
1472487

TUTORING SYSTEMS BASED ON USER-INTERFACE
DIALOGUE SPECIFICATION

FRANK MARTIN

A thesis submitted in partial fulfilment of the
requirements of the Council for National Academic Awards

for the degree of Doctor of Philosophy

August 1990

Thames Polytechnic, London

/ A£^o

00?" *e.
/o2&

flft£

	CONTENTS

	Acknowledgements i

	Abstract ii

	List of abbreviations used iii

1 Introduction 1

1.1 Background 2
1.2 Aims and rationale 10
1.3 Conclusions in brief 16
1.4 Implementation and environment 17
1.5 Structure of this thesis 19

2 Specification methods 20

2.1 Specification methods in software engineering 21
2.2 Specification methods for user-interface design 26
2.3 Jacob's specification method revisited 35
2.4 Selection of a specification technique 38

3 LIY : The "Learn-It-Yourself approach 42

3.1 Overview of the LIY method 43
3.2 LIY's principal components 47
3.2.1 Representation of the task 47
3.2.2 Representation of the learner 48
3.2.3 Teaching strategy 51
3.2.4 Set of teaching operations 52
3.2.5 Other LIY components 52
3.3 How the learner sees LIY 54
3.3.1 Teaching 54
3.3.2 Assessment 61
3.3.3 Feedback in the form of advice 64
3.4 How the courseware designer sees LIY 67
3.4.1 ELICITOR, ELICITUT and its domain model 67
3.4.2 LIY's teaching operations 76
3.4.3 Designer rules 79
3.4.4 Further aspects 80
3.5 Operational and pedagogic task/subtask hierarchies 81
3.5.1 Dependency and binary tree transformation 83
3.5.2 Transformation to pedagogic ordering 86
3.5.3 Complete description of a pedagogic

	task classification tree 91
3.6 Managing tutorial delivery 92
3.7 Concluding remarks 96

4 An ITS perspective on LIY 97

4.1 What is an ITS? 98
4.2 LIY: the ITS viewpoint 100
4.2.1 Modelling the domain 100
4.2.2 Modelling the learner 101
4.2.3 Teaching strategy 105

5 Discussion and Conclusion 113

5.1 "Dialogue specification can be used as the basis
for courseware design". 114

5.2 "LIY is a portable tool for producing and delivering
tutoring systems". 118

5.3 Meeting the subsidiary aims 120
5.4 Further work 125
5.4.1 Research 125
5.4.2 Development 134
5.5 Conclusion 136

References 138

Appendix A Teaching strategy rules (147)

Appendix B Development of the DIALLER tutorial

Appendix C Development of the ELICITOR tutorial
("ELICITUT")

Appendix D Program file dependencies

Appendix E Program listings on microfiche

Acknowledgements

I wish to thank Dr. du Boulay for all his support during the protracted period

of this research and especially for agreeing to supervise it in the first place.
Thanks are due also to Professor Cross for suggesting that earlier tutoring work
on the Polytechnic Prime computers could be turned into a research project.

Lastly I must thank both my wife Jean for her perceptive insights on the first
draft and colleagues who read and commented upon it.

Abstract

Tutoring Systems based on User-Interface
Dialogue Specification

F. A. Martin

This thesis shows how the appropriate specification of a user interface to an
application software package can be used as the basis for constructing a tutorial
for teaching the use of that interface. An economy can hence be made by
sharing the specification between the application development and tutorial
development stages. The major part of the user-interface specification which is
utilised, the task classification structure, must be transformed from an operational
to a pedagogic ordering. Heuristics are proposed to achieve this, although human
expertise is required to apply them. The reported approach is best suited to
domains with hierarchically-ordered command sets.

A portable rule-based shell has been developed in Common Lisp which supports
the delivery of tutorials for a range of software application package interfaces.
The use of both the shell and tutorials for two such interfaces is reported. A
computer-based authoring environment provides support for tutorial development.

The shell allows the learner of a software interface to interact directly with the
application software being learnt while remaining under tutorial control. The
learner can always interrupt in order to request a tutorial on any topic, although
advice may be offered against this in the light of the tutor's current knowledge
of the learner. This advice can always be over-ridden.

The key-stroke sequences of the tutorial designer and the learner interacting with
the package are parsed against an application model based on the task
classification structure. Diagnosis is effected by a differential modelling
technique applied to the structures generated by the parsing processes.

The approach reported here is suitable for an unsupported software interface
learner and is named LIY ("Learn It Yourself1). It provides a promising method
for augmenting a software engineering tool-kit with a new technique for
producing tutorials for application software.

u

List of abbreviations used

ACT
AI
ASCH
ATN

CAL
CASE
CLG
DYCAL
I/O
ITS
LIY
OOPS
Ticcrr

VDM

Adaptive Control of Thought

Artificial Intelligence

American Standard Code for Information Interchange
Augmented Transition Network

Computer-Assisted Learning

Computer-Aided Software Engineering

Command Language Grammar

DYnamic Computer-Assisted Learning

Input/Output

Intelligent Tutoring System

Learn-It-Yourself

Object-Oriented Programming System

Time-shared Interactive Computer-Controlled

Information Television

Vienna Development Method

• ••in

Chapter 1

Introduction

Chapter 1

1.1 Background

Computer users are becoming increasingly sophisticated. As they operate ever-

improving hardware they provide software suppliers with a market for new

products which is evolving continuously. The increase in the number of

computers in use and the number of software products to run on them has led
to an explosive growth in training requirements. The future is clear: computers
can and will provide the tutorial means for users to learn how to use unfamiliar
software. If this seems to be rather a sweeping statement let us consider the
alternatives. The traditional approach has been to send the learner on a
commercial course. If the learner is being sent by his or her employer then that
organisation has to meet not only the very significant expense of the course itself
but also the cost of losing the services of the employee for the duration of the
course. Many potential users will not be able to seek funds from an employer
to go on a course: professionals in non-computing disciplines, for example,
learning a new package in their own time, or someone at home improving their
"computer literacy" skills on a domestic computer. For them, self-tuition will
be the only way. Self-tuition may not mean the use of a computer: books
provide a traditional way of disseminating information by self-study. When
learning a skill, however - and using a software interface is principally a
cognitive skill with a small motor element - learning by doing is superior to
learning from written material, at one remove from the subject matter.

The work portrayed below describes this "learning by doing" in terms of
presenting the learner with a structured view of the domain which is to be
mastered - the target package - coupled with appropriate tutoring material. The
learner interacts with the user interface of the software package being learnt and
it is the structure of this software interface which underlies the view of the target
package which is presented to the learner. The approach is called "Learn-It-
Yourself1 , or LIY for short. For a different class of learner - the child in
school - the idea of presenting a relatively unstructured learning environment has
been proposed (Papert 1980). The motivating features for the child - using a
simple graphical programming language called LOGO - are assumed to rest on
the fun involved and the child's natural inquisitiveness. Learning objectives

Chapter 1

relate to developing simple arithmetic and spatial ability. At present such an

unstructured approach is usually inappropriate to the learner of a new software

interface - particularly if it is text-based - due principally to the complexity of

such interfaces. This could change somewhat in the future as user interfaces

become more heavily based on graphical paradigms. These provide a relatively

small number of tools of universal applicability which can be put together by

the user to provide powerful facilities. This "putting together" of a small number

of tools leads to a large number of features, many of which are best learnt by
experiment. An example of this is the drawing tool Microsoft Windows Paint

which provides a huge range of facilities for drawing, since the user can combine

different styles, fonts, palettes, brushes and so on. The manual for this tool is

only 37 pages long; although it is a powerful package it is best learnt by

exploratory trial-and-error.

Microsoft Windows Paint is simply "graphical interface"; the graphics facilities

dominate the package and apart from filing system features there is very little
else. This type of software is at one extreme compared with a purely text-based
interface which manipulates a complex computer system, for example, the
concepts of which the learner must acquire through a training sequence. It is

plausible to suggest that future systems are likely not be at either of these two

extremes but somewhere in between. It will thus be appropriate to present the

learner of such a system with a structured view of the domain to be learnt, with

opportunities to experiment with the software in a protected environment which

will not permit damage to occur to the machine's software systems as a whole.

LIY is a method, based upon a software tool-kit, for engineering the type of

courseware that is specifically designed to teach the use of a limited class of

software interfaces. The tool-kit comprises courseware authoring and delivery

environments. As an example, LIY could be used to teach the use of a new

word-processing or database management system. Software interfaces are usually

task-oriented, in that operating them can be viewed as carrying out a sequence

of actions to achieve a task. Thus the LIY approach is appropriate for task-

oriented domains. Considered from a methodological viewpoint, LIY would not

be appropriate for more open-ended domains such as history or geography.

Chapter 1

Furthermore, LIY is only designed for dealing with text-based interfaces. At

present it normally requires that all application input (i.e. semantic input to the

application rather than command input which interrogates or controls it) be

terminated by a recognisable character, such as enter or escape. LIY cannot

usually deal with fixed-length input not followed by a recognisable terminator

although this can occur on occasion as discussed in chapter 3. The current

version of LIY has no method of managing "hot keys". These are certain pre

determined key-stroke sequences which always suspend the current task and

invoke some standard associated service. The most common example is the

constant availability of a certain key - often Fl in PC-based software - which

enables the user to seek help. LIY will not handle software interfaces

incorporating direct-manipulation devices such as mice. O'Shea has pointed out

some of the difficulties associated with modelling the users of such devices

(O'Shea 1989). As software interfaces become increasingly graphics-based these

difficulties will assume more importance. They are discussed further in section

5.4.1.

It is proposed above that the computer itself is the natural delivery medium for

tutoring the learner of a new software interface. This idea is not new. The

LEARN system of UNIX (Kernighan and Lesk 1979) and the DYCAL system

for Prime computers running the PRIMOS operating system (Martin 1983) both

provided a tutorial environment with controlled embedded access to the user

interface. That is to say, learners could be set assignments in which they were

requested to manipulate the interface to an actual program rather than, for

example, a simulation of that interface. The tutorials were designed to teach the

use of the operating systems themselves. More recently application packages

such as Lotus 1-2-3 and WordPerfect have been released with built-in tutorial

assistance. These tutorials allow the learner to interact with what appears to be

the genuine application software. Typically, only a restricted subset of the

operations that can normally be performed is available, making learner control

difficult and browsing by the learner impossible. A more fundamental problem

is that there appears to be a very tight coupling between the application and its

tutorial. Tight coupling precludes the development of a tutoring system for

software interfaces which is portable in the sense of being applicable over a

Chapter 1

range of interfaces. LIY adopts a "loose coupling" approach in order not to

preclude portability. Finally, existing systems for commercially-available

application software do not use any ITS technology such as sophisticated student
modelling or diagnosis. Diagnosis, when it occurs, is very much at the level of
matching character-strings.

It is not intended that the reader should infer that written material has no place
in tutorials for software interfaces. On the contrary, written text and graphics
provide extremely valuable input to the whole self-teaching process since
currently it is easier for most people to find a required page in a book than to
find a particular screen. This may change as a result of research into hypertext
systems. It is a moot point whether the book supports the computer-based
tutorial or the tutorial supports the book. Let it be said that they complement
one another.

Other workers have attempted different approaches to producing tutorial material
for software interfaces. The DOMINIE system has a knowledge-elicitation phase
which captures static screen-dumps from the application (Spensley and Elsom-
Cook 1988). These can then be displayed to the learner as part of an
appropriate teaching operation. The DOMINIE work focuses upon the
representation of multiple teaching strategies and the selection of the most
appropriate such strategy. It does not however permit the learner to interact
directly with the software being taught, unlike the LIY approach described here.

For software interfaces, alternatives to tutoring systems are advice systems.
These can permit the user - perhaps a novice - to interact directly with a
program but allow him or her to interrupt in order to seek advice. This is
exemplified by the EMACS editor (Stallman 1979). An alternative design is for
systems which themselves give advice at what are considered appropriate
moments. The possible design of one such system is outlined in the context of
a tutorial for WordStar (Jackson and Lefrere 1984). The approach proposed is
based on the maintenance of plan representations of hypotheses concerning the
user's state. These plans could then be revised dynamically. Greenfield
describes an approach to plan generation based on Definite Clause Grammars

Chapter 1

(Gieenfield 1988), a representation formalism particularly suited to processing by

a Prolog interpreter. This technique is used to represent pre-defined user plans

and to parse command line input, in this case to UNIX. Also for UNIX, the

EUROHELP system is a 100 person-year project which is proposing an

intelligent help system for UNIX mail (Breuker 1988). This important

undertaking is examining many different aspects of ITSs for advice systems, such

as plan generation, discourse and - obviously - aspects of explanation. The

SINK Consultant is an intelligent help system for SINK - a UNK derivative

developed by Siemens AG (Kemke 1987). It is reported to be a command-based

taxonomic hierarchy, similar to that of LIY, and permits the user to ask

questions in natural language. Knowledge for answering these questions is held

in frame-like representations at the nodes in the taxonomy. Woodroffe describes

the FITS system which is a tutor for the UNK command line interface

(Woodroffe 1988). The thrust of this work again focuses upon planning with the

program maintaining a hierarchy of increasingly abstract possible plans. These

are hypothetical representations of the learner's actual plan.

Jackson and Lefrere provide an interesting analysis of some of the difficulties of

matching a hypothetical plan to users' actions and revising such a plan if

necessary. These include the user: (i) changing goal; (ii) adopting an alternative

strategy, not in the plan, to achieve the same goal; (iii) incorporating another

task into the original plan; (iv) making an error, for example typing the wrong

command or typing a series of commands in the wrong sequence.

The TOTS system (Rickel 1988) shares some similarities with the LIY work

described here in that it attempts to provide a domain-independent intelligent

tutoring shell for task-oriented domains. Both the FITS and TOTS approaches

base their plan representations upon Sacerdoti's procedural network (Sacerdoti

1977). LIY is aimed at a subset of such domains: user interfaces to software.

Like LIY, TOTS is weak in the area of identifying learner misconceptions,

principally because these are particularly domain-specific. It is unclear whether

TOTS could be used for teaching the use of software interfaces. Rickel does not

report any evidence that it would be able to do so in a manner which would

support direct interaction with the target software.

Chapter 1

It can be argued that to learn a programming language is also to learn the use

of a software interface. The best-known work in this area is PROUST (Johnson

and Soloway 1987), a tutoring system for teaching Pascal. The Pascal compiler

is simply a "black box" which takes program statements as input and produces

machine-code and error messages as output. Like the compiler, PROUST

processes a complete (though syntactically correct) Pascal program. It attempts

to identify and report semantic errors by comparing such mistakes with a "bug

catalogue" of known possible errors. It is a non-interactive program, whereas the

work described in this thesis is suited to tutoring interactive software interfaces.

PROUST incorporates knowledge both about Pascal and about the typical bugs

learners make when developing Pascal programs.

The Lisp Tutor, based on the ACT* theory of learning (standing for Adaptive

Control of Thought), is also concerned with teaching a programming language
(Anderson and Reiser 1985). However, unlike PROUST which operates post-
hoc after the student has submitted a complete program, Andersen's tutor deals

with the interactive environment of a Lisp interpreter. Errors are detected and

reported immediately they are committed. Further, the learner is required to

repair such errors at once. The LIY approach described below can be applied

to a wide range of software interfaces, admittedly of less complexity than a Lisp

interpreter. For a given cost of implementation, there appears to be a trade-off
between the power of a tutor and its complexity on the one hand and its

generality over a range of domains on the other. The Lisp Tutor is towards the
high end of the implementation cost scale. Figure 1.1 shows how

implementation costs change with respect to distance from a line of constant cost

and attempts to position PROUST and Andersen's approach as used in building

the Lisp Tutor in relation to LIY, which exhibits low cost and high generality

but only moderate power.

LIY's aims are set out fully in the next section. It has so far been described in
terms of computer-based delivery of tutorial material concerned with software

interfaces; it also attempts to provide an authoring environment for building such

tutorials.

Chapter 1

Power and complexity Line of constant cost

ANDERSDN TUTORS

General^

Fig. 1.1

In the authoring field, Tang et al. propose object-oriented tools for modelling

users and dialogues, with a mapping between the two (Tang et al. 1989). These

tools would then prompt the designer for domain-specific information.

Woolf describes an authoring system being built to enable teachers who are not

familiar with Al programming to construct intelligent tutorials (Woolf 1987).

The interface to the system is predominantly graphical. Woolf identifies the

main problem in the building of such authoring systems as being that of domain

knowledge representation. As is described in succeeding chapters, the LIY

representation of the domain is based on the specification of the user interface

to the application software. LIY assumes that this will have been defined at the

software design stage.

The TEACHER'S APPRENTICE system once more proposes an authoring

environment with a highly graphical interface (Lewis et al. 1987). The chosen

domain is the familiar one of school algebra. This tutor, like the Lisp Tutor

(Anderson and Reiser 1985), is based on the ACT* theory of cognition in which

8

Chapter 1

pre-stored fine-grained production rules model all aspects of the learner's
behaviour, both correct and "buggy". These rules must be elicited from the
designer. The tutoring strategy is said to be "induced" from the behaviour of the
designer playing the roles both of teacher and ideal student In fact the designer
must specify correct and incorrect protocols in order for the system to generate
the productions required.

SCALD uses a script-based expert system to support the tutorial designer which
incorporates knowledge about how to build CAL systems (Nicolson and Scott
1986). It does not support an intelligent tutorial delivery environment, nor is it
specifically aimed at software interfaces.

The systems described above all focus on one or more of the accepted issues in
ITS design as a means of investigating and refining approaches to handling those
issues: domain and learner modelling, planning, teaching strategies, problem
generation, natural language interfaces, representation of teaching expertise and
so on. In contrast the LIY research reported here is concerned specifically with
software interfaces and their representation and asks the question "How can this
representation - which will already exist - be exploited in the cause of tutorial
creation and delivery?".

Chapter 1

Aims and rationale

Section 1.1 above describes the area of this research and the background in terms
of related research. This section provides a more focused view of the aims of
the research and explains the rationale for carrying it out.

The aims are considered first. There were two principal aims, along with four
more general ones. The principal aims were:

1. To investigate the extent to which a specification of the user
interface can be used as the basis for building a tutorial for
that interface.

If it were the case that a user-interface specification could contribute to
construction of a tutorial for that interface, then this would save effort: for some
given project the specification would be contributing to both the software
engineering and the courseware engineering stages. Such an economy could
only occur when the project development provides not only for the software but
also its tutorial courseware. No economy would occur if the tutorial were to be
implemented retrospectively as an afterthought

2. To demonstrate the feasibility of a portable shell for supporting
the production and delivery of tutorials for software interfaces.

This aim tests the domain-independence of the LIY approach. Most of the tutors
being discussed in the current literature are for single domains such as the
teaching of algebra. The work described here is concerned with developing a
method with wide applicability. If the research had been focused on aspects of
design of a tutor for just one particular software interface then the issues the
work would have addressed would have been those confronting the ITS research
community in general. These issues have not gone away simply because of the
portability aim of LIY. Some of them are considered in LIY's design and are
discussed in detail in chapters 3 and 4. Others are discussed in the concluding

10

Chapter 1

chapter. Please note, though, that the desire for portability pervades the entire

LIY conception.

There were four subsidiary, or more general, aims which were kept in mind as

being desirable:

(a) The learner should be allowed to interact directly with the software

interface being taught.

The reasoning behind this is that learning by "doing" is very effective. Learning

by interacting with a simulation could be as good provided that the simulated

interface was as good as the real thing - a situation appropriate on cost grounds

to teaching airline pilots, but hardly to teaching software interfaces. The learning

experience of interacting with static screen dumps, as for example in DOMINIE,

is likely to be of lower quality (Spensley and Elsom-Cook 1988).

(b) The learner should be able to interrupt at any time.

On the face of it learner control does not seem to have provided the

breakthrough in CAL acceptability which was hoped of it and it would be

instructive in the future to analyse the reasons. Merrill points out in his study

of learner control in the TICCIT system that distinctions can be made between

learner control of strategy, presentation and content (Merrill 1980). In LIY the

learner essentially has control over strategy, and the case for using it rests on the

high level of motivation anticipated of the learner. In a study by Hartley it was

found that a group of students offered learner control reported a greater degree

of stimulation and satisfaction than a similar group learning the same material

under program control, factors which are clearly concomitant with maintaining

a high degree of learner motivation (Hartley 1981). More recently Hartley and

Tait report experiments with a system offering both learner-control and advice

in the domain of mathematics for biology students (Hartley and Tait 1986).

While the system was liked by the students, there was some concern as to

whether it met the particular requirement of stimulating thought and reflection

in this particular domain. The authors propose a design incorporating a

11

Chapter 1

knowledge base to support the advisor which would enable it to probe deeper

issues concerning the student's understanding.

Anderson has pointed out the importance of control to the learner even if this

control is illusory (Anderson 1989). He described an informal experiment in

which a lecturer was giving the last lecture of a course. He divided the students

into two groups (group 1 and group 2). He needed to teach only one of two

possible topics. Group 1 were allowed to choose the topic while group 2 were

to be denied a choice although they were taught the same topic as group 1. The

result was that group 1 performed better in post-tests than group 2, who were

denied even the illusion of having some control over what was to be taught

MATILDA, a system for teaching Lisp to novices, was apparently not as

successful as the system used in Hartley and Tail's study (Elsom-Cook 1983).

The learners, who were students on a taught MSc. course in cognition,

computing and psychology, were largely computer-illiterate, and were inhibited

about trying things to find out how MATILDA worked. It can be inferred that

the cognitive load associated with learner control was relatively large compared

with the cognitive content of the learning task. The learner perceived "learning

the task" as being more important and therefore opted to minimise cognitive load

by avoiding learner control. For software interfaces the LIY approach should

help to overcome this problem for the following reasons. First, a high level of

motivation on the part of the learner is assumed. Second, many learners will

already be computer-literate even if they lack knowledge concerning the software

interface that they are learning (package-illiterate). Third, some learners will be

transferring skills from another not dissimilar interface (computer-literate and

package-literate). As an example of the last point consider a learner who is

familiar with WordStar and who is learning to use an alternative word processor

such as WordPerfect. Having control over navigation within the task domain

would allow the learner to capitalise on existing knowledge of word processors.

This is discussed further in the context of learner acceptance in the rationale

below.

12

Chapter 1

(c) LIY should comprise not only a delivery system but also an authoring
system.

This requirement is necessary so that tutorials can be built for a wide range of

different software interfaces. It follows as a result of the second of the principal

aims described above: the feasibility of a portable shell.

(d) LIY should incorporate intelligent tutoring system technology where
possible.

The standard ITS concepts are discussed more fully later on, together with other

ideas which have not yet been fully developed in the implementation. These

include a variation in certain of the learner model attributes to include both a

characterisation profile and a performance profile, so that longer-term attributes

of the learner could be preserved across a range of tutorials. Additionally, an

idea put forward by Pask concerning feedback systems has led to the suggestion

of a general architecture for those tutoring systems which include learner control

(Ogborn and Johnson 1982). This is described in detail in section 4.2.3.

The rationale for this research is based on the proposition, stated earlier, that the

computer is the natural medium for delivering training material for software

interfaces. A further step along this path is to consider the stage at which

courseware should be produced ("Courseware" here is specifically limited to

mean training material for software interfaces.) Associated with the fact that

courseware is difficult and time-consuming to produce is the fact that, like

documentation - an analogy which will recur later - there is a tendency for

courseware production to be an afterthought Some of the work which is

described here is concerned with examining ways of building the courseware at

the same time as the software. It is hoped that this will lead to an overall

reduction in the effort - and hence cost - required to produce both software and

courseware compared with a more conventional, separate approach. The desire

to seek ways of reducing the cost of producing courseware permeates the LIY

approach. As with any creative undertaking, courseware production provides

many challenges.

13

Chapter 1

These include:

problems of courseware creation;

problems of courseware maintenance;

problems of learner acceptance.

Good courseware creation, like writing a good book, is perhaps more of an art
than a science. Nevertheless the aspiring author of a book can learn techniques
and approaches to apply to the craft (art?) which will result in a higher quality
product. The same is doubtless true of courseware production, but in the case
of courseware for software interfaces it is clear that the computer itself could
provide added support. This is because objects which exist in the user interface
to the application software are also those objects about which knowledge is to
be taught by the courseware. Such support is certainly highly desirable: some
writers claim that the ratio of courseware production time to student usage time
can be upwards of 40:1, which represents a working week for every hour of
running time (Kearsley 1982). Experiences with the DYCAL system indicated
a much higher ratio than this (Martin 1983).

Courseware maintenance is perhaps more of a problem when considering
tutorials for software interfaces in comparison with other types of computer-
based tutorial: when the software changes in such a way that the user interface
is affected, then the courseware must change also (Mayer 1967). It is not
obvious that in this instance courseware re-writing can be avoided - you cannot
simply change one or two identifiers and recompile! - but if the software
changes in a way which impacts upon the conceptual objects which the software
manipulates then by comparing old and new versions of structures representing
objects in the user interface it would be possible to predict those courseware
elements in need of updating. The similarity, mentioned above, between
courseware for software interfaces and documentation is that in both cases they
can get out of step with software versions. This can be very misleading and
quite possibly worse than having no tutorial courseware at all. An
implementation approach which keeps the development of software and its
tutorial courseware locked in step should be of help in obviating this problem.

14

Chapter 1

The third of the problems mentioned in this section, learner acceptance, is

perhaps the most important. The two major goals of the application of AI

techniques to tutoring systems are the production of more effective courseware

on the one hand and exploring the cognitive processes involved in learning and

teaching on the other. Both approaches use techniques which are based largely

on the architecture laid down by Hartley in which he considered an adaptive

teaching system (Hartley 1973). At the present time one of the best-known

approaches to the second goal concentrates on very fine-grained modelling of the

learner in order to force him or her to stay on the learning path of some ideal

learner who would become an expert in the tutored domain. This "expert

paradigm" is best exemplified in Andersen's Lisp and geometry tutors. While

it can be argued that these tutors are adaptive - indeed, the ACT theory of

learning is acronymic for Adaptive Control of Thought - they do not adapt to the

will of the learner. Thus the learner cannot exert any influence over what to

learn or over the sequence in which to learn it. For software interfaces this is

particularly important for two reasons. The first is that a learner may well not

desire nor need to know everything about a software interface. As an example

the installation of software may well only be done by a particular member of a

department, while other users need not know the installation procedures. On the

other hand, some time later it might be that the installation procedure is the only

topic that a particular user wishes to learn from a tutorial. Secondly, users who

are bringing skills from other similar user interfaces - so-called transfer of

training - possibly only need to be taught a restricted subset of skills in order

to be productive with the target application software. While LIY is not as

adaptive - in a fine-grained sense - as the Anderson tutors are to each input from

the learner, the learner-control capability described earlier in this section does

allow tutorials to be adapted to the needs of the software interface learner.

15

Chapter 1

1.3 Conclusions in brief

This section provides a short summary of the conclusions, set out more fully in

chapter 5, with respect to the principal aims.

With regard to the first aim - that of investigating the use of a user-interface

specification as the basis of a tutorial - the outcome is positive but there are

some reservations. Task classification 1 leads in the first instance to an

operational ordering of user commands which defines the order in which tasks

should be carried out to achieve an objective. The LIY tutor requires a

pedagogic ordering, in which commands are laid out in a sequence which is

logical for the learner. It appears possible to transform from operational to

pedagogic ordering by applying heuristics. These are rather heavily dependent

upon knowledge of the domain, for example: "prompt the designer for any

SETUP functions and teach these last". They would not appear to be tractable

in the sense of encoding as rules into a program to carry out the transformation.

Nonetheless they have been used with success for the transformation by hand of

task classifications in three separate domains.

The second principal aim is concerned with demonstrating the feasibility of a

portable shell for software interface tutorials. The LIY work described here

shows that such a shell can be built; it has been used successfully in the

construction of two tutorials. The first is for teaching the use of a DIALLER

program to control a modem: in fact this program is simply a front end, with no

modem control implemented. The other is for teaching the use of the LIY

authoring system: this is a "real" program which updates files on disk.

1 The term task classification is used in preference to task analysis as the latter
term currently has a more overtly psychological connotation than is desired.
Human factors workers use task analysis to refer to inferred users' tasks rather
than operations in the task domain of a user interface.

16

Chapter 1

1.4 Implementation and environment

The LIY implementation broadly follows the proposals set out in an earlier paper
(Martin 1987). As described in the previous section, two "application1 ! programs
were developed in order to test the LIY approach. These were a \phantom
DIALLER - the front end of a program to control a modem - and the authoring
sub-system of LJY itself. Tutorials were successfully developed for these
programs. A delivery environment for LIY tutorials was also built incorporating:

(i) a graphical interface to the learner;

(ii) domain and learner models;

(iii) teaching strategy encoded as a set of rules;

(iv) rule interpreter;

(v) a set of teaching operations.

