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ABSTRACT

Properties of the Linearisation of the Quadratic Trans-

formation of Genetic Algebras

W.D. Willcox

In this thesis we study the linearisation of the quad-

ratic transformation of commutative baric algebras due to

Holgate (44), elaborated and applied by Abraham (1-5) .

Holgate studied the quadratic transformation 4-:A—* A,

x<f>= x in special train algebras and showed that tney poss-

ess a plenary train. In the proof he shows that can be

linearised over a higher dimensional space B in the sense

that there exist a map R:A—••* B and a linear map^ on B
— r

such that = xR<4>I' (lithe projection B onto A). Abraham

applies this linearisation to give explicit formulae for

plenary sequences in Schafer genetic algebras for polyploidy.

Following remarks of both Abraham and Holgate our aim

was to investigate the application of the linearisation to

algebras corresponding to more complex modes of inheritance

and to investigate the properties of algebras in which this

linearisation exists with a view to obtaining a more natural

characterisation of algebras arising in genetics.

Our achievements are to have extended the linearisation

to continuous time models , to have exhibited limitations to

its further extension, to have given a method of construct-

ing algebras possessing the linearisation and to have given

an alternative technique that achieves the same ends by more

standard linear algebraic methods.

We decided to include a survey of all relevant work that

was scattered amongst papers ranging over some forty years

when we commenced work. This year a text, WOrz-Busekros (58),

has been published which does a very complete job of bring-

ing the subject within the confines of a single volume. How-

ever she only briefly mentions linearisation and our survey

is restricted to what we need to discuss this.
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1• GENETIC ALGEBRA

The mechanisms of inheritance have been expressed sym-

bolically since Mendel (48) (1869). Hardy (35) in 1908

introduced elementary algebra in proving an equilibrium

theorem, the 'Hardy-Weinberg Principle' . Bernstein (9)

(1922) used algebraic methods to determine and classify

all quadratic transformations representing systems of in-

heritance which achieve equilibrium after one generation,

in 3 dimensions . We are concerned with 'genetic algebras'

related to systems of nonassociative algebras which were

first defined by Etherington (21) in 1939 and extended

thereafter by Schafer, Gonshor, Holgate and others . The

basic papers are Etherington (21), Schafer (54), Gonshor

(29). See also Raffin (52) for a brief axiomatic treatment.

In the first section we give a review of some basic

points from general nonassociative algebra. The next five

sections outline the basic theory of genetic algebras and

compare the different approaches of Etherington, Gonshor

and Schafer.

1.1. Note on nonassociative algebras

We consider only the points we shall need in our pres-

entation of genetic algebras . Our main reference for general

nonassociative algebra is Schafer (55).

Algebras arising from genetic formalism regardless of

special structure will be termed 'genetic algebras '. Ether-

ington (25) gives several examples with their derivations .

The denotation GA is used later for a special class. In

most cases genetic algebras are finite dimensional commut-
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ative nonassociative algebras over the real or complex

fields. The commutativity arises since we do not dist-

inguish the order in which the alleles of a genetic type

are taken, i.e. we assume symmetric inheritance. That they

are in general nonassociative follows from the simplest

examples (see (1.3.1.)), and reflects the nonassociativ-

ity of crossing in genetics.

For our purposes the following definition suffices

although of course more general definitions (over general

fields) are possible.

1.1.1. A is a (commutative) nonassociative algebra (NAA)

if A is a finite dimensional vector space over a field F

(F =/i\or<C), together with a bilinear map a : AX A—M,

yU(x,y) = xy, satisfying /Ia(.x,y) =/ My, x) . A defines a

multiplication satisfying:

xy = yx

(x+y) z = xz + yz

X (xy) = (x x)y = x(icy)

for allXfc-F and x,y,z e A.

Well known examples of NAA's are the 3-dimensional

vector algebra with the cross product and Cayley's 8-dim-

ensional real division algebra.

Various subclasses of NAA have been defined by postul-

ating some alternative to associativity. Let A be an NAA

then we have the following.

1.1.2. A is a Jordan algebra if every x,y in A satisfies

the Jordan identity

(xy) x2 = x(yx 2).
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Given any associative algebra A we can associate with

it a Jordan algebra by defining the Jordan multiplication

x . y = I(xy + yx).

1.1.3. A is a Lie algebra if for all x,y,z in A the anti-

coinmutativity and Jacobi identities hold i.e. respectively

2 nx =0

(over fields of characteristic zero this is equivalent to

xy = -yx)

(xy)z + (yz)x + (zx)y = 0 .

1.1.4. Given any associative algebra A we obtain a Lie

algebra L(A) by replacing the given multiplication by the

commutator product,

L ' x » y l = x y - yx -

Holgate (46) uses properties of a related Lie algebra

in characterising genetic algebras.

1.1.5. A is an alternative a1gebra if for all a,x in A the

alternative laws hold i.e.

ax" = (ax)x

x^a = x(xa).

1.1.6. A is a power associative algeb ra if for every x in

A, <(̂ x^is an associative subalgebra of A, where x />denotes

the algebra generated by the element x.

In a NAA powers are ambiguous. Etherington (20) has

given a theory of products using a notion he calls 'shape'

which gives the association or bracketing of the product

regardless of the different elements entering into it. The
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degree of a product (or shape) is the number of elements

in it and the altitude is the highest nesting of brackets

occuring. Products in which factors are absorbed one at a

time e.g.,

(a((be)d))e

are called primary products. Products generated by repeated

squaring of an element (or having the same shape) are called

plenary. Primary and plenary products are in a sense ex-

treme forms between which all other products lie. The foll-

owing are of particular importance to us.

1.1.7. Let A be a NAA and let x A. The principal powers

x n are defined by

1x = x

n n-1x = x. x

and the plenary powe rs x in " are defined

x ai = X

x fnl = ( x fn - n ) 2 .

1.1.8. x is principally nilpotent of index k if the prin-

k
cipal power x =0 for some integer k and k is minimal for

this. More generally nilpotency may be defined with respect

to shape. A useful stronger form of nilpotency was defined

by Albert (6)\ x is strongly nilpotent if there exists an

integer k such that all products of degree k are zero inde-

pendent of association. For commutative algebras these are

equivalent (Etherington (23)).

These definitions of nilpotency carry over to algebras

in the obvious way. In associative (or power associative)

algebras these definitions coincide with usual nilpotency.
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Several properties of nilpotency true in the associative

case fail in general, e.g. every associative non-nilpotent

algebra possesses an idempotent but this fails for non-

associative algebras.

We note that the definitions of subalgebra, ideal,

homomorphism, kernel and quotient algebra do not involve

associativity and hence are carried over without modific-

ation.

1.1.9. The derived series of A is the series of subalgebras,

A( i ) ^ A( 2 ) . . .

defined by

- A

A ( i+1 ) = ( A ( i) ) 2

2 i • •
where A is the subalgebra of A generated by all pairwise

products in A. A is said to be soluble if there exists an

( T1
integer r such that A = 0.

An ideal I of A is soluble if I = 0 or it is a soluble

subalgebra of A. All soluble ideals of an algebra are con-

tained in the unique maximal soluble ideal S and the only

soluble ideal of the quotient A/S is the zero ideal.

Any nilpotent subalgebra I of A is soluble. This foll-

ows from the fact that if I is an ideal of A and T(A) is

the associative algebra of multiplications R :A —>A,
X

yR v = yx then I is nilpotent iff T(I) is nilpotent. In factX.

any nilpotent algebra is soluble.

Since, for us, the underlying vector space of a NAA is

of finite dimension n it is determined up to isomorphism

by n, i.e. is isomorphic to /£ n̂ or <£__.
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1.1.10. Let A be a NAA and have basis a^, a^. Then

3
the multiplication of A is completely determined by n

multiplication or structure constants i,j,k = l,...,n

given by the basic products

a •a. = c . 1 A ... a,.
I J — k vIjk k

2
These n equations form the multiplication table of A.

We conclude this section with a brief note on struct-

ure.

1.1.11. If A is 1-dimensiona 1 then A is associative.

For, A = <^ajV)> and a^ = If = ^ t ^ 0n

xy = 0 for all x,y in A. In this case A is called the

(1-dimens ional) zero a1gebra. If A 0 then taking

\ _1 2b^ = /\ as basis, b^ = b^ and A is isomorphic to F

under ^ |—9 Xb^ . In both cases we clearly have associativity.

Even in the next dimension (n = 2) there are a great

variety of possible NAA's.

1.1.12. Structure of associative algebras

For associative algebras there is a well developed

structure theory depending largely on the notion of the

'radical' ideal. In any associative algebra A there exists

an ideal R , the radical of A , which is the unique max-

imal ideal of all nilpotent elements of A. Algebras with

zero radical are called semisimple. Any semisimple algebra

is a direct sum of simple algebras i.e. not the zero alg-

ebra and having no proper ideals. Any simple algebra is a
J\{e c,!- f>>'l> vc ^
sum[of the total matrix algebra of dimension n" (n = dimA)

and a division algebra. A/R is semisimple. Thus up to a det-

ermination of all division algebras the structure of A/R
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is determined. If the underlying field is it is well known

that fR ,1 , |H (quaternions) and (LD (Cayley numbers) are the

only division algebras. Since A is isomorphic to A/R + R,

knowledge of the radical completes the structure. Proof of

these theorems uses the "Peirce decomposition' relative to

an idempotent.

For NAA the situation is far from well developed. Lie

algebras have been given an analogous structure theory, al-

though since there are no idempotents different arguments

are used. But this is not the case in general.

1.1.13. Structure of nonassociative algebras

While the notions of subalgebra, ideal, iso-, homo-

morphism, simplicity, factor algebra and direct sum are in-

dependent of associativity that of radical is not. The

following definition was given by Albert (b). If A is a NAA

homomorphic to a semisimple algebra then the radical R of

A is the minimal ideal of A such that A/R is semisimple.

However there the analogy ends. NAA's are just too general

for a complete structure theory, in the sense that it is

possible to constuct NAA's with almost any undesirable

property.

Progress has been made only for restricted classes e.g.

Lie, alternative, Jordan and power associative algebras.

This difficulty with structure vanishes for 'Schafer genetic

algebras' (see (1.4.7.)) but recurs whenever we consider

wider classes e.g. 'train algebras' .

The definition of some classes of genetic algebras

employs the notion of rank equation.



8

1.1.14. The principal (plenary) rank equation of a NAA is

the (unique) monic polynomial equation in the principal

(plenary) powers satisfied by the general element x of A

of minimal degree whose coefficients are homogeneous poly-

nomials in the coordinates of x.

The existence of the principal rank equation is proved

by Dickson (19).

1.2. Baric algebras

Every linear associative algebra possesses a matrix

representation i.e. is isomorphic to a subalgebra of the

matrix algebra of the underlying vector space. NAA's on

the other hand may not have a representation. 'Baric alg-

ebras' are those that have the simplest kind of represent-

ation. The following ideas are due to Etherington (21).

1.2.1. An algebra A over a field F (f'vorC) is said to be

baric iff it has a non-trivial homomorphism ' :A -*•F.

Genetic algebras for systems in which selection does

not occur are baric. The zero algebra and any algebra for

which a basis consisting entirely of nilpotent elements

exists are not baric.

In a baric algebra A there exists x e A such that

/?U) t o. is called the baric (or weight) function and

p?(x) the baric value or weight of x. x e A such that

p(x) f 0 can be normalised by taking X = x/y^(x) with unit

weight.
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1.2.2. If A is baric then ker^ is an invariant subalgebra

of A i.e. A(ker /?)<=. ker[*> and A/ker/S is isomorphic to F.

kerj> is called the nilalgebra of A.

1.2.3. y^(x) is a root of the principal rank equation of

(A, f>) .

1.2.4. Weight functions are not in general unique. (But as

we shall see they are unique for important classes of gen-

etic algebras. )

1.2.5. Any commutative NAA R of dimension n-1 over F gives

rise to a baric algebra A of dimension n by adjunction of

2
an element u to R such that u* - u, uz £ R for all z R,

(Schafer (54)).

1.2.6. If A has multiplication

a.a. = / , /(..,a,
L J — k IJk K

where

k A i, k = 1 , for all i,j

then A is baric with weight function

/?(x) = / ? ( £ . x.a.) - 2 . x..

1.2.7. If A is baric with basis (a^ ) and /3(aj) = 1 and if

for every linear map L : A —^ A such that /^(x) = y^(xL) we

have (xy)L = (xL)(yL) then

a-a. = 1(a. + a.)
1 J i J

i s the unique multiplication (see Gonshor (29)).

If A is a baric algebra we have the following.

There exists x6 A such that /^(x) = 1 and hence x may

be taken as a basis element.

Any u in a basis of A such that / % (u) / 0 can be rep-
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laced by v = x - u with /?(v) = 0.

Any u in a basis of A such that /3(u) i 0 can be rep-

laced v = u/ /5(u) with /?(v) = 1.

Thus we have (Etherington (22)):

1.2.8. There exists a linear transformation taking a

given basis of A into one having any desired number ( 1)

of base elements with weight 1 and the rest with weight 0 .

Such a basis with p elements of weight 1 arid q of

weight 0 with p+q = dim(A) will be called an Ethe rington

canonical basis. In such a basis (x) is the sum of the

'heavy' coefficients.

1.2.9. Etherington (22) has defined the nilproduct for

baric algebras:

x . y = xy - !/S(x)y - £/£(y)x.

The set of nilproducts is a subalgebra P of A and we

have

A k e r / 3 J) P (ker/ 3)^.

Using these ideas Etherington proves that:

a i ai = i/ ^( ai) aj - i/ ? (aj) ai + £ fe A ij k a k

where ^ ij k " jik an<^ t^ie a k are n il sc l uares ° f unit

weight.

ncnic <3,1

1.2.10. Let (A,/?) be a baric algebra with'basis (c^ ),£see1.5.1.)

i = 0,1,...,n then,

= ker jl = span| c-^,... ,c^j , K 9 = span ; c^,... ,C R _^

K n _ 1 = s pa n^ . j ]

are a decreasing sequence of ideals of A and

A A/ K^ J A/ K n_ 2 ... Tl—* , A/KJ F

where JT- is the projection of the cosets of K. , onto the
l ^ i+l
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cosets of and the multiplication of A/K^ is identical

to that of A omitting o as necessary. The composition

ff rr 2 •••TT n i = 'P > the baric function (see Fortini and

Barakat (28) ).

1.3 Train algebras and special train algebras

The following definitions are due to Etherington (21) .

1.3.1. An algebra A is a train a1gebra (TA) of A is baric

and if the coefficients of the principal rank equation are

functions of y^(x) only. The equation is then called the

(principal) train equation and the principal powers are

said to form a train.

1.3.2. Example. Let A be the algebra with basis ^A, af over

(f_ and multiplication

A^"= A, Aa = i(A + a), a^ = a.

/%:A —^ (L (x^A + = xi + x2 is a baric function. The

principal rank equation is

2
x - (x^ + X£ ) x =0 .

is a train algebra since the coefficients of this equ-

ation are 1 and /^(x).

Let (A, /') be a baric algebra over . If

f(x) = x r + ',xr * + ... + \ ,x = 0
1 r-1

is the rank equation then in general the /V are homo-

geneous polynomials of degree i in the coordinates of x,

and /^(x) satisfies f(x)~UtIf A is TA then since the /V

are homogeneous we have

= ^/ "(x) 1, for some CT\ £ .

After normalisation the equation becomes
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F(X) = X1 + 6 \ X r ^ + ... + & r _^X = 0

where the Q. are constants independent of x. This last

equation may be regarded as a linear recurrence relation

with constant coefficients connecting the principal pow-

ers

x r = - £ \ x r - 1 - . . . - e r - 1 x .

For our purposes the rank equation will usually be the

train equation.

We have the following sufficient conditions for TA

given by Etherington (21).

1.3.3. If ( _ A . y3 ) is a baric algebra, ker/3 is nilpotent

and (ker/2,)m are all ideals of A for m = 1,2,... then A

is TA. (Where nilpotent means principally nilpotent arid

(ker/3) m - (ker/3) (ker/3) m ^ ^

1.3.4. The converse is true for A of rank 1, 2 or 3

(degree of rank equation) but not true in general for

higher rank.

1.3.5. A special train a1gebra (STA) is a TA satisfying

(1.3.3.).

Etherington proved (1.3.3.) assuming that the roots

of the rank equation do not include Abraham (1) relaxed

this and proved (1.3,4.) by giving an example of a TA that

is not STA of rank 4.

1.3.2.' In example (1.3.2.) take the Etherington canonical

basis

c Q = i(A + a), c x = A - a.
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c 2 = c , c c, = 1c,, ci = 0.
o o * o 1 1' 1

And the baric function is

c Q ) = 1, /?(c:) = 0 .

o
Now kerfo = , (kerf? ) = 0, i.e. this algebra sat-

isfies (1.3.3.) and hence is STA.

In STA's many sequences, in addition to the principal

powers, may form trains. In particular the plenary powers.

The genetic significance of the principal and plenary

trains are that the sequence of principal powers repres-

ent successive generations under backcrossing with the

initial population and the sequence of plenary powers that

of successive generations under random mating (given also

the genetic assumptions (G) see p. 1^7).

1.3.6. Let A have basis a^, ..., a and multiplication

a •a . = 7 , A • •ia,.
1 3 ^ k 13k k

The dup1icate A' of A is defined by the multiplication

(a •a•)(a,a.) = J /I.. A , , a
1 j' k 1/ ^ m,n 13m kl nmn

We consider the genetic significance of duplication below;

here we simply distinguish it from the direct product AX A

which has multiplication

a i j ak 1 m,n ' ikm ^ jln amn ^ t s " ) .

Consider autopolyploid n-loci multiple allelic symm-

etric inheritance under the assumptions (G). We now define

the'fundamenta1 genetic algebras' .

Let a i , i = 1,2, ...,n be the set of gametic types

in a population x. Each zygote produces a gametic series
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a i a j = k /( ijk ak' ( ^ k Aijk = 1 } *

1,3.7. Taking the as basis and the gametic series as

multiplication defines a commutati ve NAA, G, called the

gametic,algebra . G is baric with /X a ^) = 1. (e.g. (1.3.1.))

