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Abstract

Tutoring Systems based on User-Interface 
Dialogue Specification

F. A. Martin

This thesis shows how the appropriate specification of a user interface to an 
application software package can be used as the basis for constructing a tutorial 
for teaching the use of that interface. An economy can hence be made by 
sharing the specification between the application development and tutorial 
development stages. The major part of the user-interface specification which is 
utilised, the task classification structure, must be transformed from an operational 
to a pedagogic ordering. Heuristics are proposed to achieve this, although human 
expertise is required to apply them. The reported approach is best suited to 
domains with hierarchically-ordered command sets.

A portable rule-based shell has been developed in Common Lisp which supports 
the delivery of tutorials for a range of software application package interfaces. 
The use of both the shell and tutorials for two such interfaces is reported. A 
computer-based authoring environment provides support for tutorial development.

The shell allows the learner of a software interface to interact directly with the 
application software being learnt while remaining under tutorial control. The 
learner can always interrupt in order to request a tutorial on any topic, although 
advice may be offered against this in the light of the tutor's current knowledge 
of the learner. This advice can always be over-ridden.

The key-stroke sequences of the tutorial designer and the learner interacting with 
the package are parsed against an application model based on the task 
classification structure. Diagnosis is effected by a differential modelling 
technique applied to the structures generated by the parsing processes.

The approach reported here is suitable for an unsupported software interface 
learner and is named LIY ("Learn It Yourself1). It provides a promising method 
for augmenting a software engineering tool-kit with a new technique for 
producing tutorials for application software.
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1.1 Background

Computer users are becoming increasingly sophisticated. As they operate ever- 

improving hardware they provide software suppliers with a market for new 

products which is evolving continuously. The increase in the number of 

computers in use and the number of software products to run on them has led 
to an explosive growth in training requirements. The future is clear: computers 
can and will provide the tutorial means for users to learn how to use unfamiliar 
software. If this seems to be rather a sweeping statement let us consider the 
alternatives. The traditional approach has been to send the learner on a 
commercial course. If the learner is being sent by his or her employer then that 
organisation has to meet not only the very significant expense of the course itself 
but also the cost of losing the services of the employee for the duration of the 
course. Many potential users will not be able to seek funds from an employer 
to go on a course: professionals in non-computing disciplines, for example, 
learning a new package in their own time, or someone at home improving their 
"computer literacy" skills on a domestic computer. For them, self-tuition will 
be the only way. Self-tuition may not mean the use of a computer: books 
provide a traditional way of disseminating information by self-study. When 
learning a skill, however - and using a software interface is principally a 
cognitive skill with a small motor element - learning by doing is superior to 
learning from written material, at one remove from the subject matter.

The work portrayed below describes this "learning by doing" in terms of 
presenting the learner with a structured view of the domain which is to be 
mastered - the target package - coupled with appropriate tutoring material. The 
learner interacts with the user interface of the software package being learnt and 
it is the structure of this software interface which underlies the view of the target 
package which is presented to the learner. The approach is called "Learn-It- 
Yourself1 , or LIY for short. For a different class of learner - the child in 
school - the idea of presenting a relatively unstructured learning environment has 
been proposed (Papert 1980). The motivating features for the child - using a 
simple graphical programming language called LOGO - are assumed to rest on 
the fun involved and the child's natural inquisitiveness. Learning objectives
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relate to developing simple arithmetic and spatial ability. At present such an 

unstructured approach is usually inappropriate to the learner of a new software 

interface - particularly if it is text-based - due principally to the complexity of 

such interfaces. This could change somewhat in the future as user interfaces 

become more heavily based on graphical paradigms. These provide a relatively 

small number of tools of universal applicability which can be put together by 

the user to provide powerful facilities. This "putting together" of a small number 

of tools leads to a large number of features, many of which are best learnt by 
experiment. An example of this is the drawing tool Microsoft Windows Paint 

which provides a huge range of facilities for drawing, since the user can combine 

different styles, fonts, palettes, brushes and so on. The manual for this tool is 

only 37 pages long; although it is a powerful package it is best learnt by 

exploratory trial-and-error.

Microsoft Windows Paint is simply "graphical interface"; the graphics facilities 

dominate the package and apart from filing system features there is very little 
else. This type of software is at one extreme compared with a purely text-based 
interface which manipulates a complex computer system, for example, the 
concepts of which the learner must acquire through a training sequence. It is 

plausible to suggest that future systems are likely not be at either of these two 

extremes but somewhere in between. It will thus be appropriate to present the 

learner of such a system with a structured view of the domain to be learnt, with 

opportunities to experiment with the software in a protected environment which 

will not permit damage to occur to the machine's software systems as a whole.

LIY is a method, based upon a software tool-kit, for engineering the type of 

courseware that is specifically designed to teach the use of a limited class of 

software interfaces. The tool-kit comprises courseware authoring and delivery 

environments. As an example, LIY could be used to teach the use of a new 

word-processing or database management system. Software interfaces are usually 

task-oriented, in that operating them can be viewed as carrying out a sequence 

of actions to achieve a task. Thus the LIY approach is appropriate for task- 

oriented domains. Considered from a methodological viewpoint, LIY would not 

be appropriate for more open-ended domains such as history or geography.
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Furthermore, LIY is only designed for dealing with text-based interfaces. At 

present it normally requires that all application input (i.e. semantic input to the 

application rather than command input which interrogates or controls it) be 

terminated by a recognisable character, such as enter or escape. LIY cannot 

usually deal with fixed-length input not followed by a recognisable terminator 

although this can occur on occasion as discussed in chapter 3. The current 

version of LIY has no method of managing "hot keys". These are certain pre 

determined key-stroke sequences which always suspend the current task and 

invoke some standard associated service. The most common example is the 

constant availability of a certain key - often Fl in PC-based software - which 

enables the user to seek help. LIY will not handle software interfaces 

incorporating direct-manipulation devices such as mice. O'Shea has pointed out 

some of the difficulties associated with modelling the users of such devices 

(O'Shea 1989). As software interfaces become increasingly graphics-based these 

difficulties will assume more importance. They are discussed further in section 

5.4.1.

It is proposed above that the computer itself is the natural delivery medium for 

tutoring the learner of a new software interface. This idea is not new. The 

LEARN system of UNIX (Kernighan and Lesk 1979) and the DYCAL system 

for Prime computers running the PRIMOS operating system (Martin 1983) both 

provided a tutorial environment with controlled embedded access to the user 

interface. That is to say, learners could be set assignments in which they were 

requested to manipulate the interface to an actual program rather than, for 

example, a simulation of that interface. The tutorials were designed to teach the 

use of the operating systems themselves. More recently application packages 

such as Lotus 1-2-3 and WordPerfect have been released with built-in tutorial 

assistance. These tutorials allow the learner to interact with what appears to be 

the genuine application software. Typically, only a restricted subset of the 

operations that can normally be performed is available, making learner control 

difficult and browsing by the learner impossible. A more fundamental problem 

is that there appears to be a very tight coupling between the application and its 

tutorial. Tight coupling precludes the development of a tutoring system for 

software interfaces which is portable in the sense of being applicable over a
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range of interfaces. LIY adopts a "loose coupling" approach in order not to 

preclude portability. Finally, existing systems for commercially-available 

application software do not use any ITS technology such as sophisticated student 
modelling or diagnosis. Diagnosis, when it occurs, is very much at the level of 
matching character-strings.

It is not intended that the reader should infer that written material has no place 
in tutorials for software interfaces. On the contrary, written text and graphics 
provide extremely valuable input to the whole self-teaching process since 
currently it is easier for most people to find a required page in a book than to 
find a particular screen. This may change as a result of research into hypertext 
systems. It is a moot point whether the book supports the computer-based 
tutorial or the tutorial supports the book. Let it be said that they complement 
one another.

Other workers have attempted different approaches to producing tutorial material 
for software interfaces. The DOMINIE system has a knowledge-elicitation phase 
which captures static screen-dumps from the application (Spensley and Elsom- 
Cook 1988). These can then be displayed to the learner as part of an 
appropriate teaching operation. The DOMINIE work focuses upon the 
representation of multiple teaching strategies and the selection of the most 
appropriate such strategy. It does not however permit the learner to interact 
directly with the software being taught, unlike the LIY approach described here.

For software interfaces, alternatives to tutoring systems are advice systems. 
These can permit the user - perhaps a novice - to interact directly with a 
program but allow him or her to interrupt in order to seek advice. This is 
exemplified by the EMACS editor (Stallman 1979). An alternative design is for 
systems which themselves give advice at what are considered appropriate 
moments. The possible design of one such system is outlined in the context of 
a tutorial for WordStar (Jackson and Lefrere 1984). The approach proposed is 
based on the maintenance of plan representations of hypotheses concerning the 
user's state. These plans could then be revised dynamically. Greenfield 
describes an approach to plan generation based on Definite Clause Grammars
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(Gieenfield 1988), a representation formalism particularly suited to processing by 

a Prolog interpreter. This technique is used to represent pre-defined user plans 

and to parse command line input, in this case to UNIX. Also for UNIX, the 

EUROHELP system is a 100 person-year project which is proposing an 

intelligent help system for UNIX mail (Breuker 1988). This important 

undertaking is examining many different aspects of ITSs for advice systems, such 

as plan generation, discourse and - obviously - aspects of explanation. The 

SINK Consultant is an intelligent help system for SINK - a UNK derivative 

developed by Siemens AG (Kemke 1987). It is reported to be a command-based 

taxonomic hierarchy, similar to that of LIY, and permits the user to ask 

questions in natural language. Knowledge for answering these questions is held 

in frame-like representations at the nodes in the taxonomy. Woodroffe describes 

the FITS system which is a tutor for the UNK command line interface 

(Woodroffe 1988). The thrust of this work again focuses upon planning with the 

program maintaining a hierarchy of increasingly abstract possible plans. These 

are hypothetical representations of the learner's actual plan.

Jackson and Lefrere provide an interesting analysis of some of the difficulties of 

matching a hypothetical plan to users' actions and revising such a plan if 

necessary. These include the user: (i) changing goal; (ii) adopting an alternative 

strategy, not in the plan, to achieve the same goal; (iii) incorporating another 

task into the original plan; (iv) making an error, for example typing the wrong 

command or typing a series of commands in the wrong sequence.

The TOTS system (Rickel 1988) shares some similarities with the LIY work 

described here in that it attempts to provide a domain-independent intelligent 

tutoring shell for task-oriented domains. Both the FITS and TOTS approaches 

base their plan representations upon Sacerdoti's procedural network (Sacerdoti 

1977). LIY is aimed at a subset of such domains: user interfaces to software. 

Like LIY, TOTS is weak in the area of identifying learner misconceptions, 

principally because these are particularly domain-specific. It is unclear whether 

TOTS could be used for teaching the use of software interfaces. Rickel does not 

report any evidence that it would be able to do so in a manner which would 

support direct interaction with the target software.
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It can be argued that to learn a programming language is also to learn the use 

of a software interface. The best-known work in this area is PROUST (Johnson 

and Soloway 1987), a tutoring system for teaching Pascal. The Pascal compiler 

is simply a "black box" which takes program statements as input and produces 

machine-code and error messages as output. Like the compiler, PROUST 

processes a complete (though syntactically correct) Pascal program. It attempts 

to identify and report semantic errors by comparing such mistakes with a "bug 

catalogue" of known possible errors. It is a non-interactive program, whereas the 

work described in this thesis is suited to tutoring interactive software interfaces. 

PROUST incorporates knowledge both about Pascal and about the typical bugs 

learners make when developing Pascal programs.

The Lisp Tutor, based on the ACT* theory of learning (standing for Adaptive 

Control of Thought), is also concerned with teaching a programming language 
(Anderson and Reiser 1985). However, unlike PROUST which operates post- 
hoc after the student has submitted a complete program, Andersen's tutor deals 

with the interactive environment of a Lisp interpreter. Errors are detected and 

reported immediately they are committed. Further, the learner is required to 

repair such errors at once. The LIY approach described below can be applied 

to a wide range of software interfaces, admittedly of less complexity than a Lisp 

interpreter. For a given cost of implementation, there appears to be a trade-off 
between the power of a tutor and its complexity on the one hand and its 

generality over a range of domains on the other. The Lisp Tutor is towards the 
high end of the implementation cost scale. Figure 1.1 shows how 

implementation costs change with respect to distance from a line of constant cost 

and attempts to position PROUST and Andersen's approach as used in building 

the Lisp Tutor in relation to LIY, which exhibits low cost and high generality 

but only moderate power.

LIY's aims are set out fully in the next section. It has so far been described in 
terms of computer-based delivery of tutorial material concerned with software 

interfaces; it also attempts to provide an authoring environment for building such 

tutorials.
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Power and complexity Line of constant cost

ANDERSDN TUTORS

General^

Fig. 1.1

In the authoring field, Tang et al. propose object-oriented tools for modelling 

users and dialogues, with a mapping between the two (Tang et al. 1989). These 

tools would then prompt the designer for domain-specific information.

Woolf describes an authoring system being built to enable teachers who are not 

familiar with Al programming to construct intelligent tutorials (Woolf 1987). 

The interface to the system is predominantly graphical. Woolf identifies the 

main problem in the building of such authoring systems as being that of domain 

knowledge representation. As is described in succeeding chapters, the LIY 

representation of the domain is based on the specification of the user interface 

to the application software. LIY assumes that this will have been defined at the 

software design stage.

The TEACHER'S APPRENTICE system once more proposes an authoring 

environment with a highly graphical interface (Lewis et al. 1987). The chosen 

domain is the familiar one of school algebra. This tutor, like the Lisp Tutor 

(Anderson and Reiser 1985), is based on the ACT* theory of cognition in which

8
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pre-stored fine-grained production rules model all aspects of the learner's 
behaviour, both correct and "buggy". These rules must be elicited from the 
designer. The tutoring strategy is said to be "induced" from the behaviour of the 
designer playing the roles both of teacher and ideal student In fact the designer 
must specify correct and incorrect protocols in order for the system to generate 
the productions required.

SCALD uses a script-based expert system to support the tutorial designer which 
incorporates knowledge about how to build CAL systems (Nicolson and Scott 
1986). It does not support an intelligent tutorial delivery environment, nor is it 
specifically aimed at software interfaces.

The systems described above all focus on one or more of the accepted issues in 
ITS design as a means of investigating and refining approaches to handling those 
issues: domain and learner modelling, planning, teaching strategies, problem 
generation, natural language interfaces, representation of teaching expertise and 
so on. In contrast the LIY research reported here is concerned specifically with 
software interfaces and their representation and asks the question "How can this 
representation - which will already exist - be exploited in the cause of tutorial 
creation and delivery?".
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Aims and rationale

Section 1.1 above describes the area of this research and the background in terms 
of related research. This section provides a more focused view of the aims of 
the research and explains the rationale for carrying it out.

The aims are considered first. There were two principal aims, along with four 
more general ones. The principal aims were:

1. To investigate the extent to which a specification of the user 
interface can be used as the basis for building a tutorial for 
that interface.

If it were the case that a user-interface specification could contribute to 
construction of a tutorial for that interface, then this would save effort: for some 
given project the specification would be contributing to both the software 
engineering and the courseware engineering stages. Such an economy could 
only occur when the project development provides not only for the software but 
also its tutorial courseware. No economy would occur if the tutorial were to be 
implemented retrospectively as an afterthought

2. To demonstrate the feasibility of a portable shell for supporting 
the production and delivery of tutorials for software interfaces.

This aim tests the domain-independence of the LIY approach. Most of the tutors 
being discussed in the current literature are for single domains such as the 
teaching of algebra. The work described here is concerned with developing a 
method with wide applicability. If the research had been focused on aspects of 
design of a tutor for just one particular software interface then the issues the 
work would have addressed would have been those confronting the ITS research 
community in general. These issues have not gone away simply because of the 
portability aim of LIY. Some of them are considered in LIY's design and are 
discussed in detail in chapters 3 and 4. Others are discussed in the concluding

10
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chapter. Please note, though, that the desire for portability pervades the entire 

LIY conception.

There were four subsidiary, or more general, aims which were kept in mind as 

being desirable:

(a) The learner should be allowed to interact directly with the software 

interface being taught.

The reasoning behind this is that learning by "doing" is very effective. Learning 

by interacting with a simulation could be as good provided that the simulated 

interface was as good as the real thing - a situation appropriate on cost grounds 

to teaching airline pilots, but hardly to teaching software interfaces. The learning 

experience of interacting with static screen dumps, as for example in DOMINIE, 

is likely to be of lower quality (Spensley and Elsom-Cook 1988).

(b) The learner should be able to interrupt at any time.

On the face of it learner control does not seem to have provided the 

breakthrough in CAL acceptability which was hoped of it and it would be 

instructive in the future to analyse the reasons. Merrill points out in his study 

of learner control in the TICCIT system that distinctions can be made between 

learner control of strategy, presentation and content (Merrill 1980). In LIY the 

learner essentially has control over strategy, and the case for using it rests on the 

high level of motivation anticipated of the learner. In a study by Hartley it was 

found that a group of students offered learner control reported a greater degree 

of stimulation and satisfaction than a similar group learning the same material 

under program control, factors which are clearly concomitant with maintaining 

a high degree of learner motivation (Hartley 1981). More recently Hartley and 

Tait report experiments with a system offering both learner-control and advice 

in the domain of mathematics for biology students (Hartley and Tait 1986). 

While the system was liked by the students, there was some concern as to 

whether it met the particular requirement of stimulating thought and reflection 

in this particular domain. The authors propose a design incorporating a

11
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knowledge base to support the advisor which would enable it to probe deeper 

issues concerning the student's understanding.

Anderson has pointed out the importance of control to the learner even if this 

control is illusory (Anderson 1989). He described an informal experiment in 

which a lecturer was giving the last lecture of a course. He divided the students 

into two groups (group 1 and group 2). He needed to teach only one of two 

possible topics. Group 1 were allowed to choose the topic while group 2 were 

to be denied a choice although they were taught the same topic as group 1. The 

result was that group 1 performed better in post-tests than group 2, who were 

denied even the illusion of having some control over what was to be taught

MATILDA, a system for teaching Lisp to novices, was apparently not as 

successful as the system used in Hartley and Tail's study (Elsom-Cook 1983). 

The learners, who were students on a taught MSc. course in cognition, 

computing and psychology, were largely computer-illiterate, and were inhibited 

about trying things to find out how MATILDA worked. It can be inferred that 

the cognitive load associated with learner control was relatively large compared 

with the cognitive content of the learning task. The learner perceived "learning 

the task" as being more important and therefore opted to minimise cognitive load 

by avoiding learner control. For software interfaces the LIY approach should 

help to overcome this problem for the following reasons. First, a high level of 

motivation on the part of the learner is assumed. Second, many learners will 

already be computer-literate even if they lack knowledge concerning the software 

interface that they are learning (package-illiterate). Third, some learners will be 

transferring skills from another not dissimilar interface (computer-literate and 

package-literate). As an example of the last point consider a learner who is 

familiar with WordStar and who is learning to use an alternative word processor 

such as WordPerfect. Having control over navigation within the task domain 

would allow the learner to capitalise on existing knowledge of word processors. 

This is discussed further in the context of learner acceptance in the rationale 

below.

12
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(c) LIY should comprise not only a delivery system but also an authoring 
system.

This requirement is necessary so that tutorials can be built for a wide range of 

different software interfaces. It follows as a result of the second of the principal 

aims described above: the feasibility of a portable shell.

(d) LIY should incorporate intelligent tutoring system technology where 
possible.

The standard ITS concepts are discussed more fully later on, together with other 

ideas which have not yet been fully developed in the implementation. These 

include a variation in certain of the learner model attributes to include both a 

characterisation profile and a performance profile, so that longer-term attributes 

of the learner could be preserved across a range of tutorials. Additionally, an 

idea put forward by Pask concerning feedback systems has led to the suggestion 

of a general architecture for those tutoring systems which include learner control 

(Ogborn and Johnson 1982). This is described in detail in section 4.2.3.

The rationale for this research is based on the proposition, stated earlier, that the 

computer is the natural medium for delivering training material for software 

interfaces. A further step along this path is to consider the stage at which 

courseware should be produced ("Courseware" here is specifically limited to 

mean training material for software interfaces.) Associated with the fact that 

courseware is difficult and time-consuming to produce is the fact that, like 

documentation - an analogy which will recur later - there is a tendency for 

courseware production to be an afterthought Some of the work which is 

described here is concerned with examining ways of building the courseware at 

the same time as the software. It is hoped that this will lead to an overall 

reduction in the effort - and hence cost - required to produce both software and 

courseware compared with a more conventional, separate approach. The desire 

to seek ways of reducing the cost of producing courseware permeates the LIY 

approach. As with any creative undertaking, courseware production provides 

many challenges.

13
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These include:

problems of courseware creation; 

problems of courseware maintenance; 

problems of learner acceptance.

Good courseware creation, like writing a good book, is perhaps more of an art 
than a science. Nevertheless the aspiring author of a book can learn techniques 
and approaches to apply to the craft (art?) which will result in a higher quality 
product. The same is doubtless true of courseware production, but in the case 
of courseware for software interfaces it is clear that the computer itself could 
provide added support. This is because objects which exist in the user interface 
to the application software are also those objects about which knowledge is to 
be taught by the courseware. Such support is certainly highly desirable: some 
writers claim that the ratio of courseware production time to student usage time 
can be upwards of 40:1, which represents a working week for every hour of 
running time (Kearsley 1982). Experiences with the DYCAL system indicated 
a much higher ratio than this (Martin 1983).

Courseware maintenance is perhaps more of a problem when considering 
tutorials for software interfaces in comparison with other types of computer- 
based tutorial: when the software changes in such a way that the user interface 
is affected, then the courseware must change also (Mayer 1967). It is not 
obvious that in this instance courseware re-writing can be avoided - you cannot 
simply change one or two identifiers and recompile! - but if the software 
changes in a way which impacts upon the conceptual objects which the software 
manipulates then by comparing old and new versions of structures representing 
objects in the user interface it would be possible to predict those courseware 
elements in need of updating. The similarity, mentioned above, between 
courseware for software interfaces and documentation is that in both cases they 
can get out of step with software versions. This can be very misleading and 
quite possibly worse than having no tutorial courseware at all. An 
implementation approach which keeps the development of software and its 
tutorial courseware locked in step should be of help in obviating this problem.

14
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The third of the problems mentioned in this section, learner acceptance, is 

perhaps the most important. The two major goals of the application of AI 

techniques to tutoring systems are the production of more effective courseware 

on the one hand and exploring the cognitive processes involved in learning and 

teaching on the other. Both approaches use techniques which are based largely 

on the architecture laid down by Hartley in which he considered an adaptive 

teaching system (Hartley 1973). At the present time one of the best-known 

approaches to the second goal concentrates on very fine-grained modelling of the 

learner in order to force him or her to stay on the learning path of some ideal 

learner who would become an expert in the tutored domain. This "expert 

paradigm" is best exemplified in Andersen's Lisp and geometry tutors. While 

it can be argued that these tutors are adaptive - indeed, the ACT theory of 

learning is acronymic for Adaptive Control of Thought - they do not adapt to the 

will of the learner. Thus the learner cannot exert any influence over what to 

learn or over the sequence in which to learn it. For software interfaces this is 

particularly important for two reasons. The first is that a learner may well not 

desire nor need to know everything about a software interface. As an example 

the installation of software may well only be done by a particular member of a 

department, while other users need not know the installation procedures. On the 

other hand, some time later it might be that the installation procedure is the only 

topic that a particular user wishes to learn from a tutorial. Secondly, users who 

are bringing skills from other similar user interfaces - so-called transfer of 

training - possibly only need to be taught a restricted subset of skills in order 

to be productive with the target application software. While LIY is not as 

adaptive - in a fine-grained sense - as the Anderson tutors are to each input from 

the learner, the learner-control capability described earlier in this section does 

allow tutorials to be adapted to the needs of the software interface learner.
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1.3 Conclusions in brief

This section provides a short summary of the conclusions, set out more fully in 

chapter 5, with respect to the principal aims.

With regard to the first aim - that of investigating the use of a user-interface 

specification as the basis of a tutorial - the outcome is positive but there are 

some reservations. Task classification 1 leads in the first instance to an 

operational ordering of user commands which defines the order in which tasks 

should be carried out to achieve an objective. The LIY tutor requires a 

pedagogic ordering, in which commands are laid out in a sequence which is 

logical for the learner. It appears possible to transform from operational to 

pedagogic ordering by applying heuristics. These are rather heavily dependent 

upon knowledge of the domain, for example: "prompt the designer for any 

SETUP functions and teach these last". They would not appear to be tractable 

in the sense of encoding as rules into a program to carry out the transformation. 

Nonetheless they have been used with success for the transformation by hand of 

task classifications in three separate domains.

The second principal aim is concerned with demonstrating the feasibility of a 

portable shell for software interface tutorials. The LIY work described here 

shows that such a shell can be built; it has been used successfully in the 

construction of two tutorials. The first is for teaching the use of a DIALLER 

program to control a modem: in fact this program is simply a front end, with no 

modem control implemented. The other is for teaching the use of the LIY 

authoring system: this is a "real" program which updates files on disk.

1 The term task classification is used in preference to task analysis as the latter 
term currently has a more overtly psychological connotation than is desired. 
Human factors workers use task analysis to refer to inferred users' tasks rather 
than operations in the task domain of a user interface.
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1.4 Implementation and environment

The LIY implementation broadly follows the proposals set out in an earlier paper 
(Martin 1987). As described in the previous section, two "application1 ! programs 
were developed in order to test the LIY approach. These were a \phantom 
DIALLER - the front end of a program to control a modem - and the authoring 
sub-system of LJY itself. Tutorials were successfully developed for these 
programs. A delivery environment for LIY tutorials was also built incorporating:

(i) a graphical interface to the learner;

(ii) domain and learner models;

(iii) teaching strategy encoded as a set of rules;

(iv) rule interpreter;

(v) a set of teaching operations.

It was decided to implement all the software in the same programming language 
in order to minimise interface problems between the various programs. The 
language used was Golden Common Lisp 286 Developer version 2.2 - an almost 
complete Common Lisp implementation. It implemented the Common Lisp 
package feature which was used to separate the name-spaces of the various 
software components. This was both desirable from the implementation point of 
view, and essential in being able to demonstrate LIY tutorials running with real 
software. No modification to either of the application software packages was 
necessary in order to get them to run with the tutorials, although some of the 
standard Common Lisp input-output routines which these packages used were 
replaced - only when being used for tutorials - with special-purpose versions of 
increased functionality. The interface of these routines to the application 
software remained transparent and in accordance with the Common Lisp standard 
at all times.
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The hardware used was a Tulip AT running MS-DOS with 2.5mB of RAM and 

a 40mB hard disk. Although it incorporated a Hercules monochrome graphics 

card the graphics implementation was confined to the so-called IBM graphics 

characters.