It was decided to implement all the software in the same programming language
in order to minimise interface problems between the various programs. The
language used was Golden Common Lisp 286 Developer version 2.2 - an almost
complete Common Lisp implementation. It implemented the Common Lisp
package feature which was used to separate the name-spaces of the various
software components. This was both desirable from the implementation point of
view, and essential in being able to demonstrate LIY tutorials running with real
software. No modification to either of the application software packages was
necessary in order to get them to run with the tutorials, although some of the
standard Common Lisp input-output routines which these packages used were
replaced - only when being used for tutorials - with special-purpose versions of
increased functionality. The interface of these routines to the application
software remained transparent and in accordance with the Common Lisp standard
at all times.

17

Chapter 1

The hardware used was a Tulip AT running MS-DOS with 2.5mB of RAM and

a 40mB hard disk. Although it incorporated a Hercules monochrome graphics

card the graphics implementation was confined to the so-called IBM graphics

characters.

My interest in tutoring systems for software interfaces was kindled when, in

1980, the ageing Thames Polytechnic IGL 1902A was replaced by Prime

computers running the PRIMOS operating system, which is quite similar to

UNIX. At about the same time I came across UNIX itself and the LEARN

system (Kernighan and Lesk 1979). The latter is a set of computer-based tutorials

for learning about UNIX, in particular its filing system and the editor ed. I

implemented the somewhat similar DYCAL system for PRIMOS which gave

several generations of students an introduction to the Polytechnic computing

environment and was also distributed to a handful of other academic Prime users

(Martin 1983). A developing interest in A.I. focused my attention on ITSs, and

a determination to develop better tutoring systems than LEARN and DYCAL

resulted in my registration for a research degree in January 1984. I initially

considered a tutoring system for a financial application which is described in an

earlier paper (Martin 1987). In the event the DIALLER, with a much simpler

user interface, and its tutorial were developed instead, followed by the tutorial

for LIY's authoring sub-system. The financial application was not implemented

and it is not reported here, although a pedagogic task classification tree was

evolved for it. The transformation heuristics described in section 3.5 were

applied to the original tree, in operational ordering, and it was pleasing to

discover that they produced the same tutorial ordering as that which had earlier

been worked out empirically. Progress was sporadic, but a half-sabbatical for

the academic year 1988-89 enabled me to complete the programming.

Although no formal evaluation of LIY has been attempted with learners, it has

been used by a handful of people and their suggestions noted. In consequence,

changes were made which strengthen the diagnostic messages to the learner and

which generally improve the user interface of the feedback component. This is

described more fully in section 3.7.

18

Chapter 1

1.5 Structure of this thesis

The contents of this chapter are principally concerned with background, aims and

rationale. Because of the significance of specification methods, particularly in

user-interface design, chapter 2 is devoted to this topic. The last section of the

chapter (2.4) describes the interface representation elements used by LIY.

Chapter 3 portrays the LIY method for producing tutorials and describes how it

works. It also sets out the approach taken to the transformation of an

operational task classification to pedagogic ordering. (Note that appendices B

and C describe the complete development of the pedagogic structures for the

DIALLER and ELICITOR tutorials. These are the two LIY tutorials which have

so far been built and which are described in sections 3.3 and 3.4 respectively.)

Chapter 4 outlines the components of an intelligent tutoring system and focuses

on certain ITS aspects of LIY. It also proposes an architecture for ITSs

incorporating learner-control. Chapter 5, "Discussion and Conclusion", assesses

the extent to which LIY achieves the aims - both principal and subsidiary - set

out in section 1.2. It also outlines further research and development work which

might be appropriate.

19

Chapter 2

Specification methods

This chapter starts by examining specification methods used in software

engineering. It then discusses and contrasts methods of user interface

specification, going on to describe one of them in relation to the requirements

of a tutoring system. The final section justifies the selection of various user

interface attributes for incorporation in the LIY system.

20

Chapter 2

2.1 Specification methods in software engineering

Specification methods are increasingly being used in software engineering,

principally as a means of reducing the incidence of errors. In addition to

specification methods, design methods are evolving - very often involving a

specification technique - which aim both to reduce the cost and to increase the

reliability of a software design.

Many of these design methods owe a considerable debt to the ideas of structured

programming. This is particularly true of Structured Design (Yourdon and

Constantine 1979) and Jackson Structured Design (Jackson 1983), also known as

JSD. Yourdon and Constantine offer a method of structuring by breaking up a

large problem into a number of smaller, more manageable units. Jackson

Structured Design (JSD) grew out of Jackson Structured Programming (JSP) - a

program design method - but now encapsulates it. JSD starts by building a

model of the environment in which the proposed system is to operate - the "real

world". This model is described in terms of entities and their actions. (Note

that a JSD entity is not the same as a database entity.) The functions expected

of the proposed system are then added. Timing considerations lead to what is

known in JSD as dynamic modelling, in which each JSD entity is modelled as

a sequential process. The JSD entities have to be connected by a scheduler.

The last phase of the JSD method is to convert the specification into a set of

executable programs. A notation is used for specifying entities and actions.

Diagrams are used for modelling the real world and the proposed system.

The Structured Analysis school (De Marco 1978, Gane and Sarson 1979) both

use data analysis, data dictionaries, data flow diagrams and a "formalism" for

representing algorithms known as "pseudocode" or "structured English". While

these techniques are not as mechanistic as JSD they have found a wide degree

of acceptance although the notation for describing algorithmic specification lacks

conciseness. Neither of these Structured Analysis methods go as far as JSD:

they both stop short of implementation whereas JSD considers both specification

and implementation.

21

Chapter 2

A rather more formal approach is found in USE - User Software Engineering -

which is a method for building interactive information systems based on the use

of a formal specification method and various automated tools (Wasserman 1984).

The user interface is modelled as a set of transition diagrams and there is a

graphics editor to maintain them. An interpreter can execute them as dialogue

descriptions for prototyping. Originally, algorithmic specification was to be in

a specially-designed Pascal-like programming language called Plain, with the idea

that a Plain interpreter could be built to offer rapid system prototyping.

Subsequently systems were formally specified in BASIS (Leveson el al. 1983)

which used an abstract model based on Hoare's ALPHARD language (Hoare

1972).

The computer support for the implementation of software directly from a

specification is referred to under the umbrella heading of computer-aided software

engineering ("CASE"). CASE is currently targeted at automating the production

of business systems. The methodologies it supports are those based on data

analysis and data flow rather than those based on set theory and logic. CASE

tools focus on one of the stages of systems development, typically business

system analysis and design, database and file design, programming - often

generating code in Cobol - system maintenance and project management. CASE

workbenches are more powerful, offering a complete set of CASE tools for

system implementation based upon a single design methodology. It could remain

simply a dream, but might not one day a CASE workbench contain also a user-

interface tutorial generator tool?

Returning now from design to specification, perhaps the best-known method of

formal (program) specification is the Vienna Development Method (VDM) which

is described by Jones (1980). This proposes a concise method for specifying

data objects and their processing based on logic and set theory. Specifications

using this method can then be transformed into actual programs. Because the

specification method is sufficiently formal, Jones* method allows the designer to

reason about specifications and programs. Thus designers using VDM are

encouraged to satisfy themselves that the design is correct: they can prove it to

be so. The specification methods of Structured Analysis in particular are

22

Chapter 2

insufficiently rigorous to allow this. It would appear that the utility of a

software specification system is proportional to the individual effort required to

master its use (and unfortunately inversely proportional to its degree of current

acceptance within the computing community at large). Complete specifications

for systems using techniques such as VDM and BASIS are arduous to produce.

Specification of a fragment of a university administration system in BASIS
formed part of Leveson's Ph.D. thesis (Leveson 1980).

Another example is the formal specification of a text editor (Sufrin 1982). A

number of points are made below concerning this particular work. This is

because it is the specification of an application which is more like the software

systems for which tutorial approaches such as that of LIY would appear to be

useful. The notation used is the Schema Notation developed by the

Programming Research Group at Oxford (Morgan 1985). Schema has evolved
more recently into the better-known Z notation (Spivey 1989).

The first point to make about Sufrin's specification is that it is quite long - the
journal article is 46 pages, of which the formal specification takes up perhaps

30 - whilst an informal specification is provided in four pages as an appendix.

Secondly, no attempt has been made to prove particular properties about the

editor: although there is a formal description of each of the editor functions there
is no consistent set of pre- and post-conditions. There is no implementation

detail, therefore no transformation from specification to implementation, and
therefore no argument concerning the validity of assertions during transformation.
But then what Sufrin has attempted to do is

"to permit exploration of the consequences of our design and to

provide an unambiguous definition against which the correctness of

implementation strategies might be proven".

Nor has this been easy: he acknowledges a serious flaw in an earlier

formalisation. As in most examples of creative work, at the end Sufrin suggests

improvements, here in the form of abstractions which would enable the editor to

be enhanced. Although this fits in with his "exploration" justification quoted

23

Chapter 2

above, there seems to be a danger of the tail wagging the dog in that there

could be grave difficulties with enhancement if a suitable abstraction could not

be found. This is not meant to be a specific criticism of Sufrin's work since

this latter problem is present in all design and specification systems. The point

to note is that the problem of dealing with enhancements does not simply go

away even with a formal specification approach. Lastly, the user interface of

Sufrin's editor is particularly straightforward: every editor function can be

implemented with a single key depression. Since most systems have more

complex user interfaces than this it follows that specifications for such systems

would be even longer and require even more effort than that for Sufrin's editor.

Elsewhere Sufrin describes how the specification language Z might be applied

to the design of the user interface to an electronic mail system set in an office

context (Sufrin 1986). As before, a modeless command set is assumed, so that

one key-stroke is all that is necessary to accomplish any particular function. The

creation and editing of documents on the screen is to be done through the editor

Sufrin specified earlier, discussed above. It follows that the concerns expressed

earlier about the editor are felt even more deeply about this larger system.

Although the specifications describe the functional behaviour of the interface they

need to be supported by more tangible views of its appearance. Perversely, the

formal specifications represent a triumph of function over style; no essence of

the aesthetic element of the interface is conveyed. A specification in this form

could not become the basis of a contract of acceptance between client and

system designer - a claim often made in favour of the formal specification

approach - since the client would not have any interface to envisage. It would

be necessary to provide mock-ups of the proposal but this could pose the

problem of inconsistencies arising - possibly later - between the mock-ups and

the specification. A better strategy would be to derive a prototype from the

specification itself although this could pose so much effort for the designer,

before a contract had been signed, as to render the approach economically

infeasible.

The observations made above are not in any way meant to imply criticism of

Sufrin's achievements. Indeed, they are especially valuable in that they show the

24

Chapter 2

great effort required to produce formal specifications of real systems.

Nonetheless, formal approaches have been found to be of value in producing

correct specifications which can be agreed with clients and which enable correct

implementations to be produced. The barrier to the wider acceptance of formal

specification approaches appears to be the cost in relation to the short life of the

final product. The portion of costs devoted to procuring the expertise and effort

for specification is especially significant. Many writers, including Sufrin,

advocate the adoption of the formal specification approach since it is used in

other, more mature, engineering disciplines. Such an approach would be more

viable when depreciated over a longer product life-time of perhaps twenty years,

say. Over a four-to-six year lifetime the formal specification approach appears

at present for most applications - but not all - to be simply too costly.

Although software specification has been the target of considerable research and

development, it does not appear to provide a suitable "handle" for building a

tutorial for some arbitrary software product. There is too large a gap between,

on the one hand, the functional behaviour of the software system and, on the

other, both the users' perceptions of the system through its user interface and the

psychological requirements - particularly with respect to structure - of a tutorial.

Maybe there is a parallel with Clancey's observations concerning the

shortcomings of the GUIDON tutorial for the MYCIN expert system (Clancey

1987). This research attempted to turn a rule-based expert system, incorporating

an explanation facility, into a tutoring system. It was found to be unsuccessful

for tutoring since MYCIN's knowledge was too "compiled" to suit the needs of

the learner. From a functional viewpoint the rule-base drove the system

successfully and it could provide meaningful explanations in terms of rule-traces.

These explanations, however, were meaningful only to those already familiar

with MYCIN's domain. Clancey goes on to describe NEOMYCIN - an attempt

to incorporate epistemological meta-knowledge into MYCIN - which he hopes

will be more successful as a tutoring system.

With a view to moving closer to the hypothetical learner as the user of a

software system, we turn next to considerations of user-interface specification.

25

Chapter 2

22 Specification methods for user-interface design

The previous section was concerned with specification methods used in the

design and implementation stages of the engineering of reliable software. This

section considers some of the difficulties, associated with the user interface,

which are posed by software specification techniques. It also discusses interface

specification methods in their own right.

VDM (Jones 1980) is one of the most rigorous and best-known techniques but

has a rather restrictive way of specifying input-output This restriction becomes

apparent when one considers the context of a highly interactive system, perhaps

executing on a personal computer with a sophisticated windowing and graphics

capability. It is this type of system, running mass distribution software, for

which the greatest need for computer-based tutorial support has been identified.

Yet VDM doesn't have an easy way of representing the complex input-output

interactions of such a system. VDM defines input-output in terms of lists, which

one may assume normally to be of text characters. An interactive system would

therefore need to define many such lists to describe interactive I/O. There is no

obvious way in VDM to handle the temporal characteristics of overlapped input

and output Anderson, discussing the properties of a formally specified

interactive system, notes the lack of a mechanism for handling temporal

characteristics as being a particular problem for user-interface specification

methods (Anderson 1986).

Other techniques have been used for describing - and perhaps modelling -

complex user interfaces; they are discussed below. Currently, formal program

specification methods provide powerful data abstraction and procedural

specification capabilities but are weak on user-interface representation;

conversely, methods designed for representing and modelling complex user

interfaces do not address the problems of data and procedural specification.

No single method, or even class of methods, has emerged as pre-eminent for

user-interface specification. A number are discussed including Backus-Naur

Form (BNF), transition diagrams, the Command Language Grammar or CLG

26

Chapter 2

(Moran 1981) and path algebras (Alty 1984). It is important to distinguish

between user representation methods and user-interface representation methods.

The techniques examined here are all examples in the latter category. Other

workers such as Reisner and Payne are interested in modelling the user per se

during interaction with a system. They are attempting to develop theories of

user behaviour and of users' representations of interfaces, such as Reisner's

Formal Grammar (Reisner 1981), Payne's Task-Action Grammar or TAG (Payne

1984) and Johnson et a/.'s TAKD (Johnson et al 1984). For an interesting

discussion of classes F(X) of user models, see (Whitefield 1987). F(X)

represents agent F's model of X, where F could be one of program, user,

researcher, designer, X could be one of system or program, user, designer. Note

that nobody is interested in modelling the researcher!

Jacob contrasted the BNF and transition diagram approaches to representing the

user interface of a small part of a military message system (Jacob 1983). He

was interested in a complete formal specification for such a system, both as a

design and implementation aid and for rapid prototyping of its user interface.

His view is that transition diagrams provide a more readable specification of the

user interface than that offered by BNF. Although the two approaches can be

shown to be formally equivalent, Jacob maintains that surface differences can

have an important effect on comprehensibility. This idea is appealing: as an

example, one has only to think of the ease of doing arithmetic in the Roman

compared with the Arabic number representations. Jacob points out that

transition diagrams explicitly embody the concept of a state and the transition

rules associated with it. These states have a fixed temporal relation (e.g. State2

cannot be reached until State 1 has been reached) which is essential in specifying

an interactive dialogue. In BNF the temporal relation between events is implicit

which makes it much harder to use for dialogue specification. In contrast to

declarative specification methods, transition diagrams comprise a procedural

element which goes some way to overcoming the problems, mentioned earlier,

concerned with the temporal aspects of interface representation. Jacob describes

tools which allow textual descriptions of transition diagrams to be input and

transformed into an equivalent graphical representation. The USE system

mentioned in the previous section is also based on similar tools (Wasserman

27

Chapter 2

1984). Of course, BNF or transition diagrams are fine for describing the syntax

of a user interface, but what of its semantics? Jacob doesn't really deal

adequately with semantics in detail, but proposes that semantic actions should be

described in some high-level programming language-like constructs. Numeric

labels attached to the arcs of the transition diagrams are used to refer to code

sections which define semantic actions associated with the given syntactic

elements. Figure 2.1 illustrates a possible representation of the MS-DOS "cd"

command. "V1 is the subdirectory operator.

snter

Fig. 2.1

28

Chapter 2

The semantics of the command would be specified by action or condition-action

sequences for the numbered arcs. The dollar sign in "$Name" signifies de

referencing of the symbol "Name" which has been passed from some suitable

lexical analyser. For the "cd" command of figure 2.1 the sequence would be:

(1) action: TempDir:= CurrentDir

(2) action: CurrentDir:= TempDir

(3) action: TempDir:= Root

(4) condition: not exists-dire $Name)

action: response(TempDir '\' $Name 'not found'

(5) condition: exists-dire $Name)

action: TempDir:= TempDir '\' $Name

(6) no associated semantics

(7) condition: exists-dire $Name)

action: TempDir:= TempDir '\' $Name

(8) action: CurrentDir:= TempDir

(9) condition: not exists-dir($Name)

action: response(TempDir '\' $Name 'not found'

It is thought that the first attempt to use transition diagrams for user interfaces

was due to Parnas (Pamas 1969). An improvement was subsequently made

which allowed transition diagrams to invoke other diagrams in a fashion similar

to the familiar program subroutine principle, i.e. non-terminal input symbols

could appear on the transition arcs (Woods 1970). A more general approach

based on Woods' augmented transition networks (ATNs) but which allows

hierarchies of transition states has been proposed (Kieras and Polson 1985). The

29

Chapter 2

subroutine nesting idea mentioned above is generalised not only to conditions but
also to actions and states. As before, in comparison with VDM the semantics
of the actions lack rigour.

Transition diagrams appear therefore to be a promising representation method for
that class of user interfaces which lends itself to this approach. There are
unresolved problems with their use in situations which are non-deterministic such
as occur in certain graphics windowing displays. Consider an arcade game in
which the display on the screen shows the hunter and its quarry, both in motion,
represented internally as two objects but notionally as two transition diagrams.
Assume that the transition diagram for the quarry will indicate termination of the
hunted object if caught by the hunter. Some suitable transition is similarly
indicated concerning the state of the hunter if this event occurs. "Caught" here
means that hunter and quarry occupy the same place on the screen. It is
possible for the transition diagrams of each party to encode a transition for "Am
I at the same point as the other party?", though this would be a poor approach
if many hunters and quarries were to be represented. Instead it would be better
to have a third object, or agent - the screen manager. This meta-process would
be able to detect adjacency and send appropriate messages to the other parties.
Thus the interaction is resolved by encoding a state-transition in the hunter and
quarry based on reception of such an appropriate message. The difficulty with
this as a means of user-interface representation is that the message from the
screen-manager doesn't model anything in the interface. The message is not the
output of systems analysis, but is merely introduced to support the animation of
objects which are in the interface.

There are also difficulties with the use of transition diagrams to represent those
user interfaces which permit the use of "hot keys". The asynchronous control
behaviour of hot keys poses problems for modelling the domain by a tutoring
system and a facility to do this has not been incorporated into the current version
of LIY. Chapter 5 describes a possible approach to this problem.

The Command Language Grammar, or CLG, is a representation method for
exploring the concept of the user interface (Moran 1981). Moran adopts three

30

Chapter 2

perspectives in CLG: the linguistic view, the psychological view and the design

view. Further, user-interface components are stratified into four distinct levels:

task level, semantic level, syntactic level and interaction level. The task level

imposes a structure over the set of tasks which the user wishes to carry out with

some hypothetical system. This is very much in the style of user representation

mentioned earlier as a basis for developing a psychological model of the user.

The semantic level defines the conceptual entities and operations of this

hypothetical system together with the methods for accomplishing the tasks from

the task level in terms of these entities and operations. Thus the semantic level

refines the task level - the pattern for all the adjacent levels. The syntactic level

recedes the methods from the semantic level in terms of the syntactic level

commands, while the interaction level describes the user's physical actions

associated with the syntactic elements.

Moran's linguistic view of CLG provides an analysis of the structure of

command language systems and is relatively brief. He compares CLG with the

state-transition and augmented transition network approaches but finds the state-

transition representation lacks a sufficient analysis of the functions associated

with the states. This finding accords with the general view expressed earlier that

user-interface specification methods are weak in the area of procedural

specification. However, it is as well to remember that CLG is designed as a

representation for investigating user interfaces in general, whereas LIY requires

a specific representation method for the engineering of courseware. This is a

more pragmatic objective which doesn't therefore necessarily rule out a state-

transition representation.

The psychological view sees CLG as a means of representing a user model, i.e.

a model of the user's view of some interactive system. Due to the lack of a

method for representing knowledge in CLG, it is unsurprising that Moran states

that the four levels of CLG can only represent a part of what the user knows

about a system. The problem from a courseware engineering viewpoint is that

any model of the user's knowledge provided by CLG is static. As a

representation method CLG cannot provide support for modelling the user's

interaction with a system in a way which would intelligently support delivery of

31

Chapter 2

a tutorial for that system. On the other hand one of the strengths of an interface

representation system like CLG is that it forces the system designer to consider

the user's conceptual model of the system. Moran asserts that this is defined in

CLG by the semantic level. It is naturally a desirable objective of any

courseware engineering method that it should provide support for the learner to

assimilate or induce the underlying conceptual model. On learning, Moran

suggests consideration of Rumelhart and Norman's modes of learning: accretion,

tuning and restructuring (Rumelhart and Norman 1978). Of these CLG can only

address the simplest two: accretion and tuning. Since any representation system

could claim to be able to model learning by accretion - an additive process - it
is not obvious that CLG is offering any outstanding advantages for modelling
learning compared to other interface representation methods. As regards tuning,
the learner shifts his or her focus over the subject domain, subsuming lower

levels into higher-level concepts. Yet any interface representation method which

would enable the learner to forge a link between an objective (task) and its

means of accomplishment (action) - and which in some way structures the

objectives - would encourage this learning mode.

The design view regards CLG as a tool for helping the designer generate and
evaluate alternative system designs. The sequence of levels in CLG proceeds
from abstract to concrete, providing a pathway for design by successive
refinement. Moran proposes the addition of design aids - design principles,

design operations and design rules - for helping with design decisions.

Unfortunately there is no reported experience of using CLG as a design aid.

Moran exemplifies CLG by reference to a model mail system called EG.

However, EG is sufficiently small that its whole design can be held "in the
mind". Thus in a sense the EG example shows how CLG can be used as a
representation method rather than a design method since it would appear that
EG has not been designed using CLG. This is not a failing: indeed, Moran
stresses that CLG is intended as a representation method. Merely, caution needs
to be exercised in making claims for CLG as a design aid. Experiences with

CLG in this role are reported by Sharratt (1987), who describes some possible

improvements and extensions.

32

Chapter 2

CLG represents a system in terms of its entities and operational characteristics

at various levels. The top-most task level, while providing a "first cut" means

of structuring a system's operational domain, provides only a weak separation

from the semantic level. Further, as Moran admits, decisions as to whether

details should be admitted to the task level or the semantic level are arbitrary.

In the LIY system the output of task classification, required both for the

implementation of the application software and of its tutorial, is a

representational level broadly equivalent to the semantic level of CLG.

Foley has proposed an Interface Definition Language (IDL) which is an object-

oriented high-level description language for user interfaces (Foley 1987). IDL

describes the user interface at the conceptual and semantic level, rather than the

syntactic and lexical levels, and could thus be used to implement any particular

user interface through a user-interface management system. This approach has

recently been reported, using the UIDE User Interface Design Environment

(Foley 1988). IDL enables the construction of a knowledge base concerning the

proposed interface. Algorithms have been developed for possible transformations

which can be made to the knowledge base while preserving internal consistency.

These transformations enable the designer to transform one proposed interface

into another, at the same time maintaining functional equivalence, so as to permit

the exploration of the consequences of different designs. UIDE is reported as

not only implementing the knowledge base which represents the conceptual

design of the user interface (subsuming IDL), but also the transformation

algorithms and a user-interface management system to implement any

application's user interface. It could be that, within UIDE, transformations may

be possible towards a pedagogic orientation for a user interface. Such an

approach would parallel the LIY transformations described in the next chapter.

Waddington and Johnson propose relating a family of task models to user-

interface specifications so as to be able to explore the consequences of adopting

differing user interfaces (Waddington and Johnson 1989). The approach is

hierarchical in a manner somewhat similar to CLG, involving a "generalised task

model", a "specific task model" and a "specific interface model". To strengthen

the procedural aspect of the specification, the generalised task model can

33

Chapter 2

decompose tasks into procedures, which decompose again into actions. The

specific interface model uses a representation based upon pie- and post

conditions. However, from a formal specification viewpoint, a great deal more

remains to be said about the syntax and semantics of the mappings between the

components.

Alty has proposed an interesting application of algebra to networks (Alty 1984).

His path algebra technique provides a powerful means of analysing the complex

dialogues of an interactive system. In particular, path algebras can be used for

detecting redundant paths, loops, etc. which can arise in a less-than-perfect

command language. Alty claims that path algebras are quite general and have

applicability in CAL as a design tool, but while they can obviously be used for

network analysis their use as a design aid, particularly for CAL, is not so

apparent. Others (Ferraris et al. 1984) have proposed alternative network

disciplines - Petri nets in this case - for direct application to CAL as a means

of modelling the semantics of the domain being taught and the conditions under

which the learner is allowed to make transitions between nodes, or sub-goals,

within the domain.

34

Chapter 2

23 Jacob's specification method revisited

In his original paper Jacob proposed a complete specification method for user

interfaces based upon state transition diagrams (Jacob 1983). As discussed in the

previous section, both syntax and semantics were considered. Figure 2.2 relates

a tutoring system to an application software package through a user interface.

glass box

black box

tutoring
system

', / — * application

user
interface

Fig. 2.2

From the perspective of the tutoring system the application is perceived as a

"black box" so that any of the tutor's knowledge concerning it - particularly

necessary for learner diagnosis - must be represented to the tutor by the user

interface. (Learner diagnosis in this context enables a tutoring system to provide

an analysis and commentary concerning a learner's interaction with the

application software.) The user interface behaves somewhat like a "glass box"

enveloping the application black box - a concept proposed in the slightly

different context of the teaching of programming languages (du Boulay et al.

1981).

35

Chapter 2

The power of the user interface to represent the application to the tutoring

system will vary with the extent to which a specification of the interface is

available; certain syntactic and semantic definitions of components of the

interface may or may not be present An analysis follows showing the effects

of the presence or absence of various specification elements in the interface.

The cases are considered in order of decreasing interface power, so that the first

case offers the most powerful interface representation and thus provides the

tutoring system with the greatest capability for performing learner diagnosis. A

distinction is made between commands to the application representing control

input and other application input conveying semantic information to the

application. Consider as an example the user interface to an "application" which

is in fact an operating system. Printing a file might be accomplished by a

command with two components. The first component, perhaps prwf, is a control

command - one of a limited set of possibilities - whereas the second component,

usually a file-name, is application input

"Jacob's ladder"

(i) Complete user interface specification in Jacob style, i.e. syntax of

commands and application input using transition diagrams; semantics of

commands and application input

(ii) Syntax of commands and application input; semantics of commands only.

(iii) Syntax of commands and application input; semantics of application input

only.

(iv) Syntax of commands and application input; no semantics specified.

(v) Syntax of commands only.

(vi) Syntax of application input only.

(vii) No specification components.

36

Chapter 2

Case (i), at the top of Jacob's ladder, permits a tutoring system to infer a

complete model of the application and thus in principle to perform optimal

learner diagnosis.

Case (ii) is weaker in that, for example, an analysis by the tutor would be

incomplete for a sequence in which a learner attempted to access a non-existent

file.

Case (iii) would mean that, again for example, if a learner were requested to

rename a file, then the alternative strategy of copying followed by deletion of

the original file could not be detected as being equivalent.

Case (iv) clearly combines the restrictions of cases (ii) and (iii).

Cases (v) and (vi) are more restrictive still and, to be meaningful, require some

mechanism in the syntactic structure to enable the tutor to discriminate between

application input representing commands and that which represents other semantic

information to the application. Some learner diagnosis would still be possible

with these cases.

Case (vii) permits no learner diagnosis, although obviously simple right/wrong

assessment is possible, based on detection of perfect performance by string-

matching.