A population expressed in terms of the frequencies of

the gametic types it produces is represented by an element

x of unit weight in G i.e.

x = -i-.x.a., where <~Z—•x. = 1.
l i i ' i i

If x,y are populations then

xy = J.. .x.y.a.a. - . . ,x.y. /\..,a,
1 >3 i j i 3 i » J >k i J Li Jk k

is the distribution of gametes after random mating of

x with y. The product left in quadratic form gives the

distribution of zygotes in xy.

i 7
Putting a.a. = a.- we obtain )a.., i,i = 1,2, ...,n>

& i j ij L i j ' ' J J

the set of zygotic types . Each couple produces a zygotic

series

cl••clii~ , A•• 'ii 3-•
ij kl c— m,n ljm kin mn

1.3.8. Taking the a^. as basis and the zygotic series as

multiplication defines a commutati ve NAA, Z, called the

zygot.ic a1gebra.

A population is represented in terms of its zygotic

tvpes by an element of unit weight in Z,

x = ( . .x..a.., where ( , . .x.. = 1).
i.J ij i] i>3 ij

The gametic and zygotic representations are related by

the gametic series since, eiven x = - . .x..a.. =
. 1 >3 ij i3

/ • .x..a.a. and a.a. = c a, we have ,
i,J iJ i 3 1 J k ijk k '

x = ^ . . ,x..A••ia,.
c — i»3 »k ij/v i]k k

It follows that it is sufficient to consider only the gam-
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etic algebras, noting that the gametic representation

determines the next generation' s zygotic representation.

1.3.9. Example. Zygotic algebra for a diallelic diploid

locus.

Let Z be the algebra with basis AA, Aa, aa and mult

iplication

AA 2 = AA, AA.Aa = \(AA+Aa), AA.aa = Aa,

?
Aa.Aa =\AA+IAa+4aa, Aa.aa = 2(Aa+aa), aa" = aa.

i.e. Z is the duplicate of (1.3.2.). Take an Etherington

canonical basis

c = AA, c 1 = A(A-a), c 9 = (A-a)
0 1 i-

Then the multiplication becomes

9L .

2 _ 1 1

o " "o» ^o"l " 2"1' "1 ~ * C2 ' C z " o" 2 w1^2
C': = c _. C. C, = \C,, c: = ko , C =c c _ = c, c n = 0 .

Define /3(c ) = 1, /?(c^) = 0 for i >0 (i.e. ^(AA) =/S(Aa)

/?(aa) = 1). Then kerjl = <(c , c , (ker/?)~ =<c 2 ^ a nd

(ker/ 5) m = 0 for all m > 2. Thus Z is STA.

Putting x = X
Q Z Q

¥ x i c ] + X 2 C ? we that the principal

train equation is

3 ?
x - x = 0.

(Genetically this tells us that there is equilibrium

from the second generation under backcrossing to the in-

itial population x.) Similarly we have the plenary train

equation

x1'31 - x1"21 - 0

(which tells us that there is equilibrium after one gen-

eration of random mating; this is Hardy-Weinberg equilibr-

ium).

Repeated duplication yields the copular algebra and

so on; elements of unit weight in each of these algebras
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represent populations in terms of the couples that produce

its zygotes and so on.

The direct product has the following genetic signific-

ance. If a population is classified into genetic types in

two ways then the distribution of genetic types is repres-

ented by an element of unit weight in the direct product

of the corresponding algebras. In particular the genetic

algebra depending on several autosomal linkage groups is

the direct product of the genetic algebras of each link-

age group.

1.4. Schafer genetic algebras

Let A be an NAA of dimension n+1 over (1 . For a fixed

x £ A t h e re e x i s t l i ne a rm a p s

R : A —* A, aR - ax
x ' x

L : A —> A, aL = xa
x ' x

called respectively the right and left multiplications of

A. If A is commutative R = L .
x x

Although only the x£ A with non-negative real coeff-

icients x^ such that ^x^ = 1 have a probability inter-

pretation, it is inconvenient to restrict ourselves to

real algebras since while a real STA is a real TA, it is

not necessarily a real 'Schafer genetic algebra' (see Heuch

(36)). For this reason we shall henceforth assume that our

underlying field is that of the complex numbers.

1.4.1. The transformation algebra (or multiplication alge-

bra) T(A) of A is the algebra of all polynomials in the

maps R ( xt A) with coefficients in C

We have for all L £ T(A)
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L = * 1 + f( R x, R y ) , (x,y,... £ A)

In general the characteristic polynomial det(<X I - L)

of L £ T(A) has coefficients which are polynomials in

•a-ftd-the coordinates of the x,y,... .

1.4.2. A (Schafer) genetic algebra (GA) is a commutative

baric algebra (A,/3) over( L such that the coefficients of

det( ^ I - L) depend on the x,y,... only through /?(x), ^(y) ,

... . i.e. if S, T fc T(A) and S = c<I + f(R , R , ...)
^o ^1

and T =/ I + f(R , R , ...) such that/? (x.) = /?(y.) ,
X o X1

then T and S have identical characteristic polynomials.

The following results are due to Schafer (54).

1.4.3. The class of GA is closed under duplication.

1.4.4. If A is GA then A is TA. (The converse is false

by an example of Abraham (1)).

1.4.5. If A is STA then A is GA. (The converse is false,

a counter example being the copular algebras of simple Men-

delian inheritance, e.g. (1.4.6.)

1.4.6. Example.

Starting with the algebra G (1.3.2.), take a canonical

basis

we obtain the multiplication for G

Duplicating this gives the algebra Z. Writing its basis

c
o

al » cx = a 2 - a ^ w h e r e a ^ = A , a ^ = a

d ^ = c c . d i = c c i , d0 =
o o o ' 1 o 1 ' 2

we obtain the multiplication for Z
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Duplicating again gives the copular algebra C. With the

same convention for the basis as for Z we obtain the mult-

iplication for C

2 1e^ = e , e e, = \ e , , e e~ = 4e 7
o o' ol 1 o 2 3

e^ ~~ 4e-jj e^^ — ^^ 4

e 2 = 1/16e S

and e e. = e. e. = 0 for i = 1,...,5; i = 3,4,5.
O J 1 J

The baric function is defined by

I?CeQ ) = 1, /3( ei ) = 0 for i > 0.

' J 3
ker fl =<e 1 , . . . , e 5^ , (ker/ ?) =<fe 2,e 4,e 5^ ,(ker/3)

<^e^,e^\, and ( k e r^ ) ^ = 0 .

Now since duplication preserves GA, C is GA. However C

is not STA since not all the (ker/ ?)m are ideals of C. In

particular, C(ker/3) contains e
Q
e
1

= ^e^ which is not a

2 2
member of (ker/3) i.e. (ker/ £) is not an ideal of C.

As the title of his paper (54 ) indicates, Schafer' s

main concern is the formal structure of GA's. Taking the

nonassociative radical R of a GA Aja structure theory must

exhibit the nature of R and the quotient A/R. For GA the

situation is, as Schafer shows, very simple.

1.4.7. If A is GA then R = ker^ and A/R is isomorphic to

the field of complex numbers.

1.5. Gonshor's definition of GA

1.5.1. A (Gonshor) genetic a1gebra is a commutative baric

algebra over (L such that there exists a basis (c. ), i=0,l,
to

,...,n such that the structure constants relative/this bas
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satisfy

CGI) \ =1
^ J ooo

(G2) \ oj k = 0 if k < j

(G3) \i^ k = 0 if i,j > 0 and k ^ max(i,j).

Any basis satisfying (1.5.1.) will be called a

(Gonshor) canonica1 basis.

Such bases are not unique. This can be seen as follows

Let ( A, ) be an n+1 dimensional GA with canonical basis

(c-) and structure constants A ••i,. Let c' £ A such
v 1J K O

that H>(c') = 1. Since /?(c ) = 1, /3(c.) = 0 (i > 0)
' o ' o i

and is linear we have fc',c,,...,c ) is a basis of A.
I o 1 n

(G3) is not affected by the change of basis. On setting

c' = 2_ •x.c. we find
o 1 1 1

c'2 = ( '•x.c. ) ( $ -• x • c •)
o v l I i^ ^ J J j

= c + \ y i
1 ( ^ > n . .i x.x . )c,.

o <^-k=l '-i, j=o ljk i k

' =1 i.e. (Gl) holds. And,
1OOO v J '

So / 000

c'c . = ( Z .x.c.)c.
O J K 1 1 1J J

= J k=j A oj k c k - > k J! +1 ( >" i =i X ± A ij k ) c k

So A = 0 if k <Cj i.e. (G2) holds. Now since

^ ijk ~ ^ ijk for i 0 (CQ)C^ c^) is a distinct

Gonshor canonical basis.

Let A be an algebra with basis (c^), dimension n and

multiplication, c^c. = ijkck* ^ et ^ = carc * j^ijk* ^ i

and M = card i c.c .: c.c. = 0 J . Then N ^ n^ and M ^ n 2 .
t 1 3 1 J f

For genetic algebras, relative to the natural basis,

N = M = 0 . For GA clearly N is a canonical basis invariant

And, for example,

N i(n2 - n) + n(n-l) + (n-l)(n-2) + ... + 2.1
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is a lower bound. The first term arising from (G2) and the

second from (G3). Thus N ^ r^. It is an open question

whether amongst all bases, canonical bases give maximal N.

Let A be a (Gonshor) genetic algebra with the notation

of (1.5.1.), then the following results hold and are due

to Gonshor (29 ).

1.5.2. If I = <^c^,... »cn^> and I r is an ideal of A for

all r = 1,2,... then A is STA.

Corresponding to a choice of canonical basis in an

STA A with K = ker^ we have the following decomposition

of A

A 3T F + K/K + ... + K /K

r
where r is the nilpotency index of K. For, (ker ,3) = 0

and (ker/3) is an ideal of A for all integers 0 ^ s < r.

Now 0 = K r K r ~ 1 d ... C. K C A. And A £ <(c N + K,

while < ^ c F . Thus K/K" Or^ c j), /K^ <^ĉ }> •.. ,

K r~ /K r'~ <^ c
r _^ Since A is STA the nilpotency index of

K is equal to the dimension of A.

We note that GA is insufficient for the above result.

For example in the copularalgebra C of (1.4.6.): dim(C)=6,

K - ( e^ ,... ,e , K — e^ >e^,e , K — <^e^,e^^)and

4
K = 0. In this case we have the decomposition

c = <e 0 > + < e i. e
3 > + < e

2 > * < e
4 > e 5 >

which does not correspond with the canonical basis.

1.5.3. The baric function is unique, i.e. ^ i xi ci ) = x
0

is the only non-trivial homomorphism intoC/ . (This result

was stated by Gonshor and proved in a more general form by

Holgate (46).)
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Thus an Etherington canonical basis with p = 1 and

q = n is a Gonshor canonical basis.

1.5.4. The principal train roots of A are among the

i.e. the A 0 j j are the train roots possibly wit h repetj/ion.

1.5.5. A is a (Schafer) GA iff A is a (Gonshor) genetic

algebra.

Henceforth we shall use the denotation GA for either

definition noting that (1.5.5.) requires the base field

to be algebraically closed as we have specified.

Using definition (1.5.1.) Gonshor proved the foll-

owing stability theorem for STA's.

1.5.6. The sequence of plenary powers of an element of

unit weight in an STA whose train roots other than A _6 ooo

satisfy |/\.j <C \ tends to an idempotent, where \ . = /V --
1 ' -L UX_L•

It is to the problem of determining formulae for these

sequences that much of the sequel is devoted.

Gonshor (29) gives the canonical multiplications for

several more general modes of inheritance.

For one diallelic 2n-ploid locus with gametic types

a , .... a where a. has i dominant, n-i recessive genes
o' ' n I ' &

the genetic multiplication is

= I 2n\-l < / i+j */2n-i-j )
l j \ n ) - • k \ k ; ; n-k j k

where ( ^ j = 0 if r<^ 0 or r ^ n.

A canonical basis is obtained by the transformation

c. = "~y•? (-l)^(^) a •, where 0 ^ j C. n.
j i=o v i I n-i' — J —•

The multiplication relative to this basis is
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1.5.7. c ;c. = ( n. n.\ c. - . if i+j n
i+3) i+J ' J

0 j otherwise.

If in addition we have mutation with rates r, s

dominant to recessive and vice versa respectively then

1-5-8. ' d- r- s ) i + j ( c i + j " ( n T J ) rc i * j + l

c •c . = „
1 J 1 * n T j ) r2c i . j + 2 + ••• ) if i+j 6 n

V 0 otherwise.

The extension to multiple alleles is carried out in

(30 ) and in (31) Gonshor proves that

1.5.9. The gametic algebra for one multiple allelic 2n-ploid

locus with mutation is a GA.

1.5.10. Example. Gametic algebra for one tetraploid di-

alle1ic locus.

Let AA, Aa, aa be the gametic types. The genetic multiplic-

ation is

AA'* = AA, AA. Aa = \(AA +Aa) , AA. aa = l/6AA+2/3Aa+l/6aa

Aa.Aa = AA.aa Aa.aa = l(Aa+aa)

2aa = aa.

A Gonshor basis is obtained using (1.2.8.)

2
Cq = A A , C^ = A(A-a), c^ = (A-a) .

This gives the multiplication

c o = c o' C 0 C 1 = ^ cl' C 0 C 2 C 1 1 / 6 c 2 » C 1 C 2 c 2 = ° *

1.6. Comparison of the definitions of genetic algebra

Etherington (21 ) gives a basis free definition of the

class of baric algebras; the subclass of train algebras is
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defined in terms of a property of the principal rank equ-

ation and a subclass of train algebras TA, special train

algebras STA, is defined by their structure. The latter

two classes are genetic algebras in the sense of Ethering-

ton. Duplication of linear algebras is introduced and

shown to be genetically significant. While this 'product'

is not normally considered in algebra, since it does not

preserve associativity, interpreted algebras , gametic,

zygotic etc. are each the duplicate of the preceding one.

Particular examples of these,corresponding to given modes

of inheritance are given and shown to be STA in the gametic
o n l y

cases and^TA in the case of the duplicates. STA is therefore

shown not to be closed under duplication.

Schafer (54) defines genetic algebras GA, in a basis

free manner using the transformation algebra generated by

the multiplication matrices, in fact by a condition on the

characteristic equation of elements in this associative

algebra. The GA unlike the STA are preserved under duplic-

ation. GA are in a sense intermediate between TA and STA.

Like the TA but unlike the STA they do not have their

structure postulated. Unlike the TA whose structure seems

intractable for ranks greater than 3,the GA have a trans-

parent structure (1.4.7.).

Gonshor (29 ) gives a basis dependent definition of STA

which is well suited to calculation. The canonical multi-

plication imposed by Gonshor is proved equivalent to GA.

Many of the extensions of genetic algebra and .in particular

the linear solution of the n'th generation problem (see

2.1.0.)) are based on the Gonshor formulation. This formu-

lation is a consequence of the niJpotency of the kernel
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of the baric function. Dickson (18) proved that, for any

nilpotent algebra A there exists a basis (a^ ) of A such

that

a i a • = 'X iik a k .
k 7 max(i,j)

STA's are nilpotent algebras (ker ' ) with an idempotent

adjoined. The Gonshor multiplication is the required mod-

ification of Dickson' s result.

Finally we remark that while the NAA that have received

extensive study, Jordan, Lie etc. , all have some altern-

ative identity postulated and have significant Jinks with

the mainstream of mathematics, GA occupy a rather isolated

position. Their lack of an alternative to the associative

law makes them rather too general, while the baric property

makes them rather too special. This conflict is a source

of interest.
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2. DEVELOPMENTS OF GENETIC ALGEBRA

In this chapter we are concerned with two developments.

A 'linearisation' of the quadratic transformation of a

genetic algebra due to Holgate (44) and applied by Abraham

(1) and Ilolgate. The 'mixture' of algebras also due to

Holgate (45) and considered by Heuch (41). Throughout this

chapter we employ the notation of Abraham and Holgate. In

chapters 3 and 4 some of this material will be considered

in a different way using the notation of operators.

2.1. Linearisation

2.1.0. The n'th generation (or evolution) problem

Genetically the problem is, given an initial population

vector x , to determine the n'th generation vector x ,
o' a'

under a given mating system. More specifically we consider

X q under the assumptions (G) in a GA.

2
Let A be a GA and let : A—>A, xcp = x . The problem

becomes that of obtaining a formula for the n'th plenary

power of x £ A,

c \ [ hi .n - lx(n) = xL = x-1

in terms of n and the coordinates of x.

The quadratic transformation is nonlinear in general

in the sense that the coordinates of x<^>contain nonlinear

functions of the coordinates of x.

Haldane (34) solved the problem for autotetraploids by

introducing new coordinates to linearise cp . Moran (49)

asked under what conditions such a linearisation was poss-

ible. Although we do not have a complete answer to this
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question, Holgate has shown (see (2.1.1.)) that GA is suff-

icient. And we will show that while GA is not necessary

and sufficient the conditions required are unlikely to be

much wider than GA. Holgate (44) developed trie linearisat-

ion of in GA's, in proving that GA's possess a plenary

train (see (2.1.1.)). This theorem is the basis of the

present section. Abraham (1) studied this linearisation

with special reference to polyploid algebras, obtaining

explicit formulae up to dodecaploids .

2.1.1. Holgate' s linearisation theorem (HLT)

For our purposes the following is the essential part

of HLT.

Let (A, p) be a GA together with its quadratic trans-

formation. Then A possesses a plenary train. Let (c^ ),

i = 0,1,...,n be a canonical basis for A and let U be the

set { x d A r?(x) = l[ where fZ is the baric function of A.

Then there exists a vector space B isomorphic to m for

some m and maps R: A—> B, G :B ?•B such that the follow-

ing diagram commutes

4*
B — > B
it-

R T

U ± > u

where '!| is the projection /^m-—?> /R,n+ ^ ( m ^ n ) > i.e.

xc/> = xR^ i(.

(Holgate also proves that matrix( ^) is upper triangular

and gives expressions for the plenary train roots in terms

of the structure constants of A.)

The theorem is proved by induction on the dimension of
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A and the key to the proof is that if ijk (i,j,k=0,1,...,n)

are the structure constants of (the general GA of

dimension n+1) then A give the train roots of A n and

these include the squares of the roots of A^ and corr-

espond to the eigenvalues of (the linear map correspon-

ding to cf-:A —A n ) which in turn are among those of the

tensor product a- 'i~ • A reduced tensor product
/i-i ' »-»

(Kronecker product) of matrices (see Bellman (7) ) is used

having the same properties to obtain a space B of minimal

dimension.