My interest in tutoring systems for software interfaces was kindled when, in 

1980, the ageing Thames Polytechnic IGL 1902A was replaced by Prime 

computers running the PRIMOS operating system, which is quite similar to 

UNIX. At about the same time I came across UNIX itself and the LEARN 

system (Kernighan and Lesk 1979). The latter is a set of computer-based tutorials 

for learning about UNIX, in particular its filing system and the editor ed. I 

implemented the somewhat similar DYCAL system for PRIMOS which gave 

several generations of students an introduction to the Polytechnic computing 

environment and was also distributed to a handful of other academic Prime users 

(Martin 1983). A developing interest in A.I. focused my attention on ITSs, and 

a determination to develop better tutoring systems than LEARN and DYCAL 

resulted in my registration for a research degree in January 1984. I initially 

considered a tutoring system for a financial application which is described in an 

earlier paper (Martin 1987). In the event the DIALLER, with a much simpler 

user interface, and its tutorial were developed instead, followed by the tutorial 

for LIY's authoring sub-system. The financial application was not implemented 

and it is not reported here, although a pedagogic task classification tree was 

evolved for it. The transformation heuristics described in section 3.5 were 

applied to the original tree, in operational ordering, and it was pleasing to 

discover that they produced the same tutorial ordering as that which had earlier 

been worked out empirically. Progress was sporadic, but a half-sabbatical for 

the academic year 1988-89 enabled me to complete the programming.

Although no formal evaluation of LIY has been attempted with learners, it has 

been used by a handful of people and their suggestions noted. In consequence, 

changes were made which strengthen the diagnostic messages to the learner and 

which generally improve the user interface of the feedback component. This is 

described more fully in section 3.7.
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1.5 Structure of this thesis

The contents of this chapter are principally concerned with background, aims and 

rationale. Because of the significance of specification methods, particularly in 

user-interface design, chapter 2 is devoted to this topic. The last section of the 

chapter (2.4) describes the interface representation elements used by LIY. 

Chapter 3 portrays the LIY method for producing tutorials and describes how it 

works. It also sets out the approach taken to the transformation of an 

operational task classification to pedagogic ordering. (Note that appendices B 

and C describe the complete development of the pedagogic structures for the 

DIALLER and ELICITOR tutorials. These are the two LIY tutorials which have 

so far been built and which are described in sections 3.3 and 3.4 respectively.) 

Chapter 4 outlines the components of an intelligent tutoring system and focuses 

on certain ITS aspects of LIY. It also proposes an architecture for ITSs 

incorporating learner-control. Chapter 5, "Discussion and Conclusion", assesses 

the extent to which LIY achieves the aims - both principal and subsidiary - set 

out in section 1.2. It also outlines further research and development work which 

might be appropriate.
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Specification methods

This chapter starts by examining specification methods used in software 

engineering. It then discusses and contrasts methods of user interface 

specification, going on to describe one of them in relation to the requirements 

of a tutoring system. The final section justifies the selection of various user 

interface attributes for incorporation in the LIY system.
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2.1 Specification methods in software engineering

Specification methods are increasingly being used in software engineering, 

principally as a means of reducing the incidence of errors. In addition to 

specification methods, design methods are evolving - very often involving a 

specification technique - which aim both to reduce the cost and to increase the 

reliability of a software design.

Many of these design methods owe a considerable debt to the ideas of structured 

programming. This is particularly true of Structured Design (Yourdon and 

Constantine 1979) and Jackson Structured Design (Jackson 1983), also known as 

JSD. Yourdon and Constantine offer a method of structuring by breaking up a 

large problem into a number of smaller, more manageable units. Jackson 

Structured Design (JSD) grew out of Jackson Structured Programming (JSP) - a 

program design method - but now encapsulates it. JSD starts by building a 

model of the environment in which the proposed system is to operate - the "real 

world". This model is described in terms of entities and their actions. (Note 

that a JSD entity is not the same as a database entity.) The functions expected 

of the proposed system are then added. Timing considerations lead to what is 

known in JSD as dynamic modelling, in which each JSD entity is modelled as 

a sequential process. The JSD entities have to be connected by a scheduler. 

The last phase of the JSD method is to convert the specification into a set of 

executable programs. A notation is used for specifying entities and actions. 

Diagrams are used for modelling the real world and the proposed system.

The Structured Analysis school (De Marco 1978, Gane and Sarson 1979) both 

use data analysis, data dictionaries, data flow diagrams and a "formalism" for 

representing algorithms known as "pseudocode" or "structured English". While 

these techniques are not as mechanistic as JSD they have found a wide degree 

of acceptance although the notation for describing algorithmic specification lacks 

conciseness. Neither of these Structured Analysis methods go as far as JSD: 

they both stop short of implementation whereas JSD considers both specification 

and implementation.
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A rather more formal approach is found in USE - User Software Engineering - 

which is a method for building interactive information systems based on the use 

of a formal specification method and various automated tools (Wasserman 1984). 

The user interface is modelled as a set of transition diagrams and there is a 

graphics editor to maintain them. An interpreter can execute them as dialogue 

descriptions for prototyping. Originally, algorithmic specification was to be in 

a specially-designed Pascal-like programming language called Plain, with the idea 

that a Plain interpreter could be built to offer rapid system prototyping. 

Subsequently systems were formally specified in BASIS (Leveson el al. 1983) 

which used an abstract model based on Hoare's ALPHARD language (Hoare 

1972).

The computer support for the implementation of software directly from a 

specification is referred to under the umbrella heading of computer-aided software 

engineering ("CASE"). CASE is currently targeted at automating the production 

of business systems. The methodologies it supports are those based on data 

analysis and data flow rather than those based on set theory and logic. CASE 

tools focus on one of the stages of systems development, typically business 

system analysis and design, database and file design, programming - often 

generating code in Cobol - system maintenance and project management. CASE 

workbenches are more powerful, offering a complete set of CASE tools for 

system implementation based upon a single design methodology. It could remain 

simply a dream, but might not one day a CASE workbench contain also a user- 

interface tutorial generator tool?

Returning now from design to specification, perhaps the best-known method of 

formal (program) specification is the Vienna Development Method (VDM) which 

is described by Jones (1980). This proposes a concise method for specifying 

data objects and their processing based on logic and set theory. Specifications 

using this method can then be transformed into actual programs. Because the 

specification method is sufficiently formal, Jones* method allows the designer to 

reason about specifications and programs. Thus designers using VDM are 

encouraged to satisfy themselves that the design is correct: they can prove it to 

be so. The specification methods of Structured Analysis in particular are
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insufficiently rigorous to allow this. It would appear that the utility of a 

software specification system is proportional to the individual effort required to 

master its use (and unfortunately inversely proportional to its degree of current 

acceptance within the computing community at large). Complete specifications 

for systems using techniques such as VDM and BASIS are arduous to produce. 

Specification of a fragment of a university administration system in BASIS 
formed part of Leveson's Ph.D. thesis (Leveson 1980).

Another example is the formal specification of a text editor (Sufrin 1982). A 

number of points are made below concerning this particular work. This is 

because it is the specification of an application which is more like the software 

systems for which tutorial approaches such as that of LIY would appear to be 

useful. The notation used is the Schema Notation developed by the 

Programming Research Group at Oxford (Morgan 1985). Schema has evolved 
more recently into the better-known Z notation (Spivey 1989).

The first point to make about Sufrin's specification is that it is quite long - the 
journal article is 46 pages, of which the formal specification takes up perhaps 

30 - whilst an informal specification is provided in four pages as an appendix. 

Secondly, no attempt has been made to prove particular properties about the 

editor: although there is a formal description of each of the editor functions there 
is no consistent set of pre- and post-conditions. There is no implementation 

detail, therefore no transformation from specification to implementation, and 
therefore no argument concerning the validity of assertions during transformation. 
But then what Sufrin has attempted to do is

"to permit exploration of the consequences of our design and to 

provide an unambiguous definition against which the correctness of 

implementation strategies might be proven".

Nor has this been easy: he acknowledges a serious flaw in an earlier 

formalisation. As in most examples of creative work, at the end Sufrin suggests 

improvements, here in the form of abstractions which would enable the editor to 

be enhanced. Although this fits in with his "exploration" justification quoted
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above, there seems to be a danger of the tail wagging the dog in that there 

could be grave difficulties with enhancement if a suitable abstraction could not 

be found. This is not meant to be a specific criticism of Sufrin's work since 

this latter problem is present in all design and specification systems. The point 

to note is that the problem of dealing with enhancements does not simply go 

away even with a formal specification approach. Lastly, the user interface of 

Sufrin's editor is particularly straightforward: every editor function can be 

implemented with a single key depression. Since most systems have more 

complex user interfaces than this it follows that specifications for such systems 

would be even longer and require even more effort than that for Sufrin's editor.

Elsewhere Sufrin describes how the specification language Z might be applied 

to the design of the user interface to an electronic mail system set in an office 

context (Sufrin 1986). As before, a modeless command set is assumed, so that 

one key-stroke is all that is necessary to accomplish any particular function. The 

creation and editing of documents on the screen is to be done through the editor 

Sufrin specified earlier, discussed above. It follows that the concerns expressed 

earlier about the editor are felt even more deeply about this larger system. 

Although the specifications describe the functional behaviour of the interface they 

need to be supported by more tangible views of its appearance. Perversely, the 

formal specifications represent a triumph of function over style; no essence of 

the aesthetic element of the interface is conveyed. A specification in this form 

could not become the basis of a contract of acceptance between client and 

system designer - a claim often made in favour of the formal specification 

approach - since the client would not have any interface to envisage. It would 

be necessary to provide mock-ups of the proposal but this could pose the 

problem of inconsistencies arising - possibly later - between the mock-ups and 

the specification. A better strategy would be to derive a prototype from the 

specification itself although this could pose so much effort for the designer, 

before a contract had been signed, as to render the approach economically 

infeasible.

The observations made above are not in any way meant to imply criticism of 

Sufrin's achievements. Indeed, they are especially valuable in that they show the
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great effort required to produce formal specifications of real systems. 

Nonetheless, formal approaches have been found to be of value in producing 

correct specifications which can be agreed with clients and which enable correct 

implementations to be produced. The barrier to the wider acceptance of formal 

specification approaches appears to be the cost in relation to the short life of the 

final product. The portion of costs devoted to procuring the expertise and effort 

for specification is especially significant. Many writers, including Sufrin, 

advocate the adoption of the formal specification approach since it is used in 

other, more mature, engineering disciplines. Such an approach would be more 

viable when depreciated over a longer product life-time of perhaps twenty years, 

say. Over a four-to-six year lifetime the formal specification approach appears 

at present for most applications - but not all - to be simply too costly.

Although software specification has been the target of considerable research and 

development, it does not appear to provide a suitable "handle" for building a 

tutorial for some arbitrary software product. There is too large a gap between, 

on the one hand, the functional behaviour of the software system and, on the 

other, both the users' perceptions of the system through its user interface and the 

psychological requirements - particularly with respect to structure - of a tutorial. 

Maybe there is a parallel with Clancey's observations concerning the 

shortcomings of the GUIDON tutorial for the MYCIN expert system (Clancey 

1987). This research attempted to turn a rule-based expert system, incorporating 

an explanation facility, into a tutoring system. It was found to be unsuccessful 

for tutoring since MYCIN's knowledge was too "compiled" to suit the needs of 

the learner. From a functional viewpoint the rule-base drove the system 

successfully and it could provide meaningful explanations in terms of rule-traces. 

These explanations, however, were meaningful only to those already familiar 

with MYCIN's domain. Clancey goes on to describe NEOMYCIN - an attempt 

to incorporate epistemological meta-knowledge into MYCIN - which he hopes 

will be more successful as a tutoring system.

With a view to moving closer to the hypothetical learner as the user of a 

software system, we turn next to considerations of user-interface specification.
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22 Specification methods for user-interface design

The previous section was concerned with specification methods used in the 

design and implementation stages of the engineering of reliable software. This 

section considers some of the difficulties, associated with the user interface, 

which are posed by software specification techniques. It also discusses interface 

specification methods in their own right.

VDM (Jones 1980) is one of the most rigorous and best-known techniques but 

has a rather restrictive way of specifying input-output This restriction becomes 

apparent when one considers the context of a highly interactive system, perhaps 

executing on a personal computer with a sophisticated windowing and graphics 

capability. It is this type of system, running mass distribution software, for 

which the greatest need for computer-based tutorial support has been identified. 

Yet VDM doesn't have an easy way of representing the complex input-output 

interactions of such a system. VDM defines input-output in terms of lists, which 

one may assume normally to be of text characters. An interactive system would 

therefore need to define many such lists to describe interactive I/O. There is no 

obvious way in VDM to handle the temporal characteristics of overlapped input 

and output Anderson, discussing the properties of a formally specified 

interactive system, notes the lack of a mechanism for handling temporal 

characteristics as being a particular problem for user-interface specification 

methods (Anderson 1986).

Other techniques have been used for describing - and perhaps modelling - 

complex user interfaces; they are discussed below. Currently, formal program 

specification methods provide powerful data abstraction and procedural 

specification capabilities but are weak on user-interface representation; 

conversely, methods designed for representing and modelling complex user 

interfaces do not address the problems of data and procedural specification.

No single method, or even class of methods, has emerged as pre-eminent for 

user-interface specification. A number are discussed including Backus-Naur 

Form (BNF), transition diagrams, the Command Language Grammar or CLG
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(Moran 1981) and path algebras (Alty 1984). It is important to distinguish 

between user representation methods and user-interface representation methods. 

The techniques examined here are all examples in the latter category. Other 

workers such as Reisner and Payne are interested in modelling the user per se 

during interaction with a system. They are attempting to develop theories of 

user behaviour and of users' representations of interfaces, such as Reisner's 

Formal Grammar (Reisner 1981), Payne's Task-Action Grammar or TAG (Payne 

1984) and Johnson et a/.'s TAKD (Johnson et al 1984). For an interesting 

discussion of classes F(X) of user models, see (Whitefield 1987). F(X) 

represents agent F's model of X, where F could be one of program, user, 

researcher, designer, X could be one of system or program, user, designer. Note 

that nobody is interested in modelling the researcher!

Jacob contrasted the BNF and transition diagram approaches to representing the 

user interface of a small part of a military message system (Jacob 1983). He 

was interested in a complete formal specification for such a system, both as a 

design and implementation aid and for rapid prototyping of its user interface. 

His view is that transition diagrams provide a more readable specification of the 

user interface than that offered by BNF. Although the two approaches can be 

shown to be formally equivalent, Jacob maintains that surface differences can 

have an important effect on comprehensibility. This idea is appealing: as an 

example, one has only to think of the ease of doing arithmetic in the Roman 

compared with the Arabic number representations. Jacob points out that 

transition diagrams explicitly embody the concept of a state and the transition 

rules associated with it. These states have a fixed temporal relation (e.g. State2 

cannot be reached until State 1 has been reached) which is essential in specifying 

an interactive dialogue. In BNF the temporal relation between events is implicit 

which makes it much harder to use for dialogue specification. In contrast to 

declarative specification methods, transition diagrams comprise a procedural 

element which goes some way to overcoming the problems, mentioned earlier, 

concerned with the temporal aspects of interface representation. Jacob describes 

tools which allow textual descriptions of transition diagrams to be input and 

transformed into an equivalent graphical representation. The USE system 

mentioned in the previous section is also based on similar tools (Wasserman
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1984). Of course, BNF or transition diagrams are fine for describing the syntax 

of a user interface, but what of its semantics? Jacob doesn't really deal 

adequately with semantics in detail, but proposes that semantic actions should be 

described in some high-level programming language-like constructs. Numeric 

labels attached to the arcs of the transition diagrams are used to refer to code 

sections which define semantic actions associated with the given syntactic 

elements. Figure 2.1 illustrates a possible representation of the MS-DOS "cd" 

command. "V1 is the subdirectory operator.

snter

Fig. 2.1
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The semantics of the command would be specified by action or condition-action 

sequences for the numbered arcs. The dollar sign in "$Name" signifies de

referencing of the symbol "Name" which has been passed from some suitable 

lexical analyser. For the "cd" command of figure 2.1 the sequence would be: 

(1) action: TempDir:= CurrentDir 

(2) action: CurrentDir:= TempDir 

(3) action: TempDir:= Root 

(4) condition: not exists-dire $Name ) 

action: response( TempDir '\' $Name 'not found' 

(5) condition: exists-dire $Name ) 

action: TempDir:= TempDir '\' $Name 

(6) no associated semantics 

(7) condition: exists-dire $Name ) 

action: TempDir:= TempDir '\' $Name 

(8) action: CurrentDir:= TempDir 

(9) condition: not exists-dir( $Name ) 

action: response( TempDir '\' $Name 'not found' 

It is thought that the first attempt to use transition diagrams for user interfaces 

was due to Parnas (Pamas 1969). An improvement was subsequently made 

which allowed transition diagrams to invoke other diagrams in a fashion similar 

to the familiar program subroutine principle, i.e. non-terminal input symbols 

could appear on the transition arcs (Woods 1970). A more general approach 

based on Woods' augmented transition networks (ATNs) but which allows 

hierarchies of transition states has been proposed (Kieras and Polson 1985). The 
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subroutine nesting idea mentioned above is generalised not only to conditions but 
also to actions and states. As before, in comparison with VDM the semantics 
of the actions lack rigour.

Transition diagrams appear therefore to be a promising representation method for 
that class of user interfaces which lends itself to this approach. There are 
unresolved problems with their use in situations which are non-deterministic such 
as occur in certain graphics windowing displays. Consider an arcade game in 
which the display on the screen shows the hunter and its quarry, both in motion, 
represented internally as two objects but notionally as two transition diagrams. 
Assume that the transition diagram for the quarry will indicate termination of the 
hunted object if caught by the hunter. Some suitable transition is similarly 
indicated concerning the state of the hunter if this event occurs. "Caught" here 
means that hunter and quarry occupy the same place on the screen. It is 
possible for the transition diagrams of each party to encode a transition for "Am 
I at the same point as the other party?", though this would be a poor approach 
if many hunters and quarries were to be represented. Instead it would be better 
to have a third object, or agent - the screen manager. This meta-process would 
be able to detect adjacency and send appropriate messages to the other parties. 
Thus the interaction is resolved by encoding a state-transition in the hunter and 
quarry based on reception of such an appropriate message. The difficulty with 
this as a means of user-interface representation is that the message from the 
screen-manager doesn't model anything in the interface. The message is not the 
output of systems analysis, but is merely introduced to support the animation of 
objects which are in the interface.

There are also difficulties with the use of transition diagrams to represent those 
user interfaces which permit the use of "hot keys". The asynchronous control 
behaviour of hot keys poses problems for modelling the domain by a tutoring 
system and a facility to do this has not been incorporated into the current version 
of LIY. Chapter 5 describes a possible approach to this problem.

The Command Language Grammar, or CLG, is a representation method for 
exploring the concept of the user interface (Moran 1981). Moran adopts three
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perspectives in CLG: the linguistic view, the psychological view and the design 

view. Further, user-interface components are stratified into four distinct levels: 

task level, semantic level, syntactic level and interaction level. The task level 

imposes a structure over the set of tasks which the user wishes to carry out with 

some hypothetical system. This is very much in the style of user representation 

mentioned earlier as a basis for developing a psychological model of the user. 

The semantic level defines the conceptual entities and operations of this 

hypothetical system together with the methods for accomplishing the tasks from 

the task level in terms of these entities and operations. Thus the semantic level 

refines the task level - the pattern for all the adjacent levels. The syntactic level 

recedes the methods from the semantic level in terms of the syntactic level 

commands, while the interaction level describes the user's physical actions 

associated with the syntactic elements.

Moran's linguistic view of CLG provides an analysis of the structure of 

command language systems and is relatively brief. He compares CLG with the 

state-transition and augmented transition network approaches but finds the state- 

transition representation lacks a sufficient analysis of the functions associated 

with the states. This finding accords with the general view expressed earlier that 

user-interface specification methods are weak in the area of procedural 

specification. However, it is as well to remember that CLG is designed as a 

representation for investigating user interfaces in general, whereas LIY requires 

a specific representation method for the engineering of courseware. This is a 

more pragmatic objective which doesn't therefore necessarily rule out a state- 

transition representation.

The psychological view sees CLG as a means of representing a user model, i.e. 

a model of the user's view of some interactive system. Due to the lack of a 

method for representing knowledge in CLG, it is unsurprising that Moran states 

that the four levels of CLG can only represent a part of what the user knows 

about a system. The problem from a courseware engineering viewpoint is that 

any model of the user's knowledge provided by CLG is static. As a 

representation method CLG cannot provide support for modelling the user's 

interaction with a system in a way which would intelligently support delivery of
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a tutorial for that system. On the other hand one of the strengths of an interface 

representation system like CLG is that it forces the system designer to consider 

the user's conceptual model of the system. Moran asserts that this is defined in 

CLG by the semantic level. It is naturally a desirable objective of any 

courseware engineering method that it should provide support for the learner to 

assimilate or induce the underlying conceptual model. On learning, Moran 

suggests consideration of Rumelhart and Norman's modes of learning: accretion, 

tuning and restructuring (Rumelhart and Norman 1978). Of these CLG can only 

address the simplest two: accretion and tuning. Since any representation system 

could claim to be able to model learning by accretion - an additive process - it 
is not obvious that CLG is offering any outstanding advantages for modelling 
learning compared to other interface representation methods. As regards tuning, 
the learner shifts his or her focus over the subject domain, subsuming lower 

levels into higher-level concepts. Yet any interface representation method which 

would enable the learner to forge a link between an objective (task) and its 

means of accomplishment (action) - and which in some way structures the 

objectives - would encourage this learning mode.

The design view regards CLG as a tool for helping the designer generate and 
evaluate alternative system designs. The sequence of levels in CLG proceeds 
from abstract to concrete, providing a pathway for design by successive 
refinement. Moran proposes the addition of design aids - design principles, 

design operations and design rules - for helping with design decisions. 

Unfortunately there is no reported experience of using CLG as a design aid. 

Moran exemplifies CLG by reference to a model mail system called EG. 

However, EG is sufficiently small that its whole design can be held "in the 
mind". Thus in a sense the EG example shows how CLG can be used as a 
representation method rather than a design method since it would appear that 
EG has not been designed using CLG. This is not a failing: indeed, Moran 
stresses that CLG is intended as a representation method. Merely, caution needs 
to be exercised in making claims for CLG as a design aid. Experiences with 

CLG in this role are reported by Sharratt (1987), who describes some possible 

improvements and extensions.
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CLG represents a system in terms of its entities and operational characteristics 

at various levels. The top-most task level, while providing a "first cut" means 

of structuring a system's operational domain, provides only a weak separation 

from the semantic level. Further, as Moran admits, decisions as to whether 

details should be admitted to the task level or the semantic level are arbitrary. 

In the LIY system the output of task classification, required both for the 

implementation of the application software and of its tutorial, is a 

representational level broadly equivalent to the semantic level of CLG.

Foley has proposed an Interface Definition Language (IDL) which is an object- 

oriented high-level description language for user interfaces (Foley 1987). IDL 

describes the user interface at the conceptual and semantic level, rather than the 

syntactic and lexical levels, and could thus be used to implement any particular 

user interface through a user-interface management system. This approach has 

recently been reported, using the UIDE User Interface Design Environment 

(Foley 1988). IDL enables the construction of a knowledge base concerning the 

proposed interface. Algorithms have been developed for possible transformations 

which can be made to the knowledge base while preserving internal consistency. 

These transformations enable the designer to transform one proposed interface 

into another, at the same time maintaining functional equivalence, so as to permit 

the exploration of the consequences of different designs. UIDE is reported as 

not only implementing the knowledge base which represents the conceptual 

design of the user interface (subsuming IDL), but also the transformation 

algorithms and a user-interface management system to implement any 

application's user interface. It could be that, within UIDE, transformations may 

be possible towards a pedagogic orientation for a user interface. Such an 

approach would parallel the LIY transformations described in the next chapter.

Waddington and Johnson propose relating a family of task models to user- 

interface specifications so as to be able to explore the consequences of adopting 

differing user interfaces (Waddington and Johnson 1989). The approach is 

hierarchical in a manner somewhat similar to CLG, involving a "generalised task 

model", a "specific task model" and a "specific interface model". To strengthen 

the procedural aspect of the specification, the generalised task model can
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decompose tasks into procedures, which decompose again into actions. The 

specific interface model uses a representation based upon pie- and post 

conditions. However, from a formal specification viewpoint, a great deal more 

remains to be said about the syntax and semantics of the mappings between the 

components.

Alty has proposed an interesting application of algebra to networks (Alty 1984). 

His path algebra technique provides a powerful means of analysing the complex 

dialogues of an interactive system. In particular, path algebras can be used for 

detecting redundant paths, loops, etc. which can arise in a less-than-perfect 

command language. Alty claims that path algebras are quite general and have 

applicability in CAL as a design tool, but while they can obviously be used for 

network analysis their use as a design aid, particularly for CAL, is not so 

apparent. Others (Ferraris et al. 1984) have proposed alternative network 

disciplines - Petri nets in this case - for direct application to CAL as a means 

of modelling the semantics of the domain being taught and the conditions under 

which the learner is allowed to make transitions between nodes, or sub-goals, 

within the domain.
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23 Jacob's specification method revisited

In his original paper Jacob proposed a complete specification method for user 

interfaces based upon state transition diagrams (Jacob 1983). As discussed in the 

previous section, both syntax and semantics were considered. Figure 2.2 relates 

a tutoring system to an application software package through a user interface.

glass box

black box

tutoring 
system

', / — * application

user
interface

Fig. 2.2

From the perspective of the tutoring system the application is perceived as a 

"black box" so that any of the tutor's knowledge concerning it - particularly 

necessary for learner diagnosis - must be represented to the tutor by the user 

interface. (Learner diagnosis in this context enables a tutoring system to provide 

an analysis and commentary concerning a learner's interaction with the 

application software.) The user interface behaves somewhat like a "glass box" 

enveloping the application black box - a concept proposed in the slightly 

different context of the teaching of programming languages (du Boulay et al. 

1981).
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The power of the user interface to represent the application to the tutoring 

system will vary with the extent to which a specification of the interface is 

available; certain syntactic and semantic definitions of components of the 

interface may or may not be present An analysis follows showing the effects 

of the presence or absence of various specification elements in the interface. 

