
1387488
(i)

A THESIS

entitled

THE SIMULATION OF FLUID FLOW PROCESSES USING VECTOR PROCESSORS

Submitted in partial fulfilment of the
requirements for the award of the

DEGREE OF DOCTOR OF PHILOSOPHY

of the

COUNCIL FOR NATIONAL ACADEMIC AWARDS

</ CONSTANTINOS SAVVASJEROTHEOU 0 «Vu^
BSc, GIMA <**^ 0 ̂ %

3 ^$2 ' v.

Faculty of Technology t:.; ' '
Centre for Numerical Modelling and Process Analysis

School of Mathematics, Statistics and Computing
Thames Polytechnic

LONDON

MAY 1990

To my family

(ii)

The simulation of fluid flow processes using vector procesors
by

Constantinos Savvas lerotheou

Abstract

In this thesis the potential gains in vectorisation of linear and non-linear systems of
equations are investigated. Previous studies carried out on the suitability of algorithms
for vectorisation have been based on the solution of Poisson's equation. In accordance
with this, a range of algorithms are explored and compared using a VA-1 pipeline
processor attached to a MASSCOMP MC5400. Analysis shows that almost full
vectorisation is possible leading to speed-up factors of up to 90. Based on these
results the vectorised conjugate gradient with a Jacobi preconditioner (JCGV) is the
best of the algorithms considered.

This work is extended to the development of a two-dimensional fluid flow code which
is used to solve the Navier-Stokes equations, SIMPLE is implemented to handle the
non-linear nature of the equations. The first two problems are isothermal flows, viz,
the 'moving lid cavity' and the 'sudden expansion in a duct' problem. A study of
where the greatest computational effort is expended, and subsequent vectorisation leads
to 98% of SIMPLE being modified. This results in speed-up factors of 6 for the
cavity problem and 29 for the sudden expansion problem. In both problems the JCGV
is marginally faster than the vectorised Jacobi with under-relaxation (JURY). However,
the JCGV algorithm is not robust and it is necessary to relax carefully the
approximation, otherwise high computation times or divergence is likely.

Two further problems are considered each with increasing complexity, these include
scalar quantities of temperature and characteristics of k-e turbulence. One problem is
based on 'turbulent L-shaped flow in a duct' and the other on the 'natural convection
in a square cavity'. A consequence of the higher scalar computation gives speed-up
factors of 5 for the turbulent L-shaped flow and 11 for the natural convection
problem. There is little to choose between the JCGV and JURV algorithms, however,
the robustness problems with the JCGV algorithm remain.

A multigrid method (ACM) is used to improve the convergence rate of the algorithms,
particularly as the size of problem is increased. Although it is more effective in
scalar, it also provides worthwhile improvements for the vectorised algorithms with
overall factors of 8.5. Convergence difficulties with the JCG algorithm also prevents
the combination with the ACM method. Therefore, the vectorised JUR algorithm with
the ACM method is not only more efficient and reliable, but also has scope for
improvement as the grid is increased.

The potential gains in vectorisation of the SIMPLE family on pipeline architectures
have been clearly demonstrated and indicate that such efforts on practical CFD codes
should be well rewarded with regard to processor performance.

(* " • \
Ul)

Acknowledgements

I would like to express my gratitude to Professor Mark Cross and to Dr Will

Richards for their invaluable advice and encouragement over the last three years,

particularly during the difficult phases of the work.

I would also like to take this opportunity to thank the staff at the School of

Mathematics, Statistics and Computing, and to the postgraduates at the Centre for

Numerical Modelling and Process Analysis of Thames Polytechnic. They contributed

to many useful discussions and provided a stimulating working environment. In

addition, I would like to acknowledge Mrs Berol Cooper and Mrs Irene Wilmot for

providing me with adequate computer resources.

My sincerest thanks go to my parents, my sister Helen, and my brothers Andrew,

George and Nicos who have supported and encouraged me throughout my education.

Thanks too, to all my personal friends, particularly Hazel and Tony.

Finally, the financial support provided by the Science and Engineering Research

Council is gratefully acknowledged.

(iv)

Contents

Title page (i)
Abstract (ii)
Acknowledgements (iii)
Contents (iv)

Chapter 1 1
1.0 INTRODUCTION 2
1.1 Overview of CFD 2
1.2 Literature survey 5

1.2.1 Vectorised tridiagonal algorithms 6
1.2.2 Vectorised algorithms for large sparse systems of equations 8
1.2.3 Parallel-based algorithms for large sparse systems of equations 18

1.3 Discussion 20
1.4 Outline of present work 21

Chapter 2 24
2.0 CLASSIFICATION OF ARCHITECTURES 25
2.1 Introduction 25
2.2 Classification of architectures 25
2.3 Classification due to Flynn 26

2.3.1 Single Instruction stream - Single Data stream (SISD) 26
2.3.2 Single Instruction stream - Multiple Data stream (SIMD) 26
2.3.3 Multiple Instruction stream - Single Data stream (MISD) 27
2.3.4 Multiple Instruction stream - Multiple Data stream (MIMD) 27

2.4 Classification due to Shore 27
2.4.1 Machine I 28
2.4.2 Machine H 28

2.4.3 Machine IH 28

2.4.4 Machine IV 29
2.4.5 Machine V 29

2.4.6 Machine VI 29
2.5 Classification due to Hockney and Jesshope 29
2.6 Classification of pipeline processors 37
2.7 How a pipeline processor attains its speed 38
2.8 Memory-to-memory and register-to-register pipeline processors 39
2.9 The MASSCOMP MC5400 system 41

(v)

2.9.1 Overview of MC5400 system 41

2.9.2 Overview of VA-1 board 42

2.9.3 Vector Accelerator Run Time Library (RTL) 44

2.9.4 Performance of the MC5400 46

2.9.4.1 Measurement of n 1/2 and r. 46

2.9.4.2 LINPACK performance 52

2.10 Expected gains in vectorisation of a program 52

2.11 Closure 55

Chapter 3 57

3.0 SOLUTION PROCEDURES 58

3.1 Introduction 58

3.2 The governing differential equations 58

3.2.1 General conservation equation 58

3.2.2 The discretisation of the general conservation equation 60

3.3 Control-volumes in a discretised domain 62

3.4 Derivation of control-volume equations 64

3.4.1 The momentum equations 64

3.4.2 The diffusion equation 66

3.4.3 The convection equation 67

3.4.4 The source term 68

3.4.5 Continuity equation 69

3.4.6 The scalar equation 70

3.4.7 The final control-volume equations 73

3.5 Solution procedures 74

3.5.1 The SIMPLE solution procedure 74

3.5.2 The SIMPLEC solution procedure 76

3.5.3 The CTS SIMPLE (Consistent Time Step) solution procedure 77

3.5.4 The SIMPLER solution procedure 77

3.5.5 The EVIPLE solution procedure 78

3.5.6 The PISO solution procedure 79

3.5.7 The RMOSE solution procedure 81

3.5.8 The SIMPLEST solution procedure 83

3.6 Implementation of the SIMPLE family 83

3.6.1 The NEAT approach 83

3.6.2 The whole-field pressure-correction approach 84

3.7 Choice of solution procedure 85

3.8 Closure 86

(vi)

Chapter 4 89
4.0 SOLUTION OF LINEAR SYSTEM OF EQUATIONS 90
4.1 Introduction 90
4.2 The Poisson equation 90
4.3 Linear equation solvers 93
4.4 Linear equation solvers used in this study 96
4.5 Tridiagonal algorithms 97

4.5.1 Thomas algorithm 101
4.5.2 Cyclic reduction algorithm 105

4.6 Results for the Laplace equation using tridiagonal algorithms 110
4.7 Pentadiagonal algorithms 116

4.7.1 The point-by-point JUR algorithm 116
4.7.2 The point-by-point SOR algorithm 119
4.7.3 The RBSOR algorithm 123
4.7.4 The conjugate gradient algorithm with a Jacobi preconditioner (JCG) 126

4.8 Results for the Laplace equation using pentadiagonal algorithms 129
4.9 Closure 137

Chapter 5 139
5.0 VECTORISATION OF THE SIMPLE SOLUTION PROCEDURE 140
5.1 Introduction 140
5.2 Scalar algorithms 140
5.3 PROBLEM 1: Square cavity with moving lid problem 142

5.3.1 Physical and geometrical specification 142
5.3.2 Results using scalar algorithms 144

5.4 PROBLEM 2: Sudden expansion problem 152
5.4.1 Physical and geometrical specification 154
5.4.2 Results using scalar algorithms 154

5.5 Distribution of computation effort in the SIMPLE solution procedure 158
5.6 Vectorisation of the pressure-correction equation 161
5.7 Further vectorisation of the SIMPLE solution procedure 170
5.8 Results 172
5.9 Closure 183

Chapter 6 185
6.0 ADDITION OF SCALAR QUANTITIES 186

6.1 Introduction 186
6.2 The scalar equations 186
6.3 PROBLEM 3: L-shaped turbulent flow problem 188

6.3.1 Physical and geometrical specification 188

(vii)

6.3.2 Results using scalar algorithms 190
6.4 PROBLEM 4: Natural convection in a square cavity problem 190

6.4.1 Physical and geometrical specification 194

6.4.2 Results using scalar algorithms 196

6.5 Distribution of computation effort in the SIMPLE solution procedure 197
6.6 Results 217

6.7 Closure 227

Chapter 7 228
7.0 THE IMPACT OF USING A MULTIGRID METHOD 229
7.1 Introduction 229
7.2 The SIMPLE-based procedure as a multigrid smoother 231
7.3 SIMPLE-based procedures using multigrids as a linear solver 232
7.4 The additive correction multigrid method (ACM) 233
7.5 The ACM method applied to the pressure-correction equation 234

7.5.1 The one-dimensional ACM method 234

7.5.2 The two-dimensional ACM method 237
7.6 The flexible cycle C strategy 240
7.7 Iterative algorithms used in the ACM method 242
7.8 Implementation of the ACM method on a pipeline processor 243
7.9 Results using the ACM method 243

7.9.1 PROBLEM 1: The cavity with moving lid problem 244
7.9.2 PROBLEM 2: Sudden expansion problem 244
7.9.3 PROBLEM 3: L-shaped turbulent flow problem 245
7.9.4 PROBLEM 4: Natural convection in a square cavity problem 254

7.10 Discussion of results 254

7.11 Closure 266

Chapter 8 269
8.0 CONCLUSIONS 270

REFERENCES 275
APPENDIX Al

CHAPTER ONE

1.0 INTRODUCTION

1.1 Overview of CFD

In recent years the field of Computational Fluid Dynamics (CFD) has evolved at a

phenomenal rate. CFD has grown to such an extent that today it is used as a

design tool which is capable of predicting complex flows in situations where

experimentation is not feasible or too costly, or both. Currently, CFD simulations

and experiments are both used as a means for investigating engineering

applications. However, it may not be long before numerical simulation is

considered more important than experimentation in many areas. The role of the

experiment may be limited to the validation and necessary refining of CFD models

and computation procedures. CFD simulations are certainly more informative and

can cover a range of different complex fluid flow simulations many of which can

not be performed experimentally, this makes CFD simulations essential.

Consider the spread of smoke and fire in an underground station such as the

King's Cross incident. Simulations of this type are extremely important. An

attempt to carry out experiments for such a problem with different scenarios is

extremely difficult. Even for a single numerical fire simulation this can be a very

demanding computational task. The emergence of supercomputer architectures such

as the CRAY family, CYBER 205 and IBM 3090 (Hockney and Jesshope [1988])

which can compute at very high speeds, coupled with the advances in numerical

techniques and solution procedures, make such simulations possible. Indeed, CFD

simulations relating to the King's Cross fire (Fennell [1988]) have been performed

at Harwell using their own three-dimensional CFD code called HARWELL-

FLOW3D (Jones et al [1985]).

Traditionally, CFD simulations have been computationally very expensive and

although complex problems could be tackled, the accuracy of the solution or the

resolution of the grid was not as high as the engineer would have liked. However,

the introduction of pipeline vector processors as an alternative to the conventional

scalar processors has begun to overcome these past difficulties. Today, many large

and complex flow problems can be modelled using general purpose CFD codes

such as HARWELL-FLOW3D (Jones et al [1985], Burns et al [1986]) and

PHOENICS (Rosten and Spalding [1986]). In addition, the number of computation

nodes which can be solved in a reasonable time is now approaching the order of

hundreds of thousands. The introduction of these new architectures has also

assisted in advancing several branches of CFD to such an extent that many have

become research topics in their own right.

One branch which has become very fruitful is the refinement and modification to

existing solution procedures which are used to solve the governing differential

equations. The problem with solving the equations numerically lies in the fact that

the equations are often coupled and that the pressure field (which drives the flow)

is not known a priori. The use of a stream function - vorticity formulation will

overcome the latter problem since the pressure is explicitly eliminated, however,

this approach is currently restricted to flow problems where the pressure field is

not dominant. A more common practice is to adopt a primitive variable approach.

Here the velocity components and pressure (pressure-correction) equations are

obtained from their governing equations. The SIMPLE solution procedure (Patankar

and Spalding [1972]) and its derivatives are probably the most widely used within

the CFD community and forms the basis of many commercial software packages.

- 3 -

Turbulence modelling is also an area of intense research. There are currently two

main schools of thought for resolving the presence of turbulence in engineering.

The first is based on large eddy simulation (Riley and Metcalfe [1980]) and

involves the solution of the full Navier-Stokes equations. Even with the computer

power currently available, the expected computation times needed to solve very

simple problems are still too high. The second approach focuses on the solution of

the time-averaged Navier-Stokes equations together with transport equations to

model key characteristics of turbulence. Research on this approach has been more

successful and continues to be popular particularly amongst engineers. Launder et

al [1974, 1975] were amongst the first to adopt such an approach, and although

the k-e model is very popular, there is to date no general turbulence model.

The numerical representation of the convection term present in the governing

equations has been of interest for many years, especially in flow problems

dominated by the convection process. This has led to a number of different

schemes, each attempting to correctly describe the convection process. The hybrid

scheme (Spalding [1972]) switches between central and upwind differencing. The

Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme due

to Leonard [1979] is more accurate at low grid Peclet numbers but at the expense

of an increase in the computation time. This is evident in some turbulent flow

simulations (Han, Humphrey and Launder [1981]). The Curvature Compensated

Convective Transport (CCCT) scheme will guarantee the boundedness condition

and can be used to derive all the schemes above (Gaskell and Lau [1988]). The

Corner UPwInDing (CUPID) scheme (Patel, Markatos and Cross [1988]) copes

particularly well with the problem of false-diffusion, again at the expense of some

increase in computation time.

- 4 -

The way in which the computational domain is discretised will lead to either

structured or unstructured grids, A finite-difference approach has been successfully

used in the past, but more recently the control-volume approach has increased in

popularity to such an extent that it now exists as a serious competitor to the finite-

difference approach. Both of these methods have been applied extensively to

structured grids and less so to body fitted grids. The finite-element method on the

other hand is ideal for complex geometries but lacks the simplicity of the control-

volume approach. Recently, work has been done on the use of a control-volume

based finite-element method (Prakash and Patankar [1985], Lonesdale and Webster

[1989]) and this could be a future trend. The control-volume approach has been

adopted in this research because all the examples have straightforward rectangular

geometries.

1.2 Literature survey

The ability to perform large scale simulations particularly in CFD would have been

near unthinkable fifteen years ago. A select few had access to supercomputers, the

most successful machines being the CRAY-1 (Russell [1987]) and a derivative of

the original CDC STAR-100 machine called the CYBER 205 (Kascic [1979]).

These machines were significantly faster than any other machines available at that

time. The spectacular improvements in computer speed were achieved as a direct

result of combining the technological advances in hardware with the introduction

of a higher level of concurrency or parallelism in the architecture. By the early

eighties the CRAY and CDC machines had become world leaders and had allowed

CFD practitioners to become more adventurous. This in turn stimulated other

computer manufacturers to market their own vector and parallel based machines,

- 5 -

these include the IBM 3090, AMT DAP, FACOM VP-100 and VP-200, the NEC

SX-1 and SX-2 and the Sequent balance 8000 and 21000 machines. Not

surprisingly, a vast amount of literature has appeared in the last decade on the

solution of practical engineering problems using supercomputers. This has also led

to new journals dedicated entirely to the computer science of vector and parallel

processing the most notable being 'Parallel Computing'.

In the past, a large number of the publications have been based on work carried

out on CRAY-based machines and a smaller proportion on CYBER 205 machines.

Although some of these machines can be used to perform both vector and coarse-

grain parallelism operations, attention is primarily focused on the use of a single

pipeline vector processor.

A number of different questions need to be answered about the use of vector

processing in the solution of CFD problems. For example, how fast can a CFD

code run on a given vector processing architecture? How much faster (or slower)

is the vectorised execution compared to the execution of the equivalent scalar

code? and how much improvement in speed can one ever hope to achieve using a

particular vector processor, given the characteristics of a typical CFD code? The

answers to these questions will help to reveal and characterise different aspects of

vector processing and vector processors.

1.2.1 Vectorised tridiagonal algorithms

In the past much attention has been given to the solution of a system of equations

since it has become apparent that this constitutes a high proportion of the total

- 6 -

computation time. Lambiotte and Voigt [1975] consider the solution of a

tridiagonal system of nxn equations using a number of direct and iterative

algorithms. One of the direct algorithms considered is the Gaussian elimination

algorithm with LU factorisation. For the purposes of vectorisation the implicit steps

are replaced by explicit steps. When coded on a CDC STAR-100 vector machine

the modified Gaussian elimination algorithm (using the vector hardware

instructions) is more efficient than the conventional scalar algorithm for matrix

systems n>l3. The vectorised algorithm of Stone [1973] was implemented and

found to be slower than the vectorised Gaussian elimination algorithm. Lambiotte

and Voigt [1975] also consider the vectorised cyclic reduction algorithm (Hockney

[1965]), their study reveals that the cyclic reduction algorithm is up to seven times

faster than the Gaussian elimination algorithm for large matrix systems «>125. As

well as direct algorithms, iterative algorithms such as the Jacobi, red-black SOR

and a Traub factorisation [1973] are also studied by Lambiotte and Voigt [1975].

Results are presented for the solution of the tridiagonal system of equations Ax=r

where the zth row of A is given by (0,...,0,&,1,£,0,...,0), r=(l,...,l)T and b is varied

to change the diagonal dominance of the matrix system. The settings are those

used by Traub [1973] where fc=0.24, 0.4 and 0.49 for the cases where «=100 and

1000. The red-black SOR algorithm is the most efficient iterative algorithm, but

overall, the cyclic reduction algorithm is found to be the best of all the algorithms

for the problem considered on the CDC STAR-100 machine.

Masden and Rodrigue [1976] carried out a similar investigation to that of

Lambiotte and Voigt [1975] based on the solution of a tridiagonal matrix system.

They restricted their study to direct solvers only and compared the performances of

the vectorised Gaussian elimination algorithm, Jordan's algorithm [1974] and the

- 7 -

cyclic reduction algorithm (Hockney [1965]). The calculations were also performed

on a CDC STAR-100. machine and therefore similar conclusions were obtained to

those of Lambiotte and Voigt [1975]. Masden and Rodrigue then proceeded to

define a hybrid 'Super-STAR-Algorithm' which takes advantage of the fact that at

an

inefficient on the CDC STAR-100. Instead, the process switches to a more

efficient low-order tridiagonal solver such as the vectorised Gaussian elimination

algorithm. The super-STAR-Algorithm was faster than the Gaussian elimination

algorithm (implemented on a CDC 7600 scalar machine) for /i>750.

.ne a hybrid 'Super-STAR-Algorithm' which takes advantage of the fact that at

advanced stage of the cyclic reduction process the computation becomes

Swarztrauber [1979] considers the vectorised implementation of Cramer's rule for

the solution of a tridiagonal system of equations. The performance of the algorithm

was compared to the Gaussian elimination algorithm with partial pivoting. On a

CDC 7600 scalar machine the Gaussian elimination algorithm is faster, but despite

having a higher operation count than the cyclic reduction algorithm, the vectorised

Cramer's rule is faster than the Gaussian elimination on the CRAY-1. This is

purely because the Gaussian elimination algorithm is vectorised to a lesser degree.

1.2.2 Vectorised algorithms for large sparse systems of equations

The early eighties saw some of the first computations performed on practical CFD

problems. Spradley et al [1981] presented a General Interpolants Method (GIM) to

analyse complex three-dimensional flow fields described by the inviscid Euler

equations as well as the time-averaged Navier-Stokes Equations. The code

combined the techniques of finite-element (for the geometry definition) with finite-

difference (to solve the resulting equations). The solution of the equations were

- 8 -

obtained using a MacCormack predictor-corrector type scheme and was found to

be the most time consuming of all the modules. By re-ordering the index over

which the calculations were performed the solver was adapted for use on the CDC

STAR-100. A number of different problems were considered and a sixfold

improvement in speed was achieved over the same code on a CDC 7600 scalar

machine. When a pipeline CYBER 203 was used a further improvement of two

was achieved.

Kordulla [1984] also reported on the vectorisation of a MacCormack based CFD

code for the CRAY-IS machine. The problem studied was flow past a hemisphere-

cylinder configuration at a 5° angle of attack and a Reynolds number of 212,500

referenced with the radius of the sphere. The computational grids used were

31x20x31 and 42x20x31. Since the vectorisation of the explicit steps were

straightforward the emphasis was on the vectorisation of the implicit steps in the

predictor-corrector scheme. The results indicated that the computation times on the

IBM 308IK were about eight times slower than on the CRAY-IS (scalar

processor). When the CRAY auto-vectoriser was switched on the ratio increased to

10 and for the manually vectorised code the ratio was further increased to 31.

Although the CRAY vectorising compiler has improved considerably since then,

this example helps to illustrate the limitations in relying on a vectorising compiler.

There is clearly a need for user-interaction.

Borrel et al [1985] also used the MacCormack scheme to simulate three-

dimensional flow past a wing. The solution is determined using the Euler equations

to obtain pressure and velocity components. A similar vectorisation approach was

taken to Kordulla [1984] where loop indices are re-ordered and data dependencies

- 9 -

are suppressed. A 51x50x19 computation grid was used and the vectorisation on a

CRAY-IS resulted in a fourfold increase in speed. The problem of simulating an

interacting jet with supersonic flow was also carried out on a 40x30x35 grid and

similar improvements in speed were obtained.

Koppenol [1985] demonstrated the large reductions in CPU time which can be

achieved when taking software written for the CYBER 180/855 scalar machine and

porting it onto a CYBER 205. Impressive reductions in speed are quoted for the

solution of a two-dimensional fluid flow problem. Although the results appear

biased they do at least give a practical estimation of the difference between the

machines.

Schwamborn [1984] used a finite-difference formulation to solve a laminar three-

dimensional boundary-layer on the surface of a wing-like spheroid. The

discretisation resulted in the solution of a set of block tridiagonal matrix systems.

A hotspot analysis reveals that the execution of two routines is responsible for up

to 98% of the total computation time, therefore, the effort in vectorisation is

concentrated here. At best a 40% improvement was achieved because most of the

computations being performed were inherently scalar. This demonstrates the need

to carefully reconsider the sequence of computation steps and if possible, to re­

structure them to good effect. It may be necessary to use a different solver which

has a higher level of vectorisation. Schwamborn states that "the only way to write

a three-dimensional, boundary-layer code with high vectorisation is to use a

difference scheme using only data in one plane". One assumes that this was with

reference to a CRAY-based architecture, but it is unlikely that this will apply to

all pipeline machines. Other architectures such as the CYBER 205 would work

- 10 -

most efficiently with long vectors. Moreover, it is the authors belief that an

explicit whole-field solver would be better suited for a three-dimensional problem

since the vector operations would be of maximum possible length.

On some three-dimensional problems it becomes impractical to carry out the

simulation using a scalar processor, instead results are presented for the vectorised

computation only (Rizzi and Therre [1985]). This approach to presenting results is

informative to an engineer since it becomes possible to determine how quickly a

problem can be solved.

Thus far the numerical algorithms have been restricted to the solution of

tridiagonal systems. Much work has been done on the solution of a large sparse

matrix system, this system is not necessarily tridiagonal and is often encountered

when using a discretisation scheme to represent the domain of interest. The growth

and popularity of the pipeline vector processor as an architecture to solve computer

intensive CFD problems can be partly attributed to the availability of explicit

numerical algorithms which are readily vectorised. Examples of such algorithms are

the JUR and conjugate gradient (Hestenes and Stiefel [1952]) algorithms. A large

number of the results quoted for the use of such algorithms have been based on

the solution of the Poisson equation. The discretisation of the Poisson equation

using a five point finite-difference technique results in a linear system of

equations, these make up a sparse pentadiagonal matrix (A) in two dimensions.

The conjugate gradient algorithm is based mainly on matrix-vector and vector-

vector operations and is therefore ideal for vector processing. However, the

algorithm has been reported to be slow in some cases (Concus, Golub and O'leary

- 11 -

[1975]). To overcome this problem a preconditioning matrix (P) is introduced into

the formulation, the purpose of the preconditioning matrix is to lower the condition

number of the original matrix and the right-hand-side vector b, hence the matrix

system becomes

p-'Ax = p-'b

The choice of the matrix P raises interesting points, for example, will it destroy

the structure and other desirable properties present in the original matrix? Will it

be detrimental to the convergence rate of the original conjugate gradient method?

How expensive is the generation of the matrix P relative to the total computation

time and will the matrix formulation for P be such that efficient vectorisation is

possible? It is found that the solution of a tridiagonal matrix system (an

intermediate step in the preconditioned algorithm) poses some problems when

attempting to vectorise this step. Various approaches have been taken to overcome

this problem. One suggestion is the use of the cyclic reduction algorithm (Rodrigue

and Wolitzer [1981] and Jordan [1981]). Alternatively, any other tridiagonal solver

presented thus far could be used.

Dubois, Greenbaum and Rodrigue [1979] suggest the use of a truncated Neumann

expansion to represent the inverse of the original matrix as the preconditioning

matrix. Despite full vectorisation there was a significant increase in the number of

conjugate gradient iterations.

- 12 -

Van der Vorst [1982] suggested a truncated Incomplete Cholesky Conjugate

Gradient algorithm (ICCG) where the inverse of the matrix (1-E) is given by

In the two cases studied, the truncated ICCG algorithm was more efficient than the

truncated Neumann expansion. Also, the increase in the number of iterations was

minimal and as a result the vectorised version of the truncated ICCG was

competitive with the scalar ICCG algorithm. However, in a later study van der

Vorst [1986] showed that for some problems the number of iterations can increase

significantly to make the vectorised ICCG algorithm less competitive. The

improvements in using the vectorised truncated ICCG over the scalar ICCG

algorithm on a CRAY-1 and CRAY X-MP were up to 50%, with over a twofold

increase on the CYBER 205.

The simplest preconditioning matrix is the Jacobi or diagonal preconditioner (JCG).

Radicati and Vitaletti [1987] compare the solution times of the JCG and the ICCG

algorithms on an IBM 3090-VF machine. The problem was a three-dimensional

elliptic partial differential equation with mixed boundary conditions and is solved

on a 403 grid. In the case of the ICCG algorithm the solution of the intermediate

matrix system is solved once and stored. Although this results in a higher cost per

iteration this is offset by the reduced number of overall conjugate gradient

iterations. In each case comparisons were made between the vectorised and scalar

ICCG and JCG algorithms. The compressed diagonal storage method was used

since this produces vector lengths of order 403 . In scalar mode the ICCG is

superior to the JCG algorithm but the opposite is true in vector mode. This is

- 13 -

mainly due to the essentially scalar computations which are used to solve the

intermediate matrix system. Despite this, speed-up factors of 2 are reported in

favour of the vector ICCG and up to 6 in favour of the vector JCG algorithm.

Block preconditioning can also be used as part of the conjugate gradient algorithm

(Meurant [1984] and Concus, Golub and Meurant [1985]). A vectorised Cholesky

decomposition is used as a block preconditioner to solve three test problems, the

inner products were coded in CAL (Cray Assembler Language). The ICCG

algorithm is implemented for comparison, and computations were performed on the

CRAY-IS and CRAY X-MP machines. The best improvements were obtained

using the block preconditioning algorithm rather than the ICCG, but the times

recorded did not include the time to generate the preconditioning matrix.

Furthermore, in one test case the approximation of the inverse was poor enough to

cause a severe degradation in the performance of the vectorised algorithms.

Kightiey and Jones [1985] consider the solution of large three-dimensional

turbulent flow simulations using SIMPLE. The emphasis is on the solution of the

pressure-correction equation which is solved using the conjugate gradient algorithm

with various preconditioned. These preconditioned include the Jacobi, standard

incomplete Cholesky, truncated incomplete Cholesky (van der Vorst [1982]) and a

block factorisation. In the solution of the 'trivial' Poisson equation the elaborate

preconditioned are not worth the extra expense and the JCG algorithm is

considered to be the best. However, as the complexity of the problem increases the

ICCG algorithm is the most efficient even though the block preconditioner is more

robust.

- 14 -

Later, Kightley and Thompson [1987] cany out a comparison of preconditioned

conjugate gradient algorithms with different multigrid methods. The conjugate

gradient algorithms considered are the JCG, standard ICCG and truncated ICCG.

The multigrid algorithms used are those described in Wesseling et al [1982] and

Hemker et al [1983, 1984, 1985] and are denoted in brackets by a pseudo-name.

These include the incomplete LU factorisation (MGD1), incomplete block

factorisation (MGD5), the point red-black SOR (MG001) and the line-zebra SOR

(MGOQ3) algorithms. Results were presented for the solution of the Poisson

equation with a discretised uniform 128x128 grid on a CRAY-IS. A speed-up

factor of 3.3 and 4 were obtained in favour of the vectorised MGD1 and MG001

algorithms, respectively. A case is found where the truncated ICCG is less efficient

than the standard ICCG algorithm (Kightley and Jones [1985]). The general

conclusion was that the conjugate gradient based methods were efficient for low

accuracy solutions but the multigrid methods were more appropriate when a much

higher accuracy is desired in the solution.

Kincaid et al [1986] consider the application of the conjugate gradient (CG) and

chebychev (SI) methods as a means of accelerating some popular iterative

algorithms. The CG acceleration was substantially faster for the solution of

Poisson's equation on a 20x20 grid using a scalar processor. (Scalar simulations

were performed on a CYBER 170/750 and all vector simulations performed on a

CYBER 205). Using a 64x64 grid there was little to choose between the vectorised

red-black SOR-CG, Jacobi-CG and Richardson-CG. Even though the latter two

required more CG iterations these algorithms were easier to implement and were

recommended for general use.

- 15 -

Elaborate ordering schemes for the CG algorithm have been examined by Melhem

and Gannon [1987]. For ill-conditioned systems of equations the column-wise two

colour ICCG algorithm is shown to be more efficient than the natural ordered JCG

algorithm.

Kapitza and Eppel [1987] describe an incomplete Crout factorisation for the

conjugate gradient algorithm which is used to solve a three-dimensional Poisson

equation. This is referred to as the Idealised Generalised conjugate gradient (IGCG)

algorithm. The simulation was performed on a CYBER 205 and the performance

compared to a number of iterative relaxation algorithms. Their unit of measure was

the work unit (which is the time taken to carry out one iteration of the algorithm,

WU) and speed-up factors of 10 over popular iterative algorithms such as the red-

black SOR were not uncommon. However, it should be realised that the

computation involved in a single WU of the CG algorithm is not the same as that

of an iterative algorithm.

Gemzsch [1987] proposed a fully vectorised SOR variant for a general second

order elliptic partial differential equation. The motivation for this was that there are

overheads associated with the use of a red-black ordering, these would be quite

significant on some vector processing architectures, for example the CRAY-2 and

IBM 3090VF. The original unknowns are transformed to give a discretised

approximation, instead of being described by the traditional five-point molecule

with connections north-east-south-west (N-E-S-W), it is now described by NE-SE-

SW-NW (figure 1.2.2). The new variant was tested on the solution of Poisson's

equation using a 127x127 grid and was found to be twice as fast as the red-black

algorithm on both the CRAY-2 and IBM 3090VF machines.

- 16 -

(ii)

-l j-1

i j

FIGURE 1.2.2 Computation molecule for (i) natural SOR (ii) vectorised SOR

- 17 -

The implementation and comparison of multigrid methods for pipeline architectures

has been briefly mentioned. Hemker, Wesseling and Zeeuw [1984] compare two.

different preconditioning matrices on the CRAY-1 and CYBER 205 machines. The

preconditioned were an incomplete LU factorisation (ILU) and a zebra SOR

algorithm. They concluded that the zebra SOR algorithm was more efficient than

the ILU factorisation on the CRAY-1, but the opposite was true when they were

implemented on the CYBER 205. Vanka and Misengades [1987] suggested the

vectorisation of the multigrid block implicit method on a CRAY X-MP, while

Holter [1985] considered the implementation of multigrid methods due to Brandt

[1977] on a CYBER 205.

1.2.3 Parallel-based algorithms for large sparse systems of equations

Some of the earliest work on the use of parallel architectures to solve a system of

equations was performed by Stone [1973]. The machine used was the ILLIAC IV

and was described as having an 'exotic' architecture. (The ILLIAC IV was

classified as a MIMD parallel processing machine and was to have a considerable

influence on the development of future architectures). In his work Stone considered

the implementation of a tridiagonal solver using LU decomposition by recursive

doubling. Unfortunately, the only results presented were based on the number of

arithmetic operations.

The popularity of the cyclic reduction algorithm is such that it has been

implemented on the ICL DAP (Whiteway [1979]). The ICL DAP is made up of a

64x64 array of processing elements, all of which simultaneously carry out the

same instruction on a different data set. However, the implementation of the cyclic

- 18 -

reduction algorithm on such an architecture leads to an inefficient utilisation of

some of the processing elements. A hybrid algorithm is used, this consists of a

cyclic reduction step followed by a Jacobi iteration process. In this application the

cyclic reduction is being used as a preconditioner where the condition number of

the matrix is being reduced.

The partition algorithm (Wang [1981]) is based on the notion of divide and

conquer and like the modified Cramer's rule it has a higher operation count than

the cyclic reduction. Although the algorithm has been clearly written for use in a

pipeline or parallel processing environment, no results were presented.

Seager [1986] compared the performances of the JCG and ICCG algorithms using

the four processor CRAY X-MP. The parallel processing is in the form of

multitasking and microtasking. In multitasking there is a queue of tasks which are

scheduled by the operating system and given to a processor which becomes free

for computation. Microtasking involves the vectorisation of inner loops and the

execution of the outer loops over the four processors. Microtasking has a finer

level of parallelism than multitasking. In the solution of the Poisson equation using

a 168x168 grid it is observed that the overheads associated with multitasking are

significantly higher than those for microtasking. For the ICCG algorithm factors of

2.7 and 3.9 were obtained when multitasking and microtasking was used,

respectively. For the JCG algorithm the improvements are lower with 2.2 and 3.1

when multitasking and microtasking was used, respectively.

- 19 -

1.3 Discussion

A literature review of publications using a pipeline processor to solve partial

differential equations has been carried out. One observation which arises is that

there is no single 'best' algorithm. This is not surprising since there are a number

of different factors which can have a significant effect on the performance of an

algorithm.

The comparison between different algorithms is highly problem dependent. The

convergence rate of some algorithms tend to decrease noticably as the diagonal

dominance of the matrix becomes weaker. Therefore, one suggestion could be to

solve a number of different matrix systems with varying diagonal dominance

factors, this would help to present a more complete picture.

Another problem involves the implementation of the algorithm on different pipeline

architectures. Despite the fact that a scalar algorithm is universal to all scalar

machines this is not the case for the same vectorised algorithm. The vectorisation

techniques used to restructure the scalar algorithm may be different and so lead to

a performance specific to that vectorisation technique. In addition, the use of

software tools such as compilers and low-level run-time vector libraries which have

varying levels of sophistication can make comparisons even more difficult. Finally,

the fact that different pipeline architectures have different characteristics means that

it is unlikely any single algorithm can claim to be the most efficient on all

pipeline architectures.

- 20 -

The survey clearly shows that the computation effort is concentrated on the

solution of.linear systems of equations typified by the discretisation of the Poisson

equation. In some cases almost total vectorisation of the code is possible for some

algorithms and this leads to substantial reductions in computation times. A high

proportion of the code is vectorised because there is a relatively small overhead

associated with the setting up of coefficients and source terms. However, will this

be the case in fluid flow simulations where there are many more factors to be

considered?

It is known that the problems discussed with regard to the implementation of

algorithms on pipeline architectures will still apply to CFD computations. The

solution of a linear system of equations still forms a major component in the

solution procedure, however, the essentially scalar computations become more

significant. These involve the generation of more complex diffusion and convection

coefficients as well as complicated source terms.

1.4 Outline of present work

A fundamental description of various parallel processing architectures is presented,

and attention is then focused on the pipeline vector processor and how it fits into

various classes. All the computations in this work are carried out on the VA-1

pipeline processor, this is attached to a MASSCOMP 5400 machine (MASSCOMP

[1984]); Therefore, a detailed characterisation of this machine is given. A measure

of the expected speed-up is determined using Amdahl's law, this has proved useful

and is used throughout this work to assess the performance of the vectorised code.

- 21 -

Different solution procedures are reviewed with regard to the solution of the

Navier-Stokes equations in Chapter 3. These solution procedures involve SIMPLE

and its derivatives. The SIMPLE procedure is chosen for implementation because

of its suitability to the problems to be solved. In addition, a whole-field strategy is

adopted since this will enable vector operations of maximum possible length.

In Chapter 4 a number of different algorithms such as the Thomas, cyclic

reduction, JCG, JUR, SOR and red-black SOR are applied to the solution of the

Laplace equation on a unit square, for a number of different grids. The algorithms

are then vectorised in various ways, the Thomas and SOR being restructured to

remove the recursion present in the scalar formulation. The expected improvement

factors are predicted using Amdahl's law. This identifies the point-by-point and

conjugate gradient solvers as the most efficient vectorised algorithms.