Abraham (1) exploits this theorem, or rather its proof,

to solve the n'th generation problem for polyploid algebras

by iterating instead of plenary powers, i.e. ^ .

HLT thus provides the partial solution to Moran's

question, i.e. the sufficiency of GA for linearisation. In

fact Holgate assumed STA, but as Abraham noted he only uses

GA. Necessary and sufficient conditions in terms of the
T

coordinates occurring in x^> are given below (4.2.4.), but

coordinate free conditions are still unknown.

The map R in HLT takes the coefficient vector (l,x^,...,x ]

of a vector x in the affine space U of A^ with respect to

the canonical basis, into a coefficient vector (1,y^, ...,ym_^)

of a vector y in the variety V = ImR. The y^ correspond

to the x^ augmented by any higher degree monomials occurr-

ing in the coordinates of xand any additional monomials

generated by the 'linearising relation' ,

-7 1 - 7 r OC1 CX.n ^ f i ŷ l r i n2.1.2. (x : ... xn ) 7 = (x1v ) ... (xn / )

The derivation of this relation is given in (3.1.4.).

2.1.3. Example. We illustrate HLT by applying it to
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the algebra C of (1.4.6.). Let x e C then

2 2
xf = e 0 +x 1e 1 +4xje9 +ix 2e 3 +5x 1x2e4+(l/16>: 2e5 .

Hence we have the coordinate equations

2 114- = 1, XX<£ = X X , X2^> = 4X 1 , X3<^ =2X 2, X4<^> = «X 1X 2)

xs = (1/16)x2 .

Applying the relation (2.1.2.) we obtain the linear system

•v1<£ = 1 x̂ - x
2 o" 3 o'

1' x 1^ ~ *1' x 1 C|? x 1' ^l^ x 1'

X 9 f = 4X. X 1 X 2 ^ = ' x^^ =( l/ lb) x^ , X, r = 5X ?,1 3

X
4

4" = 4 x^ 2 , x 5 ^ = (l/16)x2.

Thus here the map R is defined by

ci A n r i 2 3 4 2 - v
I^- iX^ X^ ^ ^ X^ JX^ R — (l) XpX^ ,X^ )XpX 2,X^ X 2) X 2,X^ ,X^ ,X^ J

from the vector space /R isomorphic to that underlying the

algebra C to the vector space / R^ .

The selected ordering of the monomials of the image coord-

inates is defined in (4.1.2.).

Thus is the linear map with matrix

P11 P12

21 P.22

where
P1 1

= I P =0
5' 1 21 0X5 >

"0 0 0
1
2 0 0 I

0 0 0 0
1
4 0

P1 2
1
4 0 0 °5<.3 p

22
° 6 <3

0 0 1/16

0 1
4 0 0 0 0 ,

L° 0 1/16 0 0 0

The relation x c( = xR 7( is easily verified.

With the notation of (2.1.1.) we next consider the

assertion that the plenary train polynomial, p say, of A

. 1 ,'\_y

is identical to the minimal polynomial m of cf>. Holgate
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(44) stated that, if p( ^ ) annihilates B then p( )

annihilates A and hence p divides m. Abraham (4) stated

the identity, p = m, but his proof has shortcomings. The

approach used is to prove p divides m and m divides p.

2.1.4. (i) xRkf Tl = xk^ n R (k constant)

(ii) xp( <£) = xRpO^ T)| (

(iii) p divides m.

(i) is a simple manipulation and (ii) is proved in Abraham (4).

The proof of (iii) follows.

Assume that for all x t A, xRm( 40 = 0. Then

xRm( 4') '( =0

since ifis linear. Thus xm( ) = 0 , by (ii) and hence

since p is minimal, p divides m.

However (ii) is insufficient to prove m divides p for

if we proceed as Abraham does by assuming that for all xe A

xp(4>) = 0 , then xRp(<^)"' = 0, by (ii) . This does not

"TT"imply x Rp) = 0 since " is one-one on ImR but not off

,-~v ~̂ 2
this set and xRp( ^ ) e ImR in general (e.g. <P>+'<P in the

tetraploid algebra) . Thus Abraham's proof assumes that

xRp(2>) £ ImR.

We now turn to a method of obtaining the plenary train

equation of a GA. The method is described by Etherington (23 )

and employed by Abraham (1). Abraham uses the method on

the linearised transformation rather than directly on the

quadratic transformation. That these processes are equivalent,

both producing the plenary train polynomial, is due to the

multiplicative property of the linear shift operator (see

(.3.1.it).

/-.l.̂ FromHLT it follows that the coordinate equations of the

linearised transformation are triangular in form:
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X = o( X
0 oo o

x, $ y = X ,X + 1<.. x,
1 o 1 o 1 1 1

x 'zp = X x, +
n on 1

+ y x

niln

i . e. ^ has a triangular matrix representation:

A =

*^00 ^ O1 A Oil

^ 11 X 1n

x nn

Hence if no ^ .. are zero, min (A) = '(.(A-0^..I). If
ij lI

some/x^ are zero (i >•j) then min (A) is a factor of

jr. ( a—ex.. i).
•*i ii

Thus if no are zero the polynomial in ^ which k;ilis

all coordinates is II.(-F - I).
l n

FT ^ ^ r
2.1.6. (I ^-s termed the annul 1ing po lynomia1

of x in this case. If some . are zero (i^-i) the
q lj

annulling polynomial of x^ is the 1cm of those that annul

the coordinate functions in the image of x under ^ .

Thus in our 'triangular algebras' the plenary train

equation is found either by obtaining the annulling

polynomials for the coordinates of x under^ or by applying

essentially the same process to obtain the minimal poly-

nomial of the linearised transformation.
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2.1.7. Example. The algebra of (1.5.10.) gives

X
0

/ V
= X

O

X 1
= X

1

X 1

2 ~Lz f > = X
1

X 2

/ y
. X
- 6 X

s*- 2
Thus (4' -1) annuls x , x^ and x^ .

^ 2
Now ( ^ - 3) x2 = , hence

( ^ - 1 ) ( 4 1- t) x 9 = 0. Thus the polynomial

(<£ -1)(*^- i) annuls all coordinates and the plenary

train equation is

( 2 - 4 / 3 ^ + j ) x = 0

We consider next the application of HLT to the n'th

generation or evolution problem. Let A be a GA with

genetic basis a ,...,a and canonical basis c.,...,c .6 o n o n
2

Let^ p: A—^ A, x <p - x . With the notation of (2.1.1.)

let x be the initial vector. Then by HLT
o

2.1.8. x = xf n = x R n̂'f
n o o

This maps the nonlinear problem of computing a sequence

of plenary powers to the linear one of iterating an upper

A/
triangular matrix, mat( ^ ). This in itself does not

necessarily lead directly to explicit formulae for x , unless

•"yn ^ A~/
•-r can be expressed in terms of <p-and n. If is sparse

I
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it may be easy to determine 7 n by inspection. In general

if we bring mat( 40 to Jordan canonical form (JCF) over (C ,

J = Pmat( ^)P ^ and hence mat ) n = P ^JnP, then since

n'th iterate algorithms for J are known we have Abraham's

explicit equation

2.1.9. x = x RP~ 1J nP TT.
n o

Thus the problem of obtaining formulae for sequences

of plenary powers (by some inductive process) is transfered

to that of computing 'T n , which if '-T-is not very simple

or spars e, is reduced to computation of the JCF of . In

practice the matrices are often sparse. If they are not,

it is not clear that any advantage is gained since comput-

ation of J may be lengthy.Moreover an 'inductive' calcul-

ation (see (2.1.18.) is more efficient.

2.1.10. Example. Consider the algebra C in (2.1.2.). From

the set of linear equations we obtain the annulling poly-

nomial

-p ( ^ - 1) ) = - T .

Alternatively consider the matrix of^ . Since this matrix

is sparse one easily sees that P^. = P^j except for

(i,j) = (2,2), (i,j) = (1,2) and ? \ 2 = 0 . Also P?^ = P^

^ 3 2
for all i,j. Hence ^. Again if we compute plenary

powers we find

x '4 ' - x L ' = 0 .

2.1.11. The 'inverse n:th generation problem' is to det-

ermine an initial population vector x given the n'th

generation vector x .

2.1.12. If mat(<jf') is nonsingular then from (2.1.9.) there
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fo1lows

x o = x
n
RP_1 -j " nP

We illustrate this approach to the solution of the n'th

generation problem and the inverse problem on the simplest

nontrivial polyploid algebra.

2.1.13. Example. Consider the algebra of (1.5.10.). The

quadratic transformation gives the coordinate equations

1^ = 1, x^ = x1 , x2 ^ =(l/3fc2 + (1 /6^ .

Linearising via equation (2.1.2.) we obtain

'V
1& = 1, x ^ = x x = xj, = (1/3)x2+(1/6)x .̂ (*-)

So

mat( ^ ) =

0
I, 0

1/6
000 1/3

This matrix is (as are all the mat( f ) for polyploid
C O Tvip tr^ H (\ A)\'C\lac\ 0 )
I

algebras') diagona1iseable and nonsingular.

.'V
m a t( ) 1

1/3
= Pmatif )P" 1 = J

where P is the matrix of left row eigenvectors

1
1

1 I
1

Hence the n'th generation equation is

x = x RP _1 J nP n
n o

where x n = x X q = x. Now there easily follows

P _1 J n P
1 Hi - i / 3n )

1/ 3n

and hence

Xn ('Xno,Xnl,Xn2') ( 1 , xq1 ,(1/3^ q2 +4(1-1 /3 ) x^ ) .
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Now consider the inverse problem. Writing the linear

) in the form

Xlo
= x (=

00 v 1)

X11
= x iol

2
X11

2= x ,
ol

+{l /6 )x^lX 1 2
II

oK
)+{l /6 )x^l

as equations for x .
01

X
00 = x lo ( = 1)

x 10 1 = X 11
2

x iol
2

= X 1 1

X ~
o2

= 3X 12 -2
2

x i.o1

Also J ^ = diag( 1,1,1,3) and A *

1

= P -1 J _1 P i.e.

Thus given x ,

x
o

= x n R ( A - y u

If A is singular then the inverse problem does not

have a unique solution. In this case 'generalised inverses'

may be applied to obtain either a unique X q or the set of

all X q yielding the given x . The appropriate inverses

are respectively the Penrose or g-inverse and the g^-inverse

(see Penrose (51) , Pearl(50)).

2.1.14. The Penrose generalised inverse, A^, of a real or

complex matrix A (not necessarily square) is the unique

solution of the equations

AXA = A

XAX = X
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(AX)* = AX

(XA)* = XA

where A* is the conjugate transpose of A.

If A is nonsingular then A^ = A ^.

Let A be m* n of rank r then there exist matrices B, C

such that A = BC. Namely, let B be the matrix of any set

of r linearly independent columns of A; since these form

a basis of the column space of A, each column of A is

uniquely expressible as a linear combination of the columns

of B. Let C be the coefficient matrix of this combination.

Then we have the explicit formulation of A^,

A g = C*(CC*)~1(BB*)~:B* .

2.1.15. Example. Consider the algebra .*^1 given by Holgate

(47) with multiplication

b" = b , b b, = \(1-<X)b~, b b 0 =
o o' o 1 v 2 * o 2 2

bj = — flCb2 » =

b 2 " 0

where <x:is a scalar parameter. The baric function is

defined by /S(bQ) = 1, /3(b^) =0 (i > 0). & \ 2 * s not

STA. For, ker 3 , (ker/3) ^ = ^ b^ and (ker/?) m =/b^

for all m ^ 2. Thus ker/j?is not nilpotent. /•? is not

TA, and hence not GA since each principal power increment

introduces new monomials. Also A^ 2 » ^21 2 ^ ^ ' Nevert he-

less we can linearise the quadratic transformation ^ on

7
x(p = bo+( (l- <X) x1-^ xJ+x 2-, Xx 1x 2)b?.

Hence we have

if" = 1, = 0, x 2 f =0, x 1x 2? r = 0,

~ 2x 2 f =( (1-cL) xA-oC x i +x 2~ X
1
X
2 ) •

With respect to the ordering of the monomials:
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/

( 1, X x , X x , X xx 2, x 2)

(which we discuss below, see (u-i- /-)) we have

1 0 1

mat(4s)

0

0 0

0

5x3

i-x;

-o i

1

0 -(X

Now for simplicity let = 1 so that A = mat(<£>) is the

matrix 1

0

0 0

0

0

0

5*3
-1

1

0 -1

which is clearly singular, rank 2 and order 5. We compute

the Penrose generalised inverse. Put

| 1 0

' 0 0

B 0 -1

0

0 - 1

Let A = BC where C is the matrix of coefficients of the

unique linear combination of columns of B representing A

1 0 0 0 0
C =

i 0 0 0 0 1

Now A g = C*(CC* )-1 (B* B) -1 B*

1

0

0

0

0
4*4

L 0 0 -1/3 1/3 -1/3
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Let be the n'th generation vector then

,nx = x RA \\
n o

.n= (1,x1,X 1,X 1X 2,X 2)A

= (l, 0,(-l) nx^ +( -l) n+1 x 1x 2+( -l) nx 2).

And

X q = ( 1 ,0 , (-l)nx1+ ( -l) n+ x 1x 2+ ( -l) nx 2) R( Ag) n

= ( 1 , 0 , 0 , 0 , ( -l)nx2 +( -l) n+1
Xl x 2+ ( -l) nx 2) ( Ag) n

= ( 1 , 0 , ( l/ 3)n( x^ -x1x 2+ x 2) )

is a solution to the inverse problem.

2.1.16. A g^- inve rse of a real or complex mxn matrix A is

an n x m matrix Agl such that

AA gl A = A.

A
gl .

is not unique. The general g^-inverse may be written

I
A D

1 2
LV

u

w

where P^, P 9 are nonsingular matrices such that

P 1 AP 2

and U, V, W are arbitrary.

2.1.17

0

0

0

Example. Consider the algebra £ 12
again, we

1 0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0 1
0 0 1 1 0 P2 = 0 0 1 0 0
0 0 0 1 1

L
0 0 0 1 0

0 0 0 1 1 0 1 0 0 0

1

satisfying the above condition and hence

P
glA = P.

12 U

V W

1 *

An alternative approach to the solution of the n'th

generation problem is usually computationally more econom-

ical. Etherington (21 ) pointed out that the plenary train
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equation may be regarded as a difference equation. Abraham

(1) stated that the matrix solution of the n'th generation

equation can be extremely cumbersome and that in practice

one solves the nonlinear equations arising from

successively.

Suppose A is a GA and x £ A is the initial population

2
vector. Then we may write XQO> = X Q = X^ and in general

i . n rn+l ix -I- = X I' = X =X, T
n o o n+1.

With respect to a canonical basis

(x , .... x ) f = (x » •••» x )
^ no' ' nnr ^ n o' ' n 1 rir

(~Xn+1,o' Xn+l,m^

i.e. cj6gives rise to a system of difference equations ,

2.1.18. x , = x <=p
n+1,o n o

x ,, = x -/
n+1,m n ' m

Thus is regarded as the shift operator for the

sequence of plenary powers of x Q . In general the functions

•j'• are nonlinear in the coordinates of x^, but the diff-

erence equations are first order and the i'th equation

involves only x^ for j ^ i. This is a consequence of the

canonical multiplication (see ( /+ -2. )), hence they can

be solved successively with substitutions . The method is

used by Abraham (1) to compute n'th generation formulae

for polyploid algebras of dimension greater than 4 (hexa-

ploids) where the matrices become excessively large. We

illustrate its use in (2.1.20.) below and consider it fur-

ther in chapter 3.

Consider now a polyploid diallelic locus under the

genetic assumptions (G) except that we will allow mutation
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ABSTRACT

Linearisation

ion of Genetic

of the Quadratic Trans-

Algebras

W.D. Willcox

In this thesis we study the linearisation of the quad-

ratic transformation of commutative baric algebras due to

Holgate (44), elaborated and applied by Abraham (1-5) .

Holgate studied the quadratic transformation :A—>A,

x</>= x in special train algebras and showed that they poss-

ess a plenary train. In the proof he shows that can be

linearised over a higher dimensional space B in the sense

that there exist a map R: A—* B and a linear map^ on B

such that x<£ = xR^'C (TTthe projection B onto A). Abraham

applies this linearisation to give explicit formulae for

plenary sequences in Schafer genetic algebras for polyploidy.

Following remarks of both Abraham and Holgate our aim

was to investigate the application of the linearisation to

algebras corresponding to more complex modes of inheritance

and to investigate the properties of algebras in which this

linearisation exists with a view to obtaining a more natural

characterisation of algebras arising in genetics.

Our achievements are to have extended the linearisation

to continuous time models, to have exhibited limitations to

its further extension, to have given a method of construct-

ing algebras possessing the linearisation and to have given

an alternative technique that achieves the same ends by more

standard linear algebraic methods.

We decided to include a survey of all relevant work that

was scattered amongst papers ranging over some forty years

when we commenced work. This year a text, WOrz-Busekros (58),

has been published which does a very complete job of bring-

ing the subject within the confines of a single volume. How-

ever she only briefly mentions linearisation and our survey

is restricted to what we need to discuss this.
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with rates r, s between the two alleles .

If the genetic basis is (a^ ) (i=0 ,1,...,n), a^ having

i dominant and n-i recessive alleles , then the Gonshor

basis is

with the multiplication (1.5.7.). If the dominant allele

mutates to the recessive and vice versa with rates r, s

respectively, then the multiplication is given by (1.5.8.).

This defines a polyploid mutation algebra, which is GA

(Gonshor (29)) and hence we can solve the n'th generation

equation (2.1.9.) of these algebras .

Let A be a polyploid GA.then mutation also leads to

a mutation map m:A —?• A defined on a canonical basis by

2 . 1 . 1 9 . m ( c i ) = ( 1 - r - s ) 1 ( c i | n ^ 1 ) r c i + 1 + j n 2 1 ( r 2 c i+ 2 + ) •

m is a linear map on A. In practice it is simpler to

define the appropriate mutation algebra and work within

this , than to incorporate m in equation (2.1.9.).

