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Abstract

Background: In Uganda, Rhodesian sleeping sickness, caused by Trypanosoma brucei rhodesiense, and animal
trypanosomiasis caused by T. vivax and T. congolense, are being controlled by treating cattle with trypanocides and/or
insecticides. We used a mathematical model to identify treatment coverages required to break transmission when host
populations consisted of various proportions of wild and domestic mammals, and reptiles.

Methodology/Principal Findings: An Ro model for trypanosomiasis was generalized to allow tsetse to feed off multiple
host species. Assuming populations of cattle and humans only, pre-intervention Ro values for T. vivax, T. congolense, and T.
brucei were 388, 64 and 3, respectively. Treating cattle with trypanocides reduced R0 for T. brucei to ,1 if .65% of cattle
were treated, vs 100% coverage necessary for T. vivax and T. congolense. The presence of wild mammalian hosts increased
the coverage required and made control of T. vivax and T. congolense impossible. When tsetse fed only on cattle or humans,
R0 for T. brucei was ,1 if 20% of cattle were treated with insecticide, compared to 55% for T. congolense. If wild mammalian
hosts were also present, control of the two species was impossible if proportions of non-human bloodmeals from cattle
were ,40% or ,70%, respectively. R0 was ,1 for T. vivax only when insecticide treatment led to reductions in the tsetse
population. Under such circumstances R0,1 for T. brucei and T. congolense if cattle make up 30% and 55%, respectively of
the non-human tsetse bloodmeals, as long as all cattle are treated with insecticide.

Conclusions/Significance: In settled areas of Uganda with few wild hosts, control of Rhodesian sleeping sickness is likely to
be much more effectively controlled by treating cattle with insecticide than with trypanocides.
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Introduction

Across sub-Saharan Africa, a variety of Trypanosoma spp

transmitted by tsetse flies (Glossina spp) cause human and animal

trypanosomiases. There are .10,000 cases/year of Human

African Trypanosomiasis (HAT) [1] with an estimated burden of

,1.3 million Disability Adjusted Life Years (DALYs) [2] and

economic losses in excess of $1 billion due to human and animal

trypanosomiasis [3]. While interventions can be directed against

the vector or the parasite, emphasis has usually been on the use of

drugs to treat the disease both in humans and in livestock.

While the importance of treating cases, especially human ones,

cannot be overstated, several advances in our understanding of

tsetse biology and ecology, and improvements in the cost-

effectiveness of tsetse control [4,5], have revived interest in that

approach to disease management. First, the use of satellite

navigation as an aid to nocturnal aerial spraying, spraying much

larger areas than previously, and protecting the sprayed areas with

odor-baited targets, has provided impressive results, such as the

eradication of G. m. centralis from Botswana [6]. Second, the

demonstration of the importance of odor for host location in some

species of tsetse provided a means of attracting them to insecticide-

treated targets and, by killing the flies, provided control of cattle

and human trypanosomiasis [7–10]. Third, the particularly low

reproductive rate in tsetse made it possible to use as few as four

such targets per square kilometer to eliminate isolated populations

of G. pallidipes Austen and two sub-species of G. morsitans [9,11].

The method is cheaper than aerial spraying and more environ-

mentally friendly than insecticidal ground spraying, game

destruction or habitat clearance [11]. Issues of cost, logistics,

government commitment, and theft of materials have meant,

however, that the approach has not been used in large-scale

control programs except in Zimbabwe and in the Western

Province of Zambia [11,12].

Part of the reason for this limited use stems from the fact that,

simultaneously with the development of insecticide-treated target

technology, it was realized that tsetse control could be achieved

equally effectively by applying insecticide to the very livestock -

generally cattle - off which the tsetse were feeding. This approach

has been used very successfully in areas where tsetse feed
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predominantly on cattle [13,14], though it would be less effective

in areas where – as in large parts of Zimbabwe and Tanzania – the

predominant food source for the tsetse are wild mammals.

Whereas insecticide-treated cattle (ITC) can be used in

operations aimed at eliminating tsetse populations, animal

trypanosomiasis can also be reduced to low levels even where

tsetse populations persist [15]. It is, of course, relief from cattle

disease – rather than issues of tsetse fly control versus eradication –

which most interests stockholders in tsetse areas and which can be

used to interest the stockholder in becoming actively involved in

tsetse and trypanosomiasis control [13]. Recent advances in our

understanding of the feeding behavior of tsetse on cattle have led

to even cheaper methods of tsetse control where the insecticide is

applied to the body regions and/or individual animals on which

most tsetse feed [16,17]. This restricted application of pyrethroids

is comparable in its cost and simplicity to the widespread use of

trypanocides by farmers to prevent or cure trypanosomiasis in

their livestock [16].