The cases are considered in order of decreasing interface power, so that the first 

case offers the most powerful interface representation and thus provides the 

tutoring system with the greatest capability for performing learner diagnosis. A 

distinction is made between commands to the application representing control 

input and other application input conveying semantic information to the 

application. Consider as an example the user interface to an "application" which 

is in fact an operating system. Printing a file might be accomplished by a 

command with two components. The first component, perhaps prwf, is a control 

command - one of a limited set of possibilities - whereas the second component, 

usually a file-name, is application input

"Jacob's ladder"

(i) Complete user interface specification in Jacob style, i.e. syntax of 

commands and application input using transition diagrams; semantics of 

commands and application input

(ii) Syntax of commands and application input; semantics of commands only.

(iii) Syntax of commands and application input; semantics of application input 

only.

(iv) Syntax of commands and application input; no semantics specified.

(v) Syntax of commands only.

(vi) Syntax of application input only.

(vii) No specification components.
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Case (i), at the top of Jacob's ladder, permits a tutoring system to infer a 

complete model of the application and thus in principle to perform optimal 

learner diagnosis.

Case (ii) is weaker in that, for example, an analysis by the tutor would be 

incomplete for a sequence in which a learner attempted to access a non-existent 

file.

Case (iii) would mean that, again for example, if a learner were requested to 

rename a file, then the alternative strategy of copying followed by deletion of 

the original file could not be detected as being equivalent.

Case (iv) clearly combines the restrictions of cases (ii) and (iii).

Cases (v) and (vi) are more restrictive still and, to be meaningful, require some 

mechanism in the syntactic structure to enable the tutor to discriminate between 

application input representing commands and that which represents other semantic 

information to the application. Some learner diagnosis would still be possible 

with these cases.

Case (vii) permits no learner diagnosis, although obviously simple right/wrong 

assessment is possible, based on detection of perfect performance by string- 

matching.

The next section discusses the requirements of a tutoring system in more detail 

and proposes case (v) as being appropriate for testing, with an implementation, 

the utility of the transition diagram technique.
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2.4 Selection of a specification technique

An ideal formal specification for most programs would consist of a functional 
component - what the program is actually to do - and an interface component 

- how the program is to conduct a dialogue with a user. In addition there could 
be a further interface specification to describe a program's interaction with other 
machine elements. These might be device interfaces to sensors, for example, or 

possibly interfaces to other programs. Since this research is concerned with 
tutorials for the user interface, the link to equipment and other programs will not 
be considered. Also inappropriate would be a full functional specification; this 
research is not concerned with examining the binding between software 
specification and implementation. What is of interest are the elements of an 
interface specification which could be exploited in the building of a tutorial for 
that interface. Both input and output would need to be considered in order that 
an application interface be completely specified. The research described here is 
only concerned with the input side; a tutor needs to focus on learner input to an 
application in order to attempt interpretation of it in a meaningful way. It might 
be possible for a tutor to manage interpretation of learner interactions with 
software if application output be considered in addition to input; detection of 
an error message, for example, could act as a powerful trigger to tutorial action 
of some kind. However, it is not clear that a tutor's "black box" view of 
software would permit it to infer very much from consideration of error 
messages. An approach to learner diagnosis is proposed which incorporates a 
model of the application software, against which recorded learner input can be 
interpreted by the tutor. Application output is not considered.

In the context of this research, specification can be regarded as serving 
essentially two purposes. Firstly, as a specification of the software it describes, 
it could be rendered executable. Thus it could be used as a prototype for all or 
part of a program. It would be perfectly possible for the specification of the 
input side of a user interface to be used as the application front-end, displaying 
appropriate screens, handling correct input, guarding against incorrect input and 
dealing with error messages. This would in principle be possible for cases 

situated towards the top of Jacob's ladder, particularly case (i). Such an
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approach has not been followed for LIY following consideration of the 

implementation effort necessary: in order that LIY remain portable it would 

require the building of part of a general-purpose application generator, capable 

of handling front-end input-output. Nor has back-end specification been 

considered. The current so-called "fourth-generation" approach typically allows 

high-level specification of back-end processing, largely in terms of database 

access, using structured English. This is subsequently transformed into a 

structured high-level-language program.

Secondly, specification can support the design and delivery of a tutorial. It can 

be used for tutorial construction as an aid to the designer, for example ensuring 

that courseware is built for every command in the interface. It can also be used 

during tutorial delivery, both for learner diagnosis based upon a model of the 

domain when evaluating learner input, and as a means of providing a conceptual 

representation of the interface to the learner, possibly in graphical form.

It is appropriate now to turn back to Jacob's ladder and select a "rung" which 

would appear to support the aims of this research. The top of the ladder offers 

the most power but, as has been pointed out earlier, appears to be somewhat 

ambitious. Not unusually it is the semantic definitions which pose the biggest 

problems. Jacob's semantic definitions may or may not be sufficiently formal 

to be understood by an interpreter. To build such an interpreter, however, is 

not all that would be required. A tutoring system would need to find a method 

for interpreting the learner's intentions in order to provide effective diagnosis. 

The requirements for implementing a tutoring system at the top of Jacob's ladder 

would be rather like having to implement PROUST (Johnson and Soloway 1987) 

with the additional tasks of needing to define Pascal and implement an interpreter 

for it.

It would appear to be useful, therefore, to turn to the other end of the ladder and 

see what a weaker specification could offer a tutoring system. Case (vi), in 

which only application input syntax is defined, appears to be problematic in that 

not all user interactions with software require application input. Consider, taking 

an operating system interface as an example, the actions of navigating to, or
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listing, a directory. With knowledge only of application input a tutoring system 

would not be able to perform diagnosis based upon all types of learners' 

interactions.

Moving up the ladder to case (v) provides a tutorial with knowledge about the 

syntax of command input but not of application input. Thus a tutor should be 

able to model the learner's use of commands and perform a measure of 

diagnosis. Application input, as opposed to command input, could be handled 

(but in a somewhat simple-minded fashion) in the manner of case (vii), seeking 

a strict match between known correct input and the learner's input.

Case (v) from Jacob's ladder, i.e. specification of input command syntax, has 

thus been selected as the basis for an LIY implementation.

The specification elements used for the tutorial in LIY are two-fold. Firstly 

there is an operational task or command hierarchy. This represents the output 

of the systems analysis task classification stage. Figure 2.3 shows an example 

taken from LIY's DIALLER. It illustrates such an operational hierarchy for the 

top level of the program and should be read as "DIALLER consists_of 

DIALJDIRECT and DIAL_FROM_MEMORY and SETUP and QUIT". The 

dotted continuation marks indicate that each sub-operation (DIALJDIRECT etc.) 

is itself recursively decomposed in the same way.

The operational ordering shown here is not particularly appropriate for 

supporting a tutorial. This is discussed in the next chapter together with a view 

of the task classification transformed into pedagogic ordering.

Secondly the specification contains a mapping of the input command syntax of 

the interface on to the nodes in the pedagogic ordering. As an example, for the 

DIALLER this means attaching "D" to the DIAL_DIRECT node, "M" to the 

"DIAL_FROM_MEMORYM node, and so on, "D" and "M" being two of 

DIALLER'S top-level commands. This command representation of the domain 

forms a model which is interpreted by a deterministic transition tree parser 

during the learner diagnosis phases of tutorial delivery. The domain model also
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DIALLER

DIAL. DIAL_ SETUP QUIT 

DIRECT FROM_
MEMORY : :

Fig. 2.3

needs to know the navigating sequence followed by the actual domain. 

Specifically, this is necessary so that the parser can be reset at the appropriate 

point in the hierarchy after the execution of a bottom-level leaf command. 

Strictly speaking, this is a semantic consideration which moves LIY slightly 

above case (v) on Jacob's ladder.

No syntax of direct application input is represented although LIY's parser 

recognises the termination symbols for this type of input Such values - typically 

either enter or escape - are, like the commands, attached to the appropriate nodes 

of the pedagogic task classification.

Thus for LIY, only a proportion of a user-interface dialogue specification has 

been exploited: the task command hierarchy, the control routing following leaf 

processing, the syntax of input commands and the terminators for application 

input. Yet this is sufficient for the construction of a domain model capable of 

being used for learner diagnosis.
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LIY : The " Learn-It-Yourself' approach

This chapter starts with an overview of the LIY method. It then describes LIY's 

principal components in relation to the four elements of the Hartley and Sleeman 

model (Hartley and Sleeman 1973). LIY is described from the viewpoint of the 

learner and then of the tutorial designer, in each case drawing on appropriate 

examples. A section is devoted to the technique for transforming the task 

classification structure to yield a pedagogic ordering. Although the earlier 

sections of this chapter are illustrated by reference to existing LIY tutorials, the 

transformation technique is exemplified through references to the well-known 

operating system MS-DOS. The development of the two existing LIY tutorials 

from the interface specification elements discussed in chapter 2 is reported not 

in this chapter but in appendices B and C. A complete description of the 

pedagogic task classification structure is provided. There follows a section 

setting out LIY's control behaviour and the chapter is summed up with some 

closing remarks in the final section.
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3.1 Overview of the LIY method

LIY consists of both a system for delivery of tutorial material and a system for 

authoring it The delivery system is the more fully developed. It uses domain 

and learner representations and performs diagnosis using a form of differential 

modelling which has some similarities with the use of issues in the WEST 

system (Burton and Brown 1982). The authoring system is only partly 

implemented at present; all its aspects, whether currently implemented or not, are 

straightforward but time-consuming to program. The following description 

therefore emphasises the delivery system.

Figure 3.1 shows how LIY teaches the potential user of a software application 

by permitting interaction with it while the tutorial maintains control.

I.IY
tutorial

ATSTD! ica t ion 
sx>t tvaro

I.EARHER

Inf oxidation 

Control

Fig. 3.1

Two LIY tutorials have been written so far. One teaches the use of a DIALLER 

program which in principle controls a modem installed in a computer. A 

complete implementation would allow the user to connect to the telephone
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system through the keyboard, and then to a remote computer, for example. The 

other teaches the use of the ELICTTOR program which is the authoring system 

for building LIY tutorials. Rather than teach the use of existing applications it 

was decided to develop software with, of course, a particular specifiable 

interface. Thus the DIALLER and ELICITOR programs have been built. This 

approach offered the following advantages:

(i) LIY could be tried within the scope and limitations - text-based input, etc. 

- set out in chapter 1;

(ii) the LIY method could be applied to a very simple interface in the first 

instance (that of the DIALLER program);

(iii) using a common development environment (Lisp) would facilitate the 

capture for tutorial diagnosis of the learner's input to the application. Note, 

though, that the two implementations - tutoring system and application - are 

segregated in separate name-spaces by the Lisp package feature. This means that 

applications can run quite independently of the tutoring system and in particular 

that the latter does not need to be loaded into memory to run an application.

It can be seen that the ELICITOR "application" is a tool in the LIY system. 

The DIALLER program is a cut-down version of what the real thing might be: 

it presents an appropriate interface to the user but doesn't connect to a modem 

nor to the outside world. In the passages describing the learner's and the tutorial 

designer's views of LIY (sections 3.3 and 3.4), the examples are drawn from the 

DIALLER and the ELICITOR respectively.

The LIY tutor contains a representation of the application domain imported in 

a modified form from the systems analysis and design stage for development of 

the application itself. The objective is to utilise some of the work done during 

this early phase later on, at the tutorial design and delivery stage.
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Figures 3.2 and 3.3 contrast the conventional and LJY approaches to application 

and tutorial design. In figure 3.3 the reference to "shared interface 

representation" is not meant to imply an actual shared machine representation. 

Rather, it implies that a proportion of the systems analysis effort, devoted to 

developing the task classification structure, can serve at both the software 

implementation and tutorial implementation stages. Note that this task 

classification structure represents an operational sequence. In other words, it 

represents the way in which operations in the hierarchy are constructed from 

those at a lower level. The operational sequence must be transformed to a 

pedagogic sequence, as discussed below in section 3.5.
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LIY's principal components

This section describes LIY in relation to Hartley and Sleeman's four-component 

architecture for an ITS (Hartley and Sleeman 1973). In chapter 4 an alternative 

architecture is proposed, able to incorporate learner-control, which is a 

development of the five-ring model (O'Shea et al. 1984).

Hartley and Sleeman describe the four components of an ITS as being:

(a) representation of the task;

(b) representation of the learner;

(c) teaching strategy expressed as a set of means-ends 

guidance rules;

(d) set of teaching operations.

3.2.7 Representation of the task

The representation of the task is elicited from the tutorial designer as a tree. 

Leaf nodes in the tree typically correspond to an internal command in the 

application. The tree is almost the only application-dependent part of an LIY 
tutorial, the only other application-dependent objects being path-names loaded 
in at LIY top-level. Besides structuring the task domain of the application, the 

tree contains much other information attached to each node in the structure. 

Examples of this information include teaching operations such as slide-shows or 

exercises using the application. It also models the domain in terms of its 

control structure so that during the diagnosis phase, when the learner's key 

stroke sequence is being parsed, it can be used as a transition tree. It is 

described more fully in the sections that follow, particularly section 3.5.
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33.2 Representation of the learner

LIY builds representations of the learner as profile information, as well as 

computing an assessment of the learner's performance during the diagnosis 

phase. Global information inferred about the learner's characteristics and 

performance is used to maintain a characterisation profile and a performance 

profile.

Characterisation Profile

This is used to determine the advice given when the learner attempts to take 

control in order to navigate to an alternative topic. The advice is adapted to an 

assessment of the learner's interaction style in a set of rules ("L-C-ADVICE"). 

These rules consider equally three qualitative variables: COMPETENCE, 

DUCKER, and PUTTER. COMPETENCE really belongs in the performance 

profile but is considered here since it contributes - equally with the other two 

variables - to advice given to the learner by the tutor. The COMPETENCE 

variables - WEAK, NORMAL and STRONG - together with DUCKER and 

FLITTER are in fact coded as boolean functions which examine the value of 

associated variables ('COMPETENCE*, *DUCK-CNT* and *FLIT-CNT* 

respectively).

(a) COMPETENCE

More specifically, the rules consider WEAK, a particular range of values of this 
variable. COMPETENCE is scored on a continuous scale from 0 to 10, with an 
initial value of 5. Depending upon the outcome of assignments set, it is 

modified by an increment for a correct answer or a decrement for an incorrect 
one, bearing in mind that it is restricted to the range 0 to 10. COMPETENCE 

is not referenced directly in the advice rules, but there are three qualitative 

variables based on its value. These are WEAK, NORMAL and STRONG, 

corresponding to values of COMPETENCE in the ranges 0 to 2.4999, 2.5 to
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7.4999, and 7.5 to 10. The normal value of the increment applied to 

COMPETENCE is 0.5, but there is an amplification effect at the start of the 

tutorial, the first three increments (or decrements) applied having values 2, 1, 

and 0.66667. The idea of this is to decrease the sensitivity of the advice rules 

with the passage of time so as to avoid apparently significant random 

movements around the mean. No particular claim is made for this technique 

and it has yet to be evaluated.

(b) DUCKER

This qualitative variable is used in the rules to indicate a learner who habitually 

avoids set assignments. To duck an assignment means that the learner, having 

failed with it on two or more successive occasions, has elected to abandon it 

(thus avoiding it) and to move on to the next topic. Such a learner is 

considered to be a DUCKER if this has happened with more than two 

assignments.

(c) PUTTER

A learner is deemed to be a FLITTER if, on three or more occasions, he or she 

has forced a move to a new topic under learner-control in the face of advice 

from the tutorial against such action. Note that LIY's philosophy is that, if the 

learner is sufficiently determined, such moves should always be possible.

If both DUCKER and FLITTER occur together only the DUCKER variable is 

updated.

Three levels of advice are offered against a move. The strongest is reserved for 

the learner whose characterisation profile indicates that all three of WEAK, 

DUCKER and FLITTER apply, and that there is more than one prerequisite topic 

associated with the learner's target move. (There is further discussion of 

prerequisites and LIY's control behaviour in section 3.5.) The next level down
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in strength of advice applies to the same situation but where there is just one 

prerequisite, or alternatively where only one or two of WEAK, DUCKER and 

FLITTER apply. The weakest advice against a move to the learner's target is 

reserved for situations in which either none of the three qualitative variables 

apply although there is more than one prerequisite topic, or one or two apply 

but there is only one prerequisite associated with the learner's target topic. A 

move is permitted with no contrary advice if there are no outstanding 

prerequisites (whatever the state of the qualitative variables) or in the situation 

in which none of these variables apply and there is just one prerequisite.

Performance Profile

Nodes in the tree are marked to indicate that a topic has been taught when the 

learner has completed all the teaching operations associated with it. This 

represents one aspect of the learner's performance. The other aspect of the 

performance profile is COMPETENCE, a score representing the learner's ability 

to handle the assignments set by the tutorial. COMPETENCE is considered 

above, rather than in this section, for clarity.

Diagnosis

During diagnosis a comparison is made between the effect of running the 

learner's key-stroke sequence and a "correct" sequence through a model of the 

application. The matters addressed by the correct sequence will normally be a 

subset of those addressed by the learner. There is a fuller discussion of the 

diagnosis module in chapter 4.
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3.2.3 Teaching strategy

The teaching strategy which LIY uses is described in detail in section 3.6. 

Briefly, there are five sets of rules labelled arbitrarily with the letters "a" to "e". 

Each rule in a given rule-set is named by a combination of rule-set letter and a 

number, based on increments of ten, for example alO, a20 and so on. Figure 

3.27, at the end of this chapter, illustrates the relationship between the rule-sets.

"a" rules are LIY's top-level rules and connote a teaching strategy as follows: 

compute the "next" untaught topic in the task representation and teach it; 

permit learner-controlled interruption under certain circumstances; 

if there is other knowledge about a topic - represented as designer rules 

- then apply that other knowledge. (There is a description of designer 

rules in section 3.4.3.)

"b" rules are concerned with control behaviour following a learner interruption.

"c" rules determine the outcome of such an interruption in terms of advice as 

described in the previous section;

"d" rules conventionally describe designer rules\ 

"e" rules select the next teaching operation.

The forward-chaining interpreter for these rules is very straightforward. It 

avoids the problems of conflict resolution by firing the first rule it finds with a 

matching antecedent. The consequent of a rule can include a call to the 

interpreter to run another rule-set or to exit from interpretation of the current 

rule-set. The interpreter normally exits from a rule-set (or halts at the top-level) 

when it can find no more rules to fire. On occasion it is useful to set the rule 

interpreter global variable *LOOPLIMIT* to a numeric value - typically 1 - 

which indicates a limit on the number of passes the interpreter should make 

over a "called" rule-set
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33.4 Set of teaching operations

LIY teaching operations are described in detail in section 3.4 - "How the 

Courseware Designer sees LIY". In brief, the operations include:

(i) slide-show;

(ii) create an application environment: setup the application in some particular 

way;

(iii) watch and record learner input (when interacting with the application: 

implies subsequent diagnosis);

(iv) place the learner at some chosen point in the application;

(v) get learner input directly ("immediate" assessment);

(vi) free learner exploration of the application (no diagnosis).

3.2.5 Other LIY components

The ELICITOR is an LIY program which interacts with the courseware designer 

to enable the construction of LIY tutorials. It allows the designer to specify the 

appropriate task classification structure, and then permits enhancement to selected 

nodes in this structure by letting the designer point with the mouse at a target 

topic.

Teaching material is presented to the learner in the form of "slides". These are 

in fact simple ASCII files which can be created by the tutorial designer using 

any suitable text-editor.
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LIY captures the key-stroke sequence of the learner interacting with the 

application. This is done, transparently to the application, by substituting the 

normal Lisp input-output routines used by applications with replacement routines 

of the same names. These routines are contained in a module (actually, a file) 

along with the slide-show delivery routine.

There are many LIY utility functions and they are grouped together logically as 

initialisation routines, mouse-driving routines, further input-output routines and 

"others" - the latter being quite a large file!
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3.3 How the learner sees LIY

33.1 Teaching

The following discussion is based on a learner's interaction with the DIALLER 

tutorial. Figure 3.4 shows a typical screen from a slide-show: the very first 

screen of the tutorial, in fact. The banner at the bottom of the screen indicates 

that the learner may get a re-run of the sequence of slides forming a slide-show 

by pressing the "home" key. The space bar moves the tutorial on to the next 

teaching operation, while the learner can interrupt by pressing the "control + 

break" combination. On the right of the banner is indicated the title of this 

current topic.

A learner-control interruption displays the screen which is illustrated in figure 

3.5 If the learner quits then the environment is saved to the extent that he or 

she can subsequently continue without having to cover topics already learnt. 

Option "E" permits the learner to interact directly with the application, from its 

top level, as if the tutorial were not present; no diagnosis is performed but, on 

quitting the application, control reverts to the appropriate place in the tutorial. 

Option "B" permits the learner to browse over the task classification tree and to 

use the mouse to select a topic to learn. Alternatively if the learner knows the 

topic's name then it can be typed in directly to the menu.

Figure 3.6 illustrates a typical screen from the DIALLER program; here, the 

learner has been placed in the application and asked to carry out some 

assignment with it Figure 3.7 demonstrates that the learner can interrupt in the 

application as well as in a slide-show.

If the learner selects option "B" to browse then a plan of the (partial) task 

classification tree is displayed, as illustrated by figure 3.8. The current node in 

fact Hashes. The learner can see more of the tree by clicking on the arrows at
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the edges of the screen, can select a topic to learn by clicking on it1 , or can quit 

- reverting to the original topic being taught - by selecting the "quit" lozenge at 

the top-left of the screen. The previous section described how topic selection 

is mediated by advice from LIY, based on the learner's current state, although 

the learner can over-ride this advice if necessary.

1 The proceed-n nodes, necessary for the transformation from general tree to 
binary, are not selectable (see section 3.5).
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WELCOME TO THE LIY TUTORIAL FOR THE PHANTOH PHONE DIALLER?

If you follow this tutorial you will learn how to use a very sinple 
interface to a program which can dial, through a node*, to the 
telephone numbers of remote services such as tine-sharing systems, 
hit 1 let in hoards and other electronic nail systems.

There is one surprising feature of this DIALLER, though: it doesn't 
actually dial any numbers? It is simply a hollow shell - an interface 
which connects to the user hut not to the telephone system.

The reason for its existence is to test out certain ideas about 
producing tutorials (like this one) to teach the users of software 
products such as, in this case, a DIALLER. Other possible types of 
software for which this approach night be useful could include a word- 
processor or spread-sheet program, for example.

When you are ready, pressing the space bar will move you on from 
the current slide, whether to the next slide or to some other 
activity such as interacting with the application (the DIALLER).

Space:NextScreenlHomei SeeltAgainiCtrl-Break: I ntemipt, Current:DIALLER-TA

Fig. 3.4
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The reason for its existence is to test out certain ideas about 
producing tutorials (like this one) to teach the users of software 
products such as, in this case, a DIALLER. Other possible types of 
software for which this approach Might he useful could include a word- 
processor or spread-sheet program, for exanple.

When you are ready, pressing the space har will Move you on froM 
the current slide, whether to the next slide or to soae other 
activity such as interacting with the application (the DIALLER).

SpaceiNextScreen!Home:SeeltAgain!Ctrl-Break:Interrupt,
Returning fro* slide show...

OX - What would you like to learn?

Press RETURN to continue with your original topic, 
Type Q to quit LIY

B to browse
E to explore DIALLER freely
or the topic's naiie. 

All end with RETURN

Current:DIALLER-TA

Fig. 3.5
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DIAL DIRECT IRON KETOAKD

Type your number, which should be followed by RETURN 

If using nuneric keypad, ensure NuitLock is on 

The following characters nay be embedded :- 

( ) - <space)

T (switch to Tone dialling)
P (switch to Pulse dialling)
9 (to pause dialling {Any key restarts))

To return to previous menu, press Esc 

Nunber dialled..

Fig. 3.6
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If using numeric keypad, ensure NiwLock is on 

The following characters Hay he enbedded :- 

( ) - <space>

T (switch to Tone dialling)
P (switch to Pulse dialling)
£ (to pause dialling {Any key restarts))

To return to previous Menu, press Esc

Number dialled..
Returning froM application...

OK - What would you like to learn?

Press RETURN to continue with your original topic. 
Type Q to quit LIY

B to browse
E to explore DIALLER freely
or the topic's name. 

All end with RETURN

Fig. 3.7

59



Chapter 3

I

B

*• to -qu-it|
-DIALLER-Tft-

L-QUIT

=proceed-l- Q =proceed-2- =SETUP-

=QUIT-SETUP-

=DIBECT——— 
MjUIT-DIBECT

=f1ET10RY———
MJUIT-HEHORY
tDIAL-DieiTS

-TYPE-NII1BER B

Q

Fig. 3.8
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3.3.2 Assessment

Suppose that the tutorial asks the learner to interact with the application in some 
way. There is no standard screen which illustrates this interaction; the tutorial, 
in a slide-show, makes clear what the learner is required to do and then control 
is switched to the application. As an alternative to this kind of assessment, the 
tutorial can request a direct response form the learner. Figure 3.9 shows an 
example of this. The tutor issues the "»" prompt. Here, and in what follows, 
the learner's responses are underlined.

a:/top
I'm afraid that doesn't seem right. 

Press any key to continue..

Fig. 3.9

The feedback is independent of the context, and the learner is shown a replay 
of the associated slide-show before being given the assignment again.
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In the unfortunate instance that the learner enters incorrect input a second time 
the feedback of figure 3.10 appears:

a:/top/next 
I'm afraid that STILL doesn't seem right.

Press any key to continue..

Type NEXT if you would like to move on, or press RETURN to try again: next
NEXT

The correct response should have been:

A:\TOP\NEXT

(... next topic is selected ...)

Fig. 3.10

The learner can then decide whether to persevere with the current assignment or 
move on. In the latter case the correct response is shown. This is adequate for 
"immediate" assessments like the one shown in figures 3.9 and 3.10. It leaves 
something to be desired when the assessment involves the learner interacting 
with the application since all that is shown is a string corresponding to a correct 
key-stroke sequence. It would be better if the tutorial could "walk" the learner 
in "show me" mode through the application at this point, making the learner 
follow with the correct key-strokes.

As a result of the diagnosis stage applied following a learner's interaction with 
the application, the feed-back can be improved to a certain extent. The differing 
messages in figures 3.11 allude to the different issues detected when running the 
learner's and tutorial designer's key-stroke sequences through the domain model. 
These messages are more fully explained in the next chapter which contains a 
precise description of the diagnosis process.
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Welcome to ELICITOR - the Task Analysis structure (TA) creation program

Please type the name of the application which 
the tutorial is to teach (or Q to quit) :q 

Quitting...
I'm afraid that doesn't seem right.

You appear to have quit ELICITUT in an abnormal way.
The exit command "ESCAPE" associated with the topic QUIT was expected.
Press any key to continue..

(a)

I'm afraid that doesn't seem right. 
Possibly you left out some of the commands, 
or used them in the wrong order.

The command "ENTER" associated with the topic DIAL-DIGITS was 
expected.