2.1.20. Example. Consider the tetraploid algebra (1.5.10.).

Suppose that the alleles A, a mutate into one another with

rates r, s respectively. The corresponding mutation algebra

has multiplication,

c o = c o~ 2rc l+ r ^ c 2 * c o c l = l" <(c1-rc 2), c o c 2 =(l/6)c<2c2)

Cj =(1/6) o<2C2, C 1 C2 ~ 0 5

c 2 * 0 »

where C>(.= (1-r-s ).

Let = c +x ,c,+x ~cn then
o o ol 1 o2 2

x o = C o + ^ x
ol - 2 r) c

1 +(r"-rc<xol+(l/6)£X2x^1+(l/3)cX2xo2)c2

i.e.
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1 ^ = 1 ' X ol ^ = ^ x
0 i " 2r - 1

x q2 ^ = rM-rp( xol+( l/ 6)p<' x 1̂+( l/3 Ki'xo2.

We have then, the difference equations

X n +l,o Xno ^

xn+1, 1 = ^ x „ f 2rx no ^ ^ ( 2)

x n +l,2 ° r"-1"r^'xnl+(1/6).'<2Xn1+(1/3l-7<-'xn2

Equation ( 1 ) implies

x =1
no

and equation ( 2) that

n ^ n-1 i
xnl = ^ xol " £i =0 <*( 2r) "

Substituting for in equation ( 3) we have

: 0n2
Xn+1 ,2 =[l/3)oC2x ? + /?

whe re

( ? = r"-r;<( £x-nxQl- 5""IQ( c*1)C2r))+

+{l /6) (X"( <x nx ol - ) "IQC^ c1)(2r) ) 2.

Hence

2sn - n-1 n,1 2 >.i
xn2 = C(1/3K' ) x o2 • £! ' = J( ( l/ 3r) 7

o
Putting r = s = 0 , so that(X = 1 and /'? = (l/6)x^ we obtain

x n " (x oo> xol' ( 1/3 ^ o2 + H=J ( 1/3) ^ 1/6 ' X ol )

which is the solution without mutation.

2.2. Mixtures of Algebras

In this section we discuss an extension of genetic

algebra, using linear combinations of algebras, that lead

to its being applicable to two new genetic situations. In

polyploids, apart from chromosome segregation, chromatid

segregation plays an important role. Linear combinations

of algebras for each extreme form of segregation model

arbitrary segregation. Secondly we consider k linked loci.
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Here we again assume simple Mendelian inheritance. The

simplest case is the gametic algebra for two linked auto-

somal loci each with two alleles. The general case of k

linked autosomal loci with multiple alleles is modelled by

linear combinations of tensor products of 'linked products'.

We do not pursue this topic far since our interest is in

linearisation and these algebras turn out to be GA.

Using the Gonshor formulation of GA, Holgate (42)

defined n-ploid segregation algebras of degree s, A(n,s)

of dimension n+1, s € .

Let a^ be a gametic locus containing i dominant, n-i

recessive genes (i=0,1,... ,n). For chromosome segregation

we have

^ • ( s n ) - 1 £ n . o (i:,)(2n;ii;jK-

For chromatid segregation

^ = n i < u ^

These formulae are derived in Moran (49) .

2.2.1. For n, s € 7[_ the n-ploid se gregation a1gebra A(n,s)

of degree s is defined by the multiplication

= /2sn\-1 <- n / si+sj\/2sn-si-sj \
i j [n I k=0( k A n-k ) ak*

2.2.2. A(n,l) are the previous polyploid algebras. A(n,2)

are the n-ploid algebras for chromatid segregation only.

Transforming to a canonical basis (2.2.1.) becomes

-Pr)-1 £"=0(2^k)(-i)S£i
In genetics both types of segregation occur in proportions

depending on the distance of the loci concerned from the

cent romere.
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2.2.3. Let A^, A ? be two algebras over the same vector

space with products o, . respectively. Define

axb = /x'(a o b) + (1 - X )(a . b) , ( 0 . 4 ^ ^ 1)

where a £ A^ b 61 A^.

This product defines a new algebra called the mixture of

A^ and A^ and the mixture is independent of the choice of

basis in A^, A 0.

If A^, A 2
are GA then so is the mixture.

The A(n,l), n = 1,2,...,12 have been computed by

Abraham (1). The A(n,2) follow from (2.2.1.) and by (2.2.3.)

we may compute the multiplication tables for the mixtures

with a proportion of chromosome and 1 - s>Cof chromatid

segregation. These algebras are GA and hence explicit form-

ulae for the n'th generation of a given population vector

may be obtained as outlined in section (2.1.).

2.2.4. Cxample. Tetraploid algebra with arbitrary segregation

Take A(2,2), it has multiplication

o

C1 :: 1//7c 2'

Take A(2,l) it has multiplication

^ = c , c c , = Ic ,, c c , ,
o o' ol 1* o2

.2
•?

c o C 2 1/7c 2 >

C 1 C 2
o,

o II0 .

l/6c 2 ,

II o>•

0 .

4Then the multiplication table of the mixture • of A(2,1)

and A(2,2) is

C2Q - c Q , c Q c 1 = icx+(p< -1) 1/28c 2, C qC 2 = (<*/42+ l/7)c.

c| = ( * / 4 2 +1 /7 )C 2, c :c 2 = 0 ,

For x = c +x, c, +x0c 0 in V we have
o 1 1 2 2

A
c 2 " ° '
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xcf>= c +x,c, +(1/14(/*-1)x,+1/21(p<+6)x~+l/4 2x"{pi+6))c 9O i.1 1 L, 1 Z

From this we obtain the matrix of V

1

1 (1/14)0* -1)

1 (1/42)(p<.+6)

( ,1/2 1)(pC+ 6)

On putting X = i we retrieve the induced map of the tetra-

ploid algebra (2.1.13.).

The minimal polynomial is

(<£ - 1)(5T - (1/21)(<* + 6) )

and the plenary train equation is

x [ 3 ' - (1 + (1/21)(<X + 6))x [2 ' +(1/21)(^+ 6)x = 0.

The genetic algebra for k linked loci was first form-

ulated by Etherington (21 ) and subsequently by Bertrand (14),

Rieirsol (53) , Ilolgate (45) and Heuch (38,40). We shall

follow the approach of Holgate.

2.2.5. An algebra A r is said to be an elementary STA (ESTA)

if it is the gametic algebra of simple Mendelian inheritance

for one diploid locus with r+1 alleles i.e. having genetic

basis a ,...,ar and multiplication

a.a. = !(a.+a.)•
1 J i J

Transforming to a canonical basis

c = a , c• = a -a• (i^0)
o o' 1 o l v J

gives multiplication

o
= c c c. =| c. , cr\ ~\ 1 *O' 0 1

-c. = 0 if i.i
l j ' J 0.

2.2.6. (Holgate (45)). If A is an ESTA then A and its

duplicate A' are STA, A is a Jordan algebra and the general

element x in A satisfies
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/ 271 nx - x = 0

i.e., Hardy-Weinberg equilibrium is reached in one gen-

eration.

Now consider k unlinked loci with r^+1, rj.-+ l

alleles respectively.

2.2.7. The tensor product A = ®j Vr . of ESTA's A is
J r "

^ J.
defined in the standard way (e.g. Greub (33)). Thus if

(c. ), ..., (c. ) are bases of A , ..., A then dropping
1l 1k rl k

the <S>notation for products of elements , c. ...c. is
X1 k

a basis of A and the multiplication is given by

(c. ... C • )(c. ... C. ) — ( ^ • C . ).. . (C• C. )
X1 1k 3 1 3k 1 J 1 k J k

where the products within the brackets on the r.h.s. are

those of the factor algebras .

A is an STA.

2.2.8. Let A1? ..., A^ be k ESTA' s and let A^ have genetic

basis a. , ..., a. . Define the linked product
1 o 1 k .

I
A = A 1 * ... * A k

to be the algebra with basis ' a,. ...a, - 0 i . .£ r. 7
I 1 1| Kl^ J J \

and multiplication

(a
1i ,...a,. )(a, . ...a,. ) — ?.(a,. ...a,. +a, . ...a,. )

i ki k ^ ij, u x ki k ij x kj k^

i.e. the tensor product with 'half sum multiplication' .

A is an ESTA with weight function p( a^ , , , a ki 1=1
1 k^

for all basis elements . A represents k linked loci with no

recombination.

2.2.9. Let A-p ..., A^ be ESTA's. Let I = (i^, ..., i )

be a partition of k in q parts. Define the recombinat ion

algebra A(I) of the A^ by
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A(I) = (A x * * A. ) <&>(A
11

® ( A i 1+ i 2+ l * * A.
is 3

*A. . +1
q

It follows that

-)fk*A^ - A( k)

(2^-A± = AC1 1)

An element x in A(I) represents a population in which

loci fall into groups of i^, i such that (1) there

is no recombination between loci in each group and (2) the

groups are unlinked.

Holgate shows that the A(I) are STA. Finally he con-

structs specified linear combinations (mixtures) of the

A(I) representing k linked loci with arbitrary recombination

where the coefficients <X(I) are determined by the recomb-

ination distribution. These mixtures are shown to be STA

and expressions for their plenary roots are obtained.

Since the entire construction preserves STA, HLT holds

in all these algebras so we do not pursue them further here.

2.2.11. Example. Consider two diallelic loci (k =2).

Take an ESTA for each locus A = A = A,. Write A = A ,
r r 1 v
1 2 1

B = A^ . Both have basis a^, a ? and multiplication :

a i aj ~ Ka^ +a.). Let 1^ = (1,1) and = (2). Let { ^ ( 1 )}

k-1
be a set of 2 =2 real numbers w , j such that/*+i/=l.

Now A(Ij) = A 60 B and A( I2) = A * B and

2.2.10. A = <^_jO<(I)A(I)

2
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S '
A = ^ *(I) A( I) =/<(A (?2B) + t/(A * B).

For x, y in A, xy = /a x®y + \Jx*y.

All the A(I) have the same number of factors and have

a common canonical basis (a^a^, a2 al» a2 a2^* Thus ^

has the same basis.

In order to have a framework in which to discuss the

question of the uniqueness of various mixtures of algebras

Heuch (41 ) regarded the mixtures as elements in vector

spaces of algebras. These ideas lead to a geometric descrip-

tion of the algebras over arising in the genetics of

randomly mating populations (see (4.1.) below).

We consider n-dimensiona 1 algebras A over C for fixed

n. Within isomorphism the underlying vector space is (\_n .

Since we shall employ several algebras A^ we distinguish

their multiplications by writing xy(A^) for the product of

x and y in A^.

2.2.12. Let A^, A^ be two algebras-, we define their sum

and scalar multiples by the rules

xy( A: + A 2) = xy( Ax) + xy( A2)

xy(oC A i) = U xy( A i ).

Under these operations a collection A^ f of algebras of

the same dimension generates a vector space over ^ which

we shall denote by (j

m
2.2.13. Let c, c be a basis of <fn.Then A,,....A

1' ' n 1 ' :

each isomorphic to <£n. are said to be linearly independent

if

- k=i^ 'k ci cj CA k } = 0 ( i -j = 1 n)

flues.oC\^=.o icr *11 h. n

This will hold if there exist x, y £ <C such that xy(A^),



47

xy( A m) are linearly independent in (JTR •

We may now define a general mixture of algebras

(redefining 2.2.3.):

2.2.14. A mixture of algebras A- each isomorphic to c£.n

as a vector space is alinear combination of algebras in

(1 ? and a mixture ' . *1.A. such that S . oC. = 1 where
^ A < — 1 1 1 1 1

0 are real, i.e. a convex combination, will be called

a proper mixture.

2.2.15. Let Cj, ..., c be a fixed basis of A isomorphic

to d_ n as a vector space, then the multiplication in any

n
A

A in ^ ^ is defined by

ure

c.c.(A) =^ , X ••ic..
i j c _ _ k=l l j k k

Thus the elements of d " are labelled by their struct

k
tensors A (see (4.1.21.)).

ij)

n
2.2.16. At (| ^ is commutative iff A — ^ 1 ^ for all k.

Let (L £ =| C fcd_ ™ ; Ci s commutative t then Q " is a

subspace of ([

2.2.17. Let £ H = j)B € (Q^ ; B is baric( . For a suitable

choice of c^ > ..., ĉ \ 111 - ^ ^ ii1 - ^ >j ^ 1)•

Hence (£ ™ is a flat in J

2.2.18. Let ([ ™ ^G <L is GA7 then ([ ™ forms a

fiat in £ JJ.

The dimensions of these flats or spaces is in some

sense a measure of the size of the subclass of correspond-

ing algebras. As we might expect

dim (Cq <. dim <££ ^ dim (C" £ dim <£
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for all n > 1, since the corresponding dimensions are

(l/6j(n3+5n-6 ) < i(n3-n) < i(n3+n^ ) < n 3.

Heuch (41) has shown that the class of all n-dimensional

algebras over c1 arising in genetics of random mating pop-

ulations, strictly containing GA, can be characterised as

a polyhedron in the vector space of algebras ( C ™ and that

(L is the smallest flat containing this polyhedron. We

return to this and other characterisations in (4.1.).

More complex modes of inheritance have been represented

R

by mixtures of algebras from a subset S ([_. Such mix-

tures for example for k-linked loci have been constructed

by Holgate (45) and Heuch (41) using different subsets S.

Heuch (41) shows that these mixtures may be written uniquely

from a well defined subset of (1 ™. This is summarised in:
B

2.2.19. Let T be the smallest subspace of ( C containing

a given subset S of algebras in (l Then all the algebras

in S may be written as a unique mixture of algebras in a

set U iff U is a basis of T and U (C g.

2.2.20. Example. Consider the gametic tetraploid algebra

for arbitrary segregation. Let a^, ..., a t be the possible

alleles. The algebra is a mixture of an algebra A^ for

chromosome segregation and an algebra A^ for chromatid seg-

regation with multiplications

( ai a j )( a
k
a i )( A i) = l/6(aia^.+aiak +a i a 1 +a^.ak+aj a1 +a k a 1 )

( a i a j)( a
k
a i )( a

2 ) = 1/28 (a^^a^+̂a^a^.+a]<ak+a 1 a 1 ) +

+l/7(a.a.+a.a, +a.a,+a.a,+a.a,+a,a,)
i j l k l l 3 k j 1 k 1

where i,j,k,l = 1,2, t respectively.

The mixture is given by
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(1 - + ^ a
2

where oC is the proportion of chromatid segregation.

Now A^, £^2f° rm a basis for the smallest subspace K of the

space of algebras concerned.

Since with t = 2 the subspace of (L ^ generated by

CL P is of dimens ion 13, (see Heuch (41)), and 13 is
r

very much / than dim K = 2,we see that the polyploid

algebras are a very special clas s, as has already been

noted,with respect to the form of their linearised quad-

ratic transformations .
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3. LINEARISATION

Let ( A, ^ ) be a GA together with its quadratic trans-

formation. In this chapter we discuss the linearisation of

^ from several points of view.

We recall that (2.1.1.) gives sufficient but not nec-

essary and sufficient conditions for the existence of a

linearisation of and also that Abraham (1) has proved

that the order of a linearisation (i.e. the dimension of

the 'induced linear space' ) is independent of the basis

in the case that A is GA.

HLT (2.1.1.) maps the nonlinear problem of iterating

4" into the linear one of iterating (in the notation of

Abraham). The map is not functorial. is not an algebra

homomorphism, though it is related to the tensor functor.

We have already presented the results of Abraham and Hol-

gate on linearisation in (2.1.). In particular we considered

only plenary sequences in A i.e. given X q £ A

2x, = x
1 o

2X = X ,
n n-1

or in terms of ^

nx = x
n o

and by HLT

x = x R 2> n î .
n o

In (3.1.) we consider the difference and differential

operators E, D acting on sequences or functions in A and

generalise the notion of train. In (3.2.) we consider the

matrix form of the solution of linear vector difference

and ciifferential equations. In (3.3.) we apply this to

the solution of the n'th generation equation in the plenary

case. In so doing we formulate the solution for the cont-



51

inuous time model of Heuch (39). In (3.4.) we consider

some algebras with discrete only or discrete and contin-

uous plenary linearisation. In (3.5.) we show a limit-

ation of linearisation by considering its extension to

the case of overlapping generations.

3.1. Discrete and continuous trains

Let (A, p ) be a baric algebra over ll\ , with basis

( c i ).

3.1.1. An arbitrary sequence in A will be denoted by

x: 2 —> A, x(m) = ix i( m) c i

where x^ is a real sequence.

An arbitrary function of a real variable on A will be

denoted by

x: lR —* A, x( t) = ^ i
x
i ( t ) c

i

where x. is a real function.
I

3.1.2. The shift and (forward) difference operators E, A

respectively are defined as usual

Ex(m) = x(m+l)

/\x(m) = x(m+l) - x(m)

and the differential operator D

Dx(t) = lim (x(t+h) - x(t))/h.
h 0

Since the x are vector functions of a scalar variable

we have:

3.1.3. Ex(m) = £ - ^Ex^(m)c^

Dx(t) = S .Dx.(t)c •.
<— i i v J i

de-finecl

We shall assume that the x are such that Ex. , Dx. are/
i > ± A



52

for all i.

If x(n) and y(n) are two sequences on A we may form

the product sequence

z(n) = x(n)y(n).

Then

Ez(n) = z(n+1) = x(n+l)y(n+l) = Ex(n)Ey(n).

Thus we have the product rules:

3.1.4. E(xy) = ExEy

D(xy) = (Dx)y + x(Dy).

Equations for l\ may be obtained from the relation

= E - I, where I is the identity operator.

If = 1 f° r each i then both E and D commute

with jS>. Also E, D satisfy the distrib.M.irive laws -

Let F(A) be the class of sequences f : 7L —> A,
A

f (m) = S .x.(m)c. such that Erx. (m) are defined for all
X V - 1 1 ^ ' 1 1

r = o,l,2,... . Then E rf (m) = ^ .Erx.(m)c. independently
X 1 X 1

of the basis. Let :A —> F(A), <=£(x) = f and suppose

further that f (0) = x and /'(x) = 1 for all m ^ 0 .

3.1.5. If for all f € (A) such that 3 ( x) = 1, f
X X

satisfies a linear equation with constant coefficients :

E(-S')fx(m)+ ^ E ^ s_1 ^ f x(m) + ... + 6 s
f
x ( m ) = 0

then <P is said to be a (discrete) train on A.

Replacing f : ~?L-—> A by f : j]\ —? A and E by L)in the
X X

above we obtain the definition of a continuous train on A.