The complexity of the problems solved are extended to fluid flow simulations

involving the solution of pressure and momentum components (Chapter 5). The test

cases involve the solution of the two-dimensional lid-driven cavity problem and the

flow in a suddenly expanding duct. The effect of just vectorising the pressure-

correction equation solver in the SIMPLE procedure leads to modest improvements

in speed, the limiting factor being the scalar computations. Further vectorisation is

carried out on the rest of the SIMPLE procedure and this leads to a more

substantial reduction in the computation time.

In Chapter 6 the effect of introducing scalar transport equations such as enthalpy

and k-e turbulence representations are investigated. Here the test cases include the

natural convection in a square cavity problem which introduces the solution of the

enthalpy equation for Rayleigh numbers up to 106 , and the k and e equations for a

Rayleigh number of 107 . The second case is two-dimensional, turbulent, L-shaped

flow in a duct. Although there is a reduction in the total contribution of the

pressure-correction solution, the vectorisation of the scalar equations still leads to

worthwhile reductions in time.

A multigrid solution strategy based on the ACM method of Settari and Aziz

[1973] is presented in Chapter 7 following a review of multigrid methods. The

ACM method is used to solve the pressure-correction equation and is applied to

the four test cases described in Chapters 5 and 6. The improvements in

computational speed are more notable in the cases where there is a dominant

pressure field. The best performance of the scalar algorithms was achieved with up

to four levels of the ACM method. Whereas, the same algorithm vectorised is

most effective with just two levels. It is likely that the number of levels used by

the vectorised algorithm will increase as the grid size is increased.

Finally, conclusions and suggestions for future development of the present work

are presented in Chapter 8.

- 23 -

CHAPTER TWO

- 24 -

2.0 CLASSIFICATION OF ARCHITECTURES

2.1 Introduction

This chapter describes the general classification of a computer according to its

architecture. Attention is focused on the pipeline vector processor category, and in

particular to the MASSCOMP 5400 computer with an attached pipeline vector

processor (VA-1). The potential of such a vector pipeline processor is investigated

A means of predicting the expected speed-ups in using such a processor is also

outlined This strategy is to be used at a later stage for the consolidation of quoted

speed-ups for a CFD code.

2.2 Classification of architectures

The classification of computer architectures into an accurate and universal form is

not an easy task. To date, there have been three different approaches presented.

These are due to Flynn [1966, 1972], Shore [1973] and Hockney and Jesshope

[1981]. All three have their merits but no single approach has emerged as the

universally accepted classification scheme.

There are many reasons for this, the most significant of which is the broad

spectrum of parallel architectures which have been proposed. Some of these

architectures have come into being because of their obvious potential (for example,

pipelining), others remain essentially theoretical (for example, the MISD machine

proposed by Flynn [1966]). Another problem with attempting to classify these

architectures is that in some cases the more useful architectures do not fall into a

single category. They may fall into many categories, or none at all, hence

- 25 -

requiring a separate category. The three different approaches to classifying these

architectures are now presented.

2.3 Classification due to Flynn

The classification due to Rynn [1966] provides a broad characterisation of the

different computer architectures. However, the categories defined are based on the

flow of data or instructions (referred to as a 'stream'), rather than on the structure

of the machines. Whether the instruction or data streams are single or multiple will

determine one of four possible categories.

2.3.1 Single Instruction stream - Single Data stream (SISD)

This class of machine accepts a single stream of instructions, each of which acts

upon a single stream of data items. A pipeline processor can be used to increase

the rate at which instructions are processed, therefore machines with pipeline

processors of this type are classed as SISD machines. SISD machines are also

collectively called standard von Neumann machines.

2.3.2 Single Instruction stream - Multiple Data stream (SIMP)

This class of machine also accepts a single stream of instructions, however, each

instruction acts upon a multiple stream of data items. The multiple stream of data

can also be regarded as a vector of data, where each vector element represents a

single stream of data items. The multiple stream of data can be achieved either

through an array of processors or a pipeline processor. There are many examples

- 26 -

of SIMD machines including processor arrays such as the ICL Distributed Array

Processor (DAP) and ILLIAC IV, and pipelined vector machines such as the

CRAY-1 and the CYBER 205.

2.3.3 Multiple Instruction stream - Single Data stream (MISD)

In this class of machines there are many different instructions being performed on

single data items. To date, there are no practical examples of this class.

2.3.4 Multiple Instruction stream - Multiple Data stream (MIMD)

This final class is representative of true multiprocessor machines. In this class each

processor accepts its own instruction stream and acts upon its own stream of data.

Gorsline [1980] suggests that the pipeline processor falls into this class since it

performs many instructions on a multiple scalar stream of data. Examples of

MIMD machines include the Denelcor Heterogeneous Element Processor (HEP)

and an array of transputer processors.

2.4 Classification due to Shore

The classification of machines according to how they are organised was proposed

by Shore [1973]. Six different machine types (I - VI) are described, each machine

type defined using four basic parts - a control unit (CU), a processing unit (PU),

an instruction memory (IM) and a data memory (DM). What differentiates the six

machine types is the particular way in which the basic parts (including multiples)

are arranged.

27 -

2.4.1 Machine I

This arrangement describes the conventional von Neumann machine (figure

2.4.1-1). The single DM read produces all bits from a single word for processing

in parallel by the PU, this is referred to as a horizontal word slice. However, since

the PU may contain multiple functional units and may also be pipelined, machines

such as the CRAY-1 can also be included in this class.

2.4.2 Machine II

This arrangement is very similar to that of machine I. The major difference is that

the single DM read produces a single bit from all words (figure 2.4.2-1). Again,

all bits are processed in parallel by the PU, this is referred to as a vertical bit

slice. The more words that need to be processed, the more significant the speed

advantage of this machine. Examples of this machine type include STARAN and

the ICL DAP.

2.4.3 Machine in

This arrangement provides both horizontal and vertical PU's and so allows access

to both bit and word slices (figure 2.4.3-1). This machine type is a combination of

machines I and n and therefore has the benefits of both. An example of this

machine type is the Orthogonal Computer of Shooman.

- 28 -

2.4.4 Machine IV

This arrangement is a natural extension to that of machine I. Here, the PU and

DM are replicated, and these are under the control of a single CU (figure 2.4.4-1).

Although there is no direct communication between PU's, this architecture can

easily be extended. An example of this machine type is the PEPE (Parallel

Element Processor Ensemble) machine.

2.4.5 Machine V

This arrangement is an improvement to machine IV. It allows PU's to

communicate with its two neighbours and is sometimes referred to as the

connected array class (figure 2.4.5-1). An example of this machine type is the

ILLIAC IV machine.

2.4.6 Machine VI

This final arrangement has a single component containing the PU and DM (figure

2.4.6-1). Here the processing logic is distributed throughout the memory. Examples

of this type of machine are associative processors.

2.5 Classification due to Hocknev and Jesshope

As part of this classification a comprehensive notation is introduced to aid with the

description of different architectures. Hockney and Jesshope [1981] define a

- 29 -

DM

BIT BIT BIT BIT

I

FIGURE 2.4.1-1 MACHINE Irword-serial bit-parallel class

BIT

BIT

BIT

BIT

PU

FIGURE 2.4.2-1 MACHINE II:word-parallel bit-serial class

- 30 -

BIT BIT BIT

BIT

BIT

BIT

BIT

PU

PU

IM

FIGURE 2.4.3-1 MACHINE fflrorthogonal class

DM DM

FIGURE 2.4.4-1 MACHINE IV:Unconnected array class

- 31 -

DM

FIGURE 2.4.5-1 MACHINE V:Connected anay class

IM

I

. "-J-. ••. •'•••'; '• • '•' ...••;••...•• "•". • .•

FIGURE 2.4.6-1 MACHINE VlrLogic in memory class

- 32 -

computer (C) as having an instruction unit (I) which controls an execution unit (E)

connected to a single memory bank (M). Therefore in notational form the scalar

von Neumann machine is represented by

C = I[E-M]

The structural notation includes up to ten different rules for units, six rules for the

connections between units and three different types of control of the units. A

complete breakdown is given by Hockney and Jesshope [1981] pp32-42.

The architectural subdivisions are presented as hierarchical structures so that a

single class of computer is defined at the end of each branch. The discussion here

is restricted to machines with a single instruction unit (figure 2.5-1). More

specifically, machines with a single instruction unit - single unpipelined execution

units (serial processors), and a single instruction unit - multiple execution units

(pipelined vector or parallel processors).

For the serial computer class (figure 2.5-2) two further divisions are necessary. The

first is whether the arithmetic unit is integer- or floating-point, and the second is

whether the integer-point is 1-bit serial or n-bit parallel.

For the pipelined vector or parallel computer class (figure 2.5-3), a distinction

between pipelined machines is necessary. This is because there exist high

performance pipeline scalar machines and high performance pipeline vector

machines. The pipeline scalar machines have either a single instruction which

controls all units at each cycle, or a system where instructions are issued to

individual units. The pipeline vector computers are divided into two classes. Those

where specific arithmenc operations are executed are referred to as special-purpose

- 33 -

pipelines, and those where more than one arithmetic operation can be executed are

referred to as general-purpose pipelines.

The final subdivision of multiple execution units is the processor array class of

computers. These can be either floating-point or few-bit execution units. Further

divisions describe the way in which the processors are connected.

Flynn's approach provides a useful, broad, easy-to-remember classification of

architectures. However, it does have its drawbacks. For example, the interpretation

of the term 'stream' can be such that the pipeline processor is placed in all four

categories. It may be classed as SISD because it processes a single stream of

vector data , or SIMD if every element of the vector is regarded as an individual

stream of data. It can be classed as MISD or MIMD if the pipeline arithmetic unit

performs in parallel on a scalar or vector stream of data. Flynn placed the pipeline

processor together with processor arrays despite the completely different

architectures.

The classifications due to Flynn and Shore are very similar. Machine I and the

SISD class are equivalent, and machines n, HI, IV and V provide a detailed

breakdown of the SIMD class. Not surprisingly, there is no obvious class for the

pipeline processor.

The classification of Hockney and Jesshope provides a detailed breakdown of

computer architecture based on functional units. Although more precise, (for

example it has a clear classification of the pipeline processor), it does have the

drawback of being less memorable.

- 34 -

SINGLE INSTRUCTION UNIT

SERIAL COMPUTERS PIPELIN|IECT^ROJl
S COMPUTERS

PIPELINED PROCESSOR ARRAY

FIGURE 2.5-1 Overview of subdivisions for computers with a single
instruction unit

SERIAL COMPUTERS

INTEGER ARITHMETIC FLOATING-PIONT
ARITHMETIC

1-BIT SERIAL n-BIT PARALLEL

UNIVAC1 IBM701

FLOATING-POINT
SERIAL COMPUTER

IBM 7090

FIGURE 2.5-2 Single instruction - serial computer class

- 35 -

UNFEPEUNED

|

MULTIPLE

CDC66OO

SCALAR INSTOUCTIOlSrS [j VECTOR

HOIOZONTAL SPECIAL
PURPOSE

GE1SIERAL
PliTiPOSE

FPSAP^SOIS CHDC76OO GRAY-1 CYBER 205

PROCESSOR ARRAY

FLOATING-POINT

UNITS

FEW-BIT

EXECUTION UNITS

PEPE ILLIACiy BSP STARAN
CONNECTEPJ luNGONNECTEP

ICLDAP OMEN

FIGURE 2.5-3 Single instruction - vector and parallel classes

- 36 -

2.6 Classification of pipeline processors

The notion of using a pipeline process to improve the efficiency of a system has

existed for many years. It has been widely used in automated industrial plants, in

particular the car industry. This has since been extended to enhance computer

performance. The CDC 7600 was amongst the first of such computers to utilise the

idea of pipelining.

It has already been mentioned that different pipeline processor configurations exist

(Ramamorthy and Li [1977], Handler [1977]). Three such classes are:

i. unifunctional or multifunctional

These have already been described in section 2.5 and are either special-

purpose (unifunctional) or general-purpose (multifunctional) pipeline

processors.

ii. static or dynamic

A static pipeline processor is defined by the continuous execution of

instructions of the same type. A dynamic pipeline processor allows the

simultaneous existence of several functional configurations.

iii. scalar or vector

Processing a sequence of scalar operations under the control of a loop

defines a pipeline scalar processor, and similarly for processing vector

operations defines a pipeline vector processor.

All future references to a pipeline processor will imply a pipeline vector processor.

- 37 -

2.7 How a pipeline processor attains its speed

A pipeline consists of a number of processing stages, where each stage is

responsible for a specific task in an arithmetic operation. Information is transferred

between adjacent stages under the control of a common clock. Consider the

problem of performing the arithmetic operation

ct = a, + b, i=l,...,4

where it takes four stages to complete a single addition. Figure 2.7-1 shows the

benefit in using a pipeline processor over the conventional scalar processor. By

overlapping the arithmetic operations a result is obtained after the fourth clock

cycle, and thereafter a single result is obtained every clock cycle (total of 7 clock

cycles). In the case of a scalar processor a result is obtained every fourth clock

cycle (total of 16 clock cycles).

In general, an arithmetic operation which takes / stages can process vectors of

length n in a time given by

T, = / + (n-1) (2.7-1)

where T, is the time in clock periods. Here, / clock cycles are required to obtain

the first result and n-1 cycles to complete the remaining n-1 results. Using a scalar

processor the time taken to complete the arithmetic operation is given by

T, = n/ (2.7-2)

- 38 -

We can now define the speed-up S, of a pipeline processor with / stages over the

conventional scalar processor as

S, = L = n/ (2.7.3)
T, / + (n-1)

Thus the theoretical speed-up (S^J approaches / for a large vector length. This

speed-up is never reached for many reasons. These include a penalty time incurred

in initialising the pipeline processor and delay times between clock cycles.

2.8 Memory-to-memorv and register-to-register pipeline processors

The difference between these two architectural configurations depends on where the

operands are retrieved from within the pipeline processor. If all the source

operands and results are retrieved directly from the main memory then this

describes the memory-to-memory architecture. Here it is necessary to specify the

base address, offsets, increments and vector lengths which define the vectors to be

used. Examples of machines with this configuration include the STAR-100 and

CYBER 205.

If the source operands and results are retrieved indirectly from the main memory

and through registers, then this describes the register-to-register architecture.

Examples of machines with this configuration include the CRAY family and the

Fujitsu VP-400.

Thus far different pipeline architectures have been considered. Attention is now

focused on a pipeline processor which has been used as pan of this research.

- 39 -

ti
L32

L

,-....._
JU-. 3

2

;-r---- ^
1 n••-•3 L 2 L 3 L 2 L 1 4 L 1

: :4^^'6:/;;=^
r; • ;: : :; ;V ; ' : •;•. Clock Cycles:.v ; ; " :; ;."'. "' : ; : ' : •;, • • • • '!• S., • .;.'

FIGURE 2.7-1 Reduction in the number of clock cycles when using a pipeline
processor

- 40 -

2.9 The MASSCOMP MC5400 system

The MASSCOMP MC5400 machine (MASSCOMP [1984]) was a product of the

Massachusetts Computer Corporation based in Westford, Massachusetts. In

accordance with the main classifications discussed in sections 2.3, 2.4 and 2.5, the

MC5400 can be described as SIMD by Flynn or machine I by Shore. Hockney and

Jesshope would describe such a machine as a single instruction unit with a

pipelined execution unit. The execution unit operates on vector instructions. Using

the structured notation, the MC5400 with a vectorised instruction unit has a

dedicated pipeline floating-point adder and multiplier which can execute either 32-

bit or 64-bit operations. It also has a configurable vector memory of either 32,000

32-bit or 16,000 64-bit locations, this is summarised as

C(MC5400) = Iv [FP32>64(+,*) -

2.9.1 Overview of MC5400 system

Figure 2.9.1-1 gives an overview of the MC5400. In its simplest form it consists

of a triple-bus architecture. The Multibus Adapter direct memory access (DMA)

transfers at a rate up to 6Mb/sec between the memory bus and the Multibus. The

memory bus operates at a rate of 12Mb/sec, the Multibus at a rate of 6Mb/sec and

the STD+bus at a rate of 2Mb/sec. The MC5400 CPU is based on the Motorola

MC68020 which runs at 16.7MHz. The MC5400 has an enhanced UNIX operating

system which is compatible with system V and Berkeley 4.2. The host CPU is

connected to a Vector Accelerator board, VA-1 (Davies [1987]).

- 41 -

2.9.2 Overview of VA-1 board

The vector accelerator is an auxiliary processor dedicated to the host processor.

Figure 2.9.2-1 shows the programmer's conceptual overview of the VA-1 board

and its connection to the host processor. The connection between the host and the

board is through the MASSCOMP Memory Interconnect bus (MI). Up to seven

VA-1 boards may be connected to the MI bus, and the boards can operate

independendy or in parallel.

The vector accelerator board consists of the following units:-

i. The VA memory

This is a scratch pad consisting of approximately 32,000 32-bit locations.

The memory can serve as the source and/or destination of arithmetic

operations.

ii. The VA controller

This has two main functions. Firstly, it handles virtual to physical

memory management, and secondly, it controls and schedules the DMA

and MATH processors. It does this in the following way:- It decodes the

information in a ring buffer packet and conveys this information to the

relevant processor. It determines the completion of a given instruction and

updates the associated packet. It also monitors synchronisation between the

DMA and MATH processors.

- 42 -

uacffiamt ¥
"CU

1 L
BUS

ADAPTER

PROCESSOR

CONTROtLER

j U

ADD-ON

MEMORY

MEMORY BUS

MULTIBUS

MULTIBUS

STDtBUS

OPTIONS

STD-i-BUS

FIGURE 2.9.1-1 Overview of the MASSCOMP MC5400 machine

MI

MATH
1UNO

BUFFER/

DMA
RINO

BUFFER-

PIPELINE

DMA

CONTROULEH

VA

MEMORY

HOST VECTOR ACCELERATOR BOARD (VA-1)

FIGURE 2.9.2-1 Conceptual view of the VA-1 vector accelerator board

- 43 -

iii. The DMA processor

This processor carries out the loading of data from the host .memory into

the vector memory, and stores data from the vector memory into the host

memory.

iv. The MATH processor

The MATH pipeline processor has a memory-to-memory arrangement. The

unit features a pipelined adder and multiplier that can operate

independently.

2.9.3 Vector Accelerator Run Time Library (RTL)

The run time library is a set of 'low-level' subroutines which can be called from

within a FORTRAN or C program. Initialisation of the VA is carried out at the

start of a program execution and terminated after all vector instructions have been

completed. Once the VA has been initialised no other user has access until it is

made available again by the programmer. All management of the VA memory is

conducted by the programmer at a low-level. Although this may achieve a higher

level of efficiency of the VA, it does have the drawbacks of a high program

development time and difficulty in maintaining flexibility within the program.

In carrying out a pipelined execution the first step is to ensure that the necessary

data is present in the VA memory. It may be the result of a previous execution or

it may need to be loaded from the host memory using the DMA processor. The

next step involves the execution of the arithmetic operation using the MATH

pipeline processor, and finally it may be necessary to store the result back onto the

- 44 -

host memory. Between each vector instruction the responsibility lies with the

programmer to ensure correct synchronisation.

The RTL contains an extensive range of arithmetic operations. These include scalar

outputs for example, the dot product of vectors; Monadic vector operations such as

negation; Diadic vector-vector and scalar-vector operations such as addition and

multiplication; Finally, tertiary operations involving vectors and scalars, for

example, (vector+vector)*scalar. Gather and scatter routines allow the processing of

data where non-linear, irregular increments of vector elements are needed.

Mathematical operations such as square root, reciprocation and trigonometric

functions are also available.

A set of high-level subroutines have been written (lerotheou [1987]). These

routines represent a subset of the low-level RTL routines and include arithmetic

operations used extensively within a CFD code. Indeed, Cross et al [1989] have

used these high-level routines to assist in the rapid solution of enthalpy-based

solidification problems. The high-level routines were written to address three areas

essential to the 'survival' of the vectorised CFD code and to vector processing on

the MC5400. These areas are:

i. The significant reduction in the time taken to develop CFD code suitable

for vector processing. This is achieved by removing the burden of having

to manage the VA memory at a low-level. The typical programming

needed to carry out the simple addition of two vectors using both the

low-level and high-level routines is given in Appendix 2.9.3. Using the

high level routines not only makes the code compact and easy to follow,

but also significantly easier to use.

- 45 -

ii. The solution of large problems is not restricted by the maximum memory

available of 32K. This is achieved quite readily by splitting the vectors

into 'slices' or 'chunks' which do fit into the vector memory, so making

full use of the vector processing power. Thus for the addition of two

vectors with lengths greater than 16,000, the vectors are partitioned into

slices of 16,000 (Appendix 2.9.3). The only drawback to this approach is

the overhead incurred in loading the relevant slices into the vector

memory and then storing back the partial result. The net result in

performance of these routines is discussed in section 2.9.4.

iii. The transferring of the vectorised CFD code onto other machines with

vector processing capabilities. This addresses the question of portability of

the code. This is a straightforward procedure, the only requirement would

be the writing of the equivalent high-level routines for the ported

machine. Since nearly all of the more powerful supercomputers use

FORTRAN expressions to utilise their vector processing power, the

writing of these routines would be a trivial task.

2.9.4 Performance of the MC54QQ

2.9.4.1 Measurement using n,» and r_

Hockney [1977] introduces two parameters to describe the hardware performance

of a pipeline processor. These parameters represent the vector length required to

achieve half the maximum performance (n 1/2), and the maximum computation rate

(rj. To determine these parameters is straightforward. Timings (t) are recorded for

the multiplication of two vectors, and this is repeated for a number of different

vector lengths (n). Plotting the CPU time with vector length, the resulting straight

- 46 -

line is given by

t = an + b (2.9.4.1-1)

where a represents the slope of the line and b represents the intercept of the line

with the t-axis (figure 2.9.4.1-1). The parameter n 1/2 is given by the modulus of the

intercept of the line with the n-axis (i.e. b/a\ and r. is given by the reciprocal of

the slope of the line (i.e. I/a).

Figure 2.9.4.1-2 shows the variation of CPU time with vector length when the

scalar processor was used to carry out the multiplication operation. The straight-

line graph has the following equation

t = 1.52xlO-5 n (2.9.4.1-2)

From this n1/2=0, this is not surprising since there is no start-up time in carrying

out a scalar operation. The slope gives r" 1. and hence r.=0.08 Mflops.

Figure 2.9.4.1-3 shows the variation of CPU time with vector length when the

high-level VA routine was used to carry out the multiplication. The straight-line

graph has the following equation

t = 2.87X10-6 n + LlxHT4 (2.9.4.1-3)

From this n 1/2=60 and r.=0.348 Mflops (the rate at which the high-level RTL

routine performs). Here n 1/2 is not zero since there is a start-up time and a

load/store penalty incurred in using the VA. Despite this, the execution of the

- 47 -

high-level RTL routine is at least four times faster than the scalar equivalent

operation.

If we consider the time taken to carry out the load/store as negligible, then the

CPU time to execute just the multiplication is far less, and is shown in figure

2.9.4.1-4. The straight-line graph has the following equation

t = 1.56xlO-7 n + 7.6xlO-5 (2.9.4.1-4)

Here nU2=500 and r_=4.5 Mflops. The low-level RTL routine has at least an order

of magnitude of improvement over the high-level RTL routine, and a factor of at

least fifty improvement over the scalar execution.

It is interesting to note that although both the high-level and low-level RTL

routines have similar start-up times the n1/2 and r. parameters are significantly

different. A reason for this is that an increase in n causes a marked increase in the

load/store time. This is enough to make the execution rate r. of the low-level RTL

routine much higher than the same high-level routine. A direct consequence of this

is that n1/2 will also be larger. Thus, a much higher vector length operation is

needed to use the low-level routine effectively.

Table 2.9.4.1-1 gives the linear relationship for other arithmetic operations when

using the scalar and pipeline processors. It is interesting to note that improvements

in speed lie between a factor of 4 and a factor of 170.

- 48 -

CPU time <t>

gradient .=»•• a.

Vector length (n>

FIGURE 2.9.4.1-1 Relationship between vector size and CPU time

O.O2 -
CPU tim<

OtOlS -

0.01 -

OiOOS -

2OO 4OO 6OO 8OO
'" : . ••• ':'••' '. Vector si

' ''' ' ' '

1OOO 12OO 14OO

FIGURE 2.9.4.1-2 Measurement of n 1/2 and r. using the scalar processor

- 49 -

35 -i

3O -

25 -

20 -

15 -

10 -

CPU time (seconds) ClE-4>

-2OO 20O 4OO 6OO 800 1OOO I2OO 1AOO

-.•••: ".•••:;.'..:: Vector size ••..:; . '.-'.-.' -•:•:;...':..../:'-:'.,.•,:•::

FIGURE 2.9.4.1-3 Measurement of n 1/2 and r. using the high-level RTL routine

3O -
CFtJ time < seconds) <lE-5>

200 400 60O 80O 1OOO 12OO 14OO

Vector size .. ::3; ; -V-.^'V-;. '':'i'-^ :%-:';: -;.- : '-: : '" :: ".- : --i- ;; : ;

FIGURE 2.9.4.1-4 Measurement of n lfl and r. using the low-level RTL routine

- 50 -

SSSSHx wi ?$MM&8Z;:
jo;;

:: OO• : r*i; :x&- : '-:'<±-
•''' -••••••'•••-•-•••• --

S 2;

. OO

OO" :

o

Si
ov o

OO

ON
O

OO
O

;>- .••••: ^5

•f JL ?
w

TABLE 2.9.4.1-1 Values of n,n and r. for some arithmetic operations

- 51 -

2.9.4.2 UNPACK performance

Another means of measuring the performance of the MC5400 is in the solution of

a dense system of equations using the LINPACK software (Dongarra et al [1979]).

The software was run in a FORTRAN environment using single precision

arithmetic. The results (tables 2.9.4.2-1 and 2.9.4.2-2) show that the scalar

processor performs at 0.085 Mflops and the pipeline processor at a rate of 0.25

Mflops. (These results are consistent with those quoted in section 2.9.4.1 for the

high-level routines). The LINPACK results reflect the use of the high-level routines

rather than the low-level routines. This is because all vectorised computations

involved load/store operations which were unavoidable, since only the Basic Linear

Algorithm Subroutines called BLAS (Lawson et al [1979]) were allowed

modification. According to the LINPACK results, the scalar processor is over 140

times slower than a CRAY-IS, and the combination of the scalar and pipeline

processors are up to 50 times slower than the CRAY-IS.

2.10 Expected gains in vectorisarion of a program

Amdahl [1967] considers the situation where there are two processors, for example

a scalar and a vector processor, with different execution rates. The scalar processor

has an execution rate r, and the pipeline processor a rate rv . Further consider a

program which has a total of I instructions. Then the scalar processor will execute

these instructions in a time T, given by

T, = _L (2.10-1)

- 52 -

: normJB:: '' :;.;'• ̂ resid : machep •- &" •• x(1) :• • 'M\ " . >• x(n) : ; . . - -: ::: - • : i
3.69101763E-05 i.l92b9290E-67 9199986172E-Oi

order 100 : •':< • :'i:;••- : - :-f • '^-6^ ' - :
sgefa sgesl total mllops units ratio

times for array with leading dimension of 201
2^ 2.345E+01 1
230QE-01 8,10QElOO 8.477E-02 2.359Ef01 1

7.832E400 2333E-01 &065E^OO 8.5T4E-02 2.349E+01 1.440E+02

itunes for array with leading dimension of 200
2:333&01 S^olZEpX) 8,5liE-02 Z350E+01
2.661^01 8.083El^

7,8171*00 21333E-01 8;O^OE-i-00 8.530E^02 2.345E+01 1.438E^02
7-822lS()0 2.333E-01 8:055E*00 8.525E-02 2.346E+01 1.438E*02

TABLE 2.9.4.2-1 UNPACK results using the scalar processor

nonn.ie resid machep x(I)

| times are reported for matrices of order 100
111 -:;:sgefia- : : :•:;;•. -?m. Sgesl;' -:•. :• • : ;• • ivi. total: :f ; ;:;-i..; mflbps •' ; ;. ['••• • • : ''•, units:- = -
times for array with leading dimension of 201
2.683E400 l.OOOE-01 2.783EWX) 2.467E-01 8.107E+00 4.970E+01
2.633E-KX) 8333E^02 Z717E-fOO 2.528E-01 7.913E+00 4.851E+01
2.700E+00 l.OOOE-01 1800E-KX) 2.452E-01 8.155E-fOO 5.000E^01
2.630E+00 9.000E-02 2J20E+00 2.525E-OI 7.922E+00 4L857E-IO1

times for array with leading dimension of 200
2.633E+00 8.333E-02 2.717E-J-00 2.528E-01 7.913E+00 4:85lE+Ol
2.600E+00 LOOOE-01 1700E+00 2.543E-01 7.864E+00 4.821E+01
2.600E+00 8.333E-02 2.683E+00 2.559E-01 7.816E+00 4.792E+01
2.603E+00 8.833E-02 2.692E-KX) 2.551E-01 7.840E+00 4.807E+01

TABLE 2.9.4.2-2 LINPACK results using the scalar and pipeline processor

- 53 -

Using both the scalar and pipeline processors, the execution of the same I

instructions can be carried out in a time Tvf given by

TV, = I/Ju. + Jv_^l (2.10-2)
rt rv

where f, and fv represent the fraction of instructions executed by the scalar and

pipeline processors, respectively. Hence we have also

f, + fv = 1 (2.10-3)

If we now define a speed-up factor (S) as the ratio of scalar to vector execution

times

S = !. = _L --LLL. + Jv_V
T^ r, I I r, rv

=
r, \ f,rv + fvr, / (l-fv)rv + fvr,

fvr,/rv

S = 1 (2.10-4)

where T is the ratio of vector to scalar execution rates given by

I = rv (2.10-5)
.V——

Figure 2.10-1 shows the variation of S with fv for two extreme ratio values i=2,

- 54 -

500. It also shows the graphs for the ratios of low-level routine speed to the scalar

speed (T=173.2) and high-level routine speed to the scalar speed (t=4.35). It

follows that all speed-up factors quoted from now on which compare the

equivalent scalar and vector codes must lie within the shaded area.

2.11 Closure

Three different classification schemes for parallel architectures have been discussed

For a broad overview of these architectures Flynn's classification has emerged as

the most popular. However, for a more complete breakdown Hockney's

classification is recommended, especially as it clearly classes the pipeline

processor.

It has been shown how pipeline vector processors attain their high performance

relative to the scalar host processor. This has been typified by the MASSCOMP

MC5400 machine. The questions of ponability of the CFD code and general ease-

of-use of the vector processor have been addressed. The result of which means that

vectorised CFD codes developed on the MC5400 can be ported onto other

machines with vector processing capabilities.

A means of measuring the effectiveness of vectorisation for any machine has been

described. This facility can be used to predict the expected gains in speed of a

vectorised CFD code.

500

400

fc 300

200

100

t=173.2

0^8
fraction of vectorised code

FIGURE 2.10-1 The speed-up achieved when a fraction of the code is
vectorised for different execution ratios (T)

- 56 -

CHAPTER THREE

- 57 -

3.0 SOLUTION PROCEDURES

3.1 Introduction

This chapter considers the general mathematical representation of the governing

conservation laws and also a means of solving the resulting equations using a

solution procedure. These equations are typically coupled and non-linear. The

conservation laws can be expressed as a system of partial differential equations.

These equations are presented, without loss of generality, to include laminar and

turbulent flows, as well as steady state and transient situations. A number of

different solution procedures exist which can be used to solve the resulting

discretised equations. To date, the SIMPLE-based solution procedures (Patankar

and Spalding [1972]) are amongst the most popular.

3.2 The governing differential equations

3.2.1 General conservation equation

The governing partial differential equations are a mathematical representation of

the physical conservation laws of momentum, mass, enthalpy and other conserved

fluid properties. With u denoting the x-direction velocity, the differential equation

governing the conservation of momentum for a Newtonian fluid can be expressed

as

_3(pu) + div(puu) = div(p.gradu) + Su - 82 (3.2.1-1)

Similar equations can be written for the v and w velocity components in the y and

z-directions, respectively. The differential equation governing the conservation of

momentum for a fluid is of particular importance and is expressed as

- 58 -

ap_ + div(pu) = 0 (3.2.1-2)
at

This equation is also known as the continuity equation. As the name suggests, the

net mass flux entering the system must balance that leaving the system to ensure

continuity.

The differential equation governing the conservation of enthalpy in its general form

has many contributions, however assuming Pick's law of diffusion this can be

written in a compact form as

J)(ph) + div(puh) = div(KgradT) + S h (3.2.1-3)
at

It is apparent that equations (3.2.1-1) to (3.2.1-3) have the same basic structure

and this is true of all conserved equations. These equations can be represented by

a single general conservation equation given by

+ div(pu<j>) = div(I%grad<l>) + S^ (3.2.1-4)
at

Here (j) is the dependent variable. The term _a(p0) represents the transient or time
at

rate of change, div(pu(})) represents the transportation of <J) by convection,

div(r^grad(})) represents the contribution through diffusion of <j) (I\ is a diffusion

coefficient) and finally, S t is a 'source' or 'sink' expression which contains any

other contributions which do not fit easily into the other terms.

- 59 -

3.2.2 The discretisation of the general conservation equation

The solution of the differential equations typified by equation (3.2.1-4) is achieved

by constructing a set of algebraic linear equations. The solution of such a set of

equations provides a discrete representation of the continuous solution of the

differential equation.

For a given problem the 'discretisation' of a domain can be carried out in a

number of ways. Currently, the most popular numerical methods include the finite-

element, finite-difference, and control-volume approaches. Roach [1982] provides a

detailed discussion of these and other types of numerical methods. The numerical

method employed in this study is the control-volume approach.

The domain of interest is subdivided using a finite number of control-volume

rectangles which do not overlap. The grid is made up of orthogonal intersecting

grid lines (figure 3.2.2-1). The intersection of these grid lines are called nodes, and

all scalar variables are evaluated at these points. The u-velocity components are

evaluated midway between two adjacent horizontal grid nodes, and similarly the v-

velocity components are evaluated midway between two adjacent vertical grid

nodes.

In this study the 'staggered-grid' approach of Harlow and Welch [1965] is

adopted. The advantages of using a staggered-grid include the availability of

velocities at the control-volume faces to evaluate flux values directly, and the

simple evaluation of the pressure gradients as part of the discretisation of the

- 60 -

E> 4I>*

;• B a- tr N: D A
1F-~. ' - -' '.

*• Grid, point (no<ies) scalar and pressure locations

__ \i—velocity locations : ' : :';.:','x:::'".•... • ••••:• •::':-;';-•'• •'.' ' . > :; : ::

f' y*-yelacity locations:.'...:'••..• : -.;;,',--,'. .• •.: ;;-...;/•;•.••;:;:-.-.;,..,,;;. ; ;••;,;;,..;.•;.;:;::•:•;.

FIGURE 3.2.2-1 Grid lines, node centres and velocity locations

- 61 -

momentum equations. The advantages of such an approach are appreciated when

deriving the control-volume equations in section 3.4.

It should be noted that recently many workers such as Rhie and Chow [1983],

Prakash and Patankar [1985], Jones et al [1985], Schneider and Raw [1987] and

Lonesdale and Webster [1989] have successfully implemented a non-staggered or

collocation method. The obvious attraction of collocation methods is the storage

and evaluation of all variables at the same grid nodes, thus eliminating the

housekeeping problems usually associated with the staggered-grid approach.

Both the non-staggered and staggered approaches have their merits and drawbacks

and have been used successfully to solve computational fluid dynamics problems.

However, it is not the purpose of this research to determine which approach is

best. Therefore, the staggered-grid approach was adopted because it has been well

established for many years whereas the non-staggered approach has been used only

recently.

3.3 Control-volumes in a discretised domain

In the staggered-grid approach there are two main forms of control-volumes, those

at general internal nodes and those situated near a boundary location. The general

internal control-volumes for each of the dependent variables, namely the staggered

velocity components u, v and the scalar and pressure variables <j> are shown in

figure 3.3-1. There are three distinct types of control-volumes which exist for near-

boundary nodes and these are shown in figure 3.3-2. One of the drawbacks in

adopting a staggered-grid approach is that in order to make the control-volume

- 62 -

•:: :-:-:: :; :"::>:w:::*>:: : : : : : ; : : . x : : : ::x::;x;:-:: ::£;x: :-x :
^: ::: : :: :;x:::x:x:::x:: : : : : : ; V ::: ::x:::x::x>x'v:

6
K

»••»•

f|i — «
1?
••W- : '

Hi

$$<

!••
:' •-' - MM*

•t:; : : -:.::

88^̂
1IQs^

f"~" — •

g|:;-
»• — ,,.;:';!!.' ——— •

If
: .: -^

i?
IX?s?^^vv< 5oo<^>o< ^>o<
88888SS^ScS^fc^^. ,^"V .^N.