The next section discusses the requirements of a tutoring system in more detail

and proposes case (v) as being appropriate for testing, with an implementation,

the utility of the transition diagram technique.

37

Chapter 2

2.4 Selection of a specification technique

An ideal formal specification for most programs would consist of a functional
component - what the program is actually to do - and an interface component

- how the program is to conduct a dialogue with a user. In addition there could
be a further interface specification to describe a program's interaction with other
machine elements. These might be device interfaces to sensors, for example, or

possibly interfaces to other programs. Since this research is concerned with
tutorials for the user interface, the link to equipment and other programs will not
be considered. Also inappropriate would be a full functional specification; this
research is not concerned with examining the binding between software
specification and implementation. What is of interest are the elements of an
interface specification which could be exploited in the building of a tutorial for
that interface. Both input and output would need to be considered in order that
an application interface be completely specified. The research described here is
only concerned with the input side; a tutor needs to focus on learner input to an
application in order to attempt interpretation of it in a meaningful way. It might
be possible for a tutor to manage interpretation of learner interactions with
software if application output be considered in addition to input; detection of
an error message, for example, could act as a powerful trigger to tutorial action
of some kind. However, it is not clear that a tutor's "black box" view of
software would permit it to infer very much from consideration of error
messages. An approach to learner diagnosis is proposed which incorporates a
model of the application software, against which recorded learner input can be
interpreted by the tutor. Application output is not considered.

In the context of this research, specification can be regarded as serving
essentially two purposes. Firstly, as a specification of the software it describes,
it could be rendered executable. Thus it could be used as a prototype for all or
part of a program. It would be perfectly possible for the specification of the
input side of a user interface to be used as the application front-end, displaying
appropriate screens, handling correct input, guarding against incorrect input and
dealing with error messages. This would in principle be possible for cases

situated towards the top of Jacob's ladder, particularly case (i). Such an

38

Chapter 2

approach has not been followed for LIY following consideration of the

implementation effort necessary: in order that LIY remain portable it would

require the building of part of a general-purpose application generator, capable

of handling front-end input-output. Nor has back-end specification been

considered. The current so-called "fourth-generation" approach typically allows

high-level specification of back-end processing, largely in terms of database

access, using structured English. This is subsequently transformed into a

structured high-level-language program.

Secondly, specification can support the design and delivery of a tutorial. It can

be used for tutorial construction as an aid to the designer, for example ensuring

that courseware is built for every command in the interface. It can also be used

during tutorial delivery, both for learner diagnosis based upon a model of the

domain when evaluating learner input, and as a means of providing a conceptual

representation of the interface to the learner, possibly in graphical form.

It is appropriate now to turn back to Jacob's ladder and select a "rung" which

would appear to support the aims of this research. The top of the ladder offers

the most power but, as has been pointed out earlier, appears to be somewhat

ambitious. Not unusually it is the semantic definitions which pose the biggest

problems. Jacob's semantic definitions may or may not be sufficiently formal

to be understood by an interpreter. To build such an interpreter, however, is

not all that would be required. A tutoring system would need to find a method

for interpreting the learner's intentions in order to provide effective diagnosis.

The requirements for implementing a tutoring system at the top of Jacob's ladder

would be rather like having to implement PROUST (Johnson and Soloway 1987)

with the additional tasks of needing to define Pascal and implement an interpreter

for it.

It would appear to be useful, therefore, to turn to the other end of the ladder and

see what a weaker specification could offer a tutoring system. Case (vi), in

which only application input syntax is defined, appears to be problematic in that

not all user interactions with software require application input. Consider, taking

an operating system interface as an example, the actions of navigating to, or

39

Chapter 2

listing, a directory. With knowledge only of application input a tutoring system

would not be able to perform diagnosis based upon all types of learners'

interactions.

Moving up the ladder to case (v) provides a tutorial with knowledge about the

syntax of command input but not of application input. Thus a tutor should be

able to model the learner's use of commands and perform a measure of

diagnosis. Application input, as opposed to command input, could be handled

(but in a somewhat simple-minded fashion) in the manner of case (vii), seeking

a strict match between known correct input and the learner's input.

Case (v) from Jacob's ladder, i.e. specification of input command syntax, has

thus been selected as the basis for an LIY implementation.

The specification elements used for the tutorial in LIY are two-fold. Firstly

there is an operational task or command hierarchy. This represents the output

of the systems analysis task classification stage. Figure 2.3 shows an example

taken from LIY's DIALLER. It illustrates such an operational hierarchy for the

top level of the program and should be read as "DIALLER consists_of

DIALJDIRECT and DIAL_FROM_MEMORY and SETUP and QUIT". The

dotted continuation marks indicate that each sub-operation (DIALJDIRECT etc.)

is itself recursively decomposed in the same way.

The operational ordering shown here is not particularly appropriate for

supporting a tutorial. This is discussed in the next chapter together with a view

of the task classification transformed into pedagogic ordering.

Secondly the specification contains a mapping of the input command syntax of

the interface on to the nodes in the pedagogic ordering. As an example, for the

DIALLER this means attaching "D" to the DIAL_DIRECT node, "M" to the

"DIAL_FROM_MEMORYM node, and so on, "D" and "M" being two of

DIALLER'S top-level commands. This command representation of the domain

forms a model which is interpreted by a deterministic transition tree parser

during the learner diagnosis phases of tutorial delivery. The domain model also

40

Chapter 2

DIALLER

DIAL. DIAL_ SETUP QUIT

DIRECT FROM_
MEMORY : :

Fig. 2.3

needs to know the navigating sequence followed by the actual domain.

Specifically, this is necessary so that the parser can be reset at the appropriate

point in the hierarchy after the execution of a bottom-level leaf command.

Strictly speaking, this is a semantic consideration which moves LIY slightly

above case (v) on Jacob's ladder.

No syntax of direct application input is represented although LIY's parser

recognises the termination symbols for this type of input Such values - typically

either enter or escape - are, like the commands, attached to the appropriate nodes

of the pedagogic task classification.

Thus for LIY, only a proportion of a user-interface dialogue specification has

been exploited: the task command hierarchy, the control routing following leaf

processing, the syntax of input commands and the terminators for application

input. Yet this is sufficient for the construction of a domain model capable of

being used for learner diagnosis.

41

Chapter 3

LIY : The " Learn-It-Yourself' approach

This chapter starts with an overview of the LIY method. It then describes LIY's

principal components in relation to the four elements of the Hartley and Sleeman

model (Hartley and Sleeman 1973). LIY is described from the viewpoint of the

learner and then of the tutorial designer, in each case drawing on appropriate

examples. A section is devoted to the technique for transforming the task

classification structure to yield a pedagogic ordering. Although the earlier

sections of this chapter are illustrated by reference to existing LIY tutorials, the

transformation technique is exemplified through references to the well-known

operating system MS-DOS. The development of the two existing LIY tutorials

from the interface specification elements discussed in chapter 2 is reported not

in this chapter but in appendices B and C. A complete description of the

pedagogic task classification structure is provided. There follows a section

setting out LIY's control behaviour and the chapter is summed up with some

closing remarks in the final section.

42

Chapter 3

3.1 Overview of the LIY method

LIY consists of both a system for delivery of tutorial material and a system for

authoring it The delivery system is the more fully developed. It uses domain

and learner representations and performs diagnosis using a form of differential

modelling which has some similarities with the use of issues in the WEST

system (Burton and Brown 1982). The authoring system is only partly

implemented at present; all its aspects, whether currently implemented or not, are

straightforward but time-consuming to program. The following description

therefore emphasises the delivery system.

Figure 3.1 shows how LIY teaches the potential user of a software application

by permitting interaction with it while the tutorial maintains control.

I.IY
tutorial

ATSTD! ica t ion
sx>t tvaro

I.EARHER

Inf oxidation

Control

Fig. 3.1

Two LIY tutorials have been written so far. One teaches the use of a DIALLER

program which in principle controls a modem installed in a computer. A

complete implementation would allow the user to connect to the telephone

43

Chapter 3

system through the keyboard, and then to a remote computer, for example. The

other teaches the use of the ELICTTOR program which is the authoring system

for building LIY tutorials. Rather than teach the use of existing applications it

was decided to develop software with, of course, a particular specifiable

interface. Thus the DIALLER and ELICITOR programs have been built. This

approach offered the following advantages:

(i) LIY could be tried within the scope and limitations - text-based input, etc.

- set out in chapter 1;

(ii) the LIY method could be applied to a very simple interface in the first

instance (that of the DIALLER program);

(iii) using a common development environment (Lisp) would facilitate the

capture for tutorial diagnosis of the learner's input to the application. Note,

though, that the two implementations - tutoring system and application - are

segregated in separate name-spaces by the Lisp package feature. This means that

applications can run quite independently of the tutoring system and in particular

that the latter does not need to be loaded into memory to run an application.

It can be seen that the ELICITOR "application" is a tool in the LIY system.

The DIALLER program is a cut-down version of what the real thing might be:

it presents an appropriate interface to the user but doesn't connect to a modem

nor to the outside world. In the passages describing the learner's and the tutorial

designer's views of LIY (sections 3.3 and 3.4), the examples are drawn from the

DIALLER and the ELICITOR respectively.

The LIY tutor contains a representation of the application domain imported in

a modified form from the systems analysis and design stage for development of

the application itself. The objective is to utilise some of the work done during

this early phase later on, at the tutorial design and delivery stage.

44

Chapter 3

c analysis

software
design

software
implementation

software
in action

C user j

C analysis

tutorial
design

tutorial
implementation

vlx
tutorial

inaction

C learner J

Fig. 3.2

Figures 3.2 and 3.3 contrast the conventional and LJY approaches to application

and tutorial design. In figure 3.3 the reference to "shared interface

representation" is not meant to imply an actual shared machine representation.

Rather, it implies that a proportion of the systems analysis effort, devoted to

developing the task classification structure, can serve at both the software

implementation and tutorial implementation stages. Note that this task

classification structure represents an operational sequence. In other words, it

represents the way in which operations in the hierarchy are constructed from

those at a lower level. The operational sequence must be transformed to a

pedagogic sequence, as discussed below in section 3.5.

45

Chapter 3

SHARED
INTERFACE

REPRESENTATION

software
design

tutorial
design

software
implementation

tutorial
implementationINTERFACE

REPRESENTATION

software
in action

tutorial
Inaction

SHARED
CONTROL
STRUCTURE

learner/
user

Fig. 3.3

46

Chapter 3

LIY's principal components

This section describes LIY in relation to Hartley and Sleeman's four-component

architecture for an ITS (Hartley and Sleeman 1973). In chapter 4 an alternative

architecture is proposed, able to incorporate learner-control, which is a

development of the five-ring model (O'Shea et al. 1984).

Hartley and Sleeman describe the four components of an ITS as being:

(a) representation of the task;

(b) representation of the learner;

(c) teaching strategy expressed as a set of means-ends

guidance rules;

(d) set of teaching operations.

3.2.7 Representation of the task

The representation of the task is elicited from the tutorial designer as a tree.

Leaf nodes in the tree typically correspond to an internal command in the

application. The tree is almost the only application-dependent part of an LIY
tutorial, the only other application-dependent objects being path-names loaded
in at LIY top-level. Besides structuring the task domain of the application, the

tree contains much other information attached to each node in the structure.

Examples of this information include teaching operations such as slide-shows or

exercises using the application. It also models the domain in terms of its

control structure so that during the diagnosis phase, when the learner's key

stroke sequence is being parsed, it can be used as a transition tree. It is

described more fully in the sections that follow, particularly section 3.5.

47

Chapter 3

33.2 Representation of the learner

LIY builds representations of the learner as profile information, as well as

computing an assessment of the learner's performance during the diagnosis

phase. Global information inferred about the learner's characteristics and

performance is used to maintain a characterisation profile and a performance

profile.

Characterisation Profile

This is used to determine the advice given when the learner attempts to take

control in order to navigate to an alternative topic. The advice is adapted to an

assessment of the learner's interaction style in a set of rules ("L-C-ADVICE").

These rules consider equally three qualitative variables: COMPETENCE,

DUCKER, and PUTTER. COMPETENCE really belongs in the performance

profile but is considered here since it contributes - equally with the other two

variables - to advice given to the learner by the tutor. The COMPETENCE

variables - WEAK, NORMAL and STRONG - together with DUCKER and

FLITTER are in fact coded as boolean functions which examine the value of

associated variables ('COMPETENCE*, *DUCK-CNT* and *FLIT-CNT*

respectively).

(a) COMPETENCE

More specifically, the rules consider WEAK, a particular range of values of this
variable. COMPETENCE is scored on a continuous scale from 0 to 10, with an
initial value of 5. Depending upon the outcome of assignments set, it is

modified by an increment for a correct answer or a decrement for an incorrect
one, bearing in mind that it is restricted to the range 0 to 10. COMPETENCE

is not referenced directly in the advice rules, but there are three qualitative

variables based on its value. These are WEAK, NORMAL and STRONG,

corresponding to values of COMPETENCE in the ranges 0 to 2.4999, 2.5 to

48

Chapter 3

7.4999, and 7.5 to 10. The normal value of the increment applied to

COMPETENCE is 0.5, but there is an amplification effect at the start of the

tutorial, the first three increments (or decrements) applied having values 2, 1,

and 0.66667. The idea of this is to decrease the sensitivity of the advice rules

with the passage of time so as to avoid apparently significant random

movements around the mean. No particular claim is made for this technique

and it has yet to be evaluated.

(b) DUCKER

This qualitative variable is used in the rules to indicate a learner who habitually

avoids set assignments. To duck an assignment means that the learner, having

failed with it on two or more successive occasions, has elected to abandon it

(thus avoiding it) and to move on to the next topic. Such a learner is

considered to be a DUCKER if this has happened with more than two

assignments.

(c) PUTTER

A learner is deemed to be a FLITTER if, on three or more occasions, he or she

has forced a move to a new topic under learner-control in the face of advice

from the tutorial against such action. Note that LIY's philosophy is that, if the

learner is sufficiently determined, such moves should always be possible.

If both DUCKER and FLITTER occur together only the DUCKER variable is

updated.

Three levels of advice are offered against a move. The strongest is reserved for

the learner whose characterisation profile indicates that all three of WEAK,

DUCKER and FLITTER apply, and that there is more than one prerequisite topic

associated with the learner's target move. (There is further discussion of

prerequisites and LIY's control behaviour in section 3.5.) The next level down

49

Chapter 3

in strength of advice applies to the same situation but where there is just one

prerequisite, or alternatively where only one or two of WEAK, DUCKER and

FLITTER apply. The weakest advice against a move to the learner's target is

reserved for situations in which either none of the three qualitative variables

apply although there is more than one prerequisite topic, or one or two apply

but there is only one prerequisite associated with the learner's target topic. A

move is permitted with no contrary advice if there are no outstanding

prerequisites (whatever the state of the qualitative variables) or in the situation

in which none of these variables apply and there is just one prerequisite.

Performance Profile

Nodes in the tree are marked to indicate that a topic has been taught when the

learner has completed all the teaching operations associated with it. This

represents one aspect of the learner's performance. The other aspect of the

performance profile is COMPETENCE, a score representing the learner's ability

to handle the assignments set by the tutorial. COMPETENCE is considered

above, rather than in this section, for clarity.

Diagnosis

During diagnosis a comparison is made between the effect of running the

learner's key-stroke sequence and a "correct" sequence through a model of the

application. The matters addressed by the correct sequence will normally be a

subset of those addressed by the learner. There is a fuller discussion of the

diagnosis module in chapter 4.

50

Chapter 3

3.2.3 Teaching strategy

The teaching strategy which LIY uses is described in detail in section 3.6.

Briefly, there are five sets of rules labelled arbitrarily with the letters "a" to "e".

Each rule in a given rule-set is named by a combination of rule-set letter and a

number, based on increments of ten, for example alO, a20 and so on. Figure

3.27, at the end of this chapter, illustrates the relationship between the rule-sets.

"a" rules are LIY's top-level rules and connote a teaching strategy as follows:

compute the "next" untaught topic in the task representation and teach it;

permit learner-controlled interruption under certain circumstances;

if there is other knowledge about a topic - represented as designer rules

- then apply that other knowledge. (There is a description of designer

rules in section 3.4.3.)

"b" rules are concerned with control behaviour following a learner interruption.

"c" rules determine the outcome of such an interruption in terms of advice as

described in the previous section;

"d" rules conventionally describe designer rules\

"e" rules select the next teaching operation.

The forward-chaining interpreter for these rules is very straightforward. It

avoids the problems of conflict resolution by firing the first rule it finds with a

matching antecedent. The consequent of a rule can include a call to the

interpreter to run another rule-set or to exit from interpretation of the current

rule-set. The interpreter normally exits from a rule-set (or halts at the top-level)

when it can find no more rules to fire. On occasion it is useful to set the rule

interpreter global variable *LOOPLIMIT* to a numeric value - typically 1 -

which indicates a limit on the number of passes the interpreter should make

over a "called" rule-set

51

Chapter 3

33.4 Set of teaching operations

LIY teaching operations are described in detail in section 3.4 - "How the

Courseware Designer sees LIY". In brief, the operations include:

(i) slide-show;

(ii) create an application environment: setup the application in some particular

way;

(iii) watch and record learner input (when interacting with the application:

implies subsequent diagnosis);

(iv) place the learner at some chosen point in the application;

(v) get learner input directly ("immediate" assessment);

(vi) free learner exploration of the application (no diagnosis).

3.2.5 Other LIY components

The ELICITOR is an LIY program which interacts with the courseware designer

to enable the construction of LIY tutorials. It allows the designer to specify the

appropriate task classification structure, and then permits enhancement to selected

nodes in this structure by letting the designer point with the mouse at a target

topic.

Teaching material is presented to the learner in the form of "slides". These are

in fact simple ASCII files which can be created by the tutorial designer using

any suitable text-editor.

52

Chapter 3

LIY captures the key-stroke sequence of the learner interacting with the

application. This is done, transparently to the application, by substituting the

normal Lisp input-output routines used by applications with replacement routines

of the same names. These routines are contained in a module (actually, a file)

along with the slide-show delivery routine.

There are many LIY utility functions and they are grouped together logically as

initialisation routines, mouse-driving routines, further input-output routines and

"others" - the latter being quite a large file!

53

Chapter 3

3.3 How the learner sees LIY

33.1 Teaching

The following discussion is based on a learner's interaction with the DIALLER

tutorial. Figure 3.4 shows a typical screen from a slide-show: the very first

screen of the tutorial, in fact. The banner at the bottom of the screen indicates

that the learner may get a re-run of the sequence of slides forming a slide-show

by pressing the "home" key. The space bar moves the tutorial on to the next

teaching operation, while the learner can interrupt by pressing the "control +

break" combination. On the right of the banner is indicated the title of this

current topic.

A learner-control interruption displays the screen which is illustrated in figure

3.5 If the learner quits then the environment is saved to the extent that he or

she can subsequently continue without having to cover topics already learnt.

Option "E" permits the learner to interact directly with the application, from its

top level, as if the tutorial were not present; no diagnosis is performed but, on

quitting the application, control reverts to the appropriate place in the tutorial.

Option "B" permits the learner to browse over the task classification tree and to

use the mouse to select a topic to learn. Alternatively if the learner knows the

topic's name then it can be typed in directly to the menu.

Figure 3.6 illustrates a typical screen from the DIALLER program; here, the

learner has been placed in the application and asked to carry out some

assignment with it Figure 3.7 demonstrates that the learner can interrupt in the

application as well as in a slide-show.

If the learner selects option "B" to browse then a plan of the (partial) task

classification tree is displayed, as illustrated by figure 3.8. The current node in

fact Hashes. The learner can see more of the tree by clicking on the arrows at

54

Chapter 3

the edges of the screen, can select a topic to learn by clicking on it1 , or can quit

- reverting to the original topic being taught - by selecting the "quit" lozenge at

the top-left of the screen. The previous section described how topic selection

is mediated by advice from LIY, based on the learner's current state, although

the learner can over-ride this advice if necessary.

1 The proceed-n nodes, necessary for the transformation from general tree to
binary, are not selectable (see section 3.5).

55

Chapter 3

WELCOME TO THE LIY TUTORIAL FOR THE PHANTOH PHONE DIALLER?

If you follow this tutorial you will learn how to use a very sinple
interface to a program which can dial, through a node*, to the
telephone numbers of remote services such as tine-sharing systems,
hit 1 let in hoards and other electronic nail systems.

There is one surprising feature of this DIALLER, though: it doesn't
actually dial any numbers? It is simply a hollow shell - an interface
which connects to the user hut not to the telephone system.

The reason for its existence is to test out certain ideas about
producing tutorials (like this one) to teach the users of software
products such as, in this case, a DIALLER. Other possible types of
software for which this approach night be useful could include a word-
processor or spread-sheet program, for example.

When you are ready, pressing the space bar will move you on from
the current slide, whether to the next slide or to some other
activity such as interacting with the application (the DIALLER).

Space:NextScreenlHomei SeeltAgainiCtrl-Break: I ntemipt, Current:DIALLER-TA

Fig. 3.4

56

Chapter 3

The reason for its existence is to test out certain ideas about
producing tutorials (like this one) to teach the users of software
products such as, in this case, a DIALLER. Other possible types of
software for which this approach Might he useful could include a word-
processor or spread-sheet program, for exanple.

When you are ready, pressing the space har will Move you on froM
the current slide, whether to the next slide or to soae other
activity such as interacting with the application (the DIALLER).

SpaceiNextScreen!Home:SeeltAgain!Ctrl-Break:Interrupt,
Returning fro* slide show...

OX - What would you like to learn?

Press RETURN to continue with your original topic,
Type Q to quit LIY

B to browse
E to explore DIALLER freely
or the topic's naiie.

All end with RETURN

Current:DIALLER-TA

Fig. 3.5

57

Chapter 3

DIAL DIRECT IRON KETOAKD

Type your number, which should be followed by RETURN

If using nuneric keypad, ensure NuitLock is on

The following characters nay be embedded :-

() - <space)

T (switch to Tone dialling)
P (switch to Pulse dialling)
9 (to pause dialling {Any key restarts))

To return to previous menu, press Esc

Nunber dialled..

Fig. 3.6

58

Chapter 3

If using numeric keypad, ensure NiwLock is on

The following characters Hay he enbedded :-

() - <space>

T (switch to Tone dialling)
P (switch to Pulse dialling)
£ (to pause dialling {Any key restarts))

To return to previous Menu, press Esc

Number dialled..
Returning froM application...

OK - What would you like to learn?

Press RETURN to continue with your original topic.
Type Q to quit LIY

B to browse
E to explore DIALLER freely
or the topic's name.

All end with RETURN

Fig. 3.7

59

Chapter 3

I

B

*• to -qu-it|
-DIALLER-Tft-

L-QUIT

=proceed-l- Q =proceed-2- =SETUP-

=QUIT-SETUP-

=DIBECT———
MjUIT-DIBECT

=f1ET10RY———
MJUIT-HEHORY
tDIAL-DieiTS

-TYPE-NII1BER B

Q

Fig. 3.8

60

Chapter 3

3.3.2 Assessment

Suppose that the tutorial asks the learner to interact with the application in some
way. There is no standard screen which illustrates this interaction; the tutorial,
in a slide-show, makes clear what the learner is required to do and then control
is switched to the application. As an alternative to this kind of assessment, the
tutorial can request a direct response form the learner. Figure 3.9 shows an
example of this. The tutor issues the "»" prompt. Here, and in what follows,
the learner's responses are underlined.

a:/top
I'm afraid that doesn't seem right.

Press any key to continue..

Fig. 3.9

The feedback is independent of the context, and the learner is shown a replay
of the associated slide-show before being given the assignment again.

61

Chapter 3

In the unfortunate instance that the learner enters incorrect input a second time
the feedback of figure 3.10 appears:

a:/top/next
I'm afraid that STILL doesn't seem right.

Press any key to continue..

Type NEXT if you would like to move on, or press RETURN to try again: next
NEXT

The correct response should have been:

A:\TOP\NEXT

(... next topic is selected ...)

Fig. 3.10

The learner can then decide whether to persevere with the current assignment or
move on. In the latter case the correct response is shown. This is adequate for
"immediate" assessments like the one shown in figures 3.9 and 3.10. It leaves
something to be desired when the assessment involves the learner interacting
with the application since all that is shown is a string corresponding to a correct
key-stroke sequence. It would be better if the tutorial could "walk" the learner
in "show me" mode through the application at this point, making the learner
follow with the correct key-strokes.

As a result of the diagnosis stage applied following a learner's interaction with
the application, the feed-back can be improved to a certain extent. The differing
messages in figures 3.11 allude to the different issues detected when running the
learner's and tutorial designer's key-stroke sequences through the domain model.
These messages are more fully explained in the next chapter which contains a
precise description of the diagnosis process.

62

Chapter 3

Welcome to ELICITOR - the Task Analysis structure (TA) creation program

Please type the name of the application which
the tutorial is to teach (or Q to quit) :q

Quitting...
I'm afraid that doesn't seem right.

You appear to have quit ELICITUT in an abnormal way.
The exit command "ESCAPE" associated with the topic QUIT was expected.
Press any key to continue..

(a)

I'm afraid that doesn't seem right.
Possibly you left out some of the commands,
or used them in the wrong order.

The command "ENTER" associated with the topic DIAL-DIGITS was
expected.

Press any key to continue..

(b)

I'm afraid that STILL doesn't seem right.
Possibly you misused one or more of the commands which
alter the state of DIALLER.

The command "S" associated with the topic SAVE
should be avoided for this assignment.

Press any key to continue..

(c)

I'm afraid that STILL doesn't seem right.
Possibly one or more of the character strings which you
typed into DIALLER was incorrect.

The input 123 4567 was expected.

Press any key to continue..

(d)

Fig. 3.11

63

Chapter 3

Note that figure 3.11 (a) is taken from the ELICITOR authoring system tutorial
(ELICmJT) since abnormal exit cannot normally occur in DIALLER.

Usually the learner does the right thing, as shown in figure 3.12:

Well done!

Press any key to continue..

Fig. 3.12

The limitations illustrated by figure 3.11 concerning the quality of the feedback
to the learner result from the positioning of this LIY implementation on Jacob's
ladder, as discussed in chapter 2. They also relate to the domain-independence
required of a portable tutoring shell. More powerful diagnosis and error
feedback would follow from situating LIY further towards the top of the ladder,
where it could take in more syntactic and semantic information from the user
interface specification.

3.3.3 Feedback in the form of advice

Section 3.2.2 above described how the characterisation profile part of LIY's
representation of the learner distinguishes between the four possible outcomes of
a learner's interruption and request to learn an alternative topic. One possible
outcome is that the request is enabled immediately; otherwise one of three
messages advising against the move is displayed. These messages are graded in
terms of the strength of their exhortation. Figure 3.13 shows the weakest of
these.

64

Chapter 3

OK - What would you like to learn?

Press RETURN to continue with your original topic.

Type Q to quit UY

B to browse

E to explore DIALLER freely

or the topic's name.

All end with RETURN

> set-pause
SET-PAUSE

It might be better for you not to move to SET-PAUSE

at this stage because you have not yet mastered

the following prerequisites :-

ABANDON

SAVE

QUIT

You may inspect the structure of prerequisite information by selecting the

BROWSE option following a Ctrl-Break interruption, which you can type right

away:

Alternatively, you may type F to force a move to SET-PAUSE, or press

RETURN to continue with your original topic:

Fig. 3.13

The emboldened line in figure 3.13 can on occasion be replaced by either of
two stronger messages:

"You are advised AGAINST moving to"

65

Chapter 3

or

"You are VERY STRONGLY advised AGAINST moving to"

The ways in which qualitative variables in the characterisation profile -
DUCKER, FLITTER, and so on - combine with the number of outstanding
prerequisites to produce these messages was described in the previous section.
Further discussion of prerequisites is held back until section 3.5.

66

Chapter 3

3.4 How the courseware designer sees LIY

Whereas the previous section - describing the learner's view - concentrated on
the DIALLER application, this section draws on examples from the ELICITOR
program and occasionally the ELICITUT tutorial which teaches its use.
ELICITOR supports the tutorial designer, particularly when the task classification
tree is being built.

3.4.1 ELICITOR, ELICITUT and its domain model

ELICITOR asks the tutorial designer for the name of the application for which
the tutorial is being constructed. It creates a sub-directory of this name in
which it will build representations of the pedagogic task structure. This
representation is first built as an ASCII text file, eliciting the structure from the
designer. Then, when the designer is satisfied that the structure is correct,
ELICITOR creates a Lisp version of it. Finally, the designer can interact with
ELICITOR using the mouse to select individual topics from a graphical
representation of the structure on the screen. This step is necessary in order to
add further information to individual nodes. Examples of this information
include teaching operations such as slide-shows and exercises using the
application. A complete description is given in section 3.5.3.

