)

-1 J-I

where

t=i V.J

where A^ - cross-sectional area at node i, n = number of nodes

on element

NG - number of integration points, N{.= shape function at 

node i

Ejjjjhave been defined earlier. Reference is made to Appendix Al.3.2. 

The strain and stress are calculated as follows :

£x'= BUe (3.23)

0*= Es£,x'. (3.24) 

where U5 is the global nodal displacement vector for the element.

3.5.3. Line Element in the Body of the Solid Element (refer to 

Figure (3.4))

The main use of this element is in modelling the reinforcement 

inside the concrete. The solid element, together with this element 

represents a composite element. An assumption made in deriving the 

8 matrix (Appendix A3.3) is that the steel has to lie in the directions 

of local curvilinear axis (^ , v? ,t, ) of the parent solid element. The 

stiffness matrix of this element may be written as :

& r"1 T 
K = \ B Es B AU) detJ d& (3.25)
^+ J ***+ *** ' j ^ '

-\
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where B is defined by Equations (A1.36) and (A1.37) and detJ is defined 

by the determinant of Jacobian matrix.

3.6. The Three-dimensional Bond-linkage Element

The three-dimensional bond linkage element, the Ahmlink element, 

has been developed to model the interface relationship between steel and 

concrete. This element connects the line and the solid elements together 

and has two nodes as is shown in Figure (3.5). This element was first 

developed in a two-dimensional form by Scordelis (8) and was later used 

by others (9, 44). In this work, the element is extended to three 

dimensions. Physically, the element does not exist, but its mechanical 

action is represented by three orthogonal springs connected in the hori­ 

zontal, vertical and lateral directions to steel and concrete elements. 

The horizontal spring represents the bond stiffness and acts as bond 

between the steel and concrete. The other two springs represent the 

vertical and the lateral adhesion between the steel and concrete. The 

procedure for the derivation of stiffness matrix and computation of 

stresses is given below :

Let X, Y, Z and X', Y', Z 1 , be the global and the local coordinate 

systems (Figure (3.5)) respectively. The direction cosines of the local 

axes (X 1 , Y', Z') with respect to global axes (X, Y, Z) are (1, m, n), 

(p, q, 0) and (r, s, t). Let P, Q be the line element nodes. The 

direction cosines in terms of nodal coordinates may be written as 

follows :
X ft _ Y -. Vr> — \fo ZQ

; M =. —•

r= ~^ n • s=. -^" ynn — • t = vl i-n*
' >ll-nz (3.26)

in which L= V (X^-Xpf4- (Yq-Yp^ZQ-Zp)7" (3.27)
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In the case of l=m=O and n=l, the direction cosines take the following 

values :

= 0 ; o,= l i t=o ; T=-l ; S=o (3.28)

With this definition for the direction cosines, the local X' is always 

tangential to line element with the other two directions being 

orthogonal to it.

and ASt be the incremental slips in the horizontal, lateral 

and vertical directions of the steel element. The incremental relation­ 

ship between the slip and the nodal displacements can then be written 

as :

or

'ASK "

ASv
A5£

V. _

' =

0 Wl VI 0-i t -m t -n L , m , n

^ >-<% , o , (3,^,0
-r , -s , -t r , s, t* *~

0

ASe = T All6

r~ ••

Aw't

AUj
AVj

^A^j _

(3-29)

(3.29a)

where T is the transformation matrix,Aji are the global element dis­ 

placements.

The local incremental bond stress and bond-slip may be written as :
"AOfi"

AOv

40}

>
Eh 0 0 "

O Ey O

_o o Ee _

<

4Sh'

ASv

AS«_

or

(3.30)

(3.30a)

where E , EV and Efc are the bond-slip moduli in the three directions.

These can be obtained by using an idealised bond-slip curve. These 

curves are shown in Chapter 2 and elsewhere in this thesis.

Here Eh=
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whereA(5,4Sare the incremental bond stress and slip from a specified 

bond-slip curve.

Assuming bond stresses as average stresses along the length of the 

steel with length L, the incremental nodal force and the stress relation 

may be written in the following form :

e = TTcLL TT AO-be (3-31)
^*^ ^** w

where

Af e = C APu , A&S APJ , AP0J , 

CL - diameter of steel embedded in concrete 

TtdL - surface area over which the linkage element is 

connected with the steel

Now the relationship between the incremental nodal forces and the 

incremental displacements by substituting Equation (3.29) and (3.30) 

in Equation (3.31) :

APe = KdL TT Eb TT All6 ^ (3.32)
/NX *"•• /-<^* **>* /~>*

APe = Kb AU6 (3.32a)

where Kb = TTclL TTEuT ^ (3.32b)
/ ^ *^* **"*

Kb - bond- linkage stiffness matrix 
Tx6

The explicit form of Kb is given in Appendix (A1.5).

The stresses in terms of nodal displacements can be calculated by sub­ 

stituting Equation (3.29a) in Equation (3.30a) as follows :

= ENTAIL* (3.33)
v~ f
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"Z

X

Global Axes

(a) 8 Noded Solid Element

(b) 20 Noded Solid Element

13

(c) 32 Noded Solid Element

Figure 3.1 Isoparametric Solid Elements
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XYZ - Global Cartesian System 
X'Y'Z 1 - Local Cartesian System

(a) 4 Noded Membrane Element

(b) 8 Noded Membrane Element

10

II

(c) 12 Noded Membrane Element

Figure 3»2 Isoparametric Membrane Elements
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Global Axes

(a) 2 Noded Line Element

(b) 3 Node Line Element

(c) *f Noded Line Element

Figure 3.3 Isoparametric Line Elements
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Solid Elements

Global Axes

Line Element
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Constant
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Solid Element

Figure 3.^ Line Elements in the Body of Solid Element
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(b) Direction Cosines

Vertical 
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Steel

Concrete
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(c) Bond Representation..

Figure 3.5 Three Dimensional Bond Linkage Element



x',u'

(a) Solid Element

* Z

Global Axes

(b) Membrane Element

\
(c) Line Element

e X,U

X'Y'Z* - Local Coordinate System at Node i 

6 - Angle Between X and X' Axis

Figure 3.6 Inclined (Skew) Boundary Supports
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CHAPTER 4

Constitutive Relations for Concrete and Steel

4.1. Introduction

During the past two decades, considerable research and development 

effort has been devoted to the analytical modelling of concrete structures 

Different techniques have been developed in order to model linear and 

non-linear behaviour of concrete and steel. Despite all this effort, no 

one method has come out as yet to solve the complex nature of the multi- 

axial behaviour of concrete under compression, cracking in tension and 

related phenomena such as aggregate interlock, dowel action of steel 

(reinforcements and prestressed tendons), bond-slip between steel and 

concrete, temperature and creep. In this Chapter, an attempt has been 

made to present a unified approach by bringing together all these areas. 

In order to achieve this objective, this Chapter gives the non-linear 

constitutive relations of concrete (compression and tension cracking), 

elasto-plastic constitutive relations of steel (liner and prestressing 

tendons) and non-linear bond-slip relations at the steel-concrete inter­ 

face. These relations are further extended by the inclusion of thermal
f

and creep effects.

4.2. Literature Review on Compression and Cracking of Concrete 

4.2.1. The Characteristic Behaviour of Concrete

The characteristic stages of reinforced concrete behaviour can be 

illustrated by a typical load-displacement relationship as shown in 

Figure 4.la. This highly non-linear relationship is roughly divided into 

three intervals : the "uncracked elastic stage", "crack propagation" 

and the "plastic" stage. The non-linear response is caused by two major 

material effects, i.e. "cracking" of concrete and "plasticity" of steel 

and the compression of concrete. Moreover, time-independent non- 

linearities arise from the non-linear behaviour of the individual
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constituents of reinforced concrete, for example, bond-slip between 

steel and concrete, aggregate interlock of a cracked concrete and dowel 

action of re:r.forcing steel. The time-dependent effects, such as 

creep, shrinkage and temperature change, also contribute to the non­ 

linear response.

In all these areas, multi-dimensional stress-strain relations 

have been developed which adequately describe the basic characteristics 

of concrete materials subjected to monotonic and cyclic loading. These 

constitutive equations are the most fundamental relations required for 

any analysis of reinforced or prestressed concrete structures. Several 

approaches for defining the complicated stress-strain behaviour of 

concrete under various stress states can be divided into four main 

groups :

1. Representation of given stress-strain curves by using curve 

fitting methods, interpolation or mathematical functions.

2. Linear and non-linear elasticity theories.

3. Perfect and work hardening plasticity theory.

4. The endochronic theory of plasticity.

Looking at the mathematical representation of concrete in 

compression, the three models, namely hypoelastic (9, 31, 30, 40, 41, 42, 

44), plastic flow (10, 24, 27, 28, 38, 39, 51, 52, 111) and endochronic 

(63, 64) are widely accepted.

The hypoelastic models have been used in various forms. The 

earlier forms of hypoelastic models to represent the non-linear behaviour 

of concrete were based on the non-linear elasticity (9, 31, 44). In 

these models, the material constitutive matrix depends on the current 

state of stress, the increment of stress during loading calculated 

generally as :
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In numerical applications, the incremental relations of Equation (4.la) 

are combined with an equilibrium equation as :

where i is the point on the non-linear stress-strain curve

D = material matrix at stress level ov.,**    

Initially the concrete is assumed isotropic. However, due to the 

dependence of material moduli (E and V) on different stress components, 

a stress induced anisotropy occurs. Many researchers later on took 

interest in the anisotropicity of concrete. A hypoelastic model of 

degree one is proposed by Coon and Evans (30) in which concrete moduli 

depends only on two stress invariants. Strains in this model are implied 

to be infinite at maximum stress. A similar concept of hypoelastic 

model is used by Bangash (21, 22) where non-linear behaviour of concrete 

was adequately modelled using orthotropic approach. Similar orthotropic 

models (17, 40, 41, 42) have been developed in which concrete moduli are 

calculated from a non-linear uniaxial stress-strain curve (34) in 

individual principal stress directions. The effect of biaxial or tri- 

axial stress ratios on the concrete moduli ha s been taken into 

consideration.

Non-linear incremental -.elastic models are proposed by Phillips et 

al (19, 20) in which the bulk modulus (K) is assumed constant and the 

tangential shear modulus (G) is assumed to be a function of the octa­ 

hedral shear stress only. A similar approach has been adopted by Cedolin 

et al (29) who considers the bulk and shear moduli to depend on all the 

stress invariants. The proposed model is applicable to triaxial com- 

pressive states only.

Another triaxial model of non-linear type was proposed by Saugy 

et al (22, 23) in which the bulk modulus was considered as constant while 

the shear modulus was assumed, to vary as logarithmic function of the 

second stress invariant. This model has been used for three-dimensional
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analyses of prestressed concrete reactor vessels. This model is 

fully corroborated with experimental results.

Ottosen (36) uses a non-linear elasticity model in which secant 

values of modulus of elasticity (Es) and Poisson's ratio (V3 ) are 

changed according to non-linearity index. The non-linearity index is 

determined by triaxial failure criterion proposed also by Ottosen (35). 

The model includes the effect of all three stress invariants, concrete 

dilatation near failure and the tensile state of stress. The failure 

criterion (35) contains all three stress invariants and it corresponds 

to a smooth convex failure surface with curved meridians, open in 

'negative direction of hydrostatic stress axis. The trace in the 

deviatoric plane changes from nearly triangular to more circular shape 

with increasing hydrostatic pressure. This failure criterion for 

concrete is known as "four parameter model".

In many other investigations the non-linear compressive behaviour 

of concrete is represented by the flow theory of plasticity (10, lOa, 

38, 39, 51, 52, 24, 27, 28, 18, 111). In these models the main effort 

has been to develop suitable yield criteria, flow rules and hardening 

and softening rules to get a good approximation of non-linear behaviour 

of concrete. Argyris et al (10, lOa) have used Mohr Coulomb and 

Drucker Prager yield criteria. William et al (24) have used a more 

refined concrete yield surface (five parameter model) in conjunction with 

the flow theory of plasticity. Chen et al (27, 28) in their elasto- 

plastic models, investigated the post-yield behaviour of concrete by 

including the hardening rules of plasticity. In all the elasto-plastic 

models of concrete the objection is that the flow rule of plasticity is 

not applicable to concrete.

Another concrete compressive model is proposed by Bazant and Bhatt 

(63) and is called the endochronic theory inelastic model. The theory 

of the model is very similar to plasticity model except that it does 

not have yield surface. The theory was first proposed for steel by 

Valanis (65). Important characteristics of concrete, such as dilation,

-56-



softening and realistic failure stresses are simulated, and the model 
can be applied to general state of stress. All the inelastic concrete 
parameters were determined with only concrete compressive strength and 
are applicable to a particular type of concrete. A critical appraisal 
is given (66) of this model in which doubts have been expressed regarding 
the model's stability.

Baker (150, 151) suggested concrete failure criteria which was 
based on the fact that concrete has hetrogeneous system and the 
principal causes of cracking and failure are due to the differential 
stiffness between the aggregate, matrix and their interface, the bond 
interaction and the weakness in tension of the mortar matrix. He 
modelled the failure surface by using a tetrahedron (Figure 4.1b) in 
which the Poisson thrust ring, plastic flow and cracking effects are 
represented by the relative stiffness of the rods, which, in turn, 
depend on the changing behaviour of load. He developed expressions 
assuming that crack forms in the mortar pocket then eventually extends 
around the stone interfaces. It is an impressive contribution to 
improving the situation in which the Poisson 's ratio, V , and the 
Young's modulus, E, change rapidly as the failure approaches. The 
following two equations were proposed by Baker (150) :

°l * °» =, 1 + 4,52. for o^> 0-^05 (4.2a)

for <r-|=! a^>o^ (4.2b)

where o* , o-z , 05 are the principal stresses and 0£ is the uniaxial 
compressive strength of concrete.

A test case in the above equations proves what Vile (152) has 
established. It is interesting to note from the above that the triaxial 
compressive quadrant of stress space can be achieved by rewriting 
Equation (4.2a) and (4.2b) in the following form :
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<^ = 0^ + 3-5 05 (4.2c) 

*i = H0£  * 5 03 (4.2d)

When Equations (4.2c) and (4.2d) are plotted in stress space, as shown 

in Figures (4.1c) and (4.Id), the failure envelope agrees both in shape 

and magnitude as suggested by Hannant and Frederick (153). In the case 

of high triaxial compression, when (<^ +°i+«p> I6<% the constants in 

Baker's equations need to be adjusted.

The above experimental equations are flexible enough to accommodate 

all the experimental parameters of researchers mentioned earlier. Any 

new experiments to be carried out must be such to warrant the necessary 

accurate parameters required by Baker's equations. In this regard, 

efforts have been made by Chinn and Zimmermann (141) and Acroyd (154) 

and Newmann(138).

4.2.2. Concrete Cracking Models

In the finite element analysis of concrete structures, three 

different approaches have been employed for crack modelling :

(a) Smeared cracking model.

(b) Discrete cracking model.

(c) Fracture mechanics model.

The selection of any of the three models depends upon the purpose 

of the analysis. In the smeared cracking model, the cracked concrete 

is assumed to remain in continuum, i.e. the cracks are smeared out in a 

continuum fashion. Here, an assumption is made that after first cracking, 

concrete becomes orthotropic or transversely orthotropic and one of the 

material axes has oriented along the direction of cracking. In this 

approach, shear strength reserves due to concrete aggregate interlocking 

can be accounted for by retaining a positive shear modulus. Here the 

crack is not discrete, but the model considers an infinite number of 

parallel fissures across the finite element.
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An alternative to the above model is the introduction of "discrete 

cracks" (8). This is done by disconnecting the displacement at nodal 

points for adjoining elements. Here the difficulty is that the location 

and orientation of the cracks are not known in advance. Hence geo­ 

metrical restrictions imposed by the preselected finite element mesh can 

hardly be avoided. To some extent, this can be rectified by redefining 

the element nodes. Such techniques are complex and time-consuming. 

For problems involving a few dominant cracks such as the diagonal tension 

crack in reinforced concrete beams, the discrete model offers a more 

realistic representation, i.e. this crack represents a strain dis­ 

continuity. The success of fracture mechanics theory is based on the fact 

that concrete is a notch-sensitive material and the cracking criterion 

based on tensile strength can be handled without being unconservative. 

Bazant and Cedolin (148) have produced some results. At present this 

area is being very actively studied by several researchers (148, 149).

The cracking of concrete in tension has been studied by various 

investigators. The first such study using finite elements was made by 

Ngo and Scordelis (8). They treated both steel and concrete as linear 

elastic materials while incorporating linear elastic bond-linkage 

elements. Here cracks are predefined and are represented by separation 

of nodal points. Nilson (9) extended this work by introducing non-linear 

material behaviour. With crack propagation and hence continually 

redefinition of structural topology made this approach unpopular. 

Franklin (44) tried to overcome this problem by predefining the expected 

total length of a shear crack which he observed in various experiments 

of reinforced concrete beams. Two sides of a crack were initially held 

rigidly together by very stiff linkage elements. By varying the stiffness 

value of the linkage elements, the crack propagation was simulated 

without redefining the nodal points.

Cervarka (39) studied two-dimensional crack problems using iterative 

methods. The initial stress method (51) applicable to elasto-plastic 

problems is extended to cracking of reinforced concrete by Valliappan 

and Doolan (134). Schnobrich (135) suggested periodically updating the 

stiffness matrix. Cracking was considered as changing the material
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properties of concrete. This way of introducing crack allows some shear 

capacity to be retained in the cracked concrete. This allowance for 

shear corresponds to taking into account the concept of aggregate 

interlock across the crack surface. Suidan and Schnobrich (38) used 

the same general approach for three dimensional case. They keep small 

values of shear stiffness across the open cracks.

Lin and Scordelis (136) analyse reinforced concrete shells. 

Triangular layered elements are adopted in which steel is represented as 

smeared layer. A concept of "tension stiffening" is introduced in which 

open cracks have a decreasing (rather than zero) tensile strength after 

cracking. Using this concept, the effect of bond between steel and 

concrete is incorporated in their cracking analysis.

Based on the above mentioned study, three constitutive models 

selected for concrete in compression are :

1. Orthotropic model. ^~*>^"

2. Shear and bulk moduli model.

3. Endochronic theory model.*

*The endochronic theory model has been included later on in the computer 

program. It has been a part of the validation procedure, tested on 

simply supported beams only.

4.3. Formulation of an Orthotropic Concrete Constitutive Model 

4.3.1. Incremental Stress-strain Relations

Here an attempt has been made to give a three-dimensional non­ 

linear stress-strain relationship developed for concrete using hypo- 

elastic orthotropic approach, which incorporates the equivalent uniaxial

-60-



strain concept of Darwin and Pecknold (40, 41), the non-linear 

representation of Saenz (34), and the ultimate surface of Ottosen (35) 

in such a way as to represent the actual concrete behaviour. The 

concrete constitutive relations are then written in an incremental form 

in which material parameters are obtained from uniaxial stress-equivalent 

uniaxial strain relations.

The incremental stress-strain relations for general three- 

dimensional orthotropic material can be written as :

de, =

dE,

= -v3l ffi - (4.3)

or in matrix form

de,

v =

J

EI t,
o o

-? o

^ o 
o

o 

o drlx
(4.3a)

o o o o o
where E, , EZ , E3 and », 2 , V2 , and »3 , are moduli and Poisson's ratios. 

Due to symmetry, the following relations are defined :

(4-4)
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Also define equivalent Poisson's ratios :

(4.5)

Using Equations (4.4), Equation (4.3a) is written as

de

d£
? =

o o o

v^ -£*>- ooo
1

which, upon inversion and using relations of Equation (4.5), becomes

OOO

or

where ? = 1- V, - V^ - V3̂  - 1V

DT is the tangent material matrix

(4.6)

(4.7)

In the above orthotropic material matrix Df, it is required to 

determine three shear moduli defined above. At present, no experimental 

results are available to determine shear moduli under triaxial state of 

stress. It is assumed that no particular direction is favoured with
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regard to shear moduli and they remain invariant upon the rotation of 

material axes. If DT is transformed to a new set of axes I 1 , 2', and 

3' and the constraint is imposed that the shear moduli remain invariant, 

the following values of shear moduli are obtained :

E, * E 2 - Z^slt^.- UTtVz + JF2 V3) I
J

(4.8)

= 4- f 
4 v * Gi3 = 4- f E3

Equation (4.6) is the main incremental constitutive relation in 

which six independent material parameters, El, E2, E3, 1^1,^2, andV3 

are the function of current state of stress. These are determined from 

the uniaxial stress-equivalent uniaxial strain relations. The concept 

of equivalent uniaxial strain follows.

4.3.2. Equivalent Uniaxial Strain

According to this concept (41) , the degradation of stiffness and 

strength of plain concrete is described during load-history and also 

the actual triaxial stress-strain curves can be duplicated from uniaxial 

curves. In this way the variation of incremental moduli with respect 

to the variation of stress is determined using the uniaxial stress- 

strain curves. In a uniaxial case, the strain is always a function of 

stress in the direction of load. For the criaxial case, the strain in 

one direction is not only a function of stress in that direction, but 

also it is affected by the stresses in two orthogonal directions due 

to Poisson's effect (See Equation (4.3a)). The concept of uniaxial 

strain provides a method to separate the Poisson effect from the 

cumulative strain. The definition of equivalent uniaxial strain is 

written using Equation (4.3) by ignoring the Poisson effect, i.e.

(4 ' 9)
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In matrix form, it is written as :

^

(4.9a)

and the total equivalent uniaxial strains for the load path are written 

by integrating Equation (4.9) along the load path as :

or

in which

f dn 
ta = J IT

all fc *- 
Uad tnct««vi«nbs

change in stress in the ith direction 

tangent modulus in the ith direction

(4.10)

It should be mentioned here that the concept of introducing 

and 6iu is purely fictitious (except in the uniaxial test) and they have 

significance as a measure on which to base the variation of material 

parameters. These also do not transform in the same manner as stresses 

and strains of Equation (4.3). The stresses in Equation (4.3) are 

defined in material principal axes of orthotropy. If these are assumed 

to follow the current principal axes of total stress, it indicates 

immediately that de^u. must be defined with respect to the current principal 

axes of orthotropy. This last statement implies a similarity between 

equivalent strain parameters in elasto-plastic analyses (d?p) and 

equivalent uniaxial strains (42). Since &;a are not transformable, they 

are assumed to be defined only in the current principal stress directions.

The general constitutive relationship using this concept can now 

be written as :

do: = F ( (4.11)
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in which the stress increment is a function of the strain increment 
during the current iteration and the state of stress accumulated to 
date. The above relationship is path-dependent, and has a strong 
resemblance with the hypo-elastic law proposed by Truesdell (137).

4.3.3. Equivalent Uniaxial Stress-strain Curve (Figure 4.2)

The concept of equivalent uniaxial strain is utilised now to define 
equivalent uniaxial stress-strain curves for plain concrete. In order 
to calculate parameters for tangent material matrix developed in 
Equations (4.6) and (4.7), it is necessary to write Saenz's relation 
(34) in terms of equivalent uniaxial strain given by Elwi and Murray (42)

where E0 = initial modulus of elasticity
fl* '

= secant modulus at maximum stress (4.12a) 
£tu = uniaxial strain in the ith direction 
O^o = maximum stress associated with direction i

which depends on the current principal stress ratios 
6cc = maximum strain associated with fltc

= 3-47 <*&( 3I '5- 3-47 fr#) Xlcf5 (4.12b) 

Off = stress at failure of descending branch of the
curve

= 0-850^-c (4.12c) 

6i = failure strain

Re = lie
e<f

The tangent elastic moduli are obtained by differentiating Equation (4-12j 
with respect to equivalent uniaxial strains as :

, t= 1,2,3 (4.13) 
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E .

where g _ £iu (4.14a)
K 6ic

Therefore the material moduli of Equations (4.14) are in general a 

function of accumulated equivalent uniaxial strains and current state 

of stress. Equations (4.1^ and (4.14) are applied to the whole stress- 

strain curve including the descending portion of the curve (see Figure 

(4.2)). If the ascending part of the uniaxial stress-strain curve is 

required, it can readily be obtained by setting R=o in Equations (4.12) 

and (4.14).

4.3.4. Poisson's Ratios

The incremental moduli can now be determined from Equation (4.14) 

provided the parameters described above are known for a particular ratio 

of the total stresses. Nevertheless, the incremental stress-strain 

relation cannot be achieved without evaluating Poisson's ratios. Poisson's 

ratio is determined from uniaxial compression data of the Kupfer et al 

tests (25) as a function of strain by a least square fit of a cubic 

polynomial. This results in the expression given by Elwi and Murray (42) :

V , V0 1 + 1-37.3 ()- 5.34 8-514

or Vo = f ( (4.15a) 

Three independent Poisson's ratios are postulated as :

, V/arV^, (4.15b)

with i = 1, 2, 3

where v>o = initial value of the Poisson's ratio

£u = ^ic f°r uniaxial test .

£ |u = strain in the direction of uniaxial loading
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It should be noted from Equation (4.7) that v may become negative for 

V^ greater than 0.5 which is not acceptable. Therefore a restriction on 

Equation (4.15) is imposed which is this when v<;>0.5, the yt- should 

be set to 0.5. This limit physically means that there is a zero 

incremental volume change as is the case in incompressible material. 

Kostovos and Newmann (138) noted that the point at which this limit is 

reached corresponds to the onset of unstable microcrack propagation. This 

causes concrete to dilate upon approaching the ultimate strength.

4.3.5. Failure Criteria of Concrete

The strength of concrete under multiaxial stress is a function 

of the state of stress and cannot be predicted by limitations of simple 

tensile, compressive and shearing stresses independently of each other. 

The strength of concrete can be adequately evaluated by considering the 

interaction of the various components of the state of stress.

4.3.5.1. Stress and Strain Invariants

A failure criterion of materials based on the state of stress is 

an invariant function of the state of stress. One method of representing 

such a function is to use the principal stresses, i.e.

f c*i,n,^ -° (4.16)

to show the general functional form of the failure criterion. Under 

multiaxial state of stress, this approach to establishing a failure 

function is difficult to pursue. This difficulty is due to supplying 

information on the basis of both a geometrical and a physical explanation 

of failure. It is therefore important to rewrite Equation (4.16) using 

three particular principal invariants which are more susceptible to 

geometrical and physical interpretations and which are independent of the 

properties of the materials. The Equation (4.16) is written as :

(4.16a)
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Various versions of Equation (4.16a) have been adopted and 'verified. 

The analytical versions of the failure envelope based on Equation- 

(4.16a) have been adopted by Sangy et al (22, 23), Willam and Warnke 

(29) and Ottosen (35) .

A failure criterion proposed by Ottosen (35) known as the "four 

parameter failure criterion" has been adopted. This failure surface 

contains all three stress invariants and has the following characteris­ 

tics :

(a) The surface is smooth and convex with curved meridians.

(b) It is open in the negative direction of the hydrostatic axis.

(c) Trace in deviatoric plane changes from an almost triangular 

to circular shape with increasing hydrostatic pressure.

(d) The surface is in good agreement with experimental results 

over a wide range of stress state including those where 

tensile stresses occur.

Figures (4.3) and (4.4) show the surface in principal stress 

coordinate system in which the compressive meridian, fc (0=6o*, *i=fr».?*3) 

and the tensile meridian ,% (8 = 0° , <r,=>i < <r3 ) are defined. The 

meridians are curved, smooth and convex and f increases with increasing 

hydrostatic pressure.

An analytical failure surface containing all the above characteris­ 

tics is defined in the following form by Ottosen (35) :

A + bEi -l=o (4.17)

where I< = Gx4*Y +** = first invariant of stress tensor (4.17a) 

Jz = second invariant of stress deviator tensor

s^s|-)+^ +TY«+*i (4.17b)
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J = C0536 = 1-5 JF -~= (4.17c)
JO*.

M3 = third invariant of stress deviator tensor

(4 . 17d)

Sx = 0-x

- i,/3 (4.17e)

- Ii/3

X = XQcosse) > o ; a and b are constant

A = K cos-coi'CKzQasae) for cosae > o
(4.17f) 

X = kiCosC^-cos'C-kzCosaejfor Coss© ^ o

K.J, K^, a and b are material parameters to be determined

0^ = uniaxial compressive cylinder strength for concrete 

0^ = uniaxial tensile strength for concrete

V

Equation (4.17) defines the failure at a point if -f^-o and $ <c o 

which also corresponds to a point inside the failure surface. A failure 

will not occur at a point under compressive hydrostatic pressure, i.e. 

three equal compressive stresses will never fail the material.

4.3.6. Determination of Four Parameters (a, b, K.., 1C)

The four material parameters are determined with the biaxial test

results of Kupfer et al (25) and triaxial results of Balmer (140) and

Richert et al (139) . The following three failure states were represented

1. Uniaxial compressive strength, <J£ .

2. Biaxial compressive strength, cr, =. <rz =-H60c. » ^3=0 

(test results of Kupfer et al (25) .
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3. Uniaxial tensile strength, <f^ = k (J^.

Hereafter the method of least squares is adopted to obtain the best fit 

of the compressive meridian for §/re ^-5-o to test the results of 

Balmer (140) and Richart et al (139). Figure (4.5) shows the process 

where compressive meridian passes through a point (where ^ , ^ 

= (-5, -4.)). With this procedure, the values of material parameters are 

determined as given in Table (4.1 and (4.2. From these Tables, it is 

clear that the material parameters show considerable dependence on
(9v

te= V°c but the failure stresses in compressive regime are only slightly 

affected.

4.3.7. O£c Value

It remains now to assess o^c (i = 1, 2, 3) the peak stress for the 

calculation of tangent moduli (Equation (4.12)) for various principal 

stress ratios. Under uniaxial conditions, <jfc is equal to the compressive 

cylinder strength (o£ ) . However, under multiaxial stress conditions, the 

compressive strength of concrete increases. To obtain ^^ in three 

directions for principal stress ratio, a surface in stress space is used. 

First of all, current principal stresses are established (let these be 

<*ti >^fv > ^f>3 where ^ i ? ̂ f i > *p3 )  It is then assumed that of>, 

and o^ are held constant while the third principal stress is changed 

such that it reaches to the failure surface. This establishes that the 

ultimate stress is <%c . Similarly, o-,c and (^ are calculated by 

increasing their values while the other two stresses remain constant. 

This means that the principal stresses are substituted in failure 

surface (Equation (4.17)) and then one of the stresses (more compressive) 

is increased while the other two remain constant until Equation (4.17) 

is satisfied.
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4.4. Other Concrete Compressive Models

4.4.1. Shear and Bulk Moduli Model*

Constitutive relations for this model are given in Appendix AS. 

Most of this work is due to Sangy et al (22, 23).

4.4.2. Concrete Model Based on Endochronic Theory*

This type of model was initially developed for steel by Valanis 

(65) and has subsequently been modified by Bazant and Bhat (63) and is 

given in Appendix A6. Here constitutive equations are arranged in 

modified form by Ahmad to suite the three dimensional finite element 

analysis proposed in this research.

*Both these models have been included in the program NSARVE described 

elsewhere in this research.

4.5. Concrete Cracking and Crushing Criteria 

4.5.1. Assumptions

The cracking criterion is based on the concept of changing the 

material properties and allowing the effect of cracking by redistributing 

the stresses to the surrounding material. Maximum principal stress and 

strain criteria are used to define the cracks. When a principal stress 

(strain) in any direction exceeds a prescribed value (allowable 

limiting tensile strength, 0£ or tensile strain, £cr ), a "crack" forms 

perpendicular to the principal stress (strain) direction. Thus, for 

cracking :

n^^t (4.18) 

or (4.19)
&t^ ccr

where i = 1, 2, 3
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The model developed herein is applicable to general three- 

dimensional problems. On further loading, it is possible that new 

cracks will form at some angle to the first crack. It is assumed that 

further cracks are only allowed in orthogonal directions to the first 
crack.

Concrete in tension up to the point of cracking is linearly elastic 

material. However, the material becomes orthotropic as soon as it cracks, 

When a crack first occurs, it is assumed that direct tensile stresses can 

not be supported in the direction normal to the crack. Moreover, the 

material matrix in this direction is reduced to a small value (or zero) 

and also it is assumed that there is no interaction between this and 

other directions. The material parallel to the crack is still capable 

of carrying stresses which are given by the new material constitutive 
relationship.