Press any key to continue..

(b)

I'm afraid that STILL doesn't seem right. 
Possibly you misused one or more of the commands which 
alter the state of DIALLER.

The command "S" associated with the topic SAVE 
should be avoided for this assignment.

Press any key to continue..

(c)

I'm afraid that STILL doesn't seem right. 
Possibly one or more of the character strings which you 
typed into DIALLER was incorrect.

The input 123 4567 was expected. 

Press any key to continue..

(d) 

Fig. 3.11
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Note that figure 3.11 (a) is taken from the ELICITOR authoring system tutorial 
(ELICmJT) since abnormal exit cannot normally occur in DIALLER.

Usually the learner does the right thing, as shown in figure 3.12:

Well done! 

Press any key to continue..

Fig. 3.12

The limitations illustrated by figure 3.11 concerning the quality of the feedback 
to the learner result from the positioning of this LIY implementation on Jacob's 
ladder, as discussed in chapter 2. They also relate to the domain-independence 
required of a portable tutoring shell. More powerful diagnosis and error 
feedback would follow from situating LIY further towards the top of the ladder, 
where it could take in more syntactic and semantic information from the user 
interface specification.

3.3.3 Feedback in the form of advice

Section 3.2.2 above described how the characterisation profile part of LIY's 
representation of the learner distinguishes between the four possible outcomes of 
a learner's interruption and request to learn an alternative topic. One possible 
outcome is that the request is enabled immediately; otherwise one of three 
messages advising against the move is displayed. These messages are graded in 
terms of the strength of their exhortation. Figure 3.13 shows the weakest of 
these.
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OK - What would you like to learn?

Press RETURN to continue with your original topic. 

Type Q to quit UY

B to browse

E to explore DIALLER freely

or the topic's name. 

All end with RETURN 

> set-pause 
SET-PAUSE

It might be better for you not to move to SET-PAUSE 

at this stage because you have not yet mastered 

the following prerequisites :-

ABANDON

SAVE

QUIT

You may inspect the structure of prerequisite information by selecting the 

BROWSE option following a Ctrl-Break interruption, which you can type right 

away:

Alternatively, you may type F to force a move to SET-PAUSE, or press 

RETURN to continue with your original topic:

Fig. 3.13

The emboldened line in figure 3.13 can on occasion be replaced by either of 
two stronger messages:

"You are advised AGAINST moving to"
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or

"You are VERY STRONGLY advised AGAINST moving to"

The ways in which qualitative variables in the characterisation profile - 
DUCKER, FLITTER, and so on - combine with the number of outstanding 
prerequisites to produce these messages was described in the previous section. 
Further discussion of prerequisites is held back until section 3.5.
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3.4 How the courseware designer sees LIY

Whereas the previous section - describing the learner's view - concentrated on 
the DIALLER application, this section draws on examples from the ELICITOR 
program and occasionally the ELICITUT tutorial which teaches its use. 
ELICITOR supports the tutorial designer, particularly when the task classification 
tree is being built.

3.4.1 ELICITOR, ELICITUT and its domain model

ELICITOR asks the tutorial designer for the name of the application for which 
the tutorial is being constructed. It creates a sub-directory of this name in 
which it will build representations of the pedagogic task structure. This 
representation is first built as an ASCII text file, eliciting the structure from the 
designer. Then, when the designer is satisfied that the structure is correct, 
ELICITOR creates a Lisp version of it. Finally, the designer can interact with 
ELICITOR using the mouse to select individual topics from a graphical 
representation of the structure on the screen. This step is necessary in order to 
add further information to individual nodes. Examples of this information 
include teaching operations such as slide-shows and exercises using the 
application. A complete description is given in section 3.5.3.

Figure 3.14(a) illustrates the situation when the designer is creating a tutorial 
application for the first time, while in figure 3.14(b) ELICITOR reports that 
there already exists a Lisp version of the task structure for the named 
application.
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Welcome to EUCITOR - the Task Analysis structure (TA) creation program.

Please type the name of the application which 

the tutorial is to teach (or Q to quit) ;learn

Fig. 3.14 (a)

Welcome to EUCITOR - the Task Analysis structure (TA) creation program.

Please type the name of the application which 

the tutorial is to teach (or Q to quit) ;learn

TA.LSP already exists. It will be renamed 

to TAJ3AK and a new version created. 

Do you wish to go ahead? (Y or N)

Fig. 3.14 (b)

Figure 3.15 shows ELICITOR detecting the existence of the ASCII text form of 
the task structure, TA.TXT. From the point of view of the ELICITOR program 
all this is very straightforward. It is significant, however, when the construction 
of the ELICITUT tutorial is considered. This tutorial teaches the use of the 
ELICITOR program and has to adapt to the different semantics associated with 
the presence or absence of the files TA.LSP and TA.TXT. In addition to these 
different semantics there is also a different allowable syntax, since the "Y/N" or 
"Q/R/C" input of figures 3.14(b) and 3.15 may or may not be required.
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A version of TA.TXT already exists.

If you would like to keep it for editing with a text 

editor, please quit by typing Q.

If you would like to recreate a new version, (the old version will be renamed 

TAMXT), please type R.

If you would like to continue with the existing TA.TXT, 

adding to it if you wish,

please type C.

Your choice..

Fig. 3.15

This impacts upon the domain model, used for the diagnosis phase. This model, 
represented as a transition tree built on the nodes of the task classification 
structure elicited from the tutorial designer, is exemplified for ELICFTUT by the 
diagram in figure 3.16.
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ELOTUT-TA

ELICIT-TA^PUT ********** pfOee*ti-1 ***** 

Preoeed-1 <—I I

QUIT

I
INPUT-TREE

Esc I
INPUT-TREE-DATA I————————————————————'————I

, I I IP
*~^ MAKE-LEAVES LISP-CREATION

Esc, t, etc. are the invoking syntax tokens;
<— indicates leads jo information: the subsequent menu item to

be displayed;

******* indicates a barrier. At ELICITUT-TA, syntax tokens below
the barrier are "invisible". This means that if e.g. LEARN 
is typed as a directory name, the "L" is not thought by the 
model to mean MAKE_LEAVES. Everything then leads jo 

Proceed-1.

Fig. 3.16

The diagram above represents the relationships between the individual nodes in 
the pedagogic task structure of the ELICITUT tutorial which teaches the use of
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the ELICTTOR program. This tree is not part of the ELICITOR run-time 
environment, only being used by ELICITUT. LIY application domain models 
parse the learner's key-stroke sequence against syntax tokens in a tree like that 
of figure 3.16. Character strings in this sequence which match the syntax tokens 
of nodes on sub-trees "visible" from the current node are recognised by the 
parser. It then designates the associated node as the new current node. If a leaf 
contains leads jo information then this is used instead to indicate the new current 
node. Proceed-n nodes are introduced merely to enable the structure to be 
represented as a binary tree (rather than a general tree) and are transparent 
Thus tokens visible at Proceed-1 are Esc at QUIT, t at INPUT-TREE, \ and p. 
Any learner input which is not identifiable as a syntax token is taken off the 
learner's key-stroke string and treated as application input (rather than application 
commands), about which the model knows nothing explicitly. The parsing 
process then repeats. In this way LIY builds up a picture of the learner's 
interaction which can be compared with the result of running the designer- 
supplied key-stroke sequence through the same model. (There is a full 
discussion of this differential modelling technique in chapter 4.)

Initially the current node is set to the root of the tree. EUCIT-TA-INPUT is the 
node which deals with obtaining the name of the application, as shown in figure 
3.14. The model expects the name to be followed by CR (carriage return, or 
enter). The difficulty here is that, if the name contains character-strings which 
correspond to syntax tokens visible from the current node, such input would be 
interpreted as application commands with the associated wrong behaviour of the 
model. This is not normally such a problem in menu-driven systems since 
application input usually occurs at leaves of a tree like that of figure 3.16. The 
tree is arranged so that, at a particular leaf, all input except for the terminating 
symbol can be considered as application input There is an example of this on 
the node INPUT-TREE. When t is detected at Proceed-1 for example, INPUT- 

TREE becomes the current node. All further input is then considered to be 
application input until Esc is detected, whereupon Proceed-1 is reinstated as the 
current node by virtue of the leads-to symbol attached to INPUT-TREE-DATA.
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User input to the top-level of ELICITOR does not in this instance result from 
a menu choice. In other words the user has not issued a command to select the 
option - involving the input of an application name - which could be followed 
by the parser on the tree. Thus the technique used for INPUT-TREE of routing 
to a leaf for application input is inappropriate. From the top node of the tree 
the parser cannot distinguish between commands such as 1 and p for MAKE- 

LEAVES and LISP-CREATION, say, and I or p appearing as characters of the 
application name input to ELJCIT-TA-INPUT. To overcome this problem the 
node Proceed-1 is designated as a barrier to the "view" from EUCITUT-TA, 

from which none of the children of Proceed-1 are visible. Following the input 
of the application name the model routes control to Proceed-1, from which all 
its children are visible. Recall from chapter 2 that the LIY implementation is 
based on a rung of Jacob's ladder which includes specification of command input 
but not of other application input. To distinguish between the two, LIY uses the 
known terminators of the latter application input. This poses no problems for 
leaves of the tree, such as INPUT-TREE-DATA in figure 3.16, since from such 
nodes no further command input is "visible". The use of the barrier handles the 
case where application input is required and command input is possible, but no 
command exists to signal the start of the input and so no routing is possible to 
a "safe" leaf node, such as QUIT. (From QUIT no further commands are 
visible.) No command selection signals the start of ELICIT-TA-INPUT\ the first 
thing the user must do is to type in the application name, and so the barrier is 
appropriate in this case. In general, it is probably only such situations, in which 
the dialogue starts with application input rather than a command, for which the 
barrier might be necessary. However, the barrier is not always required in this 
situation as is illustrated by considering a word processor. Application input is 
accepted at the top level of the tree for such a product while at the same time 
the command set also has to be "visible" from this point. The difference 
between this example and that in the ELICITUT case is that, for the word 
processor, there is an empty intersection set between key-strokes corresponding 
to data typed into a document and the command-set for the software itself. Thus 
word processors usually use function- or control-key sequences as commands. 
For ELICITUT, characters in the input file-name cannot be guaranteed to be 
different from all of the visible commands and thus the barrier is necessary.
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There is, in the case of ELICITUT, further predictable application input in the 
form of the user's answers to the questions posed by ELICITOR, as illustrated 
in figures 3.14(b) and 3.15. The set of possible responses does not intersect 
with the set of commands "visible" from Proceed-1 and so ELICITUT treats 
them correctly as application input For a non-empty intersection set the problem 
could be overcome by adding an extra node to the tree below ELICIT-TA-INPUT 

to absorb this application input before routing to Proceed-1.

Application input is distinguished from command input by its terminator (often 
ENTER). It is possible to accept fixed-length application input in situations in 
which, even if command input is possible, control within the application will 
always transfer to the same node. Such a situation has been exploited with 
certain single-character inputs to the DIALLER but should not in general be 
thought of as a standard feature of LIY.
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PLEASE CHOOSE ONE OF THE FOLLOWING OPTIONS •:-

For describing the task tree, press

For finishing the tree, declaring 
the reuaining nodes to be leaves,

For turning the task analysis file .TXT 
into a runnable .LSP file,

Chapter 3

To exit the LIY-hAKK progran, press Esc

Your choice..

Fig. 3.17
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Figure 3.17 shows the main menu screen of the ELICITOR program. (On the 
ELICITUT domain model of figure 3.16 it corresponds with the "view" from the 
node Proceed-1.) Initially the tutorial designer will use option "T" to build the 
pedagogic task tree structure. A screen rather like that of figure 3.18 will then 
appear. In fact this diagram illustrates the situation after the designer has 
already input some data. The program performs a certain amount of error- 
checking: other than at top level, "parents" can only be declared if they have 
already been made known as "children". Figure 3.18 illustrates an error whereby 
the child symbol learn-ta is input although it has already been declared (as a 
parent).

To quit this TA creation phase at any time, please 

press Escape

Please enter each node in the task structure and follow it with ENTER

> LEARN-TA CONSISTS-OF > parti > part2 
Is this OK? :

LEARN-TA CONSISTS-OF PARTI PART2 (Y or N) Yes 
> parti CONSISTS-OF > learn-ta

Error - LEARN-TA - already declared as a parent

Fig. 3.18
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Input to the ELICITOR program to build the tree is stored as a text file which 
could be edited with any text editor. The format of the structure requires that 
all nodes eventually be declared as parents. If they have no children then the 
CONSISTS-OF parts must be declared explicitly to be nil. Such leaf nodes, 
declared only as children, can be generated (as parents with no children) by use 
of option "L". A correct text file can be generated as a file of Lisp code by use 
of option "P". Subsequently, nodes in this file can be enhanced in order to add 
Lisp code to designate teaching operations associated with the node, for example. 
To do this, the structure input by the designer is displayed on the screen and 
individual nodes can be selected with the mouse. The user interface has not 
been further developed, so that at present this enhancement requires the addition 
of statements, from a small Lisp repertoire, representing data elements in list 
form.

3.4.2 LIY's teaching operations

LIY offers the tutorial designer nine low-level operations which can in general 
be categorised as being associated either with teaching or with assessment. 
These teaching operations can be attached to any individual node in the 
pedagogic task structure. The six principal operations were listed earlier and are 
discussed here. As a Lisp data structure, a set of teaching operations is 
represented as a list, within which there exists in list form a code for each 
particular teaching operation followed by any associated arguments. For 
example, the code for a slide-show is "S" and its associated argument is the 
path-name of a file containing the text to be displayed for the slide-show.

The six principal operations are: 

(i) slide-show : "S"

This is simply text concerning a particular topic to be displayed to the learner. 
There is a particular property attaching to a slide-show: it will always precede 
other operations for a given node (although there can be more than one slide-
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show per topic). If the learner's response is diagnosed as being in error then 
LIY backs up to the previous slide-show for re-display. A slide-show and its 
subsequent teaching operations up to the next slide-show (if any) make up a 
fragment. In other words, a set of teaching operations for a particular topic 
consists of a set of fragments; each fragment consists of a slide-show followed 
by zero or more other teaching operations.

(ii) create an application environment: "E"

This sets up the application in some particular way. It is very similar to placing 
the learner at some desired point in the application (type "P"), the difference 
being that this operation causes the application to terminate. It is thus invisible 
to the learner although its effect is to change the state of the application's 
environment.

(Hi) watch and record learner input: "W"

This is used by the designer when the learner is to interact with the application 
software. It implies that diagnosis will subsequently take place and causes the 
learner's key-stroke sequence to be recorded. The argument is the minimal 
correct string to be used in the diagnosis phase.

(iv) place the learner at some chosen point : "P"

This causes the application to be invoked and the learner to be presented with 
a screen which normally corresponds with the topic which is being currently 
taught. The argument to this command can be nil, in which case LIY generates 
a command sequence which is appropriate for driving the application to the 
screen associated with the currently-taught node. If it is a node-name then the 
screen associated with this node is displayed. Alternatively the argument can be 
a command-string which will simply be executed as if it were application input 
from the keyboard. In both this operation and the application environment 
option "E", screen-formatting output is suppressed by the replacement output 
routines where possible.
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(v) get learner input directly : "G"

This is the "immediate" assessment mode illustrated in figures 3.9 and 3.10. 
Rather than watching the learner interacting with the application software, LIY 
seeks a response to some question directly. The argument for this teaching 
operation is simply the correct response.

(vi) free learner exploration of the application : "F"

This operation enables the learner to explore the application to some purpose, 
although there is no diagnosis of the learner's performance.

In addition there are a further three operations which are tutorial- 
oriented rather than learner-centred:

(vii) re-run designer rules : "D"

- only when the learner is repeating a set of teaching operations following 
diagnosis of an error. There are no arguments. Designer rules are discussed 
below.

(viii) re-run "set-up" operations : "R"

- only when the learner is repeating a set of teaching operations following 
diagnosis of an error. This operation re-runs a concatenation of "E", "W" and 
"P" operations for previous fragments on this node, so that the application 
environment for the learner is re-created in exactly the desired way. There are 
no arguments.

(ix) execute Lisp code directly : "X"

This has been useful on just one occasion to invoke execution of a program 
other than the application: ELICITUT uses it to run the program which lets the
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designer select with the mouse a node to enhance. Its argument is a Lisp 
expression to be evaluated.

The tutorial delivery system processes teaching operations sequentially within a 
fragment and for computational reasons expects them to be in the sequence:

S, D, E, R, W, P, G, F, X

Thus a fragment starts with a slide-show and then, broadly speaking, sets up the 
learner's environment in the application, preparing for assessment if necessary, 
and launches the learner into the application.

3.4.3 Designer rules

The behaviour of an LIY tutorial is governed by the teaching strategy represented 
by the fixed sets of rules introduced earlier in section 3.2. The format of the 
rules is described in section 3.6. LIY permits the designer to over-ride this fixed 
behaviour by adding extra rules in one of two categories: control rules and 
teaching operation rules.

The existence of designer control rules is probed by the rule interpreter. If such 
a rule-set exists then it is interpreted. Whether or not it exists, control then 
passes to LIY's standard control rules. This facility is used in ELICITUT in 
order to probe for, and delete if necessary, any directory already in existence 
for the application LEARN which the learner is required to cause ELICITOR to 
create. Attempting to create such a directory if it were already in existence 
would cause the operating system to report an error - an event to be avoided at 
all costs.
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Designer teaching operation rules take over entirely from the default rule-set. 
Normally, rules in the set TEACHING-OP-RULES (the "e" rule-set) are used to 
process the designer's teaching operations, described above, which are attached 
to the nodes in the task classification tree. If this rule-set were to detect, at the 
outset, the existence of a set of designer teaching operation rules then it would 
invoke the rule interpreter upon this set. It would not regain control until the 
teaching of the particular node was complete. As an example, this facility could 
be used by the tutorial designer to replace the standard rule-set with a slightly 
edited version. This latter rule-set could be augmented with output messages so 
that, following detection of a learner error, very specific information about the 
current task could be provided to the learner. Further Lisp development would 
probably be required in order to utilise fully the under-documented Lisp functions 
invoked by the standard teaching operation rules or to include designer-written 
functions. Although tested, this facility has not been used so far in either of the 
two LIY tutorials.

3.4.4 Further aspects

In addition to the teaching operations which the designer will need to attach to 
each node, there are a number of other features of a node that will require 
consideration. They include, for example, the barrier and leads jo information 
shown in figure 3.16. Section 3.5.3 below contains a complete description of all 
such information.
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3.5 Operational and pedagogic tasklsubtask hierarchies

One of the outputs from the systems analysis stage of a software implementation 
is an operational task classification tree. This structure contains the elements 
(nodes) representing operations that the learner or user of an interface can 
invoke. (Rather than using the DIALLER or ELICITOR programs to illustrate 
this section, a subset of MS-DOS has been chosen since it provides wider- 
ranging examples, exercising a higher proportion of the transformation heuristics 
proposed below.) Thus for a subset of MS-DOS the structure might look 
initially like figure 3.19. dos, execute and park are italicised to emphasise that 
they are not actual MS-DOS commands, dos is included in order to give a 
name to the domain, while park is inserted to illustrate the subsequent discussion 
of exit-type commands; being an operating system for a personal machine, there 
is no explicit exit mechanism for leaving MS-DOS. Application programs in 
MS-DOS are run by typing their name. In the diagram, execute serves the 
purpose of naming a node in the tutorial space to describe this function. If an 
LIY-type tutorial existed for MS-DOS and the learner invoked such an 
application program from within the operating system tutorial, it would be 
desirable for the application to be treated as a "black box" from the perspective 
of the MS-DOS domain model in the tutor. However, it would also be desirable 
for a tutorial to be available for the application program* s user interface, in 
which case invoking the application from the operating system could be 
represented as a suspension of the MS-DOS tutorial followed by free exploration 

of the application. The exploratory mode is always available following a learner 
interruption and was described in section 3.3.1.

There are several important features to note about figure 3.19. First, the tree 
represents a constructive operational partial ordering in terms of the hierarchy: 
it could be read as "dos consists-of the operations cd ... park". Secondly, the 
tree is a general tree in the sense that a node may have an arbitrarily large 
number of "children1*. However, algorithms are generally less complex for 
processing binary trees, in which the number of children at any node is limited 
to not more than two. General trees are transformed into binary trees according 
to the tree transformations numbered 1 to 7 in figure 3.21 of section 3.5.1. To
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ttos

\
execute nkair del

1 
ren

cd rndir dir copy park

Fig. 3.19

do this, "dummy" nodes labelled proceed-l t proceed-2 etc. are introduced. Note 
that these transformations are distinct from the heuristic rules labelled (a) to (g) 
in section 3.5.2.

From the point of view of the tutorial, a structure is required which incorporates 
not only nodes corresponding to the operations in figure 3.19 but also nodes 
concerned with extracted information which might be common to more than one 
node, together with dependency information to help prescribe a tutorial ordering 
over the task tree. This type of structure is referred to as a pedagogic task 
classification structure. It is produced by applying heuristic rules and 
transformations.

Furthermore, the tutorial viewpoint requires a different perspective on the 
classification tree. Instead of the operational ordering of figure 3.19 (dos 

consists-of...) a tutorial emphasis dictates a structure which reflects knowledge: 
knowledge about dos consists-of knowledge ... This difference in emphasis 
cannot be achieved by LIY alone; it requires the application of the heuristic rules
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described below. Knowledge about taxonomies of teaching topics is incorporated 
into the rules, which have been successfully applied "by hand" to a number of 
small domains. However, in no way is it claimed that the transformations could 
be done automatically by machine. This is precluded by the semantic content 
of the information needed; taking rule (a) applied to the MS-DOS example, 
"identify groupings" requires that the tutorial designer be aware of the fact that 
the directory commands should be grouped together.

3.5.1 Dependency and binary tree transformation

LIY, in teaching an application domain, traverses the tree in pre-order (root, left 
sub-tree, right sub-tree), but uses dependency information in determining advice 
to give to the learner on receipt of a learner-initiated navigation request. This 
was described earlier in this chapter. Dependency between sibling sub-trees at 
the same level results from the application of the heuristics given in the next 
section and is denoted by marking the arcs as shown in figure 3.20. Pre-order 
traversal as an LIY teaching strategy appears to be very similar to the cognitive 
apprenticeship strategy of DOMINIE (Spensley el al. 1990).

Figure 3.20 (a) represents the fact that knowledge about topic a consists of 
knowledge about topic b and topic c. Figure 3.20 (b) also represents this, but 
additionally that knowledge about c is dependent upon knowledge about b\ b is 
a prerequisite for c. (In the definition below it would be said that "b is linked 
by DEPEND to c".) Thus the learner would be advised to learn b before c; 
without any learner-control intervention LIY would teach the topics in the 
sequence a, b, c. A learner interrupting in the case of figure 3.20 (a) would be 
permitted to learn c without comment from the tutor, irrespective of the state of 
learner knowledge of b.
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I I I S 
be be

(a) (b)

Fig. 3.20 

Prerequisite topics of a particular node are defined as follows:

All leaf-nodes in a left sub-tree which is linked by DEPEND to some node 

X, and leaf-nodes in left sub-trees which are linked by DEPEND to 

ancestors of X, are prerequisites of X.

The focus upon leaf nodes in this definition attempts to reduce the set of 
possible prerequisite topics to those which are crucial: i.e. to those topics 
concerned directly with commands which manipulate the application software 
interface being taught

Figure 3.21 shows a subset of the possible transformations, developed by trial- 
and-error, from general to binary trees. Arrows show specific dependencies, e.g. 
in transformation (1) c and d both depend on b, but d does not depend on c.
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Looking ahead to figure 3.26, (which shows the result of applying the heuristics 
set out in the next section to the MS-DOS example), it can be seen that rename 

is a prerequisite for rmdir. This is not ideal, but is a consequence of putting all 
knowledge concerning files together as a whole, and then making all of it a 
prerequisite for knowledge concerning alteration of directories. Such groupings 
of material face human teachers every day when they make judgements involving 
the trade-offs inherent in various possible taxonomic approaches to the subject 
they are teaching. For LIY this is a potential complication only when the 
learner seeks to vary the pre-determined ordering of the topics, since this is the 
only time when the dependency arcs are examined.

3.5.2 Transformation to pedagogic ordering

The heuristics shown below have been developed as a result of experience with 
a number of example domains. These domains are the MS-DOS example 
described in this section, the DIALLER and ELICITOR (the development of 
which is described in appendices B and C respectively) and a financial 
application not reported here. These heuristics can be applied recursively at any 
level in the tree. Not all the heuristics and transformations are needed for the 
MS-DOS example.

(a) Identify common topics and group them together.
(b) Identify commonality between topics and extract as a new topic.
(c) Teach any "exitM-type topic first Place it as the left child of the 

root, dependency-linked to the rest.
(d) Teach any "configuration"-type function last. Place it at the deepest 

point in the right sub-tree, non-dependency-linked.
(e) Arrange non-dependentty-linked nodes at the same level within a 

sub-tree in order, with the most important on the left.
(f) Incorporate dependency knowledge not already present.
(g) Place destructive operations (e.g. "delete"-type functions) on any 

level to the right, dependently-linked. Such operations are invariably 
dependent upon a corresponding creative activity.
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Consider how these rules could be applied to the MS-DOS subset of figure 3.19. 
Note that park (park hard disk heads before switching off) was explicitly inserted 
in this example to animate rule (c) about teaching "exit"-type functions first. 
This corresponds to the quit operation in many applications, including DIALLER.

Application of rules (a), (b), (c) and (g) to figure 3.19 yields figure 3.22.

I
p&rk

ex&cute
aiter-dirs fifes

1r NV>< r
cd dir nkdir rndir copy ren del

^* JV *yj shows that c depend*-on a

Fig. 3.22

nav-dirs, alter-dirs and flies result from the groupings identified as a result of 
applying rule (a). Rule (b) yields path-names as a result of identifying the 
prerequisite knowledge common to the directory-handling commands cd and dir. 

Rule (c) causes the exit-type command park to appear top-left. Note that rule 
(g) is used to provide order and dependency knowledge within both alter-dirs 

and files.

Applying heuristics (e) and (f) to figure 3.22 yields a top level as shown in 
figure 3.23.
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park Proceed-1
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execute 

fiics

p&tfr- cd dir copy ren del nkdir rmdir

1

Fig. 3.23

The nav-dirs sub-tree from figure 3.22 can be transformed using transformation 
6 to appear as shown in binary-tree form in figure 3.24. files can be 
transformed by applying a variation on transformation 3 (order equivalence for 
more than two children) and then transformation 2.