Figure 3.14(a) illustrates the situation when the designer is creating a tutorial
application for the first time, while in figure 3.14(b) ELICITOR reports that
there already exists a Lisp version of the task structure for the named
application.

67

Chapter 3

Welcome to EUCITOR - the Task Analysis structure (TA) creation program.

Please type the name of the application which

the tutorial is to teach (or Q to quit) ;learn

Fig. 3.14 (a)

Welcome to EUCITOR - the Task Analysis structure (TA) creation program.

Please type the name of the application which

the tutorial is to teach (or Q to quit) ;learn

TA.LSP already exists. It will be renamed

to TAJ3AK and a new version created.

Do you wish to go ahead? (Y or N)

Fig. 3.14 (b)

Figure 3.15 shows ELICITOR detecting the existence of the ASCII text form of
the task structure, TA.TXT. From the point of view of the ELICITOR program
all this is very straightforward. It is significant, however, when the construction
of the ELICITUT tutorial is considered. This tutorial teaches the use of the
ELICITOR program and has to adapt to the different semantics associated with
the presence or absence of the files TA.LSP and TA.TXT. In addition to these
different semantics there is also a different allowable syntax, since the "Y/N" or
"Q/R/C" input of figures 3.14(b) and 3.15 may or may not be required.

68

Chapter 3

A version of TA.TXT already exists.

If you would like to keep it for editing with a text

editor, please quit by typing Q.

If you would like to recreate a new version, (the old version will be renamed

TAMXT), please type R.

If you would like to continue with the existing TA.TXT,

adding to it if you wish,

please type C.

Your choice..

Fig. 3.15

This impacts upon the domain model, used for the diagnosis phase. This model,
represented as a transition tree built on the nodes of the task classification
structure elicited from the tutorial designer, is exemplified for ELICFTUT by the
diagram in figure 3.16.

69

Chapter 3

ELOTUT-TA

ELICIT-TA^PUT ********** pfOee*ti-1 *****

Preoeed-1 <—I I

QUIT

I
INPUT-TREE

Esc I
INPUT-TREE-DATA I————————————————————'————I

, I I IP
*~^ MAKE-LEAVES LISP-CREATION

Esc, t, etc. are the invoking syntax tokens;
<— indicates leads jo information: the subsequent menu item to

be displayed;

******* indicates a barrier. At ELICITUT-TA, syntax tokens below
the barrier are "invisible". This means that if e.g. LEARN
is typed as a directory name, the "L" is not thought by the
model to mean MAKE_LEAVES. Everything then leads jo

Proceed-1.

Fig. 3.16

The diagram above represents the relationships between the individual nodes in
the pedagogic task structure of the ELICITUT tutorial which teaches the use of

70

Chapter 3

the ELICTTOR program. This tree is not part of the ELICITOR run-time
environment, only being used by ELICITUT. LIY application domain models
parse the learner's key-stroke sequence against syntax tokens in a tree like that
of figure 3.16. Character strings in this sequence which match the syntax tokens
of nodes on sub-trees "visible" from the current node are recognised by the
parser. It then designates the associated node as the new current node. If a leaf
contains leads jo information then this is used instead to indicate the new current
node. Proceed-n nodes are introduced merely to enable the structure to be
represented as a binary tree (rather than a general tree) and are transparent
Thus tokens visible at Proceed-1 are Esc at QUIT, t at INPUT-TREE, \ and p.
Any learner input which is not identifiable as a syntax token is taken off the
learner's key-stroke string and treated as application input (rather than application
commands), about which the model knows nothing explicitly. The parsing
process then repeats. In this way LIY builds up a picture of the learner's
interaction which can be compared with the result of running the designer-
supplied key-stroke sequence through the same model. (There is a full
discussion of this differential modelling technique in chapter 4.)

Initially the current node is set to the root of the tree. EUCIT-TA-INPUT is the
node which deals with obtaining the name of the application, as shown in figure
3.14. The model expects the name to be followed by CR (carriage return, or
enter). The difficulty here is that, if the name contains character-strings which
correspond to syntax tokens visible from the current node, such input would be
interpreted as application commands with the associated wrong behaviour of the
model. This is not normally such a problem in menu-driven systems since
application input usually occurs at leaves of a tree like that of figure 3.16. The
tree is arranged so that, at a particular leaf, all input except for the terminating
symbol can be considered as application input There is an example of this on
the node INPUT-TREE. When t is detected at Proceed-1 for example, INPUT-

TREE becomes the current node. All further input is then considered to be
application input until Esc is detected, whereupon Proceed-1 is reinstated as the
current node by virtue of the leads-to symbol attached to INPUT-TREE-DATA.

71

Chapter 3

User input to the top-level of ELICITOR does not in this instance result from
a menu choice. In other words the user has not issued a command to select the
option - involving the input of an application name - which could be followed
by the parser on the tree. Thus the technique used for INPUT-TREE of routing
to a leaf for application input is inappropriate. From the top node of the tree
the parser cannot distinguish between commands such as 1 and p for MAKE-

LEAVES and LISP-CREATION, say, and I or p appearing as characters of the
application name input to ELJCIT-TA-INPUT. To overcome this problem the
node Proceed-1 is designated as a barrier to the "view" from EUCITUT-TA,

from which none of the children of Proceed-1 are visible. Following the input
of the application name the model routes control to Proceed-1, from which all
its children are visible. Recall from chapter 2 that the LIY implementation is
based on a rung of Jacob's ladder which includes specification of command input
but not of other application input. To distinguish between the two, LIY uses the
known terminators of the latter application input. This poses no problems for
leaves of the tree, such as INPUT-TREE-DATA in figure 3.16, since from such
nodes no further command input is "visible". The use of the barrier handles the
case where application input is required and command input is possible, but no
command exists to signal the start of the input and so no routing is possible to
a "safe" leaf node, such as QUIT. (From QUIT no further commands are
visible.) No command selection signals the start of ELICIT-TA-INPUT\ the first
thing the user must do is to type in the application name, and so the barrier is
appropriate in this case. In general, it is probably only such situations, in which
the dialogue starts with application input rather than a command, for which the
barrier might be necessary. However, the barrier is not always required in this
situation as is illustrated by considering a word processor. Application input is
accepted at the top level of the tree for such a product while at the same time
the command set also has to be "visible" from this point. The difference
between this example and that in the ELICITUT case is that, for the word
processor, there is an empty intersection set between key-strokes corresponding
to data typed into a document and the command-set for the software itself. Thus
word processors usually use function- or control-key sequences as commands.
For ELICITUT, characters in the input file-name cannot be guaranteed to be
different from all of the visible commands and thus the barrier is necessary.

72

Chapter 3

There is, in the case of ELICITUT, further predictable application input in the
form of the user's answers to the questions posed by ELICITOR, as illustrated
in figures 3.14(b) and 3.15. The set of possible responses does not intersect
with the set of commands "visible" from Proceed-1 and so ELICITUT treats
them correctly as application input For a non-empty intersection set the problem
could be overcome by adding an extra node to the tree below ELICIT-TA-INPUT

to absorb this application input before routing to Proceed-1.

Application input is distinguished from command input by its terminator (often
ENTER). It is possible to accept fixed-length application input in situations in
which, even if command input is possible, control within the application will
always transfer to the same node. Such a situation has been exploited with
certain single-character inputs to the DIALLER but should not in general be
thought of as a standard feature of LIY.

73

PLEASE CHOOSE ONE OF THE FOLLOWING OPTIONS •:-

For describing the task tree, press

For finishing the tree, declaring
the reuaining nodes to be leaves,

For turning the task analysis file .TXT
into a runnable .LSP file,

Chapter 3

To exit the LIY-hAKK progran, press Esc

Your choice..

Fig. 3.17

74

Chapter 3

Figure 3.17 shows the main menu screen of the ELICITOR program. (On the
ELICITUT domain model of figure 3.16 it corresponds with the "view" from the
node Proceed-1.) Initially the tutorial designer will use option "T" to build the
pedagogic task tree structure. A screen rather like that of figure 3.18 will then
appear. In fact this diagram illustrates the situation after the designer has
already input some data. The program performs a certain amount of error-
checking: other than at top level, "parents" can only be declared if they have
already been made known as "children". Figure 3.18 illustrates an error whereby
the child symbol learn-ta is input although it has already been declared (as a
parent).

To quit this TA creation phase at any time, please

press Escape

Please enter each node in the task structure and follow it with ENTER

> LEARN-TA CONSISTS-OF > parti > part2
Is this OK? :

LEARN-TA CONSISTS-OF PARTI PART2 (Y or N) Yes
> parti CONSISTS-OF > learn-ta

Error - LEARN-TA - already declared as a parent

Fig. 3.18

75

Chapter 3

Input to the ELICITOR program to build the tree is stored as a text file which
could be edited with any text editor. The format of the structure requires that
all nodes eventually be declared as parents. If they have no children then the
CONSISTS-OF parts must be declared explicitly to be nil. Such leaf nodes,
declared only as children, can be generated (as parents with no children) by use
of option "L". A correct text file can be generated as a file of Lisp code by use
of option "P". Subsequently, nodes in this file can be enhanced in order to add
Lisp code to designate teaching operations associated with the node, for example.
To do this, the structure input by the designer is displayed on the screen and
individual nodes can be selected with the mouse. The user interface has not
been further developed, so that at present this enhancement requires the addition
of statements, from a small Lisp repertoire, representing data elements in list
form.

3.4.2 LIY's teaching operations

LIY offers the tutorial designer nine low-level operations which can in general
be categorised as being associated either with teaching or with assessment.
These teaching operations can be attached to any individual node in the
pedagogic task structure. The six principal operations were listed earlier and are
discussed here. As a Lisp data structure, a set of teaching operations is
represented as a list, within which there exists in list form a code for each
particular teaching operation followed by any associated arguments. For
example, the code for a slide-show is "S" and its associated argument is the
path-name of a file containing the text to be displayed for the slide-show.

The six principal operations are:

(i) slide-show : "S"

This is simply text concerning a particular topic to be displayed to the learner.
There is a particular property attaching to a slide-show: it will always precede
other operations for a given node (although there can be more than one slide-

76

Chapter 3

show per topic). If the learner's response is diagnosed as being in error then
LIY backs up to the previous slide-show for re-display. A slide-show and its
subsequent teaching operations up to the next slide-show (if any) make up a
fragment. In other words, a set of teaching operations for a particular topic
consists of a set of fragments; each fragment consists of a slide-show followed
by zero or more other teaching operations.

(ii) create an application environment: "E"

This sets up the application in some particular way. It is very similar to placing
the learner at some desired point in the application (type "P"), the difference
being that this operation causes the application to terminate. It is thus invisible
to the learner although its effect is to change the state of the application's
environment.

(Hi) watch and record learner input: "W"

This is used by the designer when the learner is to interact with the application
software. It implies that diagnosis will subsequently take place and causes the
learner's key-stroke sequence to be recorded. The argument is the minimal
correct string to be used in the diagnosis phase.

(iv) place the learner at some chosen point : "P"

This causes the application to be invoked and the learner to be presented with
a screen which normally corresponds with the topic which is being currently
taught. The argument to this command can be nil, in which case LIY generates
a command sequence which is appropriate for driving the application to the
screen associated with the currently-taught node. If it is a node-name then the
screen associated with this node is displayed. Alternatively the argument can be
a command-string which will simply be executed as if it were application input
from the keyboard. In both this operation and the application environment
option "E", screen-formatting output is suppressed by the replacement output
routines where possible.

77

Chapter 3

(v) get learner input directly : "G"

This is the "immediate" assessment mode illustrated in figures 3.9 and 3.10.
Rather than watching the learner interacting with the application software, LIY
seeks a response to some question directly. The argument for this teaching
operation is simply the correct response.

(vi) free learner exploration of the application : "F"

This operation enables the learner to explore the application to some purpose,
although there is no diagnosis of the learner's performance.

In addition there are a further three operations which are tutorial-
oriented rather than learner-centred:

(vii) re-run designer rules : "D"

- only when the learner is repeating a set of teaching operations following
diagnosis of an error. There are no arguments. Designer rules are discussed
below.

(viii) re-run "set-up" operations : "R"

- only when the learner is repeating a set of teaching operations following
diagnosis of an error. This operation re-runs a concatenation of "E", "W" and
"P" operations for previous fragments on this node, so that the application
environment for the learner is re-created in exactly the desired way. There are
no arguments.

(ix) execute Lisp code directly : "X"

This has been useful on just one occasion to invoke execution of a program
other than the application: ELICITUT uses it to run the program which lets the

78

Chapter 3

designer select with the mouse a node to enhance. Its argument is a Lisp
expression to be evaluated.

The tutorial delivery system processes teaching operations sequentially within a
fragment and for computational reasons expects them to be in the sequence:

S, D, E, R, W, P, G, F, X

Thus a fragment starts with a slide-show and then, broadly speaking, sets up the
learner's environment in the application, preparing for assessment if necessary,
and launches the learner into the application.

3.4.3 Designer rules

The behaviour of an LIY tutorial is governed by the teaching strategy represented
by the fixed sets of rules introduced earlier in section 3.2. The format of the
rules is described in section 3.6. LIY permits the designer to over-ride this fixed
behaviour by adding extra rules in one of two categories: control rules and
teaching operation rules.

The existence of designer control rules is probed by the rule interpreter. If such
a rule-set exists then it is interpreted. Whether or not it exists, control then
passes to LIY's standard control rules. This facility is used in ELICITUT in
order to probe for, and delete if necessary, any directory already in existence
for the application LEARN which the learner is required to cause ELICITOR to
create. Attempting to create such a directory if it were already in existence
would cause the operating system to report an error - an event to be avoided at
all costs.

79

Chapter 3

Designer teaching operation rules take over entirely from the default rule-set.
Normally, rules in the set TEACHING-OP-RULES (the "e" rule-set) are used to
process the designer's teaching operations, described above, which are attached
to the nodes in the task classification tree. If this rule-set were to detect, at the
outset, the existence of a set of designer teaching operation rules then it would
invoke the rule interpreter upon this set. It would not regain control until the
teaching of the particular node was complete. As an example, this facility could
be used by the tutorial designer to replace the standard rule-set with a slightly
edited version. This latter rule-set could be augmented with output messages so
that, following detection of a learner error, very specific information about the
current task could be provided to the learner. Further Lisp development would
probably be required in order to utilise fully the under-documented Lisp functions
invoked by the standard teaching operation rules or to include designer-written
functions. Although tested, this facility has not been used so far in either of the
two LIY tutorials.

3.4.4 Further aspects

In addition to the teaching operations which the designer will need to attach to
each node, there are a number of other features of a node that will require
consideration. They include, for example, the barrier and leads jo information
shown in figure 3.16. Section 3.5.3 below contains a complete description of all
such information.

80

Chapter 3

3.5 Operational and pedagogic tasklsubtask hierarchies

One of the outputs from the systems analysis stage of a software implementation
is an operational task classification tree. This structure contains the elements
(nodes) representing operations that the learner or user of an interface can
invoke. (Rather than using the DIALLER or ELICITOR programs to illustrate
this section, a subset of MS-DOS has been chosen since it provides wider-
ranging examples, exercising a higher proportion of the transformation heuristics
proposed below.) Thus for a subset of MS-DOS the structure might look
initially like figure 3.19. dos, execute and park are italicised to emphasise that
they are not actual MS-DOS commands, dos is included in order to give a
name to the domain, while park is inserted to illustrate the subsequent discussion
of exit-type commands; being an operating system for a personal machine, there
is no explicit exit mechanism for leaving MS-DOS. Application programs in
MS-DOS are run by typing their name. In the diagram, execute serves the
purpose of naming a node in the tutorial space to describe this function. If an
LIY-type tutorial existed for MS-DOS and the learner invoked such an
application program from within the operating system tutorial, it would be
desirable for the application to be treated as a "black box" from the perspective
of the MS-DOS domain model in the tutor. However, it would also be desirable
for a tutorial to be available for the application program* s user interface, in
which case invoking the application from the operating system could be
represented as a suspension of the MS-DOS tutorial followed by free exploration

of the application. The exploratory mode is always available following a learner
interruption and was described in section 3.3.1.

There are several important features to note about figure 3.19. First, the tree
represents a constructive operational partial ordering in terms of the hierarchy:
it could be read as "dos consists-of the operations cd ... park". Secondly, the
tree is a general tree in the sense that a node may have an arbitrarily large
number of "children1*. However, algorithms are generally less complex for
processing binary trees, in which the number of children at any node is limited
to not more than two. General trees are transformed into binary trees according
to the tree transformations numbered 1 to 7 in figure 3.21 of section 3.5.1. To

81

Chapter 3

ttos

\
execute nkair del

1
ren

cd rndir dir copy park

Fig. 3.19

do this, "dummy" nodes labelled proceed-l t proceed-2 etc. are introduced. Note
that these transformations are distinct from the heuristic rules labelled (a) to (g)
in section 3.5.2.

From the point of view of the tutorial, a structure is required which incorporates
not only nodes corresponding to the operations in figure 3.19 but also nodes
concerned with extracted information which might be common to more than one
node, together with dependency information to help prescribe a tutorial ordering
over the task tree. This type of structure is referred to as a pedagogic task
classification structure. It is produced by applying heuristic rules and
transformations.

Furthermore, the tutorial viewpoint requires a different perspective on the
classification tree. Instead of the operational ordering of figure 3.19 (dos

consists-of...) a tutorial emphasis dictates a structure which reflects knowledge:
knowledge about dos consists-of knowledge ... This difference in emphasis
cannot be achieved by LIY alone; it requires the application of the heuristic rules

82

Chapter 3

described below. Knowledge about taxonomies of teaching topics is incorporated
into the rules, which have been successfully applied "by hand" to a number of
small domains. However, in no way is it claimed that the transformations could
be done automatically by machine. This is precluded by the semantic content
of the information needed; taking rule (a) applied to the MS-DOS example,
"identify groupings" requires that the tutorial designer be aware of the fact that
the directory commands should be grouped together.

3.5.1 Dependency and binary tree transformation

LIY, in teaching an application domain, traverses the tree in pre-order (root, left
sub-tree, right sub-tree), but uses dependency information in determining advice
to give to the learner on receipt of a learner-initiated navigation request. This
was described earlier in this chapter. Dependency between sibling sub-trees at
the same level results from the application of the heuristics given in the next
section and is denoted by marking the arcs as shown in figure 3.20. Pre-order
traversal as an LIY teaching strategy appears to be very similar to the cognitive
apprenticeship strategy of DOMINIE (Spensley el al. 1990).

Figure 3.20 (a) represents the fact that knowledge about topic a consists of
knowledge about topic b and topic c. Figure 3.20 (b) also represents this, but
additionally that knowledge about c is dependent upon knowledge about b\ b is
a prerequisite for c. (In the definition below it would be said that "b is linked
by DEPEND to c".) Thus the learner would be advised to learn b before c;
without any learner-control intervention LIY would teach the topics in the
sequence a, b, c. A learner interrupting in the case of figure 3.20 (a) would be
permitted to learn c without comment from the tutor, irrespective of the state of
learner knowledge of b.

83

Chapter 3

I I I S
be be

(a) (b)

Fig. 3.20

Prerequisite topics of a particular node are defined as follows:

All leaf-nodes in a left sub-tree which is linked by DEPEND to some node

X, and leaf-nodes in left sub-trees which are linked by DEPEND to

ancestors of X, are prerequisites of X.

The focus upon leaf nodes in this definition attempts to reduce the set of
possible prerequisite topics to those which are crucial: i.e. to those topics
concerned directly with commands which manipulate the application software
interface being taught

Figure 3.21 shows a subset of the possible transformations, developed by trial-
and-error, from general to binary trees. Arrows show specific dependencies, e.g.
in transformation (1) c and d both depend on b, but d does not depend on c.

84

1)

Chapter 3

1 "H
Proceed-n~~" I

c and d both
depend on b

3) 1
I I

1

c depends

Proceed-n

a

1
Prooeed-n

i_____

More than 2
children can
be re-ordered
as desired

The case for
more than 3
children is
similar

^ c depends on b
T!H d depends on b and c

Proceed-n

I b

I ^
o,d,e all depend on b

c depends on b, d depends on c, etc.

N
Proceed-1

Proceed-2

I I
Proceed-1

I

Proceed-2

Fig. 3.21

85

Chapter 3

Looking ahead to figure 3.26, (which shows the result of applying the heuristics
set out in the next section to the MS-DOS example), it can be seen that rename

is a prerequisite for rmdir. This is not ideal, but is a consequence of putting all
knowledge concerning files together as a whole, and then making all of it a
prerequisite for knowledge concerning alteration of directories. Such groupings
of material face human teachers every day when they make judgements involving
the trade-offs inherent in various possible taxonomic approaches to the subject
they are teaching. For LIY this is a potential complication only when the
learner seeks to vary the pre-determined ordering of the topics, since this is the
only time when the dependency arcs are examined.

3.5.2 Transformation to pedagogic ordering

The heuristics shown below have been developed as a result of experience with
a number of example domains. These domains are the MS-DOS example
described in this section, the DIALLER and ELICITOR (the development of
which is described in appendices B and C respectively) and a financial
application not reported here. These heuristics can be applied recursively at any
level in the tree. Not all the heuristics and transformations are needed for the
MS-DOS example.

(a) Identify common topics and group them together.
(b) Identify commonality between topics and extract as a new topic.
(c) Teach any "exitM-type topic first Place it as the left child of the

root, dependency-linked to the rest.
(d) Teach any "configuration"-type function last. Place it at the deepest

point in the right sub-tree, non-dependency-linked.
(e) Arrange non-dependentty-linked nodes at the same level within a

sub-tree in order, with the most important on the left.
(f) Incorporate dependency knowledge not already present.
(g) Place destructive operations (e.g. "delete"-type functions) on any

level to the right, dependently-linked. Such operations are invariably
dependent upon a corresponding creative activity.

86

Chapter 3

Consider how these rules could be applied to the MS-DOS subset of figure 3.19.
Note that park (park hard disk heads before switching off) was explicitly inserted
in this example to animate rule (c) about teaching "exit"-type functions first.
This corresponds to the quit operation in many applications, including DIALLER.

Application of rules (a), (b), (c) and (g) to figure 3.19 yields figure 3.22.

I
p&rk

ex&cute
aiter-dirs fifes

1r NV>< r
cd dir nkdir rndir copy ren del

^* JV *yj shows that c depend*-on a

Fig. 3.22

nav-dirs, alter-dirs and flies result from the groupings identified as a result of
applying rule (a). Rule (b) yields path-names as a result of identifying the
prerequisite knowledge common to the directory-handling commands cd and dir.

Rule (c) causes the exit-type command park to appear top-left. Note that rule
(g) is used to provide order and dependency knowledge within both alter-dirs

and files.

Applying heuristics (e) and (f) to figure 3.22 yields a top level as shown in
figure 3.23.

87

Chapter 3

I
park Proceed-1

_______i
execute

fiics

p&tfr- cd dir copy ren del nkdir rmdir

1

Fig. 3.23

The nav-dirs sub-tree from figure 3.22 can be transformed using transformation
6 to appear as shown in binary-tree form in figure 3.24. files can be
transformed by applying a variation on transformation 3 (order equivalence for
more than two children) and then transformation 2.

Applying transformations 2 and 7 to the task level shown in figure 3.23 gives
the structure of figure 3.25.

I

I-J

TJa
C

Obb
E

§

1
I7J

---01.
<H

^
^
^

I—
^

nr <u
l/\^oe u

«n
csCObb

Chapter 3

Putting all this together gives us the completed pedagogic task classification
structure shown in figure 3.26.

cfos

I
park Proceecf-t

\ I
Proceect-2 execute

I__________

Proceecf-3

names

H
psth-

Proceect-f _______ |
I ' mkdir rndir

Pfoceect-5 fen
dir cd

I
copy del

Fig. 3.26

It can be seen that all the nodes for which there is a corresponding operation
within the application domain are in this case leaves of the tree. However, this
need not always be the case, and is not so in the DIALLER application.

The commands in this domain are multi-letter. Although for simplicity the
commands in the two LIY applications discussed earlier all happen to be single
characters, LIY can also handle multi-letter commands such as those of the MS-
DOS example. Syntax tokens arc used by the tutorial designer to represent
commands and were discussed in section 3.4.1. These are matched during
diagnosis against the head of a recorded list of the key-strokes typed by the
learner into the application. Accordingly they can be of any non-zero length.

90

Chapter 3

3.5.3 Complete description of a pedagogic task classification tree

Every node in a task classification tree may exhibit the following attributes:

CONSISTS-OF
Indicates the names of up to two child nodes.

LINKS-BY
Indicates whether the children of this node link dependently or
independently.

PARENT
For all children LIY generates the names of the parent node.

SYN-TOKEN
The value of a character-string for invoking the command associated with
this node. Used in the domain model.

BARRIER
Used in the domain model to "hide" syntax tokens under certain
circumstances.

STATE-CHANGING
Used during learner diagnosis. Described in chapter 4.

LEARNT
Part of the learner profile.

CURRENTLY-BEING-TAUGHT
Used by LIY internally when handling learner-control interventions.

X-CO-ORD, Y-CO-ORD
Used by LIY internally when handling a graphical display of the task
structure.

91

Chapter 3

3.6 Managing tutorial delivery

LIY's basic teaching strategy is to traverse the task classification tree looking for
a topic to teach. The tree is traversed in pre-order, that is the parent node is
examined first as a possible candidate, followed by a recursive search of its left
sub-tree and then of its right sub-tree. Only untaught and non-dummy nodes
(i.e. not named proceed-ri) are candidates for this strategy.

The control behaviour of LIY's tutorial delivery mechanism is encapsulated as
a rule-base. No claim is made that the rules represent a "knowledge base";
rather, they provide a distinction between the way in which, at a fairly high
level, the rules declare what needs to be done, and the low-level procedural
descriptions of how it should actually be carried out.

Appendix A contains a complete list of all the rules in LIY. Rules are in the
format of Lisp lists, as follows:

(rule-name
(zero or more antecedent conditions)
(one or more consequent actions)

It can be seen from the appendix that both antecedents and consequents are in
fact coded as Lisp. Where they would involve any complexity at the Lisp level
they have been recoded as Lisp function calls. Functions which are called by
the rules have not been turned into a "language" for general use. As pointed out
earlier, in the discussion of teaching strategy in section 3.2.3, a rule consequent
can include the invocation of the interpreter on another rule-set

A rule-set is a list of rules assigned to some variable which is the name of that
rule-set. In LIY the convention used is that rule-set names are descriptive,
whereas rule-names take an arbitrary letter for each rule-set followed by an
integer incrementing by the value ten. Thus, for example, rules in MAIN-
CONTROL-RULES are named alO, a20 and so on.

92

Chapter 3

The search for a topic to teach is initiated by the top-level rule-set MAIN-
CONTROL-RULES (the "a" rule-set), which also handles detection of a learner-
control request and proper termination when no topic to teach can be found. As
explained in section 3.4.3, if there is a file of "designer" control rules then these
are interpreted. In any case, the interpreter is then applied to the rules concerned
with selecting a teaching operation. These rules constitute the set TEACHING-
OP-RULES. Figure 3.27 illustrates the structure of the rule-base.

"Designer"
control rules

Rule-set "d"

Top-level rules
Rule-set "a"

leeching operation
rules

Rule-set "e"

"Designer"
teaching-op rules

Rule-set "d"

Learner-choice
rules

Rule-serb"

Learner-control
advice rules

Rule-set "c"

Fig. 3.27

Rules in TEACHING-OP-RULES are named starting with the letter "e". If any
designer-supplied teaching operation rules exist - as opposed to designer control

rules - these take over completely. (In principle such rules could be used to
replace the current LIY teaching and assessment strategy, although to permit
the tutorial designer to do so would require that a "rule language" be developed.

93

Chapter 3

At present LIY tutorials do not use this facility.) Otherwise the remaining rules
in TEACHING-OP-RULES are interpreted. These rules display tutorial text,
handle assessment, and update the "competence" aspects of the learner profile.
If, following diagnosis, the learner's input cannot be matched with expected
results, rules in this set cause LIY to back up once for re-display and re
assessment on the current topic, and once again if necessary. In the latter case
the learner is given the option of being shown the expected response and moving
on to the next teaching fragment, which may or may not be within the current
topic.