The crack initiation (onset of cracking) is always defined using 

the maximum principal stress criterion. This is because for cyclic 

loading the crack may initiate upon unloading from compressive state in 

which a tensile stress at compressive strain may be reached as shown in 

Figure (4.6b). A crack is assumed to close when the strain normal to 

the crack is compressive and also it is less than the strain at which 

the crack was opened. Figures (4.6a) and (4.6b) show a uniaxial crack 

initiation, closing and reopening criteria for both cases where first 

load in tension and compression is applied. In both cases loading starts 

at point A. Crack is assumed to open at point at point B where stress 

suddenly drops to zero. Towards the CD direction, the crack remains open. 

Upon reverse loading at point E (at strain where zero stress was last 

reached) the crack closes. By further cyclic loading at points F and G 

the crack will be assumed to reopen and close. In reality, the strain 

values when the crack closes will be influenced by the relative movements 

parallel to the crack. This effect is not included in this study.
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4.5.2. Shear on Open and Closed Cracks

The surfaces of a typical cleavage crack in general will be rough 

and irregular. Due to the parallel differential movement of an open 

crack, it is possible that opposite faces will have aggregate interlock 

restraining this movement. For a widely opened crack, the opposite 

faces will completely separate and there is no interlocking effect. The 

most important effect of interlocking is that the shear stress along 

the crack will not be zero. Due to the lack of experimental information, 

the interlocking is taken into account by assuming that the shear stress 

along the crack is a linear function of shear strain, such that :

(4.20)

where G' = J3G (4.20a)

G = shear modulus of uncracked concrete

|3 = shear retention factor having values

T* = shear stress along the crack

Y* = shear strain along the crack

For an open crack, p= 0.5 was used in numerical calculations. For a 

closed crack, it is assumed that full shear stress develops along the 

crack, i.e.

T* = pG/* (4.20b) 

where j3 = 1.0 

For other ranges, Bangash (21) gives the value of |5 between 0.5 to 0.87.
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4.5.3. Concrete Model in Tension and Cracking

The constitutive relationships of uncracked concrete for the three- 

dimensional case is written as :

£ = DT AE

where BT is the tangent material matrix and can be written as :

D,3 o

(4.21)

D32 D33 O

O 0

o o o o

o o

o

O

O

o
a*

0

o

o

o

O

0

A*

in which D,, to D^ are given by the values of Equation (4.6).

(4.21a)

As soon as crack occurs, orthotropic conditions are introduced and 

the incremental constitutive relations are written in the cracked material 

directions. The total normal stress across the crack is reduced to zero 

and also the shear terms ire introduced to account for any aggregate 

interlocking. Write the following in the crack coordinate system :

D (4.22a)

(4.22b)

tftft -

(4.22c) 

(4.22d) 

(4.22e) 

(4.22f)

The asterisk (*) refers to crack directions (see Figure (4.8b)).
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Upon cracking in direction '!', the concrete offers no resistance in 

this direction, i.e.

(4.23a) 

From Equations (4.22a) and (4.23a) :

£v - £ft Afc*. (4.23b)

Substitute Equation (4.23b) into Equations (4.22b) and (4.22c), and the 

following expressions are obtained :

(4.23c) 
D\\

( D,,- ^i^3)A£Y* * (S33 - Salute* (4.23d) 
T)«i D«

Shear in the plane of crack due to interlocking effect can be written as

(4.23e) 

(4.23f)

and Af = ^Yi (4.23g)

Equations (4.23a) to (4.23g) can be written in matrix form for concrete 

cracked in direction '!' as :

If the concrete cracks in two directions (say in directions 'I 1 and '2'), 

then from Equations (4.22a) and (4.22b) :

(4.25a)

= o = D2 ,AE -^D27.ASY B23 A£ ' (4.25b)
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Solve for Afc^and A£y from Equations (4.25a) and (4.25b)

2,

Substituting A&J and ̂  in Equation (4.22c), the expression for 40*1 is 

obtained as :

\ °33- D3i f p '3
i V ^>M

Shear stresses are then given by :

(4.25d) 

(4.25e) 

(4.25f)

Similarly, for two open cracks in '2' and '3' directions, and '3' and 

'!' directions :

2-3 direction

(4.26a)

_ _^________ _ _ ia ____________ __ (4.26b)
L ^3^Pia.~ QjPzS ^33 ̂ *a "" ^2, °*3 -^

3-1 direction

(4.27a)

«r% t»»_ T> r«v - ^}-
I I

Shear stresses for both cases are given by Equations (d.25d) to (4.25f)
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For all three directions cracked, the material matrix becomes null 

and concrete at this point carries no stress. Hence £' = 19,1 should 

be adopted in Equation (4.24).

Figures (4.7a), (4.7b) and (4.7c) show these types of crack for the 

three-dimensional concrete for which the constitutive relations are 

defined above. Figures (43a) and (4.8b) show the state of stress before 

and after cracking. Equation (4.24) with D*=LO} also applies if concrete 

crushes in compression.

4.5.3.1. Transformation of Cracked Material Matrix to Global Coordinates

As 3^ refers to a local (crack) coordinate system (Figure (4.8b)), 

it is necessary to transform it back into the global coordinate system 

for the calculation of stiffness matrix. This is performed as follows :

First of all, the strain and stress vectors between the two 

coordinate systems are related using the following relationship :

(4.28) 

and Afr* ^ T> ̂  (4.29)*** *

where Tt and TO- are 6x6 strain and stress transformation matrices and are 

given in Appendix A4 (Equations A4.3 and A4.4). From Equations (4.28) 

and (4.29), the following equations are obtained :

At = Te d£* (4.28a)
*• ~ •*•

and A£ = TflT ' AO** (4.29a)

By observing the special relationship between Te and "Tj.., it can be easily 

shown that :

(4.30)
/^ *

and T^= Tj (4.30a)
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Therefore, the values of 4£ and A«- become/*» ^»

(4.31)x '

(4.32)

If it is argued that the energy computed in the two coordinate systems 

must be independent of the coordinate system, then :

(4.33)
^ ,,

Substituting Equations (4.21), (4.24) and (4.28) in the above expression, 

the following relationship is obtained :

(4.33a) 

(4.33b)

Hence ?T = lIST T£ (4.34)

k 
Frequent transformations are required in finite element stress and strain

calculations related to two systems. Equations (4.28), (4.29), (4.31), 

(4.32) and (4.34) will always be called upon in the computer program dis­ 

cussed elsewhere to solve constitutive equations for cracking.

4.6. Constitutive Model for Steel 

4.6.1. Introduction

Steel liner, prestressing tendons and reinforcements of prestressed 

concrete vessels are modelled as elasto-plastic materials. The theory 

describing their material behaviour is based on the incremental theory of 

plasticity (51, 52, 53, 54, 55, 56, 62). In this section, a brief dis­ 

cussion is presented firstly on the elasto-plastic constitutive relations 

of steel for general three-dimensional cases, and secondly, these equations 

are specialised for steel liner "(pl ane stress case) and prestressed 

tendons (uniaxial case) .
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4.6.2. General Elasto-Plastic Constitutive Relations

There are three main items used in formulating the elasto-plastic 

constitutive relations for steel, and these are :

(a) A yield function

(b) A flow rule

(c) Post-yield surfaces (strain hardening)

During the loading, before elasto-plastic constitutive relations are 

applied, it is necessary that the yield function must be satisfied, i.e. 

the stress state must be on yield surface using :

(4.35)

where K depends on the plastic deformation and is characteristic of strain 

hardening.

<F - equivalent stress (4.36) 

For Von Mises yield criterion :

5^ = (3 Ji/2 (4.36a)

where J^ = ^ ( sx* + sf + s?r ) + ̂  + T^ -v t£ 
and Sx =

= mean stress (4.36d)

For a small increment of load, the incremental constitutive relation may 

be written as :

DT A£ (4.38) /%. ' r~ ^ j
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For elastic material, 3X.s Dp where DP is the elastic material matrix/>    f>f *^~'
defined earlier. A£ = [ A£x , ASy , && , &i*i , &fa ,d/£*]T is the total mechanical 

strain increment.

This strain increment is decomposed into elastic and plastic components 

as :

AS = A£ e + A£ P (4.39)
^* *^ 1

The elastic strain increment may be written as (Hook's law) :

A^ =, gj A£ (4.39a) 

From Equations (4.39) and (4.39a) :

(440)
or A£= DE (A£-4£P ) (4.40a)

which may be written as :

(4.40b)

with elastic stress increment as

(4.40c) 

and plastic stress increment as :

(4.40d)

If Equation (4.40d) is written as

where Dp - plastic material matrix
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Then from Equations (4.40a), (4.40b) and (4.41)

£ (4.42) 

= DT 46 (4.42a)
** x«

where DT =(DE-QO is the tangent material matrix or the elasto-plastic 
matrix.

Therefore the material constitutive relations in elastic and elasto- 

plastic ranges are fully defined by Equations (4.38) and (4.42a) 

respectively.

Next, the plastic strain increment (Equation 4.40d) and the plastic 

material matrix, Op (Equation 4.41) are determined in order to define the 

stress increment in the plastic region.

Assuming that the plastic strain increment is always normal to the 

plastic potential, GUc.fc) which is similar to yield function given in 

Equation (4.35), then :

(4.43)

The plastic strain increment is given by (flow rule) :

where A - proportionality constant and greater than zero

(4.44a)

If F = Q, the plastic strain increment is normal to the yield surface. 

For example :

l _ Act (4.44b)

I?

-81-



Later on, special cases are given simply replacing b of 

Equation (4.44) by a of Equation (4.44a).

The consistency equation for plastic deformation dF = 0 is given by :

(4>45)

Define 4=--dK (4.45a)~ v

then jr- (4.45b)

or aT Acr -A A (4.45c)

Premultiply Equation (4.40) by £T DE substituting d£p from Equation 

(4.44), one obtains the following equation :

+ 25t-bA (4.45e) 

From Equations (4.45c) and (4.45e), an expression for A is obtained as :

(4.46) 
aTD6 bl
f*+f ^j «**J

From Equations (4.44) and (4.46), the plastic strain increment is 

obtained :

(4.47) 

From Equations (4.40d), (4.41 ) arid (4.47) :

(4.48) 
[A + aT D6 b]

And finally, the tangent material matrix of Equation (4.42) can be 

written as :

De b oil DP \~ ~ ~ ~ (4.49)
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Since the associated flow rule is adopted in this study, b in Equations
^*

(4.46) to (4.49) should be replaced by a . By making A = 0, the rigid 

plastic conditions are achieved.

4.6.3. Hardening Phenomena

The hardening phenomena in metals can be modelled in many ways. 

There are three types of hardening models used in metal plasticity. The 

first model which is known as isotropic work hardening was proposed by 

Hill (55) and Hodge (57) . In this case, it is assumed that during plastic 

flow the yield surface expands uniformly without changing its shape and 

origin. The special case in this category is the ideal plastic where 

surface remains constant during the plastic flow. The second hardening 

model was proposed by Prager (58) and it was later proposed in different 

form by Ziegler (59) and is known as kinematic hardening. According to 

this model it is assumed that during plastic flow, the yield surface 

translated in stress space (K- plane) and there is no expansion of yield 

surface. This type of hardening model is useful in cyclic loading, where 

Bauschinger's effect is represented. The model proposed by Hodge (61), 

known as Combined Hardening, gave a better approximation to the actual 

material behaviour. This model assumes that during plastic flow the yield 

surface translates according to kinematic hardening and at the same time 

expands according to isotropic hardening. Haisler (62) gives more details 

on this model.

Since this study is not concerned with the cyclic loading, the 

isotropic hardening model is used. The ideal plasticity can be derived 

from the isotropic strain hardening model. The main thing which represents 

the hardening phenomena in the constitutive equation is the parameter A. 

For ideal plasticity, A is set to zero. For isotropic strain hardening 

material, it can be shown (52) that :

A = H (4.50) 

where H= ̂ - " strain hardening parameter (4.50a)

which is the slope of the equivalent stress versus equivalent plastic
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strain curve- If uniaxial stress strain curve is

available, then H can be calculated in the following manner :

where E = tangent modulus

Let E be the elastic modulus at zero stress. Then

.d£ 
d(T-

EEt

_l£ + f - J_ -»- i- 
d«- do- ~ E- H

(4.50b)

(4.50c) 

(4.50d)

Therefore, if the initial modulus and the stress-strain curve of the 

material is known, the strain hardening parameter, H, can be calculated. 

On the other hand, if it is a bi-linear stress strain curve,- then E is 

simply a post -yield modulus.

4.6.4. Elasto-plastic Constitutive Relations for Liner

The vessel liner is treated as two-dimensional material under plane 

stress condition. The elastic constitutive relations are defined in 

Chapter 3 (Equation (3.16)). This can be written in incremental form as :

or

where

and

At*

Vs

Vs 1

= E

i Vs o 

Vc 1 O

T i A£ = CA£x > A£Y , tf*v?

(4.51)

(4.51a)

(4.51b)
o o - izr-s

Now the equations of the previous section are specialised as follows :
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4.6.4.1. Von Mises Yield Criterion

Equations (4.35) and (4.36) are rewritten in modified form as :

F = 0- - Oy = O

where

(4.52)

(4.52a)

(4.52b)

where = uniaxial yield stress of the liner

In Equation (4.49) b is replaced by a

where
a = 2£«

SF.

if

3£

3
' 2? <

>•

5Y

_!•&,
Therefore, Equation (4.38) may be written as :

(4.53)

(4.54) 
Alt = Dep AE - ^ «=^<TY

The post-yield stress calculation is performed in two ways. The first is 

the ideal plasticity case where H in Equation (4.49) is set to zero. 

The second is the strain hardening case where H in Equation (4.50) is 

calculated from bi-linear stress-strain curve as shown in Figure (4.9 ). 

The strain hardening parameter, H, in terms of initial and post yield 

moduli is given by Equation (4.50d).
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4.6.5. Elasto-plastic Constitutive Relations for Prestressed and 

Reinforced Steel

Prestressed tendons and reinforcements are assumed to transmit 

only axial stress and strain. Therefore, their material behaviour is 

described by a uniaxial stress-strain curve (Figure (4.9 )). From 

Chapter 3 (Equation (3.24)), the incremental stress-strain relation is 

given by :

Afr- = D£ A£ -"""' (4.55)
^* ^* *^ 
'*» IXI NT,

where A£ = ̂

&=&* (4.56) 

DE=ES - initial modulus of tendon or reinforcement/> *  **

4.6.5.1. Von Mises Yield Criterion

For this case, Equations (4.35) and (4.36) are modified :

F= <F -<*, (4.57)

where <F =  0"x (4.57a)

fry = uniaxial yield stress of tendon or reinforcement

Equation (4.49) for associated flow rule and isotropic strain hardening 

can be modified to include :

(4.57b)

By substituting a and Pe from the above, Equation (4.49) assumes the 

following simplified form :

n Dep =.
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The stress increment becomes :

(4.59) 
if (f ^^

For strain hardening, Equation (4.50) is invoked. 

4.7. Bond and Bond-slip Constitutive Relations

The mechanism of bond and bond-slip is given in detail in Chapter 2 

(section 2.4.)- In this section, the local bond and bond-slip con­ 

stitutive relations governing the interface behaviour are given. The 

stress transfer by bond between steel and concrete is difficult to 

model realistically because of the several variables affecting the bond 

problem. The bond spring stiffness (Chapter 3, Equation (3.30)) along 

the length of the steel is determined as :

, . , ..(4 ' 60)

where E, = slope of the local bond slip curve at any point on the

curve (tangent modulus) 

= incremental local bond stress 

= incremental local slip

In order to model various types of interface characteristics, an 

experimental bond-slip curve idealised as shown in Figure (4.10a) is used 

The non-linear curve is idealised by a series of bond stress and slip 

points joined linearly. The slope (E, ) at point i of the bond slip 

curve is given as :

f, . _ fec'+i - *i_ _ t (4.61) "   ~     ~ "~

and the other two spring coefficients in vertical and lateral directions 

of the steel are taken as :

(4.6
£ h -
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where <* is a multiplication factor which was taken between 10 to 10 . 

This means that the vertical and lateral springs are rigidly connected 

between steel and concrete. Once the incremental moduli EH- , Ev/ t 

and Egj are known, the incremental bond stresses are calculated using 

the constitutive relations of Chapter 3 (Equation (3.30)) as :

[  > (4.63)

or = Ebt- (4.63a)

The element nodal force vector given by Equation (3.31) can be rewritten 

as :

(4.64)

and the element stiffness matrix (Equation (3.32b))

Kb = JldLTT Ebl TT (4.65)

where T is the transformation matrix given in Equation (3.29).

The constitutive relations (4.63) are valid between points 0 and 

A (Figure (4.10a)); thereafter the bond stress increment becomes zero 

(region AB), i.e. the slip occurs at constant bond stress. The bond is 

assumed to fail at point B (Figure (4.10a)) when maximum allowed slip 

has been reached. At this point, the total bond stress is released. 

This creates a non-equilibrium state which is corrected by performing 

equilibrium iterations (e.g. by the initial stress method).

Now a scheme is suggested to calculate a correct bond stress 

from a specified bond-slip curve (see Figure (4.10b)). Let Sr be the 

total slip reached at any point in the calculation. This slip lies 

between the points i-1 and i an the specified curve. Bond stresses are
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calculated which are compatible with the total slip (Sr) by linear 

interpolation as :

* °bt-i * &<St- s t") (4 . 66) 

where 0 = slope of the specified curve at point i-1

(4.67,

Let the total bond stress calculated using constitutive equation (4.63) 

be 0^t- . The difference (6^-0^) is treated as initial stress and is 

corrected by performing equilibrium iterations.

4.8. Constitutive Relations using Creep and Thermal Effects

Concrete exhibits time-dependent strains due to creep . 

and shrinkage . which profoundly affect the behaviour of concrete as a 

structural material. The literature covering concrete creep is com­ 

prehensive (67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 84, 126, 

127, 128, 129, 130). It is not intended to review this literature in 

greater depth. However, a brief discussion on the results obtained by 

various researchers (70, 72, 76, 77, 126, 127, 128, 129, 130) is given.

Creep in concrete represents the dimensional change in the material 

under the influence of sustained mechanical loading. Quite small loads 

will cause the concrete to deform. The phenomenon of creep occurs at 

elevated and at ambient temperatures. The rate of creep is increased 

at elevated temperatures. Various experimental tests (126, 127, 128) 

have been conducted to identify the effect of temperature on concrete 

creep. England and Ross (126) presented results of sealed and unsealed 

cylinders up to the temperature of 140°C and a testing duration of 60 days. 

The results on sealed cylinders show that the creep at 80°C and 140°C 

was about 3.5 and 4.2 times the value at 20°C. Nasser and Neville (127) 

reported their observations from experimental tests at temperatures

ranging from 21.1°C to 96.1°C with stress/strength ratios from 0.35 to
2 0.7. The concrete was cured at 41.34 N/mm (6000 psi) and tested after
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24 hours of casting. They found that the pronounced maximum for the 

creep rate at a temperature of about 71°C. This creep rate was based 

on creep measurements made during a period from 21 to 91 days after 

loading. Hannant (128) conducted creep tests on sealed 104.775 mm (4 1/8") 

by 305 mm (12") cylinders of an approximately 62 N/mm2 (9000 psi) lime­ 

stone aggregate after curing them 5 months in water and an additional 

month in a sealed and saturated condition. Results showed a nearly 

linear increase of specific creep with a range of 27°C to 77°C for

loading periods of two years. The creep at 77°C was approximately 4 to
2 4.8 times that at 27°C. Up to stresses of 12.78 N/mm (2000 psi) creep

remained proportional to stress. Poisson's ratios of creep determined 

on sealed specimens were similar in magnitude to its elastic value.

In order to understand the influence of creep, a typical deformation 

Vs time curve is shown in Figure (4.11). A concrete specimen loaded 

under uniaxial compression gives an immediate elastic deformation. If 

this load is sustained, additional deformation due to creep occurs. The 

rate of the deformation decreases with time (Figure (4.11)). If this load 

is removed, there is an immediate recovery of deformation and following 

this, a recovery of creep deformation (delayed recovery) rate occurs, 

which rapidly decreases with time as shown in Figure (4.11)). At the
 

end of this, a residual deformation is left which is "greater than the 

initial elastic deformation. Figure (4.12) shows time-dependent strain 

curve for ambient and elevated temperatures between time t. and t^. 

The creep recovery strain occurs immediately after the instantaneous 

elastic strain which is extensive at first, but reduces after a short 

period of time. The creep recovery is essentially independent of 

temperature (127).

At a low level of stress, a concept of specific creep is introduced. 

Specific creep or creep strain per unit of stress is a useful indicator 

of creep effects. It is also sometimes useful to normalise creep strain 

data with respect to stress and temperature. This quantity is known as 

specific thermal creep.
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Various methods of creep analysis have been used over the last 

fifty years. Among those available, they may be classified into two 

main categories.

(a) Direct methods.

(b) Iterative or step-by-step methods.

The direct methods allow the calculation of creep effects in a 

single time step. The effective modulus (130) and steady state (70) 

methods are examples of this category. Other direct methods, in refined 

form, have been presented by England (72, 76).

In the iterative methods, the period of time (over which creep is 

sought) is divided into a number of steps and separate calculations are 

carried out for each step. An assumption is made that stress is constant 

during each time step while strain is being calculated. The accuracy and 

stability of the solution depends on the length of the time step chosen 

and successive calculations depend on those in previous time steps. The 

iterative type of methods of creep solution are :

1. Method of superposition (129).

2. Rate of creep (130)

3. Strain hardening.

. Rate of flow method (77)

The constitutive relation for concrete under uniaxial stress is 

established based on the rate of flow method. The total time-dependent 

strain in concrete may be written as :

£( 0 = 6e(±)+ £f(0 -*-sd (t) s

f J^a-t)dt4. § Jd (i-T)dT (4.68)
ar

where &(-0= total strain ; fcf(t) = irreversible or flow component

of creep strain
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where £e (-t) = elastic strain ; £<*&)= reversible or delayed

elastic component of creep strain

JfU) = specific flow (flow strain per unit of stress) 

JdCt) - delayed elastic strain per unit of stress 

t = age of concrete 

f = time under load

Components of strain are shown in Figure (4.13). Creep compliance for 

concrete may be written as (E is assumed constant with time t) :

(4.69)

A parameter is introduced at this stage known as pseudo time, t', 

which itself is specific flow component and this may be used in place of 

actual time, t, together with the representation of a non-ageing visco- 

elastic material. The pseudo time concept transforms the age-dependent 

creep relationship in real time to the simpler non-ageing Maxwell law in 

pseudo time. The time transformation eases the analytical or numerical 

computation which leads to a solution without changing the basic creep 

equation. Now, with this transformation, J~ (69) may be written as :

(4.70) 

and also the delayed elastic strain :

-RfV-'T'J. ^
S (4.71)

If we represent the constitutive model in the pseudo time axis by 

a Maxwell fluid unit (model 1 in Figure (4.14)) and connect it in series 

with a Kelvin solid unit (model 2 in Figure (4.14)) to make it what is 

known as Burger's model (Figure (4.14)), in this model the dashpot and 

the Kelvin unit correspond to flow and delayed elastic components 

respectively. Equation (4.69) may then be written as :

(4.72)
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Appendix A7 gives formulations for creep strains under raultiaxial stress 

and kinematically equivalent loads due to changes in creep and thermal 

strains.
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Table 4.1. .Four Material Parameters (k = 0£

k

0.08

0.10

0.12

a

1.8076

1.2759

0.9218

b

4.0962

3.1962

2.5969

k !

14.4863

11.7365

9.9110

k 2

0.9914

.0.9801

0.9647

Table 4.2. Values of Function (k = ot /o-c )

k

0.08

0.1

0.12

A*

14.4725

11.7109

9.8720

Ac

7.7834

6.5315

5.6979

VAt

0.5378

0.5577

0.5772
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Load Steel Yielding or 
Crushing of Concrete

Displacement

Figure Load - Displacement Diagram for Reinforced 
Concrete
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Figure Jf.1b Tetrahedral Model ( Baker - 150 )

Figure

*?
Failure Surface in Compression Quadrant 
of Stress Space

From Ref.(153)

Baker's Equations

Figure Jf.1d Failure Surface on Deviatoric Plane
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Non-linear Curve

LI

Esec=   ̂  = Secant modulus at ultimate stress

Eo = Initial7- modulus

E;L = Concrete failure strain

= Maximum stress

= Maximum strain at

= 3-47 X 10

Figure Typical Compressive Stress-Uniaxial Equivalent Strain Curve
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= OA = 11/13 

P = A3 = J2J2

Figure A-.3 Haig-Westergaard Coordinate System

= Tensile meridian

= Compressive meridian

Figure Failure Surface in Deviatoric Plane 
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-we

load

crack initiation crack reopens/closes

-K>*
(a) First load in tension

-vve

load

crack reopens/closes 

crack initiation

(b) First load in compression

Figure Crack Initiatibn , dosing and Reopening
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(a) one crack Cb) two cracks Cc) three cracks

Figure *f.7 Types of Cracks for Three Dimensional Case

crack

(a)
X Y*Z* Crack coordinate system 
XY Z Global coordinate system

(b)

Figure 4^. State of Stress 
Before Cracking

Figure *f.8b State of Stress 
After Cracking
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> Ideal plasticity
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Figure 4.9 Uniaxial Stress - Strain Curve for Steel
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Bond stress
Idealised Curve

°bmax- Ultimate bond stress

Actual Curve

B

B 1

Maximum Slip(Smax)

Slip

Figure *f.10a A Typical Idealised Bond-Slip Curve

Slope at Point i-1, 6

Bond Stress for Slip, Sr
°VbT=

Slip , S

Figure ^f.10b " Linear Interpolation of Non-linear Bond-slip
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LOAD

TIME

w *j 
oa

Sustained load No load

Delayed elastic 
deformation

Elastic deformation

Instantaneous recovery 
deformation

•Permanent total 
deformation

TIME

Figure Deformation Vs Time Curves for Concrete 

Under Constant Load

-104-



STRESS

TOTAL 
STRAIN

t1 t2 ———TIME

At Elevated Temperature

At Ambient Temperature

t2 TIME

- Recoverable Creep Strain 

£<>r- Irrecoverable Creep Strain

Figure,^.12 Time - Dependent Strains in Concrete
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(b)

ta TIME

(c)

TIME
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(d)

TIME
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Figure *f.13 Components of Strain in Concrete
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Figure ^.1^f Visco-Elastic Models for Concrete Creep

Dm
Km

(a) Model 1 - The Maxwell Model of Creep Strain
( Flow Component )

Kv

(b) Model 2 — The Kelvin Model of Creep Strain
( Delayed Elastic Component )

Dm
Km 

•A/WWWV

Kv

Dv

MAXWELL UNIT KELVIN UNIT

(c) Model 3 - The Burger Model of Creep Behaviour
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*0 40 60 dO Kg/cini ° -10

(a) Variation of G with J2 (b) Uniaxial Stress-Strain Curve

Kg/cm O-O 0-1 0-25 O-S

(c) Variation of E with (d) Variation of )/ with J2

Figure Non-linear Stress-Strain Relationships of Concrete 

in Compression ('From References 22,23 )
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CHAPTER 5

Non-linear Solution Techniques

5.1. Introduct ion

This Chapter discusses the solution techniques for general non­ 

linear problems. The non-linear solution techniques have been applied 

successfully to both geometric and material non-linear problems. The 

non-linearity which stems from the material constitutive relations for 

concrete, steel and bond-slip, is considered. A detailed description of 

the relations defining these effects is given in Chapter 4. General 

steps for the solution of non-linear problems are presented first, and 

these are followed by solution procedures for temperature and creep 

effects and loading and unloading schemes for steel and concrete.

5.2. Non-linear Solution Methods

The application of the finite element to non-linear problems is 

well established (1, 2). The non-linear solution methods have been 

successfully applied to both geometric and material non-linear problems 

(1, 2, 51, 52, 53). In this research, strains are assumed small and 

therefore the strain-displacement relations are linear. A non-linear 

solution is obtained by piecewise successive linear solutions until the 

material constitutive laws and the conditions of equilibrium (also 

compatibility) are satisfied within a specified tolerance. Therefore, using 

this solution technique, the basic linear finite element formulations of 

Chapter 3 are still applicable.

The solution process is incremental and therefore path-dependent. 

At any stage of loading, the externally applied loads are compared with 

the internal nodal loads due to total stress. The difference between the 

two is taken as a set of residual loads that can be interpreted as a 

measure of any lack of equilibrium. To maintain equilibrium, the
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residual loads are then applied to the structure and the problem is 

solved again. This process is repeated until the residuals are 

sufficiently small.

Now rewrite equilibrium Equation (3.6) from Chapter 3 in this 

form :

R - fgVcM. - Pext (5.1) j . -~

where ^et~ total externally applied loads from all the sources 

5 - residual loads

<£• are the total actual stresses to date and may be expressed in a 

general form as :

(5.2)

For non-linear problems, the residuals, RJ^ o , so consider the variation 

of R due to the changes of displacements, U. , using Equation (5.1) :

= f 8Td^dLvot + VdBVdvoft- dfcxt (5.3)
i ^f s* i ^* r** f**

Since B and ^ are independent of displacements, LL , their variation is 

therefore zero, so :

dR= ^dCd*t (5 . 3a)

If the incremental stress is evaluated using the material constitutive 

law from a given incremental strain as :

= DT £ (5.4)
^^

where OT may be the incremental, tangent or initial material matrix. Then 

from Equation (5.3a) :

(5.5)
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where d£=Bdu (from chapter '3) 

Thus :

(5.6)

KT = f 8TDrB dvoft (5.7)r~ \ ~* /~ **•
Vot

Equation (5.6) is the basic ingredient for a solution technique. 

This is known as the pure Newton-Raphson method. By starting from a 

trial solution uc which produces non-zero residuals, Ri, using 

Equation (5.1). An incremental displacement field may be obtained using 

Equation (5.6) as :

where VCr,; is the tangent stiffness matrix evaluated at displacement Ui • 

This process continues until Rt' (residuals) become sufficiently small. 

The general form of the Newton-Raphson process is the variable stiffness 

method given by Equation (5.8) and it is illustrated in Figure (5 .la) for 

the one-dimensional case. There are many variants of Equation (5.8), 

the first being one where a constant stiffness matrix, K O > replaces KT > 

is known as the Modified Newton-Raphson method, or the initial stress 

method (51) (see Figure (5.1b)). In this case, Equation (5.8) may be 

written as :

Equation (5.8) (tangent stiffness method) suffers from an economic dis­ 

advantage because the entire stiffness matrix is reformulated for each 

iteration. Equation (5.9) (initial stress method), on the other hand, 

although economic, often shows a slow rate of convergence, especially 

when the structure behaves in a very non- linear manner. Therefore, a 

combination of both techniques in which the stiffness matrix is updated 

every so often is considered as an attractive compromise. Two such 

alternatives were included in this work. In the first case, the stiffness
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matrix is updated at the beginning of each load increment and then kept 

constant. In the second, the stiffness matrix is updated at every 

second iteration of each load increment. This is known as KT2 option." 

Various examples were analysed using these methods, but for the main 

reactor vessel analysis, because of the prohibitive cost involved in 

reformulating the stiffness matrix, the initial stiffness method was used 

Two types of convergence criteria were used. They were the residuals and 

the displacements convergence. The Euclidian norms were tested as :

(a)

(b)

where |R |j =. 4 RTR- i s the Euclidian norm of the residuals, IPextl = JI 
~» «• "• *• \\~ fl *~

(5.11)

is the Euclidian norm of the externally applied load, ||Ali||= fAul AUc

is the Euclidian norm of the incremental displacements, jjU.| = >l Ut'Ui

is the Euclidian norm of the total displacements and the tolerance limit

was usually taken between 0.03 and 0.001 for the various problems

analysed.

5.3. General Steps for Non-linear Analysis

A brief outline is presented for the application of non-linear 

methods to concrete structures. The non-linearities considered are 

that of concrete, steel and bond-slip described in Chapter 4. The detailed 

discussion and flow charts of the individual material non-linearities is 

given in separate sections.