Applying transformations 2 and 7 to the task level shown in figure 3.23 gives 
the structure of figure 3.25.
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Putting all this together gives us the completed pedagogic task classification 
structure shown in figure 3.26.

cfos

I
park Proceecf-t

\ I
Proceect-2 execute 

I__________

Proceecf-3

names

H
psth-

Proceect-f _______ |
I ' mkdir rndir 

Pfoceect-5 fen
dir cd

I 
copy del

Fig. 3.26

It can be seen that all the nodes for which there is a corresponding operation 
within the application domain are in this case leaves of the tree. However, this 
need not always be the case, and is not so in the DIALLER application.

The commands in this domain are multi-letter. Although for simplicity the 
commands in the two LIY applications discussed earlier all happen to be single 
characters, LIY can also handle multi-letter commands such as those of the MS- 
DOS example. Syntax tokens arc used by the tutorial designer to represent 
commands and were discussed in section 3.4.1. These are matched during 
diagnosis against the head of a recorded list of the key-strokes typed by the 
learner into the application. Accordingly they can be of any non-zero length.
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3.5.3 Complete description of a pedagogic task classification tree

Every node in a task classification tree may exhibit the following attributes:

CONSISTS-OF
Indicates the names of up to two child nodes.

LINKS-BY
Indicates whether the children of this node link dependently or 
independently.

PARENT
For all children LIY generates the names of the parent node.

SYN-TOKEN
The value of a character-string for invoking the command associated with 
this node. Used in the domain model.

BARRIER
Used in the domain model to "hide" syntax tokens under certain 
circumstances.

STATE-CHANGING
Used during learner diagnosis. Described in chapter 4.

LEARNT
Part of the learner profile.

CURRENTLY-BEING-TAUGHT
Used by LIY internally when handling learner-control interventions.

X-CO-ORD, Y-CO-ORD
Used by LIY internally when handling a graphical display of the task 
structure.
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3.6 Managing tutorial delivery

LIY's basic teaching strategy is to traverse the task classification tree looking for 
a topic to teach. The tree is traversed in pre-order, that is the parent node is 
examined first as a possible candidate, followed by a recursive search of its left 
sub-tree and then of its right sub-tree. Only untaught and non-dummy nodes 
(i.e. not named proceed-ri) are candidates for this strategy.

The control behaviour of LIY's tutorial delivery mechanism is encapsulated as 
a rule-base. No claim is made that the rules represent a "knowledge base"; 
rather, they provide a distinction between the way in which, at a fairly high 
level, the rules declare what needs to be done, and the low-level procedural 
descriptions of how it should actually be carried out.

Appendix A contains a complete list of all the rules in LIY. Rules are in the 
format of Lisp lists, as follows:

(rule-name
(zero or more antecedent conditions) 
(one or more consequent actions)

It can be seen from the appendix that both antecedents and consequents are in 
fact coded as Lisp. Where they would involve any complexity at the Lisp level 
they have been recoded as Lisp function calls. Functions which are called by 
the rules have not been turned into a "language" for general use. As pointed out 
earlier, in the discussion of teaching strategy in section 3.2.3, a rule consequent 
can include the invocation of the interpreter on another rule-set

A rule-set is a list of rules assigned to some variable which is the name of that 
rule-set. In LIY the convention used is that rule-set names are descriptive, 
whereas rule-names take an arbitrary letter for each rule-set followed by an 
integer incrementing by the value ten. Thus, for example, rules in MAIN- 
CONTROL-RULES are named alO, a20 and so on.
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The search for a topic to teach is initiated by the top-level rule-set MAIN- 
CONTROL-RULES (the "a" rule-set), which also handles detection of a learner- 
control request and proper termination when no topic to teach can be found. As 
explained in section 3.4.3, if there is a file of "designer" control rules then these 
are interpreted. In any case, the interpreter is then applied to the rules concerned 
with selecting a teaching operation. These rules constitute the set TEACHING- 
OP-RULES. Figure 3.27 illustrates the structure of the rule-base.

"Designer" 
control rules

Rule-set "d"

Top-level rules 
Rule-set "a"

leeching operation 
rules

Rule-set "e"

"Designer" 
teaching-op rules

Rule-set "d"

Learner-choice 
rules

Rule-serb"

Learner-control 
advice rules

Rule-set "c"

Fig. 3.27

Rules in TEACHING-OP-RULES are named starting with the letter "e". If any 
designer-supplied teaching operation rules exist - as opposed to designer control 

rules - these take over completely. (In principle such rules could be used to 
replace the current LIY teaching and assessment strategy, although to permit 
the tutorial designer to do so would require that a "rule language" be developed.
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At present LIY tutorials do not use this facility.) Otherwise the remaining rules 
in TEACHING-OP-RULES are interpreted. These rules display tutorial text, 
handle assessment, and update the "competence" aspects of the learner profile. 
If, following diagnosis, the learner's input cannot be matched with expected 
results, rules in this set cause LIY to back up once for re-display and re 
assessment on the current topic, and once again if necessary. In the latter case 
the learner is given the option of being shown the expected response and moving 
on to the next teaching fragment, which may or may not be within the current 
topic.

A typical rule from this set is:

(e40
((equal *LAST-INTERACTION* 'TEST) 
(equal *LAST-TEST-RESULT* 'PASS)) 

((INCR-COMPTNCE))

This increases the learner's competence score in the learner profile for the 
successful completion of an assessment. Note that the rule consequent invokes 
a Lisp function; this is typical of many LIY rules.

If the learner interrupts then control transfers immediately to the top-level rule- 
set MAIN-CONTROL-RULES, which then hands on to the "b" rule-set 
LEARNER-CHOICE. This offers the learner the menu of options shown in 
figure 3.5. If the learner has requested a move to a different topic then this is 
permitted provided that all prerequisites have been learnt. If the target topic has 
already been learnt then the fact that the learner is revising is reported. If there 
are unlearnt prerequisites then the learner-advice rule-set L-C-ADVICE, 
comprising the "c" rules, is invoked. This rule-set considers the learner's profile 
and the number of outstanding prerequisites and will either permit the move or 
offer graduated advice against it, as described earlier. If desired, the learner can 
always force a move against LIY's advice.
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The letter "d" is reserved by convention for rules in the designer rule-set. As 
discussed previously, DESIGNER-CONTROL-RULES are used in ELICITUT for 
deleting any pre-existing sub-directory named LEARN.

If the learner quits without completing the tutorial then his or her environment 
is saved to allow continuation from this point on some future occasion.
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3.7 Concluding remarks

This chapter has attempted to convey the flavour of the LIY software from the 
perspectives of both the learner and the tutorial designer.

The learner's viewpoint is illustrated by the DIALLER tutorial. The context of 
this research is that of software engineering rather than psychological evaluation 
and the major aim is to test the feasibility of the LIY approach rather than 
testing the efficacy of the two LIY tutorials themselves. Nonetheless the 
tutorials have been tried by a small number of knowledgable colleagues, friends 
and family. Their perspective has been that of learner rather than designer, and 
thus their input has been incorporated into the delivery, rather than authoring, 
aspects of LIY. Improvements made as a result of users' suggestions included 
error feedback to the learner following all inappropriate responses, rather than 
only on second and subsequent such responses; including the name of the 
package (e.g. "DIALLER") in messages; and enhancing the feedback to include 
a reference to the response-comparison heuristics described in the next chapter 
and illustrated by the messages in figure 3.11.

The designer's viewpoint has been illustrated with particular reference to 
ELICITUT, a tutorial for the ELICITOR software, and to MS-DOS, a well- 
known but (for LIY) hypothetical example. The latter was chosen in order to 
demonstrate the transformation heuristics for producing a pedagogically-oriented 
task classification structure.

Thus this chapter has, through examples, demonstrated the capabilities of LIY. 
Appendices B and C take the reader through the design, based on the 
specification elements discussed in chapter 2, of the tutorial structures for the 
DIALLER and ELICITUT respectively.
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An ITS perspective on LIY

This chapter considers the design and implementation of LIY within the context 
of Intelligent Tutoring Systems (ITSs). It also speculatively proposes a more 
general version of the so-called five-ring model (O'Shea et al. 1984). This is 
referred to here as the figure-of-eight model and would appear not only to 
support learner control but also to offer greater "intelligence" by being able to 
adapt or change its teaching strategy dynamically.
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4.1 What is an ITS?

Near the beginning of his book, Wenger describes an intelligent tutoring system, 
or knowledge communication system to use his term, as consisting of four 
components (Wenger 1987). These components are:

domain expertise; 
student model1 ; 
pedagogical expertise; 
interface.

Pedagogical expertise in fact consists of "didactic process", which incorporates 
elements of Hartley and Sleeman's teaching strategy and teaching operations, 
and "degrees of control", also incorporating teaching strategy elements (Hartley 
and Sleeman 1973).

In a review paper Dede describes almost exactly the same architecture as 
Wenger's, although he uses the term knowledge base rather than domain 

expertise (Dede 1986).

The distinction between these modern views and the earlier perspective is not 
simply the addition of an interface to the learner - which was in any case 
implicit in Hartley and Sleeman's architecture - but more a refinement of the 
common components. To take just one example, the learner model is currently 
perceived as consisting of at least two sub-components. These perform the 
functions of predicting individual learner behaviour and diagnosing the causes of 
exhibited learner behaviour. Thus, considering the predictive aspect of the 
learner model, it can be used to try out a proposed teaching operation in order 
to establish that operation's suitability. The diagnostic function can be used 
particularly to identify and remediate recent non-optimal learner responses within 
some context, such as responding to an assessment teaching operation.

1 The term student model has wide currency. LIY is concerned with learners 
rather than students, so the equivalent term learner model is used here in 
preference.
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So modern ITSs have developed within the framework of the earlier systems. 
They exhibit better learner modelling, for example involving the use of more 
sophisticated cognitive models, bug catalogues for identifying learner 
misconceptions, and plan recognition strategies [The Lisp Tutor (Anderson and 
Reiser 1985)}. They employ better user interfaces with more powerful natural 
language capabilities based on a deeper understanding of the structure of 
discourse (SOPHIE (Brown et al. 1982)}, or based on simulation coupled with 
high-quality graphics (STEAMER (Hollan et al. 1987)}, and so on. As Hartley 
and Sleeman proposed, modern systems use ideas of search and inference from 
artificial intelligence to match learner behaviour against a model of that learner 
in order to optimise teaching and learning processes.
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42 LIY: the ITS viewpoint

One of the principal aims of the LIY project is to demonstrate the feasibility of 
a portable tutoring shell. In order to demonstrate this portability it has been 
necessary to implement a complete tutoring system, rather than restricting 
research to one or two of the aspects of modern ITSs discussed above. LIY 
does 'not address all the aspects of ITS research, however. For example, the 
learner interface both to the delivery and authoring systems has not been 
developed very far. The following sub-sections describe LIY's domain 
modelling, learner modelling and teaching strategy from an ITS point of view. 
An alternative architecture for intelligent tutoring systems with learner control is 
proposed. In some cases where material has already been covered in earlier 
chapters the corresponding sections here are brief.

4.2.1 Modelling the domain

The principal requirements of domain modelling in LIY are to provide a 
pedagogic structure, which can be used to determine the next teaching process, 
and to support diagnosis. The basic knowledge structure of the domain model 
is the task classification tree. This structure, originally representing the 
operational ordering of the user command set, is transformed by the tutorial 
designer to a pedagogic ordering according to a set of heuristics. Chapter 3 
contains a detailed description of the structure and the transformation process.

Domain knowledge is limited by the "rung" of Jacob's ladder selected for the 
interface specification (and by LIY's portability requirement) to the command 
structure of the domain and the syntax of the commands within it, forming a 
prerequisite knowledge hierarchy.

During the diagnosis phase the domain model is traversed under the control of 
a transition tree parser.

100



Chapter 4 

4.2.2 Modelling the learner

Profiles

In principle there are two profiles maintained for the learner: the characterisation 

profile and the performance profile. In fact they are not implemented as separate 
objects; they each comprise a number of separate components which are 
inspected and maintained under the control of the rule-base as described in 
chapter 3.

The characterisation profile is designed to reflect aspects of the learner which 
might be carried across from one tutorial to another. Consider as an example 
the tutoring system's perception of an individual learner's preferred learning style 
on the holist/serialist continuum. If the learner were to make considerable use 
of the learner control facility it could be inferred that he or she was trying to 
break away from LIY's serialist tutorial style.

The performance profile contains knowledge about the learner's current state both 
on a moment-to-moment basis and over time, particularly with respect to the 
tutorial's perception of the learner's achievements with assignments. It is used 
by the rule-base to attenuate the advice offered when a learner-control request 
to navigate to a topic with unlearnt prerequisites is encountered. It also 
comprises a measure of the learner's mastery of topics by marking the task 
classification tree.

Diagnosis

The diagnosis process in LIY attempts to determine the "correctness" of learner 
input to the software application being taught by comparing it with that provided 
by the tutorial designer. The comparison is more than just a character-for- 
character look-up, however. Differential modelling is used to compare "issues" 
in the learner's application input with those in the designer's input. This is
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somewhat similar to the use of issues in WEST (Burton and Brown 1982). In 
the context of playing the game WEST, issue identification is used in particular 
to provide feedback concerning the player's moves. Issues in the game are skills 
which the player or the expert might utilise. In LIY the "issues" are four 
heuristic criteria, described below, concerned principally with the order and type 
of commands used by the learner and the designer. Interestingly, the authors of 
WEST suggest that issues, or rather knowledge about specific issues, can be used 
to provide context-sensitive help if it is requested. Developing the issue-based 
tutoring idea further than it has been taken in LIY would require much more 
domain-specific knowledge than that available from the task classification tree.

For comparison of designer and learner input at the diagnosis stage, the 
designer's input is assumed to be the minimum capable of achieving the result 
required for the particular assignment concerned. This will be referred to as the 
minimally correct string. The learner may provide input that achieves the same 
functional effect as the minimally correct string but with more key-strokes. To 
return to the MS-DOS example of the previous chapter, the learner might list a 
directory unnecessarily. (That is, unnecessarily with respect to the functional 
results required of MS-DOS for solving the problem posed to the learner by the 
tutoring system; it might well have been considered necessary by the learner.) 
The LIY diagnosis process would not deem such an action to be an error on the 
learner's part.

At the point at which diagnosis starts there are two sequences available: that of 
the learner's key-strokes and the minimally correct string. The two sequences 
are compared initially for perfect equality, in which case no further diagnosis is 
necessary: the learner is a "perfect subset of the expert". Otherwise diagnosis 
proceeds by referring to the domain model to build a history list for each of the 
sequences. Recall from chapter 3 (section 3.4) that the domain model reflects 
the structure of the command set in the application being taught. By parsing the 
key-stroke sequence against the domain model a history list can be constructed 
which records the nodes visited, in order, by the learner. The parse tree contains 
the commands associated with each topic so that when such commands are 
detected a transition can be made to a new node in the tree. Thus the model
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tracks the current node as the learner navigates over the tree. Characters in the 
sequence which do not correspond to any transitions recognisable from the 
current node are considered to be application input. A history list can therefore 
contain not only the ordered sequence of nodes visited by the learner but also, 
at the correct points in the list, "packets" of application input.

There is one other important aspect to history lists: not all nodes in the task 
classification tree are equal. Certain topics in the tree are concerned with 
changing the state of the application whereas others are not. To return again to 
the MS-DOS example, deleting a file alters the state of the application whereas 
listing a directory does not. The tutorial designer, during the elicitation phase, 
is asked to declare those commands which are state-changing. In the DIALLER 
there is just one state-changing command: save-setup. A history list is therefore 
able to distinguish, among the topics "visited" by the learner (and by the tutorial 
designer by reference to the minimally correct string), between state-changing and 
non-state-changing commands.

Thus, unless the key-stroke sequences of the learner and the tutorial designer are 
identical, history lists are built from both the learner's key-stroke sequence and 
the tutorial designer's sequence. (To recap, the latter is referred to here as the 
minimally correct string.) The two history lists are then compared according to 
the following criteria:

(i) The learner and designer must end up at the same final node on exit.
(ii) The learner must visit all nodes visited by the minimally correct string in 

the same sequence.
(iii) If the correct string uses state-changing navigational commands, then the 

learner must also use such commands. In fact this requirement is covered 
by heuristic (ii) above. However there is a stronger requirement that the 
learner must not issue any state-changing commands unless they are in the 
correct string.

(iv) The learner must obey non-navigating key-stroke sequences 
character-for-character exactly, e.g. telephone numbers, file-names, etc.
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Failure to match the history lists according to these criteria results in the learner 
receiving one of the following messages (a) to (d) below, which correspond 
with the heuristics (i) to (iv):

(a) ....

You appear to have quit EUCITUT in an abnormal way.

The exit command "ESCAPE" associated with the topic QUIT was expected.

(b) ....

Possibly you left out some of the commands, 
or used them in the wrong order.

The command "ENTER" associated with the topic DIAL-DIGITS was expected.

(c) ....

Possibly you misused one or more of the commands which 
alter the state of DIALLER.

The command "S" associated with the topic SAVE 
should be avoided for this assignment.

(d) ....

Possibly one or more of the character strings which you 
typed into DIALLER was incorrect.

The input 123 4567 was expected.
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As can be seen, the name of the application is incorporated into the messages. 
The fuller context of these messages is shown in figure 3.11 in the previous 
chapter, where the limitations of this diagnosis method were pointed out in 
relation to the "rung" on Jacob's ladder at which are fixed the user-interface 
specification components and thus this LIY implementation. Furthermore, LIY 
cannot explain its error messages. For example, it cannot explain why, in (c) 
above, SAVE is a state-changing operation; it can only say that it is.

42.3 Teaching strategy

The teaching strategy is represented as a set of rules. These rules implement a 
teaching process which is invoked by a search of the task classification tree to 
find a topic to teach. The rules are partitioned into distinct rule-sets to deal with 
particular aspects, such as determination of learner advice, as described in the 
previous chapter.

An architecture for learner-control systems

The five-ring model proposed by O'Shea and others is illustrated in figure 4.1 
(O'Shea et al. 1984). The solid lines represent the flow of control between the 
components. The dotted line between the teaching administrator and teaching 
strategy nodes represents the possibility of an intervention by the learner such 
as a learner-control request.

The five-ring model is based upon the four-component model discussed earlier 
(Hartley and Sleeman 1973).
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Teaching 
Generator

Teaching 
Administrator

Control
_______ — _ Possible learner intervention

Fig. 4.1

The components of the five-ring model are described as follows:

Teaching Administrator

Student History

Student Model

Teaching Strategy

Teaching Generator

presents material to the learner and processes
learner responses.
a record of material presented to the learner
and his or her responses.
makes predictions of the learner's future
performance and current state of knowledge
and ability.
relates the systems view of the learner to the
general types of teaching action that are
possible, and decides the type of the next
action.
a mechanism which yields a specific teaching
action for use by the teaching administrator.
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It can be seen that the teaching administrator represents an additional component 
compared with the Hartley and Sleeman criteria, but that the other four 
components are similar. It should be pointed out that the actual nature of each 
of the components varies depending upon the type of tutoring system being 
implemented. For example, the paper by O'Shea et al. describes two illustrative 
systems with widely differing student models, in the one case rudimentary and 
in the other incorporating a problem-solving expert system.

Consider the meaning of the word strategy (as in teaching strategy). It concerns 
planning, at a high level, the means to achieving some objective. In an ITS this 
objective would be achieving the demonstration of the learner's competence with 
the concept being taught. Lower-level preoccupations at the transaction level 
might be referred to as tactics. The semantic difficulty with strategy is how to 
describe a change of plan or strategy. As Self comments, it is a matter of 
opinion whether such a change represents part of an unfolding plan or the 
beginning of a new plan (Self 1987). Is a change of strategy part of the 
strategy? In this sense three levels of control can be considered: tactics, dealing 
with fine-grain interaction-level choices; strategy, which deals with a plan to 
achieve some pedagogic goal; and meta-reasoning, the ability to detect that a 
plan is failing and change it. Self observes that ITSs do not deal with 
meta-reasoning, but it is probable that this will change. In other areas of A.I., 
for example expert systems, research into the use of meta-level knowledge has 
become an important issue, e.g. the MOLGEN system (Stefik 1981).

Pask argues that a system such as that illustrated in figure 4.2, where process P 
operates upon some domain D, cannot be adaptive because P can have no 
knowledge of its effects upon D (Pask 1975).

Figure 4.3 shows feedback information being provided from D to P.

An example might be a heating system fitted with a room thermostat The 
problem with systems of the type shown in figure 4.3 is that they only operate
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Process

Domain

Non-acfap8vB system

Fig. 4.2

Process

Domain

Adaptive system

Fig. 4.3

correctly in prescribed circumstances within preset limits. To continue the
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example, such a system would fail if the thermostat had switched itself off but 
the room temperature continued to increase, perhaps due to a heat-wave. Such 
a controller cannot be said to be intelligent since it knows only one strategy. 
A more intelligent system would be able to examine the effects of P upon D and 
modify P, perhaps by a change in strategy, if necessary. Figure 4.4 illustrates 
this.

Setf-mocftfying adaptive system

Fig. 4.4

Ogborn and Johnson give as an example of such a system a computer 
programmer developing a program (Ogborn and Johnson 1982). In a tutoring 
system P2 represents a meta-reasoning process which can modify the strategy 
applied by PI to the learner D. Such a system is the minimum necessary to 
enable a tutor to reason about its performance. This represents a stronger 
definition of intelligence than that embodied in the Hartley and Sleeman-type 
architecture described earlier. Pask goes on to define figure 4.4 as being the
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minimum architecture for the type of system which can learn, as described in his 
"conversation theory" (Ogborn and Johnson 1982).

What is therefore needed is a component in a top loop which can monitor the 
performance of the tutor operating in the bottom loop. Suppose that this 
component is called a hypothesises Its function is to suggest to the strategy 
component an appropriate teaching strategy, and to switch to an alternative 
strategy if the current one is inadequate. In other words the hypothesiser will 
implement the meta-reasoning described earlier. The strategy component on the 
other hand incorporates a range of plans, represented as sets of means-ends 
guidance rules, and will implement perhaps either a standard plan or one of those 
suggested by the hypothesiser. Such a tutoring system would have the 
architecture shown in figure 4.5, corresponding to the Pask representation of 
figure 4.4. The hypothesiser component acts directly on the strategy component, 
which has now been brought down to the central position. Further, this 
architecture enables attenuation of learner control to be handled, again by the 
central component as shown. Control flows around the complete figure-of-eight 
as two alternate cycles (bottom and top) starting with the courseware generation 
node in the lower left.

The architecture of this figure-of-eight model is speculative but would be general 
enough to encompass, with a non-functioning hypothesiser where appropriate, a 
range of CAL models. These include a dumb CAL system, a help system, an 
on-line manual, and systems with either total or constrainable learner control 
which are either dumb or intelligent. An earlier paper provides a fuller 
description of how these different types of tutoring system can be viewed as 
constrained subsets of the figure-of-eight architecture (Martin 1988). The 
hypothesiser is invoked on each cycle and acts directly on the strategy 
component, so that the desired meta-reasoning is not shut out by, for example, 
inappropriate unbroken cycles round the lower loop only. It would appear that 
O'Shea's self-improving quadratic tutor could, to an extent, be made to fit into 
this architecture (O'Shea 1982). In his system a teaching strategy, expressed as 
a set of production rules, can be altered experimentally by changes to the rule 
set, which corresponds to the hypothesiser acting upon the strategy component.
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However, there is no direct feedback to the hypothesiser on a moment-to-moment 
basis: the feedback comes with the statistical evaluation of performance by the 
tutoring program at the end of a learner's session. (Note that O'Shea uses the 
term hypothesis tester in a totally different sense - as another name for the 
student model.)

Strategy 8.
learner control

Controller

f Courseware 
I generator

Control and Information 
Possible learner intervention

Fig. 4.5

The five-ring model appears to form the sound basis for representing the 
architecture of a class of tutors which do not use constrainable learner-control. 
At least one tutor has been constructed on the lines suggested by the five-ring 
model (Heines and O'Shea 1985). The above proposal demonstrates that with 
only a slight alteration the five-ring model can be adjusted to deal with 
constrainable learner control, the resulting model being called the figure-of-eight 

model. In addition to handling learner control, the hypothesiser component can
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generate and monitor the choice of teaching strategy. Thus for LIY it would in 
principle be possible, for example, for a hypothesiser component to alter the 
teaching strategy used by substituting one set of teaching strategy rules with 
another. This might be an appropriate response by the tutoring system for 
supporting a learner's serialist or holist teaching preference, perceived in relation 
to the FLITTER concept described in chapter 3.
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Discussion and conclusion

This chapter falls into five parts. The first two are concerned with the way in 
which LIY matches up to the two principal aims set out in chapter 1. The third 
part considers the extent to which the subsidiary aims have been achieved and 
is followed by a section discussing the possibilities for further research and 
development of LIY. The final section summarises the achievements of this 
research.
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5.1 "Dialogue specification can be used as the basis for courseware 

design".

This section heading is placed in quotation marks deliberately in order to
t

emphasise the fact that it is the slogan representing one of the two major aims 
of the research. This aim has been achieved - but at a cost.

The possibility that the output from the systems analysis stage could produce 
some specifiable structure which could be used directly as the kernel of a 
tutoring system for that interface remains something of a chimera. The 
information needed by a tutoring system is deeper than that available from 
systems analysis. If this information be termed "domain information" then the 
issues pertinent to it are:

What to teach? 
When to teach it? 
How to teach it?

For software interfaces, it can be argued that the last of these questions - 
"How...?" - is answered by the design of the tutoring system itself. Chapters 3 
and 4 have described how LIY addresses this problem. The first two questions, 
though, need careful consideration.

The question of what to teach is met at a rather basic level by the set of 
commands corresponding to user actions in the interface. Such a set of 
commands can be used as a skeleton to which tutorial material can be attached. 
This is satisfactory for hierarchically structured command sets such as menu 
systems where the command hierarchy itself groups together commands of a 
similar type. A word processor, for example, might offer PRINT as a "top- 
level" command. Sub-commands associated with printing, such as PAUSE 
PRINTER, would only be available once PRINT had been invoked at the higher 
level. Such a command structure naturally lends itself to a tutorial style since 
it is possible to associate successively focused levels of tutorial material with 
each command, and this material can be delivered as the learner moves down the
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hierarchy. The structuring of the command set is reflected by the structuring 
needed for the teaching of the domain. Both the example applications developed 
for this research are in this style, which is the one to which LIY is most suited. 
It is also the style of pointer-based command systems, such as those which use 
a mouse, and the possibility of using LIY with such interfaces is discussed in 
section 5.4.