There are several possible reasons why these advances in

affordable, low-technology tsetse control have not, as yet, played a

significant role in efforts against HAT. First, there is an imperative

to find and treat infected humans and livestock and this approach

is thus the foundation of all efforts against the disease. Second, the

odor-baited devices used so effectively in efforts against animal

trypanosomiasis [10] are less effective against the important

vectors of HAT [18,19]. This poor efficacy is probably related, in

part, to the distinctions between the host relationships of the

various tsetse species. The important vectors of animal trypano-

somiasis, i.e., the Morsitans-group tsetse, feed almost exclusively on

mammals (e.g. warthog, kudu, buffalo and cattle) which they locate

largely by odor, whereas the Palpalis-group species, which are the

main vectors of HAT, are less responsive to odors and include

reptiles and birds in their diet. For instance, between 50 and 90%

of meals taken by Glossina fuscipes fuscipes are from monitor lizard

[20] which themselves do not support all the trypanosome species

infective to mammals [21].

In this paper, we investigate the theoretical effects of two

different approaches to trypanosomiasis control, both of which

have already been shown to be of interest to small-scale

stockholders in resource-limited settings [22]. First we consider

the effect of treating animals with trypanocides, which prevent the

disease without having any insecticidal effect. Second, we consider

the use of the ITC method, which has no direct trypanocidal effect

but which increases mortality in the vectors. We limit our study to

the situation typical of eastern and southern Africa, where

Trypanosoma vivax, T. congolense and T. brucei rhodesiense occur in

livestock and wildlife - and where the last-named parasite also

causes ‘‘Rhodesian’’ sleeping sickness in humans [23,24].

Methods

We generalize the Rogers [25] two-host model for trypanoso-

miasis to one where a single species of tsetse can feed off any finite

number (n) of vertebrate hosts. The formal proof that Rogers’

model can be generalized in this way is given in the Supporting

Information (Text S1). The overall basic reproductive rate (R0) of a

trypanosome species is given by:

R0~
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where D = 1 for T. vivax and T. congolense and

D~
u(1{ exp ({(a1za1za1z::::aizu))

(a1za1za1z::::aizu)

for T. brucei, and where the following definitions apply: R0 = overall

basic reproductive rate; formally, in a completely susceptible

population, the number of trypanosome-infected tsetse arising

from each infected fly; c = P(infected blood meal gives mature

infection in fly); u = Daily mortality rate of the flies; T = Incubation

period in tsetse (all time units are days); ai = pi/d, where

pi = Proportion of tsetse bloodmeals from species i, d = Duration

of feeding cycle in flies; bi = P(infected fly bite produces infection in

species i); mi = V/Ni, where V = Number of tsetse, Ni = Number of

animals of species i, 1/ri = Duration of infection in species i. The

parameter D differs between T. brucei and the other species of

trypanosomiasis because it is assumed that tsetse can only be

infected with T. brucei when they take their first bloodmeal. It is

assumed that the probability of infection for the other species is

independent of a fly’s feeding history: to distinguish this situation

Rogers also replaced c with c9 for T. brucei [23]. The default values

for the parameters of his two-host model for Rhodesian sleeping

sickness [23] are copied here for convenience, in Tables 1 and 2.

We extend the model to consider cases where, in addition to

humans and domestic stock (cattle), the following vertebrate

species are present: (1) wild mammals; (2) monitor lizards; (3) wild

mammals and monitor lizards. The interventions to be considered

involve the treatment of cattle with: (1) prophylactic trypanocides

that kill trypanosomes but have no effect on tsetse mortality; (2)

ITC, i.e., topical application to hosts of insecticides that kill tsetse

but have no direct effect on trypanosome mortality.