1. Apply a load increment, A£h , where n is the load increment. 

Accumulate total load Pn * Pn _, + APn and R = APn where R is
/V ^* *V *** "*^ S**

the residual load vector.
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2. Solve &LU=k R , where i is the iteration number and K 

is the stiffness matrix of the structure. Here, various 

solution options may be used (see the section on non-linear 

methods of solution), e.g. K = JC - initial stress method, 

JC = JC - pure Newton-Raphson method, or JC may be updated at 

the beginning of each load increment only, etc. Accumulate 

total displacements :

Ut = Uc-. + AiLi

3. For each element type calculate strain increments :

AEC- = B AUi 
and strains

If initial strains, such as creep and thermal strains,, are 

present, then :

For each elemtnt type, the stress increments are 

calculated using the current non-linear constitutive matrices. 

For concrete, the cracking and compressive criteria are con­ 

sidered; for steel, elasto-plastic relations are considered 

and non-linear bond-slip relations at steel-concrete are con­ 

sidered. They may all be expressed in the general form :

Accumulate stresses :

5. The total stresses are converted into equivalent internal loads 

as :

and the residual load vector is calculated by :

R =
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6. Check for convergence. If convergence is not achieved, go to 

step 2. and repeat all the steps for the next iteration. 

If convergence is achieved, then go to step 1. and repeat the 

process with the next load increment.

5.3.1. Explanation of Step 4 for Concrete

For each element and its integration points the following are 
calculated :

(a) Firstly an estimate of stress is calculated as :

where A0t'=.DT A£ and in which DT is the current tangent
**- /^ • *~ *** ' '

material matrix for concrete. This is calculated on the basis 

of current material state, i.e. according to the crack 

indicator and loading and unloading state.

(b) Calculate :

If no cracks are already present at this point, principal 

stresses and strains :

<%•= + <*''), J = 1, 2, 3 

Sj= -fUc) , j = 1, 2, 3

If cracks are already present at this point, transform 

stresses and strains as :

*£-*.= !*•£•• 3 2- M

ce) With either the current principal stresses C<rj, j = 1, 2, 3) 

or the transformed current stresses,^*' t check for concrete 

cracking. Also, check for crack closing or reopening by :

€,* > 0 - crack open
*«w

6* ^ o - crack closed
*^
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Update the crack indicator according to the current crack 

state. Check for loading or unloading state at this point 

and update the unloading indicator. For loading and unloading, 

the total equivalent strain criteria is used (i.e. Zt =

If the equivalent strain &t- is less than its value from the 

last load increment, then unloading at this point is defined 

(see Figure (5.2)) .

(d) According to the current material state (which includes

cracks, loading and unloading state, and concrete compression 

criterion, there are three options available (see section 4.3.); 

form the material matrix and calculate :

or

crack 
<>V = (rt-, + Aj£ J

A<f*=rD*A£* ")'
~ "• 1. - if there are cracks

tf« jZtf+Ajtf J

(e) Release stresses normal to the open cracks and transform

back the stresses into global directions if already in crack 

directions :

T *
O. = T£ ff"J

(f) Check that the stress state is within the failure surface 

(see concrete failure criteria defined in section 4.3.5.)
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5.3.2. Explanation of Step 4 for Steel

P ISP - stress point indicator

= 0 - elastic point

= 1 - plastic point

= 2 unloading from plastic state

«fy - uniaxial yield stress

(a) Firstly, the stress increment is calculated using the elastic

material matrix as A<y( ' = D| A£ ; where p*E is the elastic material 

matrix for steel liner or reinforcements or tendons. (These 

are defined in Chapter 3) .

First estimate of total stress :

(b) Calculate :

(ft -f(£t') ; C=H = -f (£-1) ' Von Mises yield criterion

(c) If plastic point (i.e. ISP = 1), go to step (e) .

(d) - If fij. %•&( - point plastic (ISP = 1), transition from 

elastic to plastic, calculate factor, fac :

iac «(SLl2i±) (see Figure (5.3a))

stress at yield surface, £- ££_, • 

calculate elasto-plastic stress increment

total stress, 0^- = £cY •*• &&i. 

set ISP = 1; go to (g)

If O*;«JY - elastic point, 0^=0^' ; go to step (h) .
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(e) Plastic point in the previous iteration, check for unloading, 
i.e. 0=^0^ ; go to step (f) . (See Figure (5.5) also).

Unloading at this point, set ISP = 2, total stress 
2"t = <Tt-i •f-dot' and set c^= 7F_( ; go to step (h).

(f) Loading at this point, A&i =
total stress <><; = O^'-i •*•

(g) Stress calculated using the elasto-plastic material matrix 
usually drifts from the yield surface as shown in Figure 
(5.3b). The following correction is suggested which is 
based on the equivalent stress-strain curve. Correct stress 
from the equivalent stress-strain curve :

H

where A£p=J % ̂ j ̂^ij =%9?"^ equivalent plastic strain 
increment

H is the strain hardening parameter. For one-dimensional case, 
such as reinforcements, A£= X .

Equivalent stress calculated from the current stress state

o= = f Core)

factor =

Therefore the correct stress state which is on the yield 
surface :

d*/ = factor * O>.
~ *• f^tr

(h) End.
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5.3.4. Steps for Non- linear Bond- linkage Elements (Step 4)

(a) Calculate incremental slip from the nodal displacements 
(Equation (3.29)) :

AS; = T ALL

where T is the transformation matrix and 4U<" are the element 
nodal displacements.

Total slip at iteration i :

(b) Calculate the incremental stress based on the bond stress at 
iteration i-1 :

Total stress :

a.- si.-., •* acji-
(c) Check the state of the bond, i.e. whether bond is broken or 

not and calculate stress accordingly.

- If IS. I > S , set flag If lag = 1, i.e. bond is broken. i max
At this point, the bond stress is instantaneously dropped 
to zero, i.e. £t> t = 0.0, where S is the maximum slip

llldJx

allowed.

If IS.I < S , calculate the bond stress which is 
compatible with the slip, S.. This is obtained by linear 
interpolation of a non-linear bond-slip curve. The curve 
is simulated by multi-linear lines. Figure (4.10b) gives 
the scheme for the linear interpolation. Let Gtr be the

^» **

bond stress compatible with the slip, S.. The difference
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between 0£ t. and £- is treated as initial stress and this 
may be converted into nodal loads, i.e.

The correct stress,

(d) Total internal equivalent loads and residuals are calculated 
as :

Pint = :ndLTT av~ *~ Xt><- 
^ "« ~~

5.4. Steps for Creep and Temperature Analysis

The following steps are performed to include the effects of creep 
and temperature in the constitutive relations discussed earlier.

1. At time t = 0, carry out elastic (linear analysis}. If 
thermal loads are considered calculate the kinematically 
equivalent load as Equation (A7.13) :

Vot

Calculate stresses, strains, etc.

2. Specify a small time increment, 4t , during which the stresses 
are assumed to remain constant. The creep strain increment 
for concrete is calculated using Equation (A7.3) as :

3. Convert creep strain increment into kinematically equivalent 
load using Equation (A7.12) as :

where £) - elastic material matrix
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4. Assuming APC as external load, the incremental nodal dis­ 

placement may be obtained as :

where K - stiffness matrix of the structure.

Total displacement :

5. Calculate the total incremental strain as :

Total strain :

6. Calculate the stress increment as :

-if temperature load was applied in Step 1.

-if no temperature was applied in Step 1 

Total stress at the end of current At •

= £i + A?

7. This solution process is conditionally stable. The stability 

requirement (80) is that the stress increment, d£ , must be 

small compared to the previous stress,<% . If this condition 

is not satisfied, the same process from Step 2 should be 

repeated taking smaller At, otherwise go to Step 2 for the 

next time increment and repeat this process until the final 

time step is reached.
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8. If creep analysis of more than one load increment is to be 

calculated, then go to Step 1 and apply the next load 

increment and repeat the Steps from 2 to 7 for time increments.

If should be noted that during initial or transient states of 

creep, the stresses change very rapidly and it is essential 

to choose exceptionally small time increments in this region. 

However, as the solution approaches a steady state condition 

(i.e. dc^-^o ) it is possible to increase the time step 

without violating any assumptions.

5.5. Non-linear Response with Creep

The steps required to carry out creep analysis with non-linear 

material response are very similar to those for linear material behaviour. 

The difference is that at the end of each time step the equilibrium is 

restored. The creep strains cause incompatibility which is corrected by 

applying a kinematically equivalent load due to creep strain to the 

structure.

1. Apply load and time increments separately. (For example, the 

load increment is applied first, then the time increments are 

followed).

2. Using the stresses that exist in the structure at the end of 

the previous load increment, calculate the change in creep 

strain (Equation (A7.3) :

Convert A£c into kinematically equivalent load vector using 

Equation (A7.12) : . 

AP6 = f gT?T Aec dN/ol

where OT is the tangent material matrix based on the current 

state of stress.
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3. Solve incremental nodal displacement

Accumulate : 

Hi =
*v /«•

4. Strain increment :

A£ C- = 8 AU/•>» *>•'«•

Total strain :

5. Calculate the stresses due to additional non-linearities found 

(due to higher compression or cracking described in Chapter 4) :

and

6. Iterations for time or load increment are performed to restore 

equilibrium. If convergence is achieved, then go to Step 1 

and apply new load or time increment. This process is 

repeated until the total load for time is reached.

5.6. Solution Technique for Descending Stress-strain Curve

Figure (5.4) shows the downward sloping portion of the stress- 

strain curve. The tangent modulus of elasticity for this portion of the 

loading curve is negative. However, using a negative value of E in the 

constitutive matrix may lead to non-positive definite stiffness matrix. 

In order to circumvent this problem, the tangent modulus on the downward 

portion of the stress-strain curve is set to zero for the purposes of 

numerical solution (Figure (5.4)) and the stress is corrected to the proper 

value at the end of each iteration.
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5.7. Unloading of a Point in Concrete

Unloading of concrete in compression is treated differently than 

for tension. For compression, the unloading of a point is calculated 

based on the maximum equivalent strain ever reached in the analysis. 

If the equivalent strain (j| £ij £cj ) of a point is less than the

equivalent strain in the previous load increment, the point is considered 

to be unloading during this load increment. The unloading is treated 

as elastic as shown in Figure (5.2). The equivalent strains of all 

points from where unloading started need to be stored. For example, 

the unloading in the figure starts at point 2 and follows the linear 

line 20' and the equivalent strain of point 2 is stored. Reloading of 

this point will follow the unloading line 0'2 until the equivalent 

strain of point 2 is reached. After that, the non- linear curve is 

followed. For example, upon reloading at point 1 (see Figure (5.2)) 

the curve 123 is followed. In this case, part of the strain increment 

is treated as linear and the rest as non- linear. The linear and non­ 

linear strains are calculated as follows (Figure (5.2)).

Fraction of linear (elastic) strain increment, FRAG = (£i-

where "£, , £ z , £^ are the equivalent strains at point 1, 2 and 3

respectively

Linear (elastic) part of the strain increment :

A£L = FRAC * AS, (5.13) 

Non-linear part of the strain increment :

(5.14)

where A£ =4£, + A£*. = total strain increment (5.15) m ***-• /-w w

-123-



Unloading of a point in tension is treated as elastic provided 
the point is uncracked. For a cracked point, the strain across the 
crack is checked to see if it is positive in which case the crack is 
assumed to be open and the material matrix of this point is adjusted. 
If the strain across the crack is negative, then this point can develop 
compressive stress in that direction and the material matrix in com­ 
pression is calculated. On further loading, this point may develop 
tensile strain and the crack will be assumed to be open if the strain 
across the crack becomes positive. A full scheme of crack closing/ 
opening is shown in Figures (4.6a) and (4.6b).

5.8. Accelerated Newton-Raphson Method

Various accelerating techniques for improving the convergence in 
certain non-linear problems have been used (86, 134). In these, the 
previous displacement and residual load vector histories are examined 
and those from which a more accurate displacement increment is calculated, 
In this work, the Accelerated Newton-Raphson Method (86) is used. The 
method was successfully applied to some examples analysed. The method 
is fully explained by Crisfield in reference (86) and therefore a brief 
review is presented in the following.

The essence of the method is to predict an accurate incremental 
displacement field at the end of each iteration so that the solution 
converges faster. Firstly, we write the steps for the modified Newton- 
Raphson method.

For a load increment, AP, the incremental displacement is calculated as :

' (5.16) / ,
and U, = Uo-t-AlUX (5 ' 17)

/%/ "* r*

where U0 is the displacement vector at the end of the previous increment 
and K may be the tangent or initial stiffness, as the case may be.
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For subsequent iterations, the Newton-Raphson method gives :

(5.19)

where R; - residual load vector 

i - iteration i

With the Accelerated Newton-Raphson method, Equation (5.19) is written 
as :

lU+l = Ut -V- AUt (5.20)
f** **~ r* ^ '

where 4LU is the updated incremental displacement field which is cal­ 
culated as follows :

Ail;- Bi dil^i + 4Uht (5.21)*•

where QL = hi (1 -••) -1 i hi«-ai/bt- (5.22)

Qc = Alllt £.,

where R,;., , U^., are the residuals and displacement increments from the 

previous iteration. Therefore, the Accelerated Newton-Raphson method 

may b.e implemented easily in an existing Newton-Raphson computer program 

by simply storing two extra vectors, f^., and A[|^, . When applying the
f>» **+

accelerated procedure to non-linear problems, returning to the standard 

modified Newton-Raphson method is sensible in certain unusual circumstances 
In the event that this is considered desirable, two checks are made :

1. If the angle between the accelerated and standard iterative 
direction is too large :

0- MttO ̂ 1, tAUtl = \ Alff Hti (5.245 «A,.«» U...H -> " **•"
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2. If the contribution of the previous iterative displacement 

(due to e t- ) is too large, i.e.

(5.25)

If any of the above two conditions are satisfied, the original Newton- 

Raphson method is used. For such cases, set e^o and h* l-O in 
Equation (5.21).
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= KU

U

Ca) Newton - Haphsoa Method ( Tangent Stiffness Method)

P=KU

Cb) Inital Stress Method CConstant Stiffness Method)

Figure 5.1 Load - Displacement Diagrams
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Non-linear curve

Unloading/reloading

FRAG =

E - Initial elatic modulus 
=Linear strain incr. 
=Non-linear strain incr.

Figure 5.2 Equivalent Stress/Strain Curve for Concrete
( Loading Unloading Scheme)
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From two similar triangles 
ABC and AB'C 1

FAC=

Figure 5«3a Equivalent Stress - Strain Curve for Steel

FAC - Transitional factor from

elastic to plastic regime 
From the figure
^., +FAC* AO^' = ! 

FAC = fl^t'-t =

Yield Surface

Figure 5.3b Tield Surface in Principal Stress Axes
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E is set to zero

Descending part of 
stress-strain curv

-ECtu
'CC

Figure Solution Technique for Downward Part of the 
Stress - Strain Curve
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Plastic loading
Plastic unloading

Elastic unloading

Elastic loading

E - Modulus of elasticity for steel 

- Initial yield stress

FAC.- Transitional factor

Figure 5.5 Loading/Unloading Scheme for Steel Used in the Program
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CHAPTER 6

Description of Finite Element Computer Program NSARVE

6.1. Introduction

This Chapter gives the main features of the computer program 

NSARVE developed for this research. The program is written to deal 

with the non-linear response of reinforced and prestressed concrete 

structures in general, and prestressed concrete reactor vessels in 

particular. The -theoretical models as developed in Chapters 3 and 4, 

are fully implemented. Individual modules and subroutines, their 

functions and capabilities, are fully described. A complete flowchart 

supported by Appendix B is included to acquaint the user with the 

salient features of the program.

6.2. Computer Program NSARVE

The computer program NSARVE is developed to carry out two and 

three-dimensional analyses of prestressed concrete reactor vessels. 

It is based on the displacement-type finite element formulation. The 

reactor vessel components are modelled by three-dimensional isoparametric 

solid concrete elements, rectangular steel liner elements are one- 

dimensional steel bar elements. The bond at the interface of steel and 

concrete is modelled by non-linear bond-linkage elements. Under 

increasing loads, the behaviour of reactor vessels is predicted in terms 

of displacements, strains, stresses, etc., plasticity and cracks. 

Temperature and visco-elastic creep models are included for short and 

long-term behaviour of vessels.

Loads and times are applied in increments. Equilibrium iterations 

are performed for each load and time increment. Results are printed at 

the end of each load and time increment. The program has the flexibility 

to suppress the output of any load increment . Any node on the structure 

can be suppressed in any three global X, Y, Z, directions and also in
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a skew direction on the X-Y plane, i.e. in a direction 6 from global 

X-axis. The program uses incore and out of core assembly and equation 

solution techniques. Hence very large problems can be analysed. For 

large problems, the stiffness matrix and load vectors are stored in 

auxiliary storage devices such as tapes or discs. Seven disc files are 

used for NSARVE. -The first five disc files are used for the solution 

of out of core equations and the other two files are used to store 

element stresses, strains, stress indicators etc. Where an incore 

solution is used, the first five discs are ignored. At the end of a 

successful analysis, all the auxiliary files are closed and deleted.

The program was written in the FORTRAN IV language and has been 

run on a DEC-KL10 and a PRIME-750 computer. The User's Manual given 

in Appendix B gives sample examples which are analysed on these two 
machines.

6.3. Description of NSARVE

The sequence of the main program NSARVE is given by the flowchart 

in Figure 6.1. The sequence of operations and functions of various 

modules and subroutines is given below.

6.3.1. Modules

The program is divided into eight modules, each of which has a 

distinct operational function. Each module is called by the main pro­ 

gram which controls of the flow of operations. The main program is 

called NSARVE (_Non-linear Stress Analysis of Reactor VEssel) . Each 

module is composed of one or more subroutines. One subroutine may be 

called in different modules. The modules are :

(a) INPUT DATA

(d) STIFFNESS

(g) CREEP

(b) INITIALISE

(e) SOLUTION

(h) OUTPUT

(c) LOADS

(f) STRESS AND RESIDUALS
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6.3.1.1. INPUT DATA Moduie

This module handles all input data to the finite element program. 

The module reads in all the controlling parameters, geometry, element 

topology, material and geometric properties, etc. This is the first 

module called by NSARVE. INPUT DATA module is used only once.

6.3.1.2. INITIALISE Module

This module initialises all the necessary arrays and controlling 

parameters. Some of the arrays are initialised to zero, while others 

are initialised to a specified value. This module is called only once 

by NSARVE.

6.3.1.3. LOADS Module

/ 
This module reads in the incremental or total external loads.

Various load types are included and they are : pressure loads, point 

loads, patch loads, self-weight and temperature loads. This module is 

called once for each load increment. The incremental loads are accumu­ 

lated as well. Flexibility exists for the inclusion of other types of 

loads including seismic, impact and blast loads.

6.3.1.4. STIFFNESS Module

This module organises the stiffness calculations of various 

element types (isoparametric solid elements, membrane elements, line 

elements and bond-linkage elements, etc.) and assembles the global 

stiffness matrix. The global stiffness matrix is decomposed (triangularised) 

using the Gaussian elimination method.

6.3.1.5. SOLUTION Module

This module mainly solves for the nodal displacements. The incre­ 

mental . load or residual load vector is resolved and back substitution 

is performed.
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6.3,1.6. STRESS AND RESIDUALS Module

This module carries out the calculation of strains, stresses and 

"residuals" for various element types. The stress increments are 

calculated using the non-linear constitutive relations (see Chapter 4) 

including those of cracking of concrete, yielding of steel and non­ 

linear bond-slip response at steel-concrete interfaces. Equilibrating 

internal loads are calculated by integrating total stresses. 

"Residuals" are calculated by subtracting external and internal loads. 

The module is divided into three submodules, each of which carries out 

the non-linear stress and "Residuals" calculations for concrete, 

steel and bond at the steel-concrete interface. Flowcharts of sub- 

modules are given in Figures 6.2., 6.3. and 6.4.

6 .3.1.7. CREEP Module

This module controls the creep analysis of each time increment. 

If a creep analysis is not requested, then this module is ignored and 

bypassed. This module has two functions : (1) it calculates the 

incremental creep strains for each concrete element using the visco- 

elastic creep model- (see Chapter 4), and (2) it calculates the kine- 

matically equivalent loads due to the incremental creep strains and 

assembles them into a global load vector.

6.3.1.8. OUTPUT Module

This module is called at the end of each load and time increment 

This module prints out displacements at nodes, strains, stresses, 

principal stresses (direction cosines) and stress indicators at 

integration points of each element. It is controlled by a parameter 

from the INPUT module.
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6.3.2. Description of Subroutines

A brief description of the main functions of each subroutine is 

given below.

INPUT

This routine reads in all the input data except the load data. 

The main items read in are the controlling parameters, nodal 

coordinates, element connectivity, material and geometric properties, 

nodal fixities, nodal temperatures, etc. The number of equations and 

the semi-bandwidth are also calculated for the stiffness matrix. All 

the read items are echoed and checked for obvious errors.

INITL

INITL initialises all the necessary arrays and variables used 

in the program. The arrays and variables are initialised to zero or to 

a specified value.

EQVINT

EQVINT updates the equivalent stresses or the equivalent strains 

at the end of each load increment. These equivalent quantities are 

used during the stress recovery of steel or concrete materials to 

establish loading or unloading. This routine calls two functions : 

SIGEFF and ZMISE.

PRNR£S
This routine prints out the global residual load vector upon

request.

LOADIP'
Subroutine LOAD (see later) is called by LOADIP. This routine 

calculates the total load applied and stores it in an array. During 

the analysis, this load is factored using the set of pseudo times 

specified. This routine also calls ROTATE.
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LODINC

LODINC is called for each load increment and calls subroutines 

LOAD and ROTATE. ' The total external load is also accumulated.

LOAD

The function of this routine is to read in the controlling 

parameters concerning loads and to identify the type of loading used 

in the analysis. According to controlling parameters, the routine 

further reads in necessary loading details and kinematically equivalent 

nodal loads are calculated. The types of loading available are :

(a) Surface pressure (uniform or variable)

(b) Point loads

(c) Patch loads (loads not directly on nodes)

(d) Gravity loads

(e) Thermal loads

The routines called by LOAD are ISOP2, IFACE, DEMAT, STFLIN, TMINTP, 

ISOPS, ASSLOD and LINEL.

IFACE

This routine sets up face numbers for solid elements. For more 

details of face numbering scheme, refer to the User's Manual given in 

Appendix B.

ASSLOD
This routine assembles the element load vectors into the global

load vector.

RESID
Calculates the internal element load vector and also assembles

it into the global load vector :

i.e Pc - (" B'^0^0*" 

and
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The routine ISOP2 is called by this routine.

RZERO and RZERO

Routines to set real and integer arrays to zero respectively.

MVECT

This routine multiplies an array of dimension nxm with a vector 
of dimension mxl, i.e. C = A * V

MPRODT

This routine multiplies two rectangular matrices, A and B 

(dimensions Ixm and mxn respectively) to produce a resulting matrix C.

ROTATE

This subroutine transforms the global load vectors into local 

load vectors for inclined boundary supports (skew boundary conditions). 

The displacement vectors are also transformed before stresses are 

calculated.

INCLNE

This routine transforms the element stiffness matrix of those 

nodes which have inclined boundary supports.

GAUSS

GAUSS sets up the Gauss point positions and corresponding weight­ 

ing coefficients. The number of Gauss points available are 1,2,3,4, and 

14. Any combination of these can be used, depending upon the user's 

requirements. The defaults are 2x2x2 for solid elements, 2x2 for membrane 

elements and 3 points for axial line elements.

STIF and STIFF
These two routines calculate element stiffness matrices for each 

of the element types used in the analysis. The first routine calculates 

the stiffness matrix with the assembly being performed at the same time. 

The second routine calculates the element stiffness matrix and puts it
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to a temporary backing file. This is recovered at the time of assembly 

in the assembly routine (this routine is suitable for very large 

problems). These routines call the following routines : ELSTIF, 

MBNSTF, LINEL and LINKEL.

ELSTIF

Calculates the element stiffness matrix for the solid elements. 

The contribution of the line element in the body of the solid element 

is also included in the stiffness matrix. The stiffness matrix is 

transformed to the local inclined directions if inclined supports are 

present. The following routines are called by this routine : STFLIN, 

ISOP2, DVARB, INCLNE and BOUNDC.

MBNSTF

Calculates the element stiffness matrix for the membrane elements. 

The stiffness matrix for the inclined supports is also transformed into 

the local axis system. The following routines are called by this 

routine : ISOP3, MEMDAT, INCLNE and BOUNDC.

LINEL

In this routine the element stiffness matrix, the internal 

element load vector and the thermal load vector are calculated for the 

AXIAL LINE elements. The routines called are ZESBAR, INCLNE, TMINTP 

and BOUNDC.

STFLIN

The element stiffness matrix, the load vector and the thermal load 

vector are calculated for the line element in the body of the solid 

element. The routines called by this routine are ZESBAR, ISOP2, ASSLOD 

and TMINTP.

LINKEL

The element stiffness matrix and the element (internal) load 

vector for the 2 node linkage element are calculated. The element 

stiffness matrix is transformed if the element node has inclined boundary 

supports. This routine calls INCLNE and BOUNDC.
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STFDEC

This routine sets up solution controls and calls incore or out of 

core assembly and decomposition routines. The Gaussian elimination 

method is used to decompose the stiffness matrix. The routines called 

are FORMEQ, DECOMP, ASSEMB and LEQSOL.

FORMEQ

The element stiffness matrices are assembled into the global 

stiffness matrix. Incore or out of core assembly may be used upon 

request by the user. The minimum storage for the stiffness matrix 

(declared as a dimension) is 2*NHBD*NHBD for it to remain incore, 

Where NHBD is the semi-bandwidth of the stiffness matrix. 

The routine called by this routine is STIF.

ASSEMB

This routine performs the same task as FORMEQ but the whole 

operation is performed out of core with no restriction on the size of 

the stiffness matrix. The stiffness matrix is divided into blocks and 

they are put to the backing file once full. Subroutine STIFF is called 

by this routine.

DECOMP

This routine decomposes the stiffness matrix assembled by FORMEQ 

in triangular form using Gaussian elimination.

LEQSOL

The stiffness matrix assembled in the routine ASSEMB is de­ 

composed (Gaussian elimination). The load vector is also resolved and 

back-substitution is performed. All these operations are carried out 

using the out of core scheme.

RESOLV

This routine resolves the load vector and performs the back- 

substitution using the decomposed stiffness matrix produced by the 

routine DECOMP.
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SOLVE

This routine calls RESOLV and LEQSOL.

TOSTRS

This routine calls the appropriate stress routines. The stress, 

strain and residual load vectors are calculated by the routine called 

by TOSTRS. These routines are ROTATE, MEMBST, LINEST, BONSTR, PRNRES 

and SOLDST.

SOLDST

Stresses, strains (total and incremental), creep strain, thermal 

strain and the equilibrating forces are calculated for the solid 

elements. The stress calculation at each Gauss point is performed 

using the appropriate constitutive matrix (cracking and high compression) 

The routines called by this routine are STRESS, TMINTP, ISOP2, CREEP, 

NONSTR and ASSLOD.

STRESS

This subroutine calculates the incremental strain and stress for 

each element type. The following routines are called : DVARB, DMEMB, 

TMINTP, ZESBAR, BONDST and ISOP2.

TMINTP

Th-is subroutine checks the temperature distribution for the solid, 

membrane and axial line elements. If temperatures are found for the 

element type which are not allowed, then that temperature is overwritten 

by this routine. For example, temperature type constant, linear and 

quadratic are allowed for the linear, quadratic and cubic elements 

respectively. This ensures that the thermal strain is of the same 

order as the mechanical strains produced by the temperature load.

ISOP2

Shape functions, derivatives of the shape functions, determinant 

of the Jacobian and the strain-displacement matrix are calculated for 

the solid and line element in the body of the solid element.
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ISOP3

Shape functions, derivatives of the shape functions, determinant 

of the Jacobian and the strain-displacement matrix are calculated for 

the membrane elements.

OUTPUT

OUTPUT prints out the displacements and external loads for all 

nodes. Stresses, strains and element indicators are also printed for 

each element type.

NONSTR

NONSTR calculates the stress increments according to the 

current state of stress and the state of the material (concrete com­ 

pression and cracking). Loading and unloading at the current point is 

checked and the current stress state updated. The routines called by 

this routine are CRACK, DMATL, ENDOST, PRINCL and TRANSF.

MEMBST

Stresses and equilibrating forces are calculated for the membrane 

elements. The incremental theory of plasticity with isotropic hardening 

is used. The following routines are called : ISOP3, TMINTP, STRESS, 

ASSLOD and PLASTM.

LINEST

Stress and stress increments are calculated for the axial line 

and line element inside the solid element using the incremental 

plasticity cheory. The routines called are STFLIN, LINEL, STRESS and 

STELST.

CRACK

This is the main crack routine which examines the state of 

stress and strain at a point and sets up the current crack indicator. 

The crack initiation, possibility of crack closures and reopening of the 

closed cracks are also considered. The routines performing these tasks 

are GETNCK, GETNCR, CRACLS, CRKOPN and CRINT.
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GETNCK and GETNCR

The crack at a point is represented by a single number or by 
three numbers in three principal directions. GETNCK gets three numbers 
for a given number and GETNCR does the reverse.

CRINT

This routine initiates crack(s) at a point. The maximum principal 
stress criteria is used to initiate crack(s) normal to the principal 
stress under consideration. CRKIN is called by this routine.

CRACLS

Checks the existing crack closure and updates the crack indicator 
accordingly.

CRKOPN

Checks the reopening of closed crack(s). The principal strain 
criteria is used and the crack updated accordingly.

CRKIN

Checks that any of the principal stresses exceed a specified 
limiting tensile stress. The crack flag is set up accordingly.

BONSTR

This routine calls the routinesBONDST and STRESS.

BONDST

BONDST calculates the incremental bond stress and slip. The 
current stress and slip are also accumulated. Finally, the equili­ 
brating forces are calculated.

CONVER

The Euclidian norms of the total external loads, total displace­ 
ments, residual loads and incremental displacements are calculated. 
Also the following ratios :
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IPI =
W -/inT

W/IPII
/N

where R - residual load vector

JP - total external load

4U - increment displacement

LL - total displacement

T - transpose

are calculated. These are checked against a specified tolerance by the 

main program.

CCREEP
This routine was written to convert the creep strains into kine- 

matically equivalent nodal loads. The routines CREEP and ROTATE are 

called by this routine.

CREEP
The element incremental creep strain is calculated in this routine 

The following routines are called : ISOP2, RESID, DEMAT and RESID.

DVARB

DVARB sets up the material matrix for the solid elements. The 

constitutive matrix is calculated according to the material state. The 

cracked matrix is transformed to the global system. Adjustment is also 

made for higher concrete compression. The routines called by DVARB 

are DMATL, DDMAT, TRANSF and PRINCL.

DMATL

DMATL sets up the material matrix according to the type of con­ 

crete compression criteria used. The endochronic theory, the uniaxial 

equivalent strain concepts and-the shear-bulk modulus approach are the 

compression criteria available. The routines called are COMPRN, DTBRK, 

DZIMER and GETNCK.
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DZIMER

Sets up the concrete constitutive matrix based on the bulk-shear 

modulus approach. The shear modulus is assumed to be a function of the 

second invariant of stress.

BOUNDC

Boundary conditions at the element stiffness level are imposed. 

The strategy adopted is to zero out the row and column associated with 

the degrees of freedom under consideration and to set the diagonal term 

to one.

INTPOL
Interpolates the modulus of elasticity for concrete at higher 

temperature using linear interpolation.

PLASTM
The elasto-plastic stress increment and the current stress are 

calculated for the membrane elements. The stress at the end of the 

iteration is brought back to the yield surface. The routines called 

are SUBINST, MEMDAT and ZMISE.

SBINST

This routine calculates the stress increment of a plastic point 

using the sub-incremental method. The routines called are MEMDAT and 

ZMISE.

STELST

Elastic or elasto-plastic stress increment and the total stress 

are calculated by this routine for the line elements. This routine 

calls the function ZESBAR.

TRANSF

TRANSF sets up the transformation matrices for stress and strain 

transformations between local (crack) and global axes. The cracked 

material matrix is also transformed into the global coordinate system.
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DDMAT

Sets up the material matrices in the local (crack) directions 
for the Gauss points where cracks have developed.

DMAT

Three-dimensional elastic material matrix is set up by this routine,

PRINCL

This subroutine calculates the principal stresses and strains and 

the direction cosines.

ZMISE

This function calculates the equivalent stress (Von Mises) for the 

plane stress condition.

ZECJ2

Calculates the equivalent strain for the three-dimensional solid 

elements.