In contrast, a flat command structure requires that similar features, common to 
a range of commands, be identified and grouped together by the tutorial designer. 
Many operating systems offer just such a flat command structure. This is partly 
for historical reasons; operating system command sets have always been 
organised this way. Also it is due to the advantage, for skilled users, of having 
the entire command set available at any point. Commands can sometimes be 
issued using a reduced number of key-strokes compared with that needed for a 
hierarchy; certainly, commands can be issued with a reduced amount of slow 
interaction in comparison with a menu system. It is interesting that a number 
of proprietary shells are now available for MS-DOS which offer a menu-driven 
hierarchy to overcome its original flat structure. Such shells have much appeal 
both for the occasional user and the novice since they overcome the need to 
recall command syntax.

The question of when to teach is more thorny. Specifically the question must 
address the order of teaching topics, that is, the development of a suitable 
tutorial sequence. A flat command structure offers no support whatsoever in this 
respect. A hierarchical structure permits the observation that it is generally 
appropriate to teach topics at a higher level in the hierarchy before those at a 
lower level. (This is not always the case in an LIY hierarchy since there is also 
a left-right ordering as well as a vertical one.) Higher-level topics are concerned 
with more general issues which are prerequisite to the understanding of more 
specific, lower-level topics. The question then arises as to the ordering of topics 
at the same level in the hierarchy. This is exactly the same question as the 
ordering of topics in a flat command structure. No information is available from 
systems analysis to support such ordering. Consequently the rules described in
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chapter 3 - "transformation from operational to pedagogic ordering" - have been 
used to provide a tutorial sequence.

These transformation heuristics are not proven to be sufficient for all domains. 
They were developed by trial-and-error but have been found satisfactory for the 
MS-DOS example of chapter 3, the two domains described here, and one other 
which has not been developed into a working and tutored application. This latter 
is a small financial application which represented the very first experiments with 
building a pedagogic task classification hierarchy. In a rather ad-hoc manner 
such a structure emerged from the operational hierarchy. Subsequently, building 
the DIALLER system, an attempt was made to formalise the transformation 
heuristics needed. As a test, they were then applied retrospectively to the 
financial application's operational hierarchy to yield a further pedagogic version. 
The two pedagogic versions were compared and found to be equivalent.

It would be pleasing to be able to report that the application of the 
transformation heuristics has been automated, but alas this is not at present the 
case. The problem is the difficulty a program has in interpreting commands such 
as "teach SETUP functions last, linked by INDEPENDent". (The linkage 
referred to is concerned with representing left/right dependency in the structure. 
It is used by the learner-control advice system.) If significant nodes in the 
classification structure were to be tagged by the designer as being of type 
SETUP, EXIT, and so on, then automatic transformation might be possible. The 
programming effort required should not be underestimated. The operational 
classification is represented - on paper at present - as a general tree. Application 
of the heuristics and other transformations yields a binary tree structure for the 
pedagogic classification. The resulting tree is more straightforward to navigate 
during the tutorial delivery phase. The reasons for this are concerned with the 
DEPEND/INDEPENDent left-right linkage and have been more fully described 
in chapter 3.

In summary, the task command hierarchy element of the dialogue specification 
from the systems analysis and design stage can be used as the domain

116



Chapter 5

information required by a tutoring system. However, such information must first 
be transformed from its original operational ordering into a pedagogic ordering.

The questions about teaching - what and when - have been addressed in terms 
of the curriculum being taught. They are not addressed here in relation to meta- 
level reasoning about knowledge of teaching, such as teaching operations to be 
invoked following diagnosis of particular learner errors. Dealing with such issues 
requires that a tutor incorporate far more knowledge about teaching and a much 
finer-grained model of the learner than the rudimentary model used in LIY. 
Both would be necessary - teaching knowledge alone would not provide a 
significant advantage over the current situation in LIY without there being 
knowledge of the learner's current state to which the teaching knowledge could 
be applied.
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5.2 "LIY is a portable tool for producing and delivering tutoring 

systems".

This aim has been achieved, although the LIY approach is most suited to 
hierarchical command systems, as discussed in the previous section. The 
applications which are tutored by LIY differ from each other in that the 
DIALLER program does not alter its environment, although it appears to. On 
the other hand, the ELICITOR program does useful work as a general-purpose 
LIY tutorial elicitor and saves the elicited information; it thus alters its 
environment and updates files on disk.

To build a tutor for a new application the designer runs the ELICITOR program. 
This will create a subdirectory for that application and then interact with the 
designer to create within it a Lisp-based representation of the task classification 
structure, TA.LSP. Consistency checking is performed on the nodes in this 
structure as it is elicited from the designer. When complete the structure is 
displayed on the screen and the designer can use the mouse to point to particular 
nodes. They can then be enhanced with such information as path-names for 
slide shows, sequences of teaching operations on the node, and so on. This 
enhancement must currently be performed by adding the appropriate Lisp code.

For tutorial delivery there are only two files which contain application-dependent 
code: TA.LSP, of which there is a copy to hold the task classification structure 
for each particular application domain, and LIY.LSP. This latter file comprises 
the top-level routine which invokes everything else; its domain dependence is due 
to its requirement that it must know the path-name of the TA.LSP file for the 
application being taught.

The desire for portability has shut out from this research many topical issues 
germane to ITSs. To take one example, several workers have built into their 
tutors libraries of common misconceptions or "bugs" (Anderson and Reiser 1985). 
Such an approach would not be appropriate in LIY since it doesn't employ a set 
of learner modelling rules to perform diagnosis. (Diagnosis in LIY is issue- 
based, as described in section 4.2.) If the diagnosis module were to be replaced

118



Chapter 5

by a rule-tracing approach then rules - and mal-rules (Sleeman and Brown 1982) 
- would need to be built for each application by hand, thus losing the goal of 
portability. Sleeman approaches the domain-independence issue from the other 
end, in that he is proposes a scheme for the automatic generation of mal-rules 
for a given domain (Sleeman 1987). The price paid for the robustness needed 
by the portability requirement of LIY is a lack of sophistication in its approach 
to diagnosis in comparison with rule-based approaches.
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5.3 Meeting the subsidiary aims

The first of these aims was that

"the learner should be allowed to interact directly with the software interface 

being taught".

This aim has been met, the learner being able to run the application program 
being tutored directly, or being placed under tutorial control at some pre 
determined point in the application. This means that the learner can be required 
by the tutoring system to manipulate the application program from some 
"internal" position, for example by making a selection from a menu at other than 
the top level. Furthermore the tutorial designer can set up the application in any 
desired way by use of the teaching operation "create environment". This feeds 
into the application a sequence of commands which would normally be keyed 
in directly by a user.

This facility is a most significant feature of LIY and appears to work well. 
More programming effort could usefully be expended on making the application 
more learner-proof, for example inhibiting file-creation activities which had not 
been requested by the tutorial designer. It is not at present clear the extent to 
which this would be possible while maintaining the strict separation between the 
application and the tutorial; at present the application software is implemented 
without making any concessions to the existence of the tutorial.

One difficulty with this type of approach is that LIY operates in more than one 
mode, with the learner interacting at different times with the tutorial and with 
the application. There can be possible confusion on the learner's part as to the 
current state. This is a problem which has been pointed out in connection with 
earlier systems (du Boulay et al. 1981). They discuss the difficulties faced by 
novices in using the BIP system which was designed to aid the learning of the 
programming language BASIC (Barr et al. 1976). It incorporated not only the 
BASIC interpreter and editor but also the tutor and a commentator on BASIC 
programs. Novices were unclear at certain points as to whether they were
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interacting with the BASIC editor or the interpreter, or indeed the tutoring 
system. This type of confusion is currently quite possible in LIY, which has 
three modes. During a tutorial slide show the learner must press the space bar 
to advance; pressing anything else does no harm but results in a warning beep. 
This overcomes the difficulty which can arise when the learner, having been 
instructed to manipulate the application, is still at a control-point in the tutorial 
delivery phase rather than in the application proper. Intended application input 
simply elicits the warning beep. Alternatively the learner can be asked by the 
tutorial for "direct" input; the learner is being asked a question but must respond 
directly, rather than interact with the application. Here, the prompt displayed is 
very different from the slide show. The more it differs from the application the 
less likely it is to confuse the learner but of course this is dependent on the 
screen design of the application program. Finally, the learner can interact with 
the application directly while perhaps being under the impression that a slide 
show is being displayed. LIY does not really address this difficulty, although 
with a more powerful windowing facility it would in principle be possible to run 
each of the modes consistently in different windows on the screen so as to 
minimise the possibility of learner confusion. In different situations, however, 
users have reported confusion in relation to multiple window systems; such a 
problem has been seen with students meeting Turbo Prolog for the first time.

"The learner should be able to interrupt at any time."

This aim has been fully met. The learner can interrupt in a uniform way 
whether the tutorial is in the delivery phase or an assessment phase, including 
the case in which the application program itself is running. Following an 
interruption the learner can select a course of action from the menu shown in 
figure 3.5 of chapter 3. Switching to a different topic, either by browsing using 
the mouse or by keying in the name of the topic, results in "advice rules" being 
applied with reference to the projected move and the state of the current learner 
profile. This was described in detail in chapters 3 and 4. The effect of these 
rules is either to enable the requested move or to offer one of a graded sequence 
of messages advising against the move. A factor considered in the decision
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process resulting in this advice is the skill level of the learner, this is determined 
from the history of recent previous assessments. However, the advice the learner 
receives is expressed in terms of the missing prerequisite topics not so far taught. 
Whatever the strength of advice against the move that LIY offers, the learner can 
choose to ignore it and force the move if desired.

This ability to interrupt is intuitively appealing. The need for an evaluation of 
its usefulness is proposed in section 5.4.1 below.

"LIY should comprise not only a delivery system but also an authoring system."

This aim was proposed in order to support the portability of LIY and as such 
it was discussed in the previous section. A limited authoring environment now 
exists, mainly for eliciting the task classification. It would be useful to expand 
the capability of the authoring system if LIY were to be used in a development 
environment, although to do so would contribute nothing to this research.

"LfY should incorporate intelligent tutoring technology where possible."

Current research with LIY has focused on producing a complete tutoring system 
in order to experiment with a particular approach based upon dialogue 
specification. Many of the issues dealt with in this undertaking, such as 
replacing input-output routines for the purpose of logging user interaction with 
the application software, clearly bear no relation to the issues central to ITSs. 
However, it was felt to be highly desirable to base the LIY software upon an 
existing ITS architecture, which in this case was that proposed by Hartley and 
Sleeman (Hartley and Sleeman 1973). Without going over all the ground 
covered in detail earlier, the LIY tutorial delivery program is structured to 
incorporate domain and learner representations, with a separate diagnosis module. 
There is in addition a representation of the teaching strategy as a set of rules, 
together with a rule interpreter. Finally, there is a set of teaching operations, 
including diagnosis, which can be invoked by the rules. The declarative nature
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of the teaching strategy was found to be very helpful in the development phase; 
changes to the control behaviour of the tutor were straightforward. The omission 
of a bug catalogue - an enhancement to the original Hartley and Sleeman 
architecture proposed in more recent research - has been discussed earlier in this 
chapter.

No natural language interface has been built into LIY because, unlike for 
example the SOPHIE system (Brown et al. 1982), it cannot solve problems set 
by the learner in the domain. Software interfaces, as an application domain, are 
restricted in terms of their syntax and semantics, so that posing problems in 
natural language about such interfaces can arguably be regarded as unnecessary. 
More specifically a distinction can be made between questions concerning objects 
in the application domain, which the interface permits through its syntax and 
semantics, and questions concerning the manipulation of the interface itself, 
which might well be posed in natural language. To enable LIY to understand 
relevant natural language would require that it contain much more domain 
knowledge than the present task classification structure. It could be done - as 
for example in SOPHIE - but it would remove the portability which LIY 
currently offers.

Diagnosis in the LIY system uses a form of issue-based differential modelling, 
as exemplified by the diagnostic method used in the WEST game (Burton and 
Brown 1982). As discussed in chapter 4, in LIY there are just four issues. This 
is sufficient to provide accurate diagnosis in terms of evaluating the correctness 
of the learner's interaction with the application software in most cases. It 
permits the learner's interaction to be overloaded, in the sense that more 
interface operations are permissible than those in the correct minimal string 

provided by the tutorial designer. This gives a much more "intelligent" feel to 
the system. In a small proportion of cases there can be problems: the learner 
can carry out state-changing commands unnoticed by the tutoring system. In the 
DIALLER, saving the result of a setup is a state-changing command; 
manipulating setup parameters is not. If the learner is requested to alter and 
save one such parameter but alters two before the state-changing setup, LIY will 
not be aware of this in its present configuration.
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The feedback provided to the learner by LIY's diagnosis is rather limited. Since 
the issues with which it is concerned are based on key-stroke sequences - the 
lowest level of abstraction - it can really only provide feedback at this level. 
An interesting way to make the best use of this feedback might be to replay the 
"correct" key-stroke sequence through the application in slow motion in "teach 
me" mode, making the learner follow on the keyboard. Other feedback provided 
by LIY is implicit in terms of mastery of topics from the task classification. 
This provides rather a coarse representation of procedural skills at a level of 
abstraction above the task level.
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5.4 Further work

The sections below describe ways in which the LIY work might be taken 
forward in terms of both research and development. In the latter case the 
discussion concentrates on measures which would improve performance and 
appearance.

5.4.1 Research

Jacob's ladder

Section 2.3 described a series of points on a graduated range of syntactic and 
semantic possibilities, referred to (in this thesis only) as Jacob's ladder (Jacob 
1983).

The selection of a rung for LIY was motivated by a desire for parsimony; only 
the minimum elements of an interface specification have been used in order that 
the LIY approach should be applicable across a range of domains. The 
consequences of using alternative rungs would be interesting to explore.

Moving up to rung (iv) would add specification of application input syntax to 
the pre-existing command syntax. Even this addition would greatly inhibit 
portability unless a universal parser could be developed. Clearly, however, the 
quality of diagnostic messages to the learner would be improved.

Adding semantics would obviously complicate matters further. The objective of 
portability would be swept away under a wave of domain-specific information. 
However, the tutor would appear to the learner to be much more intelligent since 
it would be able to detect equivalences at a higher level than currently. With 
a suitable knowledge representation technique, such as a semantic net, a tutoring 
system could, to take an earlier example, detect the equivalence between
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renaming a file on the one hand and copying and deleting the original on the 
other.

As a next step one might therefore elect to augment the current LIY specification 
elements with the command semantics - rung (ii) without the application input 
syntax. An implementation at this level might then draw considerably on 
research in planning - especially the idea of the procedural network (Sacerdoti 
1977) - as incorporated, for example, into the TOTS system (Rickel 1988).

Bound up with the question of semantics is the requirement that the LIY tutoring 
system be able to navigate over the task command hierarchy for diagnostic 
purposes. Restrictions on the types of user interface for which LIY is suited 
have been stated earlier and exclude, amongst other things, the use of hot keys. 
However, it should be possible to incorporate such devices into LIY so long as 
the control-flow model were more elaborate. Currently, the specification must 
provide semantic information concerning control-flow following leaf-processing. 
Hot-key processing differs slightly from leaf-processing in that there is a variable 
return-point - the point of invocation - so that it might be appropriate to augment 
the domain model so as to process dynamically a stack of "return addresses" 
along the lines of the familiar software subroutine or interrupt-processing 
mechanisms.
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Evaluation

Although LIY has been developed into a complete system, no evaluation of its 
effectiveness has been performed. Because it is a complete system dealing with 
a domain - software interfaces - which has not been greatly researched at 
present, there are several aspects of LIY which deserve to be evaluated 
separately. Consider some examples:

(i) Do learners like the way the tutor invokes the application software? 

(ii) Do they find this confusing?

(iii) How often should a tutorial use this teaching method - on every topic, or 
just now and again?

(iv) Feedback on errors has been identified earlier as being rather limited: is 
this critical in this kind of domain?

(v) If so, to what extent?

(vi) Is the question of feedback so important that issue-based diagnosis should 
be abandoned, or is it a matter of incorporating further issues into the diagnosis 
heuristics?

(vii) Is the domain structure based upon task classification sufficiently supportive 
to the learner, or would a task structure based upon learners' views of their 
tasks, perhaps elicited from protocols, be better?
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If the answers to some of these questions indicate that changes should be made 
to LIY then it would be useful to consider the cost of introducing techniques to 
improve the tutor. LIY is attempting at present to exploit to maximum effect 
a rather minimal amount of information - the task classification structure of a 
domain. It would thus be useful to know how the economics of tutorial 
production would alter if any improvements introduced to LIY significantly 
increased its cost. Clearly there is a trade-off between the cost of producing a 
tutor on the one hand and its effectiveness at teaching on the other, the question 
which needs to be resolved is how to determine, for a given market, some 
optimum point on the cost-performance curve.

One of the subsidiary aims of LIY is that the learner should be able to interrupt. 
Hartley has twice studied groups of learners who were offered learner control 
(Hartley J.R. 1981, Hartley, J.R. and Tait, K. 1986). It was found that, although 
learners apparently liked learner control, the effectiveness it offered to their 
learning behaviour could not be identified from evaluative studies. Given that 
many software packages are quite similar to each other, it is believed that LIY 
would support learners transferring their skill acquired with one package to some 
other product In this case it is quite probable that such learners would not want 
to study a complete tutorial; learner control provides an effective way for them 
to adapt the tutorial to their own needs. In the software interface domain it is 
intuitively appealing that the learner should be able to interrupt in order to exert 
some control over what is being taught; this intuition needs to be tested.

The notion of categorising learners as "holists" and "serialists" is not really 
germane to LIY and has not been fully developed. Nevertheless it would appear 
to be possible to make such a distinction by observing how a learner uses learner 
control and thus adapting the teaching strategy accordingly. Continuing with this 
theme of identifying features of the learner, it would be interesting both to 
develop and to test the idea of maintaining separate characterisation and 
performance profiles, as proposed earlier and implemented in skeleton form. The 
characterisation profile contains information inferred about the learner's 
interaction style, particularly holist/serialist, which could carry across tutorials. 
Currently, this characterisation profile information is based on the qualitative 
variables DUCKER and PUTTER (see section 3.2.2).
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Littman and Soloway write:

"There can be no doubt that evaluating Intelligent Tutoring Systems 

(ITSs) is costly, frustrating and time-consuming. In fact, in our own 

work to build PROUST ... evaluation has consumed nearly as much 

effort as the design of PROUST itself."

(Littman and Soloway 1988)

This is depressing. They ask the question as to whether evaluation is really 
worthwhile. Would it not perhaps be better to let the marketplace decide on the 
value - or otherwise - of a particular ITS? However, they go on to assert that 
evaluation is very important in order to further our understanding of cognitive 
science, artificial intelligence and education. This point is fundamental to all 
science; there is little to be gained from any experiment which involves the 
construction of something unless the constructive phase is followed by an 
evaluative phase. The issues that LIY poses as a portable tutoring shell for 
software interfaces need to be evaluated, yet to do so is beyond the present 
phase of LIY research.

Any evaluation would need to concentrate upon those issues which are central 
to LIY rather than those which are peripheral, i.e. it should focus on learners' 
views of the following:

(a) interaction style, in which the tutor causes the learner to 
interact with the application software;

(b) feedback concerning learners' errors. This topic is intimately 
associated with the effectiveness of issue-based diagnosis;

(c) the pedagogic task structure;

(d) learner control.
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Scaling up

LIY has been developed and tried with two sample applications which are both 
rather small. It would be very interesting - and important if LIY were to be 
considered for tutoring a real application - to discover the limits or weaknesses 
of the LJY approach when applied to a large software interface. There would 
be implications for both the authoring and delivery environments. Common to 
both would be the management of a large task space. For the learner this 
would require the ability to handle a substantial task structure. The browsing 
facility, with a display of parts of the task structure on the screen, could well 
present the learner with a severe test of short-term memory. Equally, research 
would be needed to investigate the effects of large domains upon a learner's 
long-term memory; it would be necessary to examine the learner's ability to 
remember the correct task structure, as a result both from inferring it from the 
tutorial directly and from manipulating a display of it when browsing. To 
complicate matters, interface users do not usually have to remember the whole 

of an interface; so long as the user can recall that there exists a particular 
operation which will achieve the user's task, menu systems can provide prompts 
which will support navigation to and execution of the appropriate interface 
command. Thus research into LIY's effectiveness for learners of large software 
interfaces would need to separate effects of the LIY tutorial from effects of the 
software interface design.

For the design of a tutorial for a large software interface it would be instructive 
to test the effectiveness of the transformation heuristics. These are used for 
conversion of a task classification structure from an operational ordering to a 
pedagogic ordering. Because they are applied recursively to a tree structure 
there is no reason to suppose that the size of the tree imposes any limitation on 
their applicability.
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Making LfY more "intelligent"

In the light of the major LIY aim of portability, section 5.2 above discussed the 
difficulties of enhancing an LJY tutorial by including a "bug catalogue" and 
using model-tracing for diagnosis, either with or without a plan recognition 
strategy. Such techniques appear to provide the most promising approach to 
making LIY more intelligent. Hoppe describes the use of a task-oriented parser 
applied to the user's input stream to identify higher-level tasks (Hoppe 1988). 
Taking Unix as an example, the higher-level external task replace can be broken 
down into the internal (i.e. command-level) tasks delete and move. Hoppe's 
Prolog task parser can then recognise the user's intention of replacement by 
identifying delete and move commands in the user's key-stroke sequence. This 
is somewhat similar to the plan recognition strategy of the MACSYMA Advisor 
(Genesereth 1982).

Rule-based model tracing in the Lisp Tutor (Anderson and Reiser 1985) is based 
upon the ACT* theory of learning (Anderson 1983), whereas LIY incorporates 
a pragmatic knowledge of instruction based on a prerequisite knowledge 
hierarchy, similar to that proposed by Gagne (Gagne et al. 1988). Ohlsson 
points out that despite the paucity of theories of learning, people actually do 

learn, and he emphasises the importance of looking at the way in which 
teaching is carried out (Ohlsson 1986). Much is known about teaching: not all 
tutors need to be based upon a theory of learning. Other A.I. techniques might 
be considered for LIY, such as incorporating a module for understanding natural 
language. It is unclear how any of these techniques would be compatible with 
the portability requirement or with a domain based solely on the task 
classification structure.

With the objective of retaining LIY's portability, it would be useful to examine 
whether the set of issues tested during student diagnosis could be enlarged, 
permitting a greater degree of feedback to be provided to the learner.
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The teaching strategy incorporated in LIY's rules could be improved. If the 
architecture were to be enhanced so as to reflect the structure of the 
figure-of-eight model proposed in chapter 4, then there would be a component
- the "hypothesiser" - which could suggest a change of teaching strategy as a 
remedy for poor learner performance in specific instances. This could substitute 
one set of teaching strategy rules for another, for example navigating over the 
task tree in a different sequence in the light of inferred holist/serialist learner 
preferences. Alternatively, various teaching strategies - expressed as alternative 
sets of rules - might perhaps be drawn from those used in DOMINIE (Spensley 
and Elsom-Cook 1988), for example "cognitive apprenticeship" and "discovery 
learning".

Continuing with the figure-of-eight model, the central ring is responsible for the 
current teaching strategy and for learner-control. Although in LIY the learner 
can always interrupt, in principle the degree to which such interruption is 
permitted could be changed dynamically. This might be useful when teaching
- for the first time - some critical operation for which interruption could be seen 
as undesirable, such as use and recovery of back-up files. If learner modelling 
in LIY were to use a more fine-grained representation, there might be a case for 
considering altering, on a moment-to-moment basis, the degree of permitted 
learner-control in the light of the learner's current state.

Implementation issues : direct-manipulation devices

In LIY the key-stroke sequence is captured in "watching mode" to watch and 
record the learner's actions for subsequent diagnosis. LIY could not at present 
interpret the learner's use of the mouse in this context. LIY applications must 
be menu- and text-based. Use of the mouse can only occur at delivery-time 
when the user has interrupted, whereupon any "watching" is abandoned.

Suppose that using a mouse or some other pointing device were part of the 
application. Use of the mouse in a menu-based system is functionally equivalent 
to the use of the arrow cursor-control keys. However, because of their discrete
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nature the arrow keys permit the retention of the state-transition paradigm. This 
is not the case with the mouse because of its inherently continuous nature.

What does the mouse do? In cases such as menu systems it causes a value to 
be returned which is associated with the "clicked" object. In other situations, for 
example where painting or drawing programs are in use, it merely causes a re 
arrangement of the screen. In this latter case it is not possible for the LIY 
approach to make any contribution; indeed, it is hard to see how any tutoring 
system using current technology could suitably assess the result of the user 
carrying out the task required by, for example, "Using the mouse, draw an apple 
on the screen". In the former case, in which a functional value is returned as 
the result of a clicked object, this functional value can be considered to be the 
answer to the implicit question "What would you like to select?". As such, the 
mouse routine would be in a position to insert the returned value into the 
learner's input stream as though the learner had typed the answer to the implicit 
question. Thus the task model of the application would behave as if all VO 
were text-based. In summary, LIY could address the difficulties inherent in 
interpreting user responses in mouse-driven systems in which mouse clicks return 
functional results, but cannot deal with systems in which the mouse is used to 
produce some behaviour which cannot be represented as an VO stream, such as 
altering the state of the screen. An example of the latter would be the request, 
in an ARK-like system, to "bounce the ball three times" (Smith 1986). Further, 
in an application without a mouse but in which the cursor keys were used for 
pointing, although as argued above it would in principle be possible to 
incorporate cursor movements into the model of the application as state 
transitions, it would be better to regard them as being like mouse movements, 
finally returning a functional value to be incorporated into the learner's input 
stream. What is needed therefore is a user-interface management system to 
separate details of the mechanics of manipulation of the interface from the 
representation of objects being manipulated. The application would need still to 
be text- or menu-based whether or not a pointing device were to be used, 
although the menus could be of the "pull-down" variety. Such a system could 
then allow a tutor to access objects at a higher level of abstraction than the key 
stroke-sequence level currently used by LIY.
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Implementation issues : OOPS

With the natural separation in LIY between the tutoring system and the 
application being taught, it would appear promising to consider implementation 
using an object-oriented programming system, or OOPS. Since LIY and its 
sample tutored applications are presently implemented in Common Lisp, an 
obvious system for re-implementation would be the Common Lisp Object 
System, CLOS. Object-oriented systems provide several advantages to the 
program designer and implementor, not the least of which is powerful support 
for abstraction in terms of module interfaces. It would be instructive to discover 
how OOPS might help, not only in designing and implementing the architecture 
of the obvious tutor/application interface, but also in the exploitation of the user- 

interface management system described in the previous section. Whether or not 
OOPS techniques were used, it would be interesting to examine the effects of 
redesigning the LIY architecture so that the tutoring system and the application 
run as separate processes under a multiprocessing system such as UNIX or OS/2.