The equations are called train equations . This definition

of a train differs from (1.3.1.) only in requiring the 9 -

to be constant, it is due to Heuch (39).
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3.2. Linear equations

The theories of linear difference and differential

equations with constant coefficients are parallel, the

parallelism lies in the following.

3.2.1. If Ax( n) = ax(n) then x(n) = (a+l)nx(0), while

3.t
if l)x(t) = ax(t) then x(t) = e x(0), where a is constant.

Generalising to systems of linear equations i.e. for

vector equations we have,

3.2.2. Given a system of first order linear difference

equations with constant coefficients

Ex(n) = x(n)A

x(0) = (x1(0),...,xm(0))

where A is an mx m matrix, the solution is given by

x(n) = x(0)A n.

To give an explicit formula for x(n) in terms of n

and x(0) we have to express A n in terms of the a^^ (the

entries of A) and n. If A is sparse this may not be diff-

icult. Otherwise we may put A in JCF and use known n'th

iterate algorithms . Say J = PAP ^ is the JCF of A then

x(n) = x(0)P~ 1J nP

and J decomposes to a sum D + N of a diagonal and a nil-

potent matrices D, N respectively. Hence we have an explic

it formula for x(n) in terms of n and the initial coordin-

ates.

3.2.3. Similarly given a system of first order linear diff

erential equations
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Dx(t) = x(t) A

x(0) = (x1CO) ,...,xm(0))

the solution (t starting from zero) is

x(t) = x(0)e

e A = Ar/r!

tA

r=0where

is the exponential matrix.

Again to compute ety^ requires calculation of r'th

powers of A, which unless A is sparse may be achieved by

use of the JCF of A. Thus

x(t) = x(0)Pe t& iag( ~ '1' * **' Kn^ +N i

where the \ . are the eigenvalues of A and N = 0 if these

are all distinct.

The following example shows the role of the JCF in

determining the form of the general solution.

3.2.4. Example. Consider the equation

( V - D 2 - I) + I)x = 0 .

We transform this third order equation to three first

order equations. Put

then

Put Y = ( y 1 , y 2 . y 3 ) a n d

1• y 3
= Dy 2

Dy 1 *

0 y 2 =
>^3

O-
l II - y l

+ y 2
+

and

0 0 - 1

A = 1 0 1

0 1 1

then the equation may be written

DY = YA.
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The characteristic equation of A is

( A -1 )2( A +1) =0

with roots \ ^ = 1 with multiplicity m-^ = 2 and \ 2 =

with = 1.

This determines the JCF of A

= D + N

say, where N is nilpotent of index 2 and D is diagonal.

Now the solution is of the form

Y(t) = Y ( 0 ) e Z ^1)+ N )

~1 1 0 1 0 0 0 1 01
1

J = 0 1 0 = 0 1 0 + 0 0
1

0

0 0 -1 0 0 -1 0 0 0

where
L

e 1 t 0

toe = t
e

, tN
and e 0 1 0

t
e 0 0 1

Thus

t
e te t 0

Y(t)= 0
t

e 0

0 0
-t

e

and the solution vector is any linear combination

column vectors i.e.

Y(t) = (ae t , (at u > t+b)e ,
-1.

ce J

where a = e ° , b = at , c =e ^o. If t =0 then a = b = c=l
' o' o

Thus it is N that gives the form of the solution correspond-

ing to multiple roots of the auxiliary equation.

3.3. Plenary trains and continuous trains

3.3.1. Let A be GA and let x = x(0) represent a population

in its initial state

x( °) = > i xi(°)ci•
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Suppose that in passing from generation m to generation

m+1 the population x(m) dies and is replaced by the off-

spring of random mating between individuals of x(m). With

(c-) as basis of A let

c -c. = " , X••,c,.
I J . k ^I J K k

Let f^: —> A, f x ( m ) = * ( m) = c> ^x^(m)c^. Then under

the genetic assumptions (G)

Ef x(m) = (fx(m) ) 2

f x(0) - x

or equivalently

4 f x ( m) = (£ x(m) ) 2 - f x( m)

f x(0 ) = x.

The sequence f satisfying this first order second degree
X

difference equation is

r r ^ nf (n) = x
x ^

the plenary sequence. Ileuch(39 ) has shown that varying

x the function <P: A—> F(A), <§>(x) = f is the (discrete)

plenary train of A i.e. for all x £ A such that /3(x) = 1,

<£(x) satisfies an equation of the form

3.3.2. E (s) f x ( n) + ^ 1 E ( s_1) f x ( n) + ... + # s f x ( n) =0 ,

called the plenary train equation (c.f. (3.1.5.).

3.3.3. In direct analogy let x = x(0) represent a popul-

ation at time t = 0 (t real). Again

x(0) = > .x.(0)c..
^ ' —• l l v 7 l

Now suppose that in a time interval (t,t+h) a proportion

d^ of the population x(t) dies and is replaced by the off-

spring of random mating between individuals alive at time

t. Again suppose

c.c . = ,/\. c,
l j 4:1— k ljk k
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and let £ :' R—* A, f (t) = x(t) = .x. ft)c -. Then
X X 1 1 X

under the assumptions (G) we find the continuous analogue

is

Df x(t) = (f x(t) ) 2 "

The function satisfying this differential equation with

initial condition

f (0) = x
x

we call the plenary function. Varying x, we have $ is

the continuous plenary train of A if T( x) satisfies

3.3.4. D^ f (t) + V D^ ' ^ f (t) + ... + & f (t) = 0.
X 1 X S X

Heuch (39) has shown this to be the case.

We note that for the plenary case the evolution function

is a solution of a 'Bernoulli equation' . In the scalar case

?
over real functions these equations (Df + f = f ) are,

as is well known, lineariseable (putting g = f gives

"Dg + g + 1 = 0). We shall see below that when the equations

are not so nice the llolgate linearisation is not possible.

A similar account to that given for plenary trains may

be given for principal trains. Suppose given a population

x in which individuals dying in the time interval (t,t+h)

are replaced by the offspring of matings between individuals

of x(t) and the individuals in a constant population ident-

ical to x(0). Then the evolution function is a solution of

Df x(t) = -f x(t) + fx(0)fx(t).

If ( f (0)) = 1 and f (0) = x(0) = x then Heuch (39 ) shows
x x

that this defines a continuous principal train.



58

3.4. Continuous and discrete linearisation

We would like basis independent necessary and suff-

icient conditions for the quadratic transformation of an

algebra to be lineariseable. We have not been able to give

these. Short of this the present section exhibits some

limitations of linearisation which lead us to suspect

that the conditions sought are not much wider than GA.

Let ( A, 4 0 be a fixed GA of dimension n+1 together

with its quadratic transformation. Consider the difference

equation

3.4-1. Ex(m) = (x(m) )2

x(0) = x

where x £ A. If

x(m) = (xQ(m) , ..., xn(m) )

relative to a basis (c^ ) of A, then we have the system of

equations

Ex i(n) = (x(n) )2 11i

where i = 0,1,...,n and Tf. is the projection on the i'th

coordinate.

Now the r.h.s. is a sum of monomials

m..(x) = x ° ^ i ... xi ^ l
ij i 1

where j = 1,2,...,r, Hence

Ex.(n) = "X m..(x).
i J iJ

Since A is GA this system involves only first order

equations and hence may be solved by 'forward recursion'

as in (3.4.3.) below. Or, for each nonlinear monomial we

may define via (3.1.4.)

o/i a/i ^ a ::
Em i -(x) = E( xi

J i ... x 1
J 1) = (Ex^) -1i ... (Ex^) J 1 .

Again since A is GA (sufficient but not necessary and suff-
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icient), and hence (2.1.1.) holds , this product rule

generates only finitely many additional equations and

repeated application eventually leads to the linear system

3.4.1'. Ey(n) = y(n)A

where the coordinates y^ of y are those of x, x^, aug-

mented by a finite set of monomials in the x^ and A is a

matrix. The solution of this system is

y(n) = y(0)An.

Similarly considering the differential equation

3.4.2. Dx(t) = (x(t))^ - x(t)

x(0) = x

we obtain the system of equations

Dx i(t) = (x(t))2 |(i - x(t) {Ii .

Again these equations are first order for x <£ A, A a

GA and may be solved by forward recursion. Or, we may def-

ine a system of linear equations , corresponding to a Holgate

linearisation, applying the D product rule to any non-

linear monomials on the r.h.s. We obtain a matrix equation

3.4.2.' Py(t) = y(t)A

with solution

y(t) = y( 0)etA .

The following example illustrates the various solutions

mentioned above for the first non-trivial polyploid algebra.

3.4.3. Example. Consider the tetraploid algebra with can-

onical multiplication

C o = c o' C 0 C 1 = lc l» C 0 C 2 = C 1 t1/ 6 )°2• ( * )
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Given this multiplication and the equation

Ex( n) = (x( n))2

x(0) = (l, x 1,x 2)

we obtain the nonlinear vector difference equation for

x = x(0) such that -(x) = 1,

Ex(n) = c Q +x 1(n)c 1 +((l/3k2(n)+(l/6)x (̂ n)) c 2

x(0) = C 0+Xl c 1+ X 2 c 2 .

And hence the system of nonlinear scalar equations

Ex Q(n) = 1, x q( 0) = 1 (1. 1)

Ex^ n) = x-^n), x^ O) = x 1 (1.2)

Ex 2(n) = (1/3bc2( n) +(l/6)xJ(n) , x2(0) = x 2 (1. 3)

Solving these by forward recursion, from (1.1), (1.2) we

obtain

x (n) = J
o ^ J

x x(n) = x1(0).

Substituting in (1.3) we obtain a linear equation

Ex 2( n) = (1/3)x2( n) +[1/6)x2( 0).

Solving this by recursion

x2( n) = (1/ 3n^x2( 0) + ^-IqI/ S 3 .(1/6)x2( 0)

= H/3 nlx 2(0) +l( l-l/3 n)xj (0).

Thus

x(n) = (1, x^ O) , (l/ 3 n;x 2(0 ) + m - J/ 3 n ) x |(0)).

Alternatively we may (following Abraham (I)) linearise

equations (1) and solve hy matrix methods. Equations (1)

are linearised by introducing an equation for xj giving

Ex (n) = 1
o K

Ex,(n) = x,(n)
(2)

F.x^(n) = (Ex 1(n) ) 2 = x^( n)

Ex 2(n) = (1/3)x:2( n) +(l/6)x2( n) .

The order chosen for these equations is discussed in
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(4.2.2.) below, it corresponds to the lexicographic

ordering of the monomials in the (i = 0,1,2) with

identities removed.

In matrix form (2) becomes

Ey( n)=(x q(n) ,xl(n) ,xJ( n) ,x?(n) )

1 0

0 1

0 0

0 0

0 0

0 0

1 1 / 6 j

0 L / 3 J

( 2 )

= y( n) A say

with solution y(n) = y(0)An.

Writing y(0) = x(0)R we have Abraham's equation

x(n) = x(0)RA n

where '1 is the projection.

Obtaining the JCF, J, of A we have

x(n) = x( 0)RP -1 J nPTT

-1where J = PAP , P being the matrix of left row eigen-

vectors since A is diagonaliseable. Thus

1 0 0 0

0 1 0 0

0 0 1 1
4

0 0 0 1

-1

1

0

0

0

0

1

0

0

0

0

1

0

0

0

and

J =

1/3

The n'th power of J is easily evaluated and hence we have

|T

y(n) =(x Q( 0) ,xx(0) ,Xj( 0) ,x2(0))
1

I(l-l/ 3n)

1/3 n
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and hence

x( n) = (xo(0) , Xl ( 0 ) , i Cl-l/ 3n)CO) +a/3rfet 2 CO))

as in the first solution.

We now obtain the analogous solutions for the con-

tinuous case.

Given the multiplication (*) as before and the equation

Dx(t) = (x ft))2 - x(t)

x(0) = (l, x 1,x ?)

we obtain the nonlinear vector differential equation

Dx(t) = 0. c Q +x l( t)(x o(t) -l) c1+( -x 2( t) +(l/3)xo(t)x2( t)

+|1/6/x2( t) )c2

x( 0) = x Q(0) c o+x 1 ( 0) c 1+x 2( 0) c 2.

Hence we have the system

Dx (t) =0 (1.1)'

Dx 1(t) = xx(t)(xQ(t)-1) (1.2)'

Dx 2(t) = (-2/ 3)x2( t) +(L/6)x2( t) (1. 3) '

We may solve these by forward recursion, by direct integ-

ration

x (t) = 1
o ^

x 1(t) = x L(0).

Substituting in (1.3)' gives the linear equation

Dx 2( t) = (-2/3jx2( t) +(l/6)x2( 0).

12/3dt
Multiplying through by the integrating factor e

x2( t) - ( x 2( 0 ) -U 2
( 0) ) e (- 2/ > + lx2( 0) .

Thus

x( t) = ( l, x 1( 0 ) , x 2( 0) e^ 2^ +Hl-J" 2/ '^) xj (0) ).

Alternatively we may linearise equations (1)' and solve

by matrix methods, Equations (1)' are linearised by intro

2
ducmg an equation for xj via the D product rule.



63

Ox (t)
o ^

Dx1 ( t)

Dxj(t)

Dx ?(t)

= 0

= Xj(t)(xQ(t)-1) = 0

= 2x x(t)(Dx 1(t)) = 0

= (-2/ 3) x^( t) +(1/6)xy(t)

(2' )

In matrix form

Dy(t) = (xQCt) ,x1(t)x1(t) ,x2(t) )

0 0 0 0

0 0 0 0

0 0 0 1/6

0 0 0 -2/3

= y(t)A say.

This has solution

y( t) = y(0)etA

Hence

x(t) = x(0)Re^ A 11 .

Again computation of e tv may be facilitated by taking the

JCF of A. If P is such that J = P ^Ap is the JCF of A then

y(t) P = y( 0) etA P

= y( 0)PP" 1e tA P

= y( 0) Pe tP AP

= y(0)p e
t & ia 8 »•••»A n)+Nj

where the are the eigenvalues of A. Thus

x(t) = x(0)Re ll- diag ^]'' **» / V +N J .

n
However in the present case this is unnecessaryfor we have

oo ^
y(t) = y(0) r=0

=y( 0) (i4 +

which is easily seen to be equal to

T V /

A7 r t•

0 0 0 0

0 0 0 0

0 0 0 tr/r: .(1/6)(-2/3) r~ 1

L°0 0 tr/r!.(-2/ 3) r
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(1,xx(0),xj(0)}x 2(0)

1 0 0 0

0 1 0
0 I

0 0 1 l( l-e ("2/3 ^) j

0 0 0
(-2/ 3)t
e 1

giving the solution obtained by forv/ard recurs ion.

We next show that the possibility of linearisation

of the discrete equati on does not imply that of the cont

inuous equation, even if the latter may be solved by

successive subs titution.

3.4,4. Example. Let A be the algebra with multiplication

c o Co> Co C l " ° ' C o C 2 * C2 ' C o C 3 * c3 '

C 1 = c 2' c 1 c 2 = ° ' C 1 C 3 = ^C 3'

c 7
— cj , c9c3 — 0 ,

2 _ n
c 3

A is not GA, however the equations correspondi ng to

(3.4.1.) yield a finite system corres ponding to (3. 4.1.'

i.e. the discrete equation linearis es. On the other hand

the equations corres ponding to (3.4.2.) do not yield a

finite system corres ponding to (3.4.2.')

A smaller dimension example with the same property i

the algebra ? .

3.4.5. Example. Cons ider the algebraL?12 (2.1.15.) with

the parameter °< = 1, The multiplication is

b o = bo> bo bi = ° ' b 0 b 2 = l b 2 ' b l = " b 2 > b l b 2 = " i b 2

b 2 =

The discrete equation linearises (2.1.15.), The plenary

function is defined by

Dx(t) = (x(t) )2 - x(t)
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where

This gives

x(0) = (l,x 1,x 2)

Dx (t) = 0
o

Dx,(t) =0

Dx 2 Ct) = -x^(t) - x1(t)x2(t).

Integrating the first two equations we have

x (t) = ]
o

X 1(t) sX1.

Substituting for x^(t) in the third equation,

Dx 2(t) = -x'1 - x 1(x 2(t) )

a first order linear equation. Hence

3 „ -x,t
x 9(t) = -x, + Ce 1

L* I

which with the initial conditions gives

x2 Ct) = - x j + (x* + x2)e X l l .

Thus

x(t) = (1 , x 1 , ( x ] + x 2)e" xl t - xj1).

However if we attempt to linearise, the D operator

applied to the monomial x,(t)x0(t) generates an infinite
1- L*

system of equations ,

DC( xx(t))nx 2(t) ) = - ( x 1( t) ) n+2 - ( Xl ( t) ) n_1 x 2 (t).

3.4.6. For an arbitrary baric algebra together with its

quadratic transformation (A, ) we shall say that. A is

H4 -1ineariseable if the system of equations (3.4.1.')

derived from (3.4.1.) is finite and that A is -1ineariseab1

if the system (3.4.2.') derived from (3.4.2.) is finite.

From (3.4.4.) or (3.4.5.) we see that

3.4.7. A is E<£ -1ineariseable does not imply that A is
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0 4 -1ineariseable.

We note that all examples we know of are not GA.

We shall also show, see that mixture can destroy

the property - E<£ - l.ineariseable. This result casts some

doubt on the usefulness of the class of E<^-1ineariseab le

algebras in comparis on with GA or STA, the former having

a form of closure under mixture (providing a basis for

the mixtures can be chosen in the same way),

3.5. Sequences for overlapping generations

In this section we consider linearisation of the trans-

formations defined by Ileuch(56) which model the evolution

of populations with some overlapping of generations .

Given an n-dimensiona1 GA with canonical basis and a

function defining a sequence: x(0), x(l), ... , whose

terms satisfy an equation with constant coefficients i.e.

a train equation, we express the sequence in terms of n

difference equations giving x(m) in terms of the coord-

inates of x(r) where r £ n. This system of difference equ-

ations is in general r'th order nonlinear. The structure

of GA's, in particular the nilpotency of the (n-1)-dim-

ensional subalgebra ker •'>, implies that the first and

second equations are linear, the third is nonlinear in

terms from the second and so on. For principal or plenary

sequences , constructed from a single element of the algebra

all the equations are first order. It follows that solv-

ing the equations successively with successive substitution

of the solution of the i'th equation in the i+l'th equ-

ation, the system may be solved by solving only linear
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first order equations. Or, as we have seen, Holgate's

linearisation applies. By the introduction of new variables

for the nonlinear terms and for any generated by the shift

operator product rule we obtain a system of first order

linear equations.