ZESBAR

Returns elastic or an elasto-plastic modulus for the uniaxial line 
elements.

DMEMB

The elastic material matrix is set up for plane stress membrane 
elements.

MEMDAT

The elastic or elasto-plastic material matrix is set up for plane 

stress membrane elements. The routine called by this routine is DMEMB.

SECANT

This subroutine sets up the orthotropic material matrix for the 

solid elements. Three moduli in three principal directions and corres­ 

ponding Poisson's ratio are used.
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COMPRN

The moduli! of elasticity for concrete in three principal 

directions are calculated using the uniaxial strains and the ratios of 

principal stresses. The routines called by this routine are CONSTV and 

SECANT.

CONSTV

This routine calculates the ultimate stress and strain for given 

principal stress ratios.

OTTENS

This routine uses Equation (4.16) to calculate the ultimate stress 

using Ottosen failure surface (35).

CONWEL

This routine calculates the ultimate stress using Argyris William 

failure surface.

MEMTRF

Local membrane stresses are transformed to global stresses.

ACCNEW

This subroutine calculates the modified displacement increment 

using the current and old displacement increments and the residual load 

vector. This is called the accelerated Newton Raphson procedure.

CONCR1

This routine calculates the concrete failure surface according to 

Equation (4.16).
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The following are routines based on the endochronic theory :

ENDOST

Calculates the stress increment using the endochronic theory. 
The routines called by this routine are PARAM and ENDITR.

PARAM

Sets up concrete parameters used in the endochronic theory 

formulation.

ZPARAM

This subroutine calculates the intrinsic time function and the 
inelastic dilatency parameter (lambda). The function ZECJ2 is also 
called.

UPDIST

Calculates the inelastic stress increment if cracks are present.

ENDCHN

This routine calculates the inelastic stress increment and con­ 

stitutive matrix using the endochronic theory. The following routines 

are called by this routine : ZPARAM, DTBRK, GETNCK, UPDIST and DDMAT.

DTBRK

Sets up the constitutive matrix based on the endochronic theory.

ENDITR

Calculates the incremental stress for the loading and unloading 

points based on the endochronic theory. The routines ENDCHN and DTBRK 

are also called.

-148-



FIGURE 6.1 Flow Chart of the Non-linear Program NSARVE
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FIGURE 6.2. Flow Chart of STRESS and RESIDUAL for Concrete
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FIGURE 6.2a Flow Chart of CRACK
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FIGURE 6.3. Flow Chart of STRESS and RESIDUAL for Steel
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FIGURE 6.4. Flow Chart of Stress and Residual for Bond
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FIGURE 6.5. Accelerated Newton-Raphson Procedure
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CHAPTER 7

Experimental Investigations of 

Bond-Slip Specimens and Bonded Slab

7.1. Introduction

A limited number of isolated scale model tests (13, 113a, 114, 115, 
116, 119) have been performed on post-tensioned slabs using unbonded 
tendons. These tests assess the behaviour of such slabs under elastic, 
inelastic and cracking conditions. A valuable experimental data on 
unbonded slabs is now available. However, there is a lack of experi­ 
mental data on the non-linear and cracking conditions of slabs using 

bonded tendons.

In this Chapter, a test has been carried out on a scaled model 
of an octagonal slab, post-tensioned with 5 mm and 7 mm high tensile 
steel wires in the two orthogonal directions. In certain areas, mild 
steel bars of 12 mm diameter have also been provided. This slab together 
with prestressing wires and conventional reinforcements have been designed 
using the Yield Line Analysis. Loads in various increments have been 
applied on this slab and the results have been processed using data 
logger. in addition pull-out tests have been carried out on bonded 
prestressed concrete specimens in order to obtain local bond-slip data. 
These are several beams in which the same 5 mm and 7 mm prestressing 

wires have been used.

Results from both these experiments are presented in this Chapter. 
It is intended to use these results in the constitutive relationships 
for Ahmlink element given earlier.
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7.2. Material Data from Tests

For bond test specimens and octagonal slab, the concrete mix was 

designed. The mix properties by weight were :

Water 0.46

Cement 1.0

Sand 1.6

Coarse aggregate 2.32

The grout mix was designed from cement, water and admixture 

(cabaco expanding agent). The water/cement ratio for this mix was 0.45 

by weight. The expanding agent was added according to the supplier's 

instructions in order to control shrinkage. This grout mixture was 

used for both the bond specimens and the octagonal slab.

The concrete properties using this mix were determined by testing 

concrete cubes and cylinders. Three cubes of 150 mm were tested in 

compression. Six cylinders of 150 mm x 300 mm diameter were chosen for 

testing, three under compression and three for splitting conditions. 

The modulus of elasticity and Poisson's ratio were measured on cylinder 

tests. The average material properties determined from these tests at 

28 days are as follows :

2 Uniaxial concrete cube crushing strength, QCU = 45.0 N/mm

Uniaxial concrete compressive cylinder

strength, ^ = 39.76 N/mm
2 Uniaxial concrete tensile strength, t̂ = 3.93 N/mm

/•

Modulus of elasticity , Ec = 27.5 x 10 3 N/mm' 

Poisson's ratio , Vt = 0.17

Steel used in these tests were of two types : (a) plain mild 

steel bars (12 mm diameter), and (b) high tensile steel wires (5 and 7 mm 

diameter). The following material properties were obtained :

2 Modulus of elasticity for steel, Es = 200,000 N/mm
o

Yield stress for mild steel bars, <ty= 297 N/mm
o

Yield stress for high tensile steel wires/ ^= 1,340 N/mm
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7.3. Details of Test Specimen

Details of the local bond strength and bonded post-tensioned 

slab specimens are given below :

7.3.1. Bond-Slip Test Specimen

The test specimen chosen was based on 'flexural only case'. A 

rectangular beam (cross-section 152 mm x 152 mm) of one metre length 

was chosen (Figure (7.1..)) with two rectangular holes on each side of 

a 38 mm bonded length (L, ). A circular duct running along the beam 

through the centre of the cross-section was cast void for later 

insertion of fche prestressing wire. This duct in the central part of 

the specimen between rectangular holes was grouted using the cement 

grout after post-tensioning.

Two strain gauges (gauge, factor 2.5) were mounted onto the wire 

50 mm apart from the centre of the wires prior to the insertion of the 

wires in the ducts. The strains on these wires were recorded from the 

Peekel strain indicator (photograph 7.1.). Four high precision dis­ 

placement transducers were placed at both ends of the bonded length 

(with two at ea'ch end) . The slip of the wires was measured using these 

transducers with a measuring accuracy of 10 mm (photograph 7.2.). The 

slip was directly recorded from the transducer measuring unit (photograph 

7.1.).

The load was applied with a prestressing hydraulic jack and the 

accuracy of the load increment was recorded using a load cell. A 

complete general view of the bond test specimen is shown in Figure (7.1.)

To study the influence of various parameters on the bond between 

the prestressing wire and the grout, two main parameters were investi­ 

gated; the magnitude of the prestress force and the wire diameter. 

Wires of diameters 5 and 7 mm were prestressed to 65% and 75% of the 

guaranteed ultimate tensile strength (GUTS). Ten beam specimens were
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tested. Table 7.1. showe the prestressing loads and wire diameters 

for these beams.

7.3.2. Details of the Bonded Slab

A scaled model of a prestressed concrete slab (Figure (7.2.)) 

representing the top cap of a typical prestressed concrete reactor 

vessel was tested. The object of the test was (a) to study the 

physical behaviour of a prestressed concrete slab with bonded tendons 

under increasing load up to the point of failure, thereby providing 

load displacement relationships, distribution of cracking and the 

failure mechanism, and (b) to compare these results with those obtained 

from the analytical model developed in Chapters 4 and 8.

Yield Line Theory was used to size up initially the octagonal bonded 

slab.Table 7.3 shows the yield line analysis and results obtain major 

cracks only along the two centre lines of the slab. A sufficient amount 

of ordinary reinforcement was provided in certain areas in order to help 

the initiation of these cracks.

The octagonal prestressed concrete slab representing the top cap 

of a vessel was prestressed with 5 mm and 7 mm diameter wires in two 

orthogonal directions. A conventional reinforcement of 12 mm diameter 

mild steel bars were provided as shown in Figure (7.2.). Four 7 mm 

diameter wires were placed along the centre line BB, two on either side 

of the centre line at distances 115 mm (C..) and 350 mm ^2) respectively. 

These wires are shown with broken lines were at height of 36.5 mm from 

the bottom surface of the slab. Eight 5 mm diameter wires were placed 

along the centre line AA, four on either side of the centre line at 

distances 115 mm and 350 mm and at heights of 18 mm and 55 mm from the 

bottom surface of the slab. Eight 12 mm diameter bars spaced at 65-mm 

were provided in one quadrant of the slab. A total of 32 bars were 

provided in the slab as shown in Figure (7.2.).
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Photographs were taken at various stages of the construction of this 

slab. Photograph 7.3.shows a formwork of an octagonal shape with 

mild steel reinforcing bars. Special hooks were provided for lifting 

the slab from the mould after it was cast and cured. Photograph 7.4. 

shows the next stage of this construction in which temporary steel rods 

were provided (marked C) in the formwork which were removed later on 

in order to leave holes for the post-tensioning wires. The same photo­ 

graph shows a steel frame used to hold straight steel rods (marked A). 

Strain gauges placed on reinforcements are also shown. After the slab 

was cast, the temporary rods from both sides were taken out. These 

were replaced by 5 mm and 7 mm diameter prestressing wires on which 

strain gauges were placed to measure the steel strain.

The prestress force was provided by stressing 8 number of 5 mm 

diameter and 4 number of 7 mm diameter wires in two orthogonal directions. 

A uniform prestress force was applied by stressing in sequence in both 

directions using CCL prestressing system. Each wire was stressed up to 

75% of GUTS. Photograph 7.5. shows the slab after it has been prestressed, 

The prestressing wires were then grouted using a cement grout. The grout 

was injected under high pressure. The slab was then lifted and placed 

on to the rigid and roller supports. The rigid supports were placed 

diagonally opposite to the roller supports (Photograph 7.6.). The slab 

was transversely loaded with an approximately uniformly distributed 

load. This required a typical rigid steel frame (Photograph 7.6.) 

through which this load is applied. The dial gauges were placed on 

one-quarter part of the top surface of the slab to measure the transverse 

deflection. Rosette strain gauges were also placed on the top surface 

of the slab.

7.4. Brief Details of Test Rigs

The details of test rigs for both experiments are briefly given 

below.
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7.4.1. Bond-Slip Test Rig (Figure (7.1.))

The complete test set-up of the bond-slip experiment is shown 

in Photograph 7.1. To accurately measure the applied loading, a 

load cell was used between hydraulic jack and a steel plate. The 

load was directly recorded with the load cell measuring unit. Four 

linear displacement transducers, two on each side of the bonded length, 

were clamped with a 1.5 mm thick steel sleeve, which was glued to the 

beam surface. Two rigid brackets were clamped to prestressing wire 

and the transducers were in contact with these brackets (Photograph 

7.2.). Therefore any movement of the prestressing wire was recorded 

by the transducers.

7.4.2. Test Rig of Prestressed Concrete Slab (Figure (7.3.))

The slab was loaded with the loading rig producing four load points 

on the main steel frame and 12 load points on the slab. The loading rig 

is shown in Photograph 7.6. Four deep steel I sections were welded 

together at 90° to make a main rigid steel frame. This frame was 

supported by two strong steel beams running across the slab, which were 

supported by the columns. Each rigid frame was connected to a hydraulic 

jack. Hydraulic jacks were connected to a common hydraulic pump. Each 

hydraulic ram was lowered onto a three-legged spreader frame, with the 

load being transferred between each leg and the slab with a steel plate. 

This steel plate has a rubber pad underneath it to distribute the load. 

The steel plates and rubber pads were spread over a diameter of approxi­ 

mately 1780 mm. 100 KN load cells were used on each hydraulic jack 

for accurate measurement of load. The load was applied from the common 

hydraulic pump whereby each hydraulic jack applied a load on one- 

quarter of the slab. Figure (7.3a) shows the schematic details of the 

loading rig where points A, B, C and D are the positions of the hydraulic 

jacks. Figure (7.3b) shows the details of the three-legged frame 

representing the position A of the hydraulic jack. The schematic view 

is also shown in Figure (7.3c). The relationship between uniformly 

distributed load and the total load is given by :
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p = P/A 0.40185 x 10"6 P

2 where p = uniform pressure, N/mm

P = total loads from all hydraulic jacks (Newton)

The vertical deflections were measured on the top surface of the 

slab with dial gauges which were capable of measuring with an accuracy 

of 2 x 10 mm. The dial gauges were placed only on one-quarter 

of the slab due to symmetry and these were clamped with rigid steel 

beam which was running across the slab. The locations of 24 dial 

gauges are shown in Figure (7.4.). Strain gauges were embedded onto 

prestressing wires and reinforcements. The locations of strain gauges 

on these steel wires are shown in Figure (7.5.). The surface strains 

of concrete were measured using rosette strain gauges (see Figure (7.4a)) 

The strain gauges and the rosette strain gauges were connected to a 

data logger (compulog) as shown in Photograph 7.6. For each load 

increment, the strains were recorded by compulog and these were also 

printed on the teletype. The positions of dial gauges and strain gauges 

in Figures (7.4.) and (7.5.) were chosen such that they matched with the 

finite element mesh, the details of which are provided in Chapter 8.

7.5. Testing Procedure and Results of Bond-Slip Tests

The load in bond tests was applied at one end of the wire by 

using the prestressing hydraulic jack and it was measured with a load 

cell (see Photograph 7.1.). The load was applied in increments of 

0.25 KN. For each load increment, the readings were taken. The steel 

strains were recorded with the Peckel strain indicator and the slips 

were recorded with the transducer measuring unit. The load was stopped 

when change in bond stress became nearly zero. The bond stresses, cv ? 

were calculated from measured steel strains using the expression :

(7.2.) 
JTdLb }
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where AP = change in steel force over the bonded length, L

A8s = &L-&f = change in steel strain over the bonded length

£L = steel strain at the loaded end

&f = steel strain at the free end

A = steel cross-sectional area

E = modulus of elasticity for steel

L, = bond (embedded) length

d = diameter of steel

TTdL, = embedded surface area of steel b

The slip was obtained by taking an average value of the transducer 

readings.

The experimental bond-stress slip results obtained are plotted in 

Figures (7.6.) to (7.9.)- It can be seen from these figures that at 

the early stages of loading the bond stress increased with a very small 

slip. With the increase in load, the rate of slip also increased. 

In all cases, the curves show that up to a maximum bond stress, there 

is a non-linear relationship with slip, and when slip increases beyond 

a certain value, the bond stress is almost constant and is equal to its 

maximum value. This occurs at a slip varying from 0.019 mm to 0.065 mm 

in different curves. Slip values of 0.01 mm to 0.06 mm were reported 

by Yannopolous (91) in his experiments of plain bars. The slope of 

the curves decreases with increasing slip, having a maximum value at 

zero slip and approximately zero at maximum bond stress. The initial 

slope (slip modulus, Ej, ) of the bond-slip curves (Figures (7.6.) to 

(7.9.)) are not much different. The average value of initial slip 

modulus is 

Table 7.2.

2 modulus is 501.40 N/mm /mm. Results of all tests are summarised in

Results shown in Figure (7.6.) are for beams 1, 2, 3 of 5 mm 

diameter wires which were stressed up to 75% GUTS. There is a scatter 

of results for the beams tested under the same conditions. This is 

because of the complicated nature of the steel-concrete interface factors 

such as local shrinkage, settlement of the grout which give rise to
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variation in the bond strength. An average maximum bond stress in
2 this series of tests is approximately 1.64 N/mm at an average slip

of 0.048 mm when bond stress stops increasing.

In the second series of three tests (beams 4, 5 and 6) in which 
7 mm diameter prestressing wire with a prestress of 75% GUTS are
shown in Figure (7.8.). The bond-slip curves again become non-linear

2 at the final stages with an average maximum bond stress of 1.80 N/mm
and an average slip of 0.057 mm. The bond stress at this point stopped 
increasing its value. The maximum value of bond stress is slightly 
higher than that in the previous case of beams 1, 2 and 3. These results 
indicate that 7 mm diameter wire gave slightly higher bond stress in 
comparison with 5 mm diameter wire.

Figure (7.9.) shows the results for beams 7 and 8 in which 7 mm 
diameter wire was also used with a prestress of 65% GUTS. In this 
case as shown in Figure (7.9. ) a relatively large scatter of results
are obtained for maximum bond stress. An average value of maximum

2 bond stress is found to be 2.05 N/mm at an average slip of 0.025 mm
when bond stress stops increasing. In this case curves indicate less 
non-linearity and maximum bond stress is relatively larger than that 
for beams 3, 4 and 5. The maximum slip at which the bond stress stops 
increasing is less here than for beams 3, 4 and 5. Figure (7.7.) shows 
the results for beams 9 and 10 in which 5 mm diameter with prestress of
65% GUTS is used. The average maximum bond stress is found to be

2 2.21 N/mm . The slip at which this maximum bond stress was obtained
is 0.0205 mm. Comparing these results with those of beams 1, 2 and 3
it can be seen that the maximum bond stress is larger with a smaller slip,

7.5.1. Conclusion

From the above results it may be concluded that the maximum bond 
stress decreases with the increase of prestressing force in the wire 
and at a lower slip value. The effect on maximum bond stress due to 
the variation of steel wire diameters is negligible. For any definite 
conclusions on large tendons, much more testing with variations of 
prestress and tendon diameter need to be performed. There are so many
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local factors at the steel-concrete interface which need to be 

investigated, especially for commercial prestressing tendons, if 

ever bonded. The tests carried out for bond-slip and average 

maximum bond stress are enough for the present research to be used 

in the constitutive relationship of Ahmlink linkage element.

7.6. Testing Procedure and Results for the Octagonal Slab

The load was applied in small increments using a hydraulic pump 

which had four hydraulic jacks as stated in section 7.4.2. connected 

to it. At each load increment, the readings of the dial gauges and

the strain gauges were recorded. In the early stages of the loading
2 larger load increments of 20 KN (0.032 N/mm ) were applied. At the

2 later stages of loading, smaller load increments of 8 KN (0.01286 N/mm )

were applied. The bottom part of the slab was painted with whitewash 

in order to observe the cracks. The part of the slab which was vulnerable 

to cracking was divided into small 50mm square divisions in order 

to accurately estimate the positions and propagation of cracks. The 

slab was examined for cracks at each load increment. As cracks 

appeared, they were marked with a dark pencil so that they were visible 

in the mirror placed underneath the slab. A camera was mounted at the 

corner of the slab to take photographs of the cracks reflected in the 

mirror.

The total load up to the point of failure of the slab was applied 

in 53 increments. The results obtained are plotted in the form of 

load-displacement curves. The experimental load-displacement curve 

at the centre of the slab for the entire load history is shown in 

Figure (7.10). The deflected shapes of the slab along two centre lines 

(i.e. AA and BB) for various loads are shown-in Figures (7.11) and (7.12). 

Photographs of cracks at the bottom surface of the slab were taken at 

various stages of loading. Photographs 7.7. to 7.9. show crack patterns 

of the slab at 428 KN (0.17199 N/mm2 ) and at failure. The marked cracks 

at the bottom surface of the slab are shown in Figures (7.13) to (7.17).
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The numbers marked on these cracks indicate the load in KN at which 

these cracks have occurred.

The slab behaved elastically (linear) up to a load of 160 KN
2 (0.0643 N/mm ). This initial linear behaviour mainly depends on the

amount of prestress provided in the slab and the type of boundary 

supports. The early non-linearity of load-deflection curve 

(Figure (7.10)) is caused by the flexural cracks at the bottom surface 

of the slab. The initiation of first such cracks occurred at a load

of 180 KN (0.007233 N/mm2 ) as shown in Figure (7.13). As the load
2 increased further up to 200 KN (0.0804 N/mm ) the existing cracks

are extended with the addition of some new cracks. The cracks marked 

at this load are shown in Figure (7.14) and are related to the load- 

displacement diagram (Figure (7.10)) where a slight deviation in the 

load-displacement curve has occurred which is due to the loss of stiffness 

as a result of cracking. This loss is contributed possibly by the 

reduced load of grouted tendon, ineffective grout and 

the variable boundary conditions imposed on the slab.

With the further load increments, the existing cracks are enlarged 

and are joined by the newly developed cracks in the region. Figure

(7.15) shows the crack pattern up to the total load of 248 KN
2 (0.09966 N/mm ). By studying the results shown in this Figure and

comparing them with those of Figure (7.13), it becomes clear that the 

yield lines are beginning to form in the direction of free edges of the 

slab. At this stage, a large part of the slab has already cracked and 

the stiffness is lost. The vulnerable load in stages are 200 to 250 KN. 

This might explain the sudden small depression on the load-displacement 

curve shown between the load of 200 KN (0.0804 N/mm2 ) and 248 KN 

(0.09966 N/mm2 ) as shown in Figure (7.10). This deviation of the load 

deflection curve is marked as AB in Figure (7.10). At this stage of 

loading, the displacement of the slab started increasing at a faster 

rate than before.
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As the load increased further, more cracks developed forming additional
2 

yield lines. At a load of 280 KN (0.1125 N/mm ) the crack pattern

assumes the form as shown in Figure (7.16). It can be seen from the 

figure that most of the slab has cracked at this stage and yield 

lines have formed in the direction of the free edges. As a result 

of the formation of these cracks, a further degradation in the stiffness 

of the slab has occurred as shown in Figure (7.10). In this region 

of loading (marked C in BC region, see Figure (7.10)) large deflections 

of the slab were observed visually and most of the cracks were clearly 

visible. With the further increase in load in the region CD in 

Figure (7.10) the deflection of the slab has occurred due to the 

rotation of the slab about the yield lines section. As a result, due 

to large existing cracks additional strains occurred both prestressing 

and conventional steel. As a result, the rotation of the slab about 

the yield line occurs and the concrete compressive zone (at the top 

surface of the slab) is being gradually reduced (point D in Figure 

(7.10)) and prestressing wires have started yielding. This can also be 

seen in Figures (7.11) and (7.12) showing as well the deflection profiles 

along the two centre lines of the slab with increasing loads.

Figure (7.17) shows the crack pattern of the slab just before 

failure. The figure only indicates the position and the distribution 

of cracking at the surface of the slab, but it does not show the depth 

and width of cracks. This can, however, be seen in the photograph taken

at failure (Photographs 7.8. and 7.9.). The slab finally failed
2 at the load of 544 KN (0.2186 N/mm ) where deflections large and beyond

the limit of the available deflection measuring gauges.
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Table 7.1. Parameters of Bond-Slip Specimen

Beam No.

1

2

3

4

5

6

7

8

9

10

Diameters (mm)

5

5

5

7

7

7

7

7

5

5

Amount of Pre- 
stress (% GUTS)

75

75

75

75

75

75

65

65

65

65

Table 7.2 . Results of Bond Tests

Be" am No.

1

2

3

9 

10

4

5

6

7 

8

Dia. 
(mm)

5

7

Prestress 
force (% 
GUTS)

75

75

75

65 

65

75

75

75

65 

65

^bmax 
(N/mm2 )

1.6 ]

1.64]

1.68]

2.2 ] 

2.22]

1.84]

1.81] -

1.75]

2.1] 

2.0]

Average 
tf^bmax 
(N/mm2 )

1.64

2.21

1.8

2.05

Slip 
(mm)

0.044]

0.052]

0.05 ]

0.019] 

0.022]

0.055]

0.065]

0.052]

0.026] 

0.024]

Average 
slip 
(mm)

0.048

0.0205

0.057

0.025

Eh 
(N/mm2 /
mm)

380]

540]

500]

509] 

543]

510]

520]

540]

466] 

500]

Average
Eh (N/ 
mm2 /mm)

473.3

526.0

523.3

483.0

= ultimate (maximum) bond stress

= initial slope or slip modulus
2Average value of = 501.4 N/mm /mm 
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Table 7.3. Yield Line Analysis

-H

d'

•nd

AS*

Numerical values :

= 45 N/mm

= 72.5 mm

= 75.75 mm

= 0.003

= 109 mm

= 79 mm

= 1990 mm

nd 

C

T

depth of neutral axis 

compressive force in stress block 

tensile force in prestressing steel 

strain in prestressing steel 

strain in reinforcements 

tensile force in reinforcements

The value of n is calculated by balancing compressive force in concrete 

and tensile force in steel, as

C = ZT =

C =

+ T

b n d, <* = 0.4

(1)

C = 2.7133 x 10 n
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From the geometry of the above figure

58. 46
in in the

for n =0.3

C = 0.814 x 106 

£ : = 0.01245 

= 0.00743

From stress strain curves of reinforcements and prestressing wires

0- = 1568 N/mm2 , o~2 = 317 N/mm

Therefore T I = ^ ASl, T2 = 0^ 2 AS2

Tj + T2 = 0.814 x 106

So for n = 0.3 Equation (1) is satisfied.

nd = 22.72 mm

1 = 64.13 mm, 1 2 = 67.64 mm

Total moment along yield line

M = CN 1 AS I i l + 0-2 ASl 1 2

= 54.27 x 106 N-mm (2)

The external moment is calculated due to external loads as shown in 

the figure overleaf
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M = *Y -JLy ex 2 o 2 V

= 161.6 W N-nun

W = total load 

Y - 701.3 nun, Y = 378 mm c

(3)

Equate (2) and (3)

161.6 W =
W =

Total load = 336 KN

54.27 x 10 

336 KN

JL_

yield dine
Loaded Af«a
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Displacement transducer

Grouted part 
(bond)

Strain gauges

Prestressing wire

Pull-out 
load

Displacement transducer

DIMENSIONS:

L = 1000.0 mm 

38»0 mm 

= 76.0 mm 

12= 38.0 mm

Figure 7^.1 Details of Prestressed Concrete P
ull-Out Specimen
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Dimensions

8.reinforcements spaced at 65mm.6->mm B

^^- ̂ T^ ^^n

. ^\ i

a
D^^l ^^Tl

I

a=820 ram 
b=1990 mm 
0=9^0'mm 
c1=115 mm 
c2=350 ram 
t =109 mm 
t1=l8 mm 
t2=22 mm 
t3=37

__

supported edge

Section at BBSection at AA

Reinforcements Prestressing Wires Prestressing Reinf. 12mm dia 
12mra dia. 7mm dia. Wires 5mm dia

Figure 7.2 Details of Prestressed Concrete Slab
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P/4

Slab

(a) Main Steel Frame

11 = 23k mm
12 = 204 mm

Ql = 109.25

(b) Three Legged Frame

Steel Frame

Main Frame

Steel Plate

Rubber Pad

(c) Load System on the slab

Figure 7.3 Load System of the Rig
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o - Dial Gauge

All Dimensions in mm

Rosette Strain 
Gauge

S.S.'

767

Ln

- 572

-7

•T!

?>2 —

i —— 2

<

<

<

I
1

31 ———
•£L— - •<

•*i

"?i

^ —— «

iS2 —— .

)6 <

^ —— i

•/ *
' 1/5

S ————— «

U> ——————— <

9> —————— i

/I £ ————— <

^ ,

- 350 —— .

—— 470

—————— (.

19t f

& ———— «

13£= ——— «

^ —— 1 
^ — (

J0 ————

N^ S

fc ———

az _ «

z^ 1 ————— <

>11 —— ,

I* fl

.s. 

'̂\

3S-

/«•

>' s

^ —

Figure

995

Dial Gauge Locations 
and Numbers on the 
One-Quater Slab

Figure 7.^-a Rosette Strain Gauge Locations on the 
One-Quater Slab
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All Dimensions in mm

Prestressing Wire(7 mm dia.) •77*.

Prestressing Wire(5 mm dia.) -3o?

•I7f-

-llo

•510
l+ZO

330

160

JO 3.P

L

' *^^

Reinforcements(12 mm dia.)

Figure 7«5 Strain Gauge Positions on Prestressing Wires 
and Reinforcements
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2.0 \

1.8

1.6 -

1.2

1.0 

0.8

BOND STRESS 
(N/mm2 )

o.k .

0.2

0

Wire diameter = ^> mm 

Prestress of 75 % GUTS

—®——BEAM NO. 1

—-x——BEAM NO. 2

——e>—BEAM NO. 3

SLIP (mnixlO"" 2 )

8 10

Figure 7«6 Experimental Bond Stress-Slip Curve of 5 
Diameter Prestressing Wire

BOND STRESS

0.2 -

Wire diameter = 5 

Prestress of 65 % GUTS

—--x—- BEAM NO. 9

—9—BEAM NO. 10

SLIP (mmx10~ 2 )

8 10

Figure 7.7 Experimental Bond Stress-Slip Curve of 5 mm
diameter Prestressing Wire 
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2.0 -

1.5 -

-BOND STRESS 
.2

0.2 -

Wire diameter = 7 ram 
Prestress of 75 % GUTS
——o—BEAM NO. k

—*—BEAM NO. 5
——®—BEAM NO. 6

. SLIP
8

Figure 7.8 Experimental Bond Stress-Slip Curve of 7
Diameter Prestressing Wire

-BOND STRESS

Wire diameter = 7 mm 
Prestress of 65 % GUTS
——®——BEAM NO. 7
——*——BEAM NO. 8

0.2 -

_, SLIP (mmx-io" )
8 10

Figure 7.9 Experimental Bond Stress-Slip Curve of 7 mm 
Diameter Prestressing Wire 
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P/Pd

5.5 
5.32

5.0 

^.5 

4.0

3.5

3.0 -

2.5 •

2«0 -

1.5 -

0.5 '

Load(pressure)%^ 
P ( p )
pd = Design load

= 100 KN(0.0402 N/rara2 )

Simply supported 
edge

Central deflection (mm) 
1214160 10

Figure 7.10 Experimental Load-Displacement Curve of the 
Octagonal Prestressed Concrete Slab
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1+96 KN 

512 KN

Deflection (mm)

Figure 7.11 Experimental Deflected Shapes Along AA

0 

2 -

4 -

6 -

8 -

10- 

12-

14-

Deflection (mm)

S.S. Edge

352 KN 
400 KN 
448 KN

-Figure 7.12 Experimental Deflected Shapes Along
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4 Free Edge

Simply Supported 

Edge

. '\ \ -. x\dx-

. .* v • '• . -. \ x v / /Y '• x / - / / -v ' • • , \ ^ / - /
X X \ - /

- \ x>x
xx > v^ X V X \ > *•' \ X*->'\ V vV v X-' x X

• .'^ - \ ' \ x' \. ' N. -- N X\
V '' •" / \ •' - .-• \-' •>-./'

:' >C -<' ',\ X' x''x ~,\•< .\ /

x- / .. ,' •' v .-'• vx • - . . f ' *• ^' -' ' '" '' x '"' ^

4 50 mm Square

820rr»m

Figure 7-13 Experimetal Cracks at the Bottom Surface of the Slab 
(Upto the Total Load of 180KN(0.0723 N/mm 2 ) )
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Free Edge

Simply Supported 
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x ,/- ^

/
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820 nim

Figure 7-1^ Experimetal Cracks at the Bottom Surface of the Slab 

( Upto the Total Load of 200Kfi(0.0803 N/mm2 ))
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4 Free Edge

Simply Supported 
Edge

x >«• \
-A N. X

x. r K Y A
«-'"!i\ X X \< \ N - X \ut\i ''
x ->;;« -. x v -»«- \ - x .-* <° x^j

50 mm Square

820 n*m

Figure 7.15 Experimetal Cracks at the Bottom Surface of the Slab 
(Upto the Total Load of 2*f8KN(0.0996 N/mra2 ) )
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Free Edge

Simply Supported 

Edge

\ •• : N A s*^ X '^\A \ \ . y \.u u X -, , -.,- / 
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820mm

Figure 7-16 Experimetal Cracks at the Bottom Surface of the Slab 
( Upto the Total Load of 280KN (0.1125 N/mm2 ) )
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4 Free Edge

Simply Supported

Edge

\ , ,\V >* \ - v X
X V /P* X \ • ^/:\ v\L^\ \ ->-/\, 32^

x \ x • y
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. • X.x X;X •

50 ram Squsire
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Figure 7.17 Experimetal Cracks at the Bottom Surface of the Slab 
just Before Failure

-190-



*. 
'

r • 
•

P
ho

to
gr

ap
h!