The use of ITC can reduce R0 in two ways. First, in common

with all insecticidal techniques, it reduces the average life

expectancy of tsetse, so decreasing the abundance of the flies

and the proportion of the population that is old enough to harbor

mature, transmissible infections. Second, and in contrast with

Author Summary

In Uganda, cattle are an important reservoir for Trypano-
soma brucei rhodesiense, the causative agent of Rhodesian
sleeping sickness (human African trypanosomiasis), trans-
mitted by tsetse flies Glossina fuscipes fuscipes, which feed
on cattle, humans, and wild vertebrates, particularly
monitor lizards. Trypanosomiasis can be controlled by
treating livestock with trypanocides or insecticide – killing
parasites or vectors, respectively. Mathematical modeling
of trypanosomiasis was used to compare the impact of
drug- and insecticide-based interventions on R0 with
varying densities of cattle, humans and wild hosts.
Intervention impact changes with the number of cattle
treated and the proportion of bloodmeals tsetse take from
cattle. R0 was always reduced more by treating cattle with
insecticide rather than trypanocides. In the absence of wild
hosts, the model suggests that control of sleeping sickness
(R0,1) could be achieved by treating ,65% of cattle with
trypanocides or ,20% with insecticide. Required coverage
increases as wild mammals provide increasing proportion
of tsetse bloodmeals: if 60% of non-human bloodmeals are
from wild hosts then all cattle have to be treated with
insecticide. Conversely, it is reduced if lizards, which do not
harbor trypanosomes, are important hosts and/or if
insecticides are used at a scale where tsetse numbers
decline.

Modeling Control of Trypanosomiasis
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other insecticidal techniques such as traps or insecticide-treated

targets, ITC kills specifically those tsetse that become infected from

the reservoir of disease in cattle.

Since the Rogers model assumes that the abundance and age

structure of the tsetse population is constant, it is particularly

suitable for highlighting the second type of effect, and so for

comparing ITC and trypanocides as means of reducing the

probability that a fly will become infected. In the present paper we

first use the Rogers model to address this matter under

circumstances in which various levels of the use of trypanocides

or insecticide treatment are applied to cattle that represent

different proportions of the overall cattle population, and with host

populations composed of various species. We then identify the

extra benefit that ITC produces via reductions in the abundance

and mean age of the tsetse population, and predict the relative

merits of using ITC and trypanocides, as assessed via the model.

Results

Rogers model
As a preliminary check we inserted the published default

parameter values (see Tables 1 and 2, [25]) into Equation (1) for

the scenario where only (untreated) cattle and humans provided

the source of tsetse bloodmeals, and obtained the published values

for R0: 388.2 for T. vivax, 64.4 for T. congolense, and 2.65 for T.

brucei. The last value is made up the sum of two components, 2.54

from the cattle and 0.11 from humans, implying that T. brucei

would not survive in the absence of the cattle reservoir [25]. To

control, and eventually eliminate, T. brucei the goal therefore must

be to reduce the combined R0, for human and non-human hosts,

to a value less than unity.

Effect on R0 of treating a proportion of cattle with
trypanocidal drugs

Tsetse feed off cattle and humans only. In considering the

effects of this intervention note that, for simplicity and to consider

the case where trypanocides could have maximum effect, we

consider that a proportion of the cattle population is kept

continuously on trypanocidal drugs that have 100% efficacy. We

assume that flies feed at random off cattle with respect to their

treatment status; but the treated cattle are never infected with

trypanosomiasis and cannot pass on the infection. Effectively,

therefore, we can consider the cattle which are on trypanocides as

a third vertebrate species – differing only from untreated cattle in

that bi = 0 so that, obviously, these animals contribute nothing to

R0 – see Equation (1).

With the default parameter input values, T. vivax or T. congolense

can be satisfactorily controlled in cattle only if 100% of the stock

are kept on continuous and completely effective treatment

(Figure 1A). For T. brucei, however, the disease could be controlled,

and even eliminated, if cattle were the only source of bloodmeals

other than humans. In order to achieve this, .65% of the cattle

would need to be on continuous, perfectly effective, treatment with

trypanocides (Figure 1B). The proportion required to be on

treatment rises to about 90% if, as likely for G. pallidipes females

[26,27], the feeding interval is 2.5 days rather than the 4 days

suggested in Table 1.

Preliminary investigations of the sensitivity of the estimated

value of R0 to changes in various input parameters showed that if

the cattle numbers were increased from 50 to 100 then it was

necessary to have only 30% of the cattle on trypanocides to make

R0,1 for T. brucei. Conversely, reducing the number of cattle from

50 to 10 the baseline R0 increased to 12.8 for T. brucei. If, also, the

proportion feeding off humans was reduced to the order of 5%, R0

for this species increased to 23.4. Under these circumstances

.90% of cattle must be on trypanocides for control of T. brucei.