The sequences we now consider are not so 'nice' and

even in simple cases our third equation is second order

second degree. For these sequences the Holgate linear-

isation depends on m, the sequence index, different linear-

isations being required to evaluate different points in

the evolution. It follows that this linearisation is not.

useful to obtain explicit formulae for the m'th term. It

would be useful to prove that for a class of sequences

more general than principal or plenary and for a given class

of algebras, e.g. GA, the system of difference equations

is solvable successively with substitutions, as seems to

be the case at least for the sequences considered here.

3.5.1. Let A be GA and x(l), ..., x(p) be given elements

of A. Following Heuch (36) define a sequence

* O P ) = ^ >£lo ^ LhI o" <hk x( j +h) x( - i+k)

where j = 1, 2, ...;^ = oi kh and ^. h. k^ hk ° K

Thus we are now concerned with sequences constructed

from p initial and not necessarily related vectors instead

of the sequences of single 'powers' considered so far.

We note that Etherington' s definition of a train could

be generalised to this context by requiring that the coeff-

icients be functions of the weights of the p initial

vectors only. We prefer to follow Heuch (36 ) and define a

train by the condition that the coefficients be constant.
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We shal] also work entirely within the plane of unit

weight, U = | x € A : /3(x) = if . For, while in the case

of plenary powers it follows that if every x t U satisfies

a train equation then every y e A does too, this does not

follow for the more general sequences used here. This is

not restrictive in applications since only those vectors

in U have a probability distribution interpretation.

The sequence (3.5.].) models the evolution of pop-

ulations satisfying (G) except that mating which takes

place at given times may be between overlapping generations

in the sense that the individuals participate in mating

for the last time when they reach an age of p generations.

Each generation a proportion 2 ^ ^ (h^k) or ^ of the

crosses are made between individuals of age p-h and p-k.

Apart from this mating is random. x(j) gives the distrib-

ution for individuals born in generation j given the

distributions of the first p generations.

A 'pure overlap' sequence is constructed as follows.

In (3.5.1.) let p=2 so that

x = ^oo^x(-J"') + 2^ 0i x(j)x( j + l) + ^ x
11 (x( j+l) )2.

Suppose further that Q
= = ^» hence =

Then we have

3.5.2. x(j +2) =x( j+l) x( j).

3.5.3. Example. Let A be the tetraploid algebra (1,5.10.),

then with x(l), x(2) given vectors in A we have

x(3) - x(2) x(1) = c Q +Hx 1 (1)+x2(l))c1+(l/6) ((x1( 2) +

+x?(2)+x 1(l)x2(l))c2 .

For n = 2,3,...
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Ex(n) = x(n-l +2) = x(n\x(n-l)

i.e. for x(n) - c +x,(n)c,+x~(n)c~
o 1 1 2 2

Ex(n) = co+i(x1(n)+x1(n-l))c1+(l/6)(x2(n)+x?(n-l)+x1 (n) x1(n-l) )c2

Hence we obtain the system

Ex o(n) = xo( n)

Ex^ n) = i( x x(n) +x 1(n-1 ))

Ex 2(n) =(1/6)(x 2( n) +x ?(n-1) ) + x1(n) x1(n-l)

with initial conditions given by x(l), x(2).

We note that this system is second order, second degree.

It is non-1ineariseable. If we attempt to linearise by

introducing new equations for x^(n)x^(n-l) and any further

monomials generated by the E product rule,

Ex,(n)x^(n-1) = Ex^(n)Ex^(n-l)

= 4(x ^(n)xj(n-l)+x^(n)x^(n-2) + x j (n-l)+x^(n-l)x^(n-2)

This generates new higher order monomials , which in a

solution by forward recursion would already have solutions .

In general

Ex 1(n)xx(n-r) = 4(x^(n)x 1( n- r) +x 1( n) ( n- r- 1 ) +

+x^(n-l)x^(n-r)+xj(n-l)x^(n-r-l) ).

Now for each finite n, r is finite, the process generates

only finitely many linear equations , N say. But for large

n, N is large, the linearisation depends on n. For arb-

itrary n we require an infinite dimensional space i.e.

there does not exist a llolgate linearisation (.see (4.2.8.).

Thus we have,

3.5.4. Sequences giving rise to systems of difference

equations with nonlinear terms of order greater than 1 may

not be linearised by llolgate's method.
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Such systems may however be solved by forward recursion

3.5.5. Example. (3.5.3.) continued.

We have

Ex Q(n) - x Q(n) = 0

E 2x 1(n- 1) - |Ex^ (n-l) - I x^ n- l ) = 0

E2X7(II-1) - (L/6)Ex2(n-1) - (1/6)x2(n- 1) = x1(n) x 1(n

The first two equations are linear homogeneous of first and

second order respectively and hence given two initial cond-

itions are solved immediately. For the first the complem-

r
entary function is x (n) = k and with X

Q ( 0 ) = 1 we have

x (n) = 1.
o

For the second the complementary function is

x^ (n-l) = k x 1(1 +/5) n + k ?a( 1-J~5) n

k ^ k 7 may be determined from the initial conditions x(l),
JL L+

x(2) and the equations for x(3), x(4). We obtain

x x(n-1 ) = f(n, x x(1), x1(2)).

Now the nonlinear term in the third equation involves only

x-^(r) which has already been solved. On substituting this

solution in the third equation we obtain a second order

linear nonhomogeneous equation

E2x„ (n -1 )-(l/6)Ex?(n-l)-(L/6jx?(n-1) =
L. L* L*

f(n, x1( 1),x1(2)).f(rx-l,xx( 1),x 1(2))

By standard operator methods we obtain a solution of the

form

x
2(n) = g(n, f(n, x]L(l),x1(2) ),x2(l) ,x2(2) ).

Thus with p=2 , ^ oo = = 0 in (3.5.1.) we have two

linear homogeneous equations of first and second order

respectively and one second order, second degree equ-
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ation which reduces to a linear non-homogeneous second

order equation on solution of the proceeding equations
r

(with the given odering) . Unlike the non-overlapping case

where all the equations are first order, here linearisat-

ion depends on n and hence is not a useful technique for

obtaining explicit formulae for the general term.

For arbitrary subject to the conditions (3.5.1.)

to linearise the equation corresponding to (3.5.4.) over

even the tetraploid algebra requires linearisation of an

equation of the form

x , + X K + /?x ! + r X2 + S X X , +£ X2 , = 0
n+1 n ' n-1 n n n-1 n- J

where X, ; , Y , , , £, are constant.

The nonlinearity increases if we increase p. For arbit-

rary p a sequence of the form (3.5.1.) which satisfies a

train equation will give a system of nonlinear difference

equations which while solvable by the method of (3.5.5.)

will not in general be 1ineariseable.
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4. CHARACTERI SATION OF GENETIC ALGEBRAS

In (1.1.12) we indicated that the structure of assoc-

iative algebras A depends on the nature of the radical R,

since A is isomorphic to A/R + R where the structure of

A/R is known up to a determination of all division algebras

over the base field. We also mentioned the intractability

of the structure of nonassociative algebras in general. For

GA's (1.4.7.) gives a simple structure, R = kerfb and

A/R is isomorphic to (I . While this is simple it has no

clear genetic interpretation. We also noted the intract-

ability of the structure of TA's.

The problem we consider in this chapter is that of

finding a class of algebras sufficiently wide for algebras

arising in gentics, having a simple characterisation or

structure theory that is genetically meaningful. GA is at

present the best such class and we shall consider some

solutions of the latter part of the problem for this class.

It has been suggested (Abraham (1)) that the existence

of a Holgate linearisation of the quadratic transformation

(•-•/) of an algebra might provide such a characterisation.

The class of algebras requi red is ideally wider than GA

but having a simpler structure than TA. GA was defined in

this spirit with respect to STA and the property of closure

under duplication, STA not being closed under this genet-

ically natural operation.

We first consider existing characterisat ions of GA,

then we investigate the applicability of linearisation to

the problem. In (4.2.) we give necessary and sufficient

coordinate conditions for linearisation of£'/'. We also
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show that there are algebras of genetic significance not

satisfying these conditions. This together with our rem-

ark that the class of algebras for which has a Holgate

linearisation is unlikely to be much wider than GA, lead

us to suspect that GA is probably the 'best' solution to

the characterisation problem of genetic algebras.

In (4. 3. ) we consider the basis free approach of

Holgate' s characterisation theorem. As already mentioned,

basis free necessary and sufficient conditions for the lin-

earisation of f is still an open problem. On the basis

of the results here we believe that they are equivalent

to the existence of a plenary train.

4 • 1• Some characterisations of GA

Several characterisations of the class GA have been

given. Gonshor (32) considered characterisation and proved

the following result.

Let (A, y£) be a baric algebra and let N = ker . Then

N is an ideal of A but in general N r (= N r 1 N) are not, not

in general is N r+S = N rN S.

Let N n be the set of all linear combinations of prod-

ucts in A with at least n terms in N. N n is an ideal of

A and,

4.1.1. A is GA iff there exists n e 2 such that N 11 =0 .

This theorem gives a simple criterion for GA as a

subclass of baric algebras related to the nilpotency of

the kernel of the baric function. However it neither
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relates GA to more familiar classes nor has a clear

genetic significance.

Algebras arising in genetics do not lie, as a whole,

in any of the better known classes of nonassociative alg-

ebras . Both Schafer (54) and llolgate (43,46) have related

certain subclasses of GA to more familiar classes. Schafer

proved the following result.

4.1.2. If A is the gametic or zygotic algebra for one

diploid diallelic locus with simple Mendelian inheritance

then A is a Jordan algebra.

llolgate (43) proved the same result without using the

transformation algebra and hence was able to generalise to

multiple alleles.

4.1.3. If A is the gametic algebra corresponding to n+1

alleles aQ,...,a at a diploid locus with multiplication

a •a. = i(a•+a.)
i J i J

then for x = ^ .x.a. and ( x ) = .x. we have
i l l r K J — i i

x = /3(x)x.

Thus for all x such that /3(x) = 1, x is idempotent and

since

( ft(x) y) x = 3( x)(yx)

A is a Jordan algebra.

4.1.4. An STA is a Jordan algebra if its train roots all

have values among 1, \, 0.

This excludes GA's corresponding to polyploidy or

several loci. Tn fact includes only those algebras corr-

esponding to the simplest forms of inheritance. Holgate



75

remarks that for a GA to be a Jordan algebra seems dep-

endent on Hardy-Weinberg equilibrium being reached in one

generation.

Bernstein (10,11,12) attempted to classify all quad-

ratic forms which could represent non-selective systems

of inheritance in which a stationary distribution is reached

in a single generation. He achieved this in 3 dimensions.

Holgate (47) presented Bernstein's results in terms of

a classification of algebras. Among these classes of alg-

ebras there is a one parameter family whose members are

neither STA, GA or even TA. We have already introduced

this, example (2.1.15.), without reference to the Bern-

stein property which we now define.

4.1.5. A commutative baric algebra (A, f2) over C- is said

to be a Bernstein a1gebra (BA) if for all x A such that

p M * o
L 3 3 7 r , 2 L 2 1

x - jl(x) x = 0.

Holgate (47) formulated this definition and proved

the following two results.

4.1.6. If A is BA then it contains an idempotent.

4.1.7. If (A,/3) is BA such that (ker/^) ^ = 0 then A is STA.

Bernstein classified the 3-dimensional systems by the

number of idempotent basis elements. Holgate (47) derives

the corresponding algebras B Q, B^ , B^ > B 0, B, which

contain 0 , 1, 2, 3 idempotents in a basis. Thus Bernstein

showed that there are just 5 laws of inheritance of 3

genetic types satisfying Hardy-Weinberg equilibrium.
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We have considered the algebra B^ 9 in some detail

since it provides a useful test case.

4.1.8. Example. B 1? (see (2.1.15.)) is a Bernstein algebra

with

r 2 l 2
x' = b Q + ( 1 - X + x 0 - X x^ - x^ x?)b? = xL, L.

Bertrand (13,15a) introduced a notion she calls 'grade'

which allows some characteris ation. In (15a) she also shows

that NAA's satisfying certain conditions can be assoc-

iated to a Jordan algebra.

Let A be a commutative NAA. Let e^». ..> e
n t>ea basis

of A and let T(A) be the transformation algebra, generated

by I and R r ,...,R say. Now T(A) is a subspace of M(A)
n x i x

1 r
the algebra of all linear transformations on A. So we

2
have putting N = diinT(A) and n = dimA, N^ n . If N = r+1

then there exists a basis of T( A)

1 » Re, R e ^1-*
1 r

If N ? r+1 then tliere exists s > 0 products R R lin-
G • G •
i j

early independent among themselves and among the elements

of the basis (b ^). If N = r+l+s then a basis of T( A) is

I,R ,... ,R , R R ,... ,R R (b ? )' e ' ' e ' e. e. ' ' e• e. 2
1 r 11 J i 1 J1 J 1 s J s

Again if N ^ r+l+s then there exists t > 0 independent

products R R R Proceeding in this way, since the
0 . 0 . 0i
l j k

dimension of T(A) is finite, we obtain a basis of T(A),

(I , R , R R , ... , R R ... R ).
e. ' e. e. ' ' e. e- e.

I I J 11 I-I IJ 1 2 q

4. 1. 9. The number q in the above basis of T(A) is indep-

endent of the basis of A and is called the grade of A.
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4.1.10. Example. (1). Let G be the gametic algebra of

simple Mendelian inheritance (see (1.3.2.)). The princip-

al and plenary rank equations are both

2 nx - x x = 0 .
o

Ker j"iis nilpotent of index 2. G is STA. Bertrand (13)

shows that any such algebra has grade 1.

(2). Let Z be the duplicate of G (see (1.3.9.)). This

algebra has principal and plenary rank equations

X 3 - (xj ^x^+x-^x"" = 0

L3! ( ~ > .2L2] nx - (x^+2x 9+x^) x = 0

respect ively.

Ker is nilpotent of index 3 and Z is STA. Consider all

products of the R of order less than 3, where (c^ ) is
i

a canonical basis for Z. We find writing R^ = R q :
i

R 1 R 1 R 1 '1 l! l RlRo "
R 2 = 0

W i •* iR o R l R l * ^Ri R i

R.R R =
l o o • | R o R l R o " lR l R o

R R R. =
0 o 1 • iR l - iR o Ri + 2R i R o

R R R =
0 0 0

= 3/2R R -
0 0 iRo

R.R.R, =
i j k

= 0 for the remaining

Thus the transformation algebra has basis

I, J'Rjj , ^ Ri Rj j •'( M = 0, 1, 2) j.

with dimension 13. So Z has grade 2.

Bertrand (15a) established a connection between grade,

STA and degree of principal rank equation. STA's possess

a unique non zero idempotent if no train root equals \

(Gons hor (29)).

4.1.11. Let (A,p>) be an STA with unique idempotent and

principal rank equation of degree k+1. Then (1) if ker/3
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is nilpotent of index 1 then grade A ^ k; (2) if ker

is nilpotent of index 2 then grade A <- 2k-1.

The same remarks as those following Gonshor' s charact

erisation (4.1.1.) apply to this result.

Bertrand's result concerning Jordan algebras is:

4.1.12. If A is an NAA such that 1) for all x c A there

exists x' C A such that R R = R , and 2) if there exists
xx x

x £ A such that R = 0 then x = 0; then there is an
o x o '

o
associated Jordan algebra A* differing from A only in

its multiplication * which is defined by the relation

2 R * = 2R + R R .
x*y xy y x

If A* is not nilpotent then it is possible using the

Pierce decomposition relative to an idempotent e of A*,

(see Schafer (55) ), to write A as a direct sum A = Aq+A^+

such that

R R = R R = 0 if x e A
x e e x o o
o o

R R = R R = R if x, c A,
x^ e e x^ x^ 1 1

R R R = 0 i f x _ £ A o .
e x^ e 2 2

As we have already seen (2.2.12.) Heuch (41) intro-

duced spaces of algebras in order to discuss various mix-

tures, in particular to consider their uniqueness. This

leads to a geometric characterisation of genetic algebras

For fixed dimension n we have the following chain of

spaces of algebras (c.f. (2.2.18.)

(£, is constructed using a fixed canonical basis (these

are not unique (see (1.5.2.)). There exist algebras aris-
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ing in genetics that are not GA. Heuch gives the follow-

ing geometric description of algebras over the complex

numbers arising in the genetics of randomly mating pop-

ulations.

4.1.13. Let ^| be the class of all n-dimensional baric

algebras with a fixed genetic basis. Then ( P ^ forms a

polyhedron P in <L^ and <£. is the smallest flat con-

taining P.

Not all algebras arising in genetics are even baric,

e.g. (4. 2.?-(2))below, however baric algebras seem to be

the largest class that it is useful to consider. Unfort-

unately as Heuch showed,

4.1.14. " (and hence also ( £ g) is not closed under

mixture.

That d H is not closed under mixture follows from

the result that any mixture of baric algebras with diff-

erent nilalgebras is not baric. We also show that mix-

ture does not preserve the 1inearisabi1ity of the quadrat-

ic transformation.

4.1.15. If two algebras A, B in (j ™ have 1ineariseable

quadratic transformations, the quadratic transformation of

a mixture of A and B may not be lineariseable.

As an example take the algebras A, B over the complex

numbers defined by

cf = c x , c^ = c 3 , c^ . 0 for ( i,j) I (1,1),(2,2)

c^ = c x , c^ = c 2 , oc. = 0 for (i,j) ? (1,1),(3,3)

respectively. Then take the mixture \(A + B) with mult-
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iplication

2 2 , 2 , n -r • , •
C1 = cl» c 2 = 5C 3' c 3 = iC 2 * C i C j = 1 1 ^ 3 *

In A for x such that fl(x) = 1 i.e. x = c o+x^ c^ +x 2c 0,

2 2 2 2
x = c +x,c~. In B x = c +x„c1 . We obtain the linear

o 1 2 o 2 1

equations for A,

1 ? = 1 , = 0 , x * ? = o , x 2 ^ = x ^

and for B,

1 ^ = 1, = x^, x ^ = 0, x^ = 0.