A typical rule from this set is:

(e40
((equal *LAST-INTERACTION* 'TEST)
(equal *LAST-TEST-RESULT* 'PASS))

((INCR-COMPTNCE))

This increases the learner's competence score in the learner profile for the
successful completion of an assessment. Note that the rule consequent invokes
a Lisp function; this is typical of many LIY rules.

If the learner interrupts then control transfers immediately to the top-level rule-
set MAIN-CONTROL-RULES, which then hands on to the "b" rule-set
LEARNER-CHOICE. This offers the learner the menu of options shown in
figure 3.5. If the learner has requested a move to a different topic then this is
permitted provided that all prerequisites have been learnt. If the target topic has
already been learnt then the fact that the learner is revising is reported. If there
are unlearnt prerequisites then the learner-advice rule-set L-C-ADVICE,
comprising the "c" rules, is invoked. This rule-set considers the learner's profile
and the number of outstanding prerequisites and will either permit the move or
offer graduated advice against it, as described earlier. If desired, the learner can
always force a move against LIY's advice.

94

Chapter 3

The letter "d" is reserved by convention for rules in the designer rule-set. As
discussed previously, DESIGNER-CONTROL-RULES are used in ELICITUT for
deleting any pre-existing sub-directory named LEARN.

If the learner quits without completing the tutorial then his or her environment
is saved to allow continuation from this point on some future occasion.

95

Chapter 3

3.7 Concluding remarks

This chapter has attempted to convey the flavour of the LIY software from the
perspectives of both the learner and the tutorial designer.

The learner's viewpoint is illustrated by the DIALLER tutorial. The context of
this research is that of software engineering rather than psychological evaluation
and the major aim is to test the feasibility of the LIY approach rather than
testing the efficacy of the two LIY tutorials themselves. Nonetheless the
tutorials have been tried by a small number of knowledgable colleagues, friends
and family. Their perspective has been that of learner rather than designer, and
thus their input has been incorporated into the delivery, rather than authoring,
aspects of LIY. Improvements made as a result of users' suggestions included
error feedback to the learner following all inappropriate responses, rather than
only on second and subsequent such responses; including the name of the
package (e.g. "DIALLER") in messages; and enhancing the feedback to include
a reference to the response-comparison heuristics described in the next chapter
and illustrated by the messages in figure 3.11.

The designer's viewpoint has been illustrated with particular reference to
ELICITUT, a tutorial for the ELICITOR software, and to MS-DOS, a well-
known but (for LIY) hypothetical example. The latter was chosen in order to
demonstrate the transformation heuristics for producing a pedagogically-oriented
task classification structure.

Thus this chapter has, through examples, demonstrated the capabilities of LIY.
Appendices B and C take the reader through the design, based on the
specification elements discussed in chapter 2, of the tutorial structures for the
DIALLER and ELICITUT respectively.

96

Chapter 4

An ITS perspective on LIY

This chapter considers the design and implementation of LIY within the context
of Intelligent Tutoring Systems (ITSs). It also speculatively proposes a more
general version of the so-called five-ring model (O'Shea et al. 1984). This is
referred to here as the figure-of-eight model and would appear not only to
support learner control but also to offer greater "intelligence" by being able to
adapt or change its teaching strategy dynamically.

97

Chapter 4

4.1 What is an ITS?

Near the beginning of his book, Wenger describes an intelligent tutoring system,
or knowledge communication system to use his term, as consisting of four
components (Wenger 1987). These components are:

domain expertise;
student model1 ;
pedagogical expertise;
interface.

Pedagogical expertise in fact consists of "didactic process", which incorporates
elements of Hartley and Sleeman's teaching strategy and teaching operations,
and "degrees of control", also incorporating teaching strategy elements (Hartley
and Sleeman 1973).

In a review paper Dede describes almost exactly the same architecture as
Wenger's, although he uses the term knowledge base rather than domain

expertise (Dede 1986).

The distinction between these modern views and the earlier perspective is not
simply the addition of an interface to the learner - which was in any case
implicit in Hartley and Sleeman's architecture - but more a refinement of the
common components. To take just one example, the learner model is currently
perceived as consisting of at least two sub-components. These perform the
functions of predicting individual learner behaviour and diagnosing the causes of
exhibited learner behaviour. Thus, considering the predictive aspect of the
learner model, it can be used to try out a proposed teaching operation in order
to establish that operation's suitability. The diagnostic function can be used
particularly to identify and remediate recent non-optimal learner responses within
some context, such as responding to an assessment teaching operation.

1 The term student model has wide currency. LIY is concerned with learners
rather than students, so the equivalent term learner model is used here in
preference.

98

Chapter 4

So modern ITSs have developed within the framework of the earlier systems.
They exhibit better learner modelling, for example involving the use of more
sophisticated cognitive models, bug catalogues for identifying learner
misconceptions, and plan recognition strategies [The Lisp Tutor (Anderson and
Reiser 1985)}. They employ better user interfaces with more powerful natural
language capabilities based on a deeper understanding of the structure of
discourse (SOPHIE (Brown et al. 1982)}, or based on simulation coupled with
high-quality graphics (STEAMER (Hollan et al. 1987)}, and so on. As Hartley
and Sleeman proposed, modern systems use ideas of search and inference from
artificial intelligence to match learner behaviour against a model of that learner
in order to optimise teaching and learning processes.

99

Chapter 4

42 LIY: the ITS viewpoint

One of the principal aims of the LIY project is to demonstrate the feasibility of
a portable tutoring shell. In order to demonstrate this portability it has been
necessary to implement a complete tutoring system, rather than restricting
research to one or two of the aspects of modern ITSs discussed above. LIY
does 'not address all the aspects of ITS research, however. For example, the
learner interface both to the delivery and authoring systems has not been
developed very far. The following sub-sections describe LIY's domain
modelling, learner modelling and teaching strategy from an ITS point of view.
An alternative architecture for intelligent tutoring systems with learner control is
proposed. In some cases where material has already been covered in earlier
chapters the corresponding sections here are brief.

4.2.1 Modelling the domain

The principal requirements of domain modelling in LIY are to provide a
pedagogic structure, which can be used to determine the next teaching process,
and to support diagnosis. The basic knowledge structure of the domain model
is the task classification tree. This structure, originally representing the
operational ordering of the user command set, is transformed by the tutorial
designer to a pedagogic ordering according to a set of heuristics. Chapter 3
contains a detailed description of the structure and the transformation process.

Domain knowledge is limited by the "rung" of Jacob's ladder selected for the
interface specification (and by LIY's portability requirement) to the command
structure of the domain and the syntax of the commands within it, forming a
prerequisite knowledge hierarchy.

During the diagnosis phase the domain model is traversed under the control of
a transition tree parser.

100

Chapter 4

4.2.2 Modelling the learner

Profiles

In principle there are two profiles maintained for the learner: the characterisation

profile and the performance profile. In fact they are not implemented as separate
objects; they each comprise a number of separate components which are
inspected and maintained under the control of the rule-base as described in
chapter 3.

The characterisation profile is designed to reflect aspects of the learner which
might be carried across from one tutorial to another. Consider as an example
the tutoring system's perception of an individual learner's preferred learning style
on the holist/serialist continuum. If the learner were to make considerable use
of the learner control facility it could be inferred that he or she was trying to
break away from LIY's serialist tutorial style.

The performance profile contains knowledge about the learner's current state both
on a moment-to-moment basis and over time, particularly with respect to the
tutorial's perception of the learner's achievements with assignments. It is used
by the rule-base to attenuate the advice offered when a learner-control request
to navigate to a topic with unlearnt prerequisites is encountered. It also
comprises a measure of the learner's mastery of topics by marking the task
classification tree.

Diagnosis

The diagnosis process in LIY attempts to determine the "correctness" of learner
input to the software application being taught by comparing it with that provided
by the tutorial designer. The comparison is more than just a character-for-
character look-up, however. Differential modelling is used to compare "issues"
in the learner's application input with those in the designer's input. This is

101

Chapter 4

somewhat similar to the use of issues in WEST (Burton and Brown 1982). In
the context of playing the game WEST, issue identification is used in particular
to provide feedback concerning the player's moves. Issues in the game are skills
which the player or the expert might utilise. In LIY the "issues" are four
heuristic criteria, described below, concerned principally with the order and type
of commands used by the learner and the designer. Interestingly, the authors of
WEST suggest that issues, or rather knowledge about specific issues, can be used
to provide context-sensitive help if it is requested. Developing the issue-based
tutoring idea further than it has been taken in LIY would require much more
domain-specific knowledge than that available from the task classification tree.

For comparison of designer and learner input at the diagnosis stage, the
designer's input is assumed to be the minimum capable of achieving the result
required for the particular assignment concerned. This will be referred to as the
minimally correct string. The learner may provide input that achieves the same
functional effect as the minimally correct string but with more key-strokes. To
return to the MS-DOS example of the previous chapter, the learner might list a
directory unnecessarily. (That is, unnecessarily with respect to the functional
results required of MS-DOS for solving the problem posed to the learner by the
tutoring system; it might well have been considered necessary by the learner.)
The LIY diagnosis process would not deem such an action to be an error on the
learner's part.

At the point at which diagnosis starts there are two sequences available: that of
the learner's key-strokes and the minimally correct string. The two sequences
are compared initially for perfect equality, in which case no further diagnosis is
necessary: the learner is a "perfect subset of the expert". Otherwise diagnosis
proceeds by referring to the domain model to build a history list for each of the
sequences. Recall from chapter 3 (section 3.4) that the domain model reflects
the structure of the command set in the application being taught. By parsing the
key-stroke sequence against the domain model a history list can be constructed
which records the nodes visited, in order, by the learner. The parse tree contains
the commands associated with each topic so that when such commands are
detected a transition can be made to a new node in the tree. Thus the model

102

Chapter 4

tracks the current node as the learner navigates over the tree. Characters in the
sequence which do not correspond to any transitions recognisable from the
current node are considered to be application input. A history list can therefore
contain not only the ordered sequence of nodes visited by the learner but also,
at the correct points in the list, "packets" of application input.

There is one other important aspect to history lists: not all nodes in the task
classification tree are equal. Certain topics in the tree are concerned with
changing the state of the application whereas others are not. To return again to
the MS-DOS example, deleting a file alters the state of the application whereas
listing a directory does not. The tutorial designer, during the elicitation phase,
is asked to declare those commands which are state-changing. In the DIALLER
there is just one state-changing command: save-setup. A history list is therefore
able to distinguish, among the topics "visited" by the learner (and by the tutorial
designer by reference to the minimally correct string), between state-changing and
non-state-changing commands.

Thus, unless the key-stroke sequences of the learner and the tutorial designer are
identical, history lists are built from both the learner's key-stroke sequence and
the tutorial designer's sequence. (To recap, the latter is referred to here as the
minimally correct string.) The two history lists are then compared according to
the following criteria:

(i) The learner and designer must end up at the same final node on exit.
(ii) The learner must visit all nodes visited by the minimally correct string in

the same sequence.
(iii) If the correct string uses state-changing navigational commands, then the

learner must also use such commands. In fact this requirement is covered
by heuristic (ii) above. However there is a stronger requirement that the
learner must not issue any state-changing commands unless they are in the
correct string.

(iv) The learner must obey non-navigating key-stroke sequences
character-for-character exactly, e.g. telephone numbers, file-names, etc.

103

Chapter 4

Failure to match the history lists according to these criteria results in the learner
receiving one of the following messages (a) to (d) below, which correspond
with the heuristics (i) to (iv):

(a)

You appear to have quit EUCITUT in an abnormal way.

The exit command "ESCAPE" associated with the topic QUIT was expected.

(b)

Possibly you left out some of the commands,
or used them in the wrong order.

The command "ENTER" associated with the topic DIAL-DIGITS was expected.

(c)

Possibly you misused one or more of the commands which
alter the state of DIALLER.

The command "S" associated with the topic SAVE
should be avoided for this assignment.

(d)

Possibly one or more of the character strings which you
typed into DIALLER was incorrect.

The input 123 4567 was expected.

104

Chapter 4

As can be seen, the name of the application is incorporated into the messages.
The fuller context of these messages is shown in figure 3.11 in the previous
chapter, where the limitations of this diagnosis method were pointed out in
relation to the "rung" on Jacob's ladder at which are fixed the user-interface
specification components and thus this LIY implementation. Furthermore, LIY
cannot explain its error messages. For example, it cannot explain why, in (c)
above, SAVE is a state-changing operation; it can only say that it is.

42.3 Teaching strategy

The teaching strategy is represented as a set of rules. These rules implement a
teaching process which is invoked by a search of the task classification tree to
find a topic to teach. The rules are partitioned into distinct rule-sets to deal with
particular aspects, such as determination of learner advice, as described in the
previous chapter.

An architecture for learner-control systems

The five-ring model proposed by O'Shea and others is illustrated in figure 4.1
(O'Shea et al. 1984). The solid lines represent the flow of control between the
components. The dotted line between the teaching administrator and teaching
strategy nodes represents the possibility of an intervention by the learner such
as a learner-control request.

The five-ring model is based upon the four-component model discussed earlier
(Hartley and Sleeman 1973).

105

Chapter 4

Teaching
Generator

Teaching
Administrator

Control
_______ — _ Possible learner intervention

Fig. 4.1

The components of the five-ring model are described as follows:

Teaching Administrator

Student History

Student Model

Teaching Strategy

Teaching Generator

presents material to the learner and processes
learner responses.
a record of material presented to the learner
and his or her responses.
makes predictions of the learner's future
performance and current state of knowledge
and ability.
relates the systems view of the learner to the
general types of teaching action that are
possible, and decides the type of the next
action.
a mechanism which yields a specific teaching
action for use by the teaching administrator.

106

Chapter 4

It can be seen that the teaching administrator represents an additional component
compared with the Hartley and Sleeman criteria, but that the other four
components are similar. It should be pointed out that the actual nature of each
of the components varies depending upon the type of tutoring system being
implemented. For example, the paper by O'Shea et al. describes two illustrative
systems with widely differing student models, in the one case rudimentary and
in the other incorporating a problem-solving expert system.

Consider the meaning of the word strategy (as in teaching strategy). It concerns
planning, at a high level, the means to achieving some objective. In an ITS this
objective would be achieving the demonstration of the learner's competence with
the concept being taught. Lower-level preoccupations at the transaction level
might be referred to as tactics. The semantic difficulty with strategy is how to
describe a change of plan or strategy. As Self comments, it is a matter of
opinion whether such a change represents part of an unfolding plan or the
beginning of a new plan (Self 1987). Is a change of strategy part of the
strategy? In this sense three levels of control can be considered: tactics, dealing
with fine-grain interaction-level choices; strategy, which deals with a plan to
achieve some pedagogic goal; and meta-reasoning, the ability to detect that a
plan is failing and change it. Self observes that ITSs do not deal with
meta-reasoning, but it is probable that this will change. In other areas of A.I.,
for example expert systems, research into the use of meta-level knowledge has
become an important issue, e.g. the MOLGEN system (Stefik 1981).

Pask argues that a system such as that illustrated in figure 4.2, where process P
operates upon some domain D, cannot be adaptive because P can have no
knowledge of its effects upon D (Pask 1975).

Figure 4.3 shows feedback information being provided from D to P.

An example might be a heating system fitted with a room thermostat The
problem with systems of the type shown in figure 4.3 is that they only operate

107

Chapter 4

Process

Domain

Non-acfap8vB system

Fig. 4.2

Process

Domain

Adaptive system

Fig. 4.3

correctly in prescribed circumstances within preset limits. To continue the

108

Chapter 4

example, such a system would fail if the thermostat had switched itself off but
the room temperature continued to increase, perhaps due to a heat-wave. Such
a controller cannot be said to be intelligent since it knows only one strategy.
A more intelligent system would be able to examine the effects of P upon D and
modify P, perhaps by a change in strategy, if necessary. Figure 4.4 illustrates
this.

Setf-mocftfying adaptive system

Fig. 4.4

Ogborn and Johnson give as an example of such a system a computer
programmer developing a program (Ogborn and Johnson 1982). In a tutoring
system P2 represents a meta-reasoning process which can modify the strategy
applied by PI to the learner D. Such a system is the minimum necessary to
enable a tutor to reason about its performance. This represents a stronger
definition of intelligence than that embodied in the Hartley and Sleeman-type
architecture described earlier. Pask goes on to define figure 4.4 as being the

109

Chapter 4

minimum architecture for the type of system which can learn, as described in his
"conversation theory" (Ogborn and Johnson 1982).

What is therefore needed is a component in a top loop which can monitor the
performance of the tutor operating in the bottom loop. Suppose that this
component is called a hypothesises Its function is to suggest to the strategy
component an appropriate teaching strategy, and to switch to an alternative
strategy if the current one is inadequate. In other words the hypothesiser will
implement the meta-reasoning described earlier. The strategy component on the
other hand incorporates a range of plans, represented as sets of means-ends
guidance rules, and will implement perhaps either a standard plan or one of those
suggested by the hypothesiser. Such a tutoring system would have the
architecture shown in figure 4.5, corresponding to the Pask representation of
figure 4.4. The hypothesiser component acts directly on the strategy component,
which has now been brought down to the central position. Further, this
architecture enables attenuation of learner control to be handled, again by the
central component as shown. Control flows around the complete figure-of-eight
as two alternate cycles (bottom and top) starting with the courseware generation
node in the lower left.

The architecture of this figure-of-eight model is speculative but would be general
enough to encompass, with a non-functioning hypothesiser where appropriate, a
range of CAL models. These include a dumb CAL system, a help system, an
on-line manual, and systems with either total or constrainable learner control
which are either dumb or intelligent. An earlier paper provides a fuller
description of how these different types of tutoring system can be viewed as
constrained subsets of the figure-of-eight architecture (Martin 1988). The
hypothesiser is invoked on each cycle and acts directly on the strategy
component, so that the desired meta-reasoning is not shut out by, for example,
inappropriate unbroken cycles round the lower loop only. It would appear that
O'Shea's self-improving quadratic tutor could, to an extent, be made to fit into
this architecture (O'Shea 1982). In his system a teaching strategy, expressed as
a set of production rules, can be altered experimentally by changes to the rule
set, which corresponds to the hypothesiser acting upon the strategy component.

110

Chapter 4

However, there is no direct feedback to the hypothesiser on a moment-to-moment
basis: the feedback comes with the statistical evaluation of performance by the
tutoring program at the end of a learner's session. (Note that O'Shea uses the
term hypothesis tester in a totally different sense - as another name for the
student model.)

Strategy 8.
learner control

Controller

f Courseware
I generator

Control and Information
Possible learner intervention

Fig. 4.5

The five-ring model appears to form the sound basis for representing the
architecture of a class of tutors which do not use constrainable learner-control.
At least one tutor has been constructed on the lines suggested by the five-ring
model (Heines and O'Shea 1985). The above proposal demonstrates that with
only a slight alteration the five-ring model can be adjusted to deal with
constrainable learner control, the resulting model being called the figure-of-eight

model. In addition to handling learner control, the hypothesiser component can

111

Chapter 4

generate and monitor the choice of teaching strategy. Thus for LIY it would in
principle be possible, for example, for a hypothesiser component to alter the
teaching strategy used by substituting one set of teaching strategy rules with
another. This might be an appropriate response by the tutoring system for
supporting a learner's serialist or holist teaching preference, perceived in relation
to the FLITTER concept described in chapter 3.

112

Chapter

Discussion and conclusion

This chapter falls into five parts. The first two are concerned with the way in
which LIY matches up to the two principal aims set out in chapter 1. The third
part considers the extent to which the subsidiary aims have been achieved and
is followed by a section discussing the possibilities for further research and
development of LIY. The final section summarises the achievements of this
research.

113

Chapter 5

5.1 "Dialogue specification can be used as the basis for courseware

design".

This section heading is placed in quotation marks deliberately in order to
t

emphasise the fact that it is the slogan representing one of the two major aims
of the research. This aim has been achieved - but at a cost.

The possibility that the output from the systems analysis stage could produce
some specifiable structure which could be used directly as the kernel of a
tutoring system for that interface remains something of a chimera. The
information needed by a tutoring system is deeper than that available from
systems analysis. If this information be termed "domain information" then the
issues pertinent to it are:

What to teach?
When to teach it?
How to teach it?

For software interfaces, it can be argued that the last of these questions -
"How...?" - is answered by the design of the tutoring system itself. Chapters 3
and 4 have described how LIY addresses this problem. The first two questions,
though, need careful consideration.

The question of what to teach is met at a rather basic level by the set of
commands corresponding to user actions in the interface. Such a set of
commands can be used as a skeleton to which tutorial material can be attached.
This is satisfactory for hierarchically structured command sets such as menu
systems where the command hierarchy itself groups together commands of a
similar type. A word processor, for example, might offer PRINT as a "top-
level" command. Sub-commands associated with printing, such as PAUSE
PRINTER, would only be available once PRINT had been invoked at the higher
level. Such a command structure naturally lends itself to a tutorial style since
it is possible to associate successively focused levels of tutorial material with
each command, and this material can be delivered as the learner moves down the

114

Chapter 5

hierarchy. The structuring of the command set is reflected by the structuring
needed for the teaching of the domain. Both the example applications developed
for this research are in this style, which is the one to which LIY is most suited.
It is also the style of pointer-based command systems, such as those which use
a mouse, and the possibility of using LIY with such interfaces is discussed in
section 5.4.

In contrast, a flat command structure requires that similar features, common to
a range of commands, be identified and grouped together by the tutorial designer.
Many operating systems offer just such a flat command structure. This is partly
for historical reasons; operating system command sets have always been
organised this way. Also it is due to the advantage, for skilled users, of having
the entire command set available at any point. Commands can sometimes be
issued using a reduced number of key-strokes compared with that needed for a
hierarchy; certainly, commands can be issued with a reduced amount of slow
interaction in comparison with a menu system. It is interesting that a number
of proprietary shells are now available for MS-DOS which offer a menu-driven
hierarchy to overcome its original flat structure. Such shells have much appeal
both for the occasional user and the novice since they overcome the need to
recall command syntax.

The question of when to teach is more thorny. Specifically the question must
address the order of teaching topics, that is, the development of a suitable
tutorial sequence. A flat command structure offers no support whatsoever in this
respect. A hierarchical structure permits the observation that it is generally
appropriate to teach topics at a higher level in the hierarchy before those at a
lower level. (This is not always the case in an LIY hierarchy since there is also
a left-right ordering as well as a vertical one.) Higher-level topics are concerned
with more general issues which are prerequisite to the understanding of more
specific, lower-level topics. The question then arises as to the ordering of topics
at the same level in the hierarchy. This is exactly the same question as the
ordering of topics in a flat command structure. No information is available from
systems analysis to support such ordering. Consequently the rules described in

115

Chapter 5

chapter 3 - "transformation from operational to pedagogic ordering" - have been
used to provide a tutorial sequence.

These transformation heuristics are not proven to be sufficient for all domains.
They were developed by trial-and-error but have been found satisfactory for the
MS-DOS example of chapter 3, the two domains described here, and one other
which has not been developed into a working and tutored application. This latter
is a small financial application which represented the very first experiments with
building a pedagogic task classification hierarchy. In a rather ad-hoc manner
such a structure emerged from the operational hierarchy. Subsequently, building
the DIALLER system, an attempt was made to formalise the transformation
heuristics needed. As a test, they were then applied retrospectively to the
financial application's operational hierarchy to yield a further pedagogic version.
The two pedagogic versions were compared and found to be equivalent.

It would be pleasing to be able to report that the application of the
transformation heuristics has been automated, but alas this is not at present the
case. The problem is the difficulty a program has in interpreting commands such
as "teach SETUP functions last, linked by INDEPENDent". (The linkage
referred to is concerned with representing left/right dependency in the structure.
It is used by the learner-control advice system.) If significant nodes in the
classification structure were to be tagged by the designer as being of type
SETUP, EXIT, and so on, then automatic transformation might be possible. The
programming effort required should not be underestimated. The operational
classification is represented - on paper at present - as a general tree. Application
of the heuristics and other transformations yields a binary tree structure for the
pedagogic classification. The resulting tree is more straightforward to navigate
during the tutorial delivery phase. The reasons for this are concerned with the
DEPEND/INDEPENDent left-right linkage and have been more fully described
in chapter 3.

In summary, the task command hierarchy element of the dialogue specification
from the systems analysis and design stage can be used as the domain

116

Chapter 5

information required by a tutoring system. However, such information must first
be transformed from its original operational ordering into a pedagogic ordering.

The questions about teaching - what and when - have been addressed in terms
of the curriculum being taught. They are not addressed here in relation to meta-
level reasoning about knowledge of teaching, such as teaching operations to be
invoked following diagnosis of particular learner errors. Dealing with such issues
requires that a tutor incorporate far more knowledge about teaching and a much
finer-grained model of the learner than the rudimentary model used in LIY.
Both would be necessary - teaching knowledge alone would not provide a
significant advantage over the current situation in LIY without there being
knowledge of the learner's current state to which the teaching knowledge could
be applied.

117

Chapter 5

5.2 "LIY is a portable tool for producing and delivering tutoring

systems".

This aim has been achieved, although the LIY approach is most suited to
hierarchical command systems, as discussed in the previous section. The
applications which are tutored by LIY differ from each other in that the
DIALLER program does not alter its environment, although it appears to. On
the other hand, the ELICITOR program does useful work as a general-purpose
LIY tutorial elicitor and saves the elicited information; it thus alters its
environment and updates files on disk.

To build a tutor for a new application the designer runs the ELICITOR program.
This will create a subdirectory for that application and then interact with the
designer to create within it a Lisp-based representation of the task classification
structure, TA.LSP. Consistency checking is performed on the nodes in this
structure as it is elicited from the designer. When complete the structure is
displayed on the screen and the designer can use the mouse to point to particular
nodes. They can then be enhanced with such information as path-names for
slide shows, sequences of teaching operations on the node, and so on. This
enhancement must currently be performed by adding the appropriate Lisp code.

For tutorial delivery there are only two files which contain application-dependent
code: TA.LSP, of which there is a copy to hold the task classification structure
for each particular application domain, and LIY.LSP. This latter file comprises
the top-level routine which invokes everything else; its domain dependence is due
to its requirement that it must know the path-name of the TA.LSP file for the
application being taught.

The desire for portability has shut out from this research many topical issues
germane to ITSs. To take one example, several workers have built into their
tutors libraries of common misconceptions or "bugs" (Anderson and Reiser 1985).
Such an approach would not be appropriate in LIY since it doesn't employ a set
of learner modelling rules to perform diagnosis. (Diagnosis in LIY is issue-
based, as described in section 4.2.) If the diagnosis module were to be replaced

118

Chapter 5

by a rule-tracing approach then rules - and mal-rules (Sleeman and Brown 1982)
- would need to be built for each application by hand, thus losing the goal of
portability. Sleeman approaches the domain-independence issue from the other
end, in that he is proposes a scheme for the automatic generation of mal-rules
for a given domain (Sleeman 1987). The price paid for the robustness needed
by the portability requirement of LIY is a lack of sophistication in its approach
to diagnosis in comparison with rule-based approaches.

119

Chapter 5

5.3 Meeting the subsidiary aims

The first of these aims was that

"the learner should be allowed to interact directly with the software interface

being taught".

This aim has been met, the learner being able to run the application program
being tutored directly, or being placed under tutorial control at some pre
determined point in the application. This means that the learner can be required
by the tutoring system to manipulate the application program from some
"internal" position, for example by making a selection from a menu at other than
the top level. Furthermore the tutorial designer can set up the application in any
desired way by use of the teaching operation "create environment". This feeds
into the application a sequence of commands which would normally be keyed
in directly by a user.

This facility is a most significant feature of LIY and appears to work well.
More programming effort could usefully be expended on making the application
more learner-proof, for example inhibiting file-creation activities which had not
been requested by the tutorial designer. It is not at present clear the extent to
which this would be possible while maintaining the strict separation between the
application and the tutorial; at present the application software is implemented
without making any concessions to the existence of the tutorial.