Table 2. Default parameter values for the Rogers (1988) model for two-host species trypanosomiasis: values specific for the
different species of trypanosomes.

T. vivax T. congolense T. brucei

1/i1 Incubation period in species 1 - - 12

1/i2 Incubation period in species 2 12 15 12

1/r1 Duration of infection in species 1 - - 70

1/r2 Duration of infection in species 2 100 100 50

1/v1 Duration of immunity in species 1 - - 50

1/v2 Duration of immunity in species 1 100 100 50

T Incubation period in tsetse 10 20 25

b1 P(infected fly bite produces infection in species 1) - - 0.62

b2 P(infected fly bite produces infection in species 2) 0.29 0.46 0.62

c P(infected blood meal gives mature infection in fly) 0.177 0.025 0.065

c9 P(infected blood meal gives mature infection in fly) - - 0.065

doi:10.1371/journal.pntd.0001615.t002

Table 1. General default variable and parameter values for
the Rogers model for two-host species trypanosomiasis [25].

Default

N1 Number of animals of species 1 300

N2 Number of animals of species 2 50

V Number of tsetse 5000

p1 Proportion of tsetse bloodmeals from species 1 0.3

P2 Proportion of tsetse bloodmeals from species 2 0.7

u Daily mortality rate of the flies 0.030

d Duration of feeding cycle in flies 4

a1 = p1/d, a2 = p2/d, m1 = V/N1, m2 = V/N2

See the original paper for further details and Table 2 for default parameter
values specific for the different species of trypanosomes.
doi:10.1371/journal.pntd.0001615.t001
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These results, based on changes in only one or two parameters,

need to be treated with some caution, however, because it has

been assumed that the said changes can be made without effect on

other parameters. In particular it has been implicitly assumed that

we can change the cattle density without affecting the tsetse

density, and without affecting the proportion of flies that feed off

humans. More complete sensitivity analyses are, however, beyond

the scope of this study and will be presented elsewhere. The above

results suggest, nonetheless, that it will generally be very difficult to

control human trypanosomiasis by treating cattle with prophylac-

tic trypanocides – even when there is no additional wildlife

reservoir of trypanosomes present. Note that there are no

prophylactic drugs for humans, so that treatment of humans is

restricted to those who are infected with trypanosomes. The

contribution of humans to Ro is anyway very small [23].

Tsetse feed off cattle, humans and monitor lizards. If

the wild vertebrate host is a monitor lizard, which does not get

infected with trypanosomiasis when bitten by an infected tsetse,

the dynamics of the disease are identical to the situation where a

proportion of cattle are kept permanently on perfectly effective

trypanocides. In both cases a proportion of tsetse blood meals are

taken from hosts that neither suffer from nor transmit trypano-

somiasis. The situation is thus represented by the results in Figure 1

and we need only change the label on the abscissa, to read:

‘Proportion of non-human tsetse meals taken from lizards’.

Tsetse feed off cattle, humans and wild mammals. When

cattle are kept in areas where there is wildlife that, by assumption,

cannot be treated with trypanocides, it will be even more difficult to

reduce R0 below unity. In fact, as long as wild mammalian hosts form

.10% of the tsetse diet, the contribution to R0 for T. brucei from the

wild mammal component of the host population is always .1

(Figure 2) so that, even when 100% of the cattle population are treated

with trypanocides, the disease cannot be eradicated. The same,

naturally, also applies to T. vivax and T. congolense. Notice that the R0

for T. brucei in cattle is always zero because we assume here that any

cattle that are present are constantly on totally effective trypanocide

treatment. R0<10 for T. brucei when there are only wildlife present

(Figure 2) whereas, when the same number of untreated cattle are

present, R0,3 (Figure 1B). This is due to the fact that we are assuming

that wildlife do recover from a trypanocide infection. The R0 for

humans is not zero, but is very low, with the disease is now present in

humans due solely to the reservoir in (untreated) game animals.

It appears from the above results that, whereas trypanocides

can, and have been, used to provide short-term protection against

trypanosomiasis, they will never provide a long-term solution to

the disease in cattle. Moreover, it will be difficult to use the mass

treatment of reservoir hosts (i.e., cattle) with trypanocides to

control T. brucei in humans. The underlying problem is simply that

the trypanocides have no effect on the mortality, abundance and

age structure of the vector population.