5.4.2 Development

A considerable improvement could be made to the authoring system by the use 
of a "show me" mode. This would permit the authoring system to record the 
tutorial designer's interaction with the target application, typically so that it 
could be set up in some desired state for the learner. LIY forces the application 
into such a state by transparently substituting a character string, stored with a 
lesson, for an equivalent key-stroke sequence which the application expects from 
the keyboard. Because it is performed by substituting Lisp's normal input-output 
routines the application need not be aware of this. The desired key-stroke 
sequence to achieve the effect is presently built into LIY by the designer, simply 
as a string. With a "show me" mode this string could be inferred while the 
designer used the application to reach the state desired for the learner. Such a
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device would be useful for setting the application to a state which displayed a 
particular sub-menu, possibly combined with data entry to build some desired 
application environment. There is an analogy here between this "show me" 
mode and the "teach me" mode proposed in section 5.3 for providing the learner 
with error feedback.

For the student profile it was intended to incorporate some measure of "literacy" 
associated with the application package being tutored. This could be elicited 
from the learner statically at the start of the tutorial in answer to a question 
such as "Have you ever used a XXXX before?". XXXX might stand for "word 
processor" or "spreadsheet" and would need to be a key-word provided by the 
designer. Such knowledge could be used by the tutoring system in a similar 
way to that suggested earlier when the need for a change of strategy was 
detected: an alternative teaching strategy could be used by interpreting a 
different rule-set. A possible strategy, having detected a package-literate learner, 
would be to teach all the non-leaf nodes of the task classification structure first. 
This would provide the learner with an overview without communicating a vast 
amount of detail. It might prove sufficient to enable the package-literate learner 
to grasp the entire domain so long as the use of the actual commands, given 
their context, were straightforward.

At present there is a certain inconsistency between the way LIY uses menus and 
the mouse. Figure 3.5 illustrated the menu which appears when the learner 
interrupts. If option "B" (browse) is selected, then a diagram of the task 
classification structure appears from which the learner can select an item with 
the mouse. Ideally the mouse could also be used to select from the menu of 
figure 3.5. The browser could be improved if it enabled summary text 
information to appear in a window. Thus the user might click with the left 
mouse button to see summary information on the function of a command in the 
task structure, and click with the right button to select that topic for the full 
tutorial.
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5.5 Conclusion

The work described above situates a technique for the specification of a user 
interface within a spectrum of such techniques. It demonstrates how an interface 
specification can be used as the basis for constructing a tutorial for teaching the 
use of that interface. Furthermore, the specification itself would, in an ideal 
world, form part of the systems development effort for implementing the 
application. In principle, therefore, an economy could be made as a result of 
sharing the specification between the application development and tutorial 
development stages. In fact the major part of the user-interface specification 
which is utilised, the task classification structure, needs to be transformed from 
an operational to a pedagogic ordering. Heuristics are proposed to achieve this, 
although human expertise is required to apply them.

A portable rule-based shell has been developed which supports the delivery of 
tutorials for a range of software application package interfaces. The use of the 
shell with two such interfaces is reported. This has additionally required the 
construction of the applications and their tutorials, although it is important to 
note that the applications themselves do not depend in any way on features in 
the shell; they can be run together with the tutoring shell or in stand-alone 
mode. A computer-based authoring environment provides support for the 
development of tutorials.

The shell allows the learner of a software interface to interact directly with the 
application software being learnt while remaining under tutorial control. The 
learner can always interrupt in order to request a tutorial on any topic, although 
advice may be offered against this in the light of the tutor's current knowledge 
of the learner. This advice can always be over-ridden, however.

Learner diagnosis is effected by recording the learner's key-stroke sequence from 
interaction with the package and then parsing it against a model of the 
application which is based on the task classification structure. The same 
operation is carried out on a sequence provided by the tutorial designer.
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Heuristics applied to the differences between the two outcomes provide the basis 
for feedback to the learner.

Currently, applications which could use the approach described are restricted to 
being text- and menu-based. They cannot make use of a mouse, for example. 
Furthermore they need to be written in the language used to implement the shell, 
which is Common Lisp, although another language could be used so long as 
there was a suitable interface medium, such as C, to the shell.

The approach reported here is suitable for an unsupported software interface 
learner and is named LIY ("Learn It Yourself). With further development, it 
would appear to provide a promising method for augmenting a software 
engineering tool-kit with a new technique for application tutorial production.
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Appendix A - Teaching strategy rules

; Top-level strategy rules. Rulesets here are
; concerned both with
; default control (including default handling of
; learner-control requests)
; and a default choice of teaching operation.

(setf MAIN-CONTROL-RULES '(

(alO
(*BREAK-PRESSED* (not *L-C-ENABLED*)) 
((setf *BREAK-PRESSED* nil) 
(princ "Learner-control is not available in

this implementation.") 
(MSG-GET-ANY-KEY))

)
(a20

(*BREAK-PRESSED*) 
((setf 'BREAK-PRESSED* nil) 
(setf *LOOPLIMIT* 1) 
(INTERP LEARNER-CHOICE) 
(setf *LOOPLIMIT* nil))

)
(a30

((not (NODES-TO-LEARN)) *L-C-ENABLED*) 
((setf *LOOPLIMIT* 1) 
(INTERP LEARNER-CHOICE) 
(setf *LOOPLIMIT* nil))

) 
(a40

((not 'CURRENT-GOAL*) (not (NODES-TO-LEARN)))
((RESET-WHOLE-TA) 
(HALT "All nodes learnt & no further goal

established."))

(a50
((not *CURRENT-GOAL*) (not *CURRENT-NODE*)) 
((setf *CURRENT-NODE* (ROOT *TA*)))

) 
(a60

((not *CURRENT-GOAL*))
((setf *CURRENT-GOAL* (NEXT-NODE *CURRENT-NODE*)) 
(setf *CURRENT-NODE* *CURRENT-GOAL*))
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(a70
('CURRENT-GOAL* 
(NEW-NODE-P 'CURRENT-GOAL*)
(DESIGNER-CONTROL-RULES-EXIST 'CURRENT-GOAL*)) 
(QNTERP (eval (DESIGNER-CONTROL-RULES-EXIST 

*CURRENT-GOAL*))))

(a80
(*CURRENT-GOAL*) 
((SELECT-TEACHING-OP)) ; = (BSTTERP TEACHING-OP-RULES)

;LEARNER-CHOICE rules. *L-C-ENABLED* is definitely true.
;Either BREAK has been
;pressed (there may or may not be a current goal), or
;there are no more nodes
;to learn so revision is being offered.

(setf LEARNER-CHOICE '( 
(blO 

;Unconditionally:-
0 
((terpri)
(princ "OK - What would you like to learn? ") (terpri) (terpri) 
(princ "Press RETURN to continue with your original

topic. 11) (terpri)
(princ "Type Q to quit LIY") (terpri) 
(princ " B to browse") (terpri) 
(princ " E to explore ") 
(princ * APPLICATION*) 
(princ " freely") (terpri) 
(princ " or the topic's name.") (terpri) 
(princ "All end with RETURN") (terpri) 
(VIDEO HI) (princ ">") (VIDEO) 
(setf *RESPONSE* (READ-RESPONSE)) 
(terpri))

)
(b20

((equal *RESPONSE* 'Q)) 
((princ "Saving your current environment..") 
(terpri)
(UNMARK-AS-BEING-TAUGHT *CURRENT-GOAL*) 
(SAVE-TA)
(HALT "You will automatically restart from here next 

time. "))
) 
(b30

((equal *RESPONSE* 'B))
((setf *RESPONSE* (DIS-TA)))
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(b40
((equal *RESPONSE* '£)) 
((FREE-EXPLORATION) 
(EXIT-RULESET))

(b50 ; For debugging. 
((equal *RESPONSE* '!)) 
((setf sys:*break-event* 'break) 
(break))

(b60
((not *RESPONSE*)
(equal *INTERACTION-BEFORE-BRK* 'TEST) 
*L-C-NODE-LIMTT*); i.e. already navigating...

((setf *L-C-NODE-LIMIT* nil)
(UNMARK-AS-BEING-TAUGHT * CURRENT-GOAL*) 
(setf *CURRENT-GOAL* nil);Go back to 
(setf *CURRENT-NODE* nil); "natural" next node. 
(setf *DUCK-CNT* (+ *DUCK-CNT* 1)) 
(setf *INTERACTION-BEFORE-BRK* 'UNKNOWN) 
(EXIT-RULESET))

(b70
((not *RESPONSE*) 
*L-C-NODE-LIMTT*);i.e. already navigating...

((setf *L-C-NODE-LIMTT* nil)
(UNMARK-AS-BEING-TAUGHT *CURRENT-GOAL*) 
(setf *CURRENT-GOAL* nil);Go back to 
(setf *CURRENT-NODE* nil); "natural" next node. 
(EXIT-RULESET))

) 
(b80

((not *RESPONSE*))
((EXIT-RULESET))

)
(b90

((not (boundp *RESPONSE*))) 
((princ "is not a correct name.") (terpri) 
(princ "Press Ctrl-Break again and type ") 
(princ "the correct name when requested.") 
(MSG-GET-ANY-KEY) 
(EXIT-RULESET))

(blOO
((ALREADY-LEARNT *RESPONSE*))
((UNMARK-AS-BEING-TAUGHT *CURRENT-GOAL*) 
(setf *CURRENT-GOAL* *RESPONSE*) 
(setf *CURRENT-NODE* *CURRENT-GOAL*) 
(setf *L-C-NODE-LIMIT* *CURRENT-GOAL*) 
(princ "You are revising ") (princ *RESPONSE*) 
(terpri)
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(MSG-GET-ANY-KEY) 
(EXIT-RULESET))

(bllO
((PREREQUISITES-LEARNT *RESPONSE*) 

; PREREQUISITES-LEARNT is a 
; boolean function on TA.

(equal *INTERACTION-BEFORE-BRK* 'TEST)) 
((UNMARK-AS-BEING-TAUGHT *CURRENT-GOAL*) 
(setf *CURRENT-GOAL* *RESPONSE*) 
(serf *CURRENT-NODE* *CURRENT-GOAL*) 
(setf *L-C-NODE-LMIT* *CURRENT-GOAL*) 
(setf *DUCK-CNT* (+ *DUCK-CNT* 1)) 
(setf *INTERACTION-BEFORE-BRK* 'UNKNOWN) 
(L-C-OUTCOME-A) 
(EXIT-RULESET))

)
(b!20

((PREREQUISITES-LEARNT *RESPONSE*)) 
((UNMARK-AS-BEING-TAUGHT *CURRENT-GOAL*) 
(setf *CURRENT-GOAL* *RESPONSE*) 
(setf *CURRENT-NODE* *CURRENT-GOAL*) 
(setf *L-C-NODE-LIMIT* *CURRENT-GOAL*) 
(setf *FLIT-CNT* (+ *FLIT-CNT* 1)) 
(L-C-OUTCOME-A) 
(EXIT-RULESET))

) 
(b!30

;Otherwise:-
() ; Unconditionally...
((setf *LOOPLIMIT* 1) (INTERP L-C-ADVICE))

;Learner-Control-ADVICE rules. At this point
; there's a distinct
; (i.e. non-null and valid) student *RESPONSE*
; concerning a routing
; request, possibly (but not necessarily) following
; BREAK, but there are
; unlearnt prerequisites in TA.
; The learner-control outcomes are :-
•

; L-C-OUTCOME-A : Message that the learner's 
; move is about to take place.
•> _
; L-C-OUTCOME-B : Mild advice against moving.
•>
; L-C-OUTCOME-C : Stronger advice against moving.
•
9

; L-C-OUTCOME-D : Very strong advice against moving.
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(setf L-C-ADVICE '(

(clO 
((equal (NO-OF-PREREQ *RESPONSE*) 1)
(not (WEAK)) (not (DUCKER)) (not (FLITTER))
(equal *INTERACTION-BEFORE-BRK* 'TEST)) 

((L-C-OUTCOME-A)
(UNMARK-AS-BEING-TAUGHT *CURRENT-GOAL*)
(setf *CURRENT-GOAL* *RESPONSE*)
(setf *CURRENT-NODE* *CURRENT-GOAL*)
(setf *L-C-NODE-LIMIT* *CURRENT-GOAL*)
(setf *DUCK-CNT* (+ *DUCK-CNT* 1))
(setf *INTERACTION-BEFORE-BRK* 'UNKNOWN)
(EXTT-RULESET))

) 
(c20

((equal (NO-OF-PREREQ *RESPONSE*) 1)
(not (WEAK)) (not (DUCKER)) (not (FLITTER))) 

((L-C-OUTCOME-A)
(UNMARK-AS-BEING-TAUGHT *CURRENT-GOAL*)
(setf *CURRENT-GOAL* *RESPONSE*)
(setf *CURRENT-NODE* *CURRENT-GOAL*)
(setf *L-C-NODE-LIMIT* *CURRENT-GOAL*)
(setf *FLIT-CNT* (+ *FLIT-CNT* 1))
(EXTT-RULESET))

) 
(c30

((equal (NO-OF-PREREQ *RESPONSE*) 1) 
(not (WEAK)) (not (DUCKER)) (FLITTER))

((L-C-OUTCOME-B))
) 
(c40

((equal (NO-OF-PREREQ *RESPONSE*) 1) 
(not (WEAK)) (DUCKER) (not (FLITTER)))

((L-C-OUTCOME-B))
) 
(c50

((equal (NO-OF-PREREQ *RESPONSE*) 1) 
(not (WEAK)) (DUCKER) (FLITTER))

((L-C-OUTCOME-B))
) 
(c60

((equal (NO-OF-PREREQ 'RESPONSE*) 1) 
(WEAK) (not (DUCKER)) (not (FLITTER)))

((L-C-OUTCOME-B))
) 
(c70

((equal (NO-OF-PREREQ *RESPONSE*) 1) 
(WEAK) (not (DUCKER)) (FLITTER))

((L-C-OUTCOME-B))
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(c80
((equal (NO-OF-PREREQ *RESPONSE*) 1) 
(WEAK) (DUCKER) (not (FLITTER))) 

((L-C-OUTCOME-B))

(c90
((equal (NO-OF-PREREQ *RESPONSE*) 1) 
(WEAK) (DUCKER) (FLITTER)) 

((L-C-OUTCOME-C))
) 
(clOO

((> (NO-OF-PREREQ *RESPONSE*) 1) 
(not (WEAK)) (not (DUCKER)) (not (FLITTER)))

((L-C-OUTCOME-B))
) 
(cllO

((> (NO-OF-PREREQ *RESPONSE*) 1) 
(not (WEAK)) (not (DUCKER)) (FLITTER))

((L-C-OUTCOME-C))
) 
(c!20

((> (NO-OF-PREREQ *RESPONSE*) 1) 
(not (WEAK)) (DUCKER) (not (FLITTER)))

((L-C-OUTCOME-C))
) 
(c!30

((> (NO-OF-PREREQ *RESPONSE*) 1) 
(not (WEAK)) (DUCKER) (FLITTER))

((L-C-OUTCOME-C))
) 
(c!40

((> (NO-OF-PREREQ *RESPONSE*) 1) 
(WEAK) (not (DUCKER)) (not (FLITTER)))

((L-C-OUTCOME-C))

(c!50
((> (NO-OF-PREREQ *RESPONSE*) 1) 
(WEAK) (not (DUCKER)) (FLITTER)) 

((L-C-OUTCOME-C))
) 
(c!60

((> (NO-OF-PREREQ *RESPONSE*) 1) 
(WEAK) (DUCKER) (not (FLITTER)))

((L-C-OUTCOME-C))

(c!70
((> (NO-OF-PREREQ *RESPONSE*) 1) 
(WEAK) (DUCKER) (FLITTER)) 

((L-C-OUTCOME-D))
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(c!80
((equal *RESP* 'F);Used in the L-C-OUTCOMEs. 
(equal *INTERACTION-BEFORE-BRK* 'TEST))

((UNMARK-AS-BEING-TAUGHT *CURRENT-NODE*) 
(setf *CURRENT-GOAL* *RESPONSE*) 
(setf *CURRENT-NODE* *CURRENT-GOAL*) 
(setf *L-C-NODE-LIMIT* *CURRENT-GOAL*) 
(setf *INTERACTION-BEFORE-BRK* 'UNKNOWN) 
(setf *DUCK-CNT* (+ *DUCK-CNT* 1)) 
(EXIT-RULESET))

(c!90
((equal *RESP* 'F));Used in the L-C-OUTCOMEs.
((UNMARK-AS-BEING-TAUGHT *CURRENT-NODE*) 
(setf *CURRENT-GOAL* *RESPONSE*) 
(setf *CURRENT-NODE* *CURRENT-GOAL*) 
(setf *L-C-NODE-LMIT* *CURRENT-GOAL*) 
(setf *FLIT-CNT* (+ *FLIT-CNT* 1)))

;Having selected a node to teach, select an appropriate 
Reaching operation.

;The logic is as follows:
; If there are DES-control-rules, run them
;- they must take over completely.
;Select a teaching operation by INTERP TEACHING-OP-RULES.
;This looks to see if there are DES-teaching-op-rules,
;in which
;case they're interpreted and they must take over
;from this point.
;If not, then the next default teaching operation
;is chosen which is
;stored in the COMMAND-STR attached to each node.

(setf TEACHING-OP-RULES '(

(elO
((DESIGNER-TEACHING-OP-RULES-EXIST 'CURRENT-GOAL*)) 
((INTERP (eval (DESIGNER-TEACHING-OP-RULES-EXIST

*CURRENT-GOAL*))) 
(EXIT-RULESET))

)
(e20

((NEW-NODE-P *CURRENT-GOAL*)) 
((GET-NEW-NODE-READY *CURRENT-GOAL*))
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(e30
((equal *LAST-INTERACTION* 'TEST) 
(equal "LAST-TEST-RESULT* 'UNKNOWN)) 

((EVALUATE-LAST-TEST))

(e40
((equal *LAST-INTERACTION* 'TEST) 
(equal *LAST-TEST-RESULT* 'PASS)) 

((INCR-COMPTNCE))

(e50
((equal *LAST-INTERACTION* 'TEST) 
(equal *LAST-TEST-RESULT* 'FAIL)) 

((DECR-COMPTNCE))

(e60
((equal *LAST-INTERACTION* 'TEST) 
(equal *LAST-TEST-RESULT* 'FAIL) 
(equal *SAME-TEST-PREVIOUS-TIME* TAIL))

((terpri)
(princ "Type NEXT if you would like to move on, ") 
(princ "or press RETURN to try again: ") 
(setf *SKIPPING* (READ-RESPONSE)))

(e70
((equal "LAST-INTERACTION* 'TEST) 
(equal "LAST-TEST-RESULT* 'FAIL) 
(equal *SAME-TEST-PREVIOUS-TIME* 'FAIL) 
(not *SKIPPING*))

((SET-REVISING-NODE-COM-STR *CURRENT-GOAL*))
)
(e80

((equal "LAST-INTERACTION* 'TEST) 
(equal *LAST-TEST-RESULT* 'FAIL) 
(equal *SAME-TEST-PREVIOUS-TIME* TAIL) 
(equal "SKIPPING* 'NEXT)) 

((terpri) (princ "The correct response should have
been:")

(terpri) (princ *CORRECT-STR*) 
(CLEAR-CURRENT-TEST-RESULT) 
(CLEAR-PREVIOUS-TEST-RESULT) 
(MSG-GET-ANY-KEY) 
(GET-NEW-FRAGMENT-READY))

)
(e90

((equal ""LAST-INTERACTION* 'TEST) 
(equal *LAST-TEST-RESULT* TAIL) 
(not (equal *SAME-TEST-PREVIOUS-TIME* TAIL))) 

((SAVE-CURRENT-TEST-RESULT) 
(SET-REVISING-NODE-COM-STR *CURRENT-GOAL*))
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(elOO
((equal *LAST-INTERACTION* 'DEL-BRK)) 
((SET-REVISING-NODE-COM-STR *CURRENT-GOAL*))

(el 10
((equal "LAST-INTERACTION* 'APP-BRK)) 
((SET-REVISING-NODE-COM-STR "CURRENT-GOAL*))

)
(e!20

((null *NODE-COM-STR*)) 
((UPDATE-ENVIRONMENT) 
(serf *CURRENT-GOAL* nil) 
(EXTT-RULESET))

(e!30
(*NODE-COM-STR*) 
((DO-NEXT-TEACHESfG-OP))
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Development of the DIALLER tutorial

The objective of this section is to demonstrate the evolution of the full task 
classification structure for the DIALLER tutorial - essential for modelling the 
domain during learner diagnosis - from the necessary elements of the user 
interface specification. Appendix C demonstrates the techniques described here 
in the development of the ELICTTUT tutorial.

The elements of the user interface were discussed in chapter 2 and comprise:

(i) task command hierarchy;

(ii) syntax of input commands;

(iii) terminators for application (non-command) input;

(iv) semantics indicating flow of control following leaf command processing.
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The tutorial development process will demonstrate, in sequence, the following 
stages:

(1) The task hierarchy is shown - unstructured - from the systems analysis 
stage. This will not be in pedagogic sequence and will be very similar to figure 
2.3 showing the DIALLER operational ordering and to figure 3.19 showing a 
similar structure for the MS-DOS example.

(2) Next, the commands which are associated with the tasks in the hierarchy 
from the previous stage are indicated. For the two LIY tutorials these 
commands are very simple, but they represent the command syntax or "syntax 
tokens" for each task.

(3) The terminators for non-command (i.e. "application") input are defined in 
relation to the hierarchy in stage 1.

(4) Semantic information concerned with the application control flow following 
the processing of a leaf node is indicated.

(5) Disregarding the added information from stages 2 to 4 for the moment, 
diagrams show the results of applying the heuristic and binary tree 
transformations described in section 3.5 to the structure from stage 1.

(6) Finally, the Lisp representation is shown which is actually used in the 
DIALLER tutorial and which corresponds to the structure from stage 5, 
augmented with the extra information from stages 2 to 4.
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(1) The development of the task hierarchy

This stage illustrates the design process in action following the systems analysis 
stage. A "first cut" design (along the lines of fig. 2.3) yields figure B.I.

DIALLER

DIAL.DIRECT DIAL_FROM_MEMORY SETUP QUIT

Fig. B.I

This shows that, at the top level, the DIALLER operations can be thought of as 
consisting of the following:

DIALJDIRECT
DIAL_FROM_MEMORY
SETUP

QUIT

dialling from the keyboard;
using a file of stored numbers;
set up various parameters, including

a file of stored numbers; 
leave the DIALLER program.
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The leaves from figure B.I can each be further decomposed. As an example, 
consider SETUP. This breaks down into the further operations as shown in 
figure B.2.

DIALLER

DIAL.DIRECT DIAL_FROK.MEMORY SETUP QUIT

PHONE.LIST MODEK.PORT DIAL.MODE PAUSE_DELAY QUIT_SETUP

Fig. B.2

PHONE_LIST 
MODEM.PORT 
DIAL.MODE 
PAUSE_DELAY

QUIT_SETUP

is the location of a file of stored numbers.
is the port address for the modem (1 or 2).
is either pulse or tone dialling (P or T).
built-in dialling pause - a default value
which can be changed within SETUP.
will enable the user to quit the SETUP phase. (The
option to quit without saving the altered SETUP must
be allowed for, but is not shown in this figure.)
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Again, further operational sub-division is possible. Figure B.3 illustrates 
PHONE-LIST decomposed into separate operations connected with the file-name 
and the directory. There is a quit operation for this sub-operation.

PHONEJ-BT

QUIT_PHONE_LIST

SETJDIRECTORY SET_FI_E

Fig. B.3
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In fact the directory- and file-name operations decompose still further, as shown 
in figure B.4. Not only will there be an operation to invoke the setting up of 
the directory; there will also be the action of entering the directory-name. A 
similar consideration applies to the file-name.

PHONEJ.IST

QUIT_PHONE_LIST

SETJDtRECTORY

DIRECTGRY.NAME

SET_FLE

FILENAME

Fig. B.4
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The full set of DIALLER operations is shown in figure B.5.

DIALLER

DIAU.DIRECT DIAL_FRO|vLMEMORy
I

I
TYPE_NUMBER | 

1 QUIT_MEMORY

SETUP QUIT

DIALJDIGrrS QUIT.DIRECT

PHONE_UST MODEM_PORT DIAL_MODE PAUSEJDELAY

I 
QUfT..PHONE_LIST

SET_PORT
I 

SET_PAUSE

SET_DEFAULT_D_MOOE
QUIT.SETUP 
____I

SAVE ABANDON

SETJDIRECTORY

DIRECTORY.NAME

SET_FLE
I 

FILE-NAME

Fig. B.5
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(2) Command syntax

Commands are designed for those tasks in the hierarchy which can be invoked 
by the user, as follows. All the tasks are listed, but only the command 
operations are assigned syntax at this point. Non-command (i.e. "application") 
input is dealt with in the next stage.

DIAL_DIRECT dID
DIAL_FROM_MEMORY mIM
SETUP sIS
QUIT esc

DIAL_DIGITS
QUITJDIRECT esc 
TYPE_NUMBER 
QUIT_MEMORY esc

PHONE.LIST flF
MODEM_PORT mIM
DIALJvtODE dID
PAUSE_DELAY pIP
QUIT_SETUP esc

QUITJPHONEJJST esc 
SET_DIRECTORY dID 
SET_FILE flF 
SET.PORT
SET_DEFAULT_D_MODE 
SET_PAUSE
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SAVE sIS 
ABANDON esc

DIRECTORYJSfAME 
FILE NAME
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(3) Non-command input

The terminators for non-command input for the following operations were all 
designated as being ENTER:

DIAL.DIGITS 
TYPEJNUMBER

SET.PORT * 
SET_DEFAULT_D_MODE * 
SET.PAUSE *

DIRECTORY_NAME 
FELEJSTAME

* A variation was implemented in which fixed-length input was accepted (just 
one character in the first two of these cases) rather than requiring termination 
with ENTER. See section 3.4.1.
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(4) Flow of control

The semantic flow-of-control information is required. The flow over the task 

tree as a whole follows the tree when moving from the top down. Having 

processed a leaf command, though, the control flow to a new task needs to be 

specified. It is shown in figure B.6 as dotted lines:

DIALLER

-&i£*

DIAU.DIRECT ? DIAL_FRQMJv1EMORY sf SETUP 

1* / tlSi I: •——— '-———i 

if

QUIT

\ i
QUIT_DIRECT

I :i
QUIT_MEMORY ^f

i——————————sn^y"-'5'''"""''—————rji- 
I 1js!!l 1 £?;i? =?P

1 / ' /
PHONE-UST j? MODEM_PORT^ DIAL_MODEj:^PAUSE_DELAY

!!!'!'' .i:!:' : ___'_ ___.<•!= I ,:': :L CCT DJkt IOT

..ill
•" l!