I;';;;;;
>MM':'...TTTT

••••> •'

•••»•'.;. .•'.''• <

tt£:i:
>','';•'. ——— ——— ̂ ————— '

;tr.%;: ;:
^ ;;t'
» .• "^ — <

|;::tir
:[,jm

>' ; '" ..-•••'•.•; .' <

pi
> " . : ^ <

i!!!!|= — i

» — : ' ',"''•; <

!: ti;: : .;>:: :: : :: '-'V •'•" ' : ' , ; ::.: : ' :11
• I -.•.•• - ..•..-•• •;-.•

•: I ;•.•/ •:••.•• • . : "• •::•:'• :-:-:-x:
1 ";'!:•:; _:_._ •-•' .- ;"• ' . " • / ..-.">.: "••x-;:

•'.•'. . ' . . •.-'-•' • • .-..•''.'.. '.•'.•'.•'.•'.-

:W:: :: :-:,.' : - - "'•• -.^ : :'-^M
I ' ,-.-•: •:•.. : •. :. • ••:•. • ••• -fff

':\ •-:•:•:••: : ' - : V'l^li

•f:>^': : .-:;,' : ' : - .' •• : '%-:-l
r ; -;.: ;:,-.•. . •.-•. -. ixxi-^s

h——— ::•;.:•. ':.•:: ' , - 0- i'^g

W?:: ^:SI
»— • ̂ '> . • • ' : --; i ''; : ;-: : ; :: ':-Si

::^i:; ::: ; ::^ .,::•: |^ U' ' ^$i

control— volume •. ' ;; : ;' x '! : .--:^. : ; ;' v : ; ; ••;-< •••;.' : ^;^:i|

'control: — vol um e • :- : ••;•: ^ ; • •:';::;; ,- :;.:-: ::l%^ -• ;; : ' : : ; / • ; :;i:: /P|

control — volume ^.2,,c.^.^:-^^- : . •:•• : --•:'• 11

FIGURE 3.3-1 Control- volumes for internal nodes

v control—volume

0 contrdl—volume

FIGURE 3.3-2 Control-volumes for boundary nodes

- 63 -

faces for velocities and scalars coincident with the boundary nodes, a half control-

volume is used.

3.4 Derivation of control-volume equations

To solve a general fluid flow problem all variables can be determined with only a

small number of equations, the only equations which need to be considered for

discretisation are the momentum equations, the continuity equation and a general

scalar equation. The derivations for these equations assume a two-dimensional,

incompressible flow in a cartesian frame of reference. The extension to three-

dimensional, compressible and transient problems is straightforward.

3.4.1 The momentum equations

The momentum equations for the u and v- velocity components can be expressed as

_d(puu) + JKpvu) = Ji/Tudu JJcto S u (3.4.1-1)
3x1 3x/

JKpuv) + _3(pw) = Ji/dv _2/rv3v sv (3.4.1-2)
3x 3y dxV 3xy dy\

The notation implemented here is that used extensively by Patankar [1980]. Figures

3.4.1-1 and 3.4.1-2 show typical staggered control- volumes for the u and v- velocity

components, for reference purposes the general scalar control-volume is also

shown. In the momentum equations there are three separate terms to consider,

these are the diffusion, the convection and the source term. These terms are now

derived.

- 64 -

Ne:

FIGURE 3.4.1-1 u-velocity control-volume

N

nE

FIGURE 3.4.1-2 v-velocity control-volume

- 65 -

3.4.2 The diffusion term

The solution of the u-velocity diffusion component is obtained by integration of

equation (3.4.1-1) over a control-volume e. This yields the following expression

yM

y,e
dydx

= OVDp+D.+D Ju. - (DBuB.+DPuw-fD 11.ulto+Di.iisJ

D =

DP =
5x

5x
(3.4.2-1)

where the D's represent the flux due to diffusion across a given face. The

evaluation of quantities at locations E, P, ne and se are determined using linear

interpolation if they are not known.

A similar derivation process is used to determine the diffusion term for the

v-velocity component over a control-volume n, this is given by the integration

nw«/ ys
a/rvav

ax _ ay
dydx

= (Dac+Dnw+DN+D P)vQ -

D w =
5x

- 66 -

(3.4.2-2)

Dp =
5y

3.4.3 The convection term

The solution of the u-velocity convection component is obtained by integration of

equation (3.4.1-1) over a control-volume e. This yields the following expression

*E yne

v vAp j y w
3(puu) +

9x

i
_^(pvu)
3y

dydx

Ju. - (CEuEe+CPuw+CneuNe+CleuSe)

CE = Max{-(pu)EAy, 0}

CP = Max{(pu)pAy, 0}

Cne = Max{-(pv)ne5xe, 0}

Cje = Max{(pv)ie5xe, 0}

(3.4.3-1)

In this study an upwind differencing scheme is used to determine the convection

coefficients C. The C's describe the flux due to convection across a given control-

volume face. A similar derivation can be carried out for the convection term of a

v-velocity component over a control-volume n, and is given by

J}(puv) + J)(pvv)
3y

= (Cne+Cnw+CN +CP)vn -

CM = Max{-(pu)ne5yn , 0}

Caw = Max{(pu)nw 5yn , 0}

dydx

(3.4.3-1)

- 67 -

CN = Max{-(pv)NAx, 0}

CP = Max{(pv)pAx, 0}

For convection dominated flows, the method of approximating the convective term

has been of interest for many years. It has been reported by many that the central

differencing scheme is a poor approximation for such flows, for example Timin

and Esmail [1983] and Patel [1987]. Other schemes have been devised such as the

hybrid scheme of Spalding [1972], the skew-diffusion scheme of Raithby [1976],

the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme

of Leonard [1979], the Corner UPwInDing (CUPID) scheme of Patel et al [1988]

and the Curvature Compensated Convective Transport (CCCT) scheme of Gaskell

and Lau [1988]. The upwind difference scheme is by no means the 'best' scheme,

but for the problems considered in this study the scheme performs well enough.

One of the more elaborate schemes could have been used instead of the upwind

difference scheme, however, in this study the investigation of the various schemes

was not considered.

3.4.4 The source term

The final term in the u-momentum equation is obtained by integrating the source

term over the control-volume e. This gives

Yne
S u dydx = Su5x,Ay (3.4.4-1)

Yse

Using the linearisation procedure suggested by Patankar [1980] equation (3.4.4-1)

becomes

- 68 -

Xp * te

Su dydx = (SI - (S'J'uI) + (S-J'u.

dS! if dSL < 0
due due(Sue)' =
0 otherwise

(3.4.4-2)

where (S")' is the gradient of the source term over the control-volume e, and the

asterisk indicates known approximations. Similarly for the v-velocity component,

the integration of the source term over the control-volume n is given by

Sv dydx =
y?

= (Svtt - (S3X) + (S3

(SD' =
ds: if ds: < o
dvn

0 otherwise
(3.4.4-3)

3.4.5 Continuity equation

The continuity equation ensures mass conservation of the fluid and is given by

_3(pu) + _3(pv) = 0 (3.4.5-1)

Integrating the continuity equation over a control-volume P (figure 3.4.5-1) gives

Yn

y,
_3(pv) dydx = 0

((pu). - (pu)JAy + ((pv)Q .- (pv)JAx = 0 (3.4.5-2)

- 69 -

Using the velocity-correction formulae of Patanakar [1980]

ue = u; + d^p; - p0 (3.4.5-3a)

vn = v; 4- dn(P; - p^) (3.4.5-3b)

where u* is the velocity to be corrected, pp is the correction to pressure at P and

is given by

d, = A, (3.4.5-4)

where Ae is the area of the control-volume face and a, is the diffusion+convection

coefficient at e. Substituting (3.4.5-3) into (3.4.5-2) gives

((pu). - (pu)JAy + ((pv)B - (pv).)Ax - (pdXpgAy - (pd)wpiAy -

- (pd),ps'Ax + ((pd^y + (pd^y + (pd)0Ax + (pd),Ax)P; = 0 (3.4.5-5)

3.4.6 The scalar equation

The general scalar <}) equation is representative of variables such as enthalpy (h),

kinetic energy (k) and dissipation rate (e) as used in turbulence modelling. The

equation has the form

(3.4.6-1)

and is integrated over the control-volume P in a manner similar to that for the

continuity equation (figure 3.4.5-1). Like the momentum equations, the scalar

equation has a diffusion, convection and source term, and these are now presented.

- 70 -

sx.

FIGURE 3.4.5-1 Pressure-correction control-volume

- 71 -

The diffusion term is given by

y. ax y dxJ ay y ay
dydx

= (De+Dw+Dn+D,)<!>P - (De<J> E+Dw <}) w+Da(j> N+D5 <j> s)

D =
Ax

Ax

Ay

Ay

(3.4.6-2)

The convection term is given by

V.
y,

J)(pv(j>)
ay

= (Ce+Cw+CB+C,)<|)p - (C

Ce = Max(-(pu).Ay, 0}

Cw = , 0}

Cn = Max{-(pv)nAx, 0}

C, = Max{(pv),Ax, 0}

dydx

(3.4.6-3)

Finally, the integration of the source term is given by

^ dydx = S^AxAy
y,

- 72 -

= (Sf - (SJW) + (SJ)'*

(Sp)' =

if dSJ_ < 0
d<|>p

0 otherwise
(3.4.6-4)

3.4.7 The final control-volume equations

The discretised diffusion, convection and source terms when substituted into the

general equation (3.2.1-4) gives an overall control-volume equation of the form

Ap<J>p = SA*4>* + S (3.4.7-1)

where A^ represents the coefficients for the four neighbouring nodes based on

convection and diffusion contributions and S represents the source term

contributions.

It is important that the physics inherent in the original differential equations is

preserved when using the control-volume approach. Conservation must be satisfied

not only for each individual control-volume but also for the entire domain.

Therefore, as well as ensuring continuity at each control-volume the flux continuity

between two adjoining faces must be continuous. Ensuring that all coefficients are

positive and satisfy the inequality

AP > SX, (3.4.7-2)

- 73 -

then the discretised equations will also satisfy the boundedness property. To

prevent violation of this inequality through the linearisation of the source term, the

gradient is always negative. This condition gives rise to a diagonally dominant

system of equations which can be solved using either direct or iterative algorithms.

3.5 Solution procedures

A solution procedure provides a strategy for solving the system of coupled, non­

linear discretised equations. Probably the most widely used solution procedure is

based on the original work of Patankar and Spalding [1972], and is referred to as

SIMPLE (Semi-Implicit Method for Pressure Linked Equations). As the name

suggests, the method solves the control-volume equations by de-coupling the

pressure-linked equations using iteration. Many variations of the SIMPLE procedure

exist, some of the more widely used variations include CTS SIMPLE (Raithby et

al [1979, 1980]); SIMPLER (Patankar [1980, 1981]); SIMPLEST (Spalding

[1980]); SIMPLEC (Van Doormaal and Raithby [1984]); PISO (Issa [1986]);

FIMOSE (Latimer and Pollard [1985]) and IMPLE (Wang et al [1989]).

3.5.1 The SIMPLE solution procedure

The main computational steps for the SIMPLE procedure are given below:

(1) Guess the initial velocity and pressure fields u, v and p*

(2) Solve the momentum equations (section 3.4.1) to give an
approximation to the velocity fields u" and v". These solutions are
based on the guessed pressure field.

(3) Solve for a pressure-correction field p' (formulated from the
continuity equation, section 3.4.5).

- 74 -

(4) The pressure-correction field is used to correct the velocity
approximations using the velocity-correction formulae (3.4.5-3).

(5) The pressure-correction field is also used to correct the pressure
field.

(6) At this stage any scalar variables are solved (section 3.4.6).

(7) Check to see if the solutions obtained for all variables satisfy the
convergence criteria, if not, steps (2)-(6) are repeated until
convergence has been achieved.

In general, mass errors exist when solving the velocity fields in step (2). These

errors define the source term in the continuity equation and ideally should be zero.

The purpose of the correction to the velocity fields in step (5) is to eliminate the

continuity errors. Thus the SIMPLE procedure attains convergence through a series

of iterations, where at the end of each iteration, the velocity fields satisfy

continuity.

Since there usually exists a strong coupling between the differential equations, it is

often necessary to exercise some form of relaxation to achieve a converged

solution. The relaxation employed here is a linear under-relaxation of the form

(l-og<j> old (3.5.1-1)

and is applied to all variables except pressure. The pressure field is under-relaxed

as

(3.5.1-2)

where the relaxation parameters o^ and ap are positive and usually less than 1.

- 75 -

3.5.2 The SIMPLEC solution procedure

In deriving the velocity-correction formula (3.4.5-3a) for the u velocity component

an assumption was made that the term Sa^u^, was negligible (Patankar [1980]).

However, Van Doormaal and Raithby [1984] realised that ignoring this term while

the left-hand-side of the equation retains a term of comparable magnitude makes

the formulation inconsistent. To introduce a consistent approximation, the term

Za^u^, is not neglected, but a term of similar magnitude Za^X is subtracted from

both sides. The momentum equation for the u velocity component now becomes

(a. - lajul = Xa^CC - uD + Ae(P; - p0 (3.5.2-1)

and the term Zanb(u^b - u^ is neglected making SIMPLE Consistent, hence the

name SIMPLEC. The coefficient de in the velocity-correction formula is no longer

given by (3.4.5-4) but is modified to

de = A. (3.5.2-2)
a. -

(The momentum equation for the v velocity component is modified in a similar

manner). Therefore, the sequence of steps in SIMPLEC are identical to the steps in

SIMPLE with the following modifications:

(a) The d's are now defined by expressions such as (3.5.2-2) and are

used in equations (3.4.5-3) and (3.4.5-5)

(b) There is no relaxation of the pressure-correction field when

updating the pressure field (3.5.1-2) i.e. ap=l.

- 76 -

3.5.3 The CTS SIMPLE (Consistent Time Step) solution procedure

There is a single difference between this solution procedure and SIMPLE, this is

the way the relaxation parameters ccp and c^ are defined. In CTS SIMPLE these

parameters are defined as

ccp = 1 (3.5.3-1)
1 + E

= E (3.5.3-2)
1 + E

where E represents a distorted time step. This is done so that ap is consistent with

the time step used in the momentum equations.

3.5.4 The SIMPLER solution procedure

One of the drawbacks of SIMPLE is that the pressure-correction field although

over-estimated, is of the right order of magnitude to effectively correct the velocity

fields but not the pressure field. Therefore SIMPLE can be modified by

introducing a separate equation to evaluate the pressure field. This equation is

based on pseudo- velocities (Patankar [1980]), for example the u velocity

component has pseudo-velocities such as

ue = la^ul + b (3.5.4-1)

The pressure field equation is similar to the pressure-correction equation (3.4.5-5)

except that the starred velocities are replaced by pseudo-velocities.

- 77 -

The main computational steps of SIMPLER are given below:

(1) Guess the initial velocity and pressure fields.

(2) Generate the pseudo-velocity fields u and v typified by (3.5.4-1).

(3) Solve for the pressure field p" (similar to the p' equation (3.4.5-
5), except pseudo-velocities are used to define the mass source
term).

(4) Solve the momentum equations (section 3.4.1) to give an
approximation to the velocity fields u* and v". These solutions are
based on the pressure field from step (3).

(5) Solve for a pressure-correction field p' (formulated from the
continuity equation, section 3.4.5).

(6) The pressure-correction field is used to correct the velocity
approximations using the velocity-correction formulae (3.4.5-3).

(7) At this stage any scalar variables are solved (section 3.4.6).

(8) Check to see if the solutions obtained for all variables satisfy the
convergence criteria, if not, steps (2)-(7) are repeated until
convergence has been achieved

3.5.5 The IMPLE solution procedure

Wang et al [1989] describe a "better procedure than SIMPLER". The essence of

IMPLE is to update the velocity fields using a formulation based on density-

correction rather than the conventional pressure-correction. In general, the starred

velocities do not satisfy the continuity equation, and this is described by a mass

error term b given by

b = «pu')e - (pu')w)Ay + ((pv')n - (pv')JAx (3.5.5-1)

A 'time-dependent' term A is introduced such that the continuity equation is

satisfied, and is given by

- 78 -

A - b = 0 (3.5.5-2)

A = pJ£V (3.5.5-3)
dt

» p; = bdt (3.5.5-4)
dV

where pp is the density correction, dV is the control-volume and dt is the time

step in the iteration procedure. This now defines a density correction field. The

velocity-correction formulae are also modified and are given by

ue = u*e + (P: - pa u; (3.5.5-5a)
Pi

va = v; + (p^ - Qv) v; (3.5.5-5b)

The sequence of steps in EMPLE are similar to those in SIMPLER with the

exception of steps (5) and (6), these now become

(5) Calculate the density-correction field using (3.5.5-1) and (3.5.5-4)

(6) Correct the velocity approximations using the velocity-correction
formulae (3.5.5-5)

3.5.6 The PISO solution procedure

The PISO solution procedure achieves the solution by a series of time-marching

steps. Each time step consists of one predictor and one corrector step for the

pressure field, and one predictor and two corrector steps for the velocity fields.

- 79 -

The momentum equation for the u velocity component in section 3.4.1 can be

written as

+ Ae(p> - p>) + bi (3.5.6-1)

where * represents the predictor approximations and l represents the converged

solution at the previous time step. This equation is updated by the first corrector

approximation (denoted by "*) and is given by

a.iC = Xa^iC + Ae(P; - p') + bi (3.5.6-2)

and the correction equation is obtained by subtracting (3.5.6-1) from (3.5.6-2) to

give

ur = ue + de(p; - PE) (3.5.6-3a)

u, = ul - d.(pt - PE) (3.5.6-3b)

A similar set of prediction and correction equations are defined for the v velocity

components. The approximations u" and v" are used to formulate the pressure

equation from the continuity equation. This is the predictor step for the pressure

field.

If the momentum equation for the u velocity component is now expressed as

*** ^^^ ** A / ** * *\ 1 i / ̂ ^ v*' A \aeue = S^^b + Ae(pP - p E) + b^ (3.5.6-4)

where *" denotes the second corrector approximation, then the second corrector

equation is defined by subtracting (3.5.6-4) from (3.5.6-2), this gives

- 80 -

uT = u, + de(Pr - p'*) (3.5.6-5a)

(3.5.6-5b)
ae

The approximations u""" and v*" are used to formulate the pressure equation as

before, and this is then the corrector step for the pressure field.

The main computational steps for PISO are given below:

(1) Using the previous time step solution u1 , v1 and p* the momentum
equations (3.5.6-1) are solved to give u* and v".

(2) Calculate the coefficients for the pressure equation and hence
solve for the pressure field p*.

(3) Correct the velocity fields (i.e. equation (3.5.6-3)) to give u" and v".

(4) Using the corrected velocities, calculate the coefficients and then
solve for the corrected pressure field p".

(5) Correct the velocity fields (i.e. equation (3.5.6-5)) to give u"* and••• v .

3.5.7 The FIMOSE solution procedure

The basic concept of FIMOSE (Fully Implicit Method for Operator-Split Equations)

is to de-couple the pressure-velocity link so that variables are dealt with one at a

time. It is interesting to note that in FIMOSE no pressure-correction equation is

used.

Using a mass flow rate formulation, a velocity block-correction can be defined

such that

- 81 -

u' = rfL. - IPU:A; (3.5.7-1)
p.(flow area)

where u' is the velocity correction added to each velocity along a constant grid

line, nX is the mass flow rate at the inlet, u* is the current velocity approximation

and Aj is the area of control-volume i. The change in the pressure gradient (Ap) is

given by

= fa, - ZpulA, (3.5.7-2)

and this is added to all grid nodes to maintain the correct mass flow rate.

The main computational steps for the FIMOSE solution procedure are given below:

(1) Guess a velocity field which satisfies the continuity equation, and
also a pressure field.

(2) Calculate the momentum coefficients and solve for the velocity
approximations u* and v* (section 3.4.1).

(3) To ensure continuity is satisfied, the velocities are corrected
using equations (3.5.7-1) and (3.5.7-2).

(4) Calculate pseudo-velocities (3.5.4-1) and hence solve for the
pressure field p" (3.4.5-5.).

(5) Using the pressure field p* solve the momentum equations again
to give u** and v".

(6) Apply the velocity corrections as defined by equations (3.5.7-1)
and (3.5.7-3), this ensures a divergence-free velocity field.

(7) Re-calculate pseudo-velocities (3.5.4-1) and hence determine the
pressure field p".

(8) Using the new pressure field solve the momentum equations
again to give u"* and v"".

(9) Apply the velocity corrections as defined by equations (3.5.7-1)
and (3.5.7-3), this ensures a divergence-free velocity field.

(10) If convergence has not been achieved use u"", v"" and p*" as theIf convergence has not been achieved use i
latest approximations and return to step (2).

- 82 -

3.5.8 The SIMPLEST solution procedure

This procedure can be applied to all of the above, however, there is no guarantee

that it will improve the performance of the solution procedure it is applied to.

Spalding [1980] recognised that as the discretised grid was made finer the

performance of SIMPLE deteriorated. This was traced to the dominance of the

convection terms in the momentum equations, and placing these terms into the

right-hand-side with other source terms generally improved the convergence rate of

SIMPLE. To acknowledge this modification the procedure is referred to as

SIMPLEST (SIMPLE-ShorTened).

3.6 Implementation of the SIMPLE family

The choice of implementation of SIMPLE is of particular interest in this study. An

efficient implementation is desired for the scalar processor, but also an

implementation is needed which will allow for vectorisation. Two different

implementations which have been extensively used are described below. Patankar

[1980] does not suggest any specific implementation for SIMPLE, moreover the

choice of implementation is left to the programmer.

3.6.1 The NEAT approach

The NEAT (Nearly Exact Adjustment of Terms) approach was suggested by

Spalding [1976] and is basically a line technique where all variables u, v, p and 0

- 83 -

are solved for in turn for a given constant grid line, and the most recent

information from the neighbouring grid lines can be used. Therefore equation

(3.4.7-1) is re-arranged for a constant x grid line and is given by

Ap<|)p - AJ^N - As<j) s = AE<|) E - Aw(j) w + S (3.6.1-1)

The resulting tridiagonal matrix is then solved. In addition to solving all the

variables on a line, a block correction (Settari and Aziz [1973]) is carried out to

enhance convergence. When all lines have been visited in turn then one SIMPLE

iteration has been carried out.

The NEAT approach has been used by Pun and Spalding [1976] as part of the

CHAMPION series codes and also by Patankar [1981].

3.6.2 The whole-field pressure-correction approach

In the whole-field pressure-correction approach the variables u, v, p and § are

solved in turn for the entire calculation domain. Therefore information about the

neighbouring grid nodes are needed in this formulation. In this approach the

pressure-correction field is solved to a much higher degree of convergence within

each SIMPLE iteration. Chapter 4 describes how such an approach can lead to the

solution of either a tridiagonal matrix system of equations defined by (3.6.1-1), or

a pentadiagonal system of equations defined by (3.4.7-1). Therefore, this approach

is more flexible than the NEAT approach. It will be shown in Chapter 4 that the

system of equations resulting from the whole-field approach are solved more

efficiently on the VA-1 processor than those resulting from the NEAT approach.

- 84 -

Therefore, the whole-field pressure-correction approach is preferred in the

implementation of the SIMPLE procedure.

3.7 Choice of solution procedure

It is extremely difficult to suggest the best solution procedure of those presented.

Attempts to compare some of these procedures have been carried out by many and

is still an area of great interest.

Many similarities between these procedures exist, for example, Van Doormaal and

Raithby [1984] state that when the linearised term (Sy (3.4.4-2) is zero SIMPLEC

becomes identical to CTS SIMPLE. Latimer and Pollard [1985] state that PISO is

similar in many ways to FIMOSE. Also, the first prediction and correction steps of

PISO are identical to SIMPLE, and that PISO and SIMPLER are very similar.

Jang et al [1986] carried out a comparison of SIMPLEC, SIMPLER and PISO. In

their conclusions they state that if the coupling between the momentum and scalar

equations is weak or non-existent, then PISO is more efficient and stable than

either SIMPLEC or SIMPLER. However, for problems where the coupling is

strong, then SIMPLEC and SIMPLER have a similar performance and are more

efficient than PISO.

Wang et al [1989] show that IMPLE can be more efficient than SIMPLE and has

a performance similar to SIMPLER. However, lerotheou et al [1988] have shown

that in some cases SIMPLE can be more efficient than SIMPLER. For example,

the solution of the 'cavity with moving-lid' problem (Chapter 5) was obtained

- 85 -

using the SIMPLE and SIMPLER procedures. The results show that the SIMPLE

procedure is up to five times more efficient than SIMPLER. Both procedures were

implemented using the whole-field approach, in addition, the SIMPLEST procedure

was also applied to both SIMPLE and SIMPLER. The SIMPLE procedure

modified to include SIMPLEST is referred to as SIMPLEST! and the SIMPLER

procedure modified to include SIMPLEST is referred to as SIMPLEST2 . Figure

3.7-1 shows the CPU time taken to solve the problem with a Reynolds number

Re=100 for a number of uniform (nxri) grids.

No single procedure has emerged as the 'best' and there are many reasons for this.

These include the characteristics of the problem being solved, more specifically,

the coupling of the equations, the boundary conditions and grid size all have a

bearing on which procedure performs most efficiently. The particular

implementation of the solution procedure, whether it is the NEAT or whole-field

approach, will have a significant effect on the performance. In this study SIMPLE

is implemented with a whole-field approach. While it is recognised that it is by no

means the most efficient procedure it is found to be sufficient for the test

problems studied and also allows for a straightforward extension to the other

solution procedures if necessary. Furthermore, the whole-field approach will allow

for an efficient implementation on the VA-1 processor.

3.8 Closure

In this chapter the control-volume approach was presented and used to describe the

discrete representation of the governing partial differential equations. The control-

volume formulations for the momentum, continuity and scalar equations were

- 86 -

33UU

3000

2500

P 2000

.§1500

1000

500

I_ JMPCEST*
3 SIMPLER ^
4 SIMPLEST2

FIGURE 3.7-1 Comparison of different SIMPLE-based procedures

- 87 -

derived for two-dimensional, steady state, incompressible flows. In the formulations

a staggered-grid was used to discretise the momentum equations, and the general

convective terms were represented using an upwind difference scheme.

A number of different solution procedures have also been described which can be

used to solve the resulting discretised equations. These solution procedures are all

based on the original SIMPLE procedure. Comparison studies have shown that

there is no single outstanding procedure of the SIMPLE derivatives, moreover, the

comparisons are highly dependent on the problem being solved and the particular

implementation being used.

In this study the SIMPLE solution procedure is implemented, however the

extension to one of its derivative procedures is straightforward. The implementation

involves a whole-field pressure-correction approach since it will allow for

vectorisation of the procedure at a later stage.

- 88 -

CHAPTER FOUR

- 89 -

4.0 SOLUTION OF LINEAR SYSTEMS OF EQUATIONS

4.1 Introduction

An important consideration in the implementation of the SIMPLE procedure is the

intermediate solution of the resulting linear algebraic equations typified by equation

(3.4.7-1). In this chapter a small subset of the many linear equation algorithms

which can be used to solve these equations are described. The descriptions include

details for both scalar and vector implementations.

These solvers are compared in both their scalar and vector implementations for the

solution of a very trivial heat conduction problem represented by the Poisson

equation.

4.2 The Poisson equation

This type of equation involves no convection component and requires the solution

of only a single variable <j). In two-dimensions the Poisson equation can be written

as

S t (4.2-1)ax2 ay2

This is an example of an elliptic partial differential equation and arises naturally in

many problems including the steady state distribution of heat in a plane region and

steady state problems involving incompressible fluids.

A unique solution to the Poisson equation is determined by the boundary

conditions and the source term Sv When the source term is zero this is a special

- 90 -

case of the Poisson equation and is called the Laplace equation. The problem

solved here is the Laplace equation in a unit square domain, with both Neuman

and Dirichlet boundary conditions (figure 4.2-1).

A grid is imposed onto the domain and a central-difference approximation is used

to represent the partial derivatives, these are given by

24 = 4*«-i24«_±_4m - (Ax)2 &<b (4.2-2a)
3x2 (Ax)2 12 3x4

24 = 4s*i^24fljL4y. 1 - iAy^M (4.2-2b)
ay2 (Ay)2 12 3y4

Ax = Xy - x^j (4.2-2c)

Ay = ya - yiH (4.2-2d)

substituting equation (4.2-2) into (4.2-1)

«-i =0 (4.2-3)
(Ax)2 (Ay)2

assuming a uniform grid is used, then

+ (|) i+lj + 0^ = 0 (4.2-4)

=> ay.^ij., + ^.^(1)^ - a^y + ai+lj<|) i+lj + a^^ = 0 (4.2-5)

A(j) = b (4.2-6)

where the a's denote the coefficients at the respective nodes. The resulting matrix

of equations (A) is symmetric, positive definite and pentadiagonal in structure. This

can now be solved using a linear equation solver.

- 91 -

= o

Im == 0

80 == 0

•-Ft
1m

x

FIGURE 4.2-1 Laplace equation solved on a unit square

- 92 -

4.3 Linear equation solvers

Linear equation solvers (or algorithms) may be classified broadly into direct and

iterative solvers. Both approaches have their merits, however in general, iterative

solvers are more favourable for large-order systems of equations.

Iterative solvers tend to require less storage for sparse matrix systems. Also, low

accuracy solutions can be obtained rapidly and this is of great importance when

there exists strong coupling within the problem to be solved. Furthermore,

advantage can be taken of a known approximate solution as a good starting point

for the iterative process. A drawback of the iterative solvers is that usually the

time taken to obtain a solution is not known a priori. The time taken and the

accuracy of the solution is highly dependent on the tolerance, convergence criteria

and where appropriate the relaxation parameter. If the convergence criteria is too

severe or the choice of relaxation parameter is poor then the convergence of the

iterative algorithm can be extremely slow.

It is an impossible task to attempt to discuss all linear equation solvers, instead a

small selection of the more popular ones are considered for discussion. This is

followed by a description of a subset of these solvers and their implementation

details for scalar and pipeline processors.

Of the direct algorithms the Thomas algorithm [1949] is probably the most

extensively used tridiagonal solver to date. It has been used by many authors such

as Spalding [1972] who refers to the solver as ID MA (TriDiagonal Matrix

- 93 -

Algorithm), Smith [1969], Come and De Boor [1980] and Roache [1982]. Other

tridiagonal solvers do exist, for example, the cyclic reduction algorithm (Hockney

[1965]) which does not include any recursive steps within the algorithm and

becomes more competitive when implemented on vector and parallel architectures.

The algorithm has increased in popularity because of this property (Lambiotte and

Voigt [1975], Masden and Rodrigue [1976] and Boris and Winsor [1982]). Other

direct algorithms include Gaussian elimination with pivoting, LU factorisations

such as Grout, Doolittle and Choleski (Burden, Faires and Reynolds [1981]) and

the Strongly Implicit Procedure (SIP) of Stone [1968], in particular the

modifications suggested by Schneider and Zedan [1981].

One class of iterative algorithms are described as gradient algorithms. The process

of solving a set of n simultaneous equations can be visualised as finding the

position of a minimum for an error function in an ^-dimensional space. The

method of conjugate gradients (Hestenes and Stiefel [1952]) typifies such gradient

algorithms. One of the useful properties of such algorithms allows a solution to be

obtained in up to n steps.

If the conjugate algorithm is used in an iterative sense for the solution of a banded

matrix system then a satisfactory solution can be obtained in significantly fewer

than n steps. Here the conjugate gradient algorithm can be far more efficient than

the Gaussian elimination algorithm. If however, the conjugate gradient algorithm is

used as a direct algorithm the solution is obtained after n steps (assuming exact

arithmetic is used). In this case, for a fully populated matrix the conjugate gradient

algorithm would execute almost six times more computation than the Gaussian

elimination algorithm (Jennings [1985]).

- 94 -

The convergence rate of the conjugate gradient algorithm can be improved by

applying a preconditioning matrix to the original matrix system. This technique has

been adopted by many authors who have observed the sometimes slow

convergence rate of the conjugate gradient algorithm. Some of the works that have

helped to promote the popularity of the conjugate gradient algorithm are due to

Meijerink and van der Vorst [1977], Kershaw [1978], Hageman and Young [1981],

van der Vorst [1982, 1986], Concus, Golub and Meurant [1985], Sonneveld et al

[1985], Kightley and Jones [1985], Kightley and Thompson [1987], Lai and Liddell

[1987], Kincaid et al [1986], Melhem and Cannon [1987] and Kapitza and Eppel

[1987].

Other iterative algorithms based on point-by-point and line-by-line techniques are

also used extensively and are sometimes referred to as classical or stationary

algorithms. Amongst this family of algorithms are the Jacobi with under-relaxation

(JUR), Gauss-Seidel and successive over-relaxation (SOR) algorithms. Varga [1962]

gives an excellent account of these and many other such algorithms. In the

notation which follows the mnemonic for a line-by-line algorithm is preceded by

the letter L, otherwise it is assumed to be a point-by-point algorithm. For example,

JUR describes the point-by-point Jacobi with under-relaxation and LJUR describes

the line-by-line Jacobi with under-relaxation.

Many different variations exist for the SOR algorithm which are based on a pre­

defined ordering scheme and have been described by O'leary [1984] and Adams

and Jordan [1986]; These schemes are of interest for two reasons. Firstly, for the

matrices which result from a central-difference formulation as in section 4.2, it has

- 95 -

been shown that the 'red-black' ordering for the SOR algorithm (RBSOR) and the

'natural' order SOR algorithm have the same asymptotic rate of convergence

(Young [1971]). Secondly, the RBSOR algorithm lends itself more readily to

vector processing architectures. Fujino [1989] has implemented a number of

different ordering schemes on a vector processor and these include a natural, red-

black (two colour) and a rainbow (seven-colour) ordering. These orderings are

described in section 4.7.

Finally, for the iterative algorithms described above, the idea of using a series of

coarser meshes to solve the original fine mesh has received much attention. This

concept of multigrids can be used to enhance the convergence rate of an existing

algorithm. The impact of using one such multigrid method to solve computational

fluid dynamics problems is discussed in a later chapter.

4.4 Linear equation solvers used in this study

Of the many algorithms which exist only a subset are considered for

implementation in this work. The algorithms are classed as either tridiagonal or

pentadiagonal iterative algorithms. For the solution of the Poisson equation the

algorithms were implemented for execution on both the scalar and pipeline

processors. The algorithms executed on the scalar processor are referred to as

scalar algorithms and those executed on the pipeline processor are referred to as

vector algorithms. The vector algorithms are in fact the scalar algorithms re­

structured for implementation on a pipeline processor.

- 96 -

4.5 Tridiagonal algorithms

Two of the many tridiagonal algorithms were considered for the solution of the

Poisson equation, these were the Thomas algorithm [1949] and the cyclic reduction

algorithm (Hockney [1965]). The Thomas algorithm was chosen because it is a

very robust, efficient algorithm which has been used extensively in the past, in

particular in the CHAMPION series codes (Spalding [1972]). The cyclic reduction

algorithm was chosen because although it is not as efficient as the Thomas

algorithm when executed on a scalar processor, it does lend itself more readily to

parallel and vector pipeline type architectures. This advantage has been

demonstrated recently by Whiteway [1979] and Hockney and Jesshope [1981] on

parallel architectures. Although these algorithms are direct they have been

implemented within an iterative framework using a line-by-line technique.

When using a line-by-line technique, an approximation of the solution field either

side of the current line is used. Thus the solution of line i is found based on the

approximations of lines i-1 and i+1 (figure 4.5-1), and is represented by the

equation

where

A =

= b

b =

(4.5-2)

- 97 -

-Q-

-<*.

-t i-

&

-<>-

-©.

o soliztioii from preyio\is iteration

x soliition to be determineci

FIGURE 4.5-1 Update of approximations using a line-by-line technique

- 98 -

This results in the solution of a tridiagonal matrix system. The procedure is

repeated for all lines. When all lines have been visited in turn by 'sweeping' from

left to right one sweep has been completed. In general, the solution field obtained

at this stage will not be the correct solution. This is not surprising since the

solution for a given line i is obtained using the approximations at line i+1, where

the values at line i+1 are from the previous sweep. The subsequent solution at line

i+1 will make the solution at i inconsistent. In an iterative process the errors for a

given approximation are reduced from one sweep to the next, and through a series

of such sweeps convergence is obtained.

It may be necessary at some stage to either increase or decrease the changes from

one sweep to the next, this is done using relaxation. If the changes are to be

slowed down then under-relaxation is used and similarly for a speed up of the

changes a form of over-relaxation is used. For a given line i, equation (4.5-1) can

be written in vector form as

+ b) (4.5-3)

where fy { represents a vector of all node approximations on line i. If the

approximation from the previous sweep <j>* is added and then subtracted from

equation (4.5-3) this gives

b - a^J) (4.5-4)

where the term a' 1 ^.^.! + a^tj)^ + b - a^) represents the change from one

- 99 -

sweep to the next. This change can be controlled by introducing a linear relaxation

factor a, where the improvement in the approximation is now given by

b - a^*) (4.5-5)

When a lies between 0 and 1 this has the effect of under-relaxation and if a is

greater than 1 this has an over-relaxation effect on the approximation. The range

of a is dependent on the algorithm being used and furthermore the choice of a in

this range can be crucial to the performance of the algorithm. Unfortunately, there

are currently no general rules for the optimal choice of a. There are many reasons

for this such as the problem being solved, the number and distribution of the grid

nodes and the algorithm implemented.

The iterative algorithm described by equation (4.5-5) is called the line-by-line SOR

(LSOR) algorithm. In this algorithm a lies in the range 0<cc<2, therefore, either

under-relaxation (0<cc<l) or over-relaxation (l<cc<2) can be exercised. With little

modification equation (4.5-5) can represent the line-by-line JUR (LJUR) algorithm,

this is given by

b - a^') (4.5-6)

where <j>*.j is the approximation from the previous sweep. The relaxation parameter

a lies in the range 0<cc<l, therefore only under-relaxation can be exercised using

this algorithm.