Effect on R0 of treating a proportion of cattle with
insecticide

We now turn to the use of the insecticide-treated cattle (ITC)

method of control – where the vectors, rather than the

trypanosome, are targeted. In the previous sections we have

assumed a fixed daily rate for adult tsetse mortality (Table 1).

When considering the use of ITC, however, we need to

decompose this factor into the mortality occurring at the time of

feeding and that occurring between feeds. The former has

generally been considered the dominant component [28,29] even

where the host is not treated with insecticide.

Figure 1. The effect on trypanosomiasis of treating cattle with trypanocides. A. The effect on the basic reproductive value, R0, for three
species of trypanosome of treating a proportion of cattle with trypanocides such that the cattle have zero probability of being infected with
trypanosomes of any species. B. Rescaled version showing details of change in R0 for T. brucei and also the effect of decreasing the tsetse feeding
interval from 4 days to 2.5 days.
doi:10.1371/journal.pntd.0001615.g001
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If the probability of surviving a feed is qf and the probability of

surviving a non-feeding day is qn then a fly survives a complete

feeding cycle of d days with probability qf qn
d. With qf = 0.96,

qn = 0.98, and with the assumed four-day feeding interval [25], the

probability of surviving from one feeding cycle would then be

approximately 0.9660.984 = 0.885 and the daily mortality rate is

calculated as 2ln(0.885)/4<0.03, as originally assumed [25].

Where some hosts are treated with insecticide we assume that

flies always die if they feed off a treated animal; the probability of a

given fly surviving a feed is thus the product of the probabilities

that it feeds off an un-treated host and survives that meal. We

assume further that flies feed off all cattle at random, particularly

with respect to the animal’s treatment status. If the proportion of

cattle treated is pi then the probability of a fly surviving a feeding

cycle is now (12pi) qf qn
d. For example, with the above values for qf,

qn and d, and if 10% of the cattle are treated, the survival

probability will be 0.960.885 = 0.797 and the daily mortality is

now approximately 0.057. As a first approximation we ignore any

Figure 2. How the presence of wild hosts affects the control of T. brucei using trypanocides. The relationship between the proportion of
wild mammals among all non-human hosts and the basic reproductive value (R0) for T. brucei. It is assumed that any cattle present are all,
continuously, on a trypanocide with 100% efficacy.
doi:10.1371/journal.pntd.0001615.g002
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extra mortality arising from a fly feeding off a human, rather than

cattle or wildlife.

Tsetse feed off cattle and humans only. It is immediately

evident that our model suggests the use of ITC provides a much

more promising prospect than trypanocides for trypanosomiasis

control. In a situation where the only tsetse hosts are cattle and

humans it is only necessary to treat about 20% of the cattle with

insecticide in order for the R0 for T. brucei to fall below unity

(Figure 3A). Moreover, whereas it was essentially impossible to use

trypanocides to make R0,1 for T. congolense, this end can be

achieved with ITC if about 55% of cattle are treated. For T. vivax,

however, R0.1 even when all cattle are treated with insecticide

(Figure 3A). This last result may appear counter-intuitive until it is

recalled that we are assuming that the tsetse population is constant,

regardless of the proportion of cattle treated with insecticide. This

could happen if cattle are treated over a small area, surrounded by

large areas with abundant flies feeding off untreated hosts. Under

such circumstances natural birth within the treated area, and

invasion from outside it, could be sufficient to maintain the tsetse

population at a constant level and, thereby, R0.1 for the more

rapidly reproducing T. vivax.

Changing the feeding frequency has a smaller effect on R0 than

in the case of trypanocide treatment, because increased feeding

rates increase both the probability of infection and of the fly dying

during the feeding process and these two increases have effects on

R0 that tend to cancel each other out. Similar antagonistic effects

on R0 arise from the fact that flies visit, and probe, a host animal

more than once before obtaining a bloodmeal [17,30].