But for the mixture we obtain the infinite set of equ-

ations ,

^ 2 -— / 21<P = 1, x^ = ix2, x 2 ^ = i Xl> ...

•nft ^n ^n
= (1/2nk 2 , x 2 ^ = (l/2n/x2 ,...

This result shows a limitation of the application of

linearisation to the problem of characterisation.

We next consider a characterisation theorem given by

Holgate (46). Ilolgate introduced Lie algebras into the

study of GA's. The characterisation he achieved is, un-

like Schafer' s structure theorem (1. 4. 7. ), ameni'able to

some genetic interpretation. (As Schafer stated in his

paper his interest was purely formal. ) We first introduce

various algebras associated with a given commutative baric

algebra ( A, jS).

4.1.16. The transformation algebra T(A) = / i, R : x e A .
X *

T(A) is a subalgebra of the total matrix algebra M( A) of A.

These algebras are associative.

4.1.17. Let L(A) be the Lie multiplication algebra of A

i.e. the algebra generated by the R (x £ A) with the comm-
X

utator product



81

IR , R Ix* yj

We note that if R(A) is the right multiplication

algebra, generated by the R (x e A) then
X

L(A) is a subset of M(A) and a subalgebra of L(M(A)).

4.1.18. Let L'(A) be the first derived algebra of L(A).

Thus L'(A) consists of the set of all commutator products

4.1.19. If every element of L(A) is nilpotent then L'(A)

is nilpotent and hence L(A) is solvable.

Holgate's characterisation theorem (HCT) gives the

following necessary and sufficient conditions for GA.

4. 1. 20. A baric algebra (A, /'£) is GA iff L( A) is solvable

and ker3 is (principally) nilpotent.

We shall assume A is commutative but nonassociative.

Otherwise the associator (x,y,z) and the commutator ,.x,yj

vanish and R R = R or R , R 1 = 0 so that L(A) is a
x y xy L x' y>

2
zero algebra, L(A) = 0 i.e. L(A) is solvable.

Holgate gives in his paper an example possessing a

high degree of symmetry to illustrate HCT, namely the

gametic algebra for 1 diploid multiple allelic locus.

The symmetry is exploited to show that L(A) is solvable.

In less symmetric cases we are forced to use direct calc-

ulations as in (4.3.3.) below.

Another possible approach to the characterisation

problem is to use the 'structure tensors' of the algebras

dim L(A) = dim R(A).
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concerned. For algebras defined in terms of conditions on

their structure constants, as in the Gonshor definition

of GA, we might expect properties of the class defined to

show up more clearly as properties of the corresponding

set of structure tensors in the appropriate space of

tensors or tensor algebra.

Let A be a GA with basis c ,...,c ^ and multiplication

c -c. = • , A. c,.
1 j k i j k k

If A* is the dual space of A as a vector space, then to

b
each triple (c ,c^,c^) of A* x A X A is associated the

scalar A.., since
' ijk

c k( c iC . ) -

ijl
= >-1 A ii, ck ( ci)

v « c k

2"~1 ^iji o 1

" A ijk

2 Kronecker

3 i
Thus the n scalars A• •v f° rm the components of a

where ^ is the Kronecker delta.

i^ k

tensor, in the tensor space (X;^(A*,A), (see Greub

(33) ). Equivalently the define a (l+2) -linear

function A* X A X A —f C i.e. a scalar valued tensor of

order (1,2) (a mixed tensor).

4.1.21. The tensor is called the structure tensor of A,

Little has yet been obtained from this approach apart

from a derivation of the result that given two GA's with

i 1/

structure tensors A-h* M we °ktai-n a new ^>A with
J J

structure tensor Aij 69/Ujj > a result that is easily

verified without recourse to tensors. Since, if the struct-

ure constants of two algebras satisfy G1-G3 then so too
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do their products.

4.2. Basis dependent characterisation

The algebra (2.1.15.) shows that GA is sufficient

but not necessary and sufficient for a Holgate linear-

isation. breaks the GA conditions G1-G3 only in the

removal of the possible equality in G3, since A ±22 =

(not zero).

Let (A, ft) be a baric algebra. Take an Etherington

canonical basis (c^) such that /?( c q) = 1 and /^(c^) = 0

for i 0 (c.f.(1.2.8.)). Let U be the plane of unit

weight in A i.e. U = x 6 A : x = c +x 1c1+...+x c
& 1 o 1 1 n n

Let be the set of monomials in the x^ (i = 0,1,...,n)

with x =1, of degree less than r, with associative and

commutative identities removed and such that the represent

ative monomial has its terms of highest degree on the left

We now define an order on M .

x i "<i ^ 1 ^ 1
4.2.1. If m^^(x) = x i

Ji. ..x 1
Jl and m^ ^ x) = x^,k...x^ 1

define

m ij(x) < m kl ( x)

ji' tXjV'
iff i O or i = k and X. ^ ^ l » wker*. 7X/C' ('̂ e

I 1 1Yi&^-lderxYxcaX cvtmsjremkl-\e Left-)
/K i.e. if m^ .(x) precedes or is identical to

m
kl

(x) in the lexicographical order.

For example taking all monomials of degree less than

or equal to 2 in jl, x^ ] we have ) 1.1,1.x^,x^.1,x^.x and

removing identities gives 1. 1,x^.1,xy.x^ > . Ordering this

set and writing the monomials in the usual way we have

1 c C x ^ .
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Now suppose we have a nonlinear transformation f of

A. We may express x^ relative to a fixed basis by a set

of equations

xiV = £(x0, x l, ..., x n)

in the coordinates x^ of x.

4.2.2. If x £ U, then a set of equations

x.u = ' .m..(x)

< • 1 \ k
m
i j ( x) = x1

J i.. . x^ n Y = ( xx y ) Ji. ..( xn<f) J n

where i = 0,1,... ,n; j = 1,2,... ,m m fC card M such that

the m^ ( x) £ satisfy

m ..( x) x. or m..( x) =0
ij v J — I IJ v J

•

will be called a forma1 linearisation of y o_fdegree r.

(We have adopted the left hand convention for the monomial

functions.)

4.2.3. The class of baric algebras whose coordinate equ-

2 -ations arising from x = x (x c IJ)satisfy the conditions

for a formal linearisation will be denoted L1.

4.2.4. Let (A,c£) be a baric algebra together with its

quadratic transformation then A is in LI iff A is [y.-linear-

iseable.

First assume A is in LI and suppose nu.(x)

j=1,2,... ,s where s = card M . Then an arbitrary equation

in the system for x<^ is

m • •(x)d = xi
J i... x1

J 1̂ = ( xi ) -1i...( x̂ J 1 .
1J X . - -

Now each ( x^ ) 3 k = ( v lmkl(-X-)-) J k where k ^ i> and

1 = 1 s. Thus m kl ( x) <. x i. Hence all the monomials

generated by m^ •(x) are less than or equal to x^. Hence

they are finite in number and so A is E^ - 1ineariseable.
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Suppose now some m^ (x) y x^. Then since A is in LI,

mij( x ) -r = 0 and hence all such monomials only generate

zeroes. So again only a finite number of distinct mon-

omials is generated and A is E^ -1ineariseable.

Conversely if A is E,j--lineariseable then the mono-

mials generated are finite in number and all are less than

or equal to x^. This is only possible if the conditions

for A to be in LI are satisfied. For, otherwise there exists
oC <* - :

m—( x) > x^ and nu^(x)f'^ 0. Hence m^j(x) = x^ Ji...x^ Jl

where oC. >1 . Thus we have a system of equations for
1 *.j X.

x <f with terms in x. Ji = (x.</0 Ji, which in turn
}cX. 1

involves terms in x^ ^i. Therefore the system contains an

infinite sequence of monomials of increasing degree

( 2n o( .
> x̂ i : n = l , 2 , ...j'.

Hence A is not E<p -lineariseable. This is a contradiction

completing the proof.

4.2.5. Construction of algebras in LI

Suppose given a formal linearisation of of finite

degree. We assume x to belong to the plane of unit weight

of a commutative baric algebra A with baric function def-

ined by /?(c ) =1, /?(ci)=0 for i > 0 where Cc ±) is a

basis of A and quadratic map 4s • Compare coefficients of

xcp given by the equations of the formal linearisation

121
with those of the formal expansion of x' . A solution

of the basic product equations, ci c j = - k^ijkck for the

^ i' k ^ i ves the structure constants of an algebra in LI.

The algebra so obtained is of course not unique.

Examples constructed in this way are necessarily
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Eflfc-1ineariseable. We shall see that they are not in

general GA.

By starting with a formal linearisation having an

infinite system of equations we construct algebras in

which the quadratic map is not 1ineariseable, e.g.

(4.2.7.).

4.2.6. Example. Let consist of all monomials in 1, x^,

x^, x^ of degree less than or equal to 4 ordered by

(4.2.1.). We arbitrarily define subject to (4.2.2.):

2I t = 1 , x ^ f = 0 , x 2 < ^ = x 2 + x 1 ,

x 3 = X 3 + X 2 + X1 X3 *

Then by (3. 1.4.)

2y n 2 2 - 2 4 4 n
x^ = 0 , x 2 ~ X 2 + 2 X 1 1 ' xi<r^ = 0 »

2̂ --w
x 2 x i X 3 X 1 ^ = 0 •

The ordered set of monomials is

2 4 2 2 v ^
( 1 , xx , xx , x x, x2 , x2 x x , x2 , x^ > X

3
X
1 J-

3 2
Let x = + V i =ixi ci the f° rmal expansion of x

x 2 = , ;>. x2c 2 + 2 . .x.x.c.c.. From our formal 1inear-
^ _i l i / - i ,J i 3 i J

isation we have

x^ = c
o + ( x2 +x1) c2 + ( x

3 +x 2 +X 3 x l ) c 3*

On solving the basic product equations forthe structure

constants we have

c o = c o' co cl = ° ' C 0 C 2 ic l > c o c 3 i c
3 ,

C 1 = c 2' c 1 C 2 0 > c 1 c 3 | c 3 ,

2
c 2 c3 ' C2 C 3

= o,

2
c 3

= 0 .

This defines an algebra A in LI. A is not GA. The linear

transformation '* correspondingto 4* has a sparse matrix

with minimal equation
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- 2 cp 1 +^ = 0 .

Computing plenary powers verifies that the plenary train

equation is

f4l _ [3~] L2l
x - 2 x + x = 0 .

This is in fact the construction of example (3.4.4.).

Abraham (1) proved that the dimension of the linear-

ising space is independent of the choice of basis in A.

The following is an immediate corollary.

4.2.7. If a system of linearising equations is infinite

with respect to one basis then it is with respect to any

basis.

Thus to show that cannot be linearised in a given

algebra it is sufficient to show that in a given basis an

infinite number of linearising equations are generated. We

have tacitly assumed this in some previous examples.

4.2.8. Example. (1) Let A be a commutative baric algebra

defined by

2
c o " co> C 0 C1 C l ' c l Zc l

and /?(co) = 1, /?( cx ) = 0 .

Any x such that ft (x) = 1 satisfies

l<4>= 1, x^ = 2x1(l+x 1)

Now

? ? ?
= 4x^(l+x 1) z

hence ^ generates an infinite sequence of monomials of

increasing degree. So A is not -lineariseable. Similarly

A does not possess a (finite) plenary train equation. We

note that ker/.? is not nilpotent.

(2) A more complex example is the non baric algebra for
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zygotic sex linkage and multiple alleles given by Worz

Busekros (57). The multiplication table is

all al 2 a 2 2 al a 2

all

a 12

a22

al

i ( a H +a l) i( a u +a 2 )

°3*2 ^ a 1 2 +a l } i( a l2 +a 2 }

zCa ->2+ai~) ^ 2 2+ a 2 ^

a2
0 2 x-2

H a u + a i ) i (a 12 + a 1 )

| ( a H +a
2 ) H a 12 +a 2)

From this there follows in the given basis

X11 f '•
= x nxi +

X1 1X 2

x1 2̂ X 1 2X1
+

X 1 2X 2

X 2 2 ^ X 22X1
+

X 22X 2

X1 1X1
+

X 1 2X1 + x 22X 2

*2<t> X 1 1X 2
+

X 1 2X 2 + X 22X 2

and application of the E product rule now generates an

infinite system of equations for monomials of increasing

degree (e. g. n=l,2,...).

( 3) As a final example we give one of Heuch (3°0 which

represents two genetic types such that like matings prod-

uce only one type and unlike matings produce only the

other type. Let A be the algebra defined by

2 2
c l ~ c i ~~3.•% ^ 1o O 1 9 O 1 l o I

with /3(x) = xQ+x, . Then ker/1 is the set ) x e A : X ^ - XQ 2 .

Hence (ker/ 3) 2 = kerp. i.e. x 6 ker/Z implies x = XQao- Xoa^

? 2
So x = 2x (a -a,). In general

o o 1 &

x n = 2 n" lx o( a o - a l } * ° ' ( x o^ 0) •

Thus ker 1 is not nilpotent and hence A is not GA. The

principal train equation is

xd - 2x x + (x"-xT)x = 0.
o o 1
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Since the coefficients are not functions of /3(x) only

A is not TA. The coordinate equations for are

, 2 2 j ->x J = x +x,, x, = 2x x,,
o o 1' 1 ' o 1

This generates an infinite system of equations

n -y r. . 2A n n <~y „ nn
x
o
i f , ^>.11 n' ~ 11iIp = fx +x,J , x, c* = 2nx x,
I' ^ o 1^ ' 1 o 1

We next consider the duplicate of the algebra anc^

show that linearisation is preserved in this case and

that the conditions for linearisation must be wider than

GA in ways other than those previously encountered.

4.2.10. Example.

From the multiplication of B^ 7> (2.1.15.), we obtain

the duplicate B^ 2'. Writing the duplicate basis b Qo , ...,

b 00 as c . ..., c r we have
22 o ' ' 5

c o C 1 c2 c 3 c 4 C 5

c o

C1

c2

C 0 2C9 "Co -ic 7 0
O u, L L*

0 0 0 0 0

1Cr ~2C c -4C1- 03 J

c 3 | c5 ^c5 0

c
4 | * c5 °

c5 j

Let x = c + y - x - c . then
o 1 1 1

x 2 = c 0+ ( x 2 - 2 x3 - x4) c 2 + ( Jx 2- x2x 3- i x2x 4 + x23+ x 3 x 4 + 3 x2) c5.

Hence we obtain the coordinate equations

= 1 , = 0 , x 2 ^ = x2- 2 X3- X4, x = 0 , x4<^> = 0 ,

2 2 i 2x
5 <^ = l x2- x2x 3- i x2x 4+x3 +x3x 4+l x4.

Linearising via (2.1.2.) these equations are extended by

x ^ = x 2- 4 x3x 2~ 2 x4x 2 +4 x3+4 x4x 3 +x 4, x ^ x ^ - i = x 2x 4 /

2^ 2 ~= x 3 <f - x3 x4 <•/ - x 4 </ - 0 .

Ordering the monomials occuring in these equations by

0
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(4.1.1.) we have:

giving the sparse induced linear transformation whose

only non zero columns are 1, 3, 4 and 12. The minimal

polynomial is easily found to be . The plenary

train polynomial is identical to min <? and hence B 19 '-L

is a Bernstein algebra.

This example together with (4.2.6.) illustrate

several facts about linearisation. The class of algebras

LI is wider than GA. Both B^ an<J B^^ 1 are i-n LI and both

break the Gonshor conditions in different ways. B^ breaks

only G3, B ^ 1 only G 2 ( /\ o37 , ^ 042 ^ * B o t h these alg-

ebras are Bernstein algebras but not TA, having plenary

[ x ] [ 2]
train equation x - x = 0. Example (4.2.b.) is also

in LI but is neither GA nor a Bernstein algebra. It breaks

both conditions G2 and G3 of GA while possessing the

L41 ^ C3l L2l ^ rpl
plenary tram equation, x - 2x + x =0 . inere

exist TA that are not in LI, e.g. Abraham's counter-

example to a conjecture of Suttles (56) of a TA that is

not a GA (see (1)). This does not possess a plenary train.

These results i ri di c &"te_ that 1inearisabi1ity

of the quadratic transformation is equivalent to the exist-

ence of a plenary train e qua t i o n. We note

that this is stronger than the identity of the plenary

train polynomial and the minimal polynomial of the induced

linear map. This identity is equivalent to the assertion

that the existence of a plenary train equation xp( ^ ) = 0

implies the existence of an Ho1gate linearisation with

minimal polynomial p. Our assertion implies the converse
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too.

4.3. Basis free characterisation

Holgate's characterisation theorem (4.1.21.) provides

necessary and sufficient conditions for GA and by his

theorem (2.1.1.) GA is sufficient for the linearisation

of the quadratic transformation. In this section we

consider the relationship between the basis dependent

linearisation and the basis free conditions of HCT. In

particular we consider algebras satisfying one or other

of the conditions of HCT. We note that known examples of

algebras in LI but not in GA are not TA.

4.3.1. We denote by 1L2the class of baric algebras sat-

isfying either the solvability condition (S) or the nil-

potency condition (N) of (4.1.21.) i.e. (A,/3) such that

either L(A) is solvable or ker/3 is comprised wholly

of (principally) nilpotent elements.

4.3.2. L2 is closed under duplication.

2
Let (c.) be a basis of A. A' is isomorphic to A + K

2
where K is the kernel of the homomorphism h: A' —> A ,

c..h = c•c- and L( A 2) is a Lie subalgebra of L(A). The

1 J 1 3

solvability of L(A) implies that of L(A + K) and hence of

L( A 1 ). Also if P is the baric function of A then ker.-'j^

is a subset of ker/3 . This together with the homomorphism

h implies the nilpotency of the kernel of the baric func-

tion of A' given that of A.

4.3.3. Example. 0* = 1) i-s (satisfying S but not

N).



92

The multiplication table is

b = b ,
o o'

b b, = 0,
o 1 ' bo b 2

Y b 2' b 1b2 2 b9,

b 2 ° *

The baric function is defined by fl(b ) = 1, /3(b^) = 0

for i > 0. Let x = x b +x 1b1+x~b- then
o o 1 1 2 2

Now

2 2 7
x = x b + fx x0-x"-x,x„)b„.

o o v o 2 1 1 2 2
2ker/3 =<b 1 , b 2 ' >, (ker/3) = < bl ,b^(b1 , b̂ = ( b ^

and (ker/3) = <^b ,̂ b ^ ) = So ker/3 is not

nilpotent, and any x in ker .3 of the form x,b +x 9b
1 1 2 2

is not principally nilpotent. Thus N is not satisfied.