- 100 -

Another consideration for line-by-line algorithms is the choice of sweeping

direction. This can vary within a two-dimensional domain from left to right, right

to left, bottom to top, top to bottom or any combination of these. The advantage

to using a combination of these sweeping directions is that boundary effects can be

conveyed throughout the domain at a faster rate than using a single sweeping

direction. However, this is not always the case. In this study the line algorithms

are implemented with the sweeping direction from left to right. The Thomas and

cyclic reduction algorithms were used to solve for the resulting tridiagonal matrix

systems of the general form

A(j> = b (4.5-7)

where

A = b =

-b. -

0i
02

03

4.5.1 Thomas algorithm

The Thomas algorithm is a special case of Gaussian elimination and consists of a

forward elimination followed by a back substitution. It is this simplicity which

makes the algorithm very efficient when implemented on a conventional scalar

processor. The main steps for the solution of a tridiagonal system of equations of

order m>\ (4.5-7) are now presented

- 101 -

ALGORITHM 4.5.1-1 : Scalar Thomas algorithm

Forward elimination
(1) ij = IJd-,,

(2) 4 = 4 - ijMj.

(3) b, = b, -

Backward substitution
(4) ^ = bjdm

(5) >; = (b, - Wj

j=2(l)/7Z

The implementation of such an algorithm on a pipeline processor is possible,

however the major obstacle to overcome is the implicit nature of the algorithm.

Fortunately, any implicit statement can be replaced by an iterative explicit step,

however, the algorithm then becomes iterative rather than direct and may require

more storage and computation as a result. The implicit nature of the Thomas

algorithm is typified by the recursion present in all but one of its steps, i.e step

(4). The explicit Thomas algorithm is then defined by replacing all implicit steps

by iterative explicit ones. In the following description * denotes an approximation

from the previous iteration, B and D are temporary storage vectors and MAXTT is

the maximum number of iterations allowed before termination.

ALGORITHM 4.5.1-2 : Scalar explicit Thomas algorithm

Forward elimination
(1) iter = 1

set D* = J

B; =
(2) T} = //D;,
(3) D = -

j=2(l)m

j=2(l)m

- 102 -

(4) Check for convergence of Dj with D*. If not converged
D; = Dj j=l(l)m
goto step (2)

(5) Bj = bj - !#.! j=2(l)m

(6) Check for convergence of Bj with B*. If not converged
B; = Bj j=l(l)m
goto step (5)

Backward substitution
(7) set $; = BJ

(8) <j>j = (Bj - Wj<j>;j/Dj j=l(l)m-l

(9) Check for convergence of fy with <j>*. If not converged and
iter<MAXrr

iter = iter + 1
goto step (8)

To describe the algorithm in a form suitable for vectorisation it is convenient to

introduce multiplication and division operations between vectors as

a#b = [aib lf a2b2,...,awnbJT (4.5.Ma)

a\b =

and shifted vector operations as

(4.5.1-2a)

(4.5.1-2b)

The main computation steps are now presented for the vector Thomas algorithm.

- 103 -

ALGORITHM 4.5.1-3a : Vector Thomas algorithm

Forward elimination
(1) her = 1

set D* = d

B* = b

(2) r = NV(-l)

(3) D = d - r#«(-l)

(4) Check for convergence of D with D*. If not converged
D* = D
goto step (2)

(5) B = b - r#B'(-l)

(6) Check for convergence of B with B*. If not converged
B* = B
goto step (5)

Backward substitution
(7) set $* = B

(8) <j> = (B - u#Q

(9) Check for convergence of (j) with <jT. If not converged and
iter<MAXIT

her = iter + 1
goto step (8)

All recursive steps have been replaced with explicit steps coupled with iteration,

however this has led to three separate checks for convergence (steps (4), (6) and

(9)). This is an overhead far too expensive to include in the algorithm and ideally

a single check should be made on the approximation of the solution <j>". It has

been discovered that checks for convergence can be deferred until the completion

of all explicit steps (1), (2), (3), (5), (7), and (8). This results in a more efficient

implementation of the vector Thomas algorithm.

- 104 -

ALGORITHM 4.5.1-3b : Vector Thomas algorithm (revised)

Forward elimination
(1) her = 1

set D* = d

B* = b

(2) r = ISD'(-l)

(3) D = d - r#»(-l)

(4) B = b - r#B'(-l)

Backward substitution
(5) when iter =1 set <j)* = B

(6) $ = (B - «*|>'

(7) Check for convergence of <j> with <)>". If not converged and
iter<MAXIT
4>* = <j>, B* = B, D* = D
iter = iter + 1
goto step (2)

4.5.2 Cyclic reduction algorithm

The cyclic reduction algorithm was originally devised for use on parallel

architectures. The idea is analogous to that used in the method of cascade sums.

Given the recurrence relation

+ bj (4.5.2-1)

which relates neighbouring terms <j)j and <J) j+1 , it is possible to combine adjacent

terms of the relation so that there exists a new relation between (^ and 0 J+2 . This

itself is a recurrence relation and the process can be repeated to give another

relation between fy and ty^ etc. This is repeated until fy is related to fy^ where m

- 105 -

is the order of the matrix being solved. Here the last term is related to the first

and hence the solution can be determined. At each level of the process the number

of recurrence relations are reduced by a factor of two.

Taking the row j of a tridiagonal matrix system

^j.! + dfa + M,4> j+1 = fcj (4.5.2-2)

this recurrence relation is general for all rows l<j<m where /!=Mm=0. If this row is

now normalised with respect to d^ this gives

L/»<t.H + <,, + U/-V = B/»

where

(4.5.2-3)

B/" = b/dt

Similarly the equations for rows j-1 and j+1 can be written as

1^ + ^ + Uj^^j = BH (1) (4.5.2-4)

1}* + <!i + "* = B +l(1) (4.5.2-5)

Equations (4.5.2-4) and (4.5.2-5) are used to substitute for ^^ and (j)^ in equation

(4.5.2-3), this yields

B/ I} - L/ 1^./" - U/ l)Uj+1 (1) (4.5.2-6)

- 106 -

This can be normalised with respect to (1 - L/"UH(1) - L^'"!!/") to give

where

D (2) = 1 - L (1)U (1) - L (1)UUj - 1 i^j Uj.x l-j+1 Uj

T (2) _ T d)T (1) r(2)~ (1) / £) (
(4.5.2-7)

D<2)j
(2)B® = (B/" - L,(1 V" - U/J)Bj+1(1)) / Dj

Equation (4.5.2-7) can then be written in terms of <}) H, <J)j and (j) j44. This process can

now be described for a general level p

+ (j,.

where

(4.5.2-8)

k =

The effect of using the cyclic reduction algorithm is shown in figure 4.5.2-1 for a

matrix system m=8. The solution is obtained after Iog2m reduction levels. The main

steps of the algorithm are now presented.

- 107 -

x x x .;.:.,•:;/.,.
••. .-^VX,: X:.;xv:': :O : . '

:.: '.•. ' X.; X:. : x: .-•••
XX X

; : le vet:::

•• X' •

t- ~
i X:

j.X:

iy: X:
•^.-_ t x

- /.

TX"

X

-x.,

x denotes iioil zero

x
X
X

level 1

: level

FIGURE 4.5.2-1 The cyclic reduction process on an 8x8 matrix system

- 108 -

ALGORITHM 4.5.2-1 : Scalar cyclic reduction algorithm

(1) set k=l, step=l

Normalise rows with respect to main diagonal
(2) /j = IJd, j=l(l)m

if, =

bj = b/4 j=l(l)m

Carry out reduction
(3) dj =

(4) ^ =

(5) /j =

(6) MJ =

(7) k = 2k

(8) Check to see if step>log2m. If check is not satisfied then
step = step + 1
goto step (2)

(9) <j>j = b/4 j=l(l)m

The interest in such an algorithm lies hi the fact that it can be easily implemented

for execution on a pipeline processor because all computation steps have explicit

formulations. The algorithm implemented for the VA-1 processor will be referred

to as the vector cyclic reduction algorithm and is now described in a form suitable

for vectorisation.

ALGORITHM 4.5.2-2 : Vector cyclic reduction algorithm

(1) set k=l, step=l

Normalise rows with respect to main diagonal
(2) / =

u =

b =

- 109 -

Cany out reduction
(3) d = 1 - /#«(-k) - /(k)#«

(4) b = b - /#b(k) - «#b(-k)

(5) / = -/#/(-k)

(6) u = -ii#«(k)

(7) k = 2k

(8) Check to see if step>log2m. If check is not satisfied then
step = step + 1
goto step (2)

(9) <j>

4.6 Results for the Laplace equation using tridiagonal algorithms

Since the vector Thomas algorithm is an iterative algorithm a convergence criteria

must be defined to terminate the iterative process. For the Laplace equation a

simple criteria is used based on an absolute difference of approximations, i.e.

V j (4.6-1)

where <|>* represents the approximation from the previous iteration, fy the

approximation from the current iteration and £ is a pre-defined tolerance, in this

case 10~5 . The LSOR algorithm is used to solve the Laplace equation with a near

optimum relaxation parameter a=1.82.

The grid used was uniform and the number of nodes varied from 5x5 to 45x45.

Table 4.6-1 shows the variation of CPU time with the grid size for both the

Thomas and the cyclic reduction algorithms. Also shown are the speed-up factors

- 110 -

(S) defined by the ratio of scalar to vector CPU times and the proportion of code

vectorised. The comparison of scalar and vector Thomas algorithms indicates that

the scalar algorithm is superior (figure 4.6-1). This is highlighted by the speed-up

factors less than unity and this situation is termed 'slow-down'. The scalar

algorithm is a factor of 2 faster than the vector algorithm and this has occurred for

two main reasons:

(1) The vector algorithm being an iterative process carries out many

times more computations than the scalar algorithm, and

(2) The VA-1 processor is not being utilised efficiently since the vector

operations of length m are significantly lower than the n1/2 parameter.

Since the number of operations in the vector algorithm are not the same as those

in the scalar algorithm this prohibits an analysis of the performance using

Amdahl's law. However, it can be inferred that as the grid size is increased the

vector algorithm will become more competitive. This is because as an iterative

method it will be more efficient and also the VA-1 will be used more efficiently.

Furthermore, a graph showing the variation of speed-up with grid size (figure

4.6-2) shows that the peak speed-up has not yet been reached.

The comparison of scalar and vector cyclic reduction algorithms is shown

graphically (figure 4.6-3) and indicates that the vector algorithm is significantly

faster than the scalar equivalent. The vector algorithm is over five times faster and

there is still further improvement expected as the grid size is increased (figure

4.6-4). The reason for this is that the VA-1 would be used more efficiently as it

performs best with long vectors. The fraction of effort in using the VA-1 for the

45x45 grid problem is fv =0.996 (table 4.6-1), using Amdahl's equation (2.10-4) the

- Ill -

I:!'"- .-': V- •••;.:';":•• 1 V' " • ' ' .' ','-•" "••":''-'•; . - ' '••^.''.••- ' : . ':': ' , : -.,--'.:•
;'•:•• •:•;,, : •-;:.•",, ' '•• • -. . .-. • ••-:..:;• -. .- • •••- ' . . '. -;•-:. •:.•::• . •- :• "... - ' -:-• •:-.... .'
•:-•• - • •••••• .- ••;-. •••-•.:•. •' • -' •'--.-. - ' •..-.•-• .; -.^ • . •,•:••:• --;•••;•••
;:-.-' :.•'.'. ••-:•''-'.'.._.' . . .- - _ •"_.. • . . '; ' . '.. -••'-•'-'. ' • ;' '- :; • .-.- :- -

I GRID ; SEE": , . '; .• x- 5 : : :- v '; 11 '- •: ^ IS -\ : : ; ; ' 21; ; ;

: SCALAR ̂ THOMAS -^ '3&^ : ' l^;:;^.i: : ; 3^25- ' v : 6^0. : : '.-.
VECTOR fHOMAS 3^6 1 U56 1&08 2d 16

ZSfEBfi^i^.;.:;,^.-'^.*.^- •. •' •AA i-^M^- :̂ y •'&}: , •
1 VECTOR FRACTION f, .9987 .9986 ^9984 .9981

; SCAtAR CYCLIC .96 5.61 JL19 29.16
| yECTOR i CYCLIC 1J3 4.88 6.91 11.98
|:SPEiS^uF:: S: ;' : - -;;":1:p;y '•'"'• i£^:f&^:..z& ••
i| VECTOR FRACTION f, .996» .9966 >9958 .9958

;;;:;25 ^ ;:̂ n. ;, '. 35 : : . : y^ *i : 4$ ••."••'fei'S

9.40 14.9* 19.53 34.00 5tt91 11
• :32.45 ••';§• 42.51 : ;: : ;' :; 50.51 ^^^^^OlM^j^
•, 3 "•:'.•••: '&*• ' '}!-•• : ;>: "1 '. ••: Il5v-l:l :. : '*•••:. ''^;*M

.9979 .9977 .9977 .9980 .9979 |

4143 66.16 103.50 180:80 274.16 11
14.53 18L1S 25^26 37:40 5L03 1
Z9 3.6 4.1 '. -4.gr' ̂ 1:5.4:-: ^ ' • . ''f

.9954 .9945 .9961 .9960 .9958 |

TABLE 4.6-1 Results for the Thomas and cyclic reduction algorithms

100 -

80 -

60: '^

40 r

20 -

10 15 20 25 30
Grid size CrQ

FIGURE 4.6-1 Results of the scalar and vector Thomas algorithm when used
to solve the Laplace equation

- 112 -

0.5

0.4

b
w..:
m

0.3

0,1

10 25 30 35 40: 45
(£ id s i ze

FIGURE 4.6-2 Speed-up factors achieved for the Thomas algorithm

300

250

200

150

100

50

vector

10 15 20 25 30
_____Grid size Cn]

35 40 45

FIGURE 4.6-3 Results of the scalar and vector cyclic reduction algorithm
when used to solve the Laplace equation

- 113 -

b

f

35 45
Grid size Cft)

FIGURE 4.6-4 Speed-up factors achieved for the cyclic reduction algorithm

- 114 -

expected speed-up would lie between 4.29 and 102.56. The speed-up of up to 5.5

is consistent with what is expected.

The results suggest that the scalar Thomas algorithm is over five times more

efficient than the scalar cyclic reduction algorithm for the solution of the Laplace

equation. However, the vector cyclic reduction algorithm is a factor of two faster

than the vector Thomas algorithm.

In deciding which is the 'best' algorithm overall it is interesting to note that there

is no significant difference between the scalar Thomas algorithm and the vector

cyclic reduction algorithm. For small grid sizes the scalar Thomas algorithm is the

more efficient of the two, but for larger grid sizes it is expected that the cyclic

reduction algorithm will be better. However, for a significant speed-up the grid

sizes would have to be of a much higher order. Thus, for the solution of equations

such as the Laplace equation the vectorised tridiagonal algorithms are not a viable

route when implemented on the VA-1. This would not necessarily be the case for

other machines with pipeline processors which perform efficiently when executing

small vector length operations, this class of machine is typified by the CRAY

supercomputer family.

4.7 Pentadiagonal algorithms

In this study four pentadiagonal algorithms were considered for the solution of the

Laplace equation. These were the JUR, SOR, RBSOR and the conjugate gradient

algorithm with a Jacobi preconditioner (JCG). These algorithms were not very

popular before pipeline and parallel architectures were introduced. They tended to

- 115 -

be too computationally expensive and preference was given to the line-by-line

iterative algorithms, in particular the LSOR which was more efficient on storage

and in many cases computation. However, point-by-point and search algorithms are

enjoying a revival and are now as popular as the line algorithms. This is mainly

due to the new supercomputer class of machines, these provide speed through

vectorisation and larger data memory which are necessary for some of these

algorithms. Interest hi algorithms such as the JUR and SOR have been further

stimulated by the coupling with multigrid methods (Chapter 7).

4.7.1 The point-bv-point JUR algorithm

This is the most fundamental of all point-by-point algorithms. When used to solve

a discretised domain each node is visited and updated in a systematic manner.

Here the order is chosen so that each node on a horizontal row is updated in turn,

this is then repeated for all rows. When all nodes have been updated this defines

one 'iteration'. An approximation <j> ;j is updated by using the four neighbouring

nodes (j)^, $ Mj , <j> iH and <|> ij+1 , all of these approximations are taken from the

previous iteration (figure 4.7.1-1). The updated nodes are referred to as 'new'

approximations and those from the previous iteration are referred to as 'old'

approximations and denoted by ". Thus the new approximation <j> ;j is determined by

j=l(l)m (4.7.1-1)

j=l(l)/7i (4.7.1-2)

This defines the point-by-point Jacobi algorithm. Relaxation can be introduced into

the Jacobi algorithm in a manner similar to that used for the line algorithms, thus

- 116 -

(a)

(b)

j-i

p solution from previotis iteration
• B sblution frorri current iteration
X solution to be deterrrLin.e<i

FIGURE 4.7.1-1 Update approximations using a point-by-point (a) Jacobi
(b) Gauss-Seidel technique

- 117 -

(4.7.1-3)

This is now the point-by-point JUR algorithm where the relaxation parameter a

lies between 0 and 1. When cc=l equation (4.7.1-3) reverts to the Jacobi algorithm.

A pentadiagonal matrix system results from this formulation and has a general

form

A<j> = b (4.7.1-4)

where

A =

du w7 21 u2 n
11 u d2l ul n

11 21 dj! w7 41

• • • •

— /Wl* 1 rt~ l/R /WH ••

b =

» «•

b21
b,,

•

-bL,.

0-

"011

021

031

•

.+..
The main computation steps for the scalar JUR algorithm are now presented

ALGORITHM 4.7.1-1 : Scalar JUR algorithm

(1) set iter=l

(2) (j), = 0*j H

(3) check for convergence of <j) y with (j)^. If not converged and
iter<MAXIT

iter = iter + 1
goto step (2)

- 118 -

Since all steps of the algorithm are explicit the vector algorithm would be the

same. However, for an efficient implementation on the VA-1 processor the nested

loop in step (2) is replaced by a single loop. The approximation field $ and the

coefficients d, 11, 12, ul, u2 are represented by contiguous vectors. This is

illustrated in figure 4.7.1-2 for a grid where m=rc=3. Therefore in the description

of the vector algorithm the operations are of length run.

ALGORITHM 4.7.1-2 : Vector JUR algorithm

(1) set iter=l

(2)

(3)

<]> = <{>•+ a{/7#cj>'(-l) + ul#$\l) + B#$'(-i) + K2#<j>*(rt)+b - </#<j>'}W

check for convergence of <J) with <j>*. If not converged and
iter<MAXIT
<J>' = <|>
iter = her + 1
goto step (2)

4.7.2 The point-bv-point SOR algorithm

In the JUR algorithm all neighbouring approximations were assumed from the

previous iteration. However, the approximations at nodes (J^ and (J)^ are known

for the current iteration, it would be better to use these latest approximations rather

than their old values from the previous iteration (figure 4.7.1-1), this is the essence

of the Gauss-Seidel algorithm and can be described by the iteration

j=l(l)m (4.7.2-1)

j=l(l)m (4.7.2-2)

- 119 -

13

stored as i—dimensional vector ;

13

FIGURE 4.7.1-2 Contiguous representation of a 2-dimensional field (j)

- 120 -

Relaxation can be introduced into the algorithm in the usual way

j=l(l)/7i (4.7.2-3)

This now defines the point-by-point SOR algorithm. To ensure convergence a must

lie in the range 0<a<2. For an under-relaxed approximation to the solution a must

lie in the range 0<oxl, for an over-relaxed approximation a lies in the range

l<a<2 and if cc=l then the algorithm reverts to the Gauss-Seidel algorithm

(4.7.2-2). The main computation steps for the implementation of the SOR

algorithm on a scalar processor are now presented.

ALGORITHM 4.7.2-1 : Scalar SOR algorithm

(1) set iter=l

(3) check for convergence of ty {j with <J)*j. If not converged and
iter<MAXrr

iter = iter + 1
goto step (2)

Vectorisation is prohibited by the inherently scalar formulation of the algorithm,

whereby approximations for the current iteration reside on both sides of the

equation, for example, (j)^ is on the left-hand-side while (j)^ and <j) iH are on the

right-hand-side. This data dependency can be broken by re-writing the step as a

series of explicit iterative ones, this is a technique similar to that used for the

Thomas algorithm. Hence equation (4.7.2-3) can be written as

- 121 -

^'y + afanfrw + a^*^ + ba) i=
j=l(l)m (4.7.2-4)

If we define

+ ^ + b;j)

(4.7.2-5)

(4.7.2-6)

(4.7.2-7)

this can be expressed iteratively as

(4.7.2-8)

Thus the vectorised point-by-point SOR algorithm has a nested iteration structure.
In the description of this algorithm the vector operations are of length run.

ALGORITHM 4.7.2-2 : Vector SOR algorithm

(1) set iter=l

(2) set k=lp<°>

(3) q =

(4)

b)

= (q

with pw . If not converged and(5) check for convergence of
k<MAXTT
p« = p**"
k = k + 1
goto step (4)

(6) set (j) = p 0"0

(7) check for convergence of <J> with <j>". If not converged and
iter<MAXrr
(j>- = 4)
iter = iter + 1
goto step (2)

- 122 -

4.7.3 The RBSOR algorithm

In both the JTJR and SOR algorithms the order in which all nodes were updated

was based on a natural ordering. However, there are many other orderings which

could have been adopted (O'leary [1984] and Adams and Jordan [1986]). These

ordering schemes have been applied to the SOR algorithm the most popular being

the red-black ordering. This has many other names such as 'chessboard', 'odd-

even', or '2-colour' ordering. The order in which nodes are updated differs from

the natural ordering in that all nodes of one colour are updated first, followed by

the updating of the second colour.

A single RBSOR iteration consists of visiting all red nodes in a natural order,

followed by visiting all black nodes in the same manner. When visiting all red

nodes the only information required is based on the neighbouring black nodes

which are approximations from the previous iteration. Similarly, when updating the

black nodes only information regarding the red nodes is required, these are

approximations from the current iteration (figure 4.7.3-1). Thus a single RBSOR

iteration can be defined as comprising an update of red nodes

j=l(2)/n (4.7.3-la)

followed by an update of black nodes

1=1(1)*
j=2(2)m (4.7.3-lb)

- 123 -

-II-

-81-

. B b 1 a ck ;n:0 de • ^ .;• •,• . •:• • i : , ;: • • : : ; ;:V :: - : -;"" : • •• "•. : .
• R .red' nQde ^-;•.•.••; : : '• ••••• •• -,.. : "•.: • •;;•'• •••;•. : ' :: ;:- ''." v : : x .•/';> -••! ; '•' .:
O aoItitipxi fro±n previotis iteration
H soIxition from current;: iteration
X solution to be; determined

FIGURE 4.7.3-1 Update of approximations using the red-black SOR algorithm

- 124 -

ALGORITHM 4.7.3-1 : Scalar RBSOR algorithm

(1) set iter=l

red node update

black node update
(3) <|>y = ftt + oaljU.^ + a^tj)^ + ^^ + a^^ + by -

(4) check for convergence of (j)^ with (j)*j. If not converged and
<

her = iter +
goto step (2)

Since the algorithm has no data dependencies but still has the same rate of

convergence as the natural order SOR algorithm (Young [1971]) this makes the

implementation of the algorithm on a pipeline architecture worthwhile. For an

efficient vectorised implementation, all vectors are partitioned into subvectors

defined by

aR = [a,, a,,..., aJT (4.7.3-2a)

a8 = [alf a*..., aJT (4.7.3-2b)

where

nm-l for m even
r = \ (4.7.3-3a)

nm for m odd

nm for m even
b = \ (4.7.3-3b)

l for m odd

In the above definition n must be odd so that all vectors can be easily referenced

using a stride of 2. If n is even then a uniform stride cannot be used and vectors

- 125 -

of pointers are needed to access successive red and black nodes (figure

4.7.3-2). Assuming that n is odd the main steps of the vector algorithm are now

given.

ALGORITHM 4.7.3-2 : Vector RBSOR algorithm

(1) set iter=l

red node update
(2) <J) R = <j>'R +

+ bR -

black node update
(3) <J> B = <$>'* + a[/

+ bB -

(4) check for convergence of (j) with <j) ". If not converged and iter<MAXTT
*" = *
iter = iter + 1
goto step (2)

4.7.4 The conjugate gradient algorithm with a Jacobi preconditioner (JCG)

The popularity of conjugate gradient algorithm has grown over the last decade

particularly with research into numerous preconditioners. Amongst the most widely

used are the Jacobi or diagonal preconditioner, block factorisations and the

incomplete cholesky (ICCG) factorisation (see for example Kightley and Jones

[1985] and van der Vorst et al [1982, 1986]).

The attraction of the conjugate gradient algorithm is that a large proportion of the

steps involve matrix and vector operations which are ideal for implementation on

pipeline processors. The choice of preconditioner is a difficult task as this depends

largely on the problem being solved. Here a simple Jacobi preconditioner is

- 126 -

(b)

R R

R

R mi. R

R

B

R

:."•':.' B

R

::;.:•;• Bi

R

'•:. -B

|;-.: : " :"R

B

R

B

R R R R R

FIGURE 4.7.3-2 Contiguous representation of red-black nodes when n is
(a) odd (b) even

- 127 -

implemented since it has been shown to be as competitive as the more elaborate

preconditioned for some problems (Kightley and Jones [1985] and Kincaid et al

[1986]).

Given the matrix system defined by (4.5-7) and also an initial approximation to the

solution (}) (0) and a preconditioning matrix M, then the preconditioned conjugate

gradient algorithm is defined by the following iterative steps

(1) set k=l
r<0) = b -
p(0) = M-yo)

(2) of» =

(3) (I)**" = (j> w + a(k)p(k)
(4.7.4-1)(4) r°<+1) = r00 - af»Apw

(5)

(6) p**1} = M'1!^*0 +

(7) Check for convergence of fy w with (j) (k'" l) . If not converged and
k<MAXTT
k = k + 1
goto step (2)

A preconditioning matrix is required to accelerate the convergence rate of the

standard conjugate gradient algorithm. The effect of the preconditioner is to

represent the matrix A with a smaller condition number. In the case where the

preconditioning matrix is the main diagonal M=DA of A, this resulting algorithm is

equivalent to a polynomial acceleration of the basic Jacobi algorithm (Hageman

and Young [1981]) and hence the name. In this algorithm M~Y is not carried out

within the iterative process. By scaling the original matrix A so that it has a unit

- 128 -

main diagonal and still preserving its symmetric sparse structure, the algorithm

may be simplified. This algorithm is inherently explicit and therefore the scalar

and vector algorithms are equivalent. The main computational steps of the JCG

algorithm are given below.

ALGORITHM 4.7.4-1 : Scalar/vector JCG algorithm

Scale the system represented by equation (4.5-7) by evaluating
(1) A = D;1/2AD;1/2

b = D;1/2b
$ = Difl4>

For the preconditioning matrix M=I,
(2.1) set k=l

r<0) = b -
p(0) =

(2.2) a00 =
(p«Ap«)

(2.3) $™ = $® + af

(2.4) r0"1' = r00 -

(2.5)

(2.6)

(2.7) Check for convergence of $ w with ^ (k+1) . If not converged and
k<MAXTT
k = k + 1
goto step (2.2)

Scale back the solution
(3) $ = D-A 1^

4.8 Results for the Laplace equation using pentadiagonal algorithms

All of these algorithms contain an iterative process and as such a convergence

criteria is needed to terminate the iterations. Here a simple criteria based on the

- 129 -

absolute difference approximations is used,

Vj (4.8-1)
where the pre-defined tolerance £ is set to 10~5. In each of the relaxation

algorithms the relaxation parameters were set to a near optimum value, in the JUR

algorithm a=1.0 and in the SOR and RBSOR cc=1.8. A uniform grid was used and

the number of nodes varied from 5x5 to 45x45.

Table 4.8-1 shows the variation of CPU time with grid size and the speed-up

factors (S) for each algorithm considered The comparison between the scalar and

vector JUR algorithms is shown in figure 4.8-1 and indicates that the vector

algorithm is far superior. The speed-up factors increase as the grid is increased and

range from a factor of 2 for a 5x5 grid up to 90 for a 45x45 grid. A factor of 90

appears to be the maximum speed-up that can be obtained (figure 4.8-2).

The comparison between the scalar and vector SOR algorithms is shown in figure

4.8-3, this indicates that the vector SOR is generally more efficient However, for

small grid sizes up to 12x12 the scalar algorithm is marginally faster. This is

highlighted by the speed-up factor graph (figure 4.8-4). This is because for a small

grid size the nested iteration in the vector algorithm is more computationally

expensive than the single iteration process in the scalar algorithm. This overhead

becomes insignificant as the grid sizes are increased because the pipeline processor

is being used more efficiently. A maximum speed-up of 9 can be achieved when

using the vector algorithm over its scalar counterpart

- 130 -

:S->:- • •• • ' ' ' •••- : ''.:" < ''' • •'.•" • ..• ••- :;'':V:- ':. -.v. '•':.':• '"•;;.; '•••":::%• - :: " ••••• - :'y "-
••'•-.• : ••- • " :• -' :; - : ••' -'"•-•-; '•••.•• •':' • : ..•-.: . •• ' ... •x":\-: :: : . : .:V:S "'•• :- :-' ::-- ••'.•••.•:• • ••• ••

!;'•':.;''••'.;'•'•'• '•-.' ":v : '- '•::.'•' / '.:''•'''''.'•'••-",'' : ":V-:'. : ':..'.;. " ':> •';: •..•••-::•• : '}-

' ' • '.':..':•• : ' ' : ; • '• ' : .-. '"• • : ; '•••'-,• ' : • ' . ' . '•• '':'. " • . : :.:. .: ••. ' • -.•• : . ':: : ; •; '';• •'•'. '• '-: y ...' • ', : ' '• -.'..-;.. '•.-. '
:•• .'."••. .-•• -•'• : " .'::'.-:••'• ;• :: ' , '-': . •/. : " : \ ; ' : : : ','• ':'•.' : ' . '. - .

: ••..:•• .;.".. ••:.,• ••' • ' ••':'•• ••- '• • . ; ' ; - ; : ..'-•. :
-•.•••>.: ...:.'.' '• • ' ' : : • • : : • : : ; :-. • •:.:.'•'•. '• . :• . '•;•: : : :•: •.'.-.. : • . . :.-. • •• >• ' .'. . .• •. . •• . : •

: • • •'' ' • "•''•' '' . - . ' V: ' • •. '•"•'.• .-';.'.. •' ••''-•' •:• • .: '• ••. ': '•'•'•• • •:•..•-:...••:....•":•..•---.. : " , •-.-'' : :''' .•;;••.• '••:•;• .' •:••;. .'.: '.;:.,. / ' ••'•:•. '• ::' ••. :' ,
;•;•• : •••?.. • •••;•. .-•:;• •'..•• ; •• .. •:• . •:•:•.'' - : •/.;:. ;••,.' :•,•;•- . . :•;••-. . ;. ••.-

| GRID SIZE > 5 !. . 11 ; x;.'- 15 • 21 ;.;.;.•' 25 •::•>:•;

\ SCALAR JUR J 12.25 37.65 129.83 243^

j VECTOR JUR ^6 .53 .81 1:88 3.22

£ SPEED-UP S 2J 23.1 46J 69.1 75^

! VE<HX)R FRACnON t; .9981
: :-.'."-" . : "'••••• ." ••' ••-.-. ' • • •• --- ".--•• -.--•- : . •- : --. • : .. •• : '": -..'."• "••-•"•-:• -: : ". - - •-": •• : •
• ; - - • -•-.-. . . -•_.•••- ..-.•.. i - _. _ ••-. . • • - . : - • . - • • . . .

SCALAR SOR .13 t.8 6.1 21.9 41 1

! VECTOR SOR 1.43 2.1 2^1 3.92 6.2

: SPEED-UP S . : ;-:•;• ' . ; : : .l: • : - : :; : : " .9 . : : ; ' : • : 23 . ; : . •- -5,6 : - 1 - '._ : 6S •••• : ' ; :

VECTOR FRACTION :£.'. 9992 :9975 .9984 .9992 .9994

:: SCALAR RBSOR ; : ;; : : '.', - .15 i; •; ;'. ' l£ J ̂ :& '^ >il^l: : • 'v 42.4: ̂

1 VECTOR RBSOR 23 ^18 35 47 /73

: SPEED-UP S .7 1OO 17.4 46.6 58, 1

i VECTOR FRACTION £«. 9971 .9956 .9914 .9879 .9895

SCALAR JCG 08 .85 L96 5.42 9. 16

: - : VECTOR: JCG- • :: : .: : % ; : : ; " JSf^ ,19 , i: ; .K >!«(; -' :. MM V.; ;'.22:;: ; .

i " SPEED-UP S >-;x; :. : ; • :'A^ :; ; " : ; : •"• : W : : IW '. 3K^:|v: . V4i:6^. ,

! VECTOR FRACTION C 5996 .9991 .9988 9983 .9985

•' . . ; : \ . • , .•. _.-. . ._. ..._...,_ ';.-......-. .• • '• • • • * • " • • •' • - ' - .•>. '• • ''••..-•.••-..'.'' \ .'.-• . ••'.•-•.. .•'. •. .• •'.• ' • •' '.•'.

' ' ' • - ' ' •'•' '•' •' . • "•.••,•'' . , ' '' •'•••'• '.• • ' '• • •' '-• ' •'' ' '• '••'• '

•^tt;?:^^-:'£^ 1

:525:8 811.5 1422.38 1975.18 :" |

638 9.48 16.05 22.07 1 \

814 85.6 88.6 89.5 : 1

>9982 .9989 5991 .9979 | 1

94.2 147.9 265.9 37*4 '

113 17:88 29.40 40.08 1:

7J 8.3 9.0 93 •.•.•• ; '' : :: ; ::||

5996 5997 .9998 5998 |;i

9*8 148:8 266.8 3772 "Xvli

'^^l •:^^^: -^^:^-^
: ', 66.3' : - ' : . -70.2: ' : ; • " 73V - -^ 7*O ;• 'v . , ;|| ' ;

5923 5936 .9951 5960 | i

: '''I733f';- .>2*53y 38.75 51.1 ..•:•. ' : ;" ;v'l| :
• .•;•;'' ;-•"'-»;- •'•'•.-•. ' '•'._'•'.•'.•.•

;5i2: : ; - : >-:57:o:- ;';;:•;: 6L5 • • 6i:6> - ; : ;••:.• ;• ;i ;
5989 5990 5991 5993 v

TABLE 4.8-1 Results for the JUR, SOR, RBSOR and JCG algorithms

- 131 -

The comparison between the scalar and vector RBSOR algorithms is shown in

figure 4.8-5, this indicates that the vector algorithm is superior. However, for small

grid sizes up to 6x6 the scalar algorithm is marginally faster. The reason for this

is the relatively short vector lengths used in the vector computations which are of

length r?!2. Figure 4.8-6 shows that a speed-up factor of up to 74 can be achieved

for the vectorisation of this algorithm.

The comparison of the scalar and vector JCG algorithms is shown in figure 4.8-7.

The results show that the vector algorithm is superior to the scalar algorithm when

the grid size is large, and only marginally worse in the case where the grid size is

small. The variation of speed-up with grid size shows that a factor of up to 62 can

be achieved when the vector JCG algorithm is compared to its scalar equivalent

(figure 4.8-8).

Using Amdahl's law, an analysis can be carried out to determine what theoretical

speed-up factors can be achieved. The analysis can be carried out on all of the

algorithms considered with the exception of the SOR algorithm since the vector

and scalar algorithms have different structures. Practically the entire code can be

vectorised for this problem shown by fv=1.0 in table 4.8-1, and therefore the

analysis is trivial and the expected speed-up factors will lie between 4 and 170.

There are two reasons for the high speed-up factors which have actually been

achieved. The first has already been mentioned and deals with the 'ideal' situation

where near full vectorisation has been achieved. The second is the efficient

utilisation of the architecture where vector operations were typically of length n2

for the JUR and JCG algorithms and n2/2 for the RBSOR algorithm.

- 132 -

FIGURE 4.8-1 Results of the scalar and vector JUR algorithm when used
to solve the Laplace equation

m
80

70

40

30

20

10

10 15 20 25 30
Grid size Cn]

35 40 45

FIGURE 4.8-2 Speed-up factors achieved for the JUR algorithm

- 133 -

FIGURE 4.8-3 Results of the scalar and vector SOR algorithm when used
to solve the Laplace equation

10

3

8

7
in'

.I;:*

10 15 20 25
Grid size

30 35 40 45

FIGURE 4.8-4 Speed-up factors achieved for the SOR algorithm

- 134 -

/—vt

400

350 ^

300 -

250

200

150

100

50

10 15 20 25
: ; Grid size

30

FIGURE 4.8-5 Results of the scalar and vector RBSOR algorithm when used
to solve the Laplace equation

80

70

80

Siso'£^
« -40

30

20

10

10 15 20 25
Grid size

30 35 40

FIGURE 4.8-6 Speed-up factors achieved for the RBSOR algorithm

- 135 -

FIGURE 4.8-7 Results of the scalar and vector JCG algorithm when used
to solve the Laplace equation

60

50

C? ^-»
b 4Q

20

10 15 20 25 30
Grid size Cn]

35 40 45

FIGURE 4.8-8 Speed-up factors achieved for the JCG algorithm

- 136 -

For the solution of the Laplace equation, the JCG algorithm was the best of the

scalar pentadiagonal algorithms considered, it was over 30 times faster than the

slowest of the algorithms (JUR). Of the vectorised algorithms the JCG was the

fastest and was up to 6 times faster than the slowest vector algorithm the (SOR).

It is interesting to note that although the SOR and RBSOR algorithms have

identical scalar performances, when the algorithms are vectorised the RBSOR is a

factor of 8 faster than the SOR. This illustrates the importance of choosing an

algorithm which lends itself to vectorisation.

4.9 Closure

A selection of the vast number of linear equation solvers have been considered for

the solution of the Laplace equation on a unit square with mixed boundary

conditions. The discussion focused on the implementation of these algorithms for

execution on a pipeline processor.