 7
-1

 
) 

E
xp

er
im

en
ta

l 
se

t-u
p 

fo
r 

bo
nd

 t
es

t
P

ho
to

gr
ap

h 
( 7

.2
. 

) 
D

et
ai

ls
 o

f s
ho

rt
 b

on
de

d 
le

ng
th

 o
f p

re
st

re
ss

ed
 c

on
cr

et
e 

be
am



-192-

Photcgraph(7.3 ) Octagonal shape mould and reinforcements

Photograph (?. A- ) Steel frame, reiforcements and temporary rods

Photograph! 7.5 ) Fully cast and prestressed slab



Photograph (7.6) Testing stage of the prestressed concrete slab
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Photograph ( 7.7 ) Crack pattern of the slab at 428 KN

Photograph ( 7.8 ) Failure cr?ck pattern of the slab



Photograph( 7-9 ) Experimental crack pattern of the slab at failure
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CHAPTER 8

Comparative Study of Results

8.1. Introduction

In this Chapter, the numerical analysis of various problems 

is carried out using the proposed analytical model. Two main problems 

are considered. The first problem is the prestressed concrete octagonal 

slab (see Chapter 7). The slab given in Chapter 7 is of an octagonal 

shape and is post-tensioned with prestressing wires. The prestressing 

wires are bonded. Two types of analyses of bonded slab are performed. 

In the first, the bond between the steel and concrete is considered by 

a specially developed linkage element, whereby slip between the steel 

and concrete is allowed. The second analysis assumes a perfect bond 

(i.e. no slip between the steel and concrete). Both these analyses on 

the slab are 8 noded solid and 2 noded axial line elements. The 

analytical results from both these analyses have been compared with 

those from the experimental results.

Greater confidence is obtained by validating the analytical tool

on this slab. This work is then taken further and is applded to

various cases of prestressed concrete reactor vessels.

The vessel under consideration is stressed vertically by means 

of longitudinal tendons and circumferentially by means of wire/strand 

winding. These tendons may or may not be bonded. Three cases of 

vessel analysis are performed, namely unbonded, bonded and perfectly 

bonded. For bonded vessel, the bond between the tendon and concrete 

is represented by linkage elements. For perfectly bonded vessel, a 

rigid bond between the tendon and concrete is assumed. For unbonded 

vessel, there is no bond between the tendon and concrete and the load 

is transferred through anchorages. In all cases the vessel is modelled 

by 20 noded solid, 8 noded membrane and 3 noded line axial elements to
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represent vessel concrete, liner and prestressing tendons respectively. 

The vessel for above three cases is analysed under both normal 

operation (up to 40 years of vessel creep) and with gas increasing 

pressure up to the point of failure. Deformed shapes, load-displace­ 

ment diagrams, crack patterns and safety margins have been obtained 
for all the above mentioned cases.

8.2. Validation of Program NSARVE using Simple Problems

The validity of the finite element computer program NSARVE has 

been tested on a number of problems. The main purpose is to 

demonstrate the accuracy of the theoretical model and to test various 

facilities provided within the program NSARVE. Linear, materially 

non-linear, thermal and creep analyses are tested using different 

formulations, elements and material models available in the program. 

The numerical results obtained are compared with analytical and 

published data. The representative test examples are briefly given 

in Appendix B1.2.

8.3. Analysis of the Octagonal Prestressed Concrete Slab 

8.3.1. General Information

Details of the experimental results for this slab are given in 

Chapter 7. Figure (7.2.) gives the main dimensions of the slab 

together with the positions and locations of prestressing wires and 

ordinary reinforcements. The wires are stressed up to 75% of the 

guaranteed ultimate tensile strength (GUTS) and are grouted. The slab 

is now treated as bonded and is simply supported on four edges as 

shown in Figure (8.8.). ..The slab has been analysed using three- 

dimensional finite element program NSARVE given in Chapter 6. The 

analytical results have been given for the following three cases :
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Case I Bonded Prestressed Concrete Slab - the interface behaviour 

between the steel and concrete is modelled using Linkage 
(Ahmlink) Element

Case II Perfectly Bonded Prestressed Concrete Slab - the steel 

element is placed on one side of the solid element and 

a perfect (rigid) bond is assumed between the two

Case III Unbonded Prestressed Concrete Slab - the steel elements

are not included in the analysis but their prestress forces 

are included in the analysis of slab

All loads due to prestressing are treated as uniform pressures on

four opposite edges of the slab. The pressure, after taking into con-
2 sideration various prestressing losses, is 1.89 N/mm . The applied

load on the top surface of the slab is also treated as uniform pressure.
2 A total load at failure from the experiment is 544 KN (0.2186 N/mm ).

8.3.2. Finite Element Meshes, Geometry and Material Data

Due to symmetry, only one-quarter of the slab is analysed 

(Figure (8.8a)). This slab is restrained from moving in Y direction 

along AB (i.e. v = 0) and in X direction along AC (i.e. u = 0). The 

centre point A is restrained in both the X and Y directions (i.e. u = 0, 

v = 0). The edge DE is supported in the Z direction (i.e. w = 0). 
Figure (8.8a) shows these boundary conditions. The finite element mesh 
of one-quarter of the slab with element dimensions is shown in Figure (8.8b). 
The choice of this mesh is made so that the prestressing wires and re­ 

inforcements are to lie on the sides of the solid elements. The nodes 

of solid elements and line elements are connected either by Ahmlink 

elements for bonded slab or by rigidly interconnected for perfectly 

bonded slab. Where a large amount of ordinary reinforcement is closely 

spaced in the slab, they are modelled as line elements in the body of 

the solid elements. Such elements are shown as broken lines in 

Figure (8.8b). Two solid elements are chosen through the thickness of 
the slab. The line elements are placed at an effective depth of 72.5 mm
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(Figure 8.8b). The details of finite element meshes for three different 

cases are given below :

Case I : Bonded Slab

The slab concrete is modelled using 8 noded isoparametric solid 

elements, the reinforcements and prestressing wires are modelled using 

2 noded axial line elements and the bond between the steel and concrete 

is modelled using 2 noded Ahmlink elements. Figure (8.9.) shows the 

finite element mesh for this case only. The mesh comprises 60 solid 

isoparametric elements, 48 line elements, 28 Ahmlink elements and 

40 body axial line elements (these are shown as broken lines in Figure 

(8.9.)). The nodes for steel and concrete are represented by different 

numbers, although they occupy the same points in space. The Ahmlink 

elements (joining steel and concrete) are located at nodal points along 

the steel-concrete interfaces. Figure. (8.9.) shows the 

Ahmlink elements connected to solid elements. Here, solid element nodes 

26, 29, 47 and 50 are connected to the line element nodes 130, 131, 137 

and 138 through the Ahmlink elements. Node numbers 26 and 130, 29 and 

131, 47 and 137 and 50 and 138 have the same coordinates in space. There 

are a total 150'nodes and 450 degrees of freedom for this case.

Case II : Perfectly Bonded Slab

Finite element mesh for this case is shown in Figure (8.10). The 

mesh is similar to the bonded slab case except that Ahmlink elements are 

replaced by traditional line elements rigidly placed on solid elements. 

It is assumed to have a perfect bond between the solid element and the 

line element. The steel line elements are assumed to lie along the sides 

of solid element sharing the same nodes (Figure (8.10)). The finite 

element mesh for this case ..comprises 60 isoparametric solid elements, 

48 line elements and 40 body axial line elements. There are total 

126 nodes and 378 degrees of freedom.
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Case III : Unbonded Slab

In this case the line elements representing prestressing steel 

are not included in this analysis since they are unbonded. The 

finite element mesh (Figure 8.10) in this case is identical to the 

case of perfectly bonded slab except that here the line elements 

representing prestressing wires are excluded. The finite element mesh 

comprises 60 isoparametric solid elements representing concrete, 24 

axial line elements and 40 body axial line elements representing 

ordinary reinforcements. There are total 126 nodes and 378 degrees 

of freedom.

Table 8.1. gives the details of geometric and material property 

data for the slab. The stiffness properties of bond-linkage elements 

(see Chapter 3, Equations (3.30) and (3.32b)) are obtained from the 

experimental tests described in Chapter 7. A local bond stress-slip 

curve for 7 mm of wire (Figure (8.11)) is a mean curve obtained from 

the statistics of the experimental curves. Fifteen points are taken 

on the bond slip curve and they are assumed to be joined by linear 

lines. The bond stress-slip relations for these 15 points are taken as 

an input for the program NSARVE. The program has the flexibility to 

take other types of bond-slip curves. The instructions to prepare data 

deck for program NSARVE are given in Appendix Bl.

8.3.3. Discussions on the Analyses and Results

As mentioned earlier that the slab has been analysed for three 

different cases, namely bonded, perfectly bonded and unbonded cases. 

The total load (pressure) on the slab has been applied in 11 increments. 

The first load increment is due to prestress applied on the edges of 

the slab. The second increment and onwards are due to the transverse 

pressure applied on the top surface of the slab. These pressures are 

given below :
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prestress (N/mm ) : 1.89

pressures (N/mm2 ) : 0.0603, 0.0804, 0.1005, 0.1206, 0.1407, 0.1608,

0.1809, 0.201, 0.2074, 0.2138

For each load increment, iterations are performed to correct the 

equilibrium. A maximum of 12 iterations per increment are allowed and

iterations are generally terminated when the Euclidian norm of the
2 

residual loads becomes less than the specified tolerance (Tol = 3xlO~ ).

The constant stiffness option (Initial Stress Method) is employed for 

all cases. The orthotropic concrete model in compression and tension 

cut-off model for cracking of concrete and elasto-plastic model with 

strain hardening for steel (Chapter 4) have been adopted throughout.

The results obtained from these analyses are plotted in the form 

of load-displacement curves, crack patterns and deflected shapes as 

shown in Figures (8.12) to (8.18). Cracking of concrete has a particularly 

strong influence on the behaviour of the slab. Figure (8.12) shows 

the load-central deflection history of the slab. The experimental curve 

is also shown for comparison. It is seen that the predicted results 

for three cases compare favourably with the experimental results. 

These curves show that they are in very good agreement in the early stage 

of loading (between 180 KN (0.0723 N/mm2 ) to 280 KN (0.112 N/mm2 )). At 

this stage most of the cracking takes place. There is a slight

disagreement between the computed load-deflection curve and the
2 

experimental curve between the load range of 300 KN (0.1205 N/mm ) to
2 450 KN (0.18 N/mm ). This is due to the facts described in Chapter 7.

The ultimate load computed from the analysis is less than the experimental 

failure load. The difference between the two is roughly 2.2%. 

These variations are due to assumptions built into the 

analysis and probability of variations of material data and boundary 

conditions. In the analysis very large displacements are predicted at 

load level of 544 KN indicating the collapse of the slab. The computed 

crack distribution of the slab for various load levels are plotted in 

Figures (8.17) and (8.18) for bonded and fully bonded slab cases 

respectively. Comparing these two cases, there seems to be close
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relationship in certain areas. These crack patterns have also been 

compared with experimentally obtained crack patterns as shown in 

Figures (7.13), (7.16) and (7.17). At a load of 200 KN (0.0803 N/mm2 ) 

the cracks have formed along the two centre lines of the slab which 

compares favourably well with the experimental cracks. At load of 

280 KN a large part of the slab is cracked and between 280 KN and 

336 KN practically the whole bottom surface of the slab is cracked 

as can be seen in Figures (8.17) and (7.16) and (7.17). The comparison 

between the computed and the experimental crack patterns is reasonably 

good. The analytical results only show the position and the direction 

of cracking which is based on the principal directions of the stress 

state. Nevertheless, they do not show the sizes of cracks.

The crack patterns of the slab from the analysis may be related

to the load-displacement curve of Figure (8.12). Initially the slab is
2 linear (elastic) up to the load of 150 KN (0.602 N/mm ) when the first

set of cracks developed at a load level of 200 KN (0.0803 N/mm ) the 

curve has deviated slightly from its linear path. At load of 280 KN 

(0.1125 N/mm ), as a result of more cracking, the curve deviates

further due to the loss of stiffness. When load reached at 336 KN
2 (0.135 N/mm ) a large part of the slab has cracked already in two

directions indicating further loss of stiffness which is clear from 

Figure (8.12). Thereafter, the curve is almost linear (between 336 KN 

to 450 KN) indicating the widening of the existing cracks up to the point 

when yielding of steel starts. After that, the slab has failed due to 

excessive cracking producing large deflections.

By making the comparison of load-deflection curve (Figure (8.12)) 

for the above mentioned three cases, namely bonded, perfectly bonded and 

unbonded cases, it is clear that the results are almo.st identical 

in the early stage of loading. As soon as sufficient cracks are 

developed in the slab, the results from perfectly bonded analysis are 

rather higher than the bonded and unbonded analyses. This would be 

expected, since in the perfectly bonded analyses the steel and the concrete 

is assumed to be rigidly connected, which allows no slip between the steel 

and the concrete
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The difference in the ultimate strength of the two cases is about 

1.4%. In addition, the third case of unbonded slab has also been 

analysed for comparison. The computed ultimate load is reasonably 

close to the other two analyses, but the computed displacements at 

the ultimate load are much too large. This reason is explained 

earlier. Figures (8.13) and (8.14) illustrate the deflected shapes 

along the two centre lines of the slab. The computed and the 

experimental deflected shapes are in close agreement. Figure (8.15) 

shows the maximum steel stress (reinforcement and prestressing tendon) 

as a function of applied load as computed from the analysis.

o
A re-analysis has been carried out for the above two cases I

and II. The bonded slab in case I is analysed this time with smaller 

load increments. The total number of 18 increments has been adopted 

using the initial stress method and equilibrium iterations. A further 

sophistication in results has been achieved and the results are in 

good agreement with those from the experiment. With smaller increments 

within the total range of the same load, large deflections, as expected, 

have been computed. Although the ultimate load of the analysis is 

taken to be the same as the experimental load, but the deflections 

in comparison are much too large. It is seen that there is a depression 

in the load-deflection curve for load level of 250 KN to 350 KN. 

With the small load increments the results do show the depression in 

the nearby region which could not be observed by using large load 

increments. In case II, the slab has been analysed using incremental 

approach with no iterations. In this case, the stiffness matrix is 

updated according to the Newton Raphson method. The results of this 

incremental method are shown in Figure (8.12). It can be seen from 

the Figure that the ultimate load for this analysis is highly 

overestimated, while the deflections at ultimate load are much too 

small. The ultimate strength of the slab for this case has been 

overestimated by 11%. The reason is gathered from the fact that 

because of no iterations, the released stresses as a result of this 

cracking are not redistributed to the surrounding material. This 

assumed case is normally adopted for approximate analysis and gives 

much higher results.
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8.4. Analyses of the Prestresses Concrete Reactor Vessel

8.4.1. Objective of the Analyses

The purpose of the present analyses is to predict the structural 

response of the prestressed concrete reactor vessel (Figure 8.19) under 

increasing gas pressure up to the point of failure at various stages 

of its life. The influence of creep on the normal operational con­ 

dition up to 40 years of vessel life is also investigated. The 

vessel is analysed for three cases, namely bonded, perfectly bonded 

and unbonded. Analyses will be expected to predict short and long- 

term stress distribution, load-displacement curves, crack patterns 

and safety margins for such vessels. It is intended to examine and 

compare these results and to assess the structural integrity of both 

bonded and unbonded vessels.

8.4.2. General "Introduction of the Vessel

A High Temperature Gas-Cooled Reactor (HTGCR) Vessel is chosen 

for the analysis as shown in Figure (8.19). The Prestressed Concrete 

Reactor Vessel (PCRV) is a multicavity thick-walled cylindrical con­ 

crete structure with an external diameter of 24.5 m and overall height 

of 32.31 m. The main pressure cavity (core cavity) is 11.21 m in 

diameter and 21.946 m high and contains the reactor core and its 

shielding. The wall contains eight equally spaced vertical cavities 

for the boilers (steam generators) of 3.048 m diameter. They are 

linked by radial gas ducts to the top and bottom of the main cavity. 

All cavities are lined with a 19.0^Tnthick continuous steel liner. 

The PCRV is prestressed by two post-tensioning systems. The prestress 

force in the circumferential direction is provided by the wire/strand 

winding system. The BBRV system was used for the vertical prestressing 

of the PCRV. Each vertical tendon has a guaranteed ultimate tensile 

strength of 9.75 mN. These tendons may be grouted (bonded) or left 

ungrouted (unbonded) for the reasons discussed elsewhere.
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8.4.3. Finite Element Meshes and Vessel Data

Due to symmetry only l/16th part (22|° wedge) of the vessel is 

analysed. Only the top half of the vessel is considered for the 

analysis. Boundary conditions as shown in Figure (8.24) are applied 

in order to maintain three-dimensional symmetry. The vessel is 

restrained from moving in Y direction along AB and in Y' direction 

along CD. Inclined or skew boundary conditions are applied along 

CD which are also fully discussed in Appendix A. At the mid-height 

of the vessel along EF, the vessel is restrained from moving in Z 

direction. Finite element meshes or 22^° wedge of the vessel are 

described below.

I Bonded Vessel with Ahmlink Element

The vessel concrete is modelled using 20 moded isoparametric 

solid elements and the steel liner is modelled using 8 noded iso­ 

parametric membrane elements. The prestressing tendons are modelled 

using 3 noded line elements. The line elements are also used as 

-"•body line elements within the solid elements. The bond-slip 

behaviour at the steel and concrete interface is represented by using 

Ahmlink elements. Figure (8.20) shows the finite element mesh for 

this case. The mesh is generated using the FEMGEN preprocessor. The 

instructions to prepare finite element meshes are given in the FEMGEN 

User Manual (155). A detailed finite mesh of the same vessel with 

element and node numbers at various levels is given in Figure (8.21). 

The mesh comprises 62 solid isoparametric elements, 32 membrane 

elements, 72 line elements, 36 line elements in the body of the solid 

elements and 156 Ahmlink elements. There are a total of 632 nodes 

and 1896 degrees of freedom for this case.

II Unbonded and Perfectly Bonded Vessel

Figure (8.22) shows the three-dimensional finite element mesh 

of the unbonded and perfectly bonded vessels. For perfectly bonded 

vessels, the prestressing tendons are assumed to lie along the sides
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of the solid elements sharing the same nodes or they are modelled 

inside the solid elements. Both cases represent a perfect bond 

between the vessel concrete and the tendons. A detailed finite 

element mesh element, together with node numbers at various levels 

is given in Figure (8.23). The mesh comprises 62 solid elements 

representing vessel concrete, 32 membrane elements representing 

the steel liner, 72 line elements and 36 body axial line elements, 

representing the tendons. The total number of nodes and degrees of 

freedom are 472 and 1428 respectively.

The finite element mesh for the unbonded vessel is the same 

as for perfectly bonded vessels, except the vessel tendons at various 

mesh levels are not taken into consideration.

Full details of geometric and material data of this vessel 

are given in Table 8.2. The stiffness properties of bond-linkage 

elements (Chapter 3, Equations (3.30) and (3.32)) are obtained from 

the experimental bond-slip curves of 12.5 mm strand. The local bond 

stress-slip curves for 12.5 m (j") strand are due to Edward and 

Picard (90) and are given in Chapter 2 (Figure (2.4.))

Very little difference has been found in the stress strain 

behaviour of strands used in the Dungeness B model tests (156) and 

the tendons adopted in the vessel for the Dungeness B station (the 

same tendons are used for the vessel under consideration). Hence 

bond-slip curves for strands obtained from these results are thus 

assumed to be identical to Dungeness B vessel tendons if bonded.

An average Ideal bond stress-slip curve with 23 points joined 

by straight lines as shown in Figure (8.25) are used in the analysis. 

These points are input to the program NSARVE and are given in Table 8.2 

However, the computer program is flexible enough to include any other 

bond-slip data.
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The solid elements are integrated using 3x2x3 integration rule, 

the membrane elements by 2x2 integration rule and the line elements 

by 4 point integration rule. Figure (7.27c) shows the main 

dimensions of the finite element mesh and the Gauss point locations.

The loading conditions in the PCRV are idealised as follows.

(a) Normal operational condition - this includes prestress 

forces, internal gas pressure at the design level and 

the design operational temperatures. The details of 

prestress forces, internal gas pressure and the temperature 

distribution in the vessel are given in Figures (8.25) and 

(8.27a) and (8.27b). The prestress forces given in the 

figures at present do not deduct losses due to various 

conditions. The details for losses are given in Table 8.2.

The pressures in the radial ducts and the boiler cavity
2 are assumed equal to the main cavity pressure (5.68 N/mm ).

(b) Ultimate loading condition - the pressure in all cavities 

(main cavity, duct, boiler) is increased gradually until 

the failure conditions of the vessel are met under normal 

temperatures.

8.4.4. Types of Analyses

Three main types of analyses are performed for bonded and 

unbonded vessels. The first one is for unbonded vessels. In this 

case it is assumed that vertical tendons only contribute to the 

prestress force in the vertical direction and the tendon forces are 

transferred through the anchorages. The traditional method of 

analysing bonded vessels is to assume a perfect bond between the 

tendons and the vessel concrete. This means that the displacements 

and strains of both tendons and the concrete are assumed to be the same 

In practice, however, when substantial cracking has occurred, this 

assumption ignores the differential movement between the tendon and
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the concrete. To account for this effect, the bonded vessel is 
analysed using a specially developed linkage element known as the 
Ahmlink element after the name of the author. This gives a 
realistic representation of the bonded vessel behaviour.

The bonded vessel is also analysed assuming a perfect bond 
between the tendons and the vessel concrete. In order to assess the 
strength history, the vessels are analysed for the following cases.

I Linear analyses under normal operational conditions and creep 

analyses for 40 years of bonded, unbonded and perfectly bonded 

vessels. This covers the reactor operational conditions.

II Ultimate load analysis of unbonded vessel

III Ultimate load analysis of "perfectly bonded vessel

IV Bonded reactor vessel analysis using Ahmlink element

(a) Ultimate load analysis for short-term prestress losses 

(1-5 years)

(b) Ultimate load analysis after 10 years prestress losses

(c) Ultimate load analysis after 20 years prestress losses

(d) Ultimate load analysis after 30 years prestress losses

For cases (a) to (d) long-term material properties for steel 

and concrete are used.

8.4.5. Discussion of the Analyses and Results 

8.4.5.1. Normal Operational and Creep Analyses

All three vessel cases are analysed first for normal operational 

conditions and then with 40 years of creep. This is usually the 

.service life of the vessel. Creep analysis is performed with 'rate of 

flow' method, and the Burger visco-elastic creep model (see Chapter 4),
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The total creep time of 40 years is applied in small time increments 

during which incremental creep strain under the sustained stress and 

temperature is evaluated. This is followed by the calculation of 

redistribution of stresses through a cycle of elastic analysis. 

In the beginning of the analysis the stresses do change rapidly, 

therefore a careful selection of time increments is required. The 

following time increments are chosen :

7., 36., 66., 76., 80., 100., 365., 400., 695., 825., 1000., 1650., 

2000., 3650., 3650., days

The obtained results are plotted in the form of stress and 

deformation histories. The results obtained for three vessel types 

are almost identical, the reasons for this being that the effect of 

bond in the elastic range of loading is almost negligible. The 

results of the normal operational analysis are first examined. The 

vessel is in compression at most places, except at the outside wall 

near the equator where vertical tensile stresses were found. These 

values are small and are unable to cause any cracking (see Figure (8.30c)) 

The deformations of the vessels for normal operation and creep analysis 

are shown in Figures (8.28), (8.28a) and (8.28b). A vessel deformations 

of these vessel cases when compared show very little difference. 

Figure (8.29) shows the principal stress distribution just at the 

beginning of the normal operation, while Figure (8.29a) shows those 

under normal operation after 40 years of creep. Since the PCRV has 

a non-uniform temperature distribution (i.e. temperature gradients 

through the wall and the cap), the stresses change with time and re­ 

distribution takes place due to temperature-dependent creep in the 

early stage of creep analysis. Owing to creep, the tensile stresses 

were converted into compressive stresses at the outer surface near 

the mid-height of the vessel.

The analysis in general predicts a significant stress reduction

and redistribution due to concrete creep. A maximum compressive hoop
2 stress os 22.0 N/mm is calculated under normal operational conditions
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at the inner side of the main cavity at mid-height of the PCRV.
2 This value is reduced to 15.73 N/mm after 40 years of creep, a

reduction of stress by 30%. Similarly, the tensile stress at the
2 outer surface of the wall at mid-height is reduced from 1.7 N/mm

2 to a compressive stress of 8.6 N/mm .

Figure (8.30) shows the variation of circumferential stresses 

with time. A steady state condition is reached after 10 years of 

creep. Figures (8.30a) and (8.30c) show the variation of circum­ 

ferential stress in the wall of the vessel, while Figure (8.30b) shows 

the variation of circumferential stress in the top cap of the vessel. 

The figures indicate a substantial stress redistribution due to creep.

8.4.5.2. Ultimate Load Analyses

For the ultimate loading conditions, in addition to the normal 

operational loads of the vessel, the pressure in all cavities of the 

vessel is increased monotonically until failure occurs. The internal 

pressure to the point of failure of vessel is applied in 15 increments. 

The first increment is the normal operational condition loads (prestress 

forces, internal pressure at the design level and temperature loads) 

and the rest of the increments are carefully chosen as a fraction of 

the design pressure. This decision is taken so as not to cause any

excessive non-linearity within the load increments. Analyses are
2 performed at the following pressures (N/mm ) :

5.68, 7.384, 9.08, 10.792, 11.928, 13.064, 14.2, 15.336, 16.188, 17.04,

17.892, 18.744, 19.312, 19.88, 20.448

The constant stiffness method (initial stress method) is used 

for all cases analysed in this section. An average of 10 iterations 

per increment are required for the convergence of the solution.

Iterations within each load increment are terminated when a norm
2 of residuals has reached a specified tolerance of 3x10
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The ultimate load .analyses are performed for the following two 
conditions :

TYPE I Ultimate analyses of bonded, perfectly bonded and unbonded
vessels in which short-term prestress losses were considered

TYPE II Ultimate analyses of bonded vessel for long-term prestress 
losses due to creep, relaxation and shrinkage, etc.

The analyses also take into account the changing material properties 
with time and have been performed for 10 years, 20 years and 30 years 
in terms of prestress losses and material properties. Details are 
given in Table 8.2.

The obtained results of these analyses are plotted in the forms 
of pressure-deflection curves for the entire loading history, deflected 
shapes and crack patterns of the vessel.

TYPE I CASE I+CASE II+CASE III AND IV(a)

Figures (8.31) to (8.38c) show a history of pressure-deflection, 

deflected shapes and crack patterns of bonded, perfectly bonded and 

unbonded vessels. The pressure-deflection histories are plotted for 

the centre of the top cap and at the outside of the mid-height wall. 

As a result of increased internal cavity pressure and the boiler 

pressure, the PCRV's displaced upward in the vertical direction (cap) 

and outward in the radial direction. This results in some bending 

in the wall and the top cap as shown in Figures (8.33), (8.34) and (8.35). 

The cracks formed at the outside surface of the wall are due to the 

vertical extension and bending of the wall causing horizontal cracks 

(due to the vertical stress). The radial cracks are formed at the 

top surface of the end slab and in the wall near the inner surface. 

These are formed due to the radial expansion causing circumferential 

tensile stresses. Inclined cracks have also formed in the radial/ 

circumferential direction near to the junction of the cap and wall. 

Cracks and failure in compression are marked at the integration points.
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The study of the load-deflection history can be made in 

relation to cracks developed, since this is the major source of non- 

linearity in the vessel. Figure (8.32) shows the load-displacement 

curves of the wall for three vessel types analysed. It can be 

seen that the curves of the three vessel types are identical up 

to the load factor of 2.5 (14.2 N/mm2 ). The reason for this can 

be explained by examining the crack patterns of these three types 

shown in Figures (8.36b), (8.37b) and (8.38b). From these figures 

it is seen that the crack patterns developed in three vessel types

are identical. When the pressure is increased further up to the
2 load factor of 3.0 (17.04 N/mm ) the three curves start deviating.

The results of the bonded vessel with Ahmlinks and perfectly bonded 

vessels are higher than the unbonded results. Cracks at this stage 

of loading in the three vessels are shown in Figures (8.36c), (8.37c) 

and (8.38c). By comparing these figures, it may be seen that the 

crack patterns of bonded and perfectly bonded vessels are still 

identical, except in a few places where the extent of cracking in 

the .bonded vessel is more. However, for the unbonded vessel, the 

analysis seems to indicate much more cracking especially between the 

boiler and the outside wall, where most of the section has cracked 

in two directions. This causes more radial displacement of the wall 

The extent of damage of these vessels at this load level is excessive 

and the vessel has substantially cracked at this load level. 

Examination of the top cap indicates that still very little cracking 

has occurred. This can also be assessed from Figure (8.31) where 

the pressure deflection curves of the top cap of the three vessel 

types are plotted. The pressure deflection curves up to the load 

factor of 2.5 are almost linear. A slight non-linearity is observed 

between load factors 2.5 to 3.0. This non-linearity may be due to 

crack formation at the junction of the cap and wall.

When pressure is increased further to a load level of 3.3
2 (18.74 N/mm ), excessive deflections occur for the unbonded vessel,

especially in the caps of the vessel. The solution for this vessel 

could not converge after 12 iterations. The analysis-was stopped at 

this load level. This is now considered to be failure load of the 

unbonded vessel. Crack patterns, deflected shapes and the load-
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deflections of the wall and the cap at this load level are shown 

in Figures (8.38d), (8.31), (8.32) and (8.35). Due to crushing of 

the concrete at the inner surface of the cap (see Figure (8.38d)) and 

extensive cracking at the upper part of the cap, this has caused a 

local instability in the numerical model (the stiffness matrix of 

the system) thereby resulting in excessive deformation of the cap 

(Figure (8.35)). Nevertheless, changes in the shape of the vessel 

with increasing internal pressure shown in Figure (8.35) can easily 

explain the progressive failure of the vessel. On the other hand, 

the computed crack patterns of the vessel (Figures (8.38a) to (8.38d)) 

provide a useful guide in interpreting the internal failure process 

of the vessel.

When the pressure is increased to a load factor of 3.5
2 (19-88 N/mm ), a further crack development takes place for bonded

and perfectly bonded vessels. The crack patterns for this load level 

are shown in Figures (8.36d) and (8.37d). At this stage, the whole 

vessel is cracked and the most damage the bonded vessel has received 

(Figure (8.36d)) is in the cap of the vessel where failure in com­ 

pression (due to crushing) and triaxially cracked concrete have 

resulted. This may have caused the unstable state of the system in 

the numerical model resulting in excessive deformation of the cap as 

shown in Figure (8.33). The obtained solution for the bonded vessel 

did not converge in 12 iterations and therefore the analysis was stopped 

at this load level. This load-displacement curve of the bonded 

vessel (Figure (8."31)) indicates an abrupt change of slope between 

load factors 3.0 and 3.3, with a further increase in the load and 

excessive deflection of the centre of the slab. Comparing the crack 

patterns of bonded and perfectly bonded vessels (Figures (8.38d) and (8.37d)) 

generally the wall of each vessel has very identical cracks. However, 

a marked difference in these can be seen in the cap. The cap of the 

bonded vessel has crushed and cracked, while the cap of the perfectly 

bonded vessel did not damage to that extent. This is seen in 

Figure (8.34) where deformed shapes of perfectly bonded vessel are 

plotted.
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A further pressure was increased to a load factor of 3.6
2 (20.448 N/mm ) where this vessel also failed due to the excessive

deformation of the wall. The solution did not converge in 12 iterations 

and therefore the analysis was stopped at this load level. Deformed 

shapes of perfectly bonded vessel for various pressures are shown 

in Figure (8.34).

TYPE II CASES IVa, b, and c

In this category, the bonded vessel was studied using long- 

term effects on loading and material properties. The object is 

to investigate the influence of the effect of loading (mainly as a 

result of prestress losses) and concrete material properties on the 

structural integrity of the vessel. This means that the bonded 

vessel is to be overloaded at suitable intervals of its service 

life. The periods for these analyses were chosen as 1-5 years, 10 years, 

20 years and 30 years. The prestress losses and material properties 

for these periods are given in Table8.2. The vessel for 1-5 years 

has already been analysed, as discussed in TYPE I. The other three 

cases are analysed in this section. The results obtained for the four 

above analyses are compared with one another in order to assess the 

effect of the long-term loading on the behaviour of the bonded vessel. 