<^
**f

SET.PORT SET_PAUSE

SET_DEFAULT_D_MODE
QUIT^SETUP 
____I

QUIT^PHONE-LIST 1
!L

SET.DIRECTORY

""hlM*«*vw^ DIRECTORY.NAME **

SET_FLE

FILE.NAME

I 
SAVE ABANDON

\•!;•

DIALLER (Le. ROOT)

Fig. B.6
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(5) Application of heuristic and binary tree transformations

The objective of the transformations carried out at this stage is to turn the tree 

from an ordering which is operational to an ordering which is pedagogic (and 

to turn it from a general tree, in which a node can have an arbitrary number of 

children, to a binary tree, in which the number of children cannot exceed two. 

In this latter case, dummy nodes, labelled proceed-n, are introduced into the 

structure although they do not represent teachable topics in the tutorial domain). 

The heuristics and transformations applied here are set out in section 3.5. 

Dependency information between siblings is indicated my marking the right-hand 

arc in the binary tree as described in chapter 3.

First, apply heuristic (c) ("teach exit-type operations first") to figure B.5 yielding 

figure B.7.
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DIALLER

I H
OUT Proceed-

Fig. B.7

Now apply heuristic (d) ("teach configuration-type operations last") to give figure 
B.8.
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DIALLER

Proceed -1

I I I
DIAL-DIRECT DIAL_FROM_ SETUP

• MEMORY i

Fig. B.8

Apply heuristic (c) again to the component operations of DIRECT and 
MEMORY giving figure B.9.
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Proceed -1

I
DIAL.DIRECT O*l_FROM_MEMORY SETUP

I
QUnLDIRECT DIAU.DIQITS QUIT.MEMORY TYPEJMUMBER

Fig. B.9

Dealing with the components of SETUP separately in due course, figure B.9 can 
be transformed to binary-tree form as shown in figure B.10 by applying 
transformation 4.
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DIALLER

I
QUIT Proceed -1

_______I

DIAL_DIRECT Proc**d-2

DIAL_FRQ|vt,MEMORY SETUP

Fig. B.10

Figure B.ll shows the application of heuristic (c) again to the components of 
SETUP.
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SETUP

QUIT.SETUP 
I

SAVE
I

ABANDON

PHONEJ.IST

Prooeod-

MODEM_PORT DIAU.MODE PAUSE_DELAY

Fig. B.ll

Applying heuristic (c) again to PHONE_LIST from figure B.ll yields figure 
B.12.
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PHONE_UST

QUIT_PHONE_UST Proceed

I I
SET_DIRECTDRY SET RLE

I I
DIRECTOnY_NAME FILENAME

Fig. B.12

The remaining children of SETUP can be arranged in binary tree-form by using 
transformation 4, giving figure B.I3.
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SETUP

1
QUIT_SETUP 

1
I 1
VE ABANDON

H
Proc*«<J

1

PHONE.UST Proceed•

MOOEM.PORT Proceed-

DIAU.MODE PAUSe_DELAY

Fig. B.I3

The complete structural representation of DIALLER, in pedagogic ordering, is 
brought together in figures B.14(a) and B.14(b). To preserve the clarity of the 
diagrams the information developed in stages (2) to (4) above has not been 
shown, although it constitutes parts of the Lisp representation given in the next 
section.

B-19



Appendix B

QUIT

DIALLER

Proceed • 1 
I

DIALJDIRECT

I 
Proceed • 2

I

1
qUIT-DIRECT

ri
QUIT-MEMORY

DIM_FF

H
DIAL-DIGITS

TYPE-NUMBER

3OM_MEMORY SE1 UP

QUIT-SETUP

SAVE ABANDON

Proceed - 3 
i

Fig. B.14(a)

Proceed • 3
1

1 
PHONE-LIST

1

1
Proceed • 5 

1
1 1

QUIT-PHONE-UST

SET-DIRECTORY

DIRECTORY-NAME

Proceed - 4

SET-FLE

FLE-NAME

MODEM-PORT

SET-PORT

DIAL-MODE PAUSE-DELAY

I 
SET-PAUSE

SET-DEFAULT-D-MODE

Fig. B.14(b)
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(6) Lisp representation of the DIALLER structure

Where appropriate, the slots in the node structure refer to stages (1) to (5) above.

(defstruct (NODE)

(CONSISTS-OF nil) .-Children. THE TASK HIERARCHY FROM STAGES 1 AND 5.

(LINKS-BY nil) ;IN/DEPEND children linkage.

(PARENT nil) ;Parent. Computed for efficiency.

;;; Where the learner will navigate to on a leaf node if the corresponding

;;; syntax token is invoked. Only of interest for leaf nodes, i.e.

;;; (NODE-CONSISTS-OF nil). If LEADS-TO is nil for a leaf node this

;;; signifies quitting the application :-

(LEADS-TO nil) ; THE "CONTROL FLOW" INFORMATION FROM STAGE 4.

;;; DUMMY node - typically PROCEED-n - which is not taught; 

;;; Could well be a node generated by splitting up a general 

;;; subtree into component binary and/or trees. Default nil :- 

(DUMMY nil)

;;; SYNTAX-CONSTRUCT required to invoke each node :-

(SYN-TOKEN nil) ; THE COMMAND SYNTAX FROM STAGES 2 AND 3.

;;; BARRIER - to prevent a parent node from "seeing" the SYN-TOKENs of 

;;; subordinate nodes in the domain model. Useful where e.g. a filename 

;;; has to be input, some of the characters of which could be "seeable" 

;;; SYN-TOKENs. 

(BARRIER nil)

;;; STATE-CHANGING syntax construct? 

(STATE-CHANGING nil)
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;;; SM slots :- 

(LEARNT nil)

;;; Teaching operations for this node 

(COMMAND-STR nil)

;;; Need to know if this is a "new" node for teaching operations 

(CURRENTLY-BEING-TAUGHT nil)

;;; Co-ordinates when tree represented on 2-D array :- 

(X-CO-ORD nil) 

(Y-CO-ORD nil)

; end of defstruct NODE.
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The Task Analysis structure :

(setf DIALLER-TA

(make-NODE :CONSISTS-OF '(QUIT PROCEED-1) :LINKS-BY 'DEPEND 

:COMMAND-STR 

' (("S" "\\LISP\\DIALLER\\SLIDES\\DIALLER-.SS"))))

(setf PROCEED-1

(make-NODE :CONSISTS-OF '(DIRECT PROCEED-2) 

:LINKS-BY 'INDEPEND :DUMMY t) )

(setf DIRECT

(make-NODE :CONSISTS-OF '(QUIT-DIRECT DIAL-DIGITS) :LINKS-BY 'DEPEND 
:SYN-TOKEN "D" 

:COMMAND-STR 

'(("S" "\\LISP\\DIALLER\\SLIDES\\DIRECT.SS-))))

(setf PROCEED-2

(make-NODE :CONSISTS-OF '(MEMORY SETUP) :LINKS-BY 'INDEPEND :DUMMY t))

(setf MEMORY

(make-NODE :CONSISTS-OF '(QUIT-MEMORY TYPE-NUMBER) :LINKS-BY 'DEPEND 
:SYN-TOKEN "M" 

:COMMAND-STR 

'(("S" "\\LISP\\DIALLER\\SLIDES\\MEMORY.SS"))))

(setf SETUP

(make-NODE :CONSISTS-OF '(QUIT-SETUP PROCEED-3) :LINKS-BY 'DEPEND 
:SYN-TOKEN "S" 

:COMMAND-STR 

'(("S" "\\LISP\\DIALLER\\SLIDES\\SETUP.SS"))))

(setf QUIT-SETUP

(make-NODE :CONSISTS-OF '(SAVE ABANDON) :LINKS-BY 'INDEPEND 

:SYN-TOKEN ESCAPE 

:COMMAND-STR 

'(("S" "\\LISP\\DIALLER\\SLIDES\\QUIT-SET.SS"))))
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(setf PROCEED-3

(make-NODE :CONSISTS-OF '(TELL-PHONE-LIST PROCEED-5) 

:LINKS-BY 'INDEPEND 

:DUMMY t))

(setf TELL-PHONE-LIST

(make-NODE :CONSISTS-OF '(QUIT-PHONE-LIST PROCEED-4) :LINKS-BY 'DEPEND 

:SYN-TOKEN "F" :COMMAND-STR 

' ( ("S" "\\LISP\\DIALLER\\SLIDES\\TELL-PHO.SS"))))

(setf PROCEED-4

(make-NODE :CONSISTS-OF '(SET-DIRECTORY SET-FILE) :LINKS-BY 'INDEPEND 

:DUMMY t))

(setf SET-DIRECTORY

(make-NODE :CONSISTS-OF '(DIRECTORY-NAME) :SYN-TOKEN "D" 

:COMMAND-STR 

'(("S" "\\LISP\\DIALLER\\SLIDES\\SET-DIRE.SS"))))

(setf SET-FILE

(make-NODE :CONSISTS-OF '(FILE-NAME) :SYN-TOKEN "F" 

:COMMAND-STR 

'(("S" "\\LISP\\DIALLER\\SLIDES\\SET-FILE.SS"))))

(setf PROCEED-5

(make-NODE :CONSISTS-OF '(MODEM-PORT PROCEED-6) :LINKS-BY 'INDEPEND

:DUMMY t)) 

(setf MODEM-PORT

(make-NODE :CONSISTS-OF '(SET-PORT) :SYN-TOKEN "M" 

•.COMMAND-STR 

'(("S" "\\LISP\\DIALLER\\SLIDES\\MODEM-PO.SS"))))

(setf PROCEED-6

(make-NODE :CONSISTS-OF '(DIAL-MODE PAUSE-DELAY) :LINKS-BY 'INDEPEND 

:DUMMY t))

(setf DIAL-MODE
(make-NODE :CONSISTS-OF '(SET-DEFAULT-D-MODE) :SYN-TOKEN «D" 

:COMMAND-STR 

'(("S" "\\LISP\\DIALLER\\SLIDES\\DIAL-MOD.SS"))))
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(setf PAUSE-DELAY

(make-NODE :CONSISTS-OF '(SET-PAUSE) :SYN-TOKEN "P" 

:COMMAND-SIR 

' ( ("S" "\\LISP\\DIALLER\\SLIDES\\PAUSE-DE.SS"))))

;;; Leaves :-

(setf QUIT (make-NODE

:LEADS-TO nil ;which with :CONSISTS-OF also nil means

; it quits the application. 

:SYN-TOKEN ESCAPE 

:COMMAND-STR 

'(("S" "\\LISP\\DIALLER\\SLIDES\\QUIT.SS"))))

(setf QUIT-DIRECT (make-NODE

:LEADS-TO 'DIALLER-TA

:SYN-TOKEN ESCAPE

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\QUIT-DIR.SS")

("W" (string-append "D" ESCAPE))
("P" '(DIRECT)))))

(setf DIAL-DIGITS (make-NODE
:LEADS-TO 'DIRECT 

:SYN-TOKEN I\Newline 

:COMMAND-STR

' (("S" "\\LISP\\DIALLER\\SLIDES\\DIAL-DI1.SS") 

("W" (string-append "123 4567"

(string INNewline) 

ESCAPE 

ESCAPE)) 
("P")
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("S" "\\LISP\\DIALLER\\SLIDES\\DIAL-DI2.SS") 

("W" (string-append "98123"

(string #\Newline)

ESCAPE

ESCAPE)) 
("P")

("S" "\\LISP\\DIALLER\\SLIDES\\DIAL-DI3.SS") 

("W" (string-append "9tl23 n

(string IXNewline)

ESCAPE

ESCAPE)) 
("P"))))

(setf QUIT-MEMORY (make-NODE

:LEADS-TO 'DIALLER-TA

:SYN-TOKEN ESCAPE

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\QUIT-MEM.SS"))))

(setf TYPE-NUMBER (make-NODE

:LEADS-TO 'MEMORY 

:SYN-TOKEN f\Newline 

:COMMAND-STR

' (("S" "\\LISP\\DIALLER\\SLIDES\\TYPE-NUM.SS") 

("W" (string-append "m3"

(string f\Newline) 

ESCAPE 

ESCAPE)) 

("P" '(MEMORY)))))

(setf SAVE (make-NODE

:LEADS-TO 'DIALLER-TA 

:SYN-TOKEN "S"

:STATE-CHANGING t ;;;N.B. The only STATE-CHANGING token. 

:COMMAND-STR

' (("S" "\\LISP\\DIALLER\\SLIDES\\SAVE.SS") 

("W" (string-append "S"

ESCAPE 
"S"

ESCAPE)) 

<»P" ' (SETUP)))))

(setf ABANDON (make-NODE

:LEADS-TO 'DIALLER-TA 

:SYN-TOKEN ESCAPE 

:COMMAND-STR
'(("S" "\\LISP\\DIALLER\\SLIDES\\ABANDON.SS") 

("F")))) ;N.B. free exploration!
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(setf QUIT-PHONE-LIST

(make-NODE :LEADS-TO 'SETUP 

:SYN-TOKEN ESCAPE 

:COMMAND-STR

' (("S" "\\LISP\\DIALLER\\SLIDES\\QUIT-PHO.SS") 

("W" (string-append "F"

ESCAPE 

ESCAPE 

ESCAPE 

ESCAPE)) 

("P" , (TELL-PHONE-LIST) )) ) )

(setf DIRECTORY-NAME (make-NODE

:LEADS-TO • TELL-PHONE-LIST 

:SYN-TOKEN I\Newline 

:COMMAND-STR

' (("S n "\\LISP\\DIALLER\\SLIDES\\DIRECTO1.SS") 

(-W (string-append "S" "F" "D" "C:\\DIALLER"

(string f\Newline) 

ESCAPE 

ESCAPE 
"S"

ESCAPE)) 

("P" '(SETUP))

("S" "\\LISP\\DIALLER\\SLIDES\\DIRECT02.SS") 

("G" "A:\\TOP\\NEXT"))))

(setf FILE-NAME (make-NODE

:LEADS-TO 'TELL-PHONE-LIST 

:SYN-TOKEN I\Newline 

iCOMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\FILE-NAM.SS") 

("W" (string-append "F" "MEMDIALl.FIL"

(string IXNewline) 

ESCAPE 

ESCAPE 
-S"

ESCAPE)) 

("P" '(SET-FILE)))))

(setf SET-PORT (make-NODE

:LEADS-TO 'SETUP

:SYN-TOKEN '(WILD) ;Any single character terminates. 

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\SET-PORT.SS") 
("W" (string-append "M" "1"

ESCAPE
» S n

ESCAPE)) 

(»p.. • (MODEM-PORT)))))
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(setf SET-DEFAULT-D-MODE (make-NODE

:LEADS-TO 'SETUP

:SYN-TOKEN '(WILD) ;Any single character

; terminates. 

:COMMAND-STR

' (("S" "\\LISP\\DIALLER\\SLIDES\\SET-DEFA.SS") 

("W" (string-append "D" "T"

ESCAPE 
"S"

ESCAPE))

("P" '(DIAL-MODE))))) 

(setf SET-PAUSE (make-NODE

:LEADS-TO 'SETUP

:SYN-TOKEN '(WILD) ;2 chars max incl CR. 

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\SET-PAUS.SS") 

("W" (string-append "P" "10-

ESCAPE 
"S"

ESCAPE)) 

("P" ' (PAUSE-DELAY)))))
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Development of the

ELICITOR tutorial

("ELICITUT")

The objective of this section is to demonstrate the evolution of the full task 
classification structure for the ELICITOR tutorial. It follows the same stages as 
were adopted in appendix B for the DIALLER tutorial and there is thus less 
step-by-step explanation here.
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(1) The development of the task hierarchy

A first attempt at a design yields figure C.I.

EUCITUT

ELICIT-TA-INPUT NPUT-TREE MAKE-LEAVES LISP-CREATION QUIT

Fig. C.1

This shows that, at the top level, the ELIQTOR operations can be thought of 
as consisting of the following:

ELICIT-TA-INPUT Obtain application name from user.
INPUT-TREE User input of task tree.
MAKE-LEAVES Generate implied leaves of tree where not already

specified.
LISP-CREATION Turn the tree structure into a Lisp structure. 
QUIT
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There is little further decomposition in this small application although INPUT- 
TREE consists of the operation to obtain the tree data (INPUT-TREE-DATA) as 
shown in figure C.2.

EUCITUT

ELICIT-TA-INPUT IMPUT-TREE MAKE-LEAVES LISP-CREATION QUIT

INPUT-TREE-OATA

Fig. C.2

C-3



Appendix C 

(2) Command syntax

Commands are designed for those tasks in the hierarchy which can be invoked 
by the user, as follows. All the tasks are listed, but only the command 
operations are assigned syntax at this point. Non-command (i.e. "application") 
input is dealt with in the next stage.

ELICIT-TA-INPUT 
INPUT-TREE tIT 
INPUT-TREE-DATA 
MAKE-LEAVES 1IL 
LISP-CREATION pIP 
QUIT esc

(3) Non-command input

The terminators for non-command input for the following operations were 
designated as follows:

ELICIT-TA-INPUT enter 
INPUT-TREE-DATA enter
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(4) Flow of control

The semantic flow-of-control information is straightforward and is shown in 
figure C.3 as dotted lines. Note, though, that in stage (5) it will have to be 
slightly altered to point to the top-most proceed node.

..
5

.. .fiftff*t*t*Vl'4Wt't'-tV-t'-l'tWi'-fftffffA EUCITUT

,i-
ELICIT-TA-INPUT IMPUT-TREE / MAKE-LEAVES LISP-CREATION

:?

INPUT-TREE-DATA

QUIT

Fig. C.3
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(5) Application of heuristic and binary tree transformations

ELICIT-TA-INPUT is not a user-requestable operation but is a component of the 
root and must therefore be placed at the highest level below it, separate from 
everything else. Heuristic (a) can be applied here, grouping all the remaining 
topics together to yield figure C.4. Note that the incorporated linkage is 
dependent (heuristic f).

EUCITUT
I

Proceed -1 

EUCIT-TA-INPUT

NPUT-TREE MAKE-LEAVES LISP-CREATION QUfT

INPUT-TREE-DATA

Fig. C.4
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Next, apply heuristic (c) ("teach exit-type operations first") to figure C.4 yielding 
figure C.5.

EUCIT-TA-INPUT

EUCITUT
1

Proceed•1

QUIT Proceed - 2

INPUT-TREE MAKE-LEAVES LISP-CREATION

INPUT-TREE-DATA

Fig. C.5
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Figure C.6 shows the effect of adding dependency information to figure C.5: 
LISP-CREATION depends on MAKE-LEAVES, MAKE-LEAVES depends on 
INPUT-TREE.

EUCITUT
I

Proceed•1
EUCIT-TA-INPUT

QUIT Proceed - 2

INPUT-TREE MAKE-LEAVES LISP-CREATION

INPUT-TREE-DATA

Fig. C.6
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Finally, use transformation (7) to represent the children of Proceed-2 in binary- 
tree form, as shown in figure C.7.

EUCIT-TA-INPUT

EUCITUT 
I

QUIT

INPUT-TREE

INPUT-TREE-DATA

Proceed•1

Proceed-2

Proceed•3

MAKE-LEAVES LISP-CREATION

Fig. C.7
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(6) Lisp representation of the ELICITUT structure

The Lisp structure of the nodes uses the same representation as that detailed in 
appendix B.

(SETF ELICITUT-TA

(make-NODE :CONSISTS-OF '(ELICIT-TA-INPUT PROCEED-1) :LINKS-BY 'DEPEND 

:COMMAND-STR 

' ( ("S" "\\LISP\\ELICITUT\\SLIDES\\ELICITU1.SS"))))

(SETF PROCEED-1

(make-NODE :CONSISTS-OF '(QUIT PROCEED-2) :LINKS-BY 'DEPEND 

:DUMMY t 

:BARRIER t))

(SETF PROCEED-2

(make-NODE :CONSISTS-OF ' (INPUT-TREE PROCEED-3) :LINKS-BY 'DEPEND 

:DUMMY t))

(SETF INPUT-TREE

(make-NODE :CONSISTS-OF ' (INPUT-TREE-DATA) :SYN-TOKEN "T" 

:COMMAND-STR

'(("S" "\\LISP\\ELICITUT\\SLIDES\\INPUT-TR.SS") 
("D")

("W" (string-append "T" ESCAPE "Y" ESCAPE)) 

("P" (string-append "LEARN" (string IXNewLine)))

(SETF PROCEED-3

(make-NODE :CONSISTS-OF '(MAKE-LEAVES LISP-GREATION) 

:LINKS-BY 'DEPEND 

:DUMMY t))
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;; /Leaves :-

(SETF ELICIT-TA-INPUT

(make-NODE :LEADS-TO 'PROCEED-1 

:SYN-TOKEN I \NewLine 

•.COMMAND-STR

' (("S" "\\LISP\\ELICITUT\\SLIDES\\ELICITU2.SS") 

("D") 

("W" (string-append "LEARN"

(string f\Newline) 

ESCAPE) ) 
("P")

("S" "\\LISP\\ELICITUT\\SLIDES\\ELICITU3.SS")

("D")

("R")

("W" (string-append "LEARN"

(string f\Newline)

-YR" ESCAPE) ) 
("P")

(SETF QUIT (make-NODE :LEADS-TO nil

:SYN-TOKEN ESCAPE 

: COMMAND-STR

' ( ("S" "\\LISP\\ELICITUT\\SLIDES\\QUIT.SS") ) ) ) 

(SETF INPUT-TREE-DATA

(make-NODE :LEADS-TO 'PROCEED-1 

:SYN-TOKEN ESCAPE 

: COMMAND-STR

' (("S" "\\LISP\\ELICITUT\\SLIDES\\INP-T-D1.SS") 

("D")

("W" (string-append "PARTI" (string f\NewLine)

"PART2" (string IXNewLine) 

"Y" ESCAPE)) 

("P" (string-append "LEARN" (string IXNewLine) "T"))

("S" "\\LISP\\ELICITUT\\SLIDES\\INP-T-D2.SS")

("D")

("R")

("W" (string-append "CT" ESCAPE))

("P" '((string-append

-LEARN" (string IXNewLine) "Y"

) 

PROCEED-1))

("S" "\\LISP\\ELICITUT\\SLIDES\\INP-T-D3.SS")

("D")

("R")

("P" (string-append "LEARN" (string f \NewLine) "YCT"))

("S" "\\LISP\\ELICITUT\\SLIDES\\INP-T-D4.SS") )))
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(SETF MAKE-LEAVES

(make-NODE :LEADS-TO 'PROCEED-1 

:SYN-TOKEN "L" 

:STATE-CHANGING t 

:COMMAND-STR

' (("S" "\\LISP\\ELICITUT\\SLIDES\\MAKE-LEA.SS") 
("D")

("W" (string-append ESCAPE
"LY " 

ESCAPE)) 

("P" '((string-append

"LEARN" (string f\NewLine)
nij>K

"LEARN-TA-INPUT" (string f\NewLine) 

"PROCEED-1" (string f\NewLine) "Y" 

"PROCEED-1" (string f\NewLine) 

"QUIT" (string #\NewLine) 

"MAKE-LEAVES" (string f\NewLine) "Y" 

) 

INPUT-TREE-DATA)) ) ) )

(SETF LISP-CREATION

(make-NODE :LEADS-TO 'PROCEED-1 
:SYN-TOKEN "P" 

-.STATE-CHANGING t 

:COMMAND-STR

'(("S" "\\LISP\\ELICITUT\\SLIDES\\LISP-CRE.SS") 

("D") 

("E" (string-append

"LEARN" (string #\NewLine)
HT1M

"LEARN-TA-INPUT" (string f\NewLine)

"PROCEED-1" (string IXNewLine) "Y"

"PROCEED-1" (string f\NewLine)

"QUIT" (string #\NewLine)

"MAKE-LEAVES" (string f\NewLine) "Y"

ESCAPE
"LY "

ESCAPE

))

("W" (string-append "PY " ESCAPE))

("P" (string-append

"LEARN" (string INNewLine) 
"YC"

)) 

("S" "\\LISP\\ELICITUT\\SLIDES\\MAKE-TA2.SS")

("D")

("R")

("X" '(progn

(cd "D:\\LISP\\LEARN") 

(MAKE2TUT) )) )))
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Appendix D - Program file dependencies

Tutorial delivery system :-

LIY

11 1
DISPL-TA D1SMOUS1 GLOBVARS LIYVIDEO

1
UY-IO

II 1 II 
INTTLIY TA TEACHOPS MAMRULS [ DESRULES]

LIYFUNCS INTERP

SLIDES
LSTRCMP1

| f for DIAGNOSIS ) 
LSTRCMP2

LJY CONTAINS APPLICATION-DEPENDENT PATHNAMES. 
TA CONTAINS ALL OTHER APPLICATION-DEPENDENT INFO.
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For the delivery system :-

GLOBVARS
INITLIY
MAINRULS
TEACHOPS
LSTRCMP1

LSTRCMP2 
INTERP 
LIYVTOEO 
LIY-IO

LIYFUNCS
DISPL-TA
DISMOUS1

is the file of global variables.
initialises vars. in rules, SM etc.
contains the LIY control rules.
is the set of teaching operations.
is part of the diagnosis routine to compare the learner's and
the correct response string.
is the rest of it
is the rule interpreter.
is code to control the video for LIY.
is replacement VO routines so that the learner can be planted
inside an application.
is the remaining LIY function definitions.
is code to display the TA for mouseing.
is the mouseing code.
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For PARTICULAR applications :-

LIY is the opening routine which loads the other files and starts
the rule interpreter on the top-level rules.

TA is the task classification structure for a particular application,
and its associated functions. IT CONTAINS ALL 
REMAINING APPLICATION-DEPENDENT INFO.

DESRULES is the "designer ruleset" for (this) application. It contains
application-dependent pathnames.

Not shown :-

LOADLIY is code simply to load up a tutorial and its application.

TA-SKEL is a skeleton TA, copied into an application directory, and
enhanced by MAKE-TA1.

SENTINEL is copied into a directory made for an application by
MAKE-TA1 so Lisp can check for the directory's existence.

SLIDES is a sub-directory comprising text files of tutorial display
material.
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Tutorial authoring system :-

ELICITOR

MAKE-TA1 MAKE-TA2

ELDIS-TA ELMOUS1

For the ELICITOR authoring system :-

MAKE-TA1 is code to allow the designer to make an "empty" version of 
TA - "consists-of only.

MAKE-TA2 is code to permit the designer to enhance nodes in the output 
TA from MAKE-TA1.

ELDIS-TA and
ELMOUS1 are adapted versions of the "mouse" files to allow the

designer to mouse with MAKE-TA2.
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Appendix E - Program listings

There are two microfiches:
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