An approach for overcoming data dependent or recursive computations which

prohibit vectorisation has been presented, and applied to the Thomas and the SOR

algorithms. Although the approach is unsuitable for the Thomas algorithm which is

reflected in a slow-down factor of 2, it is shown to be more successful when

applied to the SOR algorithm with speed-up factors of 9 obtained over the scalar

SOR algorithm. Since the RBSOR algorithm lends itself to vectorisation

improvements in speed of up to 70 have been achieved, however, a drawback to

the vectorised RBSOR is that one dimension of the discretised domain must be

odd for an effective implementation.

- 137 -

The Thomas algorithm is the best tridiagonal algorithm. The vectorised tridiagonal

algorithms do not show any improvements on the scalar Thomas algorithm because

the vector operations are too small to make efficient use of the pipeline processor.

The JCG algorithm is the fastest pentadiagonal scalar algorithm and the JUR the

slowest. However, the picture changes significantly when the pentadiagonal

algorithms are vectorised. Although the vector JCG still performs best, the vector

JUR becomes more competitive. The very high improvements in speed can be

attributed partly to the vector operations of length n2 and partly to the almost

complete vectorisation of the scalar code.

It is interesting to note that on such a 'trivial' problem the JCG algorithm

performs by far the best. Indeed, many publications which show the spectacular

speed of the JCG algorithm are with reference to the Poisson equation. On the

basis of these results, one could argue that the JCG algorithm should always be

used for the solution of a linear system of equations. However, the discussions in

later chapters show the dangers of choosing any one single algorithm, moreover,

the discussions include problems with the JCG algorithm itself.

- 138 -

CHAPTER FIVE

- 139 -

5.Q VECTORISATION OF THE SIMPLE SOLUTION PROCEDURE

5.1 Introduction

In Chapter 4 spectacular improvements in speed were obtained from the

vectorisation of algorithms which were used in the solution of the Laplace

equation. However, the extension to problems which involve the solution of at

least three coupled non-linear equations instead of a single linear equation, together

with the added complication of a larger proportion of essentially scalar code is of

interest. These coupled systems result from the mathematical description of fluid

flow problems, and ideally, we would like to achieve the same order of

improvement in speed as that obtained for the linear problem.

In this chapter two test problems are investigated which typify the problems

encountered in CFD, these problems are often quoted as standard test cases for

validating CFD codes. The first problem is a closed system comprising a square

cavity containing a fluid with a moving lid. The second problem consists of a

square duct with a restricted inlet, this problem is more commonly referred to as

the 'backward facing step' or 'sudden expansion' problem. Both test cases involve

the solution of a two-dimensional velocity field and a pressure field. The SIMPLE

procedure is used to solve the resulting coupled system of equations.

5.2 Scalar algorithms

Within a SIMPLE iteration the solution of the momentum equations are not

solved to a high degree of convergence and hence an iterative algorithm is

appropriate. For the solution of the momentum equations a LJUR algorithm is used

- 140 -

instead of a LSOR algorithm. Although the LJUR algorithm generally has a slower

rate of convergence (Varga [1962]) it is more suitable and the reasons for this are

twofold Firstly, the changes made to the velocity solution fields by the LJUR

algorithm are small and this means that less relaxation is needed, whereas a higher

level of relaxation would be needed for the LSOR algorithm. Secondly, the

changes made to the solution by the LJUR algorithm result in a more stable

process for this particular implementation of the SIMPLE procedure. Here a single

LJUR sweep is carried out for the solution of the u-momentum equation followed

by a single LJUR sweep for the v-momentum equation.

The solution of the pressure-correction equation is of particular interest because the

resulting system of equations are analogous to that of the Poisson equation. In

deciding which algorithms to use the results from Chapter 4 serve as an indicator.

The algorithms considered in this study are the LSOR algorithm, the JCG

algorithm and the JUR algorithm. The latter is chosen for its impressive

vectorising performance and not for its scalar performance.

The level of convergence chosen for the solution of the pressure-correction

equation is greater than that used for the momentum equations, here a converged

solution is said to have been obtained when the following criteria is satisfied

/•(new) _ /(old)

Max{10-10, ||p'(new)
< C (5-2-1)

Through trial and error the tolerance £ is set LOxlO"3 , 2.5x10^, 1.0xlO~* for the

LSOR, JCG and JUR algorithms respectively. This ensures that the quality of the

solution obtained from the three different algorithms is consistent.

- 141 -

5.3 PROBLEM 1: Square cavity with moving lid problem

In this problem rotation of the fluid is caused by the moving lid on top of the

square cavity (figure 5.3-1). This results in no predominant flow direction and the

differential equations describing this situation are highly elliptic.

The steady state solution of such a problem has become a popular example for

testing and validating numerical algorithms. Its geometric simplicity and highly

elliptic character have attracted many workers to provide numerical solutions for

this and many of its variations. Some of the more notable works are those of

Burggraf [1966], Bozman and Dalton [1973], de Vahl Davis and Malinson [1976]

and Ghia et al [1982] all of which used a stream function - vorticity formulation

to solve the resulting equations.

5.3.1 Physical and geometrical specification

The boundary conditions for the cavity are shown in figure 5.3-1. The moving wall

has velocity components u=lms~' and vMtos'1 . All other walls have a no-slip

velocity condition and thus usv^ms"1 . The initial velocity and pressure fields were

set up so that u=v=0ms"1 and p=ONirT2. The flow is taken to be laminar and

steady state simulations are performed for Reynolds numbers Re=100 and Re=400.

The domain is discretised using a uniform 32x32 grid.

- 142 -

im u :0>mstI:;."^
—i X,

Oms /,

x

U = 1 EOS
-1

v '••''** 0ms-I

u = 0 ms~
v. = Q ma

-I,

0 ms
0 ms

-I;
-1

FIGURE 5.3-1 Definition of the moving lid cavity problem

- 143 -

5.3.2 Results using scalar algorithms

The resulting velocity vector plot for Re=100 is shown in figure 5.3.2-la. Contour

plots of the velocity components and the pressure field are also shown for

completeness (figures 5.3.2-Ib to 5.3.2-Id). A similar set of results are also

presented for the case where Re=400 (figure 5.3.2-2). In both cases the results

were obtained after 100 SIMPLE iterations.

Burggraf [1966] provided numerical solutions for Reynolds numbers up to 400

using a uniform mesh size of up to 40x40. Ghia et al [1982] carry out the

simulation for Reynolds numbers ranging from 100 up to 10,000 using a very fine

uniform grid (up to 257x257).

Although the results obtained in the present study may not be grid independent

they do serve as an indication as to whether the solution is qualitatively correct.

Thus a comparison is made between the present study and the results quoted by

Burggraf [1966] and Ghia et al [1982]. Figure 5.3.2-3a shows the velocity profile

for u-velocity component passing through the geometric centre along a vertical

line. A similar plot is shown for the v-velocity component passing through the

geometric centre along a horizontal line (figure 5.3.2-3b). For Re=100 there is

excellent agreement with the results of Burggraf [1966] and Ghia et al [1982].

This indicates that for such a Reynolds number the 32x32 uniform grid employed

here is satisfactory. For a Reynolds number of 400 the results begin to differ from

the grid independent results of Ghia et al [1982] but are still comparable to the

results of Burggraf [1966] (figure 5.3.2-4). This is not unexpected, and the results

are indicative of the magnitude of errors which can be expected when using

- 144 -

* • h « *
• • k « •

»•••«%

Kv *'*>u *"*'~^»*^«r^*'^»« t i
.««-«-».fc^4-— ,-^^, <,, , ,

*******"»—.»^^»*»^^*« ^ «

1 i

t

i

t

.: O.98 MXa.

FIGURE 5.3.2-la Velocity vector plot for cavity problem (Re=100)

FIGURE 5.3.2-lb u-velocity contour plot for cavity problem (Re=100).
Contours at -0.247 (0.0719)-0.472

- 145 -

FIGURE 5.3.2-lc v-velocity contour plot for cavity problem (Re=100).
Contours at -0.209 (0.1104) 0.895

FIGURE 5.3.2-Id Pressure contour plot for cavity problem (Re=100).
Contours at -0.567 (0.1637) 1.07

- 146 -

0.90

FIGURE 5.3.2-2a Velocity vector plot for cavity problem (Re=400)

FIGURE 5.3.2-2b u-velocity contour plot for cavity problem (Re=400).
Contours at -0.21 (0.1036) 0.826

- 141 -

FIGURE 5.3.2-2c v-velocity contour plot for cavity problem (Re=400).
Contours at -0.213 (0.0728) 0.515

FIGURE 5.3.2-2d Pressure contour plot for cavity problem (Re=400).
Contours at -0.431 (0.2421) 1.99

- 148 -

1.2

* Burggraf
•*-":^: :::;;Gnia et al

u (m/s)

present study

: : ; ,:;:- : l -

"Ov8

q»6

O »4

O.2
: ; - ;l. :b-'i
-O.2

-O.4

t i

•!•:-. " t
t______"_i-________j ' j,________t

0 0.1 0.2 0^3 0.4 0.5 0.6 O.T 0^8 0.9 1

FIGURE 5.3.2-3a u-velocity profile along vertical centre of cavity (Re=100)

Ghia et al present study

0.2
v (na/s)

0 0.1 O.2 0.3 0.4 0.5 O.6 0.7 O.8 0.9 1

FIGURE 5.3.2-3b v-velocity profile along horizontal centre of cavity (Re=100),

- 149 -

Burggraf

Pre3 ent

Ghia et al

u (m/s)

—O

-O
0 Oil O.2 Qi3 O.4 O.5 O,6 O.7 0,8 0.9 1

FIGURE 5.3.2-4a u-velocity profile along vertical centre of cavity (Re=400)

Ghia et al present strxdy

0 0.1 O.2 0.3 O.4 0.5 O.6 O.7 O.8 0.9 1
x (m)

FIGURE 5.3.2-4b v-velocity profile along horizontal centre of cavity (Re=400)

- 150 -

relatively coarse meshes and low-order differencing schemes.

Figure 5.3.2-5 shows the variation of the logarithm of maximum residual r, with

the CPU time, where for a given iteration

r = Maximum residual{u, v, p'} (5.3.2-1)

The results indicate that the LSOR algorithm is the most efficient algorithm.

Although it is only 1.3 times faster than the JCG algorithm it is over 3.2 times

faster than the JUR algorithm.

5.4 PROBLEM 2: Sudden expansion problem

In this problem the fluid enters a restricted opening between two parallel plates

(figure 5.4-1). The resulting flow includes a recirculation region which forms

behind the closed section of the plates. This is not surprising since a sudden

increase in the cross-sectional flow area can result in a reversal of the fluid flow

in the immediate vicinity of the step change. Like the cavity problem this test case

has become very popular. Macagno and Hung [1967] were amongst the first to

report detailed numerical simulations for this problem. Since then many variations

have been considered such as the size of the opening, the profile of the inlet

velocity and the inlet Reynolds number (Back and Roschke [1972], Iribarne et al

[1972] and Pollard [1980]). Experimental measurements have also been recorded

by Denham and Patrick [1974] for the variation involving a single plane duct

expansion.

- 151 -

1 L50R

2 JCG

3 JUB

-6; 5
1000 •::,;:: . :

CPU tttng
3000

FIGURE 5.3.2-5a Residual plot for cavity problem (Re=100) using different
scalar algorithms to solve the pressure-correction equation

-2; 5

•3:5

•I"

-5.3

-6,5

1 LSOfl

2 JCG

3 JUR

0 200 400 GOO 800 1000 1200 1400 1600 1800 2000 2200
CPU time Cseconds]

FIGURE 5.3.2-5b Residual plot for cavity problem (Re=400) using different
scalar algorithms to solve the pressure-correction equation

- 152 -

0:05 m
v » 0 rns

ms
-l

u - 1ms
v = 0 ms

-1
—1

p: - 0 Nm.HZ:

u = 0 ms
v = 0 ms-1

1.17 m

FIGURE 5.4-1 Definition of sudden expansion problem

- 153 -

5.4.1 Physical and geometrical specification

The boundary conditions for the sudden expansion problem are shown in figure

5.4-1. The inlet u-velocity has a parabolic profile with a mean inlet velocity

Uinj^l.Oms'1 and a v-velocity v=0ms~l . All walls are assumed to have a no-slip

velocity condition and the oudet pressure is fixed at zero. The ratio of the channel

length to the inlet is 23.4 and the expansion ratio of the inlet to the total width is

2. The flow is taken to be laminar and a steady state solution is obtained for an

inlet Reynolds number Reinlet=50, which is defined as

= U;,.., o L (5.4.1-1)

where u^ is the inlet velocity, p is the density, |i is the absolute viscosity and L

is the width of the inlet. The initial velocity and pressure fields were u^.Sms"1 ,

v=0ms~l and p=ONm~2 . The domain is discretised using a non-uniform 64x16 grid

and has a maximum aspect ratio of 6.4 at the outlet.

5.4.2 Results using scalar algorithms

The resulting velocity vector plot is shown in figure 5.4.2-la, the recirculation

region immediately behind the closed section of the square duct can be seen.

Velocity and pressure contour plots are also shown (figures 5.4.2-lb to 5.4.2-Id),

these show the two singularity points at the abrupt expansion and at the re-

attachment point.

A plot of the maximum logarithm residual defined by equation (5.3.2-1) with CPU

- 154 -

> N >. >»

: a . oo

FIGURE 5.4.2-la Velocity vector plot for sudden expansion problem

FIGURE 5.4.2-Ib u-velocity contour plot for sudden expansion problem.
Contours at -0.167 (0.1637) 1.47

- 155 -

FIGURE 5.4.2-Ic v-velocity contour plot for sudden expansion problem.
Contours at -0.106 (0.0302) 0.196

I

FIGURE 5.4.2-Id Pressure contour plot for sudden expansion problem.
Contours at -0.121 (0.0717) 0.596

- 156 -

time provides a history of the convergence for this problem and is shown in figure

5.4.2-2. The plot shows that there is little to choose between the LSOR and JCG

algorithms, the JCG algorithm being marginally faster. Both the LSOR and JCG

algorithms are over 3 times faster than the JUR algorithm. Unlike the cavity

problem where the coupling is weak between the governing equations, here the

coupling is more pronounced and as a result there is a non-monotonic decrease in

the residuals. Difficulties in convergence were experienced with the JCG algorithm,

and as a result it was necessary to relax the solution. This is in marked contrast to

the results obtained in Chapter 4. Although it is not clear why the algorithm

behaved in this way, a possible explanation can be due to the representation of the

matrix by the preconditioner. In the Laplace problem the Jacobi preconditioner is

an adequate approximation, however for the pressure-correction matrix it is not so

good and this causes an increase in the condition number of the matrix.

5.5 Distribution of computation effort in the SIMPLE procedure

To determine which portion of the SIMPLE procedure should be vectorised, it is

first necessary to determine the percentage of CPU time spent in each step. This

evaluation is naturally dependent on the problem being solved, the size of the grid

used and the choice of algorithm used to solve the resulting discretised equations.

For these reasons details of the percentage CPU times are presented for the cavity

problem with Re=100 (Table 5.5-la), Re=400 (Table 5.5.Ib) and for the sudden

expansion problem (Table 5.5-Ic). The tables include the effect of using either a

LSOR, JCG or JUR algorithm for the solution of the pressure-correction equation.

The most striking feature, regardless of the problem being solved or the algorithm

used, is that the solution of the pressure-correction equation is by far the most

- 157 -

1
2JCG

3 JUR

1000 2000 3000 4000 500Q
CPU time Csecondsl

6000: 7000:

FIGURE 5.4.2-2 Residual plot for sudden expansion problem using different
scalar algorithms to solve the pressure-correction equation

- 158 -

LSOR JUR

Set up source terms for u-momentum equation
Set up u-momentum equation coefficients
Solve for u-momentum values u*
Set up source terms for v-momentum equation
Set up v-momentum equation coefficients 6^ 1 1.9
Solve for v-momentum values v* 1.9 .6
Set up pressure^orrectibii coefficients 12,9 4,1
Solve for pressure-correction values p" 65 A 89 :2.
Correct u\ v* and pr to produce u, v arid p LI 3

LSOR

Set up source terms for u-momentum equation 23 .7
Set up u-momentum equation coefficients 5;9 1.9
Solve for u-momentum values u- 2.0 .6
Set up source terms for v-momentum equation 23 i7
Set up v-momentum equation coefficients 5.9 13
Solve for v-momentum values v" 2.0; ;6
Set up pressure-correcdon coefficients 125 4.1
Solve for pressure-correction values p^ 65.6 89.2

i^ v^ arid pf to produce u, v and p LI 3

....,,,,,,„,„...... ,.,.,,.. :,.^^Je&
Set up source terms for u-momentum equation 1;6 .7 LI
Set up u-momentum equation coefficients
Solve for u-momentum values ur
Set up source terms for v-momentum equation
Set up v-momentum equation coefficients
Solve for v-momentum values v* 1.4 .6
Set up pressure-correction coefficients 9.0 3.8
Solve for pressure-correction values p' 75.9 89.8 82.9
Correct u*, v* and p* to produce u, v and p .7 3 .5

TABLE 5.5-1 Percentage breakdown of the SIMPLE procedure for (a) cavity
problem Re=100 (b) cavity problem Re=400 (c) sudden
expansion problem

- 159 -

computationally expensive step in the SIMPLE procedure. The percentage time

varies according to the algorithm used. If the LSOR algorithm is used up to 76%

of the total time is spent in solving the pressure-correction, this increases to 83%

if the JCG algorithm is used and increases further still to 90% if the JUR

algorithm is used. Therefore, the vectorisation of the pressure-correction ought to

produce a reasonable improvement in speed.

To predict the speed-up factors which might be obtained, an analysis using

Amdahl's law is carried out for the JUR and JCG algorithms. In solving the cavity

problem the fraction of code that can be vectorised using the JCG algorithm is

fv=0.739, and the expected range of speed-up factors (S) is given by

1 < S < 1
0.261 + 0.739/4.35 0.261 + 0.739/173.2

2.32 < S < 3.77 (5.5-1)

When applied to the sudden expansion problem fv=0.829 and the expected range of

speed-up factors are given by

1 < S < 1
0.171 + 0.829/4.35 0.171 + 0.829/173.2

2.77 < S < 5.69 (5.5-2)

Therefore, when the vectorised JCG algorithm is used, a maximum speed-up of

3.77 can be expected for the solution of the cavity problem and a factor up to

5.69 is expected for the sudden expansion problem, when compared with the

equivalent scalar algorithm.

- 160 -

When the JUR algorithm is used, the fraction of code that can be vectorised for

the cavity problem is fv=0.892, which leads to expected speed-up factors in the

range

1_____ < S <_____1_____
0.108 + 0.892/4.35 0.108 + 0.892/173.2

3.19 < S < 8.84 (5.5-3)

When applied to the sudden expansion problem, the fraction of code which can be

vectorised is increased to fv=0.898 and the expected speed-up factors are given by

1 < S < 1
0.102 + 0.898/4.35 0.102 + 0.898/173.2

3.24 < S < 9.33 (5.5-4)

Therefore, when the vectorised JUR algorithm is used, a maximum speed-up of

8.84 can be expected for the solution of the cavity problem and a factor up to

9.33 is expected for the sudden expansion problem, when compared with the

equivalent scalar algorithm.

5.6 Vectorisation of the pressure-correction equation

From the general control-volume equation (3.4.7-1) the pressure-correction equation

can be written as

(5.6-1)

where
+ a* + a* + 4

- 161 -

The coefficients a{j are related to the coefficients defined in the momentum

equations and the right-hand-side term bpj relates to the continuity residual for a

given control-volume. The resulting matrix is symmetric and diagonally dominant

and providing the structure is not destroyed, only half the matrix needs to be

stored The matrix is stored in a diagonal format so that the vectors are typically

of length nm and suitable for manipulation by the pipeline processor (lerotheou,

Richards and Cross [1989a]). The only vectors which need to be stored in the

pipeline memory are the pressure-correction vector p', the central component

coefficient vector ap, the east component coefficient vector aE, the north component

coefficient vector aN and the right-hand-side vector bp. The vectors aw and as are

not needed since they are contained within the vectors aE and aN , respectively.

Figures 5.6-1 to 5.6-3 show the variation of residual with CPU time for the scalar

and vector implementations of the JCG algorithms (denoted by JCGS and JCGV),

when applied to the two test problems. The results indicate that for the cavity

problem a factor of 3 improvement is achieved, and for the sudden expansion

problem a factor of 5.4 is achieved. These results compare well with the

predictions stated using Amdahl's law (5.5-1) and (5.5-2). Similar residual plots are

presented for the scalar and vector implementations of the JUR algorithm, denoted

by JURS and JURY, respectively (figures 5.6-4 to 5.6-6). For the solution of the

cavity problem a speed-up factor of up to 7 is achieved and for the solution of the

sudden expansion a factor of up to 8 is achieved. Again, these speed-up factors are

in good agreement with those stated using Amdahl's law (5.5-3) and (5.5-4).

- 162 -

Finally, figures 5.6-7 to 5.6-9 show a comparison between the scalar LSOR

algorithm and the vector JUR and JCG algorithms. For the cavity problem the

results indicate that there is little to choose between the JURY and JCGV

algorithms, the JCGV being marginally faster. Both vector algorithms are a factor

of 2.3 faster than the scalar LSOR algorithm. In the case of the sudden expansion

problem, the JCGV algorithm is over 2 times more efficient than the JURV

algorithm and nearly 6 times more efficient than the scalar LSOR algorithm.

These results compare favourably with other works found in the literature. These

include the efforts of Spradley et al [1981], Hemker et al [1984], Vanka and

Misengades [1987] and Schonauer and Schnepf [1988]. In each case the emphasis

was on the solution of an algebraic system of linear equations and comparisons

were based on the scalar and vector equivalent algorithms.

The distribution of computational effort for the SIMPLE procedure with a

vectorised algorithm used to solve the pressure-correction equation is shown in

tables 5.6-la to 5.6-Ic for both test problems. Two factors are significant, firstly,

the percentage CPU time taken to solve the pressure-correction equation is

dramatically reduced. For the cavity problem this is reduced from 74% to 5% if

the JCGV algorithm is used, and from 89% to 9% if the JURV algorithm is used.

The reductions are not as substantial for the sudden expansion problem, for the

JCGV algorithm the reduction is from 83% to 18% and for the JURV algorithm

the reduction is from 90% to 21%. The second significant factor is that the

generation of the coefficients (from the momentum and pressure-correction

equations) are now the major contributors to the total CPU time, taking up to 68%

of the total time.

- 163 -

scalar

1000: 1200..
CPU time fseconds}

FIGURE 5.6-1 Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the cavity problem (Re=100)

-3:5

5 •a'm
-4.5

-5.5

-6

-6.5

scalar

100 200 300 400 SOQ 600
CPU time Cseconds]

700 800 900

FIGURE 5.6-2 Comparison of scalar and vector JCG algorithms used to solve
the pressure-collection equation in the cavity problem (Re=400)

- 164 -

500 1000
CPU time

1500 2000

scalar

2500

FIGURE 5.6-3 Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the sudden expansion
problem

-6.5

scalar

soo 1000 1500 2000
CPU time Cseconds]

2500 3000

FIGURE 5.6-4 Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the cavity problem (Re=100)

- 165 -

-6,5

sea far

200 400 600 8QQ 1000 1200 1400 1600 1800 2000 2200
________CPU time Cseconds]___________

FIGURE 5.6-5 Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the cavity problem (Re=400)

-5.5

scalar

1000 2000 3000 4000 5000
CPU time Cseconds]

6000 7000

FIGURE 5.6-6 Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the sudden expansion
problem

- 166 -

—•••••-3::

-4; 5

-5,5

t Scalar LSOR
2 vector JGG
3 Vector

100 200 300 400 500 500
CPU t i me ("Seconds}

700 800 900

FIGURE 5.6-7 The effect of using a vector algorithm to solve the pressure-
correction equation in the cavity problem (Re=100)

-4.5

-5

-5.5

-B

-6.5

t Scalar I.5011;
2Vector:JGG;
3 Vector JUR

1QQ 200 300 400 500
CPU time Cseconds]

600 700

FIGURE 5.6-8 The effect of using a vector algorithm to solve the pressure-
correction equation in the cavity problem (Re=400)

- 167 -

1 Scalar
2 Vector JCG
3 Veetor JUR

5DO 1000 1500
GPU time Csecondsl

2000 2500

FIGURE 5.6-9 The effect of using a vector algorithm to solve the pressure-
correction equation in the sudden expansion problem

- 168 -

•-•• ..-.'.'. ' .••• . •'-•'.•'. '. •' '•' '• • •', ;•,•.-' >;•'•' "•'•>'•'•' ''.•'.•••'' '. ' '•!•'• •' '•'•'. ' ',•'. ' x ' ;• ' •••.•-• •.-•'...- • -'•' ••.•••.. . • •- • ; . ••• . - •;• . ;••'•.•.-.• • • • •.-.• - • . .• • • .• - • . .-,•!• - - •.••.-.••• . •-•'..

':• • •-•••• : - /ft! : ^::i :: : : :' •:: ' ' ''< ' : '. '• • ' ' ' <• : . • •'• ,• " ' .•: .:" ; '' •:•..' v.':. : ••< ' -:.•'•'•'• -: ' ',-'• '.'.'".
-:; ,'• .- W ; ilxOKVx. : .'•• .'. .'. ' , .'• V':-: : '• • : ' - .'•:. ••'••• ' : "' ' ''• '. ••'• :, '••-• • '••. ' '•<•,'.: , - •' ':•:•.• '''..: : V,- - : , '....'.'.

•••••• •'',.'.•'., ' . - . ''.-•• . .• •. . • . •. . ' ..'••• - • •••';•-•• -"•. . •'.•'.--• •..-.•..-.. , • - • . • . •. . . •..'...••..-.•• ...- - - - . . -...•.• .-,•.••..-. , .• •. ' ' . • . • . •,-. . • • • ~ ...•.-.- •.• • •..-.. ; - . . -.••.•••-
'-•'"• • .• .,'.'.•• ..•''.'',•••'.. - ~ -. • . '. .' •'. .•'••• -.'.'•.-'•.'•.•- ' . ' • •'•' ' ; ' '.-'•'•' • ' "•'-* ••.'..' . ' ' ' '• • - ' -;- -•

| Set up source terms for u-momentum equation
i Set up u-momentum eauation coefficients••- .-.-. ..•--• ...-.•..- '"^^* ^^MT ^^ »^» •• »^r« ••*•••• ^r«fl*A%B^A^^Ba.- w^^^?AAA^0A\/AA vW' .-'.'.• . " " - - • : ' - '••'•• • : ' :•' :':'. : . ' ' ' .- - . ' -.....;"•" • '• •'"'' • • • • •••••• •.•••'.. . .••' •'.'.'.' • . '. -'."•' '.''.'' '. •' ' : .''.' -.-'. :\'.'.-.'.'.''. ' •-.--.•• . . •. .•:• • • . . • ' • :•'•_. " .- •• •• , .-.-•_•• '_:."•. ' . •-•.-.•..--•-'•'•••• . . ' . • • ..

Solve for u-momentum values u*.•' '• •.-' ' ' ''*-.'. . • • • - - '•_• -..•-••. . .-. .- -..-. . .•. .-. .•-•. . • •; ' -' .•:• - . .•;• -'.••••-•.••.•••.•..-.-..-. . - • -. '••.-:' • . . .• .• • . .••.'--" ' ' -' . '

| |^-:-!:';;;f:: :V;Set up source terms for v-momentum equation
| Set up v-momentum equation coefficients
; Solve for v-momentum values V

ii | Set up pressure-correction coefficients
Solve for pressure-correction values p'

f Correct uv v* and p" to produce uv v and p

: : "* "' .•••£•: ^.-^: ;
i Set up source terms for u-momentum equation'••-.-.-' . .-.-'•: '•••'•:-.•:•. .-':-.• •. . • * .- . .- • .•.•.:•.•..-•.•.••••.-•••.-•..- • • • . - - • .-. ^-••'-''• " - '•

1 Set up u-momentum equation coefficients
: ; Solve for u-momentum values u*
•: Set up source terras for v-momentum equation

Set up v-momentum equation coefficients
Solve for v-momentum values v* ;
Set up pressure-correction coefficients
Solve for pressure-correction values r/

: Correct u^v^ and p* to produce u;: v and p

te^^ir";^^?^-S^^-^^S
Set up source terms for u-momentum equation

i Set up u-momentum equation coefficients
Sbbe for u-momentum values tf': :̂ :sM-S&i--^-:: :

1 Set up source terms for v-momentum equation
;;• Set up v-momentum equation coefficients;

1 Solve for v-momentum values vr
• : : ! Set up pressure-correction coefficients. ' '• •.-;• .• ' • .•;-: .-.- :•' •-..-:•• r r _ - _ _. : - : ._._ :<: . : . : •. . : - - _. : . : . : .

•'•'; . ' •' .' ••'. .':' " . '' ' : : : :-' ;> ' . . • . • ••- "•':-:-: : : • : ":':
:^';v-^||0^ Solve for pressure-correction values ^.'^.ftiiSB
ir;J 1: Correct u*t v" and p* to produce u, v and p :

;;?:.;^:C:;::;yfe'-: ::.:;;;:;;.;::::;*;if-::H^k •- -• - ̂ ^'^••m^-K. ̂ . ̂ •^•^^., • . :V : • : '; ^-

: :, : 'JlJR:^:-''fc6 : ':^

!i^
6J& : 63C; : ;;>;'.-; ..:. : •-..•:,•.:: T;,i5.7 ;. : - ::;:i6^;.:r':: : ^ ; -| :;v:- ; . x ' ; ; :V .:>

;S^'^i^'^';'Mi'4fe
^^yj^^'^'^'^l

9.0 4.9
2.8 3.0

JUR JCG

'.^JS^'^^^-^M^^X

'''lS^-fl^--:^^:$^:A

^•^^^f^yj!.

.; ^^}\^^^f-'-^'\M^S
^15^'^6A ::>'''^
•^^)^z&&'''W:' '?-K-

34.2 35 J ':"*-y:'.:.^;
9.0 4;9

• ' : - : i>o: --- • •• • i n - -... .'••:••;. ,£*Q .."•';.:•' jAf ••'..':'•.

JUR JCG

^•5*^^^^;^^'

. 13^* •I3^::??-r.;f^, Y _ : , .,

. y:-^:.--:,W^ll^'^
" •£•**• - "' '•'£•£•'-• ''•'• '•' • • •''•'••• . - "S. V-' •• ••:••• S V . •• .•••..••- ••• •JmJ-' '. . «/*^ -•-•--. .-.-•;.. -.-. • -. - .;.;

- ' -. '. ' :". : • ' ". •' ';"'••.• •• ' ' "'•'•.• •••'• •;-,-i^M^^:;^tS3
'!'!•!•:->. v. i W. '" ' ' m /*.- . : •:".' •' - '•'•'. '•>>:•!•.•:'. '.

' ••-•••-.- •-.• -• • ' •• • : : '!-:::->'.^ • .'• '••'••.'•
OQ X 'Jrt T'1 '' '•' ' •-•"• '••••' '• •• • ' '''"'
ZV.O JU.A: : .

9O 0 18 n£\}.y 1O.U: .x:: : :.:: .•,:;;:,;;.•:•:.:-.:.

•> < 0 C .'•::::: 'V: :.'-' ::,:,: ::^:V; : . : ''
^.J ^.J •:_:•• . ;•••• ;.:.•..:.::. :..;•;..•:..;.. ; ...

•. -; >.; ;•?;.:;: si, < o? ;;|:, .^ • %^ &$$!$$:•. '-

TABLE 5.6-1 Percentage breakdown of the SIMPLE procedure for (a) cavity
problem Re=100 (b) cavity problem Re=400 (c) sudden
expansion problem. Vectorised pressure-correction solver.

- 169 -

It is clear that although there is a significant reduction in the total time taken to

solve the pressure-correction equation the overall improvement is limited by the

time taken to generate the necessary coefficients. Hence, further vectorisation of

the solution procedure is necessary.

5.7 Further vectorisation of the SIMPLE solution procedure

This is made more difficult because the following features do not fit readily into

the pipeline processor environment:

(i) The boundary conditions. These are highly problem dependent

and are implemented as part of the source term contribution. In

addition they are only applied to a subset of the nodes being

solved and this would lead to an inefficient use of the pipeline

processor.

(ii) The variable fluid properties. These are also problem dependent

and may involve complex formulae.

(iii) Complicated source terms. These can also involve complex

formulae typified by those used in turbulence modelling. Like the

boundary conditions, they are problem dependent and are only

applied to a subset of the nodes.

The implementation of these features is further hindered by the presence of

condition statements and because of these difficulties all source terms and variable

fluid properties are computed using the scalar processor. All other calculations are

- 170 -

carried out using the pipeline processor. The evaluation of the convection terms

using an upwind differencing scheme is also computed using the pipeline processor

despite the use of comparison statements. This problem is overcome by re­

structuring the scheme in a suitable form for vectorisation and involves no

condition statements, instead the coefficient for a typical east node is evaluated as

Ce = D6 + 1/2(1 F.I -FJ.

where De is the diffusion coefficient and Fe is the convective flux.

The solution of the momentum equations also need to be reconsidered. In order to

use the pipeline processor to solve the momentum equations a different numerical

algorithm is needed instead of the LJUR algorithm. The reason for this is the

inefficient usage of the pipeline processor when using a line-by-line algorithm

because of the relatively small vector lengths involved. It has already been shown

that this makes tridiagonal solvers unattractive for use on the VA-1 pipeline

processor (Chapter 4). Instead a basic JUR algorithm is to be used, mainly because

it is straightforward to implement but also because it has demonstrated impressive

speed-up rates (Chapter 4). Since the JUR and LJUR algorithms do not have the

same rate of convergence the number of JUR iterations are adjusted so that

approximately the same rate of convergence is achieved. The result is that the JUR

iterations are increased to 2 for the cavity problem and to 12 for the sudden

expansion problem to give the same residual reduction rate per SIMPLE iteration.

- 171 -

To avoid unnecessary transferring of data between the host processor and the

pipeline processor, all geometrical data and initial fields are stored in the pipeline

memory before the start of the SIMPLE procedure. The main steps of the

procedure are now described:

(i) Compute the fluid properties (scalar processor).

(ii) Compute the linearised source terms for the u-momentum
equations (scalar processor).

(iii) Transfer the data obtained from (i) to the pipeline memory.

(iv) Complete the coefficients and right-hand-side vectors, then solve
the u-momentum equation (pipeline processor).

(v) Transfer the u-solution field back to host memory,

(vi) Repeat steps (ii)-(v) for the v-momentum equation.

(vii) Compute the linearised source term for the pressure-correction
equation (scalar processor).

(viii) Transfer the data from step (vii) to the pipeline memory.

(ix) Assemble the pressure-correction coefficients and continuity
residuals (pipeline processor).

(x) Solve the pressure-correction field (pipeline processor).

(xi) Use the pressure-correction field to correct the velocity and
pressure fields (pipeline processor).

(xii) Transfer the velocity and pressure fields back to the host
memory.

5.8 Results

To determine the speed-up factors when vectorising the SIMPLE procedure

computations are also carried out using only the scalar processor. Tables 5.8-la to

5.8-lc show that the solution of the pressure-correction equation is still the most

- 172 -

computationally demanding step. Although the percentages are lower than those

obtained when a LJUR algorithm is used to solve the momentum equations, the

advantages of this approach are demonstrated by a much higher percentage of the

SIMPLE procedure being vectorised. When the JCG algorithm is used to solve

the pressure-correction equation up to 96% of the procedure can be vectorised and

when the JUR algorithm is used this percentage is increased to 98%.

Using Amdahl's law, a prediction can be made for the improvements in speed

which can be expected when the SIMPLE procedure is vectorised using the

modified solution approach. For the case where the JUR algorithm is used to solve

the pressure-correction equation the fraction of code vectorised is fv=0.98 and the

expected speed-up factors are

1 < S < 1
0.02 + 0.98/4.35 0.02 + 0.98/173.2

4.08 < S < 38.97 (5.8-1)

For the sudden expansion problem fv =0.982 and hence the expected speed-up

factors are given by

1 < S < 1_____
0.018 + 0.982/4.35 0.018 + 0.982/173.2

3.19 < S < 42.25 (5.8-2)

When the JCG algorithm is used, the fraction of code vectorised in the cavity

problem is fv=0.957 and this gives a predicted speed-up range of

1 < S < _____1_____
0.043 + 0.957/4.35 0.043 + 0.957/173.2

3.8 < S < 20.61 (5.8-3)

- 173 -

and for the sudden expansion problem fv=0.965, so the range of speed-up factors is

given by

1_____ < S < _____1___
0.035 + 0.965/4.35 0.035 + 0.965/173.2

3.8 < S < 24.65 (5.8-4)

Residual plots are shown in figures 5.8-1 to 5.8-3 for both test problems when the

JUR algorithm is used to solve the pressure-correction equation, the results

compare the JURS and JURV algorithms. In each case significant reductions in the

CPU times are achieved, these range from a factor of 22 for the cavity problem to

over 28 for the sudden expansion problem. These speed-up factors are in good

agreement with those predicted in (5.8-1) and (5.8-2). Residual plots are also

shown for the JCG algorithm (figures 5.8-4 to 5.8-6). Again, there are significant

reductions in the CPU time with factors of 11 for the cavity problem and up to 20

for the sudden expansion problem. These factors are also in good agreement with

those predicted in (5.8-3) and (5.8-4).

As a result of vectorising as many of the steps in the SIMPLE procedure, a final

study of how the computation effort was distributed is presented in tables 5.8-2a to

5.8-2c. For the cavity problem the changes to fluid properties such as the viscosity

has little effect on the overall performance of vectorisation, although this may not

be the case for higher Reynolds numbers.

In both problems the single major contribution to the CPU time is now the

generation of the source term for the momentum and pressure-correction equations.

The solution of the pressure-correction equation using the JUR algorithm still

- 174 -

constitutes up to 31% of the total CPU time and this performance may be

enhanced with the introduction of a multigrid method, for example.