One difficulty with this type of approach is that LIY operates in more than one
mode, with the learner interacting at different times with the tutorial and with
the application. There can be possible confusion on the learner's part as to the
current state. This is a problem which has been pointed out in connection with
earlier systems (du Boulay et al. 1981). They discuss the difficulties faced by
novices in using the BIP system which was designed to aid the learning of the
programming language BASIC (Barr et al. 1976). It incorporated not only the
BASIC interpreter and editor but also the tutor and a commentator on BASIC
programs. Novices were unclear at certain points as to whether they were

120

Chapter 5

interacting with the BASIC editor or the interpreter, or indeed the tutoring
system. This type of confusion is currently quite possible in LIY, which has
three modes. During a tutorial slide show the learner must press the space bar
to advance; pressing anything else does no harm but results in a warning beep.
This overcomes the difficulty which can arise when the learner, having been
instructed to manipulate the application, is still at a control-point in the tutorial
delivery phase rather than in the application proper. Intended application input
simply elicits the warning beep. Alternatively the learner can be asked by the
tutorial for "direct" input; the learner is being asked a question but must respond
directly, rather than interact with the application. Here, the prompt displayed is
very different from the slide show. The more it differs from the application the
less likely it is to confuse the learner but of course this is dependent on the
screen design of the application program. Finally, the learner can interact with
the application directly while perhaps being under the impression that a slide
show is being displayed. LIY does not really address this difficulty, although
with a more powerful windowing facility it would in principle be possible to run
each of the modes consistently in different windows on the screen so as to
minimise the possibility of learner confusion. In different situations, however,
users have reported confusion in relation to multiple window systems; such a
problem has been seen with students meeting Turbo Prolog for the first time.

"The learner should be able to interrupt at any time."

This aim has been fully met. The learner can interrupt in a uniform way
whether the tutorial is in the delivery phase or an assessment phase, including
the case in which the application program itself is running. Following an
interruption the learner can select a course of action from the menu shown in
figure 3.5 of chapter 3. Switching to a different topic, either by browsing using
the mouse or by keying in the name of the topic, results in "advice rules" being
applied with reference to the projected move and the state of the current learner
profile. This was described in detail in chapters 3 and 4. The effect of these
rules is either to enable the requested move or to offer one of a graded sequence
of messages advising against the move. A factor considered in the decision

121

Chapter 5

process resulting in this advice is the skill level of the learner, this is determined
from the history of recent previous assessments. However, the advice the learner
receives is expressed in terms of the missing prerequisite topics not so far taught.
Whatever the strength of advice against the move that LIY offers, the learner can
choose to ignore it and force the move if desired.

This ability to interrupt is intuitively appealing. The need for an evaluation of
its usefulness is proposed in section 5.4.1 below.

"LIY should comprise not only a delivery system but also an authoring system."

This aim was proposed in order to support the portability of LIY and as such
it was discussed in the previous section. A limited authoring environment now
exists, mainly for eliciting the task classification. It would be useful to expand
the capability of the authoring system if LIY were to be used in a development
environment, although to do so would contribute nothing to this research.

"LfY should incorporate intelligent tutoring technology where possible."

Current research with LIY has focused on producing a complete tutoring system
in order to experiment with a particular approach based upon dialogue
specification. Many of the issues dealt with in this undertaking, such as
replacing input-output routines for the purpose of logging user interaction with
the application software, clearly bear no relation to the issues central to ITSs.
However, it was felt to be highly desirable to base the LIY software upon an
existing ITS architecture, which in this case was that proposed by Hartley and
Sleeman (Hartley and Sleeman 1973). Without going over all the ground
covered in detail earlier, the LIY tutorial delivery program is structured to
incorporate domain and learner representations, with a separate diagnosis module.
There is in addition a representation of the teaching strategy as a set of rules,
together with a rule interpreter. Finally, there is a set of teaching operations,
including diagnosis, which can be invoked by the rules. The declarative nature

122

Chapter 5

of the teaching strategy was found to be very helpful in the development phase;
changes to the control behaviour of the tutor were straightforward. The omission
of a bug catalogue - an enhancement to the original Hartley and Sleeman
architecture proposed in more recent research - has been discussed earlier in this
chapter.

No natural language interface has been built into LIY because, unlike for
example the SOPHIE system (Brown et al. 1982), it cannot solve problems set
by the learner in the domain. Software interfaces, as an application domain, are
restricted in terms of their syntax and semantics, so that posing problems in
natural language about such interfaces can arguably be regarded as unnecessary.
More specifically a distinction can be made between questions concerning objects
in the application domain, which the interface permits through its syntax and
semantics, and questions concerning the manipulation of the interface itself,
which might well be posed in natural language. To enable LIY to understand
relevant natural language would require that it contain much more domain
knowledge than the present task classification structure. It could be done - as
for example in SOPHIE - but it would remove the portability which LIY
currently offers.

Diagnosis in the LIY system uses a form of issue-based differential modelling,
as exemplified by the diagnostic method used in the WEST game (Burton and
Brown 1982). As discussed in chapter 4, in LIY there are just four issues. This
is sufficient to provide accurate diagnosis in terms of evaluating the correctness
of the learner's interaction with the application software in most cases. It
permits the learner's interaction to be overloaded, in the sense that more
interface operations are permissible than those in the correct minimal string

provided by the tutorial designer. This gives a much more "intelligent" feel to
the system. In a small proportion of cases there can be problems: the learner
can carry out state-changing commands unnoticed by the tutoring system. In the
DIALLER, saving the result of a setup is a state-changing command;
manipulating setup parameters is not. If the learner is requested to alter and
save one such parameter but alters two before the state-changing setup, LIY will
not be aware of this in its present configuration.

123

Chapter 5

The feedback provided to the learner by LIY's diagnosis is rather limited. Since
the issues with which it is concerned are based on key-stroke sequences - the
lowest level of abstraction - it can really only provide feedback at this level.
An interesting way to make the best use of this feedback might be to replay the
"correct" key-stroke sequence through the application in slow motion in "teach
me" mode, making the learner follow on the keyboard. Other feedback provided
by LIY is implicit in terms of mastery of topics from the task classification.
This provides rather a coarse representation of procedural skills at a level of
abstraction above the task level.

124

Chapter 5

5.4 Further work

The sections below describe ways in which the LIY work might be taken
forward in terms of both research and development. In the latter case the
discussion concentrates on measures which would improve performance and
appearance.

5.4.1 Research

Jacob's ladder

Section 2.3 described a series of points on a graduated range of syntactic and
semantic possibilities, referred to (in this thesis only) as Jacob's ladder (Jacob
1983).

The selection of a rung for LIY was motivated by a desire for parsimony; only
the minimum elements of an interface specification have been used in order that
the LIY approach should be applicable across a range of domains. The
consequences of using alternative rungs would be interesting to explore.

Moving up to rung (iv) would add specification of application input syntax to
the pre-existing command syntax. Even this addition would greatly inhibit
portability unless a universal parser could be developed. Clearly, however, the
quality of diagnostic messages to the learner would be improved.

Adding semantics would obviously complicate matters further. The objective of
portability would be swept away under a wave of domain-specific information.
However, the tutor would appear to the learner to be much more intelligent since
it would be able to detect equivalences at a higher level than currently. With
a suitable knowledge representation technique, such as a semantic net, a tutoring
system could, to take an earlier example, detect the equivalence between

125

Chapter 5

renaming a file on the one hand and copying and deleting the original on the
other.

As a next step one might therefore elect to augment the current LIY specification
elements with the command semantics - rung (ii) without the application input
syntax. An implementation at this level might then draw considerably on
research in planning - especially the idea of the procedural network (Sacerdoti
1977) - as incorporated, for example, into the TOTS system (Rickel 1988).

Bound up with the question of semantics is the requirement that the LIY tutoring
system be able to navigate over the task command hierarchy for diagnostic
purposes. Restrictions on the types of user interface for which LIY is suited
have been stated earlier and exclude, amongst other things, the use of hot keys.
However, it should be possible to incorporate such devices into LIY so long as
the control-flow model were more elaborate. Currently, the specification must
provide semantic information concerning control-flow following leaf-processing.
Hot-key processing differs slightly from leaf-processing in that there is a variable
return-point - the point of invocation - so that it might be appropriate to augment
the domain model so as to process dynamically a stack of "return addresses"
along the lines of the familiar software subroutine or interrupt-processing
mechanisms.

126

Chapter 5

Evaluation

Although LIY has been developed into a complete system, no evaluation of its
effectiveness has been performed. Because it is a complete system dealing with
a domain - software interfaces - which has not been greatly researched at
present, there are several aspects of LIY which deserve to be evaluated
separately. Consider some examples:

(i) Do learners like the way the tutor invokes the application software?

(ii) Do they find this confusing?

(iii) How often should a tutorial use this teaching method - on every topic, or
just now and again?

(iv) Feedback on errors has been identified earlier as being rather limited: is
this critical in this kind of domain?

(v) If so, to what extent?

(vi) Is the question of feedback so important that issue-based diagnosis should
be abandoned, or is it a matter of incorporating further issues into the diagnosis
heuristics?

(vii) Is the domain structure based upon task classification sufficiently supportive
to the learner, or would a task structure based upon learners' views of their
tasks, perhaps elicited from protocols, be better?

127

Chapter 5

If the answers to some of these questions indicate that changes should be made
to LIY then it would be useful to consider the cost of introducing techniques to
improve the tutor. LIY is attempting at present to exploit to maximum effect
a rather minimal amount of information - the task classification structure of a
domain. It would thus be useful to know how the economics of tutorial
production would alter if any improvements introduced to LIY significantly
increased its cost. Clearly there is a trade-off between the cost of producing a
tutor on the one hand and its effectiveness at teaching on the other, the question
which needs to be resolved is how to determine, for a given market, some
optimum point on the cost-performance curve.

One of the subsidiary aims of LIY is that the learner should be able to interrupt.
Hartley has twice studied groups of learners who were offered learner control
(Hartley J.R. 1981, Hartley, J.R. and Tait, K. 1986). It was found that, although
learners apparently liked learner control, the effectiveness it offered to their
learning behaviour could not be identified from evaluative studies. Given that
many software packages are quite similar to each other, it is believed that LIY
would support learners transferring their skill acquired with one package to some
other product In this case it is quite probable that such learners would not want
to study a complete tutorial; learner control provides an effective way for them
to adapt the tutorial to their own needs. In the software interface domain it is
intuitively appealing that the learner should be able to interrupt in order to exert
some control over what is being taught; this intuition needs to be tested.

The notion of categorising learners as "holists" and "serialists" is not really
germane to LIY and has not been fully developed. Nevertheless it would appear
to be possible to make such a distinction by observing how a learner uses learner
control and thus adapting the teaching strategy accordingly. Continuing with this
theme of identifying features of the learner, it would be interesting both to
develop and to test the idea of maintaining separate characterisation and
performance profiles, as proposed earlier and implemented in skeleton form. The
characterisation profile contains information inferred about the learner's
interaction style, particularly holist/serialist, which could carry across tutorials.
Currently, this characterisation profile information is based on the qualitative
variables DUCKER and PUTTER (see section 3.2.2).

128

Chapter 5

Littman and Soloway write:

"There can be no doubt that evaluating Intelligent Tutoring Systems

(ITSs) is costly, frustrating and time-consuming. In fact, in our own

work to build PROUST ... evaluation has consumed nearly as much

effort as the design of PROUST itself."

(Littman and Soloway 1988)

This is depressing. They ask the question as to whether evaluation is really
worthwhile. Would it not perhaps be better to let the marketplace decide on the
value - or otherwise - of a particular ITS? However, they go on to assert that
evaluation is very important in order to further our understanding of cognitive
science, artificial intelligence and education. This point is fundamental to all
science; there is little to be gained from any experiment which involves the
construction of something unless the constructive phase is followed by an
evaluative phase. The issues that LIY poses as a portable tutoring shell for
software interfaces need to be evaluated, yet to do so is beyond the present
phase of LIY research.

Any evaluation would need to concentrate upon those issues which are central
to LIY rather than those which are peripheral, i.e. it should focus on learners'
views of the following:

(a) interaction style, in which the tutor causes the learner to
interact with the application software;

(b) feedback concerning learners' errors. This topic is intimately
associated with the effectiveness of issue-based diagnosis;

(c) the pedagogic task structure;

(d) learner control.

129

Chapter 5

Scaling up

LIY has been developed and tried with two sample applications which are both
rather small. It would be very interesting - and important if LIY were to be
considered for tutoring a real application - to discover the limits or weaknesses
of the LJY approach when applied to a large software interface. There would
be implications for both the authoring and delivery environments. Common to
both would be the management of a large task space. For the learner this
would require the ability to handle a substantial task structure. The browsing
facility, with a display of parts of the task structure on the screen, could well
present the learner with a severe test of short-term memory. Equally, research
would be needed to investigate the effects of large domains upon a learner's
long-term memory; it would be necessary to examine the learner's ability to
remember the correct task structure, as a result both from inferring it from the
tutorial directly and from manipulating a display of it when browsing. To
complicate matters, interface users do not usually have to remember the whole

of an interface; so long as the user can recall that there exists a particular
operation which will achieve the user's task, menu systems can provide prompts
which will support navigation to and execution of the appropriate interface
command. Thus research into LIY's effectiveness for learners of large software
interfaces would need to separate effects of the LIY tutorial from effects of the
software interface design.

For the design of a tutorial for a large software interface it would be instructive
to test the effectiveness of the transformation heuristics. These are used for
conversion of a task classification structure from an operational ordering to a
pedagogic ordering. Because they are applied recursively to a tree structure
there is no reason to suppose that the size of the tree imposes any limitation on
their applicability.

130

Chapter 5

Making LfY more "intelligent"

In the light of the major LIY aim of portability, section 5.2 above discussed the
difficulties of enhancing an LJY tutorial by including a "bug catalogue" and
using model-tracing for diagnosis, either with or without a plan recognition
strategy. Such techniques appear to provide the most promising approach to
making LIY more intelligent. Hoppe describes the use of a task-oriented parser
applied to the user's input stream to identify higher-level tasks (Hoppe 1988).
Taking Unix as an example, the higher-level external task replace can be broken
down into the internal (i.e. command-level) tasks delete and move. Hoppe's
Prolog task parser can then recognise the user's intention of replacement by
identifying delete and move commands in the user's key-stroke sequence. This
is somewhat similar to the plan recognition strategy of the MACSYMA Advisor
(Genesereth 1982).

Rule-based model tracing in the Lisp Tutor (Anderson and Reiser 1985) is based
upon the ACT* theory of learning (Anderson 1983), whereas LIY incorporates
a pragmatic knowledge of instruction based on a prerequisite knowledge
hierarchy, similar to that proposed by Gagne (Gagne et al. 1988). Ohlsson
points out that despite the paucity of theories of learning, people actually do

learn, and he emphasises the importance of looking at the way in which
teaching is carried out (Ohlsson 1986). Much is known about teaching: not all
tutors need to be based upon a theory of learning. Other A.I. techniques might
be considered for LIY, such as incorporating a module for understanding natural
language. It is unclear how any of these techniques would be compatible with
the portability requirement or with a domain based solely on the task
classification structure.

With the objective of retaining LIY's portability, it would be useful to examine
whether the set of issues tested during student diagnosis could be enlarged,
permitting a greater degree of feedback to be provided to the learner.

131

Chapter 5

The teaching strategy incorporated in LIY's rules could be improved. If the
architecture were to be enhanced so as to reflect the structure of the
figure-of-eight model proposed in chapter 4, then there would be a component
- the "hypothesiser" - which could suggest a change of teaching strategy as a
remedy for poor learner performance in specific instances. This could substitute
one set of teaching strategy rules for another, for example navigating over the
task tree in a different sequence in the light of inferred holist/serialist learner
preferences. Alternatively, various teaching strategies - expressed as alternative
sets of rules - might perhaps be drawn from those used in DOMINIE (Spensley
and Elsom-Cook 1988), for example "cognitive apprenticeship" and "discovery
learning".

Continuing with the figure-of-eight model, the central ring is responsible for the
current teaching strategy and for learner-control. Although in LIY the learner
can always interrupt, in principle the degree to which such interruption is
permitted could be changed dynamically. This might be useful when teaching
- for the first time - some critical operation for which interruption could be seen
as undesirable, such as use and recovery of back-up files. If learner modelling
in LIY were to use a more fine-grained representation, there might be a case for
considering altering, on a moment-to-moment basis, the degree of permitted
learner-control in the light of the learner's current state.

Implementation issues : direct-manipulation devices

In LIY the key-stroke sequence is captured in "watching mode" to watch and
record the learner's actions for subsequent diagnosis. LIY could not at present
interpret the learner's use of the mouse in this context. LIY applications must
be menu- and text-based. Use of the mouse can only occur at delivery-time
when the user has interrupted, whereupon any "watching" is abandoned.

Suppose that using a mouse or some other pointing device were part of the
application. Use of the mouse in a menu-based system is functionally equivalent
to the use of the arrow cursor-control keys. However, because of their discrete

132

Chapter 5

nature the arrow keys permit the retention of the state-transition paradigm. This
is not the case with the mouse because of its inherently continuous nature.

What does the mouse do? In cases such as menu systems it causes a value to
be returned which is associated with the "clicked" object. In other situations, for
example where painting or drawing programs are in use, it merely causes a re
arrangement of the screen. In this latter case it is not possible for the LIY
approach to make any contribution; indeed, it is hard to see how any tutoring
system using current technology could suitably assess the result of the user
carrying out the task required by, for example, "Using the mouse, draw an apple
on the screen". In the former case, in which a functional value is returned as
the result of a clicked object, this functional value can be considered to be the
answer to the implicit question "What would you like to select?". As such, the
mouse routine would be in a position to insert the returned value into the
learner's input stream as though the learner had typed the answer to the implicit
question. Thus the task model of the application would behave as if all VO
were text-based. In summary, LIY could address the difficulties inherent in
interpreting user responses in mouse-driven systems in which mouse clicks return
functional results, but cannot deal with systems in which the mouse is used to
produce some behaviour which cannot be represented as an VO stream, such as
altering the state of the screen. An example of the latter would be the request,
in an ARK-like system, to "bounce the ball three times" (Smith 1986). Further,
in an application without a mouse but in which the cursor keys were used for
pointing, although as argued above it would in principle be possible to
incorporate cursor movements into the model of the application as state
transitions, it would be better to regard them as being like mouse movements,
finally returning a functional value to be incorporated into the learner's input
stream. What is needed therefore is a user-interface management system to
separate details of the mechanics of manipulation of the interface from the
representation of objects being manipulated. The application would need still to
be text- or menu-based whether or not a pointing device were to be used,
although the menus could be of the "pull-down" variety. Such a system could
then allow a tutor to access objects at a higher level of abstraction than the key
stroke-sequence level currently used by LIY.

133

Chapter 5

Implementation issues : OOPS

With the natural separation in LIY between the tutoring system and the
application being taught, it would appear promising to consider implementation
using an object-oriented programming system, or OOPS. Since LIY and its
sample tutored applications are presently implemented in Common Lisp, an
obvious system for re-implementation would be the Common Lisp Object
System, CLOS. Object-oriented systems provide several advantages to the
program designer and implementor, not the least of which is powerful support
for abstraction in terms of module interfaces. It would be instructive to discover
how OOPS might help, not only in designing and implementing the architecture
of the obvious tutor/application interface, but also in the exploitation of the user-

interface management system described in the previous section. Whether or not
OOPS techniques were used, it would be interesting to examine the effects of
redesigning the LIY architecture so that the tutoring system and the application
run as separate processes under a multiprocessing system such as UNIX or OS/2.

5.4.2 Development

A considerable improvement could be made to the authoring system by the use
of a "show me" mode. This would permit the authoring system to record the
tutorial designer's interaction with the target application, typically so that it
could be set up in some desired state for the learner. LIY forces the application
into such a state by transparently substituting a character string, stored with a
lesson, for an equivalent key-stroke sequence which the application expects from
the keyboard. Because it is performed by substituting Lisp's normal input-output
routines the application need not be aware of this. The desired key-stroke
sequence to achieve the effect is presently built into LIY by the designer, simply
as a string. With a "show me" mode this string could be inferred while the
designer used the application to reach the state desired for the learner. Such a

134

Chapter 5

device would be useful for setting the application to a state which displayed a
particular sub-menu, possibly combined with data entry to build some desired
application environment. There is an analogy here between this "show me"
mode and the "teach me" mode proposed in section 5.3 for providing the learner
with error feedback.

For the student profile it was intended to incorporate some measure of "literacy"
associated with the application package being tutored. This could be elicited
from the learner statically at the start of the tutorial in answer to a question
such as "Have you ever used a XXXX before?". XXXX might stand for "word
processor" or "spreadsheet" and would need to be a key-word provided by the
designer. Such knowledge could be used by the tutoring system in a similar
way to that suggested earlier when the need for a change of strategy was
detected: an alternative teaching strategy could be used by interpreting a
different rule-set. A possible strategy, having detected a package-literate learner,
would be to teach all the non-leaf nodes of the task classification structure first.
This would provide the learner with an overview without communicating a vast
amount of detail. It might prove sufficient to enable the package-literate learner
to grasp the entire domain so long as the use of the actual commands, given
their context, were straightforward.

At present there is a certain inconsistency between the way LIY uses menus and
the mouse. Figure 3.5 illustrated the menu which appears when the learner
interrupts. If option "B" (browse) is selected, then a diagram of the task
classification structure appears from which the learner can select an item with
the mouse. Ideally the mouse could also be used to select from the menu of
figure 3.5. The browser could be improved if it enabled summary text
information to appear in a window. Thus the user might click with the left
mouse button to see summary information on the function of a command in the
task structure, and click with the right button to select that topic for the full
tutorial.

135

Chapter 5

5.5 Conclusion

The work described above situates a technique for the specification of a user
interface within a spectrum of such techniques. It demonstrates how an interface
specification can be used as the basis for constructing a tutorial for teaching the
use of that interface. Furthermore, the specification itself would, in an ideal
world, form part of the systems development effort for implementing the
application. In principle, therefore, an economy could be made as a result of
sharing the specification between the application development and tutorial
development stages. In fact the major part of the user-interface specification
which is utilised, the task classification structure, needs to be transformed from
an operational to a pedagogic ordering. Heuristics are proposed to achieve this,
although human expertise is required to apply them.

A portable rule-based shell has been developed which supports the delivery of
tutorials for a range of software application package interfaces. The use of the
shell with two such interfaces is reported. This has additionally required the
construction of the applications and their tutorials, although it is important to
note that the applications themselves do not depend in any way on features in
the shell; they can be run together with the tutoring shell or in stand-alone
mode. A computer-based authoring environment provides support for the
development of tutorials.

The shell allows the learner of a software interface to interact directly with the
application software being learnt while remaining under tutorial control. The
learner can always interrupt in order to request a tutorial on any topic, although
advice may be offered against this in the light of the tutor's current knowledge
of the learner. This advice can always be over-ridden, however.

Learner diagnosis is effected by recording the learner's key-stroke sequence from
interaction with the package and then parsing it against a model of the
application which is based on the task classification structure. The same
operation is carried out on a sequence provided by the tutorial designer.

136

Chapter 5

Heuristics applied to the differences between the two outcomes provide the basis
for feedback to the learner.

Currently, applications which could use the approach described are restricted to
being text- and menu-based. They cannot make use of a mouse, for example.
Furthermore they need to be written in the language used to implement the shell,
which is Common Lisp, although another language could be used so long as
there was a suitable interface medium, such as C, to the shell.

The approach reported here is suitable for an unsupported software interface
learner and is named LIY ("Learn It Yourself). With further development, it
would appear to provide a promising method for augmenting a software
engineering tool-kit with a new technique for application tutorial production.

137

References

Alty, J.L. 1984. Path algebras: a useful CAI/CAL analysis technique. In
Smith, P.R. (ed.) Proc. CAL '83, 5-13, Pergamon Press.

Anderson, J.R. 1989. Psychology and intelligent tutoring. In Bierman, D.,
Breuker, J. and Sandberg, J. (eds.) Artificial Intelligence and Education,
Proceedings of the 4th International Conference on AI and Education, May
1989, IOS, Amsterdam.

Anderson, J.R. 1983. The architecture of cognition, Harvard University Press,
Cambridge, MA.

Anderson, J.R. and Reiser, B.J. 1985. The LISP Tutor. BYTE magazine, 10,
4, 159-175.

Anderson, S. 1986. Proving properties of interactive systems. In Harrison,
M.D. and Monk, A.F. (eds.) People and Computers: Designing for Usability,
Proc. HCI '86, 402-416, Cambridge University Press.

Barr, A., Beard, M. and Atkinson, R.C. 1976. The computer as a tutorial
laboratory: the Stanford BIP project. International Journal of Man-Machine

Studies, 8, 567-595.

Breuker, J. 1988. Coaching in help systems. In Self, J. (ed.) Artificial
intelligence and human learning, 310-337, Chapman and Hall.

138

References

Brown, J.S., Burton, R.R. and de Kleer, J. 1982. Pedagogical, natural language
and knowledge engineering techniques in SOPHIE I, n, and IE. In Sleeman, D.
and Brown, J.S. (eds.) Intelligent Tutoring Systems, 227-282, Academic Press.

Burton, R.R. and Brown, J.S. 1982. An investigation of computer coaching for
informal learning activities. In Sleeman, D. and Brown, J.S. (eds.) Intelligent

Tutoring Systems, 79-98, Academic Press.

Clancey, W.J. 1987. Methodology for building an intelligent tutoring system.
In Kearsley, G.P. (ed.) Artificial Intelligence and Instruction, 193-227, Addison
Wesley.

De Marco, T. 1978. Structured analysis and system specification, Yourdon
Press.

Dede, C. 1986. A review and synthesis of recent research in intelligent
computer-assisted instruction. International Journal of Man-Machine Studies, 24,
329-353.

du Boulay, B., O'Shea, T. and Monk, J. 1981. The black box inside the glass
box: presenting computing concepts to novices. International Journal of Man-

Machine Studies, 14, 237-249.

Elsom-Cook, M. 1983. A user interface - a Lisp training system. Proc.

Ergonomics Soc. MMI Conference, Leicester Polytechnic.

Ferraris, M., Midoro, V. and Olimpo, G. 1984. Petri nets as a modelling tool
in the development of CAL courseware. In Smith, P.R. (ed.) Proc, CAL '83,

41-49, Pergamon Press.

Foley, J., Gibbs, C., Won Chul Kirn and Kovacevic, S. 1988. A knowledge-
based user-interface management system. In Soloway, E., Frye, D. and
Sheppard, S.B. (eds.) Proc. CHI '88, 67-72, Addison Wesley.

139

References

Foley, J.D., Won Chul Kim and Gibbs, C.A. 1987. Algorithms to transform
the formal specification of a user-computer interface. In Bullinger, H.-J. and
Shackel, B. (eds.) Proc. Interact '87, 1001-1006, Elsevier.

Gagne, R.M., Briggs, L.J. and Wager, W.W. 1988. Principles of instructional

design, 3rd. edition. Holt, Rinehart and Winston.

Gane, C. and Sarson, T. 1979. Structured systems analysis: tools and

techniques. Prentice Hall.

Genesereth, M.R. 1982. The role of plans in intelligent teaching systems. In
Sleeman, D. and Brown, J.S. (eds.) Intelligent Tutoring Systems, 137-155,
Academic Press.

Greenfield, P.G. 1988. An investigation into the applicability of definite clause
grammars for use in intelligent tutoring systems. Proc. ITS-88, 415-422,
Montreal.

Hartley, J.R. 1981. Learner initiatives in computer assisted learning. In Howe,
J.A.M. and Ross, P.M. (eds.) Microcomputers in secondary education - issues

and techniques, 102-117, Kogan Page.

Hartley, J.R. 1973. The design and evaluation of an adaptive teaching system.
International Journal of Man-Machine Studies, 5, 421-436.

Hartley, J.R. and Sleeman, D.H. 1973. Towards more intelligent teaching
systems. International Journal of Man-Machine Studies, 5, 215-236.

Hartley, J.R. and Tait, K. 1986. Learner control and educational advice in
computer based learning: the study-station concept. Computers and Education,

10, (2), 259-265.

Heines, J.M. & O'Shea, T.M. 1985. The design of a rule-based CAI tutorial.
International Journal of Man-Machine Studies, 23, 1-25.

140

References

Hoare, C.A.R. 1972. Proof of Correctness of Data Representations. Acta

Informatica 1, (3), 271-281.

Hollan, J.D., Hutchins, E.L. and Weitzman, L.M. 1987. STEAMER: an
interactive, inspectable, simulation-based training system. In Kearsley, G.P. (ed.)
Artificial Intelligence and Instruction, 113-134, Addison Wesley.

Hoppe, H.U. 1988. Task-oriented parsing - a diagnostic method to be used by
adaptive systems. In Soloway, E., Frye, D. and Sheppard, S.B. (eds.) Proc.

CHI '88, 241-247, Addison Wesley.

Jackson, M.A. 1983. System development. Prentice Hall.

Jackson, P. and Lefrere, P. 1984. On the application of rule-based techniques
to the design of advice-giving systems. International Journal of Man-Machine

Studies, 20, 63-86.