The predicted results are expected to give some insight into the 

failure of bonded vessel with increasing internal pressure for both 

long and short-term conditions. The analyses compare the following :

load-deflection histories at the centre of the top cap and at mid- 

height wall
deformed shapes of the vessel with increasing internal pressure 

- damage of the vessel due to cracks and compression failure 

safety margin

Figures (8.39) to (8.46b) show results for the above cases. The 

pressure deflection histories are plotted for two points on the vessel, 

one at the centre of the top cap and the other at the mid-height wall. 

Curves for all above four cases are shown in Figures (8.39) and (8.40). 

As a result of increased pressure, the PCRV displaces upward in the 

vertical direction (cap) and outward in the radial direction (wall).as
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shown in Figures (8.41), (8.42) and (8.43). This results in the 

formation of cracks in the wall and the cap as shown in Figures (8.44) 

to (8.46b). The integration points are marked where the status of 

the integration point indicates cracking or crushing.

Figures (8.39) and (8.40) show the comparison of pressure 

deflection curves for the above four cases for both the wall and the 

cap. It can be seen that the curves for the cap are similar and 

identical up to load factor of 2.5 and thereafter the curves start 

deviating, although the margin of deviation for these curves is 

negligible. On the other hand, the load-displacement curves for 

the wall (Figure (8.39)), shows a marked difference in curves for 

various cases starting from the origin to the point of failure. The 

reason for this difference is due to the fact that when overload 

analysis started giving different deformations in the wall due to 

different prestress losses in the radial direction. The curves seem 

to suggest that the load carrying capacity of the wall for 1-5 years 

old vessel is more than the 30 years old vessel, i.e. the older the 

vessel, the more flexible is the wall.

The picture on the top cap side is totally different from the 

wall. (Figure (8.40)). In this case, more flexibility in the 1-5 

year old vessel is observed than an old vessel with 30 years life.

The study of load-displacement history and deformed shapes with 

increasing internal pressure can be made in relation to the formation 

of cracks for various cases. In all cases, the cracking has occurred 

in the horizontal direction (due to vertical stress) in between the

boiler and the outer wall near the equator of the vessel (Figure (8.36)).
2 When pressure is increased: to a load factor of 2.3 (13.064 N/mm )

cracks in two directions (radial and horizontal) are formed as shown 

in Figures (8.44), (8.45), and (8.46). These are the cracks 

calculated for 10, 20 and 30 years old vessel respectively. It is seen 

from these figures that much more cracking has occurred between the boiler 

and the inner wall of the vessel for the 30 year old vessel than for 

the 10 year old vessel. This is reflected in the pressure-deflection
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curves of the wall (Figure (8.39)),.as discussed earlier. It is 
interesting to note that very little cracking has occurred in the top 

cap of all vessel types at this level of loading. This is reflected 
in the pressure-displacement curves of the top cap (Figure (8.40)).

When pressure is-further increased at load factor of 3.0
2 (17.04 N/mm } the resulting crack patterns for the four cases are shown

in Figures (8.36c), (8.44a), (8.45a) and (8.46a).' At this load 
level practically the whole wall for section AA has cracked (section 
through the boiler) while there are still very few cracks in the top 
cap. Radial cracks at the outer surface of the top cap have developed
indicating a slight non-linearity in the pressure-deflection curve

2 (Figure (8.40)). Deformed shapes at load level 3.3.(18.744 N/mm )
are shown in Figures (8.33), (8.41), (8.42) and (8.43). By comparing 
these figures it seems to suggest that the larger deformations of the 
wall are observed for older vessels and the reverse is true for the top 
cap.

When the pressure is slowly increased to load factor 3.5
2 (19.88 N/mm ) a further damage to the vessels is done in the form of

more extensive cracking and compression failure. Solution at this
load level did not converge in all cases and therefore the analysis
is stopped. The extensive cracking and crushing of the vessels at
this failure load level is shown in Figures (8.36d), (8.44b), (8.45b) and
(8.46b). It is clear from these figures that the damage of the vessel

at 30 years load is much more in the wall of the vessel than in the top
cap. This gives results opposite to those of the vessel when loaded
at an earlier age. The damage of these vessels is reflected in the
pressure-displacement curves (Figures (8.39) and (8.40)). Figures (8.33),
(8.41) to (8.43) deformed shapes of these*vessel at failure which definitely
indicates that a;> l-5 year old vessel is likely to fail with the
excessive deformation of the cap while the 30 year old vessel is
likely to fail with the excessive deformation of the wall. The numerical
model at this load level has become unstable due to triaxially cracked
and crushed points resulting in a sudden loss of stiffness. It is for
this reason that a few inconsistencies in the deformed shapes can be
seen. Nevertheless, the deformed shapes of the vessel are a useful
guide as a failure indicator of the vessel.
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8.5. Conclusion

The application of the non-linear model has been illustrated 

on various problems starting from simple beams to a complex pre- 

stressed concrete reactor vessel. Results obtained on a bonded pre- 

stressed concrete slab are in close agreement with those from the 

experiment. Predicted results of bonded (with Ahmlink elements) and 

perfectly bonded slabs do not differ substantially. The predicted 

ultimate load from the perfectly bonded analysis is 1.4% higher than 

the bonded analysis. Various cases of vessel analysis assuming 

bonded and unbonded tendons show that the load carrying capacity of 

bonded vessel is always higher than a similar unbonded vessel. Creep 

analyses of bonded and unbonded vessels at normal operation show a 

considerable redistribution of stresses due to non-uniform temperature 

distribution through the wall and the cap. Ultimate analyses of the 

bonded vessel at various stages of its life indicate that the overall 

performance of 1-5 year old vessel is better than a 30 year old vessel
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Table 8.1. Geometric and Material Data for Slab

Concrete

Ec = 27500.0 N/imiT

yc = 0.17
<*c = 39.0 N/mm2

o 
^t =3.9 N/mm

Ecu = 0.0035

R , shear retention factor for cracked concrete

= 0.5 

Integration rule for all solid elements

= 2x2x2

Steel

Prestressing wires :

diameter = 7.0 mm

E

H

°X.

Reinforcements :

diameter

E

H

= 200,000 N/mm
^

= strain hardening parameter = 20000.0 N/mm" 

= 1340.0 N/mm2

= 12.0 mm
/•

= 200,000 N/mm' 

= 20000.0 N/mm' 
2

= 3.0 x 10
2

-2
G~ t = 297 N/mm 

Tolerance for convergence, Tol

Pressure due to prestress = 1.89 N/mm'
2 Total pressure due to vertical load = 0.2186 N/mm (544 KN)

at failure

Data for bond linkage (Ahmlink) element (see Figure (8.11)) 

The following data is adopted for Ahmlink element in the form of 

multi-linear curve. Total 15 points are taken on the curve and 

their values are given overleaf :
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Curve points

1

2
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4

5
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7

8

9

10

11
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13

14

15

Bond stress 
CN/mm )

0.0

0.5

0.8

0.9

1.0

1.2

1.3

1.4

1.5

1.6

1.7

1.75

1.8

1.84

1.86

Slip 
(nun)

0.0

0.001

. 0.0025

0.003

0.004

0.005

0.006

0.007

0.008

0.01

0.013

0.015

0.018

0.025

0.05

Time summary of slab analyses on PRIME 750

(a) Perfectly bonded slab (11 load increments)

(b) Bonded slab (11 load increments)

(c) Unbonded slab (11 load increments)

(d) Bonded slab (18 load increments)

(e) Bonded slab (Newton Raphson method - no 

iterations, 30 load increments)

CPU

65 minutes 

77 minutes 

63 minutes 

108 minutes

138 minutes
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Table 8.2. HTGCR Vessel Data

Geometry

Internal height, H 

Internal diameter, d 

Wall thickness, tw 

Top and bottom cap

thickness, D 

Boiler diameter 

Connecting duct diameter

Material

, concrete cylinder strength 

rt, tensile strength 

EC, initial modulus (short-term) 

EC, for standpipe region 

Ecu, concrete ultimate strain 
v>c 

a, shear retention factor for

cracked concrete 

cCc, coefficient of thermal

expansion for concrete

Liner

Liner thickness, t^ =

Es, elastic modulus =

Vs, Poisson's ratio =

to , uniaxial yield stress = 

^T, coefficient of thermal

expansion for steel . =

H, strain hardening parameter =

21946.0 mm 

11125.0 mm 

6630.0 mm

5182.0 mm 

3048 mm 

1118.0 mm

39.0 N/mm 

4.69 N/mm2 

41400 N/mm' 

0.75 EC 

0.0035 

0.17

0.5

.-6
9.4 x 10 /degrees centigrade

19.0 mm

200,000 N/mm2

0.3

365.0 N/mm2

5.5 x 10~ /degrees centigrade 

0.1 Es
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Prestressing Tendons

2Es, elastic modulus = 200,000 N/mm 
i 2 
j o^ , uniaxial yield stress = 734.15 N/mm

I Diameter of prestressing

strand = 127.0 mm

Guaranteed ultimate tensile strength (GUTS) = 9750.0 KN 

of each prestressing tendon, F .

Transfer load = 0.75 F _ = 7312.5 KNult

Prestress force due to circumferential !
2 wire winding (see Figure (8.26)) pi = 18.589 N/mm {

p2 = 12.39 N/mm2 i 

p3 = 10.395 N/mm2 j

Pressure in all cavities (design pressure) 

(main cavity, boilers and connecting
2 ducts) = 5.68 N/mm

Temperature at the core liner surface = 60 C

Temperature at the outside = 25°C

Temperature gradient = 35°C

For details of temperature distribution in the vessel see Figure 

(8.27a) and (8.27b).

Details of Bond-linkage Elements

The following bond-slip curve was adopted for linkage elements. 

The bond-slip curve is for prestressing strand and is taken from 

Edward and Picard's (90) experimental tests (see Chapter 2 for more 

details).
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Curve Points

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Bond Stress 
(N/mm2)

0.0

0.4593

0.8038

1.1483

1.378

1.7225

Slip 
(mm)

0.0

0.001334

0.0024667

0.003334

0.0046667

0.006

2.2967 0.008866

2.6412 0.01133

3.1005 0.014

3.6172

3.7895

4.0192

4.2488

4.3636

4.4785

4.4785

4.4785

4.4785

4.4785

4.4785

4.4785

4.4785

4.4785

0.018

0.02

0.022

0.025

0.02733

0.0303

0.0333

0.0366
0-04

0.0433

0.0466

0.05

0.053

0.075

Prestress Forces and Losses (see Figure (8.26))

Short-term losses (1-5 years) :

(a) Vertical tendons - 7.26% on the top of the transfer load 

(i.e. 0.75 GUTS)

(b) Circumferential wire winding (pressure) - 10% on the 

values shown in Figure (8.26).
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Losses at 10 years :

(a) Vertical tendons - 12% on the top of the transfer load

(b) Circumferential wire winding - 15% on the values shown in 

Figure (8.26)

Losses at 20 years :

(a) Vertical tendons - 17% on the top of the transfer load

(b) Wire winding - 23.3% on the values shown in Figure (8.26)

All the steel and concrete material properties should also be 

reduced by 5%.

Losses at 30 years of vessel life :

(a) Vertical tendons - 20% on the top of the transfer load

(b) Wire winding - 30% on the values shown in Figure (8.26)

All the steel and concrete material properties should also be 

reduced by 5%.

Time Summary of Vessel Analysis on Prime 750

CPU

Bonded vessel analysis 292 minutes 

Perfectly bonded vessel anslysis 286 minutes 

Unbonded vessel analysis 276 minutes

An average analysis time per vessel : 284 minutes (4 hrs 40 mins)
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150.0

(a) Finite dUeraent :M»sh

E=2500.0

°Y=30. (for elements 2&5) 
0^=25. (for elements 1,3,
H= 277»78 = Strain hardening parameter..V

(b) Uniaxial Stress-Strain Curve

Diameters of elements 2 & 5
1.8975 

Diameters of elements 1,3,** & 6
1-5957

LOAD(W)
150 Elasto-plastic

Elastic

/,
- 120

-80

Tol = 3x10 
Total load,W=150. 
Load increments 

0.5^,0.7,0.77,0.83,1.0

Unloading(elastic)

DEFLECTION
(c) Load-Deflection Curve at Node

Figure 8.1 ElastO-Plastic Analysis of Square Braced Frame



(a) Thick cylinder

45

("fa). Finite Element Mesh of One-quarter 

of the Cylinder

Details

E

y
o^
a 
b 
t

= 2600.

= 0.3
= 5.19.6 
= 1.0 
= 2.0 
=1.0

Integration - 3x3 

Pressure,p=3•7^529 

Load increments 

0.63p,0.7p,0«8p,0.9p»1.0p

Tol = 10~2

Figure 8.2 Elasto-Plastic Analysis of Thick Cylinder 
Under Internal Pressure
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Plastic Region

Elastic Region

Figure 8.3b Spread of Plasticity in the Cylinder

Analytical solution

——*-—Present analysis

0.8 1.6 2.k 3.2 ^f.O

Figure 8.3b Normalised Pressure-Displacement Curve
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I
18

10 16

17

15
14

13

P2
P1

P1 "29

Finite Element Mesh

Material and geometric details

E = 30000.0 N/ram

= 0.3 
L = 20.0 mm

b = 3»0 mm

t = 5-0 mm

P = 1.0 Newton

P1= 0.16666? N

P2= 0.6666? N
Integration (1) 3x3x3 (2) 2x2x3

PL-
Analytical tip deflection , w =——— = 0.0028Mf mm

3EI

Computed tip deflection, ¥=0.0028^9 mm - 2x2x3

w=0.002831 mm - 3x3x3

Figure 8.Jf Elastic Analysis of Cantilever Beam
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r. KN

ti

^ r
LA ' 1/2

(a) Reinforced Concrete Beam

Maximum mid-span deflection

7»87^ mm (Experimental) 
6.731 mm (Analysis)

t1

Reinforcements(9.5rom dia.)

Concrete 2 
EC = 23219.3 N/mm 
Vc = 0.167 P 
<% = 2Jf.115 N/mmp 
°t = 2.M15 N/mni 
Scu= 0.0035

Steel

Geometry

P/2
P/2

20

10 14 (B 21

94 28 31

30

E = 199810. N/mm 
^= ^13.^ N/mm 
H = 0.0

r

L = 1828.8 mm 
b = 76.2 mm 
t = 109.53 mm 
ti= 92,075 mm

36 40 I 44

13 17 21 29 37

V2

(b) Finite Element Mesh

•
^ y

* J
/

, / 
/ I

/ / 1 f ' // r 

' /

/ / 

1 ;

f /'
> i\ f

53.5 89-2 130.8 168.6 190? 191. 190.3 191.3
Steel stresses

(c) Computed Crack Battern

N/mm

Figure 8.5 Analysis of Simply Supported Reinforced Concrete Beam
-228-



All Dimensions in mm

--**-2--V3«»

d=552.5 ,1=3657.6
d1=425.5 , d2=489 
b =228.6, a=228.6 

Ec=21300 N/mm2 *=0.18 
0-0=24.6 N/mm2 c-t=3.198

Es = 191435 N/mm2 
H : = 17708 N/mm2 
Diameter = 28.58

1«

N/mm2

Rai

Finite Element Mesh

At 245. 2KN Experimental Crack Pattern at 249.2KN

At 215- 2KN

-Experimental 
Failure

300- Load,P(KN)

Computed Crack Patterns

250-

200-

Figure 8.6 Simply Supported 
Reinforced Concrete Beam(Ref. 43)

150 .

IOO-

Experimental
Present Model

——— Ref. (64)
——— Ref. (44)

I_____' •————— J_____L
3 A 567. 

•Central Deflection(mm)

-229-
Figure 8.7 Load-Deflection Curve



All Dimensions 
in mm

One-Quarter Part Analysed

Figure 8.8a Octagonal Prestressed Concrete Slab

Reinf. Inside the Solid Element

Reinf. on the Side of the 
Solid Element

2 Prest. Wires(7 mm")

T
Io9

1

ReinforcementsC 12 mm)

Section

Reference is made to Figure 7.2

Figure 8.8b Main Dimensions of Finite Element Mesh of the Slab
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• A
36-

-231-

109mm

• - Node Numbers 
O - Element Numbers

Section Above AA

Ahralink Elements

Concrete 
Solid Elmt

Details of Region BB

Section at AA

8r 103 115"

Figure 8.9 Finite Element Mesh of Bonded Slab



36-5^
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109mm 
A

21 Ml

• - Node Numbers 
O- Element Numbers

Steel Axial Elemen

Section Above AA 

Body Axial Element

Concrete 
Solid El.

Details of Region BB

Section at AA 

X
15

Figure 8.10 Finite Element Mesh of Perfectly Bonded Slab



2.0-

Bond Stress 

(N/mm2 )

1.5-

1.0-1

0.5-

Initial Bond-slip Modulus

N/ram /mmEh =

0 Q.k 0.6 1.2 1.6 2.0 2.4 2.8 3.2 3.6 k.O k.k 5.0

Slip (mm) x 10
-2

Figure 8.11 Bond Stress-Slip Curve Used in the Finite

Element Analysis of Prestressed Concrete Slab
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6 •-

P/Pd

Load(pressure) 
Pd= 100 KN

(0.0402 N/mm2 )

Newton Baphson Method(No Iterations 
(30 increments)

Exper. Failure Load=5^4KN

3-

2 ••

1 ..

Experimental

Bonded ( Ahmlink)
*_. Perfectly Bonded
-*— Unbonded

•-••-Bonded (Ahmlink) with Small 
Load increments(l8)

8 10 12 1*f 16 18 20 
Central Deflection, £c t (mm)

Figure 8.12 Load - Displacement Curves of Prestressed Concrete
Slab -234-



S.S. Edge

Deflection(ram)

500KN

Experimental
—*— Bonded Slab with Ahmlink Elements
—©-:- Perfectly Bonded Slab

Figure 8.13 Deflected Shapes at Various Loads Along AA

B

200KN 
350KN
352KN 
A-OQKN

Deflection(mm)

450KN 
500KN
496KN

Experimental
Bonded Slab with Ahmlink Elements 
-Perfectly Bonded Slab

Figure 8.1A- Deflected Shapes at Various Loads Along BB
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Pd = 100KN(0.0^02 N/mm2 )

Reinforcement 
Yielded

Prestressing Wire Yielded

-*-*•— Reinforcement Stress at A
-Prestressing Wire Stress at B

60 120 180 2^0 300 360 

Reinforcement Stress(N/mm2 )

1.1 1.15 1.2 1-25 1-3 1-35 1.4 1.45 x 103
Prestressing Wire Stress(N/mm2 )

Figure 8.15 Variation of Steel Stress With Load in the
Prestressed Concrete Slab
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200KN(0.0803 N/mm ) Load 280KN(0.1125 N/mm )

Load at Failure

Figure 8.16 Experimental Cracks at the Bottom Surface of the Slab

-237-



-238-

SYMBOLS

t
JL._

z

—— MB^te I

Y

f I 
\ {
\ f 

\
f / 

1
\ i 

1
\ 

1 1
4-4-

• • 

, »

• • 

• •

• •

• •

'">

• •

» •

• •

• •

~~*

* ^*^^*

*

•

• •

* •

St s -
* ^^-

i

• •

• •

- , __ |

s

^^

• .

• • 

• •

_^_ _^_

Load -200KN(0.0803 N/mm 2 ) 

Y

\ f

! 
I

1 I
4-4- 
4-4-
f 4-

4-4-
O--4-

\ i 
^ 1

1 \

\ 4-
4r 4-
-/• -v-
4- -V

4- +•f- -f-
_l_ _!_

v'%
\ /
\ /
\ /-v *

4- + 

4- 4-
4- 4^
_i_ -i-

^

1 ^

' /

^"4"

yxus.s

^^^ ^_

^^

__ ^

~"~

-4 x
U,

i

X

]

^

X

Y

1 f
1 f
t i

! 1
\ 1 
f I

t
1 \
I 1 
f \
4-4 
4--i-

1

— ̂
T+-

•1
.

I One Crack J_ o-( 

Two Cracks 1 <^ , ^ 

Three Cracks 1 r; . o^ , 03 

Uncracked Gauss Point

t= 109 mm 
t1= 7.713 mm

• •

; :
• •

*

• •

— -h 
-4- -4-

[*oad

Y

t \
•f i
4- t 
f -1
44- 
14
1 + 
1 4
14 

1 4
mm mm

'>
^ / 
\ /
i / 
\ /
\ / 

\ -
• •

—*"" ~^

* ^^^

^ ^

/ s

• *

-»- -*•

• • \^^

- ihr
* * *

_ _. _ x

280KN(0.1125 N/mra2 )

J/ f
1

4- 1
1 4-
1 1
•f- 4-
4- -V

•• 4-

^B 9BH

v r%
I f

I f
4 *
4 +

4- -f-
4- ••

4- 4-
^i. ••

• *^^#

1 /

4-4
4--H

4-4-
t L

^-,
/X- S.S. EDGE

1 1!>
^^ ^**

_^ _L_ ^ i Y

Load 336KN(0.135 N/mm2 ) Load JfOOKN(0.l6o6 N/mm2 )

Slab Type - Bonded

Figure 8.17 Crack Patterns of the Slab at 1-1



-239-

SYMBOLS

t
JL_

z

Y

1 i 
1

i
1 i 
f f

1 i 

i

i
4- 4
4-4-

• *
• * 

• *

'•\

: :
* •

. .
* *

'

* ^** -^

* *

t 9

* *

i

• *

_,_ _^_

«

S

^

^

• •

^ ^

Load . 200KN(0.0803 N/mm 2 ) 

Y

i f

<
i 1

4 4
4-4- 

4-4-
i- \
4-4-

i *

! I
i /
< 4-

4- -4- 

4~ -V
4- -V 

-4- 4-
4- 4-
4- 4-

\ p%i / 
i /
i y 
^ /•4- -f

7x *!""

4- -4- 

4 4-
4- +
4- -f

•

j •

1 /
X" S

4-4-

/^.s.s'-X
_ t _ _^_

— _^

^

^_

- ——

~u,

«

X

» 
tf

X

Y

f I

f 

i J
1 *

\ 1 

J
1 

f 1
4-4
4-4

-*-

T+-

B9
•

1
i

One Crack _L o\

Two Cracks J o-, .o-t 

Three Cracks _L r\,»i ,^ 

Uncracked Gauss Point

t= 109 mm 
t1= 7-713 mm

• *

* *

• »

* •

• *

— 4- 
4- 4-

Load

Y

4 i

I j

1 I
4- 4 
I 4-
I 4- 

1 4

I 4
J 4 
I 1

I 
f
/

f

V /^
\ / 
\ /
\ f

X -—

* - *

280KN(0.'

1
f 

1

1 I
1 1

4- JT+- -v-
•• 4-
— 4-

• ^^^

9 m

•** /

— *— -*-

* * \^_~ iS
• • • •

— - - _ X

1125 N/mm 2 )

Hv
1 1 
i (
4 4-

x -+-

4- »
- 4-

• "^^

\ f
4- 4-

4-4-

• 4-

4-4-

^- S.S. EDGE

I ihf
"^~ "*"

- 4-4 4 X

Load 336KN(0.135 N/mm2) ''• Load 400KN(0.1606 N/mm2)

Slab Type - Perfectly Bonded

Figure 8.18 Crack Patterns of the Slab at 1-1



Control Rod Area

d/Uim

24 -J8 m

Boilers

Duct

fr-

Section at AA

Figure 8.19' Prestressed Concrete Reactor Vessel (HTGCR)
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8-node membrane 20-node sol id 
element (liner) element (concrete)

Linkage elements (bond)

3 -node axial elements 
(prestressing tendons)

Figure 8.20 Finite Element Mesh of Bonded Reactor Vessel
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Concrete- 20-node solid element

3-node axial elements 
C prestressingtendons j

8-node membrane element 
(steel liner)

Details of Region AA

Figure 8.22 Finite Element of Perfectly Bonded Reactor Vessel
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57

Level 6-7

Level 5-

Level lf-5

. _ Node Number 

O-Element Number

Figure 8.23 Dtailed Finite Element Mesh for Perfetly

Bonded Reactor Vessel
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Figure 8^23 (Continued)

Level 3-1*

z&l

Level 2-3

Level 1-2
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Boundary conditions

Along- AB : 1=0

Along CD : Y'=0

Along EF : Z=0

z=o

Figure 3.2k Boundary Conditions Applied on the Vessel
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lf.0

3.0.

2.0-

1.0-

Bond Stress

Initial Bond-slip Modulus

E, = 350 N/ram2/mm n

o o.oi 0.02 . 0.03 q.o^ 0.05 o._o6 0.07 0.075
Slip (mm)

Figure 8.25 Bond Stress- Slip Curve used in the Finite

Element Analysis of Prestressed Concrete 

Reactor Vessel( From Edward and Picard - Ref 90)
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Section at Mid-height

Vertical Section

Figure 8.2? Temperature Distribution for HTGCR Vessel

02468 10m

Vessel Scale
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CHAPTER 9

Conclusions and Recommendations

9.1. Conclusions

A generalised three-dimensional finite element analysis is presented for 

the time dependent non-linear behaviour of complex structures such as 

prestressed concrete reactor vessels. The analytical model has been 

successfully applied on bonded prestressed concrete slab and bonded 

reactor vessel.

The constitutive laws of concrete, steel and bond have been de­ 

veloped in this research. These constitutive laws can easily be applied 

to model any prestressed and reinforced concrete structures with 

reasonable accuracy. In addition, the constitutive laws of concrete 

have been extended to include creep. In the proposed analytical model 

the bond-slip behaviour is considered at the steel-concrete interface. 

However, this model is flexible enough to analyse concrete structures 

based on the concept of 'perfect bond' (rigid link) between the steel 

and the concrete.

Various non-linear solution techniques have been implemented in 

the finite element computer program NSARVE. Among them, the constant 

stiffness method (initial stress method), because of numerical 

stability, has shown to be suitable for the analysis of concrete 

vessels up to failure.

Two types of experiments have been performed. The first one is 

to establish a bond-slip behaviour of prestressing wires and also to 

obtain bond coefficients for program NSARVE as an input. The second 

experiment is to examine the behaviour of a bonded slab and also to 

validate results obtained from the analytical model. The experimental 

study of bond slip specimens indicates that the bond stress increases 

initially with a very small slip and the bond-slip relationship is
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non-linear up to the maximum bond stress. The maximum bond stress 

reaches at a slip varying from 0.019 mm to 0.065 mm in various 

specimens. Beyond this, the bond stress is almost constant and is 

equal to its maximum value. At some stages, a scatter in the

results is found. An average value of maximum bond stress 1.92 N/mm
2 and an average slip modulus of 501.5 N/mm /mm are obtained from all

the tests. Results obtained from the octagonal prestressed concrete

slab shows that the load-deflection curve at the centre of the slab
-> 

is linear up to 160 KN (0.-064 N/imO and after that it becomes non­

linear due to extensive cracking. The slab finally failed at a 

load of 544 KN (0.218 N/mm2 ). The deflected slopes along the t 

centre lines of the slab show that the slab failed in flexure.

A comparative study of results shows that the bonded prestressed 

concrete slab behaved exactly as was predicted by the analysis. 

The analytical ultimate load is 2.2% lower than the experimental 

failure load. The predicted ultimate load of bonded slab using 

Ahmlink elements is 1.4% lower than that using a perfect bond. 

A study of the slab using purely incremental method (no iterations) 

predicts the ultimate load 11% higher than the experimental failure 

load. This method is approximate and always overestimates the loads.

Various cases of vessel analyses with bonded and unbonded tendons 

suggest that the load carrying capacity of bonded vessel is always 

higher than a similar unbonded vessel. A margin of safety against 

failure (load factor) of 3.5 is found for the bonded vessel, while 

this factor is 3.3 for unbonded vessel. Therefore a difference in 

the margin of safety is by 6%. This suggests a very small increase 

in the overall load carrying capacity of the bonded vessel, as opposed 

to the unbonded vessel'. Comparing crack patterns, load-displacement 

curves and deflected shapes of these two types of vessels, they 

indicate that the unbonded vessel is much more damaged than the bonded 

vessel. Even at early stages of cracking, the damage to the unbonded 

vessel is more in the form of ill-disposed cracking at critical zones. 

This suggests that in comparison with the bonded vessel, early 

localised cracking at lower gas pressures in unbonded vessels may 

cause nuclear hazards. The bonded vessel is also analysed assuming 

a perfect bond between the tendon and the vessel concrete, the margin

-293-



of safety for this case being 3.6, an increase of 3% on the vessel 

when analysed with Ahmlink elements. This is due to the fact that 

in perfectly bonded vessel, no slip is allowed between tendons and 

concrete.

Three cases of vessel analyses (Ahmlink bonded, perfectly 

bonded and unbonded) are also performed for 40 years of creep at 

normal operational conditions. The difference in results is negligible. 

The analyses show a considerable redistribution (relaxation) of 

stresses owing to the non-uniform temperature distribution through the 

wall and the cap. A steady state condition is reached after 10 years 

of creep.

After obtaining confidence by examining various results, the 

bonded vessel is then investigated for ultimate conditions at various 

stages of its life. The times chosen for the ultimate load conditions 

are 1-5 years, 10 years, 20 years and 30 years. The results suggest 

that the overall performance of 1-5 years old vessel is better than 

the vessel loaded at other ages. A detailed study indicates severe 

damage in older vessels and their deflections at failure are much too 

large as opposed to 1-5 year old vessel. It is also found that the 

failure of the 1-5 year old vessel occurred due to excessive displacement 

of the top cap, while the failure of the 30 year old vessel is due to 

excessive displacement of the wall.

It is concluded that greater faith can be put into the more 

reliable performance of prestressed concrete pressure vessels when 

tendons are bonded.
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9.2. Recommendations

A numerical analysis will only predict a true non-linear behaviour 

provided material constitutive laws are well established. Many more 

experiments are needed to obtain correct material properties under 

variable conditions of stress and temperature.

Analytical model can be improved if more information on bond- 

slip behaviour is available. More sophisticated experiments are needed 

on large post-tensioned tendons for local bond-slip relations. Such 

experimental results on large post-tensioned tendons will produce even 

better results for vessels using the proposed analytical model. In the 

current analysis, the large tendons have been simulated using the data 

from small wires and strands.

Very little work is done on the multi-axial behaviour of concrete 

under cyclic and impact loads. Material laws under these loading 

conditions are essentially required to analyse the next generation 

of vessels namely the containment vessels for pressurised water 

reactors. This analytical model can be extended to include the 

effects of the following :

•

(a) The impact and damage (perforation and scabbing) caused by 

wind generated missiles and aircraft crashes on containment 

vessels.

(b) The seismic loads on and response of the containment vessels 

when cracked and uncracked.

(c) The pressure and containment vessel foundation soil- 

structure interaction.

(d) The loss of coolant accident within the reactor containment 

vessel.
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APPENDIX Al

Al.l Solid Isoparametric Elements

The shape functions and their derivatives for 8, 20 and 32 noded 

isoparametric solid elements are given in tabulated form as follows

Al.1.1. 8-Noded Solid Element (refer to Figure (3.la)) TABLE Al

Node i Shape functions Derivatives
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Al.1.4. Derivative Transformation and the Jacobian Matrix

With the shape functions known, the global coordinates and dis­ 

placements at any point within the element can be expressed in terms of 

the nodal values as :

x= r\

t\ 
>
Ui 6=(

(Al.l) 

(A1.2)

where n is the number of nodes on element and Xi, Yi, Zi and Ui, Vi Wi 

are the nodal coordinates and nodal displacements respectively.

To obtain the derivatives of shape functions with respect to global 
coordinates, the following transformation is applied (Ref. 1) :

'a MJ

J
3X3

3Y

9NC
32

where i is the current node number
•

or ~9Nc

3Ni

ax
3Nt 
3Y J

L32 J
where [J] is a 3x3 Jacobian matrix and is given by

3Y

detj = J = determinant of Jacobian

(A1.3)

(A1.3a)

(A1.4)

(A1.4a)
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Therefore the strain-displacement matrix B L (Equation (3.10)) is fully 

defined.

Al.1.5. Nodal Forces due to Surface Pressure

In this section kinematically equivalent load is determined due to 

the surface pressure applied on the faces of the solid elements. The 

element load vector as given in Equation (3.13b) can be rewritten as :

in which fe^>»
Nf*»
ds

element shape function matrix 

surface area vector

The surface area vector may be expanded for the face s =—

and

3Y

92

3Y

32

From Equations (A1.6) and (A1.6a)

Js -

dZ

If
i

-dt

il ^g _ ̂  -yr.