If the coupling between the momentum and pressure equations is strong (as

demonstrated by the sudden expansion problem), this will result in a greater

computation effort required by the algorithm to solve the pressure-couection

equation. This would be necessary to keep the continuity residuals under control,

failure to do so could result in exceptionally high simulation times and even

divergence of the procedure.

The speed-up factors appear to be very flattering to the JUR and JCG algorithms,

however, what really matters is a 'practical' speed-up and this may not be as

impressive. A comparison is therefore made between the best scalar algorithm and

the two vector algorithms (figures 5.8-7 to 5.8-9). For the solution of the cavity

problem there is little to choose between the LSOR and JCGS algorithms, the

LSOR algorithm being marginally faster. Thus comparing the LSOR with the

vector algorithms, the JURY algorithm is 5 times faster and the JCGV algorithm

up to 6 times faster than the LSOR algorithm. In the solution of the sudden

expansion problem the JCGS algorithm is found to be marginally faster than the

LSOR algorithm. Comparing the JCGS algorithm with the JURY and JCGV

algorithms, factors of over 7 and 29 are achieved in favour of the vector

algorithms.

The results show that the best vector algorithm can solve the cavity problem 6

times faster than the best scalar algorithm and for the sudden expansion problem

this factor is increased to 29. In the solution of the cavity problem the coupling of

- 175 -

Set up source terms lor u-momentum equation
Set up u-momentum equation coefficients
Solve for u-momentum values a?
Set up source terms for v-momentum equation
Set up v-momentum equation coefficients
Solve for v-momentum values vf
Set up pressure-correction coefficients
Solve for pressure-correction values p'
Correct uV v* and p* to produce u» v and p

Set up source terms for u-momentum equation
Set up u-momentum equation coefficients
Solve for u-momentum values u*
Set up source terms for v-momentum equation .7
Set up v-momentum equation coefficients L8
Solve for v-momentum values vy 2.0
Set up pressure-correction coefficients 4.2
Solve for pressure-correction values p' 86.5
Correct u!, v* and p^ to produce ur v and p 3

JUR

Set up source terms for u-momentum equation .7
Set up u-momentum equation coefficients 1.9
Solve for u-momentumvalues if 2.0
Set up source terms for v-momentum equation .7
Set up v-momentum equation coefficients 1.9
Solve for v-momentum values v^ 2.0
Set up pressure-correction coefficients
Solve for pressure-correction values p'
Correct u^ v* and p? to produce u; v and p .3 .8

JUR

TABLE 5.8-1 Percentage breakdown of the SIMPLE procedure for (a) cavity
problem Re=100 (b) cavity problem Re=400 (c) sudden
expansion problem. JUR used to solve momentum equations.

- 176 -

scalar

3500

FIGURE 5.8-1 Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the cavity problem
(Re=100). JUR used to solve the momentum equations.

500 1000 1500 2000 2500
CPU time Cseconds]

3000 3500

FIGURE 5.8-2 Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the cavity problem
(Re=400). JUR used to solve the momentum equations.

- 177 -

-5,5
1000 2QOO 3000 4000 5000

GPU time ^seconds}
6000 7000 8000

FIGURE 5.8-3 Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the sudden expansion
problem. JUR used to solve the momentum equations.

200 EDO 900 1000
CPU time Cseconds]

1200 1400

FIGURE 5.8-4 Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the cavity problem
(Re=100). JUR used to solve the momentum equations.

- 178 -

CPU
800 ;

[seconds}
1000 1200 1400

FIGURE 5.8-5 Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the cavity problem
(Re=400). JUR used to solve the momentum equations.

200 400 600 SCO 1000 1200
CPU time [seconds!

scalar

14QQ 1600 1800

FIGURE 5.8-6 Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the sudden expansion
problem. JUR used to solve the momentum equations.

- 179 -

/KV
:\V/.

Set up source terms for u-momentum equation 20.1
Set up u-momentum equation coefficients 1.0 I.I
Solve for u-momentum values u" LI 1.2
Set up source terms for v-momentum equation 20.1
Set up v-momentum equation coefficients 1.0
Solve for v-momentum values v* 1-1
Set up pressure-correction coefficients 34.7 39.1
Solve for pressure-correction values p' .20L4- •':•'
Correct u\ v* and p" to produce uVv and p J2

Set up source terms for u-momentum equation 20i2
Set up u-momentum equation coefficients 1.0
Solve for u-momentum values u* 1*1
Set up source terms for v-momentum equation 202
Set up v-momentum equation coefficients 1.0
Solve for v-momentum values V 11
Set up pressure-correction coefficients 34.8
Solve for pressure-correction values p' 204
Coiiect u!> v" and p* to produce u; v and p .2 wi

Set up source terms for u-momentum equation
Set up u-momentum equation coefficients
iSiolve for u-momentum values u*
Set up source terms for v-momentum equation
Set up v-momentum equation coefficients 1^0
Solve for v-momentum values v? 1.0
Set up pressure-correction coefficients 30.4
Solve for pressure-correction values p' 30.8
Correct u*, v* and p* to produce u, v and p .3

TABLE 5.8-2 Percentage breakdown of the SIMPLE procedure for (a) cavity
problem Re=100 (b) cavity problem Re=400 (c) sudden
expansion problem. Full vectorisation.

- 180 -

-5,5

tScalar ISOR
2; Vector :;JGG
3 Vector JUR

100 200 300 400 : 500 500
CPU time Seconds:}

700 800 900

FIGURE 5.8-7 The effect of full vectorisation in the solution of the cavity
problem (Re=100). JUR used to solve the momentum
equations.

-6.5

1 Scalar LSOR
2 Vector JCG;
3 Vector JUR

100: 200 300 400 500
CPU time Cseconds;)

600 700

FIGURE 5.8-8 The effect of full vectorisation in the solution of the cavity
problem (Re=400). JUR used to solve the momentum
equations.

- 181 -

1 Scalar L50R
2 vector JGG
3 Vector JUR

sou 100Q 1500
CPU time fsecondsi

2000: 2500

FIGURE 5.8-9 The effect of full vectorisation in the solution of the sudden
expansion problem. JUR used to solve the momentum
equations.

- 182 -

the governing equations is weak and therefore the solution of the pressure-

correction equation is not required to a high degree of convergence, thus the

significant improvement in speed results from the vectorisation of the remainder of

the solution procedure. In the case of the sudden expansion problem the coupling

is much stronger and here the improvements have been further enhanced through

the solution of the pressure-correction equation.

5.9 Closure

Two versions of the vectorised SIMPLE procedure, have been presented. The first

is a naive approach where only the algorithm used to solve the pressure-correction

equation is vectorised. This is because 65%-90% of the total time is dedicated to

the solution of the pressure-correction equation. Vectorisation of the algorithm led

to significant reductions in the time taken to solve the pressure-correction equation,

these were as low as 5% in some cases. However, comparing the best scalar and

vector algorithms improvements of 2 were achieved for the solution of the cavity

problem and under 6 for the sudden expansion problem. These factors may appear

surprisingly low considering the proportion of code which is vectorised, however

an analysis using Amdahl's law reveals that such speed-up factors are to be

expected.

In the second approach as much of the SIMPLE procedure as possible is

vectorised. Full vectorisation is prohibited because features such as boundary

conditions, fluid properties and source terms do not allow for efficient vectorisation

on the VA-1 processor. As a result they are computed on the scalar processor.

Also, to allow the solution of the momentum equations to be carried out using the

- 183 -

pipeline processor the JUR algorithm is used instead of the LJUR algorithm.

Comparisons between the best scalar and vector algorithms show that factors of up

to 6 are achieved for the solution of the cavity problem and up to 29 for the

sudden expansion problem. The successful implementation of 95%-98% of the

SIMPLE procedure is the reason for the high speed-up factors achieved.

Although the JCG is seen to be the most efficient algorithm, it is also found to be

unreliable and lacks robustness. The tendency for the algorithm to become

inefficient or to diverge means that relaxation is necessary, and this needs to be

taken into consideration when choosing a best algorithm.

- 184 -

CHAPTER SIX

- 185 -

6.0 ADDITION OF SCALAR QUANTITIES

6.1 Introduction

The purpose of this chapter is to determine what effect the introduction of scalar

quantities have on the vectorised SIMPLE procedure. So far only laminar flow

problems involving the solution of the velocity and pressure fields have been

tackled. Consideration is now given to the solution of scalar variables typified by

enthalpy (or temperature) and turbulence. It is not surprising that the introduction

of scalar equations will cause a significant increase in the computation time,

although this will depend largely on the strength of coupling between the

equations. Generally, strong coupling can make convergence difficult and cause a

significant increase in the computation time.

In this chapter two test problems are studied, both of which involve the scalar

equations for enthalpy and the time-averaged form of turbulence. The first problem

is a study of L-shaped turbulent flow in a duct. The second involves the natural

convection of air in an enclosed cavity, simulations are performed for Rayleigh

numbers varying from 103-106 (laminar) and 107 (turbulent).

6.2 The scalar equations

The turbulence model used here has been described by many authors, see for

example Launder and Spalding [1974] for details. The model is based on turbulent

kinetic energy (k) and its rate of dissipation (e) and is called the k-e model.

Assuming a two-dimensional cartesian framework, the equation for kinetic energy

is given by

- 186 -

JKpuk) + J)(pvk) = _d kff 2k \ + _2 LB <& \+ Sk
ax ay 3x I ak 3x) 3y I ak 3y

(6.2-la)

Sk = Gk + GB - pe

and the equation for the dissipation rate is

(6.2-Ib)

J)(pve) = _a m* 3e _3 /ikf 3e \ + S£
I ae 3x J 8yI ae

(6.2-2a)

Se = e (c t
k

k - c2pe + c3GB) (6.2-2b)

Gk is the shear production term and is defined by

Gk = 2
"au
ax

2 + "av
ay

2
+ au + av

ay ax
2

and GB is the buoyancy production term

(6.2-3)

GB = -Pat
ay

(6.2-4)

In this implementation of the k-e model the empirical constants are set up as

c t=1.44, c2=1.92 and c3=1.0, if buoyancy is not included then c3=0.0. The effective

viscosity jj.,^ is given as a function of the laminar and turbulent viscosities |i and

1^ respectively, thus

(6.2-5a)

(6.2-5b)

The constant C D is set to 0.09.

- 187 -

The temperature equation is given by

J)(puT) + _3(pvT) = _9
3x 3 3x a at

3T
a at

S (6.2-6)

In laminar flows the no-slip condition is assumed at a wall and the specification of

boundary conditions for scalar quantities is straightforward. In turbulent flows the

changes to the unknown quantities can be dramatic near a wall. To describe this

change, wall functions assuming a logarithmic profile are used in the near-wall

region.

6.3 PROBLEM 3: L-shaped turbulent flow -problem

The fluid enters through an opening at one end of a square duct and exits at the

other end, the restricted outlet is perpendicular to the inlet (figure 6.3-1). The walls

are heated and the solution for the steady state turbulent flow is simulated.

6.3.1 Physical and geometrical specification

The inlet u-velocity has a plug-flow profile with a velocity of 50ms and an inlet

Reynolds number of 105 . At the outlet a fixed pressure of zero is defined and all

walls are at a constant temperature of 500K. The initial velocity and pressure

fields are u=50ms"1 , v=0ms~l and p=ONm~2 , respectively. The initial internal

temperature was 500K. The domain is discretised using a non-uniform 64x16 grid

and has a maximum cell aspect ratio of 10.

- 188 -

= 50
v = 0 ms"

X

:.T = 500 K
u - 1 ms"
v•:•= 0 ms^"

u
v

0 ms
Q msr
500 K

-1

^0 ra:

500 K
u = 1 ms
v == 0 ms

-1;. I m

0 Nm

m

FIGURE 6.3-1 Definition of the turbulent L-shaped flow problem

- 189 -

6.3.2 Results usine the scalar algorithms

The velocity vector plot is shown in figure 6.3.2-la. The developed turbulent

profile can be clearly seen together with the recirculation region in the top-right

corner of the domain. Contour plots of velocity, pressure and temperature are

shown in figures 6.3.2-Ib to 6.3.2-le.

A plot of the maximum residual with CPU time provides a useful insight into the

performance of some algorithms. This is shown in figure 6.3.2-2 and shows that

the LSOR algorithm is the most efficient of the scalar algorithms considered.

Taking a suitable level of convergence, for example, when the maximum residual

is less than 1.75xlO~5 , the LSOR algorithm is 40% faster than the JCG algorithm

and nearly 3 times faster than the JUR algorithm.

6.4 PROBLEM 4: Natural convection in a square cavity problem

In this final problem, the convective flow is buoyancy-driven and there is a

temperature difference between the two vertical walls as one is cold and the other

hot. This test case was proposed by Jones [1979] as a suitable test case for

validating computer codes, as well as being of practical interest. This problem is

often referred to as the 'double glazing' problem (Jones [1979], de Vahl Davis and

Jones [1983] and de Vahl Davis [1983]) and is solved here as a two dimensional

steady state problem.

The differential equations make use of the Boussinesq approximation for steady

state flows, this assumes that the density variations are negligible except in the

- 190 -

FIGURE 6.3.2-la Velocity vector plot for L-shaped flow problem

FIGURE 6.3.2-Ib u-velocity contour plot for L-shaped flow problem.
Contours at -6.38 (5.928) 52.9

- 191 -

FIGURE 6.3.2-Ic v-velocity contour plot for L-shaped flow problem.
Contours at -4.61 (5.101) 46.4

FIGURE 6.3.2-Id Pressure contour plot L-shaped flow problem.
Contours at 6.68 (98.532) 992

- 192 -

FIGURE 6.3.2-le Temperature contour plot for L-shaped flow problem.
Contours at 358 (14.2) 500

2000 4000 6000 aooo 10000
CPU time

12000 14000 16000 18000

FIGURE 6.3.2-2 Residual plot for L-shaped flow problem using different scalar
algorithms to solve the pressure-correction equation

- 193 -

buoyancy term in the momentum equations. Therefore in the buoyancy term the

density is defined by

p = popAT (6.4-1)

and elsewhere the density is constant, i.e

P = Po (6.4-2)

6.4.1 Physical and geometrical specification

The coordinates x, y and the velocity components are non-dimensionalised using

the length of the cavity D and the thermal diffusivity k, thus

x = x/D

y = y/D
(6.4.1-1)

u = uD/k

v = vD/k

The temperature difference between the two vertical walls AT is set to 1 (figure

6.4.1-1), at x=0 the cold wall is set to a scaled temperature ^=0.0 and at x=l the

hot wall temperature is T2=1.0. The top and bottom walls are insulated and defined

by a zero temperature gradient

21
3y

= 0 (6.4.1-2)
y=0,l

The dimension (D) of the cavity is also used to modify the Rayleigh number (Ra),

this is defined by

Ra = pgATDY*v (6.4.1-3a)

- 194 -

»

W

S

6

"

H
. fit*

.'

•
V

.

. O
s

I .-. ; T.

S
ii

» t- ss.
V

rf

-•'•*
ft

|6'

.-
-.

t
.

-.
t

W

W

:
fi •, a
B

:
**

.• 4-

ON

where v is the kinematic viscosity

v = |o/p (6.4.1-3b)

The initial velocity and pressure fields are u^.Oms"1 , v^.Oms"1 and p=ONm~2 ,

respectively and the initial temperature field was set to T=0.5. A non-uniform

32x32 grid was used, and solutions were determined for Rayleigh numbers of 103 ,
s

104, 105, 106 and 107 at a Prandtl number of 0.71. In the case when Ra=107 the

k-e turbulence model is also used.

6.4.2 Results using the scalar algorithms

The velocity plots for all the Rayleigh numbers considered are shown in figure

6.4.2-1. Contour plots for the velocities, and temperatures are shown in figures

6.4.2-2 to 6.4.2-6 together with the stream function and vorticity quantities.

At a Rayleigh number of 103 the streamlines are those of a single vortex, the

centre of the vortex being the centre of the domain. As the Rayleigh number is

increased the centre streamline becomes elliptic (Ra=104), extending to produce two

secondary vortices inside it (Ra=105). These vortices tend towards the direction of

the flow, moving towards the walls. The isotherms indicate that for low Rayleigh

numbers, most of the heat transfer is through heat conduction, the effect of

convection is seen as the deviation of isotherms from the vertical. For high

Rayleigh numbers the heat transfer is mainly through convection in what have now

become the thin boundary layers.

- 196 -

The results for Rayleigh numbers 103<Ra<106 are compared with the benchmark

solution (de Vahl Davis [1983]). The qualitative agreement between the present

results and the benchmark solutions are good for low Rayleigh numbers, despite

the fact that finer grids were used in the benchmark solution. For high Rayleigh

numbers there are differences, this is because the benchmark used a finer grid

(81x81) and was more accurate in defining the thin boundary layers. Table 6.4.2-1

shows the maximum and minimum local Nusselt numbers on the cold wall and

their location; The maximum u-velocity and its location on the vertical mid-plane

and the maximum v-velocity and its location on the horizontal mid-plane.

An investigation into the performance of various algorithms reveals that the most

efficient is the LSOR algorithm (figures 6.4.2-7 to 6.4.2-11). This is up to 75%

faster than the JCG and a factor of about 3.5 faster than the JUR algorithm. The

results were obtained for a convergence level where the maximum residual was

less than 2.5x10"5 .

6.5 Distribution of computation effort in the SIMPLE procedure

A breakdown of the SIMPLE procedure is carried out to determine the expected

reductions in computation time when the pipeline processor is used. A detailed

breakdown of the procedure for both the JUR and JCG algorithms reveals two

main trends (Table 6.5-1 and Table 6.5-2). Firstly, the time taken to solve the

pressure-correction equation, although still a major contribution to the total time, is

now lower than in the laminar problems studied in Chapter 5. Secondly, the

proportion of computation essentially scalar (such as the generation of source

terms) has increased because more unknowns are being solved. For example, in the

- 197 -

• • » * F + * & ^ ̂ ̂ »
• • t t r * *• rf»>» **
i»/./X
• i / / r.• i i ' tfSS'* *•

10.00

FIGURE 6.4.2-la Velocity vector plot for natural convection problem (Ra=103)

• • «

• • f

• I /
• I /
• \ t 1, 1 1) .tit
:fff, t rf , rT '
, rt '
,rf '
, t ' '
,r ' '
,t"
•*" I;{:•!
rtIV

' M\>
• A ^\N
i 1 t %*«
• •» s s»
. « * ». •>
• « • « •

?^/^^r*r^r~^"7~* » *-*-*-»-*^N*^%\\S^^-==^^TOSt
;;:::::::::--''£"' '" ------ ̂ uu••' f ?;;;:: --'^» :::;:

!,; m,,,...::;;;;{jjj.;...
ITTtt \ ».*.., r<(/ '*J*j'; V; Ju\\ \ v v ^ . . . „ ^ //{}vi' '
\^\\\-v.v^^«^^ wr-, ''**>vi i

\ \\\V, V, '^s *» *^ ^.*«. ^— «_ •*-* f* f'SSJJ/tl
\ \ *V'*X»»k »•* ^^ ^ ^ « | I *'**•* J

^^T'^r^^^ti^"*'"'"'^'^'^^^^' '
"^ ^*«.*^ * - ^— ^- *— »• * « < *— 4^ o- >»• ftf * S S t t

• » » •
» * % •
^ % * •

w> t •
<• ^ k •
^\ v »^:, v •
k! V ' t! I*
l!,* 1
,lt'
, .» '
...l 1
...I '

, 1 l
, I 'M l
M 1
• j i

J i '
jit
j 1 i
• 1 i
4 '

t

__ __ ̂.: ao.o MXS .

FIGURE 6.4.2-Ib Velocity vector plot for natural convection problem (Ra=104)

- 198 -

mmK'^-< ,.".:. : ,v --:---- :: : : ; : -

• •

f t
» f
f 1tt tf
t
tt'

rt'
t
t
f
f ,
r
f
r,
fr . rr i
1 1\ 1
1 1

1 1

J
<
1
s

1 *
*

.

t 4

r ,1 .
J

I .

1 4

''

i

15> t>t^
iS
. «.

*

f t
f .f .I

, t

'
J

1\\\
k>
IXb\
LN
bN
.N

.»

..^^^. . « « • • • • . • • •••«••

rs'ZZ^-r'^-^— 1 r ̂ ̂ ̂ ~: 1 TT7TT*
f^<^—- •-»^-»-^^^-*-^- ————
L///»^>.^ ^^^^^HZT" "^^^^^y//^. . ^ ""i:^....;:^, >«'»'.-»-»-•-»-»-. ^.»«^x\
///"-.,..,,,, ,,,,„*'•*'""•'•''• "•-'•kv
'••*<• » « « % ^ V *^^*^^SVV4T r r r , . . *........... ,, Mi
MM.. ,1'-. , %ll j t,-. , % .
1\%S%». ..,,,,..,..,.*•
^ . * i 1 \\X.v ,, *'

\ v .-.-....^...^ ''isv^m:!:^!:^!:^ ^2 ~ •" x " / //
^ rrrr^^^i^^wi:^^^-'-'^/?
------ '- - - «- •* — • — «~I-Lti^£;• * u _ _ _j

__> : ISO . O n/s .

•
^

^

s
\
\
t
\
\
\
i
\
t ,
i

'
'
i
JJ//
f

«

s
\\tfII

r

,
* •

}j j

.
*
s.
V
V
\

i
i

r •

i «

i

i

^

\

\

\
4
H
1j ;i
4

to «

X »
k v^ »•

, I{ I
V'i

1 1
i
1
1
1
1
4
1
\
1
4
4
4
^
4
4

(

FIGURE 6A.2-lc Velocity vector plot for natural convection problem (Ra=105)

• • • •' • •

: ; • . : . • - •

t
f
t

'

,

'
t

j
j
j
j

t j
k j

j
i

\ >.
V .%

. <
t

1
1
t
b

^

t

i

V

i

v. ;

J
,

1

i
\\
V
•s,

^•^•*^— -••- — «. » • . . - . " - . -
fj>^^ »J--»w -»-<•-» *

^IS* •* -fclfc* *"* *" U ^* ^* _>«*.« r^-rf"*^
I y^X^, PJf»«(-«-^«- ________ ^
> 4 >* ̂ * _-. <*"^L*"1*^' ̂ * ̂ * -ut -vi. -a ^ ^ ____ 4 """*"
1 (Lfs^ ' ""*"** "<*"««'*-»-* ^ f j, _<-_-Tujti-» '""^* ,\ r j ̂ * r̂*^m *^'>iw'*-^* . _. . .______. _. ^ \

A *i n .
,.,.,,........... ---., u

.................., fcr
r-,

'::::::: :•;::::::: ::::::;;:'ti I j

**•*"• * •-•-•-+- .-•-^.--•.^^.v.^v.v. N.-*...^ j.*, + , '

~~ -* •* ^1 ~ "~ ^ ^ tf m ^*

^•"^•*"^^'* ^ •- ^ •» * * ^\^4 J

____ ̂. : 33O M/S .

•^•>
'**\:>^
,v

1
1
r
n
c
f

0

r^

^
f^

\
1

f*

'

r

/x'
4 »
4 •

. ••-• •• • . . : . •:•:•:•:

• '•' ''•-'.''.-.'-' -' : -:';0
. . .-•- •-.-.: •• • •;•:•:•
•••-••-'; .- _.-.-• . . .:•:•:<
.'' ..::.' •'.-• • ' '.•. ' '•••- •:--.'•'•:

FIGURE 6A2-ld Velocity vector plot for natural convection problem (Ra=106)

- 199 -

FIGURE 6.4.2-2a u-velocity contour plot for natural convection problem
(Ra=103). Contours at -3.64 (0.728) 3.64

FIGURE 6.4.2-2b u-velocity contour plot for natural convection problem
(Ra=104). Contours at -16.05 (3.21) 16.05

- 200 -

FIGURE 6.4.2-2c u-velocity contour plot for natural convection problem
(Ra=105). Contours at -43.5 (8.7) 43.5

FIGURE 6.4.2-2d u-velocity contour plot for natural convection problem
(Ra=106). Contours at -118 (23.6) 118

- 201 -

FIGURE 6.4.2-3a v-velocity contour plot for natural convection problem
(Ra=103). Contours at -3.67 (0.734) 3.67

FIGURE 6.4.2-3b v-velocity contour plot for natural convection problem
(Ra=104). Contours at -19.44 (3.88) 19.4

- 202 -

FIGURE 6.4.2-3c v-velocity contour plot for natural convection problem
(Ra=105). Contours at -69.3 (13.86) 69.3

FIGURE 6.4.2-3d v-velocity contour plot for natural convection problem
(Ra=106). Contours at -224 (44.8) 224

- 203 -

FIGURE 6.4.2-4a Temperature contour plot for natural convection problem
(Ra=103). Contours at 0 (0.1) 1

FIGURE 6.4.2-4b Temperature contour plot for natural convection problem
(Ra=104). Contours at 0 (0.1) 1

- 204 -

FIGURE 6.4.2-4c Temperature contour plot for natural convection problem
(Ra=105). Contours at 0 (0.1) 1

FIGURE 6.4.2-4d Temperature contour plot for natural convection problem
(Ra=106). Contours at 0 (0.1) 1

- 205 -

FIGURE 6.4.2-5a Stream function contour plot for natural convection problem
(Ra=103). Contours at -1.172 (0.1172) 0

FIGURE 6.4.2-5b Stream function contour plot for natural convection problem
(Ra=104). Contours at -4.931 (0.4931) 0

- 206 -

FIGURE 6.4.2-5c Stream function contour plot for natural convection problem
(Ra=105). Contours at -9.469 (0.9469) 0

FIGURE 6.4.2-5d Stream function contour plot for natural convection problem
(Ra=106). Contours at -15,77 (1.577) 0

- 207 -

FIGURE 6.4.2-6a Vorticity contour plot for natural convection problem
(Ra=103). Contours at -31.39 (8.300) 51.61

FIGURE 6.4.2-6b Vonicity contour plot for natural convection problem
(Ra=104), Contours at -124.7 (55.17) 427.0

- 208 -

FIGURE 6.4.2-6c Vorticity contour plot for natural convection problem
(Ra=105). Contours at -598.0 (301.5) 2417

FIGURE 6.4.2-6d Vorticity contour plot for natural convection problem
(Ra=106). Contours at -3131.0 (1815.8) 15027

- 209 -

'. - -. • , •-..•..•• • • . . • .-•..'..••.. - •- • .-•••..-.• •- • - • • -•...-• ••..-.... • • • ...-...-• • • • -.- . - • . .- • .•--•. ...-..-•.•. '..--. - .-, • - . • -- • - • - . • • . . • -' ; '• - • • .- . •..-,. - . -...-... - .• •...'• .•..• -.-' .-••--•-.•••.. - . • ..•-.••. • . • - •;
.-.".-. • • - . . "•-... -:•. ..-'''. - - - •.-.-•• ';•• -. ' . .•:•:".'•"• •'-' . •; : . '•,••.: ••.••'-.-.'••. . . • •• •' - ' . • . -. '- . .••;..•-' : : . • .;... ...-..-• • :• • .. •• .-._..- . -. • . ..-.•..-- • .. •..-.• ..'.•:'•.--.••'••.•• .-;• •••••: - ...- . .• ..-.--. • -.- . .

',•'.• • . •'•'. .- ' ' •''•' • ~ '..''. '•'•'. '..-.. • •'-' .-••.-•- - .-. . .-.-.• .-.•. •'-' ; ... '.•-:. ;•;• . . •/.- -~ " ' - . - •. .-.- • • .•"'•'--"•"•.. '. - • • •- - • ••• -.- ; •" '. '•'• '•;;•"•-'" •-...-. ; . .- - . . .- • •-.•.--. .-.•'- •. •'••... i- .-.•';.-';• ••••.•....-...•-.- - . • - '-.--'- " .•' .• '
'.•'-' ; f . . .• •--.•>.-'• . . ' • : . . - . . - .--•--..••.•'.".. .-. ' • ' ' •'•'.-.-'.. '• . . '.•'.''..''•'."'-'''''••'•'' • • ' -•'.'•-.•'•.'''••' .••''.- '. . ' ' - . - - " • .• -•

:•:• :-'-. : : ' ' : . • •'.'•• • -• - - ' " • - ••' ' - ' ' - . • •" " • '•''-'• •-•••;•• . • ••.-•-:•:• . •_•; ; -..;.-..• ' ._._. .";".'•"'..- . •• • -. • •: . . " - -••.'•"• ..-••'••-: '-.• -";' -' '
;>' '"';'.'. ;'. • . .• • -'-••-• ' • -.-••- ."•-.'' • •• -- ".•-".•:"• - -' • : ' •'.•••"-"•• •'• • '.• : •-.'••: •-.• " • • • - - ' - - • •" " • •- • ' ' '•-••:•• '••'•

%•:• ^,:; : .- : •;;.:. -• : - :: - ;: .; • • .;-v.^: '• :, ' ;; . .'^- ^ Rayleigh number, Ra •';: J ^\ •^•-, ; -.-. : .' : •• : : ;' U : ,- : ; •';'/•;.•;•• ^:$

;: : :;;i^:: : ; : ; -; : : : ^:0.719^:; :
II^^A^iiija?
l-Nu^ 1.509
; y 6.104
|.^£.' : ^\;;t'3^32;;N
|"y 0.805
|v^f:;;;; ; . : : :;:.::3.604,.: ; ;: ;
:;;?x^f/;; ^:;:o.i69;r; :

@^ i$j^
(i.ooo) ||.o6o
(1.505) 3.617
(0.092)^^^^^^^^^

(3:694) ; 1(5.045
(0.813) (X831
(3.697) 19:356
((XI78) 0.117

(0.585)
(1.000)
(3.52|
(0.143)
(16J78)
(0^23)
(19:617)
(0.119)

6.890
1.000
8.300
0.083
37.708
0.857
69^6
0.065

(0.729)
(1.000)
(7.717)

; (0.081)
(34.73)
(0.855)
(68.59)
(0.066)

1.428
LOGO
20.624
6.051
73.93
Q;883

223.99
0.039

(0.989)
(1.600)
(17.925)
(0.038)
(64,63) i
(0850)
(21936)
(0.038)

C > benchmark- solution:-:- •- - : : .- : : : : '-.^- :{ • ': , . ;- : .' ••:'..; :- ;̂ : ;. ; .'. • : : : ; : : ; ;. • ', •: : : ; ; ; : ; . ; •• . • ' ; : • : - : ; ^ • •. • ^.••••..^^. . . : •• ' ; : : : :

TABLE 6.4.2-1 A comparison between the present study and the benchmark
solution (de Vahl Davis [1983b]).

1 LSOR

2JCG
3JUR

2000 4000 6000 8000 10000
CPU time Cseconds]

12000 14000

FIGURE 6.4.2-7 Residual plot for natural convection problem (Ra=103) using
different scalar algorithms to solve the pressure-correction
equation

- 210 -

1 L30R

2 JCG

3 JUR

2000 4000 SOOO-; 8000 10000 12000: "WOOO 16000 18000 20000

FIGURE 6.4.2-8 Residual plot for natural convection problem (Ra=10*) using
different scalar algorithms to solve the pressure-correction
equation

-5.5

1L50R

2 JGCl

3 JUR;

5000 1000Q 15000
CPU time Cseconds]

20000 25000

FIGURE 6.4.2-9 Residual plot for natural convection problem (Ra=105) using
different scalar algorithms to solve the pressure-correction
equation

- 211 -

1 LSOR

2 JCG

3 JUR

5000 10000 15000 20000
CPU time fsecdndsj

25000 30000:

FIGURE 6.4.2-10 Residual plot for natural convection problem (Ra=106) using
different scalar algorithms to solve the pressure-correction .
equation

§••••p.-.:

-4 -

-5

1 LSOR;
2 JCG:

5000 10000 15000 20000 25000
CPU time Cseconds]

30000 35000

FIGURE 6.4.2-11 Residual plot for natural convection problem (Ra=107) using
different scalar algorithms to solve the pressure-correction
equation

- 212 -

Set up source terms for u-momentum equation .6 1.0
Set up ii-mbmenm^ 2.7 4.6
Solve for u-momentum values u? 1.9 3.2
Set up source terms for v-momentum equation .6 1.0
Set up v-momentum equation coefficients 2.6 4,5
Solve for v^oi^ 2.0 3.4
Set up p^sure^rrection coefficients 6.0 10.4
Solve for pressurej^pTOCtibh values p' 70.5 493
Correct u*i v* and p? to produce u, v and p .4 .7
Set up source teMs lor k turbulence equation 1.8 3;1
Set up k turbulence equation coefficients 1.5

Set up source^ terms |br^ turbulence equation 1.8
Set up e turbulence equation coerricierits
Solve for e turbulence values
Set up source terms for enthalpy equation
Set up enthalpy equation coefficients
Solve for entnalp^ values h

TABLE 6.5-1 Percentage breakdown of the SIMPLE procedure for L-shaped
flow problem.

JUR

Set up source terrhs for u-mom equation
Set iip u-momentum equation coefficients
Solve for u-momentum values u* 2.2
Set up source terms for ^momentum equation .9
Set up v-momentum equation coefficients 33
Sblve for ^momentum values v^
Set up pressure-correction coefficients
Sblvei for pressure-correction values p'
Correct u", v* and p* to produce u» v and p -^
Set up source terms for enthalpy eqjiatiM--^W^i-iik;^
Set up enthalpy equation coefficients 1.9
Solve for enthalpy values h 1^*

TABLE 6.5-2a Percentage breakdown of the SIMPLE procedure for natural
convection problem (Ra=103).

- 213 -

Set up source terms for u-momehtum equation
Set up u-momentum equation coefficients
Solve tor u-momentum values u*
Set up source terms for v-momentum equation
Set up v-momentum equation coefficients
Solve for v-momentum values v* :
Set up pressure-correction coefficients
Solve for pressure-correction values p' 79.0
Correct u*, v* and p" to produce u, v and p ':•&
Set up source terms for enthalpy equation .4
Set up enthalpy equatibi^c^ 1.7
Solve for enthalpy values h

TABLE 6.5-2b Percentage breakdown of the SIMPLE procedure for natural
convection problem (Ra=104).

JUR

Set up source terms for u-momentum equation
Set up u-momentum equation coefficients
^olye for u-momentum values u*
Set up source terras for v-momentum equation
Set up v-momentum equation coefficients
isblve for v-momentum values v*
Set up pressure-correction coefficients
Solve for pressure-correction values r/ 80,0
Correct uV v* and p* to produce u, v and p .4
Set up source terms for enthalpy equation ^4
Set up enthalpy equation coefficients 1.6
Solve for enthalpy values h 12 2.6

TABLE 6.5-2c Percentage breakdown of the SIMPLE procedure for natural
convection problem (Ra=105).

- 214 -

Set up source terms for u-momentum equation
Set up u-momentum equation coefficients
Solve for u-momentum values u*
Set up source terms for v-momentum equation
Set up v-momermim equation coefficients
Solve for v-momentum values v*
Set up pressure-correction coefficients
Solve for pressure-correction values p^
Correct u\ v* and p" to produce u, v and p v*
Set up source terms for enthalpy equation .4
Set up enthalpy equation coefficients 1.7
Solve for erithal^ ^alues li

TABLE 6.5-2d Percentage breakdown of the SIMPLE procedure for natural
convection problem (Ra=106).

Set up source terms for u-momentum equation
Set up u-momentum equation coefficients
Solve fo^
Set up source tenns for ^ equation
Set up v-momehnirn equation coefficients
Solve for v-momentum values v*
Set up pressure-correction coefficients
Solve for prcssure^correction values p7
Correct u?, v* and p" to produce ur v and p i5? .7
Set up source terms for k turbulence equation ^3.9
Set up k turbulence equation coefficients
Solve for k turbulence values
Set up source terms for E turbulence equation
Set up e turbulence equation coefficients
Solve for e turbulence values 1.3 2.1
Set up source terms for enthalpy equation .6 .9
Set up enthalpy equation coefficients 1.7 2.7
Solve for enthalpy values h 1.3 2.1

TABLE 6.5-2e Percentage breakdown of the SIMPLE procedure for natural
convection problem (Ra=107).

- 215 -

natural convection problem, the introduction of the k and e scalars increases the

essentially scalar computation from 8% to 13%.

An analysis using Amdahl's law is used to determine the theoretical benefits in

using the JCG and JUR algorithms. For the L-shaped flow problem the fraction of

code which can be vectorised using the JUR algorithm is fv=0.933 and the

expected speed-up factors are given by

____1____ < S < _____1_____
0.067 + 0.933/4.35 0.067 + 0.933/173.2

3.55 < S < 13.81 (6.5-1)

For the natural convection problem (103<Ra<106) fv=0.966 and the speed-up factors

are given by

____1_____ < S < _____1_____
0.034 + 0.966/4.35 0.034 + 0.966/173.2

3.91 < S < 25.27 (6.5-2)

and for Ra=107 f>0.916

1_____ < S <_____1_____
0.084 + 0.916/4.35 0.084 + 0.916/173.2

3.40 < S < 11.20 (6.5-3)

When the JCG algorithm is used, the fraction of code vectorised in the L-shaped

flow problem is fv=0.885 and the expected speed-up is given by

1 _ _ __ < S < _____1_____
0.115 + 0.885/4.35 0.115 + 0.885/173.2

3.14 < S < 8.33 (6.5-4)

- 216 -

For the natural convection problem (103<Ra<106) fv=0.928 and the speed-up factors

are given by

1_____ < S <_____1_____
0.072 + 0.928/4.35 0.072 + 0.928/173.2

3.50 < S < 12,93 (6.5-5)

and for Ra=107 fv=0.866

1_____ < S <_____1_____
0.134 + 0.866/4.35 0.134 + 0.866/173.2

3.00 < S < 7.19 (6.5-6)

6.6 Results

The residual plots show the effect of using the JURS and JURV algorithms on the

two test problems (figures 6.6-1 and 6.6-2). Significant reductions are achieved

with the vectorised version, these range from a factor of 13 for the L-shaped flow

problem to over 23 for the natural convection problem. These factors agree well

with the predictions in (6.5-1) and (6.5-3). Residual plots are also shown for the

JCGS and JCGV algorithms (figures 6.6-3 and 6.6-4). The reductions in CPU time

range from 8 for the L-shaped flow problem to 12 for the natural convection

problem, again, there is good agreement with the predictions (6.5-4) and (6.5-6).