Tsetse feed off cattle, humans and wildlife. Where tsetse

can feed off wild mammals or reptiles which cannot be treated

with insecticide it will, of course, be more difficult to control

trypanosomiasis using ITC. Calculations similar to those above

can be used to estimate the probability of a fly surviving a feeding

cycle. As is obvious from Figure 3, even when all cattle are always

treated with an insecticide of 100% efficacy, the R0 for T. vivax for

cattle and wildlife combined cannot be reduced to ,1 – under the

assumption that the tsetse population is constant (Figure 4A). For

T. congolense in cattle the proportion of cattle among non-human

hosts would have to be .40% for ITC to be able to force R0,1

(Figure 4A). Even at that level, however, R0 in wildlife would still

be .10 and would provide a constant source of re-infection. To

make R0,1 for T. congolense in cattle and wildlife combined .70%

of the non-human bloodmeals would need to be taken from cattle.

Cattle would need to comprise ,40% of non-human tsetse

bloodmeals for R0,1 in T. brucei – even if all cattle are treated

(Figure 4B).

In reality it will be difficult to keep all cattle effectively treated all

of the time; the effectiveness of the insecticide decreases with time

[16] and re-treatment may not be possible at optimal intervals.

These different effects will be essentially equivalent to a situation

where reduced proportions of cattle are treated. Figure 4B shows

how, if human trypanosomiasis is to be controlled, the required

proportion of cattle among non-human hosts increases as the

proportion of cattle treated decreases. Thus if only 50% of the

cattle are treated, cattle must comprise at least 70% of the non-

human hosts; and this figure rises to 100% if only 25% of the cattle

Figure 3. The effect on trypanosomiasis of treating cattle with insecticide. A. The effect on the basic reproductive value, R0, for three
species of trypanosome of treating a proportion of cattle with insecticide that kills any fly attempting to feed off a treated animal. B. Detail for T.
brucei, showing the differential effects on R0 for cattle and for humans.
doi:10.1371/journal.pntd.0001615.g003
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are treated. Control of T. vivax and T. congolense would be

correspondingly more difficult under these circumstances.

Effect of insecticide-treated cattle on tsetse population
Figures 1, 2, 3, and 4 provide estimates of the control of

trypanosomiasis, by way either of the use of trypanocidal drugs or

ITC, in the situation where there is sufficient birth, of uninfected

flies, to ensure that the tsetse population stays at a constant level

[25]. This should be a reasonable assumption in the case where

trypanocidal treatment is used to control trypanosomiasis and

there is no imposed mortality on the tsetse population.

When ITC is used, the population could only be kept constant if

the increase in mortality is balanced by an increase in birth and/or

immigration. If birth is the predominant source of replacements

then Figures 3 and 4 reflect the control situation. If, however, the

population is kept constant due to immigration then the

replacement flies will be predominantly older flies, with above-

average probability of being infected with trypanosomes, so that

Figures 3 and 4 over-estimate the efficacy of ITC.

However, where ITC is used, either against closed populations

of tsetse or on a sufficiently large scale that immigration is limited

at sites far from the boundary, the expectation is that the fly

population will decrease. Inspection of Equation (1) shows that,

other things being equal, R0 changes linearly with the tsetse

population so that, where the use of ITC produces a decline in

population levels the effect on R0 will be larger than indicated in

Figure 3. We follow Smith & McKenzie [31] in estimating that, if

mortality was increased from some value u to u9, the initial vector

population (V) would decrease to Vu/u9.

Taking this factor into account changes the threshold value for

the required percentage of cattle among non-human hosts. Thus,

under the assumption of a constant tsetse population, it was

impossible to force R0,1 for T. vivax (Figures 3A, 4A, 5). However,

if tsetse populations are reduced as a consequence of ITC, R0,1

for T. vivax as long as cattle make up .90% of the non-human

hosts (Figure 5). The proportions of cattle among non-human

hosts, required to force R0,1, declines from roughly 70% to 55%

for T. congolense and 40% to 30% for T. brucei (Figure 5).

Discussion

For purposes of comparing our results with previous work we

have, initially, adhered closely to the design, and the parameter-

ization, of the Rogers model – which provides a useful tool for

investigating the dynamics of trypanosomiasis. It is recognized,

however, that some fundamental details of the model can be

improved. For example, the model makes no distinction between

male and female tsetse, which are known to differ with respect to

longevity, mobility, infectivity and responses to baits [32], and

does not allow that mortality changes as a function of age [33].

Moreover, advances in our knowledge over the past 23 years

allow the selection of parameter values that better reflect the field

situation. Thus, the feeding interval is certainly shorter than four

days and where tsetse make more than one visit to a host per

feeding cycle [30,34] this will impact on both the probability that

they transmit a trypanosome, and the probability that they are

killed when they alight on an animal that has been treated with

insecticide.