Jacob, R.J.K. 1983. Using formal specifications in the design of a human-
computer interface. Communications of the A.C.M., 26, (4), 259-264.

Johnson, P., Diaper, D. and Long, J. 1984. Tasks, skills and knowledge: task
analysis for knowledge based descriptions. Proc. Interact '84, 23-27.

Johnson, W.L. and Soloway, E. 1987. PROUST: an automatic debugger for
Pascal programs. In Kearsley, G.P. (ed.) Artificial Intelligence and Instruction,

49-67, Addison Wesley.

Jones, C.B. 1980. Software development: a rigorous approach. Prentice-Hall.

Kearsley, G. 1982. Authoring systems in computer based education.
Communications of the ACM., 25, (7), 429-437.

141

References

Kemke. C. 1987. Representation of domain knowledge in an intelligent help
system. In Bullinger, H.-J. and Shackel, B. (eds.) Proc. INTERACT '87, 215-
220, Elsevier.

Kernighan, B.W. and Lesk, M.E. 1979. LEARN - computer-aided instruction

on Unix. (2nd. edn.). Bell Laboratories.

Kieras, D. and Poison, P.O. 1985. An approach to the formal analysis of user
complexity. International Journal of Man-Machine Studies, 22, 365-394.

Leveson, N.G. 1980. Applying behavioural abstractions to information system

design and integrity. Technical Report No. 47, Laboratory of Medical
Information Science, University of California, San Francisco.

Leveson, N.G., Wasserman, A.I. and Berry, D.M. 1983. BASIS: a behavioural
approach to the specification of information systems. Information Systems, 8, (1),
15-23.

Lewis, M.W., Milson, R. and Anderson, J.R. 1987. The TEACHER'S
APPRENTICE: designing an intelligent authoring system for high school
mathematics. In Kearsley, G.P. (ed.) Artificial Intelligence and Instruction, 269-
301, Addison Wesley.

Littman, D. and Soloway, E. 1988. Evaluating ITSs: the cognitive science
perspective. In Poison, M.C. and Richardson, JJ. (eds.) Foundations of

Intelligent Tutoring Systems, 209-242, Lawrence Erlbaum.

Martin, F.A. 1988. Control models in computer-assisted learning. Expert

Systems, 5, (4), 316-326.

Martin, F.A. 1987. LIY: learn-it-yourself software interfaces. Computational

Intelligence, 3, 28-34.

142

References

Martin, F.A. 1983. DYCAL: a tutorial system for the guided exploration of
software. In Module HA, Proc. Informatics '83, Singapore.

Mayer, S.R. 1967. Computer-based subsystems for training the users of
computer systems. IEEE Transactions on Human Factors in Electronics, HFE-
8, (2), 70-75.

Merrill, D. 1980. Learner control in computer based learning. Computers and

Education, 4, 77-95.

Moran, T.P. 1981. The Command Language Grammar: a representation for the
user interface of interactive computer systems. International Journal of Man-

Machine Studies, 15, (1), 3-50.

Morgan, C.C. 1985. The Schema Language. Programming Research Group,
Oxford.

Nicolson, R.I. and Scott, P.J. 1986. Towards an intelligent authoring system.

Internal report, Department of Psychology, University of Sheffield.

Ogborn, J.M. and Johnson, L. 1982. Conversation Theory. Brunei University
internal report MCSG/TR30.

Ohlsson, S. 1986. Some principles of intelligent tutoring. Instructional Science,

14, 393-326.

O'Shea, T. 1989. Magnets, Martians and microworlds: learning with and
learning by OOPS. In Biennan, D., Breuker, J. and Sandberg, J. (eds.) Artificial

Intelligence and Education, Proceedings of the 4th International Conference on

AI and Education, May 1989, IOS, Amsterdam.

O'Shea, T. 1982. A self-improving quadratic tutor. In Sleeman, D. and
Brown, J.S. (eds.) Intelligent Tutoring Systems, 309-336, Academic Press.

143

References

O'Shea, T., Bornat, R., du Boulay, B., Eisenstadt, M. and Page, I. 1984. Tools
for creating intelligent computer tutors. In Elithorn, A. and Banerjii, R. (eds.)
Artificial and Human Intelligence, 181-199, Elsevier.

Papert, S. 1980. Mindstorms - children, computers and Powerful ideas. Basic
Books, New York.

Parnas, D.L. 1969. On the use of transition diagrams in the design of a user
interface for an interactive computer system. In Proceedings of the 24th.

National A.C.M Conference, 379-385.

Pask, A.G.S. 1975. The cybernetics of human learning and performance.

Hutchinson.

Payne, S.J. 1984. Task-action grammars. In Proceedings of Interact '84, 139-
144.

Reisner, P. 1981. Formal Grammar and human factors design of an interactive
graphics system. IEEE Transactions Software Engineering, SE-7, (2), 229-240.

Rickel, J. 1988. An intelligent tutoring framework for task-oriented domains.
In Proceedings of ITS-88, 109-115, Montreal.

Rumelhart, D.E. and Norman, D.A. 1978. Accretion, tuning and restructuring:
three modes of learning. In Cotton, J.W. and Klatzky, R.L. (eds.) Semantic

factors in cognition, 3-36, Hillsdale, New Jersey: Erlbaum.

Sacerdoti, E.D. 1977. A structure for plans and behaviour. Elsevier, New
York.

Self, J. 1987. Student models: what use are they? In IFIPITC3 conference: AI

tools in education, Frascati, May 1987.

144

References

Sharratt, B.D. 1987. Top-down interactive systems design: some lessons learnt
from using Command Language Grammar. In Bullinger, H.-J. and Shackel, B.
(eds.) Proceedings of Interact '87, 395-399, Elsevier.

Sleeman, D. 1987. PIXIE: a shell for developing intelligent tutoring systems.
In Lawler, R. W. and Yazdani, M. (eds.) Artificial intelligence and education,

volume I, 239-265, Ablex Publishing Corporation.

Sleeman, D. and Brown, J.S. (eds.). 1982. Intelligent Tutoring Systems,

Academic Press.

Smith, R.B. 1986. The alternate reality kit. In Proceedings of the 1986 IEEE

Workshop on Visual Languages, 99-106.

Spensley, F., Elsom-Cook, M., Byerley, P., Brooks, P., Federici, M., Scaroni, C.
1990. Using multiple teaching strategies in an ITS. In Frasson, C. and
Gauthier, G. (eds.) Intelligent tutoring systems: at the crossroads of artificial

intelligence and education, Ablex Publishing Co.

Spensley, F. and Elsom-Cook, M. 1988. DOMINIE: teaching and assessment

strategies. Open University CAL Research Group Technical Report. No. 74.

Spivey, J.M. 1989. The Z notation: a reference manual. Prentice-Hall.

Stallman, R.M. 1979. EM ACS - the extensible, customizable, self-documenting

display editor. Memo No. 519, Artificial Intelligence Laboratory, MTT,
Cambridge, Mass.

Stefik, M. 1981. Planning and meta-planning (MOLGEN: Part 2). Artificial

Intelligence, 16, (2), 141-169.

Sufrin, B. 1986. Formal Methods and the Design of Effective User Interfaces.
In Hanison, M.D. and Monk, A.F. (eds.) People and Computers: Designing for

Usability, Proc. HCI '86, Cambridge University Press, England.

145

References

Sufrin, B. 1982. Formal specification of a display-oriented text editor. Science

of Computer Programming, 1, (3), 157-202.

Tang, H., Major, N. and Rivers, R. 1989. From users to dialogues: enabling
authors to build an adaptive, intelligent system. In Sutcliffe, A. and Macaulay,
L. (eds.) People and computers V, 121-135, Cambridge University Press,
England.

Waddington, R. and Johnson, P. 1989. A family of task models for interface
design. In Sutcliffe, A. and Macaulay, L. (eds.) People and computers V, 137-
148, Cambridge University Press, England.

Wasserman, A.I. 1984. Developing interactive information systems with the
User Software Engineering methodology. In Proceedings of Interact '84, 1, 471-
477.

Wenger, E. 1987. Artificial intelligence and tutoring systems, Morgan
Kaufmann, Inc.

Whitefield, A. 1987. Models in human-computer interaction: a classification
with special reference to their uses in design. In Bullinger, H.-J. and Shackel,
B. (eds.) Proceedings of Interact '87, 57-63, Elsevier.

Woodroffe, M.R. 1988. Plan recognition and intelligent tutoring systems. In
Self, J. (ed.) Artificial intelligence and human learning, 212-225, Chapman and
Hall.

Woods, W.A. 1970. Transition network grammars for natural language
analysis. Communications of the ACM., 13, (10), 591-606.

Woolf, B.P. 1987. Theoretical frontiers in building a machine tutor. In
Kearsley, G.P. (ed.) Artificial Intelligence and Instruction, 229-267, Addison
Wesley.

Yourdon, E. and Constantine, L.L. 1979. Structured design. Prentice Hall.

146

Appendix A - Teaching strategy rules

; Top-level strategy rules. Rulesets here are
; concerned both with
; default control (including default handling of
; learner-control requests)
; and a default choice of teaching operation.

(setf MAIN-CONTROL-RULES '(

(alO
(*BREAK-PRESSED* (not *L-C-ENABLED*))
((setf *BREAK-PRESSED* nil)
(princ "Learner-control is not available in

this implementation.")
(MSG-GET-ANY-KEY))

)
(a20

(*BREAK-PRESSED*)
((setf 'BREAK-PRESSED* nil)
(setf *LOOPLIMIT* 1)
(INTERP LEARNER-CHOICE)
(setf *LOOPLIMIT* nil))

)
(a30

((not (NODES-TO-LEARN)) *L-C-ENABLED*)
((setf *LOOPLIMIT* 1)
(INTERP LEARNER-CHOICE)
(setf *LOOPLIMIT* nil))

)
(a40

((not 'CURRENT-GOAL*) (not (NODES-TO-LEARN)))
((RESET-WHOLE-TA)
(HALT "All nodes learnt & no further goal

established."))

(a50
((not *CURRENT-GOAL*) (not *CURRENT-NODE*))
((setf *CURRENT-NODE* (ROOT *TA*)))

)
(a60

((not *CURRENT-GOAL*))
((setf *CURRENT-GOAL* (NEXT-NODE *CURRENT-NODE*))
(setf *CURRENT-NODE* *CURRENT-GOAL*))

A-l

Appendix A

(a70
('CURRENT-GOAL*
(NEW-NODE-P 'CURRENT-GOAL*)
(DESIGNER-CONTROL-RULES-EXIST 'CURRENT-GOAL*))
(QNTERP (eval (DESIGNER-CONTROL-RULES-EXIST

CURRENT-GOAL))))

(a80
(*CURRENT-GOAL*)
((SELECT-TEACHING-OP)) ; = (BSTTERP TEACHING-OP-RULES)

;LEARNER-CHOICE rules. *L-C-ENABLED* is definitely true.
;Either BREAK has been
;pressed (there may or may not be a current goal), or
;there are no more nodes
;to learn so revision is being offered.

(setf LEARNER-CHOICE '(
(blO

;Unconditionally:-
0
((terpri)
(princ "OK - What would you like to learn? ") (terpri) (terpri)
(princ "Press RETURN to continue with your original

topic. 11) (terpri)
(princ "Type Q to quit LIY") (terpri)
(princ " B to browse") (terpri)
(princ " E to explore ")
(princ * APPLICATION*)
(princ " freely") (terpri)
(princ " or the topic's name.") (terpri)
(princ "All end with RETURN") (terpri)
(VIDEO HI) (princ ">") (VIDEO)
(setf *RESPONSE* (READ-RESPONSE))
(terpri))

)
(b20

((equal *RESPONSE* 'Q))
((princ "Saving your current environment..")
(terpri)
(UNMARK-AS-BEING-TAUGHT *CURRENT-GOAL*)
(SAVE-TA)
(HALT "You will automatically restart from here next

time. "))
)
(b30

((equal *RESPONSE* 'B))
((setf *RESPONSE* (DIS-TA)))

A-2

Appendix A

(b40
((equal *RESPONSE* '£))
((FREE-EXPLORATION)
(EXIT-RULESET))

(b50 ; For debugging.
((equal *RESPONSE* '!))
((setf sys:*break-event* 'break)
(break))

(b60
((not *RESPONSE*)
(equal *INTERACTION-BEFORE-BRK* 'TEST)
L-C-NODE-LIMTT); i.e. already navigating...

((setf *L-C-NODE-LIMIT* nil)
(UNMARK-AS-BEING-TAUGHT * CURRENT-GOAL*)
(setf *CURRENT-GOAL* nil);Go back to
(setf *CURRENT-NODE* nil); "natural" next node.
(setf *DUCK-CNT* (+ *DUCK-CNT* 1))
(setf *INTERACTION-BEFORE-BRK* 'UNKNOWN)
(EXIT-RULESET))

(b70
((not *RESPONSE*)
L-C-NODE-LIMTT);i.e. already navigating...

((setf *L-C-NODE-LIMTT* nil)
(UNMARK-AS-BEING-TAUGHT *CURRENT-GOAL*)
(setf *CURRENT-GOAL* nil);Go back to
(setf *CURRENT-NODE* nil); "natural" next node.
(EXIT-RULESET))

)
(b80

((not *RESPONSE*))
((EXIT-RULESET))

)
(b90

((not (boundp *RESPONSE*)))
((princ "is not a correct name.") (terpri)
(princ "Press Ctrl-Break again and type ")
(princ "the correct name when requested.")
(MSG-GET-ANY-KEY)
(EXIT-RULESET))

(blOO
((ALREADY-LEARNT *RESPONSE*))
((UNMARK-AS-BEING-TAUGHT *CURRENT-GOAL*)
(setf *CURRENT-GOAL* *RESPONSE*)
(setf *CURRENT-NODE* *CURRENT-GOAL*)
(setf *L-C-NODE-LIMIT* *CURRENT-GOAL*)
(princ "You are revising ") (princ *RESPONSE*)
(terpri)

A-3

Appendix A

(MSG-GET-ANY-KEY)
(EXIT-RULESET))

(bllO
((PREREQUISITES-LEARNT *RESPONSE*)

; PREREQUISITES-LEARNT is a
; boolean function on TA.

(equal *INTERACTION-BEFORE-BRK* 'TEST))
((UNMARK-AS-BEING-TAUGHT *CURRENT-GOAL*)
(setf *CURRENT-GOAL* *RESPONSE*)
(serf *CURRENT-NODE* *CURRENT-GOAL*)
(setf *L-C-NODE-LMIT* *CURRENT-GOAL*)
(setf *DUCK-CNT* (+ *DUCK-CNT* 1))
(setf *INTERACTION-BEFORE-BRK* 'UNKNOWN)
(L-C-OUTCOME-A)
(EXIT-RULESET))

)
(b!20

((PREREQUISITES-LEARNT *RESPONSE*))
((UNMARK-AS-BEING-TAUGHT *CURRENT-GOAL*)
(setf *CURRENT-GOAL* *RESPONSE*)
(setf *CURRENT-NODE* *CURRENT-GOAL*)
(setf *L-C-NODE-LIMIT* *CURRENT-GOAL*)
(setf *FLIT-CNT* (+ *FLIT-CNT* 1))
(L-C-OUTCOME-A)
(EXIT-RULESET))

)
(b!30

;Otherwise:-
() ; Unconditionally...
((setf *LOOPLIMIT* 1) (INTERP L-C-ADVICE))

;Learner-Control-ADVICE rules. At this point
; there's a distinct
; (i.e. non-null and valid) student *RESPONSE*
; concerning a routing
; request, possibly (but not necessarily) following
; BREAK, but there are
; unlearnt prerequisites in TA.
; The learner-control outcomes are :-
•

; L-C-OUTCOME-A : Message that the learner's
; move is about to take place.
•> _
; L-C-OUTCOME-B : Mild advice against moving.
•>
; L-C-OUTCOME-C : Stronger advice against moving.
•
9

; L-C-OUTCOME-D : Very strong advice against moving.

A-4

Appendix A

(setf L-C-ADVICE '(

(clO
((equal (NO-OF-PREREQ *RESPONSE*) 1)
(not (WEAK)) (not (DUCKER)) (not (FLITTER))
(equal *INTERACTION-BEFORE-BRK* 'TEST))

((L-C-OUTCOME-A)
(UNMARK-AS-BEING-TAUGHT *CURRENT-GOAL*)
(setf *CURRENT-GOAL* *RESPONSE*)
(setf *CURRENT-NODE* *CURRENT-GOAL*)
(setf *L-C-NODE-LIMIT* *CURRENT-GOAL*)
(setf *DUCK-CNT* (+ *DUCK-CNT* 1))
(setf *INTERACTION-BEFORE-BRK* 'UNKNOWN)
(EXTT-RULESET))

)
(c20

((equal (NO-OF-PREREQ *RESPONSE*) 1)
(not (WEAK)) (not (DUCKER)) (not (FLITTER)))

((L-C-OUTCOME-A)
(UNMARK-AS-BEING-TAUGHT *CURRENT-GOAL*)
(setf *CURRENT-GOAL* *RESPONSE*)
(setf *CURRENT-NODE* *CURRENT-GOAL*)
(setf *L-C-NODE-LIMIT* *CURRENT-GOAL*)
(setf *FLIT-CNT* (+ *FLIT-CNT* 1))
(EXTT-RULESET))

)
(c30

((equal (NO-OF-PREREQ *RESPONSE*) 1)
(not (WEAK)) (not (DUCKER)) (FLITTER))

((L-C-OUTCOME-B))
)
(c40

((equal (NO-OF-PREREQ *RESPONSE*) 1)
(not (WEAK)) (DUCKER) (not (FLITTER)))

((L-C-OUTCOME-B))
)
(c50

((equal (NO-OF-PREREQ *RESPONSE*) 1)
(not (WEAK)) (DUCKER) (FLITTER))

((L-C-OUTCOME-B))
)
(c60

((equal (NO-OF-PREREQ 'RESPONSE*) 1)
(WEAK) (not (DUCKER)) (not (FLITTER)))

((L-C-OUTCOME-B))
)
(c70

((equal (NO-OF-PREREQ *RESPONSE*) 1)
(WEAK) (not (DUCKER)) (FLITTER))

((L-C-OUTCOME-B))

Appendix A

(c80
((equal (NO-OF-PREREQ *RESPONSE*) 1)
(WEAK) (DUCKER) (not (FLITTER)))

((L-C-OUTCOME-B))

(c90
((equal (NO-OF-PREREQ *RESPONSE*) 1)
(WEAK) (DUCKER) (FLITTER))

((L-C-OUTCOME-C))
)
(clOO

((> (NO-OF-PREREQ *RESPONSE*) 1)
(not (WEAK)) (not (DUCKER)) (not (FLITTER)))

((L-C-OUTCOME-B))
)
(cllO

((> (NO-OF-PREREQ *RESPONSE*) 1)
(not (WEAK)) (not (DUCKER)) (FLITTER))

((L-C-OUTCOME-C))
)
(c!20

((> (NO-OF-PREREQ *RESPONSE*) 1)
(not (WEAK)) (DUCKER) (not (FLITTER)))

((L-C-OUTCOME-C))
)
(c!30

((> (NO-OF-PREREQ *RESPONSE*) 1)
(not (WEAK)) (DUCKER) (FLITTER))

((L-C-OUTCOME-C))
)
(c!40

((> (NO-OF-PREREQ *RESPONSE*) 1)
(WEAK) (not (DUCKER)) (not (FLITTER)))

((L-C-OUTCOME-C))

(c!50
((> (NO-OF-PREREQ *RESPONSE*) 1)
(WEAK) (not (DUCKER)) (FLITTER))

((L-C-OUTCOME-C))
)
(c!60

((> (NO-OF-PREREQ *RESPONSE*) 1)
(WEAK) (DUCKER) (not (FLITTER)))

((L-C-OUTCOME-C))

(c!70
((> (NO-OF-PREREQ *RESPONSE*) 1)
(WEAK) (DUCKER) (FLITTER))

((L-C-OUTCOME-D))

A-6

Appendix A

(c!80
((equal *RESP* 'F);Used in the L-C-OUTCOMEs.
(equal *INTERACTION-BEFORE-BRK* 'TEST))

((UNMARK-AS-BEING-TAUGHT *CURRENT-NODE*)
(setf *CURRENT-GOAL* *RESPONSE*)
(setf *CURRENT-NODE* *CURRENT-GOAL*)
(setf *L-C-NODE-LIMIT* *CURRENT-GOAL*)
(setf *INTERACTION-BEFORE-BRK* 'UNKNOWN)
(setf *DUCK-CNT* (+ *DUCK-CNT* 1))
(EXIT-RULESET))

(c!90
((equal *RESP* 'F));Used in the L-C-OUTCOMEs.
((UNMARK-AS-BEING-TAUGHT *CURRENT-NODE*)
(setf *CURRENT-GOAL* *RESPONSE*)
(setf *CURRENT-NODE* *CURRENT-GOAL*)
(setf *L-C-NODE-LMIT* *CURRENT-GOAL*)
(setf *FLIT-CNT* (+ *FLIT-CNT* 1)))

;Having selected a node to teach, select an appropriate
Reaching operation.

;The logic is as follows:
; If there are DES-control-rules, run them
;- they must take over completely.
;Select a teaching operation by INTERP TEACHING-OP-RULES.
;This looks to see if there are DES-teaching-op-rules,
;in which
;case they're interpreted and they must take over
;from this point.
;If not, then the next default teaching operation
;is chosen which is
;stored in the COMMAND-STR attached to each node.

(setf TEACHING-OP-RULES '(

(elO
((DESIGNER-TEACHING-OP-RULES-EXIST 'CURRENT-GOAL*))
((INTERP (eval (DESIGNER-TEACHING-OP-RULES-EXIST

CURRENT-GOAL)))
(EXIT-RULESET))

)
(e20

((NEW-NODE-P *CURRENT-GOAL*))
((GET-NEW-NODE-READY *CURRENT-GOAL*))

A-7

Appendix A

(e30
((equal *LAST-INTERACTION* 'TEST)
(equal "LAST-TEST-RESULT* 'UNKNOWN))

((EVALUATE-LAST-TEST))

(e40
((equal *LAST-INTERACTION* 'TEST)
(equal *LAST-TEST-RESULT* 'PASS))

((INCR-COMPTNCE))

(e50
((equal *LAST-INTERACTION* 'TEST)
(equal *LAST-TEST-RESULT* 'FAIL))

((DECR-COMPTNCE))

(e60
((equal *LAST-INTERACTION* 'TEST)
(equal *LAST-TEST-RESULT* 'FAIL)
(equal *SAME-TEST-PREVIOUS-TIME* TAIL))

((terpri)
(princ "Type NEXT if you would like to move on, ")
(princ "or press RETURN to try again: ")
(setf *SKIPPING* (READ-RESPONSE)))

(e70
((equal "LAST-INTERACTION* 'TEST)
(equal "LAST-TEST-RESULT* 'FAIL)
(equal *SAME-TEST-PREVIOUS-TIME* 'FAIL)
(not *SKIPPING*))

((SET-REVISING-NODE-COM-STR *CURRENT-GOAL*))
)
(e80

((equal "LAST-INTERACTION* 'TEST)
(equal *LAST-TEST-RESULT* 'FAIL)
(equal *SAME-TEST-PREVIOUS-TIME* TAIL)
(equal "SKIPPING* 'NEXT))

((terpri) (princ "The correct response should have
been:")

(terpri) (princ *CORRECT-STR*)
(CLEAR-CURRENT-TEST-RESULT)
(CLEAR-PREVIOUS-TEST-RESULT)
(MSG-GET-ANY-KEY)
(GET-NEW-FRAGMENT-READY))

)
(e90

((equal ""LAST-INTERACTION* 'TEST)
(equal *LAST-TEST-RESULT* TAIL)
(not (equal *SAME-TEST-PREVIOUS-TIME* TAIL)))

((SAVE-CURRENT-TEST-RESULT)
(SET-REVISING-NODE-COM-STR *CURRENT-GOAL*))

A-8

Appendix A

(elOO
((equal *LAST-INTERACTION* 'DEL-BRK))
((SET-REVISING-NODE-COM-STR *CURRENT-GOAL*))

(el 10
((equal "LAST-INTERACTION* 'APP-BRK))
((SET-REVISING-NODE-COM-STR "CURRENT-GOAL*))

)
(e!20

((null *NODE-COM-STR*))
((UPDATE-ENVIRONMENT)
(serf *CURRENT-GOAL* nil)
(EXTT-RULESET))

(e!30
(*NODE-COM-STR*)
((DO-NEXT-TEACHESfG-OP))

A-9

Appendix B

Development of the DIALLER tutorial

The objective of this section is to demonstrate the evolution of the full task
classification structure for the DIALLER tutorial - essential for modelling the
domain during learner diagnosis - from the necessary elements of the user
interface specification. Appendix C demonstrates the techniques described here
in the development of the ELICTTUT tutorial.

The elements of the user interface were discussed in chapter 2 and comprise:

(i) task command hierarchy;

(ii) syntax of input commands;

(iii) terminators for application (non-command) input;

(iv) semantics indicating flow of control following leaf command processing.

B-l

Appendix B

The tutorial development process will demonstrate, in sequence, the following
stages:

(1) The task hierarchy is shown - unstructured - from the systems analysis
stage. This will not be in pedagogic sequence and will be very similar to figure
2.3 showing the DIALLER operational ordering and to figure 3.19 showing a
similar structure for the MS-DOS example.

(2) Next, the commands which are associated with the tasks in the hierarchy
from the previous stage are indicated. For the two LIY tutorials these
commands are very simple, but they represent the command syntax or "syntax
tokens" for each task.

(3) The terminators for non-command (i.e. "application") input are defined in
relation to the hierarchy in stage 1.

(4) Semantic information concerned with the application control flow following
the processing of a leaf node is indicated.

(5) Disregarding the added information from stages 2 to 4 for the moment,
diagrams show the results of applying the heuristic and binary tree
transformations described in section 3.5 to the structure from stage 1.

(6) Finally, the Lisp representation is shown which is actually used in the
DIALLER tutorial and which corresponds to the structure from stage 5,
augmented with the extra information from stages 2 to 4.

B-2

Appendix B

(1) The development of the task hierarchy

This stage illustrates the design process in action following the systems analysis
stage. A "first cut" design (along the lines of fig. 2.3) yields figure B.I.

DIALLER

DIAL.DIRECT DIAL_FROM_MEMORY SETUP QUIT

Fig. B.I

This shows that, at the top level, the DIALLER operations can be thought of as
consisting of the following:

DIALJDIRECT
DIAL_FROM_MEMORY
SETUP

QUIT

dialling from the keyboard;
using a file of stored numbers;
set up various parameters, including

a file of stored numbers;
leave the DIALLER program.

B-3

Appendix B

The leaves from figure B.I can each be further decomposed. As an example,
consider SETUP. This breaks down into the further operations as shown in
figure B.2.

DIALLER

DIAL.DIRECT DIAL_FROK.MEMORY SETUP QUIT

PHONE.LIST MODEK.PORT DIAL.MODE PAUSE_DELAY QUIT_SETUP

Fig. B.2

PHONE_LIST
MODEM.PORT
DIAL.MODE
PAUSE_DELAY

QUIT_SETUP

is the location of a file of stored numbers.
is the port address for the modem (1 or 2).
is either pulse or tone dialling (P or T).
built-in dialling pause - a default value
which can be changed within SETUP.
will enable the user to quit the SETUP phase. (The
option to quit without saving the altered SETUP must
be allowed for, but is not shown in this figure.)

B-4

Appendix B

Again, further operational sub-division is possible. Figure B.3 illustrates
PHONE-LIST decomposed into separate operations connected with the file-name
and the directory. There is a quit operation for this sub-operation.

PHONEJ-BT

QUIT_PHONE_LIST

SETJDIRECTORY SET_FI_E

Fig. B.3

B-5

Appendix B

In fact the directory- and file-name operations decompose still further, as shown
in figure B.4. Not only will there be an operation to invoke the setting up of
the directory; there will also be the action of entering the directory-name. A
similar consideration applies to the file-name.

PHONEJ.IST

QUIT_PHONE_LIST

SETJDtRECTORY

DIRECTGRY.NAME

SET_FLE

FILENAME

Fig. B.4

B-6

Appendix B

The full set of DIALLER operations is shown in figure B.5.