Although the speed-up factors appear flattering to the JUR and JCG algorithms

there is a need to compare the best scalar and vector results. Generally,

comparisons show that the LSOR algorithm is the best scalar algorithm (figures

6.6-5 and 6.6-6). The best vector algorithm can solve the L-shaped flow problem

over 5 times faster than the best scalar algorithm. For the natural convection

problem (Ra<106) this increases to a factor of 11. The introduction of turbulence in

- 217 -

2000 4000 BDDD 8000 10000 12000
GPU t line {seconds!

scalar
14000 16000 18000

FIGURE 6.6-1 Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the L-shaped flow problem

2000 4000 6000 8000 10000
CPU time [seconds!

12000 14000

FIGURE 6.6-2a Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the natural convection
problem (Ra=103)

- 218 -

scalar

Q 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
\^.^~j^mzm^.Q?®. '

FIGURE 6.6-2b Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the natural convection
problem (Ra=104)

-5.5
5000 10000 15000

CPU time CsecondsT
20000

scalar

25000

FIGURE 6.6-2c Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the natural convection
problem (Ra=105)

- 219 -

scalar

-5.5
5000 10000 15000 20000

iilGPU: t inie fsecondsj
25000 30000

FIGURE 6.6-2d Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the natural convection
problem (Ra=106)

-0,5

5000 10000 15000 20000 25000
CPU time Cseconds}

30000 35000

FIGURE 6.6-2e Comparison of scalar and vector JUR algorithms used to solve
the pressure-correction equation in the natural convection
problem (Ra=107)

- 220 -

-5
scalar

1000 200D 3000 4000 ; 5000 6000 7000 8000 9000 10000
CPU; time Gsecondsl

FIGURE 6.6-3 Comparison of scalar and vector JCG algorithms used to solve
the pressure-collection equation in the L-shaped flow problem

1000 2000 3000 4000
CPU time [seconds]

5000 6000

FIGURE 6.6-4a Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the natural convection
problem (Ra=103)

- 221 -

1000 2000 3000 4000 sooa;: eooo
GPU time fseconds}

scalar

7000 8000 9000

FIGURE 6.6-4b Comparison of scalar and vector JCG algorithms used to solve
the pressuie-coirection equation in the natural convection
problem (Ra=10*)

2000 4000 6000 8000
CPU time Cseconds]

10000 12000

FIGURE 6.6-4c Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the natural convection
problem (Ra=105)

- 222 -

scalar

2000 4000 6000 8000; 10000:
CPU-1 ime fseconds}

12000: 14000

FIGURE 6.6-4d Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the natural convection
problem (Ra=106)

scalar

2000 4000 8000 8000 10000 12000 14000 16000 18000:
CPU time Cseconds]___________

FIGURE 6.6-4e Comparison of scalar and vector JCG algorithms used to solve
the pressure-correction equation in the natural convection
problem (Ra=107)

- 223 -

1

1 Scalar L50R
2'Vector JGG
1 Vector JUR

1000 2000 3000 4000 x 5000
; : CPU time iseconds}

sooo 7000

FIGURE 6.6-5 The effect of full vectorisation in the solution of the L-shaped
flow problem. JUR is used to solve the momentum equations.

t Scalar LSOR
2 Vector JCG
3 Vector JUR

soo 1000 1500 2000 2500
CPU time Csecondsl

3000 3500

FIGURE 6.6-6a The effect of full vectorisation in the solution of the natural
convection problem (Ra=103). JUR is used to solve the
momentum equations.

- 224 -

1 Scalar LSOR
2 Vectcr JCG
3 Vector JUR

500 1000 1500 2000 2500: 3000 3500
CPU if me: f seconds!

4000 4500 5000

FIGURE 6.6-6b The effect of full vectorisation in the solution of the natural
convection problem (Ra=104). JUR is used to solve the
momentum equations.

-5.5

1 Scalar
2 Vector JCG
3 Vector

500 1000 1500 2000 2500
CPU time f seconds')

3000 3500 4000

FIGURE 6.6-6c The effect of full vectorisation in the solution of the natural
convection problem (Ra=105). JUR is used to solve the
momentum equations.

- 225 -

1 Scalar ISOR
I vector JCG
3 vector

500 1GGO 1500 2000 2500
CPU timeCsecondsl

3000 3500 4000J

FIGURE 6.6-6d The effect of full vectorisation in the solution of the natural
convection problem (Ra=106). JUR is used to solve the
momentum equations.

1 Scalar LSOR
2 Vector JCG,
3 vector JUR

4000 BDOU
CPU t iine Cseconds}

FIGURE 6.6-6e The effect of full vectorisation in the solution of the natural
convection problem (Ra=107). JUR is used lo solve the
momentum equations.

- 226 -

the natural convection problem reduces the benefits of vectorisation by a factor of

2 despite over 85% of the code being vectorised.

6.7 Closjire

The introduction of scalar quantities causes an increase in the total scalar

component in the SIMPLE procedure. This can account for about 10% of the code

not being vectorised, as a consequence the speed-up factors are lowered.

Nevertheless, a worthwhile reduction in CPU time can be achieved. This ranges

from a factor of 5 for the L-shaped flow problem (which solves for u, v, p, T, k

and e) to about 11 for the natural convection problem (which solves for u, v, p

and T). The addition of turbulence in the latter problem, for Ra=107 , gives a

speed-up factor of 5.

- 227 -

CHAPTER SEVEN

• 228 •

7.0 THE IMPACT OF USING A MULTIGRID METHOD

7.1 Introduction

Although the classical iterative algorithms have served well, there is a general

tendency for these algorithms to become less efficient as the number of nodes are

increased. There are two main reasons for this trend, the first is due to an increase

in the number of floating point operations which need to be performed per

iteration. These are directly proportional to the total number of nodes l/ha where h

is the grid spacing and a is the number of dimensions. Secondly, there is an

increase in the number of iterations needed to reduce the error in the

approximation to a suitable level. The relationship between the number of iterations

and the computation time is given by

CPU « n?

where n is the number of nodes and p is greater than 1. Ideally, the relationship

between the time and the number of nodes should be linear. Whilst pipeline

processing has been used to overcome the former problem (Chapters 4 and 5), it

does not address the latter problem. To this extent, the concept of using a number

of different grids called multigrids is considered.

The general feature of a classical iterative algorithm is such that although the

initial convergence is rapid, it soon slows down and can become inefficient. The

performance of these algorithms can be explained within the context of the errors

present in the approximate solution. As the number of nodes are increased the

convergence difficulties become more apparent In the initial iterations the

algebraic equations are solved locally and this causes a significant reduction in the

- 229 -

local errors. This is because the errors eliminated have a wavelength X which is of

the same order as the grid spacing h. The deteriorating performance of the

algorithm in the latter stages is due to the poor way in which the errors of

wavelength X»/i are eliminated.

Since the iterative algorithms are most efficient for errors with magnitude equal to

the grid spacing, it is worth considering a technique which will take advantage of

this. Errors which cannot be effectively reduced on a given grid, may be handled

more effectively on a coarser grid. Taking a series of such grids can lead to

optimal use of the iterative algorithm - this is the essence of the multigrid method.

The major advantage of a multigrid method is the reduction in the computation

time which is a direct result of the arithmetic being performed on the coarser

grids.

Amongst the first authors to discuss such an approach were Fedorenko [1962] and

Bakhvalov [1966], but it was not until the late seventies when two independent

schools of thought emerged as to the importance of multigrid methods. One

concentrates on the convergence rate properties and characteristics of multigrid

methods (Hackbusch [1978]), the other considers the practical application of

mul

[1977, 1979, 1980, 1982]). The latter has become more popular and has done

much to revive the popularity of existing classical iterative algorithms. Much of

the work is largely based on the solution of linear problems, but more recently

they have been used to solve non-linear problems. To place the present work into

context some of the popular approaches are outlined.

V ^ -* i' ' A. A A.

iltigrid methods in the solution of systems of algebraic equations (Brandt et al

- 230 -

Brandt and Dinar [1977] describe a distributed Gauss-Seidel method (DOS)

coupled with a full approximation storage scheme (FAS) to solve a highly elliptic

fluid flow system. After the relaxation of the velocity components a 'distributive'

relaxation is used to update the pressure, and continuity is satisfied by adding

corrections to the velocity and pressure fields. The DOS method has also been

used by Fuchs [1983] employing a primitive variable formulation.

Vanka [1986] suggested a block-implicit method called Symmetrical Coupled

Gauss-Seidel (SCGS). This solved the velocity and pressure fields simultaneously

at each node using a staggered grid. Unlike the DGS approach which solves the

unknowns by decoupling them, the SCGS maintains the coupling between the

unknowns. The SCGS method has been used by Gaskell and Wright [1988]

together with the FAS scheme to solve recirculating flow problems. It has also

been considered for vectorisation by Vanka and Misengades [1987].

7.2 The SIMPLE-based procedure as a multigrid smoother

Sivaloganathan and Shaw [1988a] used a local mode Fourier analysis to assess the

performance of pressure-linked procedures as multigrid smoothers. This work was

later supplemented with a fluid flow example involving the solution of a shear-

driven cavity problem (Sivaloganathan and Shaw [1988b]). In the formulation a

staggered grid was used with the FAS scheme. A single coarse grid control-volume

was made up of four fine grid control-volumes, for a bi-grid structure the outline

of the procedure is given by

(a) Apply a given number of sweeps to the SIMPLE procedure (pre-smoothing)

- 231 -

(b) Set up and solve the coarse grid problem using the SIMPLE procedure. Then

transfer the corrections to the fine grid solution (coarse grid correction)

(c) Re-apply a given number of sweeps of the SIMPLE procedure (post-

smoothing).

For a series of coarser grids the process can be used to solve the equations at

stage (b) and repeated until the coarsest grid is reached. On the coarsest grid the

equations are solved to convergence. Lonsdale [1988] applied a similar technique

(using SIMPLEC) to the steady state solution of fluid flow between two corotating

discs.

7.3 SIMPLE-based procedures using multigrids as a linear solver

The SIMPLE-based procedures can also use multigrid methods as linear equation

solvers. They can be used to determine the solution of algebraic equations which

result from discretisation, such as the momentum, continuity and scalar equations.

Phillips and Schmidt [1984] considered the solution of the diffusion equation using

a multigrid method. The motivation for using a multigrid method was that an

accurate solution was needed, however, the accuracy of the solution could be

affected by the presence of regions containing large gradients. The multigrid

method was used in two ways. Firstly, the domain was covered with coarse grids,

and secondly, selected regions were covered with fine grids where large gradients

were suspected in the dependent variable. The work was extended to solve the

advection-diffusion equation (Phillips and Schmidt [1985a]) and also to

recirculating flow problems (Phillips and Schmidt [1985b]). However, the emphasis

- 232 -

was on the accuracy of the solutions rather than the efficiency of the multigrid

methods.

Miller and Schmidt [1988] used the SIMPLEC procedure to solve two-dimensional

fluid flow problems considering the Gauss-Seidel, LSOR and Stone's strongly

implicit algorithms. The multigrid method of Phillips and Schmidt [1985b] was

implemented for the solution of a two-dimensional 'lid-driven cavity' problem and

the 'sudden contraction in a pipe' problem. In all cases a 32x32 grid was used and

reductions in CPU time were reported for the Gauss-Seidel and Stone's algorithms.

In the cavity problem the best reductions (in work units) were about 37% and for

the sudden contraction problem a factor of five was achieved.

7.4 The additive correction multigrid method (ACM)

Hutchinson and Raithby [1986] describe an additive correction technique which is

a generalisation of the block correction method proposed by Settari and Aziz

[1973]. The ACM method is essentially a multigrid method and has much in

common with the classical methods of Brandt [1977]. For example, both are used

to accelerate the convergence rates of iterative algorithms by using a series of

coarser meshes. The ACM method forms the coarse grid equations by ensuring

integral conservation over the coarse block of control-volumes, Brandt requires the

discretisation of the governing equation on the coarse grids. In the ACM method

there is a physical significance to the formulation of the coarse grid equations and

the corrections from the coarse grid are added to the fine grid solution, Brandt

carries out an interpolation of the coarse grid corrections up to the fine grid.

Finally, the ACM method is not restricted to coarse blocks made up of 2x2 fine

- 233 -

grid control-volumes and requires no special treatment of boundary conditions on

the coarse grids.

In the ACM method the iterative process is accelerated by adding corrections to

blocks of control-volumes. These corrections do not ensure that the residual in the

discretised equation is satisfied at the fine level control-volume, but rather

conservation is preserved over the coarse block.

7.5 The ACM method applied to the pressure-correction equation

Hutchinson and Raithby [1986] only considered the solution of a single conserved

variable and showed that significant reductions can be made when the ACM

method is used. However, it has been shown by lerotheou, Richards and Cross

[1988, 1989b] that the method can be equally applied to the solution of the

pressure-correction equation as part of the whole-field SIMPLE solution procedure.

7.5.1 The one-dimensional ACM method

The ACM method is first described for a one-dimensional flow situation because

of its simplicity and with reference to a bi-grid (one fine mesh and one coarse

mesh). Consider n control-volumes in the x cartesian direction, then the discretised

pressure-correction equation can be expressed as

1 + b, = 0 1=1(1)* (7.5.1-1)

where

a> = af + a?

- 234 -

The coefficients a^, a^ and aY are related to the central coefficient in the

momentum equation and bt is related to the residual in the discretised continuity

equation. At some stage during the iterative process the pressure-correction

equation is represented by

ftr + aKi + b, i=l(l)/i (7.5.1-2)

where p'* represents the latest approximation to pj and i- is the residual.

A coarse grid is used only if the iterative process becomes inefficient. For

convenience the number of control-volumes are assumed to be even, then the

coarse grid has nil blocks. Each block is made up of two adjacent control-

volumes, thus block k comprises control-volumes i and i+1 and is related by index

as 2k=i+l (figure 7.5.1-1). Adding the two residual equations in block k gives

+ a?+1p£2 + bi + bw = rs + ri+1

i=l(l)« (7.5.1-3)

This now represents the residual within the block. To ensure that the residual in

the block is zero (even though the fine grid residual may not yet be zero), a

correction 5k is added to each pressure-correction approximation in block k. This

gives

= 0

k=l(l)«/2 (7.5.1-4)

- 235 -

•'

"

/ ; :&jfc^i':.- /

------ • ^ .

,v--.k; :r: ;; ::..•,

";

•
'

• : " • •• .- : ':''' - •. *• '

- ' • •: "-• •: " .i-

vk*t !/ . -

FIGURE 7.5.1-1 Blocks used by ACM method in one dimension

- 236 -

This can now be written in a form representative of the coarse grid only,

AT&,-! - A& + Aj&n + Bk = 0 k=l(lW2 (7.5.1-5)

where

E _ 0 E
^ - d-i+l

= A* + A?

= r, + TM

At this stage equation (7.5.1-5) is solved using a direct or iterative algorithm and

the correction transferred back to the fine grid. The updated corrections are given

by

p[= pf + 5, (7.5.1-6a)

Pw = P£I + 5, (7.5.1-6b)

However, the multigrid process can be repeated for the coarser grids if necessary

since equation (7.5.1-5) has the same form as (7.5.1-1) and can therefore be

treated hi a similar manner.

7.5.2 The two-dimensional ACM method

There are now an even number of control-volumes in the y-direction given by m.

The two-dimensional discretised pressure-correction equation is expressed as

aTjpI-u + atjpfj.! - a^ + aEP ;+1 + a'p^ + bsj = 0 i=l(l)/i (7.5.2-1)
j

where

+ 4 + afj + a

- 237 -

At some stage during the iterative process the pressure-correction equation is

updated by

Ty = aTjCu + a*^ - a'p" + a^p^ + a?jpj+l + by

j=l(l)m (7.5.2-2)

Again, use is made of a coarse grid which has blocks made up of four

neighbouring control-volumes from the fine grid, the coarse grid then has a total of

n/2xm/2 blocks. Block kl comprises control-volumes ij, i+lj, ij+1 and i+lj+1 and

is related by index as 21=j+l (figure 7.5.2-1). The addition of the four relevant

residual equations in block kl gives

= 0

k=l(l)n/2
1 =l(l)m/2 (7.5.2-3)

where

AW — _W I ,,W
kl ~ d ij ^ a ij

S _

Equation (7.5.2-3) is solved and the solution 5^ is used to correct the four control-

volumes on the fine grid

(7.5.2-4a)

(7.5.2-4b)

- 238 -

FIGURE 7.5.2-1 Blocks used by ACM method in two dimensions

- 239 -

(7.5.2-4C)

(7.5.2-4d)

7.6 The flexible cycle C strategy

There are several algorithms for carrying out the basic multigrid idea and each

with their own variations. Brandt [1977] suggests three different algorithms, the

most favourable is referred to as the cycle C. This strategy is adopted here

together with some modifications. The basic cycle C is shown in flowchart form

(figure 7.6-1) which utilises the ACM method, the fine grid is referred to as level

1, the first coarse grid is referred to as level 2 and so on.

The strategy starts on level 1 and at the end of each iteration the parameter £ is

evaluated, this is defined by

1 1 *>- ~ (t> old 1 1 (7-6-1)
Max{10-10,

where <j> acw and <j> old are the correction vectors at the current and previous iteration,

respectively. If £ falls below a pre-defined tolerance then convergence has been

achieved. In the early stages of iteration this is not usually the case and a decision

is made to determine if convergence of the algorithm is slow. The convergence is

deemed to be slow if

y < £-» (7.6-2)
fold

where y is determined experimentally for each algorithm. With the exception of

the coarsest grid (level N) the computation switches from level i to level i+1. On

the coarsest grid an accurate solution is required, this is done using an iterative

- 240 -

LeveI 1 (f ?ne grid} iteration

NO

converged
o solution ?

Is; convergence
slow ?

YES

Level 2 iteration

NO

Level N Iteration

NO:

YES

Add correct i on to b lode

cpnvergeq
o sofution ?

is convergence
sto* ?

YES

Add correction to bfock

YES

From level; 3

To level

converged
o solution ?

YES

FIGURE 7.6-1 The cycle C used to carry out the multigrid process

- 241 -

algorithm. The solution for the coarsest grid is then used to correct the

approximations on the next highest level in a similar fashion to (7.5.2-3). The

process is repeated until convergence is achieved on level 2. At this stage the

correction 5^ is used to correct the pressure-correction field. Again, if convergence

is not adequate then the cycle is repeated.

7.7 Iterative algorithms used in the ACM method

The JUR and LSOR algorithms are both considered for use within the ACM

strategy. In the case of the LSOR algorithm the Line Gauss-Seidel is used to solve

the coarsest grid, and for the JUR algorithm the Jacobi algorithm is used. The

choice of the parameter £ (to determine convergence on a given level), is chosen

to reflect the different convergence rates and quality of solution produced by

different algorithms. For the LSOR algorithm £=10~3 is chosen and for the JUR

algorithm ^lO"4, this is consistent with the criteria employed in the solution of

the pressure-correction equation in section 5.2. Robustness is the main criteria on

which the choice of the parameter y was made. By selecting a single value for

each algorithm this allowed the multigrid method to perform satisfactorily, but not

optimally, on all of the test cases considered. For the LSOR algorithm yM).5 and

for the JUR algorithm y=0.9.

An attempt was made to combine the JCG algorithm with the ACM method.

Unfortunately, in the solution of the pressure-correction equation the residuals are

not always monotonically decreasing and this has prohibited an efficient

implementation. The general behaviour of the JCG algorithm is now summmarised;

At some stage during the cycle the computation is switched to a coarser grid

- 242 -

because 7>1 (7.6-2). After the solution of the correction field the result is added to

the finer grid. However, the solution now gives a residual which is larger than that

of the previous iteration, that is, before the ACM method was applied. This results

in either a high inefficiency or sometimes divergence of the algorithm.

7.8 Implementation of the ACM method on a pipeline processor

The implementation of the ACM method on the MASSCOMP VA-1 pipeline

processor was straightforward. Fortunately, much of the cycle C is vectorisable, the

only essentially scalar operations were the switching and convergence criteria, these

were carried out on the host processor. There was a marginal increase in the code

size, but more significant was the increase of the data storage required. This was

as high as 33% of the original storage required by the iterative algorithm. Use is

also made of the gather and scatter vector operations. These operations are used to

ensure that the vector computations are of maximum possible length, but at the

expense of an overhead in preparation of the vectors. Here, the gather operation is

used to generate the residual vector on the next higher level and the scatter

operation is used correct the approximations on the next lower level.

7.9 Results using the ACM method

The four test problems introduced in Chapters 5 and 6 are used here to test the

effect of using the ACM method. The comparisons include the effect of the ACM

method on the scalar and vector algorithms as well as the most efficient algorithm

in each problem.

- 243 -

"7-9.1 PROBLEM 1: The cavity with moving lid problem

Up to four different grids are used in the ACM method 4x4, 8x8, 16x16 and

32x32 and the case when Re=100 is considered. Overall convergence is achieved

when the maximum residual for all unknowns is less than 2.5X10"6. The results

show that the JURS algorithm improves by a factor of up to 2.5 when four levels

are used (table 7.9.1-1). However, the JURY does not improve to the same extent

as the scalar algorithm, showing only marginal improvements and working most

efficiently with only 2 levels. Marginal improvements are also observed for the

scalar LSOR algorithm. A complete history of the performance of the algorithms is

shown in figures 7.9.1-1 to 7.9.1-3.

From these results and those obtained for the JCG algorithm in Chapter 5 the most

efficient algorithm can be determined (figure 7.9.1-4). The most efficient scalar

and vector algorithms are the LSOR with 4 levels and the JCGV algorithm,

respectively. The JCGV is a factor of five faster than the LSOR with four levels.

7.9.2 PROBLEM 2: The sudden expansion problem

The four different grids used in the ACM method are 8x2, 16x4, 32x8 and 64x16.

Table 7.9.2-1 shows the effect of using up to four levels with a given convergence

criteria of residuals less than LOxlO"5 . The scalar JUR algorithm shows an

improvement of up to 4.5 when all four levels are used, the vectorised algorithm

again shows most efficient use with just two levels. The scalar LSOR algorithm is

the most efficient scalar algorithm with improvements of up to 3.5 over the single

level LSOR algorithm. A complete history of the maximum residuals reveals that

- 244 -

there is some oscillation for all three algorithms (figures 7.9.2-1 to 7.9.2-3).

Therefore, care must be taken when making comparisons based on a single

convergence value. The scalar LSOR is the best scalar algorithm, being up to 2.5

times faster than the JCG algorithm (figure 7.9.2-4), there is however little to

choose between the JURY with two levels and the JCGV algorithm for residuals

up to 10^. A final comparison between the best scalar and vector algorithms shows

there is a factor of 8.5 in favour of the vector algorithm.

7.9.3 PROBLEM 3: Turbulent L-shaped flow problem

The same grid levels are used as those in PROBLEM 2 and the convergence level

selected for this problem is 1.75xlO~5 . Timings for the simulation are given in

table 7.9.3-1 and show that the scalar JUR algorithm benefits by a factor of up to

2.7 when all four levels are used. The LSOR algorithm did not benefit as much as

the JUR algorithm and there was little to choose between the results for two, three

and four levels. Similarly, for the JURY algorithm the advantages of using the

ACM method are less pronounced (figures 7.9.3-1 to 7.9.3-3). The LSOR

algorithm with four levels is clearly the best scalar algorithm while there is little

to choose between the vector algorithms (figure 7.9.3-4). The overall improvement

for solving this problem is a factor of 4.5 in favour of the vector algorithms.

Using the ACM method as a solver for the pressure-correction equation becomes

less profitable as more scalar equations are solved. For this reason the speed-up

factor for this problem between the best scalar and vector algorithms is lower than

in the previous cases.

- 245 -

Number of

1

2

3

4

Grid

32x32

16x16

8x8

4x4

LSOR

705.9

616.7

561,1

575.0

JURS

2980.4

1460.8

1274.5

1205.9

jum

137.3

128.9

133.8

TABLE 7.9.1-1 The effect of using up to 4 levels of the ACM method for the
solution of the cavity problem (Re=100).

5

-4

-4:5

-5.5

-6

1 ACM witn 1 level
2 ACM with 2 levels
3 ACM with 3 levels
4 ACM with 4 levels

4 3

500 1000 1500 2000 2500
CPU time Cseconds]

3000 3500

FIGURE 7.9.1-1 Using the ACM method with the JURS algorithm for the
solution of the cavity problem (Re=100)

- 246 -

-2. 5

-4.5

-5.5

-6

2'3 A 4 1

1 AOI witft 1 level
2 ACM witn 2 levels
3 ACM with 3 levels
4 AQyl with 4 levels

20 40 60 85 100
GPU t i me f seconds}

120 140 160

FIGURE 7.9.1-2 Using the ACM method with the JURY algorithm for the
solution of the cavity problem (Re=100)

•-1.5.:

-4.5

-5

-5.5

-6

-6.5

t ACM;wftni revel
2 ACM with 2 levels
3; ACM with 3 levels
4 ACM with A levels

100 200 300 400 500 600
_______CPU time Cseconds]

700 800 900

FIGURE 7.9.1-3 Using the ACM method with the LSOR algorithm for the
solution of'the cavity problem (Re=100)

- 247 -

1 Scalar LSOR CACM wittt 4 levels)
2 Vector JUR {ACM :;wjfjtJ|£2 : .;jjwJS} ;;

3 vector JCG

CPU t i me (Jseednds}
FIGURE 7.9.1-4 Comparison between the most efficient scalar and vector

algorithm for the solution of the cavity problem (Re=100)

Number of
ACM levels LSOR

64x16

32x8

1955.6

1050.0

700.0

JURS

7600.0

5288.9

2244.^

1688.9

JURY

203.3

TABLE 7.9.2-1 The effect of using up to 4 levels of the ACM method for the
solution of the sudden expansion problem.

- 248 -

1 ACM with 1 level
2 ACM with 2 levels
3 ACM with 3 levels
4 ACM with 4 levels

1000 2000 3000 4000 5000
CPU; 11 me fseconds}

6000 7000

FIGURE 7.9.2-1 Using the ACM method with the JURS algorithm for the
solution of the sudden expansion problem

-1

-2

§ ,•a -3

1

:•>*:

-6

-7

1 level
2 ACM with 2 levels
3 ACM with 3 levels
4 ACM with 4 levels

4 3

50 100 150 200
CPU time Cseconds]

2SQ 300

FIGURE 7.9.2-2 Using the ACM method with the JURY algorithm for the
solution of the sudden expansion problem

- 249 -

1 ACM wftn 1 level
2 ACM;;tftft: 2 levels
3 ACM with 3 levels
4 ACM vrltrt 4 levels

500 1000 1500
CPU time fsecondsl

2000 2500

FIGURE 7.9.2-3 Using the ACM method with the LSOR algorithm for the
solution of the sudden expansion problem

1 Sea I ar LSGR £ACM with 4 t eve! s)
2 Vector JUR CACM *'tn 2 leveis)

100 200 300 4QQ 500
CPU time Cseconds]

600 TOO

FIGURE 7.9.2-4 Comparison between the most efficient scalar and vector
algorithm for the. solution of the sudden expansion problem

- 250 -

Number of
AGM levels Grid

1

2

3

4

64x1(5

32x8

16x4

8x2

LSOR

6275.4

5327.3

53723

5417.6

JURS

16777.8

7555r6

62222

6181.0

JURV

1333,3

1136.4

1163.6

1181.8

TABLE 7.9.3-1 The effect of using up to 4 levels of the ACM method for the
solution of the L-shaped flow problem.

1 ACM witft 1 level
2 ACM witfi 2 levels
3 ACM with 3 levels
4 ACM witti 4 levels

0 2000 4000 6000 8000 10000 12QDQ 14QQQ 16000 18000
CPU time Cseconds]

FIGURE 7.9.3-1 Using the ACM method with the JURS algorithm for the
solution of the L-shaped flow problem

- 251 -

2 ACM with 2 levels
;3 ACM with 3 levels
4 ACM with 4 levels

CPU time
7.9.34 Using th§ A€M fretted with the JURY algorithm for the

§olution of the L-shaped flow problem

S•a

1 AGM with 1 level
2 ACM with ^levels
3 ACM with 3 levels
4 ACM with 4 levels

CPU time Cseconds
URETI3-3 Using the ACM method with the LSQR algorithm for the

solution §f the L-§hap6d flow

- 252 -

1 Sba I ar ISOR C^GM wit ft 4 I eve Is)
2 Vector JUR (ACM with 2 levels)

Vector

1000 2QOQ 3000 4000
GPU t Ime cseconds]:

5000 6000

FIGURE 7.9.3-4 Comparison between the most efficient scalar and vector
algorithm for the solution of the L-shaped flow problem

- 253 -

7.9.4 PROBLEM 4: Natural convection in a sauare cavitv Droblem

Four levels of the ACM method are used and defined by 4x4, 8x8, 16x16, and

32x32. Table 7.9.4-1 gives timings for the simulation of various Rayleigh numbers

at a convergence level of 1.75xlO~5 . The scalar JUR algorithm benefits by up to a

factor of 3 when all four levels are used. The LSOR algorithm did not benefit

very much for low Rayleigh numbers but shows more improvement as the

Rayleigh number is increased. The JURY algorithm shows only marginal

improvements in all cases (figures 7.9.4-1 to 7.9.4-3). In general, the LSOR

algorithm with four levels is the most efficient scalar algorithm and there is little

to choose between the vector algorithms (figure 7.9.4-4). The overall improvements

range from a factor of 8 (Ra=103) to 6.5 (Ra=106), and for the turbulent case a

factor of 3.8 in favour of the vector algorithms is achieved.

7.10 Discussion of Results

In the two isothermal cases where the variables u, v and p are solved, the solution

of the pressure-correction equation forms a major component of the computation

time. Therefore, using the ACM method to assist in the solution of the pressure-

correction equation is very worthwhile. This is particularly true for a slowly

converging algorithm with typical reduction factors of up to 4.5. The use of the

ACM method is less notable when it is vectorised, the best reductions are up to

60% and was achieved with two levels only.

From the first two cases it is apparent that the ACM method is most effective in

situations where a predominant direction exists in the flow. In PROBLEM 2 a

- 254 -

Number of
ACM levels

32x32
16x16
8x8

(b) Number of'
Grid

32x32
16x16

(c) Number of
ACM levels Grid

32x32
16x16

M

4x4

Grid

^B :&^:$&- "
. ' -.;.': -. • •-," • •••'••''--.'' :*+•:•_.:. \.v ..'';. . •-

§2^|f^:--.^

(e) Number of

32x32
16x16

32x32
16x16

LSOR

296p;0
2784,3
2764.7

LSOR

4555.5

4166.7

LSOR

3?02.8
3700^0
3600.0
3266.7

LSOR

3666.7

2941.1
2588.2

11272.7
10303;!
9636.4

9200.0
4156.9
33723
3215,7

1366&7
6222,2
5121.1
47773

JURS

14788.7
6338.0
535Z1
4929.6

JURS

14000.0
6166.7
5000,0
4666.7

28039.2
13333:3
111763
10882.4

TABLE 7.9.4-1 The effect of using up to 4 levels of the ACM method for the
solution of the natural convection problem a) Ra=103
b) Ra=104 c) Ra=105 d) Ra=106 e) Ra=107 .

- 255 -

4 ACM ittt 4 levrs

2000 4000 - ;600Q&? :• < : ; :: . CP 8000; 10000 12000 14000

FIGURE 7.9.4-la Using the ACM method with the JURS algorithm for the
solution of the natural convection problem (Ra=103)

1 ACM vftn 1 tevei

ACM wftrt 4 revets

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
CPU time Csecondsl___________

FIGURE 7.9.4-Ib Using the ACM method with the JURS algorithm for the
solution of the natural convection problem (Ra=104)

- 256 -

1 ACM wftn: 1 level
2 AGU wftn 2 levels;
3 ACM with 3 levels
4 ACM with 4 levels

5000 10000 1500D
CPU; time fseconds}

2GOQQ-' 25000:

FIGURE 7.9.4-Ic Using the ACM method with the JURS algorithm for the
solution of the natural convection problem (Ra=105)

1 ACM with 1 level
2 ACM wftn 2 levels
3 ACM iftn 3 levels
4 ACM with 4 levels

0 SOOU 10000 150QQ 20000
CPU time Cseconds]

2500Q 30QOQ

FIGURE 7.9.4-Id Using the ACM method with the JURS algorithm for the
solution of the natural convection problem (Ra=106)

- 257 -

1 ACM with 1 level

3 ACM with 3 levefs
4 ACM witn4 levels

5GOO 10005 15000 20000 25000
CPU time fseconds}

30000 35000

FIGURE 7.9.4-le Using the ACM method with the JURS algorithm for the
solution of the natural convection problem (Ra=107)

1 ACM with 1 level
2 ACM with 2 revels
3 ACM with 3 levels
4 ACM with 4 levels

100 200 300 400
CPU time [seconds!

5QQ 600

FIGURE 7.9.4-2a Using the ACM method with the JURY algorithm for the
solution of the natural convection problem (Ra=103)

- 258 -

1 ACM vitfi 1 level
2 ACM with 2 levels
3 ACM with 3 levels

.. " . ; • .-..-.'.. t

4 ACM fith 4 levels

100 200 300 400 500
CPU time Cseconds}

600 700 900:

FIGURE 7.9.4-2b Using the ACM method with the JURY algorithm for the
solution of the natural convection problem (Ra=104)

-2

-2.5

-3

1 ACM with 1 level
2 ACM with 2 levels
3 ACM with 3; levels
4 ACM with 4 levels

-4v5

-5

-5.5
200 600 800

CPU time Cseconds]
1000 1200

FIGURE 7.9.4-2c Using the ACM method with the JURY algorithm for the
solution of the natural convection problem (Ra=105)

- 259 -

1 ACM witft 1 level
2 ACM witn 2 levels
3 ACM with 3 levels
A ACM with 4 levels

-5.5
205 400 600 :,•..•'••:•••;. -BOOH-.. •••, : .: : ioaj>: 1200 1400

FIGURE 7.9.4-2d Using the ACM method with the JURY algorithm for the
solution of the natural convection problem (Ra=106)

1 ACM with 1 level
2 ACM vi th 2 levels
3 ACM with I levels
4 ACM wftrt 4 levels

Q: 500: 1000 1500 2000 2500
CPU time Cseconds!)

3500

FIGURE 7.9.4-2e Using the ACM method with the JURY algorithm for the
•solution of the natural convection problem (Ra=107)

- 260 -

1 ACM wftn 1 level
2 ACM witrt 2 levels
3 ACM witn 3 levels

4 ACMwitn4 levels

1000 1500 2000 2500
CPU IIme fseconds}

3000 3500

FIGURE 7.9.4-3a Using the ACM method with the LSOR algorithm for the
solution of the natural convection problem (Ra=103)

1 ACM with 1 level
2 ACM with 2 levels
3 ACM witn 3 levels
% ACM with 4 levels

SOU: 1000; 1500 2000 2500 3000 3500 4000 4500 5000
CPU time [seconds!___________

FIGURE 7.9.4-3b Using the ACM method with the LSOR algorithm for the
solution of the natural convection problem (Ra=104)

- 261 -

1 ACM with 1 level
2 ACM with 2 levels
3 ACM with 3 levels
4 ACM with 4 levels

soo: 1000 1500 2000 2500
CPU time Csecondsl

3000 3500: 4000

FIGURE 7.9.4-Sc Using the ACM method with the LSOR algorithm for the
solution of the natural convection problem (Ra=105)

1 ACM witft 1 level
2 ACM -witfi 2 levels

3 ACM witn 3 levels
4 ACM witn 4 levels

500 1000 1500 2000 2500
CPU time Cseconds]

3000 3500 4000:;

FIGURE 7.9.4-3d Using the ACM method with the LSOR algorithm for the
solution of the natural convection problem (Ra=106)

- 262 -

1 ACM with 1 level
2 ACM with 2 levels
3 ACM with 3 levels
4 ACM with 4 levels

2000 6000 8000
CPU t i me fseconds}

10000 12000

FIGURE 7.9.4-3e Using the ACM method with the LSOR algorithm for the
solution of the natural convection problem (Ra=107)

2 vector JUR GACM with 2 levels)
3 vector JCG

500 1000 1500 2000 2500
CPU time Cseconds]

3000 3500

FIGURE 7.9.4-4a Comparison between the most efficient scalar and vector
algorithm for the solution of the natural convection problemi
(Ra=103)

- 263 -

1 Scalar LSOR CACU with 4 levels)
2 Vector JURCACMwftn 2 levels)
3 Vector JCG

500:1000 1500 2000 2500 3000
tt me f seconds! I

3500 4000 4500

FIGURE 7.9.4-4b Comparison between the most efficient scalar and vector
algorithm for the solution of the natural convection problem
(Ra=104) '

-5,5

1 Scalar ISOR f^Ol wi tfr 4 I eve I s)
2 vector JUR GAOl wi th 2;; I eve is)
3 Vector JCG

1000 1500 2000 2500 3000
CPU time Cseconds]

3500 4000

FIGURE 7.9.4-4c Comparison between the most efficient scalar and vector
algorithm for the solution of the natural convection problem
(Ra=105)

- 264 -

2 Vector JUR CACM with 2 levels)
3 vector JCG

en QJ

I

2500 3000....
CPU time {seconds}

FIGURE 7.9.4-4d Comparison between the most efficient scalar and vector
algorithm for the solution of the natural convection problem
(Ra=106)

1 Scalar LSOBCAGM*tth 4 levels)

2 Vector JUR CACM with 2 levels)
3 vector JCG

1000 2DQD 3000 4000 5000 6000 7000 8000 9000 10000:
CPU time fseconds}_________;.: ..'-:^

FIGURE 7.9.4-4e Comparison between the most efficient scalar and vector
algorithm for the solution of the natural convection problem
(Ra=107)

- 265 -

complex pressure field exists which has a marked effect on the flow field. The

solution of the continuity equation has a significant role and hence greater control

is needed in the solution of the pressure-correction equation. Since the ACM

method reduces the continuity errors at both the cell and block levels this leads to

a more accurate solution. Defining the mass flow rate balance (mw) as

(7.10-1)

this is reduced more effectively with four levels of the ACM method rather than a

single level LSOR algorithm (figure 7.10-1). Similar conclusions have been made

by Miller and Schmidt [1988] about the performance of multigrid methods applied

to open and closed flow problems.