3Y

(A1.5)

(Al.Sa)

(A1.6)

(A1.6a)

(A1.6b)

Therefore, kinematically equivalent load of Equation (A1.5) for the 

face where f» s ±i can be written as :

A7



N 1
5122.- iliX.

-I -I ay
(A1.7)

Similar expressions can be derived for the faces where ^ = ±1 and 

= ±1. The integral of Equation (A1.7) is carried out numerically.

Al.1.6. Nodal Loads not directly on Nodes (Patch Loads)

The treatment of these loads is similar to point loads except 

that their values are now interpolated from the shape function values 

evaluated at the point where load is applied. In principle, it can be 

written as :

Pc=
(A1.8)

where &=

N - element shape function matrix

N =

(Al.Sa)

1,0, O
o, i , o 
o, o , 1
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A1.2. Isoparametric Membrane Elements

The shape functions and their derivatives for 4, 8 and 12-noded iso- 

parametric membrane elements are given in tabulated form as follows :

Al.2.1. 4 Noded Membrane Element (refer to Figure (3.2a)) TABLE A4

Node Shape functions Derivatives

1

V*

Al.2.2. 8-Noded Membrane Element (refer to Figure (3.2b)) TABLE A5

Node 
i

Shape functions Derivatives

i

8

Al.2.3. 12 Noded Membrane Element (refer to Figure (3.3c)) TABLE A6

Node 
i

Shape functions Derivatives

-*) 1*7-37-

9/ai d-^'JC 1+7)

8
9/32 (11-7) (3^- n-

10
11
12
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Al.2.4. The Strain-displacement Relations

With shape functions known, the global coordinates and displace­ 

ments inside the element are interpolated using Equations (Al.l) and 

(A1.2) where, this time, n is the number of nodes on membrane elements 

Thickness may also be interpolated as :

t= (A1.9)

where ti is the nodal thickness at node i.

Assume there is a point Q on the element with local coordinate system 

X', Y ? , Z', as shown in Figure (3.2). U 1 , V, W, are the local nodal 

freedoms in this system. The local strain field at any point using the 

plane stress condition may be written as :

3U' 
3X'

(A1.10)

The local coordinate system X', Y 1 , Z', is established as follows.

The X' axis is tangential to the local curvilinear Xi axis, the Z T axis

is normal to the plane of the element and the Y' axis is calculated such

that the X', Y', Z' forms a right-handed coordinate system. The matrix

algebra that follows calculates the direction cosines for this coordinate syste

Vector tangential to $ on n axes in the plane of the element is written

as

21 > > & =
32 32

(Al.ll)

Now form a vector normal to" the plane of the above vectors :

A10



3£ 3W /

97 3$

(Al.lla)

The direction cosines are obtained by normalising the above vectors 

(Z 1 axis vector) :

(Al.llb)

Now the X' axis vector

Finally, the Y' axis vector, Rv = Rz X Rx /^ i /^ /-«

in which - 3X 92

(Al.llc) 

(Al.lld) 

(Al.lle) 

(Al.llf)

Therefore the direction cosines matrix for the local orthogonal Cartesian 

system is given as :

._ n* A A -i
R = Rx, RY Rz -/>, i f* t ?*> -w« i3x3 •* (A1.12)

In order to obtain the local derivatives of Equation (A1.10), it is 

necessary to apply to sets of transf9rmations. The first one is used 

to obtain the global derivatives as follows :
•

gq ay au

3X3

3U 3V
ax 3X

3V

32 32

*1 (A1.13)

All



where

JT
3X3

3X3* 921 Ry*t~ ^TI *2xT<

31

y
Rz'iit

(A1.14)

Since the third curvilinear coordinate does not exist in this case, it 
is therefore essential to substitute a thickness vector (which is normal 
to the middle surface) in the third column of Equation (A1.14) (see 

reference (6)). From this, the inverse of the 3x3 Jacobian matrix may 
be calculated.

Now the second transformation is used to get the local derivatives as 
follows :

d'= RTd R (A1.15)

in which

311' 3V' 3W.' 
ax'

au' iY d\£

Bll' 9V' -9H' 
E>1> ~5T 3H'

(A1.16)

After carrying out the multiplication in Equation (A1.15) and also making 

use of Equations (Al.l) and (A1.9), the following is obtained :

ax' 

3V

9X'
n

(A1.17)

in which n = number of nodes on element
Rx'x ^ -f /?X'Y ^ 

3X ' 32
,x i _^ £Y/y ^N^. R , ^,_t

x (A1.18)

and
= RZ 'X 9N.: ^ R ^Kt. D 3M ^x ^ - ^ Ni-t -

A1.2



da, = Rx'x u c

clU + 

du3 = R2'xLU +

Now from Equations (A1.10) and (A1.17)

Wc

Rz'

~~
dV.d'U,

r clu

where = C&>5*'&3i

is the local strain-displacement matrix, and

Ue = CU l ,Ut ,UJ ,......-._Lli_._unf

(A1.19)

(A1.20)

(A1.21)

(A1.22)

is the global nodal displacement vector 
are now written as :

3X3

and

3X1

For node i, %Land

Rx'z dr,

4- RY'X dV,) , ( Rx'Yd + RY V dV,1) , di.)

(A1.23)

(A1.24)

A13



A1.3. Line Elements

Al.3.1. The Element Stiffness Matrix for 2 Noded Line Element 
(Figure (3.3a))

-I* -i,m, -I, 
t\m\ W| m/n/

Oi -£inj -rniH| —HI

6XG
-I,1 -
-£t m| -m, -mim, i,hn, 

I\Y\\
where

L

(A1.25)

(A1.25a)

and Es and A are the modulus of elasticity and cross-sectional area of 
the line element respectively.

Al.3.2. Isoparametric Line Elements

The shape functions and derivatives for the isoparametric line 
elements are given in the following :

,'•*" 
(a) 2 noded line element (Figure (3.3a))

Shape functions Derivatives

(A1.26)
2. ^ z

(b) 3 noded line element (Figure (3.3b)) 

Shape functions Derivatives

*$ 
(c) 4 noded line element (Figure (3.3c))

Shape functions Derivatives

(A1.26a)

(A1.26b)

A14



Al.3.3. The Strain-displacement Relation

At any point in the element local Cartesian axis X 1 tangential to 

the curvilinear § axis can be established. The local strain (only 

axial) at any point inside the element can be written as :

with the displacement transformation, Equation (A1.27) may be written 

as :

(A1.27a)

where -t ( , mt , nt are the direction cosines of the X' axis and can be 

written as :

= |L/L
(A1.27tO

and , l/^,, \L_ ,-^vy/ o t-^=,i \T. (A1.27c)

U, V, and W are the global nodal freedoms at any node and U' the local 

freedom in the X' direction. These are related by

(A1.27d)

Equation (A1.27) can be written in terms of the shape function deri­ 

vatives as :

n
(A1.27e)L

where n is the number of nodes on the element, or

''=BUe (A1.28)

A15



where B = C B (A1 ' 28a)B = C B, , B, , B3 - - - - _ _ Bi~ - Bnl
**• —W <^. «.

For node i

CA1 * 28c)
and Ut= t lit , Vt , WilT (A1.28d)

Therefore, the strain-displacement matrix B (Equation (A1.28a)) is now 

fully defined.

A16



A1.4. Line Element in the Body of Solid Element (Figure (3.4))

This element is useful in situations where reinforcement and pre- 

stressed steel is spread closely together in various parts of the con­ 

crete. Here, the strain-displacement relation is given in detail. The 

rest of the procedure leading to the stiffness matrix follows the same 

principle as described in Chapter 3 for isoparametric elements.

The main assumption made in this section is that the line element 

lies parallel to one of the curvilinear axis (§, v , % ) of the parent 

solid element. The element may be anywhere in the solid element with 

maximum curvilinear coordinates § = ±1, n_=±l and ^=±1. The element uses 

the shape functions of the parent solid element assuming two constant 

curvilinear coordinates. When the element has parallel to § axis (see 

Figure (3.4)), the displacement vector inside the element can be written 

as :

.?.) U« = (A1.29)

where ^)is the shape function matrix of the solid element using 

(constant) . A similar expression may be written for the 

global coordinates. A local coordinate system X', Y', Z', as shown in 

Figure (3.4) is first established. This is done as follows. Write two 

base vectors in the tangential direction of ̂  and "0
-ax

9Y (A1.30)

A normal Z f axis vector, X' axis and Y' axis vectors are defined as

2'=

*'=
x, x

Y'= 2'x X'

=t>''V'<
/~
3*3

(A1.31)

(A1.31a)

(A1.31b)

(A1.31c)

A17



The local strains which contribute to the strain energy are :

ax' (A1.32)

with U 1 being the local axial displacement in the direction of X' axis 

In this case again similar to that for the membrane elements (Appendix 

A1.2.), two derivative transformations are carried out :

d =
s~*s

3X3

ax ax
ri

\-

ax

^J"^T J

(A1.33)

Now using Equations (A1.3a) and (A1.4) the following can be written :
T\ 

L'.VI.WL]
n 

1=1 V 3 Me

(A1.33a)

where n is the number of nodes on the solid element and Ui, Vi, Wi, are 

the global freedoms at node i.

Now write the following :

d' = RTd R^^^ ^^** >"^k* '™**
(A1.34)

where

d' =
ax' ax'

3V'
ay

3U/ 3V_'
.az 1 az'

(A1.34a)

Substitute Equations (A1.31c) and (A1.33a) into (A1.34) and carry out 

the multiplication and picking out the relevant strains, one obtains :

h
" "~ ~ V ---•'• " (A1.35)

with

A18



8 = 8i----Jgn- 

Ut--——Un

For node i

, W£ J

with

S, = £, M^ hi 
ax n, '

Therefore Equation (A1.36) is fully defined,

(A1.36) 

(A1.36a)

(A1.37) 

(A1.37a)

(A1.38)

The stress is now given by

GV » Es 8X ' (A1.39)

A19



A1.5. Bond-linkage Stiffness Matrix

The explicit form of the bond-linkage stiffness is given

below :

Kb =

where

Kbzi—

/>••
3X3

Kbxz

(A1.40)

(A1.40a)

TTdLC^Eh 

KdL( ^ 

7ldL( n 1

l,m,n
P,<\,* 
s,t

direction cosines

XdL - perimeter of the steel

(A1.4010
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APPENDIX A2

A2. Anisotropic Material Matrix

[D] =

Dll
D21

D31

0

0

D12

D22

D32

0

°

0 0

D13

D23

D33

0

0

0

0

0

0

D44

0

0

0

0

0

0

D55

0

0

0

0

0

0

D66_

(A2.1)

where

D22

D33

D12

D21

D 13

(A2.2)

D31

D23

D32

D44 = G12
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D55 = G23

** = G 1766 13

= 1-

Due to symmetry of compliances, the following relations can be written

E2V12

E 2 V32 (A2.3)

'31

The values of G 12 , & and G-- are calculated in terms of modulus of 

elasticity and Poisson's ratio as follows :

'12

J 23

r - i G 13 ' 2

For isotropic case :

1
! 1

(A2.4)

EI = E2 = E3 = E

12 • V21 • V31
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APPENDIX A3

A3 Inclined or Skew Boundary Supports (Figure 3.6))

It is sometimes necessary to suppress nodal freedoms of the 
structure in the directions other than the global X, Y, Z, axes. Such 
situations normally occur when analysing a wedge of a reactor vessel or 
its end slab. This can be accomplished by transforming the freedoms of 
those nodes which have skew boundary supports in the local directions. 
The transformations are performed at the element level or at the global 
level. The following gives the details of the transformation.

Inclined supports are shown in Figure (3.6). Assume that ith node 
has inclined support and 0 is the inclination between global and local 
X axes. The transformation between local and global displacements at 
node i can be written as :

V,'

wl-
> =

Cose sm e o 

-Sine Cose o <
w
v<
Hi

(A3.1)

or
U.--

Element transformation matrix, f , is given by :

i > 2 > Q > o , o 
! > Q > 2 > 2

T =

o**+

(A3. 2)

Where prime quantities refer to the local coordinate system and i is a 
3x3 identity matrix, local and global load-displacement relations are 

written as :

K'U'=P'
r*. /-^ f^

KIL = P

(A3.3) 

(A3.4)
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Local and global load and displacement transformations can be written 
as :

UL-rV"• "• .-»»

P'=TP > £ = ITP' (A3. 5)

From the well known transformation

K'= TKTT (A3.6)

Where j< in Equation (A3.6) may be element or global stiffness matrix,

Upon expanding Equation (A3.6), one obtains :

u. 
*

Mi- =

s

(A3.7)

i 
km

Therefore, any node which has inclined support, the equations of this 

node should be premultiplied by transformation matrix Li; in addition 

to that the diagonal term should be post-multiplied by jJt as given 

in Equation (A3.7).

Displacements calculated from equilibrium equations at ith nodes are

in inclined directions. These should be transformed in global direction

before stresses are calculated. The following transformation is used :

(A3.8)
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APPENDIX A4

A4 Stress and Strain Transformation Matrices (T*, Tt )

global axis

X'

Y'

Z'

X

h

1 2

h

Y

ml

m.~

m3

Z

"l

"2

"3

Direction cosines of the two axes are given by :

cos(X',X) 

cos(Y',X) 

cos(Z',X)

cos(X f ,Y) 

cos(Y',Y) 

cos(Z',Y)

n- = cos(X',Z)
n2 = cos(Y',Z) (A4 - 1 )

n- = cos(Z',Z)

The following relationships can be written for local and global strain 

and stress vectors :

(A4.2)

and also

,; = To
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Where prime quantities refer to local axis, and 'T f is the transpose 

of the matrix. Te , t refer to transformation for strain and stress
rJr ' --v

respectively.

I?
t
13-

2l l l 2

21 2 1 3

21 l'3

2 ml

2 ra2

2 m3

2m- m^

2m2m3

2m lm3

2 n l

2 n2

2 n3

2n ln 2

2n2n3

2n ln3

l^j

I 2m2

Vs

1^ 

+1 2ml

I 2m3 
+1 3m2

^"s
^l^

mln l

m2n 2

m3n3

mln2 

+m2n l

™2n3 . 

+n 2m3

ffljllj

™3n l

h"!

I 2n2

^"s

1 1B 2 

+12 n l

: 2n3 

+ 1 3n 2

I ln3 
+V3

(A4.3)

^
^
^
^^

4^

^^

2 ml

2 m2

2 m3

m..m.-

m^m»
^i O

m lm3

2 n l

2 n 2

2 "3

n i"2

"2n3

nin 3

21 lm l

21 2m2

21 3m3'

I lm2 

+1 2ml

I 2 ra3 

+ 1 3m2

I lm3 

+ 1 3ml

2m l n 1

2m2n 2

2m3n3

Vz
+n lm2

m2n3 

+n ?m_
^ o

mln3 

+m3n l

21 ln l

21 2n2

21 3"3

1 ln 2 

+12 n i

^3
+ 1 3n2

^"s 
'Vs

(A4.4)
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APPENDIX A5

A5.1. Shear and Bulk Moduli Approach

In this section, a review of the material constitutive relation 
based on shear and bulk modulis is presented. According to this 
approach, concrete in a three-dimensional state of stress is considered 
as statically isotropic material in compression. For a moderate com­ 
pression, a linear constitutive law is used. For higher compressive 
stresses, a non-linear stress-strain relationship is introduced. The 
non- linear behaviour of concrete is described by a variable shear 
modulus, G, expressed as a function of the second stress invariant, J2. 
The bulk modulus, K, is assumed to remain constant. This means that the 
volumetric dilatancy is ignored, as this effect only appears very near to 
failure.

AS. 1.1. Constitutive Relations

The constitutive relations for concrete are written in incremental 
form as :

, = 3K 

and Stj= 2G A£ctcj (AS. 2)

where jFfj = A$ij + S< J A<?m (AS. 3) 
Sc = deviatoric stress increment

= (^/+d*H+ao33)y3 _ hydrostatic stress (volumetric) 

= (A£i/ +d £^+££33)7,3 - hydrostatic strain 

tj = 4£i'/ -S<j A&m - deviatoric strain increment 

Sij - Kronecker Delta (=1 for i=j , zero otherwise)

For numerical calculation, Equation (AS. 3) is put in matrix form as :
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SYM.

o

o

o

G

o

o

0

0

G

0

0

0

o

o

G

Ag,

> (AS.4)

or in short

t = DT A£
^>* xv ' /w (AS.4)

where Dj is the tangent material matrix as given in Equation (AS.4).

During loading of the structure, the shear modulus of Equation (A5.4) 

is assumed to vary as a logarithmic function of the second stress 

invariant and is expressed as follows :

and

where

G •= Ge - <^C La

G = Ge

K=

-for J2 >

constant throughout

_ E

linear-elastic shear modulus

linear-elastic bulk modulus

= k

(AS.5) 

(AS.6)

(AS.7) 

(AS.8) 

(AS.9)

second stress invariant

limit of linearity

QC ( *c - uniaxial compressive cylinder 

strength) 
A28
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<* is the material constant and it is determined based on the experi­ 

mental data. If no experimental data is available for concrete, it is 

suggested that an approximate value of * is calculated using the 

following method :

Write a uniaxial stress-strain relationship in terms of bulk modulus, K 

and G, as :

where Ke is defined as above. Now formulate Equation (A5.12) for rupture, 

that is, set 0^ = uniaxial compressive strength and fc^ = 0.002 to 

0.003. Therefore, G, for rupture, can be calculated using Equation 

(A5.12). Substitute this value of G into Equation (A5.5 ) from where at 

can be determined. Therefore the constitutive matrix (A5.4) is 

completely defined.

Some non- linear relations used to define Equation (A5.5) are 

plotted in Figure (4.15a, b, c and d) . It can be seen that the variation 

of E, V, G, is non-linear with stress -invariant and Equation (AS. 5) 

reproduces a uniaxial non-linear stress curve for concrete.
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APPENDIX A6

A6.1. Concrete Model based on the Endochronic Theory

The basic incremental constitutive equations of the endochronic 

theory are :

d£eUj - deij -v d£« CA6.1)

4. (A6.1a)
2G 2G

where d£cj - strain increment

.- deviatoric strain increment

- volumetric strain increment

- volumetric stress increment

dStj - deviatoric stress increment

ii - elastic and inelastic deviatoric strain increments 
P d£m, d£.m - elastic and inelastic volumetric strain increments

Sij - Kronecker Delta ( 6cj= 1 for i = j, otherwise zero)

K - bulk modulus

G> - shear modulus

(jii - intrinsic time increment

cU - inelastic dilatancy increment

(A6.1d)

The increment of intrinsic time is defined (63) in the following :

(A6.2)
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- (A6.2a)

CA6.2b)

(A6.2c)

CA6 - 2d)
^) = first stress invariant

= second stress invariant
= third stress invariant

J2(£) = second invariant of the deviatoric strain tensor

The shear and bulk moduli are assumed to be dependent on A (inelastic 
dilatancy) and are given by :

(A6.3)

(A6.3a)

E.0 - initial modulus of elasticity 

The increment of inelastic dilatancy variable is defined as :

^Jico)"1"^ J d^ (A6 - 4 )1-CA3

and cLA is accumulated along the load path as :

(A6.4a) all load increments
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A set of material parameters used in Equations (A6.2) and (A6.3) have 

been obtained by fitting numerous test data and are defined as follows :

Pi

GL 0

a, 
a*
03

= 0.0015

= 30.0

= 3500.0

= 0.7

= 1400

= 475/Oe

20.0

0.000125

0.0015

0.001

100/0-c

0.0005

0.18

(0.565 + 0.01450^) 4730,flte (N/mm2 )

(0.565 + O.OOOlffe) 5700jo£ (psi)

(A6.5)

where 0£ is the uniaxial compressive cylinder strength.

The above material parameters are a good approximation to the non-linear 

behaviour of generally used lightweight concrete. The attraction about 

this model is that while non-linear behaviour is simply defined 

by two values, i.e. 0^ and E0 , the formulation in Equation (A6.1) is 

fully continuous in that no inequalities are needed to distinguish between 

loading and unloading for various ranges of strain.

From Equation (A6.1a) and (A6.1d) :

«l -v-

= 3Kd£

(A6.6a)

(A6.6b)

where Lj = Stj

= 3KdA

(A6.6c)

(A6.6d)

let i = 1, 2, 3 = (X, Y, Z)
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Define = C A»* , A*Y , (A6.6e)

L AEx , 

= (he

(A6.6£)

(A6.6g)

J2 (£ ) =

dSm = (d£ x

For numerical analysis, the constitutive Equations (A6.6a) and (A6.6b) 

are to be put in matrix form. Multiply by 8. . in (A6.6a) and add it in 
(A6.6b) :

By definition, the above becomes :

= 26 ( d£c - 3K

(A6.7) 

(A6. 7a) 

(A6.7b)

Upon expanding, the above can be written in matrix form as

iG) (K-2fi)
3 3

> ^
SYM

O

o

0

G

0 0

o o

O 0

0 0

G| 0

G

4

A/zx

A33



or (A6.8)

where (A6.9)

Equations (A6.8) and (A6.9) along with endochronic parameters, define 
the material constitutive relations for concrete in compression.

A6.1.1. Extension of Endochronic Constutitive Relations for Cracking

In an uncracked situation, the concrete constitutive relations given 
by Equation (A6.8) are isotropic and are applicable in any coordinate 
system. This is rewritten in the following form :

or

where D 

D 

D

11

12

44

= D

= D

= D

0,2 :D|3 o

SYM

22

13

55

£ p = DT AE
^^»

o o
0 0

0 0

0 0

$55 o

4

"to"
ACV

u£?

AJxy

AJyj 

Ajfex

= D33

= D23 

= D^

= K + 4/3G 

= K - 2/3G 
= G

(A6.10)

(A6.ll)

(A6.12)

When concrete cracks, a sudden drop of tensile strength across 

the crack is assumed. This creates a non-equilibrium state in the 

structure. To maintain an equilibrium state, this released stress is 

redistributed to another part of the structure. The material matrix, 

DT , should also be modified to reflect the reduced stiffness across 

the crack. Now we write the above material constitutive relations in the 

crack coordinate system as :

O-= Dr 48
*~ ~ s^

(A6.13)
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Supposing that there is one crack normal to X* direction, then concrete 

can no longer resist any tensile stress in that direction, i.e.

The procedure described in Chapter 4 (section 4.5.3.) is used. From the 

first row of Equation (A6.13) :

D,,

Substitute Equation (A6.14) with the second and third row of Equation

(A6.13) and rearrange the terms in D*; the following is obtained :

(A6 . 15)

Equation (A6.15) is referred to a local (crack) coordinate system. It 

must be transformed in the global coordinate system using Equation (4.34). 

If there are two cracks at one point (let it be X* and Y*) and both 

cracks are open, then the D* matrix is modified using the same 

principle as described above, except that in this case a double con­ 

densation is needed (see section 4.5.3.). For all three cracks open, the 

concrete loses its stiffness and D* is given by :

jf 
?T~2 (A6.16)
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APPENDIX A7

A7.1. Creep Strains under Multiaxial Stress

Experiments performed under various stress combinations revealed 

similar volumetric and deviatoric creep strain behaviour. This situation 

leads to stress-strain relationships for creep which are analogous to the 

stress-strain relationships of elasticity. Here, the normal modulus of 

elasticity, E, is replaced by inverse of the uniaxial creep compliance, 

J (t-t )f and also the elastic Poisson's ratio is replaced by the creep 

Poisson's ratio. Therefore, the multiaxial creep strain may be written as 

(e.g. elastic equation £<;j =(H-V)!J/-y£y2«L« ) :

- VC (A7.1)

In incremental form over a pseudo time Ai1 , this may be written as :

(A7.2)

where JJ^-W is the uniaxial creep compliance over an increment of bt' , 

Vc is the creep Poisson's ratio, Sij is the Kronecker Delta. Upon 

expanding Equation (A7.2) and arranging it in matrix form, the following 

is obtained :~k&~
4£$

(j

4*Y2
AlS

> AJ(^

1 ~^c ~^c O O O

-Vc t -^c O o o

-tfc -I'c. 1 O O o

o o O 2fi+ ĉ) O o

0000 l(l^c) O

O O 0 0 0 l(l+V>c)

^

Ox

<*

*l

Txy

^Y4

_r«_

(A7.3)

or in short

A£c = AJ(t'-r'J C (A7.3a)
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Following the evidence based on the experimental results, it is 
reasonable to assume the creep Poisson's ratio equal to the elastic 
Poisson's ratio (i.e.

Basic creep equations used for numerical calculations were taken 
from the experimental work carried out by Illston. The coefficient of 
temperature dependence was obtained by processing the experimental 
data of Browns used by Kawamata et al . The following creep compliance 
function for uniaxial conditions was adopted :

= JE +-f(T) Jf +Jd (A7.5)

where Jf = t ' = [-15.37346 + 7.88977 Loge (t)] x 10"6 per N/mm2
"6 20 = 14.21457 x 10" per N/mm

£ = 0.2813578 x 106 N/mm2

t = actual time; (V = VC = 0.167)

and temperature function f (T) = ~ where T is the temperature in 

degrees centigrade, in which 20 °C is assumed as ambient temperature.

Now the incremental uniaxial compliance, assuming E does not vary with t 1 :

-fen AJ^ + bid (A7.7)

- t' = 7-88977 L^e (i±ifc ) ^ At 7 (A7.8)

and AJd = Td U'+dt') - Jd (f ) (A7 . 9)

-8At'= (i-e p ) (a- OdCt')) (A7.io)

where Q - limiting delayed elastic strain

Jd(t') - delayed elastic strain at time t'
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Therefore define Q' = (Q - Jd(t')) - delayed strain yet to develop, 

so :

' (A7.ii)

Once the entire response of the structure is solved in pseudo time axis, 

t', the real time, t, is then obtained from simple transformation.

A7.2. Equivalent Load due to change in Creep Strain

The creep strain (or increment of strain) in finite element 

analysis is treated as "initial strain". The kinematically equivalent 

load for such cases is defined in Chapter 3 (Equation 3.13c). This 

may be written using the creep strain increment of the previous section 

as

°r = | \ | ifpa^detJ '?
-I -I -I

-
Ui js

where NX, NY, NZ, are Gauss points, W., W., W, , are the weightingi j K
coefficients and detJis the determinant of the Jacobian.

(A7.12b)

where jB - strain-displacement matrix

D - elastic or non- linear material matrix-•^

A£c - creep strain increment of the previous section
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A7.3. Equivalent Load due to Thermal Strain

The thermal strain in finite element analysis is treated as 

"initial strain" similar to the creep strain. The kinematically 

equivalent load due to temperature rise, 4T , may be written as :

Vot

-\ -t -i

r*1
\ 8TDte

(A7.13) 

(A7.13a)

u

where A£ is the thermal strain increment of the material. For concrete, 

as for three-dimensional material, the thermal strain increment is given 

by :

A£?

(A7.14)
0 

O

where °Cc = coefficient of thermal expansion for concrete.

Liner steel, under plane stress condition :

A
•3X1

O

where = coefficient of thermal expansion for steel

(A7.15)

Tendons and reinforcing bars are treated as uniaxial material :

f A#] =
(A7.16)
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APPENDIX Bl

USER MANUAL FOR NSARVE

Bl.i: Program NSARVE

In this Appendix, instructions for preparing the data decks are 

given. The following cards are read in :

Bl.1.1. Title Card

This card is mandatory. A maximum of 80 characters are allowed. 

The title can be alphanumeric characters or special symbols like * , 

$ % ... etc. Format (20A4).

Bl.1.2. All or one of the following items are read on this card :

RESD - to print residuals

INPC - to run program for input check only

STRS - to print stresses, STRN - to print strains

PSTS - to print principal stresses

INDC - to print crack indicators and crack angles

ORTH - orthotropic concrete compressive model

BULK - shear and bulk modulus concrete model

ENDO - endochronic concrete model

GAUS - to print X-Y-Z coordinates at Gauss points (for solid EL)

CONR - to check convergence on residuals

COND - to check convergence on displacements

SECN - accelerated Newton-Raphson method

A maximum of 16 options (as given above) may be read on this card 

separated by single spaces or commas in any order. In the case of a 

card left blank, the defaults values are used. They are BULK and CONR.

Example :
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BULK SECN RESD CONR STRN STRS PSTS GAUS

or

ORTH SECN STRS GAUS PSTS

The card reads as :

READ (JINP,1009)(LO (J),J-1,16)

1009 FORMAT (16(A4,1X))

Bl.1.3. This card reads in the total number of nodes on the structure, 

the number of elements followed by the number of nodes on these 
elements.

READQNNP,NTE1,NTE2,NTE3,NTE4,NNE1,NNE2,NNE3,NNE4

NNP - total number of nodes on the structure

NTE1 - number of solid elements

NTE2 - number of plane stress membrane elements

NTE3 - number of axial line elements (body elements are not included)

NTE4 - number of bond-linkage elements

NNE1,NNE2,NNE3,NNE4 - are nodes on solid, membrane, line and linkage

elements respectively 

FORMAT - Free format, i.e. 9 integers separated by one space or comma

Bl.1.4. This card reads in the integer controlling parameters.

READ()NDF,NEC,NRF,NRS,NOGX,NOGY,NOGZ,NGX,NGY,NTYPE,NLI,NELAST,NTC1,ILOAD

NDF - number of degrees of freedom per node (always 3)

NEC - number of boundary conditions (suppressions)

NRF - number of materials for solid elements

NRS - number of materials for line elements

NOGX - number of Gauss points in XI (or local X) direction

NOGY - number of Gauss points in ETA (or local Y) direction

NOGZ - number of Gauss points in ZI (or local Z) direction

NGX,NGY - surface Gauss points for membrane elements

NTYPE - number of prestressed line elements

NLI - number of load increments
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NELAST -

NTC1 

ILOAD

type of analysis required

=0 - tension cut off (cracking) and non- linear

=1 - tension cut off (cracking) and linear elastic

=2 - purely linear elastic

number of line elements inside solid elements

load to be factored during increments (=1 otherwise 0)

FORMAT (14 10) - free format (14 integer numbers)

Bl.1.5. This card reads in controlling parameters for certain combination 

parameters. For example, whether incore or out of core solution, 

whether variable or constant stiffness method is to be used, whether 

creep or temperature is included. The variables read are :

READ () JRADL , INCORE , ICASE , IVARB , ICREEP ,MAXWEL , ITEMLD , ITEMMP , CTEC , CTET , NITMAX 

JRADL - type of coordinate system

=1 - cylindrical
=0 - Cartesian 

INCORE - incore or out of core flag

=1 - for incore solution

=2 - for out of core solution 

ICASE - =1 - incore

=2 - out of core 

IVARB - stiffness update flag

=0 - constant stiffness throughout (initial stress method)

=1 - pure Newton-Raphson method, stiffness update at each 

iteration

=2 - modified Newton-Raphson method, stiffness update at 

every second iteration for each load increment

=3 - modified Newton-Raphson method, stiffness update at

the first iteration of each load increment 

ICREEP - creep flag

=1 - creep included

=2 - creep not included 

MAXWELL - type of creep model

=1 - visco-elastic creep (Maxwell model)

=0 - visco-elastic creep (Burger model)
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ITEMPLD - temperature load flag

=1 - temperature load

=0 - no temperature 

ITEMPMP - temperature dependent material property flag

=1 - temperature dependent material property

=0 - no temperature dependent material property 

CTEC - coefficient of thermal expansion for concrete 

CTET - coefficient of thermal expansion for steel 

NITMAX - maximum iteration limit for any load increment 

FORMAT(8IO,2FO.O,IO) - free format (8 integers, 2 reals and 1 integer)

Bl.1.6. This card reads in the material and geometric property integers 

for each element type. Parameters read are :

READQ (LRF(J),J=1,NTE1) - ignore it it NTE1=0 

READQ (LRF(J),J=1,NTE2) - ignore it if NTE2=0 

READQ (LRF(J),J=1,NTE3) - ignore it if NTE3=0 

READQ(LRF(J),J=1,NTE4) - ignore it if NTE4=0 

READQ(LRF(J),J=1,NTC1) - ignore it if NTC1=0 

FORMAT(1615) - fixed format, 16 integers on each card

Bl.1.7. Coordinate Card 

DO 1=1,NNP 

READQX(I),Y(I),Z-(I) 

FORMAT(3FO.O)

Each card should have 3 real values (X-Y-Z coordinates) separated 

by one space or comma. Since there are no node numbers given on this 

card the program assigns node numbers in ascending order.