DIALLER

DIAU.DIRECT DIAL_FRO|vLMEMORy
I

I
TYPE_NUMBER |

1 QUIT_MEMORY

SETUP QUIT

DIALJDIGrrS QUIT.DIRECT

PHONE_UST MODEM_PORT DIAL_MODE PAUSEJDELAY

I
QUfT..PHONE_LIST

SET_PORT
I

SET_PAUSE

SET_DEFAULT_D_MOOE
QUIT.SETUP
____I

SAVE ABANDON

SETJDIRECTORY

DIRECTORY.NAME

SET_FLE
I

FILE-NAME

Fig. B.5

B-7

Appendix B

(2) Command syntax

Commands are designed for those tasks in the hierarchy which can be invoked
by the user, as follows. All the tasks are listed, but only the command
operations are assigned syntax at this point. Non-command (i.e. "application")
input is dealt with in the next stage.

DIAL_DIRECT dID
DIAL_FROM_MEMORY mIM
SETUP sIS
QUIT esc

DIAL_DIGITS
QUITJDIRECT esc
TYPE_NUMBER
QUIT_MEMORY esc

PHONE.LIST flF
MODEM_PORT mIM
DIALJvtODE dID
PAUSE_DELAY pIP
QUIT_SETUP esc

QUITJPHONEJJST esc
SET_DIRECTORY dID
SET_FILE flF
SET.PORT
SET_DEFAULT_D_MODE
SET_PAUSE

B-8

Appendix B

SAVE sIS
ABANDON esc

DIRECTORYJSfAME
FILE NAME

B-9

Appendix B

(3) Non-command input

The terminators for non-command input for the following operations were all
designated as being ENTER:

DIAL.DIGITS
TYPEJNUMBER

SET.PORT *
SET_DEFAULT_D_MODE *
SET.PAUSE *

DIRECTORY_NAME
FELEJSTAME

* A variation was implemented in which fixed-length input was accepted (just
one character in the first two of these cases) rather than requiring termination
with ENTER. See section 3.4.1.

B-10

Appendix B

(4) Flow of control

The semantic flow-of-control information is required. The flow over the task

tree as a whole follows the tree when moving from the top down. Having

processed a leaf command, though, the control flow to a new task needs to be

specified. It is shown in figure B.6 as dotted lines:

DIALLER

-&i£*

DIAU.DIRECT ? DIAL_FRQMJv1EMORY sf SETUP

1* / tlSi I: •——— '-———i

if

QUIT

\ i
QUIT_DIRECT

I :i
QUIT_MEMORY ^f

i——————————sn^y"-'5'''"""''—————rji-
I 1js!!l 1 £?;i? =?P

1 / ' /
PHONE-UST j? MODEM_PORT^ DIAL_MODEj:^PAUSE_DELAY

!!!'!'' .i:!:' : ___'_ ___.<•!= I ,:': :L CCT DJkt IOT

..ill
•" l!

<^
**f

SET.PORT SET_PAUSE

SET_DEFAULT_D_MODE
QUIT^SETUP
____I

QUIT^PHONE-LIST 1
!L

SET.DIRECTORY

""hlM*«*vw^ DIRECTORY.NAME **

SET_FLE

FILE.NAME

I
SAVE ABANDON

\•!;•

DIALLER (Le. ROOT)

Fig. B.6

B-ll

Appendix B

(5) Application of heuristic and binary tree transformations

The objective of the transformations carried out at this stage is to turn the tree

from an ordering which is operational to an ordering which is pedagogic (and

to turn it from a general tree, in which a node can have an arbitrary number of

children, to a binary tree, in which the number of children cannot exceed two.

In this latter case, dummy nodes, labelled proceed-n, are introduced into the

structure although they do not represent teachable topics in the tutorial domain).

The heuristics and transformations applied here are set out in section 3.5.

Dependency information between siblings is indicated my marking the right-hand

arc in the binary tree as described in chapter 3.

First, apply heuristic (c) ("teach exit-type operations first") to figure B.5 yielding

figure B.7.

B-12

Appendix B

DIALLER

I H
OUT Proceed-

Fig. B.7

Now apply heuristic (d) ("teach configuration-type operations last") to give figure
B.8.

B-13

Appendix B

DIALLER

Proceed -1

I I I
DIAL-DIRECT DIAL_FROM_ SETUP

• MEMORY i

Fig. B.8

Apply heuristic (c) again to the component operations of DIRECT and
MEMORY giving figure B.9.

B-14

Appendix B

Proceed -1

I
DIAL.DIRECT O*l_FROM_MEMORY SETUP

I
QUnLDIRECT DIAU.DIQITS QUIT.MEMORY TYPEJMUMBER

Fig. B.9

Dealing with the components of SETUP separately in due course, figure B.9 can
be transformed to binary-tree form as shown in figure B.10 by applying
transformation 4.

B-15

Appendix B

DIALLER

I
QUIT Proceed -1

_______I

DIAL_DIRECT Proc**d-2

DIAL_FRQ|vt,MEMORY SETUP

Fig. B.10

Figure B.ll shows the application of heuristic (c) again to the components of
SETUP.

B-16

Appendix B

SETUP

QUIT.SETUP
I

SAVE
I

ABANDON

PHONEJ.IST

Prooeod-

MODEM_PORT DIAU.MODE PAUSE_DELAY

Fig. B.ll

Applying heuristic (c) again to PHONE_LIST from figure B.ll yields figure
B.12.

B-17

Appendix B

PHONE_UST

QUIT_PHONE_UST Proceed

I I
SET_DIRECTDRY SET RLE

I I
DIRECTOnY_NAME FILENAME

Fig. B.12

The remaining children of SETUP can be arranged in binary tree-form by using
transformation 4, giving figure B.I3.

B-18

Appendix B

SETUP

1
QUIT_SETUP

1
I 1
VE ABANDON

H
Proc*«<J

1

PHONE.UST Proceed•

MOOEM.PORT Proceed-

DIAU.MODE PAUSe_DELAY

Fig. B.I3

The complete structural representation of DIALLER, in pedagogic ordering, is
brought together in figures B.14(a) and B.14(b). To preserve the clarity of the
diagrams the information developed in stages (2) to (4) above has not been
shown, although it constitutes parts of the Lisp representation given in the next
section.

B-19

Appendix B

QUIT

DIALLER

Proceed • 1
I

DIALJDIRECT

I
Proceed • 2

I

1
qUIT-DIRECT

ri
QUIT-MEMORY

DIM_FF

H
DIAL-DIGITS

TYPE-NUMBER

3OM_MEMORY SE1 UP

QUIT-SETUP

SAVE ABANDON

Proceed - 3
i

Fig. B.14(a)

Proceed • 3
1

1
PHONE-LIST

1

1
Proceed • 5

1
1 1

QUIT-PHONE-UST

SET-DIRECTORY

DIRECTORY-NAME

Proceed - 4

SET-FLE

FLE-NAME

MODEM-PORT

SET-PORT

DIAL-MODE PAUSE-DELAY

I
SET-PAUSE

SET-DEFAULT-D-MODE

Fig. B.14(b)

B-20

Appendix B

(6) Lisp representation of the DIALLER structure

Where appropriate, the slots in the node structure refer to stages (1) to (5) above.

(defstruct (NODE)

(CONSISTS-OF nil) .-Children. THE TASK HIERARCHY FROM STAGES 1 AND 5.

(LINKS-BY nil) ;IN/DEPEND children linkage.

(PARENT nil) ;Parent. Computed for efficiency.

;;; Where the learner will navigate to on a leaf node if the corresponding

;;; syntax token is invoked. Only of interest for leaf nodes, i.e.

;;; (NODE-CONSISTS-OF nil). If LEADS-TO is nil for a leaf node this

;;; signifies quitting the application :-

(LEADS-TO nil) ; THE "CONTROL FLOW" INFORMATION FROM STAGE 4.

;;; DUMMY node - typically PROCEED-n - which is not taught;

;;; Could well be a node generated by splitting up a general

;;; subtree into component binary and/or trees. Default nil :-

(DUMMY nil)

;;; SYNTAX-CONSTRUCT required to invoke each node :-

(SYN-TOKEN nil) ; THE COMMAND SYNTAX FROM STAGES 2 AND 3.

;;; BARRIER - to prevent a parent node from "seeing" the SYN-TOKENs of

;;; subordinate nodes in the domain model. Useful where e.g. a filename

;;; has to be input, some of the characters of which could be "seeable"

;;; SYN-TOKENs.

(BARRIER nil)

;;; STATE-CHANGING syntax construct?

(STATE-CHANGING nil)

B-21

Appendix B

;;; SM slots :-

(LEARNT nil)

;;; Teaching operations for this node

(COMMAND-STR nil)

;;; Need to know if this is a "new" node for teaching operations

(CURRENTLY-BEING-TAUGHT nil)

;;; Co-ordinates when tree represented on 2-D array :-

(X-CO-ORD nil)

(Y-CO-ORD nil)

; end of defstruct NODE.

B-22

Appendix B

The Task Analysis structure :

(setf DIALLER-TA

(make-NODE :CONSISTS-OF '(QUIT PROCEED-1) :LINKS-BY 'DEPEND

:COMMAND-STR

' (("S" "\\LISP\\DIALLER\\SLIDES\\DIALLER-.SS"))))

(setf PROCEED-1

(make-NODE :CONSISTS-OF '(DIRECT PROCEED-2)

:LINKS-BY 'INDEPEND :DUMMY t))

(setf DIRECT

(make-NODE :CONSISTS-OF '(QUIT-DIRECT DIAL-DIGITS) :LINKS-BY 'DEPEND
:SYN-TOKEN "D"

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\DIRECT.SS-))))

(setf PROCEED-2

(make-NODE :CONSISTS-OF '(MEMORY SETUP) :LINKS-BY 'INDEPEND :DUMMY t))

(setf MEMORY

(make-NODE :CONSISTS-OF '(QUIT-MEMORY TYPE-NUMBER) :LINKS-BY 'DEPEND
:SYN-TOKEN "M"

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\MEMORY.SS"))))

(setf SETUP

(make-NODE :CONSISTS-OF '(QUIT-SETUP PROCEED-3) :LINKS-BY 'DEPEND
:SYN-TOKEN "S"

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\SETUP.SS"))))

(setf QUIT-SETUP

(make-NODE :CONSISTS-OF '(SAVE ABANDON) :LINKS-BY 'INDEPEND

:SYN-TOKEN ESCAPE

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\QUIT-SET.SS"))))

B-23

Appendix B

(setf PROCEED-3

(make-NODE :CONSISTS-OF '(TELL-PHONE-LIST PROCEED-5)

:LINKS-BY 'INDEPEND

:DUMMY t))

(setf TELL-PHONE-LIST

(make-NODE :CONSISTS-OF '(QUIT-PHONE-LIST PROCEED-4) :LINKS-BY 'DEPEND

:SYN-TOKEN "F" :COMMAND-STR

' (("S" "\\LISP\\DIALLER\\SLIDES\\TELL-PHO.SS"))))

(setf PROCEED-4

(make-NODE :CONSISTS-OF '(SET-DIRECTORY SET-FILE) :LINKS-BY 'INDEPEND

:DUMMY t))

(setf SET-DIRECTORY

(make-NODE :CONSISTS-OF '(DIRECTORY-NAME) :SYN-TOKEN "D"

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\SET-DIRE.SS"))))

(setf SET-FILE

(make-NODE :CONSISTS-OF '(FILE-NAME) :SYN-TOKEN "F"

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\SET-FILE.SS"))))

(setf PROCEED-5

(make-NODE :CONSISTS-OF '(MODEM-PORT PROCEED-6) :LINKS-BY 'INDEPEND

:DUMMY t))

(setf MODEM-PORT

(make-NODE :CONSISTS-OF '(SET-PORT) :SYN-TOKEN "M"

•.COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\MODEM-PO.SS"))))

(setf PROCEED-6

(make-NODE :CONSISTS-OF '(DIAL-MODE PAUSE-DELAY) :LINKS-BY 'INDEPEND

:DUMMY t))

(setf DIAL-MODE
(make-NODE :CONSISTS-OF '(SET-DEFAULT-D-MODE) :SYN-TOKEN «D"

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\DIAL-MOD.SS"))))

B-24

Appendix B

(setf PAUSE-DELAY

(make-NODE :CONSISTS-OF '(SET-PAUSE) :SYN-TOKEN "P"

:COMMAND-SIR

' (("S" "\\LISP\\DIALLER\\SLIDES\\PAUSE-DE.SS"))))

;;; Leaves :-

(setf QUIT (make-NODE

:LEADS-TO nil ;which with :CONSISTS-OF also nil means

; it quits the application.

:SYN-TOKEN ESCAPE

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\QUIT.SS"))))

(setf QUIT-DIRECT (make-NODE

:LEADS-TO 'DIALLER-TA

:SYN-TOKEN ESCAPE

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\QUIT-DIR.SS")

("W" (string-append "D" ESCAPE))
("P" '(DIRECT)))))

(setf DIAL-DIGITS (make-NODE
:LEADS-TO 'DIRECT

:SYN-TOKEN I\Newline

:COMMAND-STR

' (("S" "\\LISP\\DIALLER\\SLIDES\\DIAL-DI1.SS")

("W" (string-append "123 4567"

(string INNewline)

ESCAPE

ESCAPE))
("P")

B-25

Appendix B

("S" "\\LISP\\DIALLER\\SLIDES\\DIAL-DI2.SS")

("W" (string-append "98123"

(string #\Newline)

ESCAPE

ESCAPE))
("P")

("S" "\\LISP\\DIALLER\\SLIDES\\DIAL-DI3.SS")

("W" (string-append "9tl23 n

(string IXNewline)

ESCAPE

ESCAPE))
("P"))))

(setf QUIT-MEMORY (make-NODE

:LEADS-TO 'DIALLER-TA

:SYN-TOKEN ESCAPE

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\QUIT-MEM.SS"))))

(setf TYPE-NUMBER (make-NODE

:LEADS-TO 'MEMORY

:SYN-TOKEN f\Newline

:COMMAND-STR

' (("S" "\\LISP\\DIALLER\\SLIDES\\TYPE-NUM.SS")

("W" (string-append "m3"

(string f\Newline)

ESCAPE

ESCAPE))

("P" '(MEMORY)))))

(setf SAVE (make-NODE

:LEADS-TO 'DIALLER-TA

:SYN-TOKEN "S"

:STATE-CHANGING t ;;;N.B. The only STATE-CHANGING token.

:COMMAND-STR

' (("S" "\\LISP\\DIALLER\\SLIDES\\SAVE.SS")

("W" (string-append "S"

ESCAPE
"S"

ESCAPE))

<»P" ' (SETUP)))))

(setf ABANDON (make-NODE

:LEADS-TO 'DIALLER-TA

:SYN-TOKEN ESCAPE

:COMMAND-STR
'(("S" "\\LISP\\DIALLER\\SLIDES\\ABANDON.SS")

("F")))) ;N.B. free exploration!

B-26

Appendix B

(setf QUIT-PHONE-LIST

(make-NODE :LEADS-TO 'SETUP

:SYN-TOKEN ESCAPE

:COMMAND-STR

' (("S" "\\LISP\\DIALLER\\SLIDES\\QUIT-PHO.SS")

("W" (string-append "F"

ESCAPE

ESCAPE

ESCAPE

ESCAPE))

("P" , (TELL-PHONE-LIST)))))

(setf DIRECTORY-NAME (make-NODE

:LEADS-TO • TELL-PHONE-LIST

:SYN-TOKEN I\Newline

:COMMAND-STR

' (("S n "\\LISP\\DIALLER\\SLIDES\\DIRECTO1.SS")

(-W (string-append "S" "F" "D" "C:\\DIALLER"

(string f\Newline)

ESCAPE

ESCAPE
"S"

ESCAPE))

("P" '(SETUP))

("S" "\\LISP\\DIALLER\\SLIDES\\DIRECT02.SS")

("G" "A:\\TOP\\NEXT"))))

(setf FILE-NAME (make-NODE

:LEADS-TO 'TELL-PHONE-LIST

:SYN-TOKEN I\Newline

iCOMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\FILE-NAM.SS")

("W" (string-append "F" "MEMDIALl.FIL"

(string IXNewline)

ESCAPE

ESCAPE
-S"

ESCAPE))

("P" '(SET-FILE)))))

(setf SET-PORT (make-NODE

:LEADS-TO 'SETUP

:SYN-TOKEN '(WILD) ;Any single character terminates.

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\SET-PORT.SS")
("W" (string-append "M" "1"

ESCAPE
» S n

ESCAPE))

(»p.. • (MODEM-PORT)))))

B-27

Appendix B

(setf SET-DEFAULT-D-MODE (make-NODE

:LEADS-TO 'SETUP

:SYN-TOKEN '(WILD) ;Any single character

; terminates.

:COMMAND-STR

' (("S" "\\LISP\\DIALLER\\SLIDES\\SET-DEFA.SS")

("W" (string-append "D" "T"

ESCAPE
"S"

ESCAPE))

("P" '(DIAL-MODE)))))

(setf SET-PAUSE (make-NODE

:LEADS-TO 'SETUP

:SYN-TOKEN '(WILD) ;2 chars max incl CR.

:COMMAND-STR

'(("S" "\\LISP\\DIALLER\\SLIDES\\SET-PAUS.SS")

("W" (string-append "P" "10-

ESCAPE
"S"

ESCAPE))

("P" ' (PAUSE-DELAY)))))

B-28

Appendix C

Development of the

ELICITOR tutorial

("ELICITUT")

The objective of this section is to demonstrate the evolution of the full task
classification structure for the ELICITOR tutorial. It follows the same stages as
were adopted in appendix B for the DIALLER tutorial and there is thus less
step-by-step explanation here.

C-l

Appendix C

(1) The development of the task hierarchy

A first attempt at a design yields figure C.I.

EUCITUT

ELICIT-TA-INPUT NPUT-TREE MAKE-LEAVES LISP-CREATION QUIT

Fig. C.1

This shows that, at the top level, the ELIQTOR operations can be thought of
as consisting of the following:

ELICIT-TA-INPUT Obtain application name from user.
INPUT-TREE User input of task tree.
MAKE-LEAVES Generate implied leaves of tree where not already

specified.
LISP-CREATION Turn the tree structure into a Lisp structure.
QUIT

C-2

Appendix C

There is little further decomposition in this small application although INPUT-
TREE consists of the operation to obtain the tree data (INPUT-TREE-DATA) as
shown in figure C.2.

EUCITUT

ELICIT-TA-INPUT IMPUT-TREE MAKE-LEAVES LISP-CREATION QUIT

INPUT-TREE-OATA

Fig. C.2

C-3

Appendix C

(2) Command syntax

Commands are designed for those tasks in the hierarchy which can be invoked
by the user, as follows. All the tasks are listed, but only the command
operations are assigned syntax at this point. Non-command (i.e. "application")
input is dealt with in the next stage.

ELICIT-TA-INPUT
INPUT-TREE tIT
INPUT-TREE-DATA
MAKE-LEAVES 1IL
LISP-CREATION pIP
QUIT esc

(3) Non-command input

The terminators for non-command input for the following operations were
designated as follows:

ELICIT-TA-INPUT enter
INPUT-TREE-DATA enter

C-4

Appendix C

(4) Flow of control

The semantic flow-of-control information is straightforward and is shown in
figure C.3 as dotted lines. Note, though, that in stage (5) it will have to be
slightly altered to point to the top-most proceed node.

..
5

.. .fiftff*t*t*Vl'4Wt't'-tV-t'-l'tWi'-fftffffA EUCITUT

,i-
ELICIT-TA-INPUT IMPUT-TREE / MAKE-LEAVES LISP-CREATION

:?

INPUT-TREE-DATA

QUIT

Fig. C.3

C-5

Appendix C

(5) Application of heuristic and binary tree transformations

ELICIT-TA-INPUT is not a user-requestable operation but is a component of the
root and must therefore be placed at the highest level below it, separate from
everything else. Heuristic (a) can be applied here, grouping all the remaining
topics together to yield figure C.4. Note that the incorporated linkage is
dependent (heuristic f).

EUCITUT
I

Proceed -1

EUCIT-TA-INPUT

NPUT-TREE MAKE-LEAVES LISP-CREATION QUfT

INPUT-TREE-DATA

Fig. C.4

C-6

Appendix C

Next, apply heuristic (c) ("teach exit-type operations first") to figure C.4 yielding
figure C.5.

EUCIT-TA-INPUT

EUCITUT
1

Proceed•1

QUIT Proceed - 2

INPUT-TREE MAKE-LEAVES LISP-CREATION

INPUT-TREE-DATA

Fig. C.5

C-7

Appendix C

Figure C.6 shows the effect of adding dependency information to figure C.5:
LISP-CREATION depends on MAKE-LEAVES, MAKE-LEAVES depends on
INPUT-TREE.

EUCITUT
I

Proceed•1
EUCIT-TA-INPUT

QUIT Proceed - 2

INPUT-TREE MAKE-LEAVES LISP-CREATION

INPUT-TREE-DATA

Fig. C.6

C-8

Appendix C

Finally, use transformation (7) to represent the children of Proceed-2 in binary-
tree form, as shown in figure C.7.

EUCIT-TA-INPUT

EUCITUT
I

QUIT

INPUT-TREE

INPUT-TREE-DATA

Proceed•1

Proceed-2

Proceed•3

MAKE-LEAVES LISP-CREATION

Fig. C.7

C-9

Appendix C

(6) Lisp representation of the ELICITUT structure

The Lisp structure of the nodes uses the same representation as that detailed in
appendix B.

(SETF ELICITUT-TA

(make-NODE :CONSISTS-OF '(ELICIT-TA-INPUT PROCEED-1) :LINKS-BY 'DEPEND

:COMMAND-STR

' (("S" "\\LISP\\ELICITUT\\SLIDES\\ELICITU1.SS"))))

(SETF PROCEED-1

(make-NODE :CONSISTS-OF '(QUIT PROCEED-2) :LINKS-BY 'DEPEND

:DUMMY t

:BARRIER t))

(SETF PROCEED-2

(make-NODE :CONSISTS-OF ' (INPUT-TREE PROCEED-3) :LINKS-BY 'DEPEND

:DUMMY t))

(SETF INPUT-TREE

(make-NODE :CONSISTS-OF ' (INPUT-TREE-DATA) :SYN-TOKEN "T"

:COMMAND-STR

'(("S" "\\LISP\\ELICITUT\\SLIDES\\INPUT-TR.SS")
("D")

("W" (string-append "T" ESCAPE "Y" ESCAPE))

("P" (string-append "LEARN" (string IXNewLine)))

(SETF PROCEED-3

(make-NODE :CONSISTS-OF '(MAKE-LEAVES LISP-GREATION)

:LINKS-BY 'DEPEND

:DUMMY t))

C-10

Appendix C

;; /Leaves :-

(SETF ELICIT-TA-INPUT

(make-NODE :LEADS-TO 'PROCEED-1

:SYN-TOKEN I \NewLine

•.COMMAND-STR

' (("S" "\\LISP\\ELICITUT\\SLIDES\\ELICITU2.SS")

("D")

("W" (string-append "LEARN"

(string f\Newline)

ESCAPE))
("P")

("S" "\\LISP\\ELICITUT\\SLIDES\\ELICITU3.SS")

("D")

("R")

("W" (string-append "LEARN"

(string f\Newline)

-YR" ESCAPE))
("P")

(SETF QUIT (make-NODE :LEADS-TO nil

:SYN-TOKEN ESCAPE

: COMMAND-STR

' (("S" "\\LISP\\ELICITUT\\SLIDES\\QUIT.SS"))))

(SETF INPUT-TREE-DATA

(make-NODE :LEADS-TO 'PROCEED-1

:SYN-TOKEN ESCAPE

: COMMAND-STR

' (("S" "\\LISP\\ELICITUT\\SLIDES\\INP-T-D1.SS")

("D")

("W" (string-append "PARTI" (string f\NewLine)

"PART2" (string IXNewLine)

"Y" ESCAPE))

("P" (string-append "LEARN" (string IXNewLine) "T"))

("S" "\\LISP\\ELICITUT\\SLIDES\\INP-T-D2.SS")

("D")

("R")

("W" (string-append "CT" ESCAPE))

("P" '((string-append

-LEARN" (string IXNewLine) "Y"

)

PROCEED-1))

("S" "\\LISP\\ELICITUT\\SLIDES\\INP-T-D3.SS")

("D")

("R")

("P" (string-append "LEARN" (string f \NewLine) "YCT"))

("S" "\\LISP\\ELICITUT\\SLIDES\\INP-T-D4.SS"))))

C-ll

Appendix C

(SETF MAKE-LEAVES

(make-NODE :LEADS-TO 'PROCEED-1

:SYN-TOKEN "L"

:STATE-CHANGING t

:COMMAND-STR

' (("S" "\\LISP\\ELICITUT\\SLIDES\\MAKE-LEA.SS")
("D")

("W" (string-append ESCAPE
"LY "

ESCAPE))

("P" '((string-append

"LEARN" (string f\NewLine)
nij>K

"LEARN-TA-INPUT" (string f\NewLine)

"PROCEED-1" (string f\NewLine) "Y"

"PROCEED-1" (string f\NewLine)

"QUIT" (string #\NewLine)

"MAKE-LEAVES" (string f\NewLine) "Y"

)

INPUT-TREE-DATA)))))

(SETF LISP-CREATION

(make-NODE :LEADS-TO 'PROCEED-1
:SYN-TOKEN "P"

-.STATE-CHANGING t

:COMMAND-STR

'(("S" "\\LISP\\ELICITUT\\SLIDES\\LISP-CRE.SS")

("D")

("E" (string-append

"LEARN" (string #\NewLine)
HT1M

"LEARN-TA-INPUT" (string f\NewLine)

"PROCEED-1" (string IXNewLine) "Y"

"PROCEED-1" (string f\NewLine)

"QUIT" (string #\NewLine)

"MAKE-LEAVES" (string f\NewLine) "Y"

ESCAPE
"LY "

ESCAPE

))

("W" (string-append "PY " ESCAPE))

("P" (string-append

"LEARN" (string INNewLine)
"YC"

))

("S" "\\LISP\\ELICITUT\\SLIDES\\MAKE-TA2.SS")

("D")

("R")

("X" '(progn

(cd "D:\\LISP\\LEARN")

(MAKE2TUT))))))

C-12

Appendix D - Program file dependencies

Tutorial delivery system :-

LIY

11 1
DISPL-TA D1SMOUS1 GLOBVARS LIYVIDEO

1
UY-IO

II 1 II
INTTLIY TA TEACHOPS MAMRULS [DESRULES]

LIYFUNCS INTERP

SLIDES
LSTRCMP1

| f for DIAGNOSIS)
LSTRCMP2

LJY CONTAINS APPLICATION-DEPENDENT PATHNAMES.
TA CONTAINS ALL OTHER APPLICATION-DEPENDENT INFO.

D-l

Appendix D

For the delivery system :-

GLOBVARS
INITLIY
MAINRULS
TEACHOPS
LSTRCMP1

LSTRCMP2
INTERP
LIYVTOEO
LIY-IO

LIYFUNCS
DISPL-TA
DISMOUS1

is the file of global variables.
initialises vars. in rules, SM etc.
contains the LIY control rules.
is the set of teaching operations.
is part of the diagnosis routine to compare the learner's and
the correct response string.
is the rest of it
is the rule interpreter.
is code to control the video for LIY.
is replacement VO routines so that the learner can be planted
inside an application.
is the remaining LIY function definitions.
is code to display the TA for mouseing.
is the mouseing code.

D-2

Appendix D

For PARTICULAR applications :-

LIY is the opening routine which loads the other files and starts
the rule interpreter on the top-level rules.

TA is the task classification structure for a particular application,
and its associated functions. IT CONTAINS ALL
REMAINING APPLICATION-DEPENDENT INFO.

DESRULES is the "designer ruleset" for (this) application. It contains
application-dependent pathnames.

Not shown :-

LOADLIY is code simply to load up a tutorial and its application.

TA-SKEL is a skeleton TA, copied into an application directory, and
enhanced by MAKE-TA1.

SENTINEL is copied into a directory made for an application by
MAKE-TA1 so Lisp can check for the directory's existence.

SLIDES is a sub-directory comprising text files of tutorial display
material.

D-3

Appendix D

Tutorial authoring system :-

ELICITOR

MAKE-TA1 MAKE-TA2

ELDIS-TA ELMOUS1

For the ELICITOR authoring system :-

MAKE-TA1 is code to allow the designer to make an "empty" version of
TA - "consists-of only.

MAKE-TA2 is code to permit the designer to enhance nodes in the output
TA from MAKE-TA1.

ELDIS-TA and
ELMOUS1 are adapted versions of the "mouse" files to allow the

designer to mouse with MAKE-TA2.

D-4

%

Appendix E - Program listings

There are two microfiches:

E-l