The latter two problems which involve additional scalar equations show that the

importance of the pressure-correction solution is diminished. As a result the

improvements obtained using the ACM method are less substantial than before.

Using the ACM method with four levels reduces the total computation time by a

factor of up to 3 when the scalar algorithms are used. When the vector algorithms

are used with two levels an improvement of up to 15% is obtained.

7.11 Closure

The ACM method has been successfully applied to the solution of the pressure-

correction equation as pan of the SIMPLE procedure. With the exception of the

JCG algorithm, the method has shown potential in enhancing the performance of

classical iterative algorithms (such as JTJR and LSOR), and is particularly effective

- 266 -

1 ACM vith 1 level
2i ACM vfth 4 levels

20 40 60 80 100 120 HQ 160 180
5IMPLE i terat ions

200

FIGURE 7.10-1 The effect of mass flow rate balance with SIMPLE procedure
iterations. The LSOR algorithm is used with the ACM method

- 267 -

in problems where there is a strong coupling. The ACM method is less effective

when it is vectorised and performs best with two levels. However, as the grid is

refined it is likely that more levels will be necessary to improve the efficiency of

the method. Despite this, the vectorised ACM method gives improvements of up to

8.5 over the best scalar algorithm when u, v, p are solved, and when scalars are

introduced into the computation a factor of 4.5 is achieved.

An unsuccessful attempt was made to combine the JCG algorithm with the ACM

method, even when the JCG algorithm was relaxed. Although it is not clear why

this happens, one possible explanation is based on the non-monotonic decrease of

the residuals. Once again this shows the limitations in using such an algorithm.

- 268 -

CHAPTER EIGHT

- 269 -

8.0 CONCLUSIONS

A detailed investigation was carried out into the use of pipeline vector processors

for the solution of CFD problems. The study clearly shows that significant

reductions in computation time are possible for the solution of both linear and

non-linear problems. This has been made possible because careful consideration is

given to all aspects of the solution strategy.

Initially, it seemed as though the vectorisation of the linear equation solvers would

be the major obstacle to overcome, so a number of algorithms were used to obtain

the solution of Poisson's equation. The resulting linear system of equations were

solved using the MASSCOMP VA-1 pipeline processor. In general, the results

show that near optimal use can be made of the pipeline architecture, with possible

factors of improvement of up to 90. This is not surprising since nearly all the

scalar components of the code can be re-designed to fully exploit the pipeline

processor.

The work has been extended to the solution of the steady state, incompressible

Navier-Stokes equations in two dimensions. The resulting non-linear system of

equations were solved using the SIMPLE procedure. An analysis of the distribution

of computation effort revealed that the solution of the pressure-correction equation

accounted for 65-75% of the total, and as a result, a number of linear equation

solvers were vectorised. Although there was a significant reduction in the time

taken to solve the pressure-correction equation, the overall reduction in

computation time was a factor of 3. In retrospect this was a naive approach, the

structure of the SIMPLE procedure was then considered on a more generic level,

- 270 -

and an approach was taken to fully exploit the vectorisation. In doing so, it was

possible to efficiently vectorise up to 98% of the procedure, and the speed-up

factors which were obtained were well supported throughout with theoretical

estimates obtained using Amdahl's law. In the test cases studied, improvements in

speed between 6 and 29 have been achieved for isothermal problems. The

complexity of the problems was then increased to include scalar equations such as

temperature and turbulence, and speed-up factors between 5 and 11 were obtained

for turbulent problems, where at least 85% of the code was vectorised. These

improvements are a practical measure of how much faster an efficient vectorised

code is over an efficient scalar code, so the algorithms used in each case are not

necessarily the same.

As well as reducing the time taken to execute the SIMPLE procedure by

vectorisation, the solution time for the pressure-correction equation is also reduced

by means of a multigrid method. The results show that there is some mileage in

using such methods, and this is likely to become more obvious as the grid size is

increased. On the whole, the results from the test cases studied are very

encouraging and give reason to believe that careful vectorisation of the solution

procedure can lead to very worthwhile savings in computation time.

The existing formulation can easily be modified to include compressible fluid flow

simulations. This would usually consist of an explicit expression which can be

updated in a similar fashion to that used for the effective viscosity quantity.

- 271 -

The extension to three dimensions is also seen as straightforward, and either the

NEAT or whole-field approach can be used. If the NEAT approach is adopted then

the process involves the solution of a two-dimensional slab of nodes rather than a

one-dimensional line (when solving a two-dimensional problem). Therefore, the

NEAT approach is seen as a natural extension of the existing two-dimensional

process. The effort involved in the solution of a two-dimensional slab is

comparable to that of the test problems studied here. However, there are two main

disadvantages to the NEAT approach. The first is the necessary housekeeping of

data, because the solution of a two-dimensional slab will require information from

the two neighbouring slabs. The second is more of a vectorisation problem, the

largest vector operation which can be performed is only of length rc2 (assuming an

n3 grid). A better proposition may be the whole-field approach. Although it has the

disadvantage of requiring a larger amount local memory, it does not require any

special housekeeping of the data. Furthermore, an efficient implementation of the

solution procedure can be carried out with the largest vector operation being of

length /i3 .

The vectorising compilers present in today's supercomputers have improved

considerably over the years, and are thought by some to have reached a mature

state. However, this work has also shown that to exploit pipeline vector

architectures fully then a high degree of programmer interaction is still necessary.

It is also believed that the techniques employed by the programmer in re­

structuring a code for vectorisation on one machine will not necessarily benefit

other machines. Ideally, a suite of tools are needed which will attempt to re­

structure the scalar code for a given machine. As part of the vectorisation process

the machine can be characterised using parameters such as n l/2 and r«, and by

- 272 -

considering factors such as the number of processors, and the ability to perform

chaining, recursion etc, this information can be used to decide the appropriate

vectorisation strategy.

This research has also exposed the limitations of such pipeline architectures. In

particular, the speed of the scalar processor is still the major limiting factor.

Although the speed of pipeline processors continue to improve and become more

affordable (highlighted by the recent launch of the Intel-i860 pipeline processor

with a vector rating of 66Mflops), it is necessary to provide a scalar processor

with the speed to maintain a good balance between the two.

Multiprocessor systems can overcome this limitation provided the raw power can

be harnessed. The systems are made up of processors linked together in some

topology and present the programmer with a different form of parallelism. The

parallelism can exist at different levels, for example, microtasking and multitasking

(Seager [1986]) present in some CRAY systems, or geometrical and fanning

approaches (Cross et al [1989]) present in transputer-based systems. To date, some

of the most promising results for CFD computations have been achieved on

transputer-based systems using a geometrical partition strategy (Hockney and

Jesshope [1988]), where each processor performs computations on a subset of the

entire domain. It is likely that the popularity of multiprocessor systems will

continue to grow as more sophisticated tools become available.

It could be concluded that there is a need for both pipeline and multiprocessor

architectures to achieve optimal performance. The combination of pipeline

processing power together with the simultaneous execution of a number of these

- 273 -

processors appears to be a very exciting prospect. This will gready benefit CFD

practitioners, allowing problems of real importance to be modelled at a reasonable

cost and in a fraction of the original processing time.

Finally, whilst there is still much work to be done, it is hoped that the present

work will stimulate future research into pipeline and multiprocessor-pipeline

systems.

- 274 -

REFERENCES

ADAMS L M & JORDAN H F (1986)
'Is SOR Color-Blind'.
SIAM Journal Sci. Stat. Comput., 7, pp490-506.

AMDAHL G M (1967)
'Validating the Single Processor Approach to Achieving Large Scale Computing
Capabilities'.
AFIPS Conference Proceedings, 30, pp483-485.

BACK L H & ROSCHKE E J (1972)
'Shear-Layer Flow regimes and Wave Instabilities and Re-attachment Lengths
Downstream of an Abrupt Circular Channel Expansion'.
Journal of Applied Mechanics, 39, Trans. ASME Series 7, pp677.

BAKHVALOV N S (1966)
'On the Convergence of a Relaxation Method With Natural Constaraints on the
Elliptic Operator'.
USSR Comput. Math. Math. Phys., 6, pplOl-135.

BORIS J P & WINSOR N K (1982)
'Vectorised Computation of Reactive Flows'.
Parallel Computations. Editor G. Rodrigue. Academic Press.

BORREL M, MONTAGNE J L, NERON M, VEUILLOT J & VUILLOT A M (1985)
'Implementation of 3D Explicit Euler Codes on a CRAY-IS Vector Computer',
pp47-65.
Tlie Efficient Use of Vector Computers with Emphasis on CFD. Editors W. Schonauer
and W. Gentzsch. Vieweg Publishers.

BOZMAN J D & DALTON C (1973)
'Numerical Study of Viscous Flows in a Cavity'.
Journal of Computational Physics, 12, pp348.

BRANDT A (1977)
'Multi-Level Adaptive Solutions to Boundary-Value Problems'.
Mathematics of Computation, 31, 333-390.

BRANDT A (1979)
'Multi-Level Adaptive Computations in Fluid Dynamics'.
Proceedings of Fourth AIAA CFD Conference, 100-108.

- 275 -

BRANDT A (1982)
'Multigrid Solutions to Staedy-State Compressible Navier-Stokes Equations'.
Computing Methods in Applied Sciences and Engineering. Editors R. Glowinski and
J.L. Lions, North-Holland, INRIA.

BRANDT A, DENDY J E & RUPPEL H (1980)
'The Multigrid Method for Semi-Implicit Hydrodynamics Codes'.
Journal of Computational Physics, 34, 348-370.

BRANDT A & DINAR N (1977)
'Multigrid Solution to Elliptic Flow Problems', pp53-147.
Numerical Methods in Partial Differential Equations. Editor S. Parter.

BURDEN R L, FAIRES J D & REYNOLDS A C (1981)
Numerical Analysis. (2nd Edition). Prindle, Weber and Schmidt Publishers, Boston,
Massachusetts.

BURGGRAF O R (1966)
'Analytical and Numerical Studies of the Structure of Steady Separated Flows'.
Journal of Fluid Mechanics, 24, pp 113-151.

BURNS A D, WILKES N S, JONES I P & KIGHTLEY J R (1986)
'FLOW3D: Body-Fitted Coordinates'.
Harwell Report AERE-R 12262.

CONCUS P, GOLUB G H & MEURANT G (1985)
'Block Preconditioning for the Conjugate Gradient Method'.
SIAM Journal Sci. Stat. Comput., 6, pp220-252.

CONCUS P, GOLUB G H & O'LEARY (1975)
'A Generalised Conjugate Gradient Method for the Numerical Solution of Elliptic
Partial Differential Equations'.
Lawrence Berkeley Laboratory Publishers. LBL-4604, Berkeley, California.

CONTE S D & DE BOOR C (1980)
Elementary Numerical Analysis and Algorithmic Approach. (3rd Edition). McGraw-
Hill Kogakusha Limited.

CROSS M, JOHNSON S & CHOW P (1989)
'Mapping Enthalpy-Based Solidification Algorithms onto Vector and Parallel
Architectures'.
Applied Mathematical Modelling, 13, pp702-709.

- 276 -

DAVEES R (1987)
Vector Accelerators programmer's manual. Order No. M-VA1-PM, Massachusetts.

DENHAM M K & PATRICK M A (1974)
'Laminar Flow Over a Downstream-Facing Step in a Two-Dimensional Flow
Channel1 .
Trans. Instn. Chem. Engrs., 52, pp361-367.

DE VAHL DAVIS G (1983)
'Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution 1 .
Int. Journal of Numerical Methods in Fluids, 3, pp249-264.

DE VAHL DAVIS G & JONES I P (1983)
"Natural Convection in a Square Cavity: A Comparison Exercise'.
InL Journal of Numerical Methods in Fluids, 3, pp227-248.

DE VAHL DAVIS G & MALLINSON G D (1976)
'An Evaluation of Upwind and Central Difference Approximations by a Study of
Recirculating Flow'.
Computational Ruids, 4, pp24-43.

DONGARRA J J, BUNCH J R, MOLER C B & STEW ART G W (1979)
LINPACK User's guide. SIAM Publications, Philadelphia.

DUBOIS P F, GREENBAUM A & RODRIGUE G H (1979)
'Approximating the Inverse of a Matrix for use in Iterative Algorithms for Vector
Processors'.
Computing, 22, pp257-268.

FEDORENKO R P (1961)
'A Relaxation Method for Solving Elliptic Difference Equations'.
USSR Comput. Math. Math. Phys., 1, pp 1092-1096.

FENNEL D (1988)
Investigation into the King's Cross Underground Fire. Department of Transport, Her
Majesty's Stationary Office.

FLYNN M J (1966)
'Very High-Speed Computing Systems'.
Proceedings of the IEEE, 54, pp!901-1909.

- 277 -

FLYNN M J (1972)
'Some Computer Organizations and Their Effectiveness'.
IEEE trans. on Computers, c-21, pp948-960.

FUCHS L (1983)
'New Relaxation Methods for Incompressible Flow Problems', pp627-640.
Numerical Methods in Laminar and Turbulent Flow, Editors C. Taylor et al, Pineridge
Press, Swansea.

FUJINO S, TAMURA T & KUWAHARA K (1989)
'Application of the RAINBOW SOR Technique to Fluid Flow Analysis in the 3D
Generalised Curvilinear Coordinate System'.
Proceedings of 6th Int. Conference on Numerical Methods in Laminar and Turbulent
Flow, Swansea.

GASKELL P H & LAU A K C (1988)
'Curvature Compensated Connective Transport: SMART, a New Boundedness
Preserving Transport Algorithm'.
Ink Journal of Numerical Methods in Fluids, 8, pp617-641.

GASKELL P H & WRIGHT N G (1988)
'Multigrids Applied to a Solution Technique for Recirculating Flow Problems',
pp51-65.
Simulations and Optimisation of Large Systems, Editor A. Osiadacz, IMA conference
Series, Clarendon Press, Oxford.

GENTZSCH W (1987)
'A Fully Vectorizable SOR Variant'.
Parallel Computing, 4, pp349-353.

GfflA U, GffiA K N & SHIN C T (1982)
'Solution of the Incompressible Navier-Stokes Equations by a Coupled Strongly-
Implicit Multi-Grid Method'.
Journal of Computational Physics, 48, pp387-411.

GORSLINE G W (1980)
Computer Organization. Englewood Cliffs, NJ. Prentice-Hall.

HACKBUSCH W (1978)
'On the Multi-grid Method Applied to Difference Equations'.
Computing, 20, pp291-306.

HAGEMAN L A & YOUNG D M (1981)
Applied Iterative Methods. Academic Press, New York.

- 278 -

HAN T, HUMPHREY J A C & LAUNDER B E (1981)
'A Comparison of Hybrid and Quadratic-Upstream differencing in High Reynolds
Number Elliptic Flows'.
Computer Methods in Applied Mechanics and Engineering, 29, pp81-95.

HANDLER W (1977)
'The impact of Classification Schemes on Computer Architectures'.
Proceedings Int. Conf. on Parallel Processing, pp7-15.

HARLOW F H & WELCH J E (1965)
'Numerical Calculation of Time-Dependent Viscous Incompressible Flow of a Fluid
with a Free Surface'.
Physics of Fluids, 8, pp2182-2189.

HEMKER P W, KETTLER R & WESSELING P (1983)
'Multigrid Software for the Solution of Elliptic Problems on Rectangular Domains:
MGOO (Release 1)'.
GMD-Studien 70.

HEMKER P W, WESSELING P & ZEEUW P H (1984)
'A Portable Vector-Code for Autonomous Multigrid Modules'.
PDE SOFTWARE: Modules, Interface and Systems. Editors B. Enquist and
T. Smedsaas. North-Holland, Amsterdam-New York.

HEMKER P W & de ZEEUW P M (1985)
'Some Implementations of Multigrid Linear System Solvers'.
Multigrid Methods for Integral and Differential Equations. Editors DJ. Paddon and
H. Holstein. Oxford University Press, London

HESTENES M R & STIEFEL E (1952)
'Methods of Conjugate Gradients for Solving Linear Systems'.
Journal Res. Nat. Bur. Standards, 49, pp409-436.

HOCKNEY R W (1965)
'A Fast Direct Solution of Poisson's Equation Using Fourier Analysis'.
Journal Assoc. Comput. Mach., 12, pp95-113.

HOCKNEY R W (1977)
'Supercomputer Architecture'.
Infotech State of the An Conference: Future systems, pp65-93.

HOCKNEY R W & JESSHOPE C R (1981)
Parallel Computers. Architectures, Programming and Algorithms. Adam Hilger Ltd.

- 279 -

HOCKNEY R W & JESSHOPE C R (1988)
Parallel Computers 2. Architectures. Programming and Algorithms. Adam Hilger Ltd

ROUTER W (1985)
"A Vectorised Multigrid Solver for the Three-Dimensional Poisson Equation'.
Presented at the Second Copper Mountain Conference on Multigrid Methods, Copper
Mountain, CO.

HUTCHINSON B R & RATTHBY G D (1986)
'A Multigrid Method Based on the Additive Correction Strategy'.
Numerical Heat Transfer, 9, pp511-537.

ffiROTHEOU C S (1987)
'High Level Subroutines for the MASSCOMP MC5400 Vector Accelerator'.
Thames Polytechnic, London.

ffiROTHEOU C S, RICHARDS C W & CROSS M (1988)
'Vector Methods for Computational Procedures for Fluid Flow'.
Presented at the 12th IMACS World Congress on Scientific Computation, Paris.

IEROTHEOU C S, RICHARDS C W & CROSS M (1989a)
'Vectorization of the SIMPLE Solution Procedure for CFD Problems - Part I: A Basic
Assessment'.
Applied Mathematical Modelling, 13, pp524-529.

IEROTHEOU C S, RICHARDS C W & CROSS M (1989b)
'Vectorization of the SIMPLE Solution Procedure for CFD Problems - Part II: The
Impact of Using a Multigrid Method'.
Applied Mathematical Modelling, 13, pp530-536.

IREBARNE A, FRANTISAK F, HUMMEL R L & SMITH J W (1972)
'An Experimental Study of Instabilities and Other Flow Properties of a Laminar Pipe
Jet'.
AICHE Journal, 18, pp689.

ISSA R I (1986)
'Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting'.
Journal of Computational Physics, 62, pp40-65.

JANG D S, JETLI R & ACHARYA S (1986)
'Comparison of the PISO, SIMPLER and SIMPLEC Algorithms for the Treatment of
the Pressure-Velocity Coupling in Steady Flow Problems'.
Numerical Heat Transfer, 10, pp209-228.

- 280 -

JENNINGS A (1985)
Matrix Computation for Engineers and Scientists. J Wiley and Sons.

JONES I P (1979)
'A Comparison Problem for Numerical Methods in Fluid Dynamics: the "Double-
Glazing" Problem', pp338-348.
Numerical Methods in Thermal Problems. Editors R.W. Lewis and K. Morgan.
Pineridge Press, Swansea, U.K.

JONES I P, KIGHTLEY J R, THOMPSON C P & WILKES N S (1985)
'FLOW3D, a Computer Code for the Prediction of Laminar and Turbulent Flow, and
Heat Transfer: RELEASE 1\
Harwell Report AERE-R 11825.

JORDAN T L (1974)
'A New Parallel Algorithm for Diagonally Dominant Tridiagonal Matrices'.
Los Alamos Scientific Laboratory Report

JORDAN T L (1981)
'A Guide to Parallel Computation and Some Experiences'.
LANL Report LA-UR-81-247, Los Alamos National Laboratory, Los Alamos, NM.

KAPITZA H & EPPEL D (1987)
'A 3-D Poisson Solver Based on Conjugate Gradients Compared to Standard Iterative
Methods and its Performance on Vector Computers'.
Journal of Computational Physics, 68, pp474-484.

KASCIC M J Jr (1979)
'Vector Processing on the CYBER 200'.
Infotech State of the An Report. Supercompters, 2, pp237-270.

KERSHAW D S (1978)
'The Incomplete Cholesky-Conjugate Gradient Method for the Iterative Solution of
Systems of Linear Equations'.
Journal of Computational Physics, 26, pp43-65.

KIGHTLEY J R & JONES I P (1985)
'A Comparison of Conjugate Gradient Preconditionings for Three-Dimensional
Problems on a CRAY-1'.
Comput. Phys. Comm., 37, pp205-214.

KIGHTLEY J R & THOMPSON C P (1987)
'On the Performance of Some Rapid Elliptic Solvers on a Vector Processor'.
SIAM Journal Sci. Stat. Comput., 8, pp701-714.

- 281 -

KINCAID D R, OPPE T C & YOUNG D M (1986)
"Vectorised Iterative Methods for Partial Differential Equations'.
Communications in Applied Numerical Methods, 2, pp289-296.

KOPPENOL P J (1985)
'Simulating 3D Euler Flows on a CYBER 205 Vector Computer', pp71-92.
The Efficient Use of Vector Computers with Emphasis on CFD. Editors W. Schonauer
and W. Gentzsch. Vieweg Publishers.

KORDULLA W (1984)
'Vectorisation of Algorithms in Compuattional Fluid Dynamics on the CRAY-1 Vector
Computer', pp 157-171
Vectorisation of Computer Programs with Applications to CFD. Editor W. Gentzsch.
Vieweg Publishers.

LAI C H & LIDDELL H M (1987)
'A Review of Parallel Finite Element Methods on the DAP'.
Applied Mathematical Modelling, 11, pp330-340.

LAMBIOTTE J & VOIGT R G (1975)
'The Solution of Tridiagonal Linear Systems on the CDC STAR-100 Computer'.
ACM Trans. on Mathematical Software, 1, pp308-329.

LATIMER B R & POLLARD A (1985)
'Comparison of Pressure-Velocity Coupling Solution Algorithms'.
Numerical Heat Transfer, 8, pp635-652.

LAUNDER B E & SPALDING D B (1974)
'The Numerical Computation of Turbulent Flows'.
Computer Methods in Applied Mechanics and Engineering, 3, pp269-289.

LAUNDER B E, REECE G J & RODI W (1975)
'Progress in the Development of a Reynolds Stress Turbulence Closure'.
Journal of Fluid Mechanics, 68, pp537-566.

LAWSON C, HANSON R, KINCAID D & KROGH F (1979)
'Basic Linear Algebra Subprograms for Fortran Usage'.
ACM Trans. Math. Software, 5, pp308-371.

LEONARD B P (1979)
'A Stable and Accurate Connective Modelling Procedure Based on Quadratic
Upstream Interpolation .
Computational Methods in Applied Mechanics and Engineering, 19, pp59-98.

- 282 -

LONSDALE G (1988)
'Solution of a Rotating Navier-Stokes Problem by a Non-Linear Multigrid Algorithm'.
Journal of Computational Physics, 74, pp 177-190.

LONSDALE R D & WEBSTER R (1989)
'The Application of Finite Volume Methods for Modelling Three-Dimensional
Incompressible Flow on an Unstructured Mesh'.
Proceedings of 6th Int. Conference on Numerical Methods in Laminar and Turbulent
Row, Swansea.

MACAGNO E O & HUNG T K (1967)
'Computational and Experimental Study of a Captive Annular Eddy'.
Journal of Fluid Mechanics, 28, pp43-64.

MASDEN N K & RODRIGUE G H (1976)
'A Comparison of Direct Methods for Tridiagonal Systems on the CDC STAR-100'.
Report UCRL-76993, Lawrence Livermore National Laboratory, Livermore, California.

MASSCOMP (1984)
Reference Manual. Order No. 075-00123-00-00, Rev. B, Massachusetts.

MEUERINK J A & van der VORST H A (1977)
'An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix is
a Symmetric M-Matrix''.
Mathematics of Computation, 31, pp 148-162.

MELHEM R & CANNON D (1987)
'Toward Efficient Implementation of Preconditioned Conjugate Gradient Methods on
Vector Supercomputers '.
Int. Journal of Supercomputer Applications, 1, pp70-98.

MEURANT G (1984)
'The Block Preconditioned Conjugate Gradient Method on Vector Computers'.
BIT, 24, pp623-633.

MILLER T F & SCHMIDT F W (1988)
'Evaluation of a Multilevel Technique Applied to the Poisson and Navier-Stokes'.
Numerical Heat Transfer, 13, ppl-26.

O'LEARY D P (1984)
'Ordering Schemes for Parallel Processing of Certain Mesh Problems'.
SLAM Journal of Sci. Stat. Comput., 5, pp620-632.

- 283 -

PATANKAR S V (1980)
Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington DC.

PATANKAR S V (1981)
'A Calculation Procedure for Two-Dimensional Elliptic Situations'.
Numerical Heat Transfer, 4, pp409-425.

PATANKAR S V & SPALDING D B (1972)
'A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-
Dimensional Flows'.
Int. Journal of Heat and Mass Transfer, 15, pp 1787-1806.

PATEL M K (1987)
"On the False-Diffusion Problem in the Numerical Modelling of Convection-Diffusion
Processes'.
PhD Thesis, Thames Polytechnic, London.

PATEL M K, CROSS M & MARKATOS N C (1988)
'An Assessment of Flow Oriented Schemes for Reducing False Diffusion'.
Int. Journal for Num. Methods in Eng., 26, pp2279-2304.

PHILLIPS R E & SCHMIDT F W (1984)
'Multigrid Techniques for the Numerical Solution of the Diffusion Equation'.
Numerical Heat Transfer, 7, pp251-268.

PHILLIPS R E & SCHMIDT F W (1985a)
'Multigrid Techniques for the Solution of the Passive Scalar Advection-Diffusion
Equation'.
Numerical Heat Transfer, 8, pp25-43.

PHILLIPS R E & SCHMIDT F W (1985b)
'A Multilevel-Multigrid Technique for Recirculating Flows'.
Numerical Heat Transfer, 8, pp573-594.

POLLARD A (1980)
'Entrance and Diameter Effects on the Laminar Flow in Sudden Expansions'.
Momentum and Heat Transfer Processes in Recircularing Flows. Editors Launder and
Humphreys, 13, pp21-26.

PRAKASH C & PATANKAR S V (1985)
'A Control-Volume Based Finite-Element Method for Solving the Navier-Stokes
Equations using Equal-Order Velocity-Pressure Interpretation'.
Numerical Heat Transfer, 8, pp259-280.

- 284 -

PUN W M & SPALDING D B (1976)
'A General Computer Program for Two-Dimensional Elliptic Flows 1 .
Report No. HTS/76/2, Imperial College, London.

RADICATI di BROZOLO G & VITALETTI M (1987)
"Conjugate Gradient Subroutines for the IBM 3090 Vector Facility 1 .
IBM Technical Report ICE-0010.

RATTHBY G D (1976)
"Skew Upstream Differencing Schemes for Problems involving Fluid Flows 1 .
Computation Methods in Applied Mechanical Engineering, 9, pp!53.

RATTHBY G D & SCHNEDDER G E (1979)
'Numerical Solution of Problems in Incompressible Fluid Flow: Treatment of the
Velocity-Pressure Coupling 1 .
Numerical Heat Transfer, 2, pp417-440.

RAJTHBY G D & SCHNEIDER G E (1980)
Erratum. Numerical Heat Transfer, 3, p513.

RAMAMORTHY C V & LI H F (1977)
'Pipeline Architecture' .
Comput. Surv., 9, pp61-102

RHE C M & CHOW W L (1983)
"Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge
Separation 1 .
AIAA Journal, 21, pp 1525-1532.

RILEY J J & METCALF R W (1980)
'Direct Numerical Simulation of the Turbulent Wake of an Asymmetric Body 1 .
Turbulent Shear Flows n. Editors Bradbury et al. Springer-Verlag.

RIZZI A & THERRE J P (1985)
'Vector Algorithm for Large-Memory CYBER 205 Simulations of Eider Flows',
pp93-116.
The Efficient Use of Vector Computers with Emphasis on ChU. Editors W. Schonauer
and W. Gentzsch. Vieweg Publishers.

ROACHE P J (1976)
Computational Fluid Dynamics. Hermosa Publishers. Albuquerque, New Mexico.

- 285 -

RODRIGUE G & WOLITZER D (1981)
'Incomplete Block Cyclic Reduction'.
International Symposium on Parallel Computation, Newark, Delaware.

ROSTEN H I & SPALDING D B (1986)
PHOENICS - Beeinners Guide and User Manual. CHAM TR/100 Report.

RUSSEL R M (1978)
'The CRAY-1 Compter System'.
Communications in ACM, 21, pp63-72.

SCHNEIDER G E & RAW M J (1987)
'Control Volume finite-Element Method for Heat Transfer and Fluid Flow Using
Colocated Variables - 1. Computational Procedure'.
Numerical Heat Transfer, 11, pp363-390.

SCHNEIDER G E & ZEDAN M (1981)
'A Modified Strongly Implicit Procedure for the Numerical Solution of Field
Problems'.
Numerical Heat Transfer, 4, ppl-19.

SCHONAUER W & SCHNEPF E (1988)
'FIDISOL: A Black-Box Solver for Partial Differential Equations'.
Parallel Computing, 6, pp635-648.

SCHWAMBORN D (1984)
'Vectorisation of an Implicit Finite Difference Method for the Solution of the Laminar
Boundary-Layer Equations', pp 195-216.
Vectorisarion of Computer Programs with Applications to CFD. Editor W. Gentzsch.
Vieweg Publishers.

SEAGER M K (1986)
'Overhead Considerations for Parallelizing Conjugate Gradient'.
Communications in Applied Numerical Methods, 2, pp273-279.

SETTARI A & AZIZ K (1973)
'A generalization of the Additive Correction Methods for the Iterative Solution of
Matrix. Equations'.
SLAM Journal of Numerical Analysis, 10, pp506-521.

SHORE J E (1973)
'Second Thoughts on Parallel Processing'.
Comput. and Elect. Engng. 1, pp95-109.

- 286 -

SIVALOGANATHAN S & SHAW G J (1988a)
'A Multigrid Method for Recirculating Flows'.
Int. Journal for Numerical Methods in Fluids, 8, pp417-440.

SIVALOGANATHAN S & SHAW G J (1988b)
'On the Smoothing Properties of the SIMPLE Pressure-Correction algorithm'.
Int. Journal for Numerical Methods in Fluids, 8, pp441-461.

SMITH G D (1969)
Numerical Solution of Partial Differential Equations. Oxford University Press, London.

SONNEVELD P, WESSEUNG P & de ZEEUW P M (1985)
'Multigrid and Conjugate Gradient Methods as Convergence Acceleration Techniques'.
Multigrid Methods for Integral and Differential Equations. Editors D.J. Paddon and
KHolstein, Oxford University Press, London.

SPALDING D B (1972)
'A Novel Finite Difference Formulation for Differential Expressions Involving Both
First and Second Derivatives'.
Int. Journal for Numerical Methods in Engineering, 4, pp551-559.

SPALDING D B (1976)
'Basic Equations of Fluid Mechanics and Heat and Mass Transfer and Procedures
for their Solution'.
Report No. HTS/76/6, Mechanical Engineering Dept., Imperial College, London.

SPALDING D B (1980)
'Mathematical Modelling of Fluid Mechanics, Heat Transfer and Chemical-Reaction
Process'.
Report No. HTS/80/1, Mechanical Engineering Dept., Imperial College, London.

SPRADLEY L W, STALNAKER J F & RATLIFF A W (1981)
'Solution of the Three-Dimensional Navier-Stokes Equations on a Vector Processor'.
AIAA Journal, 19, pp!302-1308.

STONE H L (1968)
'Iterative Solution of Implicit Approximations of Multidimensional Partial Differential
Equations'.
SLAM Journal of Numerical Analysis, 5, pp530-558.

STONE H S (1973)
'An efficient Parallel Algorithm for the Solution of a Tridiagonal Linear System of
Equations'.
Journal of ACM, 20, pp27-38.

- 287 -

SWARZTRAUBER P N (1979)
'A Parallel Algorithm for Solving General Tridiagonal Equations'.
Mathematics of Computation, 33, pp 185-199.

THOMAS L H (1949)
'Elliptic Problems in Linear Difference Equations Over a Network'.
Watson Scientific Computing Lab. Report. Columbia Univ., New York.

TIMIN T & ESMAIL M N (1983)
'A Comparative Study of Central and Upwind Difference Schemes Using the Primitive
Variables'.
Int Journal of Methods in Fluids, 3, pp295-305.

TRAUB J F (1973)
'Iterative Solution of Tridiagonal Systems on Parallel or Vector Computers'.
Complexity of Parallel Numerical Algorithms. Academic Press, New York.

van der VORST H A (1982)
'A Vectorizable Variant of Some ICCG Methods'.
SIAM Journal Sci. Stat. CompuL, 3, pp350-356.

van der VORST H A (1986)
'The Performance of FORTRAN Implementations for Preconditioned Conjugate
Gradients on Vector Computers'.
Parallel Computing, 3, pp49-58.

Van DOORMAAL J P & RATTHBY G D (1984)
'Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows'.
Numerical Heat Transfer, 7, pp 147-163.

VANKA S P (1986)
'Block-Implicit Multigrid Solution of Navier-Stokes Equations in Primitive Variables'
Journal of Computational Physics, 65, pp!38-158.

VANKA S P & MISENGADES K P (1987)
'Vectorized Multigrid Fluid Flow Calculations on a CRAY X-MP/48'.
Int. Journal for Numerical Methods in Fluids, 7, pp635-648.

VARGA R S (1962)
Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J.

- 288 -

WANG H H (1981)
'A Parallel Method for Tridiagonal Equations'.
ACM Transactions on Mathematical Software, 7, pp 170-183.

WANG Y, HE J & ZANG B Q (1989)
'A Calculation Procedure for Steady Two-Dimensional Elliptic Flows'.
Int. Journal for Numerical Methods in Fluids, 9, pp609-617.

WESSELING P (1982)
'A Robust and Efficient Multigrid Method'.
Multigrid Methods. Editors W. Hackbusch and U. Trottenberg. Springer-Verlag,
Berlin-New York.

WHTTEWAY J (1979)
'A Parallel Algorithm for Solving Tridiagonal Systems'.
DAP Newsletter 3, Queen Mary College, London.

YOUNG D M (1971)
Iterative Solution of Large Linear Systems. Academic Press, New York.

- 289 -

APPENDIX 2.9.3

SUBROUTINE TPADDFVV(A,B,C,n)
C
C AUTHOR: C.S.IEROTHEOU
C DATE: 20/10/1986
C DESCRIPTION:
C This subroutine will use the VA to add the vector A to B and store
C the result in C. The VA memory is 32000 32-bit words so it can
C accomodate at most 2 vectors up to 16000 in length. If n > 16000
C then we must split the vector into chunks of 16000.
C NB: This version does not account for non-contiguous vectors.
C

INTEGER n,IDX,PTR,MAXSIZ,VECLEN
REAL A(n),B(n),C(n)

PTR=1
MAXSIZ=16000
VECLEN=MIN(nJvIAXSIZ)

C
C Load in chunk of vector A and B, each of size VECLEN, into AP memory.
C
100 K>X=MAPLODFV(A(PTR),4,0,1, VECLEN)

IDX=MAPLODFV(B (PTR),4, VECLEN, 1, VECLEN)
C
C Since the MATH and DMA routines can run in parallel,all vector chunks are
C loaded before the addition is carried out. Do this using MAPSYNC routine.
C

CALL MAPSYNC(IDX)
C
C Now carry out arithmetic
C

IDX=MAP ADDFW(0,1, VECLEN, 1,0,1, VECLEN)
C
C Ensure addition is finished before storing result to host memory.
C

CALL MAPSYNC(IDX)
IDX=MAPSTRFV(0,1 ,C(PTR),4, VECLEN)
CALL MAPSYNC(IDX)

C
C Update PTR and VECLEN. Check to see if all chunks have been processed.
C

PTR=PTR+VECLEN
IF(PTR.LE.n)THEN

VECLEN=MIN(n-PTR+1 ,MAXSIZ)
GOTO 100

ENDIF
C
C Finished addition. Ensure all other operations have been completed.
C

CALL MAPBWATTRBEQ
RETURN
END

- Al -

Consider the simple vector operation of the addition of two vectors (A and B) of

length n, and the storage of the result in a third vector (C). The vector accelerator can

be used in one of two ways to carry out the addition:

(i) using the low-level MASSCOMP RTL routines

(ii) using the high-level routine

Code fragments for the two approaches are given below:

(i) MASSCOMP RTL routines

IDX=MAPLODFV(A.4,0,1 ,n)
IDX=MAPLODFV(B,4,n, 1 ,n)
CALL MAPSYNC(IDX)
IDX=MAPADDFV V(0,1 ,n, 1,0,1 ,n)
CALL MAPSYNC(IDX)
IDX=MAPSTRFV(0,1 ,C,4,n)
CALL MAPSYNC(BDX)
CALL MAPBWATTRBEO

(ii) the high-level routine

CALL TPADDFVV(A,B,C,n)