Bl.1.8. Connectivity Relations (for each element type)

BRK8,BRK20,BRK32 (solid elements - 8, 20 and 32 nodes) : 

(a) For BRK8, the connectivity relations for two elements are read on 

one card except in those circumstances when there are an odd 

number of elements in the analysis. In this case, one connectivity
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is read on the last card. Therefore 16 or 8 integers as the case 

may be should be present separated by commas or spaces.

(b) For BRK20 elements, one card per element is read in. The format 

is FORMAT(2010) - free format, 20 integers on one card with one

space between them

(c) For BRK32 elements, two cards per element, 16 integers on each card, 

Fixed format. FORMAT(1615,/,1615)

MEM4,MEM8,MEM12 (membrane elements 4,8,12 nodes) :

(a) MEM4 - two elements per card except for odd number of elements,

in which case one element is read on the last card only. 

Free format, 8 or 4 integers per card separated by single 

spaces or commas.

(b) MEM8 - two elements per card except for odd number of elements,

in which case one element is read on the last card only. 

Free format, 16 or 8 integers per card separated by single 

spaces or commas.

(c) MEM12 - connectivity of one element per card, free format and 12

integers per card separated by single spaces or commas.

FLA2,FLA3,FLA4 (axial line elements, 2, 3 and 4 nodes) :

(a) FLA2 - 2 elements per card, free format

(b) FLA3 - 2 elements per card, free format

(c) FLA4 - 1 element per card, free format

LINK2 (bond linkage element, 2 nodes) :•

Two elements connectivity per card, 4 integers separated by commas.
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Material Properties Deck

Bl.1.9. Solid Elements

Three modulii of elasticity (E1,E2,E3) and three Poisson's ratios 

(vl,v2,v3) are read on this card. For isotropic materials, the user 

should give three identical E's and Vs. Six real values per card 

using free format. The number of cards depends on the number of NRF 
read on the fourth card.

Bl.1.10. Material and Geometric Properties for Membrane Elements (E,V,T)

IF NTE2 .EQ. 0 THEN IGNORE THIS CARD (card number 10). Three real 

values on this card. These are modulus of elasticity, Poisson's ratio 

and membrane thickness using free format.

Bl.1.11. Material and Geometric Properties for Axial Elements (E,DIA,YIELD)

IH NTE3 AND NTC1 .EQ. 0 THEN IGNORE THIS CARD (card number 11). 
For each section/material property (NRS of card 4) the modulus of 
elasticity, diameter of the bar and the yield stress must be given. Free 
format is used, i.e. three real values separated by commas.

Bl.1.12. Properties of LINK2 Elements

IF NTE4 .EQ. 0 THEN IGNORE THIS CARD (card number 12). The first 
card gives the number of curve points for a specified bond-slip curve 

and two factors. The bond stress and slip values follow. Two real 

values per card, which is read in using free format. The number of the 

real value cards will depend on the first integer (i.e. number of curve 

points). The following statements are used :

READ()NPOINT,FACTRV,FACTRL

NPOINT - number of bond-slip curve points

FACTRV - factor for vertical bond spring

FACTRL - factor for lateral bond spring
FREE FORMAT - three values, one integer and two real values

DO 99 1=1,NPOINT

READ()BOND(I),SLIP(I)

99 CONTINUE

FORMAT(2FO.O)



The second card gives the length over which the link element is 
connected with the line and the solid element. The length is read in 
for each link element (NTE4 on card 3). One real value per card using 
free format.

Bl.1.13. Boundary Conditions

Two types of boundary suppressions can be considered. The first 
one allows supports in the global X-Y-Z directions and the second one 

allows inclined support on X-Y plane (inclined an angle theta from the 
global X-axis). To identify that the inclined supports are present in 
the analysis, it is essential to read in NBC (on card 3) as -ve of 

the usual number of boundary conditions. For example, if there are 

5 boundary supports and 1 is an inclined support at 15 degrees to the 
global X-axis, then -5 will identify this case. Therefore the following 
FORTRAN statements are given :

(a) IF NBC .GT. 0 

DO 99 1=1,NBC 

READ()NODE,IX,IY,IZ 

99 CONTINUE 

FORMAT(410) - free format, 4 integers per card

(b) IF NBC .LT. 0

READ()THETA free format, 1 real value on this card (theta

should be given in degrees) 

DO 99 I-1,NBC 

READ()NODE,.IX,IY,IZ 

99 CONTINUE 

FORMAT(410) - free format, 4 integers per card

Bl.1.14. Non-linear Parameters

Parameters read are the uniaxial concrete cylinder strength, the 
limiting tensile strength, the yield stresses for prestressed and mild 
steel, the concrete interlocking shear factor, the concrete crushing
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strain, the steel strain hardening parameter (H 1 ) and the tolerance 

limit for the convergence. Parameters are read as :

READQCCC,CCT,YY1,YY2, BETA, ECU, HARDG,TOLREN

CCC - concrete cylinder strength in compression

CCT - concrete limiting tensile strength

YY1 - yield stress for prestressed tendon

YY2 - yield stress for mild steel (liner)

BETA - cracked concrete shear interlocking factor

ECU - concrete crushing strain (uniaxial)

HARDG - isotropic strain hardening parameter for steel

TOLREN - tolerance for convergence

FREE FORMAT - 8 integers with one space between them

Bl.1.15. Body Element Card

IF NTC1 OF CARD 4 IS ZERO THEN IGNORE THIS CARD. 

DO 99 I=1,NTC1 

READQIDD(I) , (SG(J,I) ,J=1,3) 

99 CONTINUE

Free format one integer and three real values on each card 

IDD - brick element number

SG - local positions of line element inside the brick element 

(local positions are the SI,ETA,ZETA coordinates)

Bl.1.16. Temperature Card

Temperatures are given at the nodes. The first card reads in the 

number nodes at which a temperature is given and the reference 

temperature. The card is read as : 

READ()NTEM,REFTEM 

Free format - 1 integer and one real value per card

The second card reads three node numbers and their temperature 

values except in the case of odd number of nodes in which case one or 

two node numbers and their temperature values are allowed on the very 

last card. Free format is used.
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Bl.1.17. Prestress Force Card

This card is only used if NTYPE is greater than zero. This card 

reads the prestressing force in the steel line elements using free 
format. One real value only.

Bl.1.18. Creep Solution Times Card

This card is only used if ICREEP on card 5 is non-zero. The 

card reads the incremental solution times in days for each load incre­ 

ment. Three times are read on each card using free format. A negative 

value on the card terminates the reading of solution times. The same 

sequence should be repeated for the next load increment if there is more 

than one load increment. 

DO 99 1=1,NLI 

READQTIME1,TIME2,TIME3 

FREE FORMAT 

99 CONTINUE

Let us suppose a creep solution is required at I YEAR,5YEARS,20YEARS, 

25YEARS and 30YEARS time periods, and there is only one load increment. 

The following two cards will be sufficient : 

365.0 1465.0 5475.0 

1825.0 1825.0 -0.77

Bl.1.19. Output Card

This card reads integer number to control the printing of the out­ 

put for each load increment and creep solution times. The columns 1-50 

are used for the load increment and the columns 51-80 for creep 

solution times. 50 load increments and 30 creep solution times are 

allowed.

READQ(IOUTP(J)J=1,80) 

FORMAT(80I1)
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If value read on a particular column is 1 then output for that load 
increment is suppressed whilst if it is 0 then it is printed. 
For example 1101, means that output is suppressed for load increment 
1,2 and 4 only. Output is printed for each creep solution time.

Bl.1.20. Incremental Load Factors (Pseudo Times)

This card reads incremental load factors at which a solution is 
attempted. The card is not needed if ILOAD (card 5) is zero. The 
number of factors is equal to the number of load increments. Three 
factors are read per card using free format. 
DO 99 1=1,NLI 
READQT1,T2,T3 

FREE FORMAT 

99 CONTINUE

Bl.1.20. External Loads

Five types of loads may be applied :

(a) Pressure loads

(b) Point loads
(c) Patch loads (loads not directly at nodes)
(d) Self weight

(e) Thermal loads

The first card in this section gives the load controlling parameters 
i.e. type of loading to be applied on the structure. The card reads : 
READ()NFACES,NCONC,NPATCH,ROH,TEMFAC
FREE FORMAT - 3 integers and 2 real values on this card 

where
NFACES - number of faces for brick elements where pressure is applied 
NCONC - number of point loads on nodes 
NPATCH - number of point loads not directly on nodes 

ROH - density of the material 

TEMFAC - factor for thermal loads



(a) Pressure Loads

Constant and variable pressure loads may be applied on the faces 

of brick elements. This card deck is not used if NFACES=0. For each 

face, the following cards are read : 
READQIEL,NF,NS

FREE FORMAT - 3 integers per card 
where

IEL - brick element number 

NF - face number where pressure is applied 

NS =0 constant pressure, =1 - variable pressure

The face numbering scheme is as follows

FACE NUMBER 1, WHERE XI = +1

FACE NUMBER 2, WHERE ETA = +1

FACE NUMBER 3, WHERE ZI = + 1

FACE NUMBER 4, WHERE XI = -1

FACE NUMBER 5, WHERE ETA = -1

FACE NUMBER 6, WHERE ZI = -1

This card is read depending on the value of NS : 

(i) IF NS=0 (CONSTANT PRESSURE) 

READQPRESS 

FREE FORMAT - 1 real value per card

(ii) IF NS=1 (VARIABLE PRESSURE) NODAL PRESSURE ON THE FACE OF THE ELEMENT 

MUST BE READ
8 node brick - 4 real values per card 

20 node brick - 8 real values per card 

32 node brick - 12 real values per card

Positive pressure acts in the positive directions of XI, ETA and ZI 

axes.
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(b) Point Loads

IF NCONC=0 THIS CARD IS NOT USED. For each point load, node 
number and three global X-Y-Z loads are read. The card reads': 
READ()NODE,XLOAD,YLOAD,ZLOAD 

FREE FORMAT - 1 integer and 3 real values per card

For example, at node 56 load is 0.66 in -Z direction 56 0.0 0.0 -0.66 
will be necessary.

(c) Patch Loads

Patch loads are similar to point loads except that they are not 
applied on nodes. The nodal values are calculated using the shape 
function of brick elements. This card reads 
READ()IEL,XG,YG,ZG,XLOAD,YLOAD,ZLOAD 
FREE FORMAT - 1 integer and 6 real values 
where

IEL - brick element number
XG,YG,ZG - local position of load in local XI,ETA,ZI directions 
XLOAD,YLOAD,ZLOAD - global loads in X,Y,Z directions

(d) Self Weight

IF RHO=0, THIS CARD IS NOT USED. In this case the density (RHO) 
is read at the beginning of the section. The load is calculated as 
gravity load and is applied in the -ve global Z- direction.

(e) Thermal Loads
IF TEMFAC=0.0 THIS CARD IS NOT USED. Thermal loads are calculated 

element by element. The elements on which temperatures may be applied 
are BRICKS,MEMBRANES,AXIAL LINE and BODY elements. A total or a factor 
of the total temperature may be applied. For example TEMFAC can be 0.1 
or 0.5 etc. then incremental thermal strain = TEMFAC*(TEMP-REFTEM) 
where TEMP - total temperature, and REFTEM - reference temperature.
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B1.2. Test Examples 

Bl.2.1. Square Braced Frame

The square braced frame shown in Figure (8.1) was analysed 

to validate the elasto-plastic capability of line elements. The 

frame was modelled using 2-node line (axial) elements. There are 

six line elements and four nodes. The geometric and material property 

details are given in Figure (8.1). Total load is 150 kN was applied 

at node 4 in 6 increments. For each load increment, equilibrium 

iterations were performed. The example was analysed using three 

solution procedures : pure Newton Raphson method, the modified 

Newton Raphson method and the Initial Stress Method (see Chapter 6). 

The pure Newton Raphson method was proved to be the best for this

particular example. Convergence was checked on residual loads and a
_2 

tolerance of 3x10 was used. Load-deflection curve at node 4 is

shown in Figure (8.1c). Yielding of the diagonal line element 

(element 5) occurs at the load =81KN after which the displacements 

increase rapidly with increasing load. Unloading and reloading test 

was also performed on this example. The load was slowly taken off and 

then reapplied. An elastic unloading/reloading behaviour was
•

observed (see Figure 8.1c)), as would be expected. The compu ted 

results are almost identical to those from analytical solutions.

Bl.2.2. Elasto-Plastic Analysis of Thick-Walled Cylinder

*

The thick cylinder shown in Figure 8.2. subjected to internal 

pressure was analysed to test the elastic and elasto-plastic response 

of membrane elements. The same example was analysed by others (52, 152) 

The analytical solution under pl-ane strain condition ( £2 =0) is given 

by Hill (55). Figure (8.2) gives the finite element mesh along with 

the geometric and material properties. 1/4 of the cylinder was 

assumed to obey the Von Mises yield criterion with elastic perfectly 

plastic response. A 3x3 Gauss integration rule was used. Modified 

Newton Raphson method was used with the stiffness updated at each load 

increment and the iteration was terminated when the norm of the 

residual loads became less than 0.01.
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The internal pressure was applied in small increments. The solution 

was obtained at pressures 0.63p, 0.7p, 0.8p and Ip, where p being the ! 

internal pressure. These pressures were chosen such that one layer of 

integration points across the radius yielded at one time. The yielding 

starts from the inner radius of the cylinder and moves towards the outer 

radius. The spread of plasticity with increasing internal pressure is 

shown in Figure (8.3a). The elastic theoretical solution is given by 
the following equations :

where a, b are the inner and outer radii and being the radius where 

stresses are calculated. In this example a = 1.0, b = 2.0, therefore

Analytical solution Computed solution

GV- -1.813525 -1.819

<re = 3.3865 3.411

Elastic stresses compare favourably with the analytical solution.

Figure (8.3b) shows the analytical and computed internal pressure (norma­

lised) versus outside radial displacement. Results are in good agreement.

Bl.2.3. Elastic Analysis of Cantilever Beam

20-node brick element was used to .'analyse a cantilever beam. 

Full details are given in Figure (8.4.). Elastic analysis was 

performed and results were compared with the conventional beam theory 

of strength of materials. According to this theory the tip deflection 

is given by (535 ) and the theoretical value of 0.0028444 was obtained. 

Two integration rules were used to integrate the solid elements. 

These were a 2x2x3 and a 3x3x3 integration grids. The results 

obtained from the analysis for the tip deflection are :

(i) = 0.002849 for 2x2x3 integration 

(ii) = 0.002831 for 3x3x3 integration

The results compare favourably with the theoretical result. The 

results of 3x3x3 integration grid are rather stiff and by reducing 

the integration the element gives better results in bending.
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Bl.2.4. Reinforced Concrete Beam Analysis

A simply supported beam (Figure (8.5.)) was analysed under 

ultimate load conditions. This beam was experimentally tested in 

reference (143) (Beam C3). Due to symmetry, only a half of the beam 

was modelled using 10 concrete elements (8-node brick) and 20 steel 

elements (2 node line elements) placed at the bottom of the beam. 

Figure (8.5c) gives the full details of material and geometric 

properties and finite element mesh. The total load was applied in one 

step. The mid-span deflection computed in the analysis was 6.731 mm 

but the measured deflection in the test (143) was 7.874 mm. The 

computed results show a rigid model than the real structure. The 

cracks and the reinforcement stresses, as obtained from the analysis 

are shown in Figure (8.5.). This example was analysed with both 

variable stiffness method (where the stiffness matrix was updated at 

every iteration) and the constant stiffness method. With variable 

stiffness method, the results converged in five iterations and with the

constant stiffness method it required 27 iterations. Convergence
_2 

was checked on residuals and a tolerance of 3x10 was used. All three

compressive concrete models were tested with this example, i.e. the 

orthotropic model, the shear and bulk modulus model and the endochronic 

theory model. The results obtained with all three models were 

approximately the same. This is not surprising, because the main 

non-linearity in this example was due to cracking. The mid-span deflection 

of this example can be improved by taking two elements through the thick­ 

ness of the beam. This will result in more Gauss points through the 

thickness and cause more cracks which will make the beam deflect more.

Bl.2.5. Simply Supported Reinforced Concrete Beam

The simply supported reinforced concrete beam was experimentally 

tested by Bresler and Scordelis (43). The beam is shown in Figure (8.6.). 

This example was chosen for the analysis to demonstrate the non-linear 

model (cracking and high compression) of concrete. Due to symmetry, 

only I of the beam was analysed. The finite element mesh (using 8 node 

solid and the body axial line elements - shown by broken lines), the 

geometric and material property details are shown in Figure (8.6.).
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A 2x2x2 Gauss point integration rule was applied for brick elements. 

A maximum principal stress criterion for cracking and an orthotropic 

concrete model was used for compression. The total load was applied 

in 19 increments (see load-deflection curve of Figure (8.7.)) and 

equilibrium iterations were performed. Figure (8.7.) gives the plot 

of the experimental load-deflection and the one analysed by the 

present model - the comparison between the two is reasonably close. 

Other results (44, 64) which were analysed using different models are 

also shown in the same figure for comparison.

Figure (8.6.) shows the experimentally obtained crack pattern 

just before the failure at a total load of 249.2 KN and the failure 

plane is indicated by the broken lines. The computed crack patterns 

at load levels 215.2 KN and 245 KN are also shown. The failure as 

indicated by the experiment is not observed by the computed crack 

pattern. This could perhaps be improved if. 20 node bricks were 

used with finer mesh through the thickness of the beam. The example 

demonstrates the application of the non-linear method.
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B1.3. Typical Data Deck and Output of NSARVE (Figure 8.4)

DATA DECK (see User's Manual)
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APPENDIX B2 

B2.1. Subroutine Listings

SUBROUTINE NSARVE 
C*********************************^
C
G ——————— WRITTEN. BY MASROOR AHMAD IN JUNE 1977
C ——————— DIVISION- OF STRUCTURES OF THAMES POLYTECHNIC
C ——————— LONDON. .,,_.£.£. .18
C
C**####*****##*##*####^
$INSERT CQMMON*FE

REAL FZA
COMMON FZA (700000)
LOGICAL STIF

C ————— NOTE THAT DIMENSION. OF FZA AND MOT MUST BE SAME
MOT = 700000 

C
d******************^ 
C
C ._. _ ... THREE DIMENSIONAL NON-LINEAR ANALYSIS OF REACTOR 
C VESSEL INCLUDING CRACKING AND NON LINEAR BOND SLIP 
C BEHAVIOUR ALSO TEMPERATURE AND CREEP EFFECTS 
C
G ISOPARAMETRIC SOLID ELEMENTS REPRESENT THE 
C ..__ VESSEL CONCRETE? MEMBRANE ELEMENTS REPRESENT 
C ... ._.. STEEL LINERvLINE ELEMENTS REPRESENT PRESTREr 
C ... _ SSING AND REINFORCED STEEL AND LINKAGE ELEM- 
C ._ ENT REPRESENTS NON-LINEAR BOND

STIFFNESS-UPDATE OPTIONS .-

C IVARB = 0 - CONSTANT STIFFNESS ( MODIFIED NEWTON RAPHSON M
C (KO - OPTION).
C = 1 - VARIABLE STIFFNESS (NEWTON RAPHSON METHOD.}
C (KT - OPTION).
C = 2 - STIFFNESS UPDATED AT THE SECOND ITERATION
C . ._. OF EACH LOAD INCREMENT (KT2 - OPTION)
C = 3 - STIFFNESS UPDATED AT THE FIRST ITERATION
C OF EACH LOAD INCR ( KT1-OPTION).
C . CREEP ANALYSIS
P ___„________„ _ —
C ICREEP = 1 ~ CREEP OF CONRETE INCLUDED IN THE ANALYSIS
C = 0 - CREEP NOT INCLUDED
C MAXWEL = 1 - MAXWELL CONCRETE CREEP MODEL
C = 2 - BURGER CREEP MODEL
C _. .EQUATION ASSEMBLY AND SOLUTION OPTIONS -

C ICASE =1 AND INCORE=1 - INCORE ASSEMBLY AND SOLUTION
C ==1 AND =0 - OUT OF CORE ASSEMBLY AND SOLN ,
C (2*NHBD#NHBD MINM* CORE STORAGE)
C ICASE = 2. AND INCORE = 0 -BIG OUT OF CORE ASSEMBLY AND <
C • :• JRADL = 1 - CYLINDRICAL CO-ORDINATE SYSTEM
C ._ __ = 0 - CARTESIAN CO-ORDINATE SYSTEM
C NEI_AST= 2 - ELASTIC ANALYSIS
C NELAST= 1 - ELASTIC + TENSION CUT-OFF
C ' = 0 - NON-LINEAR ANALYSIS
C NBC = NEGATIVE - INCLINED SUPPORT IN DIRN. THETA
C lOUTP(NLR) = 0 - OUTPUT FOR LOAD INCR* 'NLRI
C .__. _. = l_.-. OUTPUT SUPPRESSED FOR LOAD-INCR* .'NLR.l
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G = 1-- OUTPUT SUPPRESSED FOR LOAD^INCR*.-NLR.1
C**'*************************************** 
C
e
c________ INITIALISE READ AND WRITE CHANNEL NOS.
C ( MACHINE DEPENDENTJ 

JINP=5
JOUT=6 

C
NQ1=INTS<11)

- NQ2=INTS<12>
NQ3 = INTS(13>.
NQ4=INTS(141
NQ5=INTS(15).
NQ6=INTSC16).
NQ7 = INTS(17JL 

C
C——————————— INPUT DATAS 
C

CALL INPUT 
c———————————— INITIALISE VARIABLES

DISMAX=0*0
NLR=Q
NKAR=Q
NCREP=Q
STIF=*TRUE_* 

C
CALL INITL 

C 
c————— PUT ZERO INFORMATION ON FILE NQ7

REWIND NQ7
DO 112 I=lyNTEl
WRITE(NG7)((ECT(JyJK)yJ=ly6)yJK=lyNGP) 
L y < (ETU(J^.JK) y J = ly3) y JK = 1*NGP). 

C 2 y(CCWICJyJK)yJ=ly3)yJK=lyNGP) 
11Z___..CONTINUE 
c———:————————— CALC* GAUSS POINT VALUES

CALL. GAUSS 
c———— CALC* TOTAL LOADS TO BE FACTORED DURING LOAD INCREMENTS

CALL LOAD1P 
Q
|^ M. MH _____ M.«.«.H. MM .....HMH «MM..____«« H»«» HW «._____.____.»__M ««««»»-~ M»«. M««« M. MM .«««. M.«—— «M .H.-*..«.«H «MMM »»HHHM «« M...M .«.» MH •---!•_ _____»____».«»......««.. «. __»

C———————— CALC* INFORMATION FOR OUT 'OF CORE ASSEMBLY 
C———————— AND SOLUTION

IF(ICASE«EQ,1)GO TO 11Q
NEQ1B= (.MOT-1)/(2.* (NHBD-f 2) )
IF (NEQ1B -> GT * NEQ ) NEQ1 B = NEQ
NEQ2B=NEQ1B#2
NBLK = (NEQ-D/NEQ1B +1
GO TO 120 

110 CONTINUE 
Q

NNODE=NHBD/NDF
NEQ1B=NNODE*NDF
NEQ2B=2*NEQ1B 
NBLK=NEQ/NEQ1B 
NEXTR=NEG-NBLK*NEQ1B 
IF(NEXTR * GT * 0)NBLK=NBLK+1 
IF(INCORE»EQ»0)GO TO 115 
NBLK=1 
NEQ1B=NEQ 
NEQ2B=NEQ 
NNODE=NNP 

115 CONTINUE 
12.0 CONTINUE

NTL=NEQ2B*NHBD B26 
IF<NTL,GT,MOT)CALL ERROR



C '

-' 11 CONTINUE 
Q

IF(NKAR»EQ»1)GQ TO 29 
C———— NEXT LOAD INCREMENT

_NLR=NLRtL
LCREEP=Q
IFCNLR *GT, NLDGO TO 100 
CALL LQDINC 

C
IF(INF'CK«NE*.0)GO TO 10.0
NITER=0
HFACT=1*.Q
EFACT=0*Q 

29 CONTINUE 
Q
C———— STIFFNESS FORMATION
C
c——————————— CALC. STIFFNESS MATRIX -f ASSEMBLE + DECOMPOSE
C

LF(*.NDT* STIF)GO TO 3.1
CALL.. STFDEC (FZA , NBLK, NEQIB rNEQ2B y NNODE^ MOTJ 

31 .CONTINUE
IF <IVARB * EQ * 0)STIF=*FALSE^ 

C
e——————————— ITERATIONS FOR A LOAD INCREMENT 
C 
s 33 CONTINUE

N.ITER.=NITER_+1 
c———————————— LIMIT ON. NO* OF ITERATIONS

IF(NITER*GT*NITMAX)GO TO 93 
C
e—————————— RESOLVE.FORCE. VECTOR AND BACK SUBSTITUTE 
C 
/ CALL SOLVE ( FZA y NBLK y NEQIB rNEQ2Br MOT.)
C ...
G—————————— CALC* UPDATED STRESSES AND RESIDUALS
C
e———— CALL ACCELERATION ROUTINE IF REQUESTED

IF(ISECNF*EQ*1)CALL ACCNEW
CALL TOSTRS
NCREP=0 

C
IFCNELAST*EQ»2)GO TO 92
IF(LCREEP»NE»0)GO TO 92 

C 
G———————————— T |r ST FOR CONVERGENCE

CALL CONVERC EXCESS y RESD s-VAL.2.. DISPT y DISPI y VAL1) 
IF(IFCONV*EQ*1)GO TO 135 

c———— RESIDUAL CONVERGENCE CHECK 
IF(VAL2.LT*TOLREN)GO TO 92 
GO TO 136

135 CONTINUE
c———1 DISPLACEMENT CONVERGENCE CHECK 

IF(VAL1*LT,TOLREN)GO TO 92
136 CONTINUE 

C
IF(IVARB*EQ.O)GO TO 33 

C
' IF<IVARB»EQ»3)GQ. TO 33 

NKAR=1
STIF=»FALSE.
IF(IVARB>EQ*2 .AND* NITER *EQ* 1)STIF=*TRUE, 
IF(IVARB*EQ*1)STIF=*TRUE* 
GO TO 11 
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CL
•93 CONTINUE 

C
WRITE(JOUTflOOO>NLRjNITER 

1000 FORMAT(//,20X*'MAXIMUM ITERATIONS REACHED'*4Xn
1 'LOAD INCR* ', 15,4X*'ITERATIONS'y 15). 

C . " • 
C . - 11 
C.

92 CONTINUE
c———————— INITIALISE EQUIV, STRESS/STRAIN AT THE 
C - END OF LOAD INCR* TO BE USED FOR 
C LOADING OR UNLOADING

CALL EQVINT 
C.

CALL OUTPUT 
C
C———— IF ANY OF THE DISPLACEMENT EXCEEDS THE SPECIFIED VALUE*UMAX 
c———— STOp THE_. ANALYSIS

UMAX=10.0*Q
DO 170 J=1*NEQ
IF (RABS(UU CJ.X) » GT * UMAX) DISMAX=UU (J) 

170 CONTINUE
IF (RABS (DISMAX). *_GT»UMAX)URITE(JOUTy 1012 )DISMAX? UMAX 

1012 .FORMAT<////,5Xy'***PROGRAMME.STORED BECAUSE OF MAXIMUM'? 
1. ' CALCULATED DISPL*'yF10* 5 ' EXCEEDS THE MAX.'* 
2 ' SPECIFIED DISPL*'yF10»51
IFCRABS(DISMAX) »G.T»UMAX)GO TO 100
IFCICREEP.EGUOGQ TO 190 

C
ff———————— CREEP OF CONCRETE 
C

LCREEP=LCREEP-fl
IF-CCRTIMECLCREEPyNLR) *LE*0,0> GO TO 190
DTIME=CRTIME(LCREEP.»NLRJL
TIME=TIME+DTIME
NCREP=1 

C.
CALL CCREEP 

C
NITER=0
HFACT=1*Q
EFACT=O.Q 
TEMFAC=0*Q
GO TO 3.1 

190 CONTINUE 
NKAR=Q 
STIF=»FALSE* 

- IF (IVARB * EQ * 1 . OR » IVARB * EG . 3) STIF= * TRUE,.
GO TO 11 

C
100 CONTINUE 
C

IF (INPCK. NE • 0) WRITE CJOUT * 1009).
1009 FORMAT(//j20Xy '..-**USER REQUESTED TERMINATION** 7 */20X*30(1H-)) 

C 
Q————————— ENr, OF THE PROGRAMME
C

RETURN 
END
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SUBROUTINE ACCNEW 
C
0———— THIS F(:OLiTINE CALCULATES THE MODIFIED INCR* DISPL*. 

C———— BASED ON A CORRECTION DUE TO CURRENT AND OLD RESIDUALS 
c———— THIS METHOD IS CALLED SECANT-NEWTON METHOD* THE
C— --_-__ __ CONVERGENCE IS FASTER IF USED UlITH-MOniFIE.lLN-R PROCEDURE,
C
^INSERT COMMON,FE
C.

IF<NITER4EQ*1)GO TO 2.0
C———— CALC«. ACCELERATION FACTORS 

AFACT=0,,Q 
BFACT=0*Q 

" CFACT=0,..Q 
DO 10 J=1,NEQ 
RESDIF=P(J)-PO(J1 
AFACT=AFACT-f UO ( J ) *PO < J I 
BFACT=BFACT-fUO(J)*RESDIF
CFACI=CEAC.T-fU.<J>*RESBIF 

10 CONTINUE
c———— FACTORS H. AND E 

HFACT = -AFACT/BFACI 
EFACT = HFACT* (1.0--CFACT/BFACT)-1,0

C
- 20 -CONTINUE
C WRITE(JOUT y1901)NITER t ISECNF * HFACT r EFACT
190i_FORMAT(' *#ACCNEW-NITERrLSECNF i HFACT v EFACT' ,21 5 , 2E12,4 > 

c———— copy CURRENT RESIDUALS. INTO OLD RESIDUALS 
_DO 30. J = 1».NE.Q
PO(J)=P(J1 

3.0 CONTINUE
c———— UPDATE.THE. DISPLACEMENT INCR. AND STORE IT IN P 

DO 40 J = ly.NEQ
P (J) =HFACT*U (J ) +EFACT*UO < J). 

C———- " PUT CURRENT DISPL*AS OLD DISPL*.
UO(J)=P(J.). 

40 CONTINUE 
C———— CHECK THAT NEWTON CUT-OUT FACTOR. REQUIRED

_DISU=O.Q 
niSUD=0*Q 
DI.SUUO = 0*.Q

c———_ NORMS OF DISPL^ 
DO 50 J=lyNEQ 
DISU=DISU + P( J)*P(J). 
DISUO=DISUO+U(J)*U<J1 
DISUUO==DISUUO+U (J) *P < J.) 

50 CONTINUE—-
DISU=RSQRT(DISUa 
DISUO = RSQRT(DISUC)1 

C
/ THETA=DISUUO/<niSU*DISUOA 
C --—"
0- .. WRITEC JOUT vl 902 )THETAy EFACT 
1.902, FORMAT C. **ACCNEW-THETA , EFACT ' y.2E12*4>. 

_IF(THETA*i_T,0«25).GO TO -7Q ' ""' 
IF(RABS.<EFACT>.GT.2..0.)GO TO 70 ....__ ————- —————
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c
C 
/

. FOR NO CUTOUT
DO 60 J=1,NEQ
U<J)=P(J1 

60 CONTINUE
GO. TO 9Q 

70' CONTINUE
SECANT NEWTON

FACTQR,COPY P INTO U

CUTOUT FACTOR (NO ACCELERATION ALLOWED)

SO

DO SO J=1*NEQ 
UO(J)=U(J.l 
CONTINUE 
WRI TE < 6 * 1 900 > HFACT , EFACT 

1900 .FORMAT (' #*SECANT NEWTON CUTOUT FACTORS-H = ',E12.*4*
1 2X>'E . .= '>E12»4J. .„..„.. 

c ———— SET H-^ND'E SUCH THAT THE ORIGIONAL NEWTON-RAPHSON PROCEDUR!

• HFAC'T=1».Q 
EFACT=0*,Q 

90 CONTINUE 
RETURN 
END

B30