Most seriously, the model assumes that the abundance and age

structure of the tsetse population is constant. This can be a

reasonable assumption where no tsetse control efforts are in place,

or when trypanosomiasis control consists simply of treating

livestock with trypanocides that have no insecticidal effect. If

cattle provide a substantial proportion of tsetse bloodmeals and if a

significant proportion of these cattle are treated with insecticide,

however, it may be expected that both the size of the population in

the area under treatment, and its mean age, will tend to decline.

On the other hand the model also ignores the problem of invasion

from adjacent infected areas and this further complicates the

estimation of the effect of ITC.

Finally, we have not modified Rogers’ implicit assumption that

tsetse feed at random off the individuals of a given host species.

Figure 4. How the presence of wild hosts affects the control of T. brucei using insecticide. The relationship between the basic reproductive
value, R0, and the proportion of cattle among all non-human mammalian hosts in the situation where a proportion of cattle are treated with
insecticide that kills any fly attempting to feed off that animal. A. T. vivax and T. congolense in cattle and wildlife - where all cattle are treated with
insecticide. B. T. brucei; total R0 in humans, cattle and wildlife for situations where different proportions of the cattle are treated with insecticide.
doi:10.1371/journal.pntd.0001615.g004

Modeling Control of Trypanosomiasis

www.plosntds.org 7 May 2012 | Volume 6 | Issue 5 | e1615



This is known not to be the case and this consideration will

complicate the modeling [17]. Nonetheless, in the limit, where

some individuals provide no bloodmeals at all for tsetse, they

effectively do not exist from the modeling point of view. One could

thus simplify the problem by considering the ‘‘effective’’ number of

individuals in a herd – being the numbers that do provide

bloodmeals. In the same way, baboons and impala – which

provide almost no bloodmeals for tsetse – do not need to be

considered when modeling the dynamics of trypanosomiasis.

It would not be easy to incorporate all of these details into the

present model and still maintain the simplicity that allowed the

model to be generalized to apply to the variety of situations

considered here. The more general model can, however, be

investigated using simulation models; the results of such an

exercise will be reported in a separate paper.

Despite the above limitations, the theoretical development

presented here suggests that the use of ITC should provide a

potent tool for controlling, or even eliminating, trypanosomiasis in

situations where cattle provide the majority of bloodmeals for

tsetse. The dynamics of transmission ensure that the requisite

proportion favoring the use of ITC depends on the species of

trypanosome involved; for T. vivax there is little hope of eliminating

the disease unless at least 90% of the tsetse bloodmeals are from

cattle – and then only if insecticide treatment is such that all tsetse

feeding off cattle are killed, and if the situation is such that the

increased tsetse mortality results in a decline in the fly numbers.

For T. brucei the situation is very much more favorable; even if

70% of bloodmeals are being taken from wildlife, treatment with

insecticide of the cattle providing the remaining meals from non-

humans allows R0 to be reduced to unity. The situation for T.

congolense is intermediate between these extremes. By contrast, the

use of trypanocides will never allow T. vivax and T. congolense to be

eliminated, even where tsetse feed only on cattle – unless all

animals are kept permanently on a perfect trypanocide. T. brucei

could be controlled – but only in the absence of wildlife hosts.

The classical Rhodesian sleeping sickness foci are often

associated with protected areas [35], the vectors are Morsitans-

group tsetse and the hosts are wild mammals such as warthog,

Figure 5. The effect of vector population reduction on the control of T. brucei using insecticide. The relationship between the basic
reproductive value, R0, and the proportion of cattle among all non-human mammalian hosts in the situation where all cattle are treated with an
insecticide that kills any fly attempting to feed off that animal. The dotted lines show the further change in R0 in the circumstance that the imposed
mortality results in a decline in the tsetse population.
doi:10.1371/journal.pntd.0001615.g005

Modeling Control of Trypanosomiasis

www.plosntds.org 8 May 2012 | Volume 6 | Issue 5 | e1615



buffalo and bushbuck. Tackling these foci is very difficult: block

treatment of wild hosts with trypanocides is impossible and hence

vector control is the only option. Moreover, the flies are highly

mobile [36] and widely dispersed across a range of habitats and

hence, to be effective, tsetse control must be applied across the entire

protected area. This approach is illustrated by the use of aerial

spraying and insecticide-treated targets to eliminate tsetse from the

Okavango Delta (area<15,000 km2) of Botswana [6]. Few countries

have the resources for such large-scale interventions and hence

sleeping sickness persists in parts of east and southern Africa.