We show that satisfies condition S of L2. We must do

this directly since does not possess the symmetry

of Holgate's example.

L(B^ 9) is the algebra generated by the (x 6 B 12 )

with the commutator product. We have

j1 0 0

R b = 0 0 O R ,
o |L° ° •

Computing basic products,

LRb.-Rb.l
= 0 ,

LRb.'Rb.l1 1 1 i j
and

IRt
o
,R. "] • 0 , rR

b , R b 1o 2J

0

-1

0

- 1R
\

"0

0

°l

I
0 R

b
i
2

0

0

0

0

0

b.,R b.
1
0

0

0

0

0

0

KL b
R, R

b
o

Now IR^ ,R |̂ is linearly independent among the R^ (i=0,l,2).
2 o ., i

For, writing R^ = R^ and R^ • = [ anc^ setting

6/q R0 + + !^ 2 R2 + X20 R20 0

we find on solving the linear system that all the coeffic-

ients must be zero.

Thus a basis of L( B, 2) contains at least
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R
0 > Ri> r

2 ' LR2 'Ro J ] '

This is a basis providing all products among these are

linearly dependent on this set. We have

I0 0 o 1

= j0 0 0

i-g 0 0

R0 ' R20
= iR

02

R1 ,R 2 O] . R2' R20 ] R20' R20 ( °*

So (*) is a basis of L(B^ 9) and hence its multiplication

is

R 0 R 1 R 2 R02

R o 0 0 R02 i R
0

R 1
0 0 R02

0

R 2 ~ R02 ~R02
0 0

R02
~^ R02

0 0 0

(2)
is generated by R~ 0 and

u L R0 2'
Now L( B12 )

L( B19 ) is a zero algebra of dimension 1 and hence
Xz

L( B1 Z )( 3) = 0 . Thus L( B 9̂) is solvable.

4.3. 4. Example. B 1̂ is in L2 , (satisfying N but not S) .

The multiplication is given in (4.2.10.) where it is shown

LI . B ' is not GA since 'n x ? , /| n4? t 0.that B10 is in Li. u 12 ~L3 uul- urv °-1-11 ^ " 032' ^'042

Ker is nilpotent for ker/3 = ^>c->>c3 >c 4 >c5 /»

(ker /3)̂ = vc5 X; an< ^ (ker/-?) = 0 . Now since B^ ? is not GA

and ker. : is nilpotent it follows from HCT that L(B^ 2') is

not solvable.

4.3.5. Example. A 3-dimensional nonassociative baric

algebra in L2 but not in LI. We define the algebra from

an infinite formal linearisation:
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W' - 1, x x 4 = x x , x 2 ^ = x 1 +x 1x ?,

x l x 2 ^ = x l +x l x 2 ' X l ^ = xl> x l x 2^ = x l x2 '

Note that x^x^ /> x 9 by our order (4.2.1.) and x-^x^^ ? 0 .

For a basis (c^ ) and x = C
0

+ X ^ C ^ +X 2 C 2 f ° rma Hy we have

x^> = c o + Xl c x • ( x 1 +x 1 x 2 ) c 2.

Solving the bas ic product equations for a set of structure

cons tants we obtain

c = c ,
o o

c c,
o 1 ! c c c~ = 0 ,

o 2 '

cj = 0 ,
c 1 C 2

ic
2'

c 2 - 0 .

This gives an algebra A whos e quadratic trans formation

satisfies the given equations. A is baric with /?(C q) = 1,

/3(c^) = 0 for i > 0, since /->( xy) = x Qy q = /?( x) ^( y).

A is not GA since /I, i 0 . Moreover ker/5 is not nilp-

otent. Any x of the form X^c^+X2 c^ is not principally

nilpotent. The associator is non zero i.e. A is not assoc-

iative. Next cons ider the Lie multiplication algebra L( A)

of A. We have basic right multiplications

n o

= |o 1

10

R
o

0

0

0

~~o 1
2 0 0 0 o r

R c =
C 1

0 0 0 R c =

2
0 0

1
2

0 0
1
2 0 0 0

R„. R-,, R„ say. Then writing R i , = / R^ RJ we have
0

R0 1

1' ,N2

0

0

0

0

0

0 1

0 |

0 I

R
02

0

|0

I0

1J

0

0

0

0

0

R1 2 =

0

0

0 0

R
02 'zR2

so R q2 is linearly dependent on the R^ Solving

the linear system

* 0 R 0 + <*1 R1 + ( X 2 R 2 + X 0 1 R0 1 + X12 R1 2 = 0

we find o(q = ^ = ^ 2 = ,: ^01 = X 1 2 0
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i.e. that RQ^, r
1 2 together with R , R^, R form a

maximally linearly independent set thus far. So a basis of

L(A) contains at least

[ R
0 » R!> r

2 » rqi» Ri2 ['

That no further linearly independent elements are gen-

erated i.e. that this set is maximal follows from:

tR01'R0Ll = * R01' R 0' R1 2 -•= R 12 + 5 R 2' LR1?R01- = ° '

[ R1'R12• " R12 ~ 4 R 2 '[ R2'R0ll = ~ 1 ^ 5R 2 + R12^ '

LR01 'R1 ~ -R 2' R01 ' anc ^ R 2 ,R12! ~ ^ •

Thus L(A) is of dimension 5 with multiplication

R,w0

R
0

R.

R,

R01

0

R12

R1 R 2 R01 R 1 2

R0 1 i R
2 ^ R01

r12+4 R2

0 R1 2
0 - ( Rl 2+i R

2 )

0 -(«R 7+i R 12 ) 0

0 - C1R2+£R12)

0

( 2)
Now consider the derived series. L(A) V~W consists of all

pairwise products of L(A) and hence is generated by the

matrices R 9 , R q ^ R,2. Since these are linearly indepen-

(2)
dent among themselves they form a basis for L(A) giving

R2
R0 1

R12

R.

R01

1R i,

0

5R2+iR

0

( 2 )

- ( 1 R 2 ^ r
12 ) 0

1 2 ~ U * 2 + l R 12)

- ( l R
9 +i R

12 ) 0

0

"2

( 3)
Thus L(A) i 0. Again L(A) * is generated by R 2 , R 12

and rR 0, R 10 l = 0 . So L( A) ^ is a zero algebra of dimension
L L IZJ

2. Hence L(A)(-4') = 0 and L(A) is solvable.
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Summarising these results we have

Algebra GA LI L2

S N

GA 1 1 1 1

B1 2
0 1 1 0

B12 ? 0 1 0 1

.3.5.) 0 0 1 0

It is clear that linearisation of the quadratic trans-

formation in a commutative baric algebra does not depend

in any simple way on the structure as it is given by

the characterisation theorem of Holgate.



APPENDIX 1
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Evolution of Trains in Baric Algebras by Standard Linear

Algebraic Methods

0. Abstract
s ~ ^

Let jx(n) : n = 0,1, •••[ be a train in a baric

algebra over the complex field. This paper considers the

problem of obtaining an explicit formula for x(n) in

terms of n and the initial coordinates. In particular it

considers the 'linearisation' of the quadratic transformation

in genetic algebras due to Holgate (10) and its application

to the explicit solution of the evolution of sequences of

plenary powers by Abraham (1-4). It is shown that classical

methods give a lower dimensional linear algebraic solution

over a more general class of algebras and for a more general

class of trains than Holgate's linearisation.

1. Introduction
i;

Etherington (6) introduced the following three classes

of nonassociative algebras and applied them to problems

in genetics. An algebra over the complex field is said to

be baric if there exists a non trivial homomorphism /-'

into 1 . If the rank equation for principal powers,

n n-1x11 = x.x

in a baric algebra has coefficients which are functions

of p(x) only, so that for xt A such that /5(x) = 1 the

coefficients are constants, then ^ is said to be a train

algebra and the principal powers are said to form a train.
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Baric algebras satisfying (1) ker p is principally nil-

potent and (2) (ker^.1) m are ideals of for in= 1,2, ...

are necessarily train algebras and algebras satisfying

these conditions are called specia1 train algebras. In

special train algebras other 'powers' may form trains, in

particular the plenary powers,

xCn.I „ (x fn - n ) 2 >

Etherington showed that train algebras of rank 1 , 2 or 3

possess plenary trains. Bernstein algebras are defined by

their plenary trains(11). But otherwise, converse cond-

itions have not been considered.

Schafer ( 12) defined a further class which was sub-

sequently given the following definition by Gonshor ( 8).

A commuative baric algebra is said to be a genetic a 1gebra

if the multiplication for a basis ( c^ ), = —k^ ij kc k

satisfies ( 1 ) \qqq = 1, ( 2 ) \ = 0 if k 4 j and

( 3) Ai j k = 0 if i,j > 0 and k £ max(i,j).

Holgate ( 10 ) studied the quadratic transformation

^ : ^4 —? , x-^-'= x""in genetic algebras and showed that

all g en etic alg eb ras p ossess a p len ary train . In p rov in g

this theorem he shows that <j>can be linearised over a

higher dimensional space in the sense that there exists

a map R : A —> ^ and a linear map ^ such that

xf = xR^ JT (1)

where IT is the projection ^ is in fact a

'reduced' tensor power of ^ . The theorem gives the plen-

ary train roots in terms of the structure constants A

Abraham (1-4) applies Holgate's linearisation (1) to

give explicit solutions for the evolution of x - '= x-p

i.e. of plenary sequences in genetic algebras for poly-
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ploidy and to obtain the 'linearising functions' for those

in which none of the \ = 0 unless defined to be so
1JK

by the Gonshor conditions. His solutions are obtained

from the equation

x <An = xRP" 1J nP i(' (2)

derived from (1), where J is the Jordan canonical form

of the matrix of '£* , A say, and J = PAP -1 . Since J n can

be written down in terms of J and n this equation gives

£ 2
x in terms of n and the coordinates of x.

Etherington (7) gives a method of obtaining the plenary

train equation of a commutative baric algebra.

In this paper we shall use the shift operator E on

vector sequences in an algebra and scalar sequences in

the coefficient field, Ex(n) = x(n+l). We also apply the

standard method of reduction of an r'th order difference

or differential equation to r l'st order equations.

By the 'Holgate/Abraham linearisation method' we shall

mean the construction of 4> in equation (1) and its use

in equation (2).

We show that classical methods suffice for a linear

2
algebraic solution of the evolution equation Ex(n) = x(n)

in a commutative baric algebra possessing a plenary train.

The class of such algebras is strictly wider than genetic

algebras. x(n) is obtained in terms of n and the coord-

inates of x(0), ..., x(r) where r+1 is the plenary rank.

The solution is carried out in dimension r without recourse

to Ho1gate's linearisation and the higher dimensional spaces

of the Holgate/Abraham method.
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2. Plenary Trains

Let (A,p) be a commutative baric (nonassociative)

algebra of arbitrary finite dimension m+1 over the complex

field possessing a plenary train of rank r+1. Let

fr +11 u f.'r1 _x - • + tr x + ... + ^ x = 0
1 r

be the plenary train for x such that J(x) = 1. Then we

have for all x(n), A?(X(0)) = 1 implies /.?(x(n)) = 1 and

hence

( E r + d^ Er ^ + ... + ^ )x(n) = 0

2
where t heare constant and Ex(n) = x(n) .

Since the 6 . are complex the polynomial in E is obtained

as a product of linear factors.

Put y^(n) = x(n), y i(n) = Ey i_ 1(n) for i = 1,2,

then

r;

Ey 1(n) = y 2 ( n )

Let

A =

0

0

0

E y r _ i (n ) = yr ( n )

Ey r(n) = -^ ry 1(n)

0

0

0

1

0

-01 -0 2 -0 3

0

0

0

-9,

- ^ y r ( n)

A is the companion matrix of the plenary train polynomial

over the algebra/ ^'.
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Let

Y(n) = (yjfnJ, y r M) z

then

EY(n) = Y(n)A (3)

with solution

Y(n) = AnY( 0) (4)

(We revert to the left hand convention as is more usual

in this context.)

The advantage of phrasing the problem in this way is

that the companion matrices have the property that their

characteristic and minimal polynomials are identical and

equal to the plenary train polynomial. Moreover the

eigenvectors and the generalised eigenvectors and hence

the Jordan form are easily obtainable. And, the inverse

matrix can be written down immediately (see Brand (5)).

Now, unless A is very sparse when we may proceed directly

with the preceding equation, there exists a nonsingular

matrix P such that J = P -1 AP is the Jordan form of A, hence

where J n can be given in terms of J and n. P is the matrix

of row eigenvectors or generalised eigenvectors in the case

of multiple roots of the plenary train equation.

(x(n) ,Ex(n) ,...,E r ^x(n)) - (x(0),Ex(0),... ,E x(0))M

Y(n) = PJ nP~ 1Y( 0)

Thus

where say

1 1

r1 rr



103

and so

x(n) = J^xfo)+ </21Ex(0)+. . .+P<1 .Er"1x( 0)).

In terms of coordinates

( x o ( n) x m ( n) ) = t( ^ nx( 0 ) +. ..+»'rlEr"1x(0))?To

C^ 11 x( 0)+...+1v.1Er"1x(0))TT m)

where 11.is the projection on the i'th coordinate.

If we put

Ex(0) = (Ex o(0), Ex m(0))

where on the l.h.s. E is the shift operator of the vector

sequence defined by Ex(n) = x(n) while on the r.h.s. the

E's are each shift operators of different scalar sequences

defined by the particular algebra , then we may write

O 0 ( n) s
m t n ^ = ^ l l x o ( 0) + ---+ £k Vl Er "lx o (;0)

^ nX m ( ° )+. .. +^ ri Er " lx
m( ° ) ).

Thus x(n) is obtained explicitly in terms of n and

the coordinates of x(0), x(r-l) where r is the plenary

rank of ) from the vector equation

x(n) = P J nP _1 . Y(0). (5)

The calculations in Abraham (1,4) can be achieved in

this way in dimension r, generally much less than the

dimension of the Holgate linearisation.

3. Example

Consider the algebra for tetraploidy given in (1.5.10.).

The plenary train equation is

x L31 - 4/3xj-2 J+ 1/3x = 0.

Equivalently in the operator E = 1+ A , f(E)x(n) = 0 , where

f(E) = E 2 - 4/3E + 1/3.

We replace this second order linear equation by two first

order equations.
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Put y 1(n) = x(n), y9(n) = Ey^ n) . Then

Ey x(n) = y2(n)

Ky 2(n) = -l/3y^(n)+4/3y2(n).

Let Y(n) = (y^(n),y2(n))t then we have

EY(n) = AY(n)

where

A =

(*)

0 1

| —1/3 4/3 J .

A is the companion matrix of f(E). The characteristic

(= minimal) equation of A is identical to the plenary train

equation.

Now the equation (*) has solution

Y(n) = A nY(0).

To obtain A n explicitly we use the Jordan canonical form.

The eigenvalues of A are 1, 1/3 with corresponding eigen-

vectors (1,1) and (1,1/3).

Now

J = B"1A13

-1
where B is the matrix of row eigenvectors, e^, and B ~ is

the matrix of column vectors of the reciprocal set, e\

such that e. . e-'= d-?(Kronecker delta)*

We have

J = B~ 1AB = r 3/2

-3/2

0 H

0

-1/3

So Jn

Hence

2

•3/2

- r i
1I

0 1/3
L_

1 0

0 1/3n

Y(n) = BJ nB~ 1Y( 0)

1

4/3

1

1/3

i(1/3
n-1

II(1/3n - 1)

- 1) \(3-1 /3 n_1 )

i(3-1/ 3n)
Y(0)
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from which there follows

x(n) = I(l/ 3 n_1 ) , 1(3- l/ 3 n_1 ) . ! x(0)

Ex(0)
L

which gives

x(n) = co+x 1(0)c1+( ^/3 r>2(0) +i(l-l/3 n)x2( 0))c2.

This agrees with the solution obtained in (2.1.13.).

4. Other Trains

Finally we mention that, since our derivation of (5)

for the plenary case does not depend on the plenary property

but only on the property of trains, the standard method

outlined here applies to any train in a single indetermin-

ate whose terms preserve baric value. Thus we have the

fo1 lowing.

Let |X(n)( be a train in a commutative baric algebra

with /3>X(n) = 1 and train equation

T(E)X(n) = 0 .

Then

X(n) = PJ nP _1 . Y(0)

where Y(0) = (X(0), EX(0), ..., ErX(0)), J is the Jordan

canonical form of the companion matrix of T(E), P is the

matrix of generalised eigenvectors and r+1 is the rank of the

train equation.

The method also applies to 'continuous trains' (see

Heuch (9)). The 'continuous theorem' is obtained by

replacing n by t and E by D in the discrete theory, where

t is a continuous parameter and D is the differential

operator. The equations corresponding to (3), (4) here

w ill b e

DY(t) = AY(0) (0)

Y(t) = e tA Y( 0) (7)

where e tA is an exponential matrix.
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APPENDI X 2

In genetic algebra as a model several genetic

conditions are assumed. In our presentation we shall

frequently wish to refer to these conditions so we

collect them together here for convenience . If we are

relaxing some of the conditions we will specify only

thos e that are not supposed to apply, otherwise we shall

simply refer to the genetic assumptions G.

G. (i ) infinite population

(ii) even ploidy

(iii) diallelic loci

(iv) chromosome segregation only

( v) no linkage

(vi ) random mating

(vii) non overlapping generations

(viii) no mutation

(ix) no selection.

(iii) , (iv) , (vii) and (viii) are relaxed in some

cases here, (v) implies all alleles segregate. It has been

relaxed by several authors , (vi ) implies the statistical

independence of the gene frequencies, (i) is necessary for

(vi) . (ii ) is connected with the form of polyploidy assum-

ed - autopolyploidy.

(ix) is univers ally imposed in genetic algebra (to date

at least). The reason for this is that the introduction of

the 'selection coefficient' destroys 'normalis ation'. For

example if A, a are alleles of an initial population

xA + ya (x+y=l) and the fitnes s of A is 1 and of a is 1-s

( 0 4 s ^ 1), so A has selective advantage over a. Then



after selection we have xA + (l-s) ya where x + y - sy f 1

'
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