By contrast, tackling Rhodesian sleeping sickness transmitted by

G. fuscipes might be more tractable for several reasons. First, the

underlying R0 of T. b. rhodesiense is likely to be low. Studies of the diet

of G. f. fuscipes in Uganda and Kenya have shown that monitor

lizards (Varanus nilotica) provide between ,50% and .90% of

bloodmeals [20,37–39] and it seems likely that poikilothermic hosts

such as monitor lizards will not be competent hosts for mammalian

trypanosomes. The only published study [21] confirms this for T.

congolense and the results for T. brucei are equivocal but not

compelling: no human-infective trypanosome has been recovered

from a lizard, only one wild lizard (N = 46) has been found with T.

brucei s.l., and experimental infections of captive lizards – which were

not subject to the range of temperatures found in nature –

produced, at most, a low and transient parasitaemia. Our results

suggest that if lizards are indeed refractory to mammalian

trypanosomes and form .80% of the diet of tsetse, then the R0

for T. b. rhodesiense is less than 1. Hence we might expect that

Rhodesian sleeping sickness will be associated with areas where

lizards are not abundant such as away from the shores of Lake

Victoria and/or in densely settled areas where wild hosts are absent.

Consistent with this hypothesis, the current foci of Rhodesian

sleeping sickness in Uganda are, paradoxically, not near the shores

or islands of Lakes Victoria and Kyogu, where tsetse are abundant,

but rather at sites further inland [40,41].

In areas where lizards are not important hosts, then livestock,

particularly cattle, are important [20,38]. In the case of Uganda,

the densities of cattle frequently exceed 50 head/km2 [42] and the

degraded environment leads to relatively low densities of tsetse

[38]. Increasing the host:vector ratio reduces R0: for densities of 10

host/km2 and 5000 tsetse/km2 our model (with other parameters

as in Tables 1 and 2) suggests R0 = 13 for T. brucei; with 50 hosts

and 5000 tsetse/km2 the value is 3, and with 50 hosts and 500

tsetse/km2 it is 0.3.

Second, G. f. fuscipes are restricted to riverine habitats and are

less mobile than Morsitans species such as G. pallidipes [36] and

hence vector control can be applied on a smaller scale, focused on

riverine and lacustrine habitats.

Third, the abundance of cattle in settled areas, their importance

as a host for tsetse and their need for water – and hence daily

presence in the riverine and wetland habitats where G. f. fuscipes is

concentrated – means that insecticide-treated cattle should be

particularly effective baits. Hence, SE Uganda, the place where

Rhodesian sleeping sickness is most serious, accounting for over

half (2848/5086) of all cases across Africa [35], is probably the

easiest to tackle.

Present evidence for the superior efficacy of ITC assumes

greater importance due to indications over the last decade that the

economy of this technique can be improved substantially, with no

material loss of performance. The application of insecticide can be

restricted to the legs and belly of cattle where most tsetse feed,

thereby reducing the material costs of treatment by ,90% [16]. In

addition, since most tsetse feed on the larger and older animals

within a herd [17,43], only these animals need be treated, with

further savings in cost. As a consequence, the annual material cost

of ITC is reduced to ,US$2 per beast per year [44] – comparable

to the cost of a single dose of diminazene aceturate to cure

trypanosomiasis. The restricted application of pyrethroids to older

cattle allows young stock to be exposed to ticks and hence develop

a natural immunity to tick-borne diseases [45] and reduces impact

on dung fauna [46,47] which play an important role in

maintaining soil fertility and, ultimately, productive pasturage.

Against these favorable indications for the usefulness of ITC there

is the problem that the technique can be used only in districts

where cattle occur, although modeling suggests that ITC can be

effective even when cattle are distributed patchily, i.e., absent from

bands of habitat up to several kilometers wide [48].

Nonetheless, for the densely-settled rural areas of central and

southern Uganda where Rhodesian sleeping sickness is most acute,

our findings suggest that relatively modest levels of treatment

(,20% even if tsetse numbers are not reduced by the intervention)

could lead to the elimination of HAT. Hence there is the exciting

prospect that an important public health benefit might arise

through the private actions of livestock keepers using cheap, simple

and environmentally-benign methods to control vector-borne

diseases in their livestock [22].
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